Numerical tools
cutzeros
cutzeros removes trailing zeros from Maple floats:
> fsolve(x^2-1, x);
-1.000000000, 1.
> cutzeros(");
-1, 1
roundf
roundf rounds to a specified digit:
> roundf(3.141592654, 4);
3.1416
slice
cuts floats.
> slice(2.71828182845904523536028747135, 3);
2.718
cancel
deletes real and complex numbers very close to zero from an expression.
> cancel(x + 1e-10*I + 2);
x + 2
deg & rad
Converting degrees to radians and vice versa with the convert function needs some time to input.
> deg(Pi/4);
45
> rad(45);
getreals
> solve(x^3-1, x);
getreals returns all real values from an expression or a sequence of expression that are real but not complex:
> getreals(");
1
_Zval
Explicit values from the last result can be computed with _Zval:
> _EnvAllSolutions := true:
> solve(cos(x), x);
> _Zval(", -10 .. 10);
> evalf(");
-7.853981635, -4.712388981, -1.570796327, 1.570796327, 4.712388981, 7.853981635
seqby
The seqby function is similar to seq but also accepts a step size.
> seqby(x^2, x=1 .. 2, 0.25);
1.0000, 1.5625, 2.2500, 3.0625, 4.0000
recseq
conducts recursive iteration of a sequence.
> recseq(x^2, x=0.5, 10);
.5, .25, .0625, .00390625, .00001525878906, .2328306436 10^(-9) [, ...]
Algebraic tools
convert/range
converts a RealRange expression into a Maple range:
> convert(RealRange(0, Open(2)), range, exact);
0 .. Open(2)
convert/RealRange
convert/RealRange converts a relation or a Maple range into a RealRange expression.
> convert({x >= 0, x < 2}, RealRange);
RealRange(0, Open(2))
> convert(0 .. Open(2), RR);
RealRange(0, Open(2))
getindets
getindets returns all indeterminates in an expression.
> alias(E=exp(1)):
> getindets(Pi*x+E*y);
x, y
inter
inter determines the intersection between two intervals:
> r1 := solve(x>-10, x);
> r2 := solve(x<10, x);
> inter(r1, r2);
Open(-10) .. Open(10)
rangemembers
rangemembers determines the elements included in a range.
> rangemembers({-1, 0, 0.5, exp(1), 5, Pi}, RealRange(Open(0), Pi));
retrieve
retrieve selects those expressions from a list that contain or do not certain subexpressions:
> t := readlib(trigsubs)(tan(x^2-1));
> retrieve(t, [sin, cos, x^2-1]);
un
un is an abbreviated unapply function.
> f1 := un(diff(x^2-x, x));
Author: Alexander F. Walz, alexander.f.walz@t-online.de
Original file location: http://www.math.utsa.edu/mirrors/maple/mplmtool.htm