9 Ordinary Differential Equations

Thoughout this book we have studied the two major concepts of calculus. the derivative, and theintegral. In this
Chapter we begin the study of differential equations. Consider a problem that we can solve right now. Suppose
that we know the derivative of afunction, x(t), and the value of the function at one value of time, for example,
suppose that it is given that

X{t)=2t-2

x(0) = 2.

Canwefind thisfunction? In terms of mathematics, thisisthe same problem asthe one studied in Chapter 6, where
it was shown how to construct a function from a knowledge of its derivative. To find x(t) one asks what function
hasaderivative equal to 2t — 2?1t ispossibleto find all such functions by taking the antiderivative. Thus x(t) has
theform x(t) = t> — 2t + C, where C isaconstant. Since the function x(t) satisfies x(0) = 2, the constant C can
be found from

2=0°-20+C.

Hence a function x(t) which satisfies the two equations above is x(t) = t> — 2 t + 2. Since any other function,
which satisfies the first equation must differ from x(t) by only a constant, and since it also satisfies the second
equation, it turns out that

X(t) =t?—2t+2

is the unique solution to the problem which was posed.
The problem of finding the antiderivative of afunction is an example of a differential equation. Suppose that
f (t) isacontinuous function defined over some interval [a, b]. A solution of the differential equation

X ()= f)

isan antiderivative of f(t),
x(t):/ f(t) dt+ C.

Since whenever x(t), defined in thisway, is substituted for x into the equation X' = f(t) equality holds, x(t) is
justifiably called a solution of the differential equation. In the next section we will define what afirst order differ-
ential equation is and what is meant by a solution. The remainder of this chapter is concerned with some ways to
solve differential equationsand how differential equations can be used to solve many problemsthat arisein several
fields of study.

9.1 What isa Differential Equation?

Water left in a glass cools or heats to the temperature of the surrounding air. If you drop an object into a body of
water, then the object eventually approaches the the temperature of the water. These observations are exampl es of
ageneral physical law called Newton’s Law of Cooling. For example, let T (t) be the temperature of the object at
timet and Ts be the surrounding temperature, then according to Newton’s Law of Cooling the rate of change of
the temperature satisfies
at = k(T —Ts),

where k is a constant that depends on the physical properties of the object. Thisis an example of a differential
equation, where T is the dependent variable and t is the independent variable.
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Definition
Let f(t, X) beafunction of two independent variablest and x. An equation of the form

X = f(t,x)

iscalled afirst order differential equation. The variable x is the dependent variable and
the variable t is called the independent variable. A differentiable function ¢(t) which is
defined on some interval | and such that

¢'(t) = f(t, ¢(1)

issatisfied for al t € | iscalled asolution of the differential equation.

For the differential equation that we derived from Newton's Law of Cooling the dependent variable was T
instead of x and the function f in the definitionis

f(t, T) = —k(T-Ts).

In the introductory section to this Chapter we saw how to solve a special type of differential equation, i.e. one
in which the second variable x is absent in f. Consider a situation in which the variable t is absent, for example,
suppose f (t, X) = 2 — X, i.e., the differential equationis

X =2—X

Observethat thisdifferential equation hasthe sameform asthe one derived from Newton's Law of Cooling, except
that in this case x isused in place of T, k = 1, and Ts = 2. It will be shown how to to find a solution to this
differential equation in Section 9.4. For the time being we will show how to determine if a given function is a
solution. Let

p(t)=2—-Ce ",

where C isaconstant. It will now be shown that ¢(t) is a solution to the differential equation

X =2-x.
In order to show that ¢ (t) isasolution, it must be verified that

¢'() =2— ().
The left-hand side of the preceeding equality can be found by differentiating ¢ (t) :
Left — hand side = ¢'(t) = Ce™".
Theright-hand side is obtained by algebraic manipulation:
Right — hand side =2 —¢(t) =2— (2—Ce™') = Ce™".

It follows that

¢ (t)=2—¢(1)
and, thus,

o)y =2—Ce!

isasolution to the first order differential equation
X =2-X.

Later in Section 9.4, you will learn how to solve this equation by hand, but now an illustration using Maple V
to solve the equation will be given. Thefirst step is to define the differential equationin aMaple V session.

> deq := diff(x(t),t)=2-x(t);
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d
deq = ax(t) =2—X()

Notice that when the equation was originally written the independent variable t was not shown explicitly. When
defining differential equations for use with Maple V, one must express them in terms of the independent variable
(t inthis case), otherwise the Maple V dsolve command which is about to used will not treat things correctly. This
command will be applied and some of its many options will be explored throughout this chapter, but for now the
dsolvewill beappliedinitsmost basic form. Roughly speaking the dsolve command doesfor differential equations
what solve and fsolve does for algebraic equations. The basic syntax is dsolve( diffegn, vars), where diffegnisa
differential equation, and varsis the variablesto be solved. In this case we have:

> dsolve(deq,x(t));
X(t) =2+e"'.C1

How does this result compare with the solution that was given above? Notice that if C = —_C1, then thereisno
difference. Observe further that the answer isin the form of an equation. In order to manipulate the solution it is
better to write it in terms of an expression or a function.

> phi := rhs("); t
¢ =24+¢e"_C1

This defines ¢ as an expression. If you wish the solution to be expressed as a function, then use unapply.

> phi = unapply(phi,t);
=t 2+e'.C1

You can verify that ¢ isasolution by having Maple V perform the same tasks that are done when checking it
by hand. First calculate the left-hand side of the differential equation with ¢ substituted for x.

> LeftHandSide := diff(phi(t),t);
LeftHandSide := —e'_C1

Next substitute ¢ (t) for x(t) into the right-hand side of the equation.

> RightHandSide : = 2 - phi(t);
RightHandSide := —e™'_C1t

Since the left- and right-hand sides agree, you may conclude that the function ¢ is a solution.

The constant C in the solution above is like the constants of integration that were encountered when finding
antiderivatives. The only differenceisthat it enters the definition of ¢ asamultiplication factor; and the constants
obtained from antidifferentiation are additive constants.

What isthe significance of the constant? If one knowsthe value of the solution at one point then, just aswith an
antiderivative, one can determine the solution completely. For example supposethat itisrequired to find asolution
of the differential equation

which aso satisfies the initial condition
x(0) = 3.

Then one can solve for the constant by solving the equation
3=2-ce?®
for C. Thisiseasily solved by hand and it may be concluded that C = —1. Consequently, the solution is
pr1(t)=2+e".
Using MapleV, proceed as follows. First solvefor _C1.
> C1 := solve(phi(0)=3,_C1);

Cl =1
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Then substitute the value into the solution that contains the arbitrary constant.
> phil = t -> subs(_C1=C1,phi(t));
phil: =t 2+¢€
You can plot your solution. See Figure 45
> plot(phil(t),t=0..5);

Figure 45: A solution curve Figure 46: Several solution curves

Once you are fortunate enough to have aformulafor the solution, you can use it to analyze its algebraic, geo-
metric and numerical properties. For example, you can makemultiple plots. SeeFigure 46 for plotsof the solutions
for C1=-2,-1,0,1,2

> plt = [seq(plot(subs(_C1=i,phi(t)),t=0..5),i=-2..2)]:
> plots[display](plt);
Figure 46 suggests that regardless of the value that isassigned _C1, every solution approaches the same hori-
zontal asymptote x = 2.
> limit(phi(t),t=infinity);
2
It follows that every solution of the equation X' = 2 — x approaches 2 asymptotically ast — oco. Recall that
this differential equation is equivalent to one that arises from Newton's Law of Cooling when the constant k = 1
and Ts = 2. Thusthe fact that al solutions approach Ts = 2 asymptotically is consistent with the statement that an
object’s temperature cools or heats to its surroundings.
Could we have anticipated this result before solving the equation? Suppose that ¢(t) is asolution of the dif-
ferential equation and ¢(t) < 2. Then the slope of the curve x = ¢(t) satisfies

Pt =2-¢() > 0.

This means that so long as ¢(t) < 2, that ¢(t) isincreasing. With the same reasoning it follows that ¢(t) is de-
creasing whenever ¢(t) > 2. Moreover, when ¢(t) is hear 2, the slope of the curve x = ¢(t) isamost 0. This
suggests that, but certainly does not prove, that ¢(t) approaches 2 ast getslarge.

In the beginning of this section you were given a definition of afirst order differential equation. You might
wonder about the term first order. The order of adifferential equation is equal to the highest order derivative that
occursin the eguation.
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Definition
Let f(t, X, y) beafunction of three variablest, x, and y. An equation of the form

X" = f(t, x,X)

iscalled asecond order differential equation. A differentiable function ¢(t) whichisde-
fined on someinterval | and such that

¢"(1) = f(t, ¢(), ¢' (1)

issatisfied for al t € | iscalled asolution of the differential equation.

Asan example of asecond order differential equation that arisesin physical problems, consider amass, m, that
is attached to a spring. According to the physical law, known has Hooke's Law, the amount of force required to
stretch or compress a spring is proportional to the length of the stretch or compression. If x denotes the displace-
ment and k is the proportionality constant then the force F is

F(x) =kx.
Another law from physics, Newton's Second Law, states that
mx”’ = —kx.

If we divide both sides by m, then

S0 that K
ft,x,y)= _EX'

Because of Newton’s Second L aw second order differential equationstend to come up in many problemsinvolving
the motion of masses, and are thus of great interest.
Asaparticular example, of a second order differential equation consider

d?x dx
—+2—+25x=0.
ae Teqr T
In this case
, a2
Todt?
and

ft,x,y)=—-2y—25x.

Differential equationslikethiscan arisein many problems, for example, isspring-mass systemswith resi stance.
It can be entered into aMaple V session as follows.

> eqn = diff(x(t),t$2)+2*diff(x(t),t)+25*x(t)=0;
d? d
eqn = @x(t) + zax(t) +25x(t) =0

It can be verified that
o(t) = et cos(2v61)
isasolution of the differential equation by direct substitution and simplification.
> subs(x(t)=exp(-t)*cos(2*sqgrt(6)*t),eqn);
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2
iz e ! cos(2v61)) +2 %(e‘t cos(2v/6 1)) + 25 (et cos(2v/61)) =0
> simplify(");

0=0
Which showsthat ¢ (t) isasolution. If you still feel that Maple V is not auseful tool, you might try verifying
this by hand.

Exercises 9.1 In the following verify each ¢(t) satisfies the indicated differential equation and plot ¢(t).
1. Show that ¢(t) = €* isasolution of the differential equation
X = 3x.
2. Show that ¢(t) = sin(6t) isasolution of the differential equation
X' +36x=0.
3. Show that ¢(t) = — &.} isasolution of the differential equation

X = X2

4. Show that ¢(t) = 127 isasolution of the differential equation
X = 0.001x(100 — x).

9.2 Direction Fields

Let

X = f(t,X)
be afirst order differential equation. At each point in the (t, x)-plane where f (t, X) is defined, the right-hand side
of the equation gives avalue of the derivative,

') = f(t, o),

of the solution through that point. This derivative can be thought of as athe slope of aline segment through that

point. The collection of all such line segmentsis called the direction field, (sometimes also called the slope field),

for thedifferential equation. MapleV hasaprocedurethat producesaplot of adirectionfield. The procedureispart

of DEtoolspackageandiscalled DEplot1. Thesyntax for using thisprocedureis DEplot1(deg,vars,trange,inits,xrange,options),
where deq is the right-hand side of the first-order differential equation, varsislist of the variables that are used,

trangeis the range over which the independent variable ranges, initsis a set consisting of the initial conditions of

the solutionswhich are to be plotted. If theinitsis omitted, then only the direction field is drawn and no solutions

areplotted. The variable xrange isthe range over which the dependent variable ranges. If only solution curvesare

required then the inits must be non-empty, and the option arrows should be set equal to NONE.

Example 9.2.1 Usethe Maple V to obtain the direction field for the differential equation
X =2-x
Then make amultiple plot of the solution curvesto the differential equation which satisfy thefiveinitial equations

Xx(0) =0, x(0) =1, x(0) = 2, x(0) = 3, and x(0) = 4. Finaly, make a plot which isacomposite of the preceding
plots.

Solution: Since the DEtools package isto be used, make the call using with. Then apply the procedure DEplot1
to obtain the direction field shown in Figure 47. Use the option arrows = LINE.

> with(DEtools):
> pltl := DEplotl (2 - x,[tx],t=0..5,x=-4..4,arrows = LINE):";
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Figure 47: Direction field for X =2 — x
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Figure 48: Five solution curvesfor X' = 2 — x

Now we plot the five solution curves corresponding to the solutions which satisfy the initial conditions:
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Figure 49: Solution curves and direction field

X(0)=0,x(0)=1,x0)=2,x(1) =3, and x(2) =4

Inthe previous section we made similar plotsand we could use the same method that wasused in there, but DEplot1
will be used again. See Figure 48 and compare it with Figure 46.

> plt2 := DEplotl(2 - x,[t,x],t=0..5,{[0,0],[0,1],

> [0,2],[0,3],[0,4]}, arrows = NONE): ";
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Figure 47 shows a collection of line segments through pointsin the (t, x)-plane. Each of theseline segmentsis
tangent to the solution curve of X' = 2 — x through that point. A good way to seethisisto combine this plot with
some solution curves as those in Figure 48. See Figure 49.

> plots[display]({plt1,plt2});
Figure 48 can also be created by f asingle call to the procedure DEplot1.

> DEplotl(diff(x(t),0)=2-x(t), [t:x],t=0..5,{[0,0],[0,1],[0,2],

> [0,3],[0,4]},arrows=LINE,x=-4..4);
Now consider adifferential equation which comesup in population growth models called the logistic equation.
Let x(t) bethe population of acertain speciesat timet. Assumeacertain birth rate, kx, which causesthe population
to grow. If there is nothing to check this growth, then rate of growth of x(t) satisfies the differential equation

X = kx.

Assume k > 0, since we are assuming a birth rate, as opposed to death rate. In this special case growth takes the
form
p(t) = Ce",

where C isaconstant. These solutions tend to co exponentially and soon would overpopul ate the universe. More
realistically there are factors that limit growth as a population increases. Thus for logistic growth assume that x’
is also proportional to an expression of the form 1 — 7. Thusit is assumed that x satisfies a differential equation
of the form X
X =kx(1——=).
=¥ )

In the next examplek = 1 and M = 10.

Example 9.2.2 Use the Maple V to obtain the direction field for the differential equation

,  X(10—x)
X="1

Then make amultiple plot of the solution curvesto the differential equation which satisfy the fiveinitial equations
x(0) =0, x(0) = 2, x(0) = 8, x(0) = 10, x(0) = 12 and x(0) = 20. Finaly, make a plot which is a composite of
the preceding plots.

Solution We proceed asin the previous example. First call up the DEtools package. Then use DEplot1 to plot the
direction field. See Figure 50.

> with(DEtools):

> pltl := DEplot1(x*(10 - x)/10,[t,x],t=0..5,x=-10..20,

> arrows = LINE):";
Note the line segments have positive, negative, or zero slope depending on where x islocated. If ¢(t) isasolution
of the equation and 0 < ¢(t) < 10, then ¢/'(t) > 0. Thus in this range ¢(t) isincreasing. On the other hand if
¢(t) > 10then ¢'(t) < 0 and ¢ (1) is decreasing. Isthe behavior of these solutions eseentially the same as those
of the previous example? At first glance you might feel that there is not much difference, but observe that for
¢(t) < 0the dopeisnegativein Figure 50, but it is positive for Figure 47. The behavior is more complicated in
this example.

A plot of the solution curves satisfying the initial conditions:
Xx(0) =0, x(0) = 2, x(0) = 8, x(0) = 10, x(0) = 12, and x(0) = 18

isgivenin Figure 51.
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15+

Figure 50: Direction field for x' = X10-X) Figure 51: Five solution curves for x' = X219

Figure 52: Solution curves and direction field

> plt2 := DEplotl(x*(10-x)/10,[t,x],t=0..5{[0,0],[0,2],

> [0,8],[0,10],[0,12],[0,18]},x=-10..20,arrows=NONE): *;
Notice one difference with this example and the previous one is that the solution satisfying x(0) = 0, isthe
constant function ¢(t) = 0, and in the previous example all solutionstend to 2 ast tends to oo. The union of the
last two plotsis given in Figure 52.

> plots[display]({plt1,plt2});
The preceeding two examples do not contain t explicitly. The next example does.

Example 9.2.3 Use DEplot1 to analyze the time dependent system. Also duplicate the plots by using dsolve and
the plot command.

Solution: Starting as with the previous examples, we call up the DEtools package and invoke DEplot1 to create
Figure 53.

> with(DEtools):
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> pltl := DEplotl(t+x,[t,X],t=-4..4,x=-4..4,arrows = LINE): ";

89

Figure 53: Direction field for X =t — x Figure 54: Two solution curvesfor X' =t — X

A plot of solution curves satisfying the initial conditions x(0) = 0 and x(—1) = 0isshown in Figure 54.

> plt2 := DEplotl(t+x,[t,x],t=-4..4,{[0,0],[-1,01},

> x=-4..4,arrows=NONE): ";

It turns out that we can solve this equation with dsolve and then plot the curve over any scale that is available

to the plot command.
Define the equation in aMaple V session.

> deq := diff(x(t),t)=t+x(t);
d
deq := ax(t) =t+ X(1)
Now assign theinitial conditions and use dsolve.
> initl := x(0)=0;
initl := x(0) = 0
> soll := dsolve({deq,initl},x(t));
soll:=x(t) = —t—1+¢€
In order to use plot it is necessary assign the right-hand side to an expression.

> x1 := rhs(soll);
xli=—t—1+4+¢

Now plots are in Figure 55.
> plt2 = plot(x1,t=-4..4,x=-4..4):";

We now use the other initial condition and obtain Figure 56.

> init2 = x(-1)=0;
init2 := x(-1) = 0

> sol2

dsolve({deq,init2},x(t));
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Figure 55: A solution curvefor X' =t — X Figure 56: Another solution curvefor X' =t — X

sol2 == x(t )

1
—

'
[EnY

> x2 = rhs(");

X2 .

1
—
'
[EnY

> plt3 = plot(x2,t=-4..4,x=-4..4):",
The direction field together with these last two curvesis plotted in Figure 57.
> plots[display]({plt1,plt2,plt3});
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Figure 57: Solution curves and direction field
Note that Figure 57 can be created in one step with DEplot1.

Exercises9.2 Using MapleV proceduresplot thedirection fieldsfor the given differential equationsin theindicated
region of the (t, x)-plane . Include graphs of solution curves satisfying the indicated initial conditions.
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1. X' = —(t sint) cos(x), where —27 <t < 27, —27 < X < 27. Initial conditionsarex(—2) = 2, and x(—1) =
-3.

2. X' = dint cost, where —27 <t < 27, —27 < X < 27. Initia conditions are x(—2) = 2, x(—2) = 3, and
X(0) = 7.

3. X' = cos(t — X), where —27 <t < 27, and —27 < X < 2. Initial conditionsare x(0) = 1, x(0) =0, and
X(0) = .

4. X =t2—x%, where—4 <t <4, and—4 <t < 4. Initia conditionsarex(0) =0, x(—1) = —3, and x(1) = 2.

9.3 Euler’'sMethod

Numerical approximations of derivatives and integrals that were based on their definitions were presented in pre-
vious chapters prior to introducing techniques and shortcuts that can be calculating them in “nice” cases. In that
spirit, this section shows amethod, (Euler’s Method), for approximating the solutions of initial value problemsfor
differential equations. The ideabehind Euler’s Method is simple. Suppose that you wish to find the solution of

X = f(t,X)

which satisfies X(tg) = Xo. Assumethat f (t, x) varies continuoudly with its variables. Choose a small interval of
time, say h. Then since f (t, x) iscontinuouswe can hopethat f (t, x) iswell approximated by f (t, Xg), for |t — tg|
and |x — Xg| small. One can then find the solution of the constant differential equation

X = f(to, Xo)
which satisfies X(tg) = Xo. Integrating both sides gives the solution
#(t) = %o + f(to, %) (t—to).
The solution at timet; =tg+ his

¢(to+h) =xo+ f(to, X0) h

and so write
X1 = Xo + f(to, Xo) h.

Do the samething again starting at the point (t1, x;) and obtain the approximate solution for theinterval [ty, t; + h]
to obtain
tb=ti+h, X=X+ f(ty, x)h.

After k stepsit follows that
tkrr=t+h, X1 =X+ Ft, xOh.

Thismeansthat the approximate value of the solution to theinitifal value problem at timet =ty isxx + f (tk, Xx)h.
Anillustration of thiswill now be given by approximating the solution of

X =t—X,

which satisfies X(0) = 1 using five iterationswith h = 0.1

> f = (tx) - >t - X
f=tx)>t—x

> {[0] := 0; h:=0.1; x[0] := 1,
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to:=0
h:=0.1
Xo:=1
> 1[1] := t{0}+h; x[1] = evalf(x[0] + f(t[0],x[0])*h);
t[1] :=.1
X1 = 9
> 2] := t{i}+h; X[2] := evalfix[1] + f(t{1]x{1)*h);
t2 = .2
X 1= .82
> 13] = t2]+h; x[3] := evalf(x[2]+f(t[2],x[2])*h);
t3 =.3
X3 = .758
> t[4] = t3]+h; x[4] := evalf(x[3+(t[3],x[3])*h);
t4 =4
> 1[5] := tj4]+h; X[5] := evalf(x[4]+f(t[4] x[4])*h);
5= 5

Xs .= .68098
Thusthevalueof thesolutionto theinitial value problem of the differential equationattimes0, 0.1, 0.2,0.3,0.4, 0.5
are1,0.9,0.82,0.758, 0.7122, 0.68098. In order to plot these points we create alist.

> L = [seq([t[il.x[i]].i=0..5)];
L := [[0, 1], [1, .9], [.2, .82], [.3, .758], [.4, .7122], [5, .68098]]
We can now make a plot of the approximate solution Figure 58.

> plot(L);

You can verify by direct substitution that the exact solution to this problem is

pt)y=1-2¢e".

The error in the approximation at point t; is
ERROR = approximation at t; - ¢ (t;)

This can be computed at each of the points 0, 0.1, 0.2, 0.3, 0.4, 0.5.
> error = seq(evalf(L[i][2]-(-1+2*exp(-(i-1)/10))),i=1..5);
error = 0, .090325164, .182538494, .276363559, .371559908

You can compare the approximate and exact solution graphically asin Figure 59. For this problem the approximate

solution isthe higher one.
> plot({L,rhs(sol)},t=0..0.5);
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Figure 58: Euler’'s Method solution for X' =t — x Figure 59: Approximate and exact solutions

When making a large number of iterations it is probably better to use a loop instead of typing in all of the
repetitions. The following maple V segment shows how to make 50 iterations with h = 0.01.

> t[0] := 0: h:=0.01: x[0] := 1:

> o=

\%

for i from 0 to 49 do
x[i+1] = x[i] + f([i],x[i])*h;
tli+1] := t[i]+h;

vV Vv

> od:

\%

X[50];

7100121342
The new approximate valuefor t = 0.5isx[50] in thiscase and is.7100121342 which isabetter approximation
than the one with h = 0.1.

Exercises 9.3 Use Euler’sMethod with step size equal to h = 0.1 to determine an approximate val ue of the solution
at t = 1 for each of theinitial value problems below. Repeat these calculations with h = 0.05, and h = 0.01 and
compare the result with the exact value of x(1). You may use dsolve to obtain the exact solution. Graph the result
along with the direction field in each case.

1. X=X x(0)=1

2. X =t+x x(0)=1

3 X=t—x, x(0)=2

4. X =3x—4e, x(0)=1
5. X =x(10—x), x(0) =2
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9.4 Separation of Variables

In the preceding sections you have seen how to use the direction field defined by a differential equation to gain
geometric insight into how the solutions behave, and how to use Euler’'s Method to numerically approximate the
solutions. In this section a method for finding the exact solution, in cases when the differential equation is given
in the following special form:

X = T (1) X(X).

Definition
A first-order differential equation is separableif it can be written in the form:

X = T () X(X).

As an example consider the following differential equation:
X = (2t+Dx

This equation is in separable form with T(t) = 2t + 1, and X(x) = X. Suppose that ¢(t) is a solution of X' =
(2t + 1)x, then ¢ (t) satisfies
¢'(t) = (2t+ D)p(b).

If ¢(t) = 0then theright hand side of the equation is zero which means that the constant function with value zero
pt)=0
satisfies the equation. More generally, if ¢(t) = 0 one can divide both sides of the equation by ¢(t) obtaining
@' ()
()
Observe that both sides of this last equation can be integrated with respect to t

() /
dt = 2t+ 1) dt.
/ o0 @+1

Calculating the integral on each side we obtain

=2t+1.

Ing(t) =t2+t+C.
In order to solve for the solution ¢(t) we apply the inverse function, exp, to both sides. Thus
¢(t) — et2+I+C.
This can be written as ,
p(t) = Ke"*,

where K = €. The constant, K, can be evaluated by solving the last equation whent = 0, and aformulafor ¢ is
found:

$(t) = p(0) €.

Once you have found a candidate for a solution to a differential equation it is aways a good idea to check to
seeif it really satisfies the equation. Upon differentiating the equation for ¢, with the help of the chain rule, you
arrive at ,

¢'(t) = 90 (2t + 1) = p() (2t + 1) = (2t + Do (V).

Thus ¢(t) isasolution.
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In general when an equation has the separable form you can obtain at least aimplicit expression for a solution.
Suppose then that a differential equation of the form

X =T(t) X(X)

is given. How does one find the solution? In the example above it is assumed that x = ¢(t) isasolution and then
both sides are divided by x = ¢(t). Since in that example X(x) = X, divide the general separable equation by
X(¢(1)). Then
o)
=T().
Xy

Let G(x) denote the antiderivative of the function ﬁ then if both sides of the last equation are integrated with
respect to t one obtains

G(t) = / T() dt+C,

where the fact that dx
600 = [ s
implies
Giom) = [ SO
The equation

G(p(1)) = / Tt dt+C
defines the function
()
implicitly. Since

1
G = m # 0,

the function G has an inverse, G2, thus ¢(t) is given by
o(t) = G‘l(/ T(t) dt+C).

Often one can't find an elementary formulafor G2, but in any case the solution x = ¢(t) is given implicitly by
the relation:

G(x) —/T(t) dt=_C.
A function F(t, x) like
F(t,x) = G(x)—/T(t) dt

which is constant when a solution is substituted for x is called an integral for the differential equation. Thus for
the differential equation
X = (2t + 1)x

the function ,
F(t,x) =Inx—e"' !

isan integral for the differential under discussion.

Example 9.4.1 Use the method of separation of variables to find the solutions of the logistic type equation

X = X(Xx—1).
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Solution: This equation isin the separable form with T(t) = 1, and X(X) = x(X — 1). The process starts by di-
viding the equation by x(x — 1). With Maple V the session begins as follows.
> deq := diff(x(t),t) = x(O)*(x(t)-1);

deq:= ax(t) = X(t) (x(t) — 1)

> degsep := deq/(x(t)*(x(t)-1));
ax®
Xt (x(t)—1)
Now the variables are separated with the function of x on the left-hand side and the function of t on the right-hand
side. Each side can be integrated.

deq:=

> intlhsdeqgsep := int(lhs(deqgsep),t);
intlhsdegsep := — In(x(t)) + In(x(t) — 1)

> intrhsdeqsep := int(rhs(deqgsep),t)+C;

intrhsdegsep :=t+C

This means that
Ft,x)=—In(x) +In(x—1) —t

isanintegral of the differential equation X' = x(x — 1). Now solve the equation for x(t).
> phi = solve(intthsdeqsep=intrhsdeqsep,x(t));

Sometimes it is desirable to make ¢ afunction.
> phi := unapply(phi,t);
1
p=t e

Thusthe general solutionis
1

o0 =T g

The following steps represent a check to seeif ¢(t) really isasolution. The candidate for asolution is substituted
into the differential equation
> eval(subs(x = phi,deq));
¢ (1-e) -1
(1- et+c)2  1-—¢tC

Simplification illustrates the validity of the solution.

> simplify("); e e
€
(-1+e+C)°  (—1+4e+C)

Since both sides are equal we have checked the correctness of the solution.
In this section the method of separation of variablesis being emphasized. Now an illustration of how to solve
this equation using dsolve will be presented.

> dsolve(deq,x(t));
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1
(x(t))
Note that dsolve did not solve for the solution explicitly, but it is easy to obtain the explicit solution.

=1+€_C1

> solve(",x(1));

(x(®) = 1+€.C1t
This saysthat the general solutionis
1
XO=1raer

You should be able to prove that this is equivalent to the one obtained above.
When you can find the solution explicitly, you can also use the Maple V option explicit to ask dsolveto return
that solution.

> dsolve(deq,x(t),explicit);
1

(-1-€.CI)
When adifferential equation is separable you have achance to find an exact solution. Sometimesit is not easy,
(or even possible), to evaluate the integral
dx
/ X(x)

That can be an obstruction to finding an exact solution. At other times you can not obtain the solution explicitly.
Nevertheless the method of separation of variables appears in applications often enough to be studied. The next
exampleisanillustration of aproblem in which Maple V's ahility to evaluate integrals helps alot.

X(t) =

Example 9.4.2 Find the solution of
/ t?
X
X cos(X)+/9 — t2
which satisfies the initial condition x(0) = 0. Plot the graph of the solution.

t

Solution: Thisequationisseparablewith T (t) = : = and X(x) = e*cosx. Start out just likein thelast problem.

Vo2
> deq := diff(x(t),t)= (t"2)/(exp(x(t))*cos(x(t))*\sqrt(9-t"2));
d t2
deq:= —x(t) =
o= g M cos(X(t))v/9 — t2

Now separate variables

> degsep := deq * (exp(x(t))*cos(x(t)));
2

V9 —1t?

degsep := eV cos(x(t))%x(t) =

and integrate both sides.

> intlhsdeqsep := int(lhs(deqgsep),t);

O cos(x(t)) N O gin(x(t))

intlhsdegsep := 5 5
> intrhsdeqsep := int(rhs(deqgsep),t)+C;
V9—t2  9arcsin(}
intrhsdeqsep::—t 92 ! + 5 (3)-|-C

The integral follows by equating the last two results.

> integral := intlhsdegsep = intrhsdeqgsep;
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e“® cos(x(t)) e sin(x(t)) tv/9—t2  9arcsin()
2 T 2 T2 Yt

An explicit solution, in this case, seems impossible, so leave the solution in implicit form. Now solve for C by
using the initial condition.

+C

integral :=

> inits := eval(solve(subs({t=0,x=0},integral),C));
inits:=1/2

Substitute this value of C into the integral.
> initintegral := subs(C=1/2,integral);
e® cos(x(t)) €D sin(x(t))
+ =
2 2
tv/o—t2  9arcsin(i)
- +
2 2
One can now plot the solution using implicitplot. See Figure 60.

initintegral :=

+1/2

> plots[implicitplot](initintegral,t=-3..3,x=-2*Pi..2*Pi);

t

Figure 60: Solution Curve

Exercises 9.4 Use the method of separation of variablesto solve the following initial value problems. Whenever
possible find explicit solutions. In al cases plot the solution.

1 X =t(1+x%), x(0) =1

2. X =dintsinx, x(0) =%

3. X' = 0.005x(500 — x), x(0) =20
4

. X = x(0)=1

1
xInx’

t(14x2
5 X = fljtxz;, x(0) =1
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9.5 Modesof Growth and Decay: First Order Rates

Much of the work. that scientists and engineers do, involves the modeling process. In previous sections we have
made reference to physical laws such as, for example, Newton'slaw of Cooling, or Hooke'sLaw. These are exam-
ples of famous mathematical models and have been accepted by elements of the scientific community over such
along time that they are called “laws’. Much of the routine daily activity of practicing scientists involves devel-
oping some kind of model. The process might start with some kind of “ real-world” problem, which comesup in
the scientist’s discipline, that may only be vaguely understood, but for which there are good reasons to have more
understanding. The goal to be achieved must be articulated. The process might go like this. In the first step one
determines components affecting the behavior of the problem under consideration, and isolates those mechanisms
that areimportant in terms of the overall goals. The problem isthen cut down to amanageblesize. Thenext stepis
to determine constraints and scientific laws that apply to the specialized problem. Most mathematical models have
the following elements: (1) a mathematical or logical structure, (algebraic formulas, differential equations, etc.),
(2) definitions of the variablesinvolved, and (3) the distinguishing features within the mathematical structure of all
laws and constraints that are relevent to the problem. Once amodel has been obtained, it can be analyzed through
itsown internal mathematical structure so that the behavior of itsvariables can be predicted. Thusthe processthat
starts with a“real-world” problem leads to a mathematical problem, which can be analyzed to obtain a prediction
about the original problem. The predictions made as aresult of the model may or may not agree with experimental
results, or might suggest new laboratory experiments. If the model does not giverealistic predictionsthen one must
return to the model, determine which assumptions made during the process have led to these incorrect predictions,
and then make revisions to the model accordingly.

Radioactive Decay

Asaradioactive material |oses some of its mass as radiation energy, the remainder of the material reformsto create
anew substance. This processis called radioactive decay. For example, as radioactive carbon-14 decaysit forms
nitrogen. The ultimate result of the decay of radium islead. Experiments have shown that at any given time, the
rate at which aradioactive element decaysis proportional to the mass of the element that is present. Let x(t) denote
the mass of aradioactive substance at timet. Its rate of decay has the form

/

X = —kx.

If Xgisthemassat timet = 0, then
X(t) = Xge .

The half-life of aradioactive substance is the time required for half of the substance to have decay. It isrelated to
k by solving for Tpy+ in the equation

Xoe*kThaIf — %
Thus @)
n
That = B

Example 9.5.1 A living substance is assumed to have the same proportion of carbon-14 as the atmosphere has
and stops absorbing carbon when it dies. This meansthat the proportion of carbon-14 in, say, aplant that was once
alive can be used as an indicator of how long ago the plant died. The half-life of carbon-14 is5700 years. Suppose
that a sample has 90% of the carbon-14 that it originally had. Find the age of the sample.

Solution: Let x(t) denote the amount per gram of carbon-14 per gram of carbon in sample at timet. Then x(t) =
Xoe ¥, Since the half-life of carbon-14 is 5700 years, we can determine k from the formula
K— In(2)‘
5700
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Thetime T in years back at which the sample died satisfies

x0e™ T = X0 - (9/10),

or
e T =9/10.
Solving for T gives
_5700In(0.9)
In(2)

> T = evalf(-5700*In(0.9)/(In(2)));

T = 866.4176331
It can be concluded that the sample has been dead for at |east 866 years.

Drag Near the Earth’s Surface

A body of low density and rough exterior (e.g., afeather, or a snowflake), moving near the earth’s surface has a
resistive force due to air which is propotional to the velocity, v, but acts opposite to the motion. Thus if such a
body has mass mis released at height xo with initial velocity vg in the vertical direction has aforce due to gravity
and resistance equal to

F = —mg— kv,

where g isthe acceleration due to gravity, and k > O isaconstant of proportionality. Using Newton's Second Law
it can be seen that v(t) satisfiesthe initial value problem

mv = mg—kv, v(0) = vo.

Example 9.5.2 Suppose that the velocity v(t), of abody of low density satisfies the initial value problem
v/ =—100—0.04 - v, v(0) = 0.

Find the limiting velocity.
Solution: In this problem the differential equation is given so al that has to be done isto solveit.
> deq := diff(v(t),tf) = -100- 0.4*v(t);

deq = %v(t) = —100 — 0.4v(t)

> dsolve({deq,v(0)=0},v(t));

Error, (in factor/factor) floats not handled
The error here occurs because when oneis trying to find the exact solution using dsolve the differential equation
can not use floating point numbers. There are several waysto remedy thisin this case. One way beto rewrite 0.4
as4/10=2/5.

> deq := diff(v(t),t) = -100- (2/5)*v(t);

deq := %v(t) _ _100- 220

5
The dsolve procedure works in this case and the exact solution can be found as follows.

> dsolve({deq,v(0)=0},v(t));
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u(t) = —250 4+ 250e™ 5

The limiting velocity is-250 units of velocity. The significance of the negative sign isthat it means that the object
isfalling.

In other situations, such as, if the falling object is dense (e.g., araindrop, baseball or bullet), and moves near
the earth’s surface, the resistive force of the air might be proportional to the square of the speed and acts opposite
to the direction of the motion. Therefore the equation of motion has the form

mv’ = —mg + kv?,

where k > 0 isthe drag coefficient; the upper sign (+) is chosen if the body isfalling, and the lower sign (-) if the
body isrising. The equation can also be written

mv' = —mg — v|v|.

Example 9.5.3 Suppose a smooth dense object falls with velocity which satisfies the differential equation:

/

vV =—=1—v|y|

Find thelimiting velocity in the case of aninitial velocity of v(0) = 0, and plot several solution curveswith various
initial velocities.
Solution: In this example dsolve with the numeric option will be used to solve the given initial value problem.

> deq := diff(v(t),t)=-1-v(t)* abs(v(t));

d&r=ayﬂ)=—l—vGHMUl
> sol := dsolve({deq,v(0)=0},v(t),type=numeric);
sol := proc(rkf45_x) ... end

We can estimate the limiting vel ocity.
> seq(sol(i)[2],i=3..5);

V() = -.9950558671716422, V() = -.9993294546617530,

v(t) = -.9999092277555853
It appearsto be v = —1. Thevelocity tendsto approach the constant solution v(t) = —1. Next use DEplot1 to plot
several solution curves. See Figure 61

> with(DEtools):

> DEplotl(deq,v(t),t=0..5,{[0,-2],[0,-1],[0,0],[0,1],[0,2],[0,3]},

> arrows = LINE,v=-2..3);

Population Models

Let P(t) denote population at timet of a species. In reality the values of P(t) are integers, and they change by
integral amountswithtime. However, for large populationsachange of oneor two is“infinitesssimal” relativeto the
total, and we may think of P(t) asa continuous or even a smooth function, and thus we hypothesize the existence
of therate of change of the population, P’ (t). Thisleadsto differential equations. In general the following relation
is assumed to hold:
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Figure 61: Solution curvesfor velocity of smooth, dense falling object
Rate of Change = ratein - rate out

Example 9.5.4 Suppose that a population is isolated in the sense that there are no outside influences (i.e., there
isho immigration or or emigration) and that the only change in the population is due to births and deaths. In this
casetherate in isthe birth rate and is assumed to be linearly proportional to the the size of the population

ratein = b- P(t)
The rate out isthe death rate and is also assumed to be linearly proportional to to the size of the population.
rate out = d - P(t)
Then the size of the population P(t), with initial size, P(0), satisfiesthe initial value problem:
P =((hb-d)P,

PO) = P.

The solution of thisinitial value problem can be obtained by finding the explicit solution using the method of sep-
aration of variablesto be
P(t) = Pe® %",

If the birth rate exceeds the death rate then the popul ation grows exponentially, but if the death rate is larger than
the population “dies out” exponentialy.

Example 9.5.5 Supposethat apopulationinitially hasabirth rate constant of proportionality b = 0.06, births/year
and adeath rate of d = 0.04 deaths/year. After 15 years of steady growth, assume that the population stops repro-
ducing, i.e, b = 0. Find how long after the population stops reproducing that it takes the population

1. toreturntoitsorigina level
2. toreach 50% of itsoriginal level

3. to reach 30% of its population at the time b became zero.
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Solution: In this case the differential equation changes with time. For the first fifteen years we have
P'=0.02- P,

which has solution
P(t) = Poe®®.

After 15 yearsthe differential equationis
P=-04-P.

We can define the solution piecewise by
P(t) — Pon'OZt,

for0 <t <15, and
P(t) — P15e70.4(t715)’

for 15 < t, where Pis = Poe®. You need to verify this. Think of solving theinitial value problem
P'=—0.04P, P(15) = Pye® %15,
Using the Heaviside Function, H, you can define the solution
P(t) = Poe® P (H(t) — H(15) + PoeXe M= H(t — 15).

A plot of the solution curve along with the horizontal lines corresponding to the original population, 50% of
the original population, and 30% of the population at the time b becomes zero is shown in Figure 62 where we
have set Py = 1in order to plot the graph.

Figure 62: Population in which reproduction stops

In our Maple V session we use the notation Pbefore to denote the population before reproduction halts and
Pafter to denote the population after this event.

> Pbefore := (PO,t) -> PO*exp(0.02*);
(PO, t) — P>

The population at the time reproduction seizesis found as follows.
> P15 := Pbefore(P0,15);
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P15 := .349858808P0

Now compute Pafter.

> Pafter := (PO,t) -> Pbefore(P0,15)*exp(-0.04*(t-15));
Pafter := (P0,t) > 1.349858808P( g 004 +0-60

Use the Heaviside Function and plot Figure 62.
> alias(H=Heaviside);
I, H
> P := Pbefore(1,t)*(H(t)-H(t-15)) + Pafter(1,t)*H(t-15);
P := €% (Heaviside (t) — Heaviside(t — 15)) + 1.349858808e % 4+060 Froqiside (t — 15)

> pltl := plot(P,t=0..100,0..1.5): ";
> plt2 := plot(1,t=0..100):
> plt3 := plot(1/2,t=0..100):

> plt4 := plot(subs(P0=1,0.30*P15),t=0..100):";

> plots[display]({plt1,plt2,plt3,plt4});
We now solve the problem numerically.

> solve(Pafter(P0,t) = PO,t);

22.50000001
> solve(Pafter(P0,t)=P0/2,t);

39.82867952
> solve(Pafter(P0,t)=0.30*P15,t);

45.09932010
Using the preceding Maple V segment one can now answer the questions posed in the example. You may
conclude that it takes
225-15=7.5

years for the population to return to its original level. The population returnsto its original population in half of
the time that the population grew to its maximum value. The population reaches 50% of the original populationin

39.82867952 — 145 = 24.82867952
years. Finally, the population decreases to 30% of its population at the time b became zero in
45.09932010 — 15 = 30.09932010

years.
The"explosive” growth that arises when apopulation satisfies alinear growth rateis not alwaysrealistic, since
the exponential increase will soon outstrip the resources that are necessary to support the population. One way to
model restricted population growth isto assumethat the rate coeffient is variable rather than constant. Assumethat
this coefficient islinear, the next simplest after the constant case, then the population can be assumed to satisfy the
logistic equation
P =r(L-P)P.
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Thefactor L — P iscalled thelimiting factor. This problem can be solved by the method of separation of variables.
There have been several versions of this type of eguation analyzed in previous sections.

Example 9.5.6 Itisknown that the resources of acertain region can sustain at most 250 wolves. Thereare presently
25 wolvesin the region. Assume that the population of wolves grows at alogistic rate and the constant of propor-
tionalty isr = 0.001 wolves/year.

1. Determine the population of wolves P(t) as an explicit function of time.
2. Plot the graph of P(t).

3. What values of P and t make sense in the problem situation?

4. When will the wolf population reach 100?

5. When will the population essentially reach its limit?

Solution:

1. The population of the wolves must satisfy the equation
P’ = .001P(250 — P),

with Py = 25.
> P =P

> deq := diff(P(t),t) = 1/1000*P(t)*(250-P(1));

P(t) (250 — P(t
deqi= iy = POE0—PO)

1000
Using dsolve with the explicit option, obtain the explicit solution and denote it by PW.

> PW := dsolve({deq,P(0)= 25},P(t),explicit);

2
PW = P(t) = —— 20
—1—-9e1
The expression PW is converted to a function using unapply.
> PW := unapply(rhs(PW),t);
PW it - 20
—1-9¢e

2. Now plot the graph of P(t). See Figure 63.
> plot(PW(t),t=-10..50,-50..300);

3. Since the population can never be negative, nor exceed 250, and since time is measured from the present, it
follows that:
0<t, 0=<PW <250

4. Use solve to predict when the population will reach 100.
> solve(PW(t)=100,t);
4 In(6)

> evalf(");
7.167037876
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300+

-50L

Figure 63: Graph for P(t)

Thisindicates that there will be 100 wolvesin about 7.167037876 years.

5. The wolf population will reach 249 (one less than the limit) in

> solve(PW(t)=249,t);
4 In(2241)

> evalf(");
30.85870990
Therefore the population can be considered to reach its limiting population in around 31 years. See Figure 64.

> plot(PW(t),t=0..40,0..250);

Figure 64: Graph for wolf population
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Equilibrium Solutions
Most of the differential equations that have been used as models have the form
X = f(x).
For example in the example on Newton’s Law of Cooling the differential equation had the form;
T = —k(T-Ty).
In the equation for radioactive decay the differential had the form:

/

X = —kx.

The equation of population growth has the form
P=((hb-dP.
The equations for logistic population growth of wolvesin the last example was
P’ = —.001P(250 — P).

In each case these equations have points where the right hand side of the equation vanishes. These are pointsin
whichthederivative of the solutioniszero. Sincethe solution curvethrough such apoint haszero slopethesolution
must be constant, i.e., isin equilibrium. Such points are called equilibrium points, and the constant solution is
called an equilibrium solution. How do solutions of a differential equation behave near an equilibrium point? In
the model involving Newton’s law of Cooling the equilibrium pointis T = Ts, the temperature of the surrounding
area. All solutionstend to thistemperature ast — oo. One says that an equilibrium solution that has this property
isstable. In the population growth equation the equilibrium occursat P = 0, the general is

P(t) = Pe® %",

If the birth rate islarger then the death rate then the growth “explodes’ ast increases, but notethat ast — —oo the
solution tends to the equilibrium solution. When this happensit is said that the equilibrium solution is unstable.
On the other hand, if the death rate exceeds the birth rate all solutions tend to the equilibrium solution P = 0, i.e,,
the population dies out, i.e., the equilibrium solution is stable. Finally, in thelogistic equation for wolvesthere are
two equilibrium points: P = 0 and P = 250. The solution of theinitial value problem used for this equation was
250
—1-9e
This solution tends to the equilibrium solution P = 250 ast — oo and the solution goes to the other equilibrium
position ast — —oco. One can show that any solution with initial value satisfying 0 < P(0) < 250 has these prop-
erties. Thus in the case of the model involving the wolves the equilibrium solution P = 250 is stable, and the
equilibrium solution P = 0 is unstable. Consequently, if the wolves have been living in the region for a number
of years you would expect to find around 250 wolves living there.
In the qualitative study of mathematical models that use differential equations the equilibrium solutions are
important in that they are the solutions to which the system seems to tend to or to tend away from with increasing
time.

P(t) = —

Let X = f(x) beafirst order differential which does not involve the independent variable
t explicitly. Let f(c) = 0. We say that x = c isan equilibrium point.

e An equilibrium solution is a constant solution, ¢(t) = ¢, where f(c) = 0.

e An equilibrium solution is stable if a small change in the initial conditions gives a
solution which approaches the equilibrium point ast — oco.

e Anequilibrium solution isunstable if asmall changein initial conditions gives a so-
[ution curve that moves away from from the equilibrium point ast — oo.
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Exercises 9.5
1. A certain radioactive substance has a half-life of 1740 years.

() Write adifferential equation describing the decay of a sample of this substance and plot a graph of a
solution. From your graph of sample mass versus time, estimate the time required for the sample to
decrease to 25

(b) Compute this time from a solution formula for the sample size and compare with your result in (b).
2. Attimet = Oaparachutist who weighs 165 Ibs opensthe parachute at the height of 3000 ft when the vel ocity

is 88 ft/sec. Theforce of air resistanceis given by 60v(t) Ibs/sec, where v(t) the velocity of the parachutist
atimet.

(&) Write out adifferential equation and initial value problem for v(t), and another differential equation
and initial value problem for x(t), the height of the parachutist above the ground t.
(b) Createagraph of v versust, 0 <t < 1 min. What value does v(20) have?
(c) When will the parachutist hit the ground?
(d) What will the parachusist’s vel ocity be just before hitting the ground?
3. An aguarium can support no more than 225 tropical fish of a certain species. Nine of these fish are placed

into the aguarium. Assume that the rate of growth P’ of the fish isdirectly proportional to the population P
and the limiting factor 225 — P at any timet in weeks with proportionality constant r = 0.00225.

(a) Determine the fish population P(t) asan explicit function of timet.

(b) MakeaMapleV plot of P(t).

(c) What values of P and t make sense in the problem situation.

(d) Make adirection field of the problem situation.

(e) When will the fish population be 100? 1507

(f) When will the fish population essentially reach the aquarium’s capacity?

9.6 Systemsof Differential Equations

In the previous sections of this chapter it was shown how to analyze a single differential equation. Sometimes
an exact solution can be found explicitly, but in many cases one can only approximate the solutions numerically.
Even in the latter case it is possible to determine many of the salient features of the solutions by studying their
direction fields. Analyzing the behavior of solutions near equilibrium points and determining their stahility, gives
much insight into the long term qualitative behavior of solutions. You should now be aware, from the examples of
mathematical models you have seen, that understanding the behavior of solutionsto certain differential equations
leads to predictions about solutions of “real-world” problems. In this section we study the behavior of solutions
of systems of more than one differential equation.

Definition
Let f(t, x, y) and g(t, X, y) befunctions of threevariablest, xand y. A system of equations
of theform

X =ftxy,y=9txy
iscalled afirst order system of differential equations. The variables x, and y are the de-
pendent variables and the variablet is called the independent variable. Differentiable func-
tions ¢ (t) and v which are defined on someinterval | and such that the equations

') = ft, oM, Y1), ¥ =gt o), Y1)

are satisfied for al t € | iscalled asolution of the system of differential equations.
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For example, thefunctions¢(t) = sint, ¥ (t) = cost provide asolution for the system of differential equations
X=y,y=-X
as can be seen by direct substitution.
Example 9.6.1 Analyze the solutions of the system of differential equations
X =—Xy, y=Xxy—y.

Solution: MapleV will be used to study the solutions of this system numerically and geometrically.
> deq = diff(x(t),t)=-x(t)*y (1), diff(y(t),)=x(t)*y(t)-y(t);
deq := ax(t) = —x()y(), ay(t) =X y(t) — y(t)

Asanillustration one can obtain anumerical solution of the system using dsolvewith the numeric option satisfying
theinitial value problem

x(0) =2.5,y(0) =0.1.
> sol := dsolve({deq,x(0)=2.5,y(0)=0.1},{x(t),y(t)},type=numeric);
sol := proc(rkf45_x) ... end

> s0l(0); sol(2); sol(4);

It
It

[t = 4, x(t) = .3853721657880563, y(t) = .3447913533442888]

The above segment solves the initial value problem. The last maple V output shows that if (¢(t), ¥ (t)) denotes
the solution then for values of t = 2 and t = 4 we have

0, x(t) = 2.500000000000000, y(t)

.1000000000000000]

2, x(t) = 1.174952482169065, y() = .6699844908362961]

¢ (2) = 1.174952482169065, y(2) = .6699844908362961

and
¢(4) = .3853721657880563, vr(4) = .3447913533442888.

This solution can be used to create plots, but rather, we will use Plot2 from DEtools to make plots.

It is often informative to find the points in the (X, y) plane where the direction field is parallel to the x-axes,
i.e., wheny =0, orisparalé tothe y-axesi.e., when X' = 0. Observethat X' = Owhen —xy = 0and y' = Owhen
Xy — y = 0. These curves are caled the nullclines for the system. The next Maple V segment illustrates how to
draw these nullclines. Notethat X' = 0 on each coordinate axes, and y = Owhen y = 0 and x = 1. See Figure 65

> eq = -X*y=0,x*y-y=0;

eq =-xy=0,xy-y=0

> plt plots[implicitplot]({eq},x=-1/2..3,y=-1..3):";

We now prepareto plot the direction field for the system, by using procedures from the DEtools package. |ssue
the with command. See Figure 66.

> with(DEtools:

> pltl := DEplot2([deq],[x,y],t=0..1,x=-1/2..3,y=-1/2..3):";
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Figure 65: Nullclinesfor X' = —xy,y = xy—y
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Figure 66: Direction Field of X’ =-xy,y’ =xy-y Figure 67: Nullclinesfor the system

A plot of the nullclines and direction field on the same graph is given in Figure 67. Observe that the direction
field along the nullclinesis parallel to one of the coordinate axis.

> plots[display]({plt,plt1});
The procedure DEplot2 will now be used to obtain the solution curvein three dimensional space. Control of which
variables are plotted is achieved by assigning the scene option. In Figure 68 aplot of the solution curve, satisfying
theinitial value problem x(0) = 2.5, y(0) = 0.1, in (1, X, y) space is obtained by using scene = [t,Xx,y].

> DEplot2([deq],[x.y],0..4,{[x(0)=2.5,y(0)=0.1]},x=-1/2..3,

> y=-1/2..3,scene = [t,x,y],axes = normal);
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In Figure 69 DEplot2 with scene =[x,y] has been used to plot the solution curve that is shown in Figure 68 in
the (X, y)-plane along with the direction field.

> DEplot2([deq],[x,y],0..10,{[x(0)=2.5,y(0)=0.1]} x=-1/2..3,y=-1/2..3,

> scene = [Xy]);
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Figure 68: Solution for X' = —xy,y = xy — y in Figure 69: Direction field along with solution
(t5 X’ y)-spa:e

When you have a solution to a system of equations with x = ¢(t), and y = ¥ (t) you can also make plots of
each of these curves with DEplot2 by using scene = [t,x] and scene = [t,y] respectively. See Figures 70 and 71.

DEplot2([deq],[x,y],0..10,{[x(0)=2.5,y(0)=0.1]},x=-1/2..3,y=-1/2..3,

\%

\Y

scene = [t,x]);

\

DEplot2([deq],[x,y],0..10 {[x(0)=2.5,y(0)=0.1]} x=-1/2..3,y=-1/2..3,

\%

scene = [ty]);

Systems Resulting From Mathematical M odels

In the preceding section we studied population models that involved one speciesin isolation. Such models|ead to
asinglefirst order differential equation. When we have the ability to use more than one differential equation at a
time we can introduce models that involve more than one species.

Example 9.6.2 In this example we examine a system of differential equationsthat are derived from what is known
as predator-prey interaction. Let x(t), and y(t) denote the population of a predator species and a prey species
respectively. The predator-prey model assumesthat (x(t), y(t)) satisfy the system:

X = (—a+by)x, y = (c—dx)y,

where a and ¢ are positive numbers that are the decay (or death) and growth coefficients of each in the absence of
the other species. It is assumed that the number of predator-prey encounters is proportional to the population of
each. Thus b and d measure, respectively, predator efficiency in converting food (the prey) into fertility and the
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-0.5+ -0.5+

Figure 70: Solutionfor X' = —xy, Yy = Xy — yin (t, X)- Figure71: Solutionfor X = —xy, y = xy—yin(t, y)-
space space

the probability that an encounter removes one of the prey. Analyze the solution space for values of the parameter

givenbya=1 b=, c=2 add= Z.

Solution: First enter the equation into aMaple V session.
> deq := diff(x(t),t)=(-1+y(t)/100)*x(t),
> diff(y(t),t)=(2-2*x(t)/25)*y(t);
= Y= (14 Y0 9oy = (2- 20
deq:= th(t) = ( 1+ 100>X(t), dty(t) = (2 5 >y(t)

Note that if thereis no prey, i.e, that y(t) equal zero, then the system reducesto a single differential equation

=—X

and the predators die off exponentially, since there is no food (the prey). Whereas, if there are no predators then
the single equation is
y =2y,
and the prey explode exponentially and will soon exhaust their food supply.
It isusually productive to find the equilibrium points,

> equilibrii := solve({rhs(deq[1]),rhs(deq[2])}.{x(t),y(D)});

equilibrii := {y(t) = 0, x(t) = 0}, {y(t) = 100, x(t) = 25}

Thelast Maple V output tells us that there are two equilibria points. An equilibrium (0, 0) meansthat if there
are no predators and no prey at agiven time then there never will be. The equilibrium at (25, 100) meansthat if it
ever happens that there are 25 predators and 100 prey, then there will aways be that number. It is more interesting
tolook at other solutions. Some plots using DEplot2 of solution curvesin phase space ((x, y)- space), (t,x) space,
and (t,y) spacefor initial conditions

x(0) = 8, y(0) = 100; x(0) =12, y(0) = 100; and x(0) = 18, y(0) = 100,

are shown in Figures 72,73, and 74.
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Figure 72: Phase spacefor X' = (—1+ y/100)x, Y = (2 — 2x/25)

Figure 73: Solutions for X' = (-1 + y/100)X, Yy = Figure 74: Solutions for X' = (-1 + y/100)X, Yy =
(2 —2x/25) in (t, X)-space (2—2x/25) in (t, y)-space

> with(DEtools):
> DEplot2([deq],[x,y],t=0..20,{[x(0)=8,y(0)=100],[x(0)=12,

> y(0)=100],[x(0)=18,y(0)=100]},arrows = NONE,x=0..60,y=0..300,

> scene = [X,y],stepsize = 0.1);

> DEplot2([deq],[x,y],t=0..20,{[x(0)=8,y(0)=100],[x(0)=12,

> y(0)=100],[x(0)=18,y(0)=100]},arrows = NONE,x=0..60,y=0..300,

> scene = [t,x],stepsize = 0.1);
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> DEplot2([deq],[x,y],t=0..20,{[x(0)=8,y(0)=100],[x(0)=12,
> y(0)=100],[x(0)=18,y(0)=100]},arrows = NONE,x=0..60,y=0..300,

> scene = [ty],stepsize = 0.1);

Populations that rise and fall asin this example exhibit aform of balance in the sense that both survive.

Example 9.6.3 A simple pendulum consists of a bob of mass m hanging on a (assumed to be massless) rigid
rod of fixed length L firmly attached to a horizontal support. The pendulum is in equilibrium when the bob and
rod are aligned with the local vertical and at rest. let X(t) denote the angle that the rod makes with the vertical, let
y(t) = X/(t) be angular velocity. Then it can be shown that (x(t), y(t)) satisfies the equations

L _ _94nv_©
X=y y= SnX——y,

where g is the acceleration due to gravity, and c is a constant due to friction. Suppose that % =1 and % =0.2,
plot the phase plane with the direction field, along with solution curves that haveinitial values

x(0) =0, y(0) = 2; x(0) =0, y(0) =2.5; x(0) =0, y(0) = 3; and x(0) =0, y(0) = 3.5.

Solution: Enter the differential equation and the initial valuesinto aMaple V session. Then apply DEplot2.
> deq := diff(x(t),t)=y(t),diff(y(t),t)=-sin(x(t))-0.2*y(t);
d d .
deq:= &X(t) =y, &y(t) = —sin(x(t)) — 0.2y(t)

The MapleV command that createsthe direction field along with the solution curves satisfying thegiven initia
conditionsin the (x, y)- planeis shown in Figure 75 and is written below.

> inits := {[x(0)=0,y(0)=2],[x(0)=0,y(0)=2.5],[x(0)=0,y(0)=3],

> [x(0)=0,y(0)=3.5]};
inits := {[x(0) = 0, y(0) = 2], [x(0) = 0, y(0) = 2.5],

[x(0) = 0, y(0) = 3], [x(0) = 0, y(0) = 3.5]}
> DEplot2([deq],[x,y],-10..20,inits,x=-10..10,y=-6..6,scene =[X,y],
> stepsize = 0.1);
If you wish to see the behavior of the same solution curves plotted with x vst, then the next maple V. command
creates Figure 76.

> DEplot2([deq],[x,y],-10..20,inits,x=-10..10,scene =[t,x],

> stepsize = 0.1);

Aswas mentioned in the statement of this example the pendulum has two equilbria: when the bob and rod are
aligned with the vertical and at rest. With the coordinates used here this means the points with coordinates (0, 0)
and (7, 0). These represent points such that x = 0, which means the rod and bob are hanging straight down and
are not moving, and the point with x = 7, which means the rod and bob are balanced pointing straight up and are
not moving. Observe that the right hand sides of the differential equation vanish simultaneoudly at infinitely many
points: the points of theform (nr, 0), for al integers n. You might think that this suggeststhat there are infinitely
many equilibria. Indeed the differential equation does have infinitely many equilibria, but only two in the context
of the equations as amodel for a pendulum. Observe that the pendulum has the same position at the point (0, y)
aswith any of the points (2nr, y). In general the pendulum is in the same state when its coordinates are (x, y) or
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Figure 75: Solutions for pendulum in (X, y)-space Figure 76: Solutions for pendulum in (t, X)-space

(X4 2nm, y). Thus the only two distinct equilibria occur when the state of the pendulum is given by any pair of
theform (2nr, 0) ar (nx, 0). The stability of these two points should be quite different, since adamped pendulum
which isswinging back and forth might be expected to eventually settle down in the position in which it ishanging
straight down. Moreover, if you try to balance arod and bob straight up, the slightest push should send the rod and
bob into motion which will ultimately come to rest hanging straight down. Figure 76 shows the x-component of
three solutions for which initially x = 0 and the pendulum is set in motion at three different velocities. 2, 2.5, 3,
and 3.5. Thefirst solution spirals to the point (0, 0) and from the graph it appearsthat |x(t)| remains less than 7,
i.e., the pendulum does not make afull revolution. But the other three orbitstend to the point (27, 0). This means
that make one complete revolution before settling down to the stable equilbrium state of hanging straight down.
The identification of points whose x-coordinates differ by integral multiples of 27 suggests that the phase space
for the pendulum is actually a cylinder rather than the plane.

Exercises 9.6

1. Inthe following locate all equilbria and the use Maple V to make a direction field plot that includes all of
the equlibria. In the vicinity of each equilibrium point fill in enough solution curves to determine whether
solutions approach the equibrium or not.

(@ X =3x—-2y, y=2x—2y
(b) X =4x—2y, y =8x—4y
) X=-2x—-y+1, y=y-1
d) X =y*—x, y =y—2x

(e) X/:y2+X2—4, y/:yZ_XZ

2. Red-Tail Hawks prey on the squirrel population on a certain college campus. Suppose that the number of
squirrels, x, and the number of Red-Tailed Hawks, y, are governed by the equations

X =3x—xy, y = —125y — 3xy.

(8 Find all equilbrium points.

(b) Plotthedirectionfieldforthe (x, y)-planefor part of thefirst quadrant. Include several solution curves.
(c) Plot the solution curvesfoundin (b) inthe (t, X) and (t, y) plane.

(d) Discuss how the two populations can be expected to vary with time.
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3. Consider the system
X =-x+ay, Y =—x—V.

Make graphsthat show how the character of the direction fields, and solution curves change as a variesfrom
-1to 1. For which values of a isthere a sudden change in the nature of the solutions?

4. Consider an undamped pendulum
X/ =Y,y= _Sn(x)

(a) Plot (inthe (x, y)-plane) the solution curves which which areinitially at the points:
(—12,1), (—12,1.5), (—12,2), and (—12, 3).

Explain the different kind of motions of the pendulum correspond to closed and nonclosed curves.
(b) Repeat part (a) with solutions that originate at

(—6,b), (0,b), and (6, b),

for some value of b.
(c) Consider the closed curves which correspond to periodic motions of the pendulum originating at

(1,0), (1.5,0), (2,0), and (3,0).
Plot x versust and estimate the period T of each solution. How does T depend on the initial position?

(d) It can be shown that the solution which hasinitial value x(0) = «, y(0) = 0 has a period equal to

where k= sin(%).

/2 dr
T=4 / _
0o V1-k2sin’t
Evaluate this integral numerically when o = 1, 1.5, 2, and 3. Compare your answer with the results
of part (c).

9.7 Second-Order Linear Differential Equations
Leta # 0, and b be real numbers. A differential equation of the form
axX' +bx=0

is called afirst order linear differential equation with constant coefficients. It is an equation that can be solved
either by the technique of separation of variables or by inspection. The general solution is

X(t) = Ceat.
Observe that the coefficient of t in the exponent is aroot of the first degree polynomial equationin i,
ar+b=0.
The latter polynomial equation is called the characteristic equation for the differential equation
ax' + bx=0.
Now let a # 0, b and c be real numbers. A differential equation of the form

ax’+bx +cx=0
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is called second order linear differential equation with constant coefficients. It will now be shown how to find the
general solution to this equation. The solution should be a function which when added to alinear combination of
itsfirst and second derivative gives zero. Thus a solution of the form

p(t) =€
where A isto be determined is sought. Substituting this function for x into the differential equation gives
a(r2e’) + b(ret) + cet = 0.
Factoring € from the left-hand side |eads to the equation
(% +br +c)e' =0,

which must be satisfied for all t. Recalling that €t can never be zero and thus can be divided out of the above
equation leads to the second degree polynomial equationin A,

a4+ br+c=0.

This equation is called the characteristic equation for the differential equation. If A isaroot of the characteristic
equation then x = € is a solution of the differential equation. The characteristic equation is easy to obtain: all
onedoesisreplace x by 1, X' by A, and x” by A2 in the differential equation.

Maple V can be used to make these calculations. Enter the differential equation:

> deq := axdiff(x(t),t$2)+b*diff(x(t),t)+c*x(t)=0;
2

d d
deq = awx(t) + bax(t) +cx(t) =0

Substitute x(t) = e*! into this equation.
> el := subs(x(t)=exp(lambda*t),deq);
d2

el:=a
dt2

¢t +bdetycet=0
dt
> e2 = simplify(el);
e2:=ar’e' +baett +ce'=0
Now divide both sides by € to obtain the characteristic equation. Note the usage of expand and simplify.

> ceq := simplify(expand(e2/exp(lambda*t)));
ceq:=ar’+br+c=0

Each root to the characteristic equation |eadsto asol ution of the differential equation. Thefollowing fact shows
away to obtain more solutions.

Let ¢1(t) and ¢ (t) be two solutions of the second order linear equation
ax’ +bx +cx=0
then if C,, and C, are numbers

o(t) = C1p1(1) + Coga(t)

is aso asolution
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This fact can be verified by direct substitution: Substitute C1¢1 (1) + Cog2(t) for x in the differential equation
and rearrange the terms to obtain

a(Cip1 + Cogp2)” + b(Cip1 + Cogp2)' + €(Cargp1 + Cogp) =

Ci(ag] + bg) + cg1) + Ca(agy + bgh + c2) =0+ 0= 0.

The next fact gives a condition which guarantees when two solutions of the equation can be used to generate so-
[utions of all initial value problems.

Let ¢1(t) and ¢2(t) be two solutions of the second order linear equation
ax’ 4+ bx' +cx=0.
Suppose that for some tg the inequality istrue
A = ¢1(to) 5 (to) — ¢7 (to)p2(to) # O.
Let Xo, and x; be numbers. Then there are numbers C; and C, such that the function
d ) = Crg1(t) + Caga (1)

isanot only a solution of the differential equation but also satisfies the initial conditions
#(to) = Xo, ¢'(to) = X;.

Since ¢ (t) = Cr1(t) + Copp2(t) isasolution for every pair of numbers C; and C,, it followsthat the statement
in the box will betrueif C; and C, can be found so that

#(to) = C1p1(to) + Coa(to) = X0, ¢'(to) = C1¢ (o) + Codpy(to) = Xo.
Recognizing that these two algebraic equations are linear in C; and C, enables one to write the solution

Xogp5 (to) — Xg¢2(to) C — Xo#1(to) — %o (to)
A R A '

Ci=

Example 9.7.1 Find the general solution to the second order differential equation
X" —3x +2x=0.
Plot afew solution curves.

Solution: The characteristic equation is
A2 —31+2=0.

By factoring the right hand side it follow that the last equation is
A-—DHAr—-2)=0.
This means that two solutions are ¢4 (t) = €', and ¢,(t) = €. This gives the general solution since
A = ¢1(to)dy(to) — ¢ (to)ga(to) = €°(267°) — ele? = &% £ 0,

and we can solve every possible initial condition. We now will plot the solutions which satisfy the three sets of
initial conditions

x(0) = -1, X' (0) = —1; x(0.5) =0, X (0.5) = 1; x(—0.5) =0, X (-0.5) = 1.

The general solution can be defined to Maple V asfollows.
> gensol := Cl*exp(t)+C2*exp(2*t);
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gensol := C1 &' + C2 e
The constants C1, C2 are solved for the initial condition x(0) = —1, X' (0) = —1 by the following statement.

> Conl := solve({subs(t=0,gensol)=-1,subs(t=0,
> diff(gensol,t))=-1},{C1,C2});
Conl:={C2=0,C1 =-1}

Substituting this result into the general solution givesthe particular solution that satisfiestheinitial value problem.

> x1 := simplify(subs(Conl,gensol));
x1:= —¢

The same Maple V steps can be followed to obtain the other two solutions.
> Con2 := solve({subs(t=0.5,gensol)=0,subs(t=0.5,diff(gensol,t))=1},{C1,C2});

Con2 := {C2 = .3678794412, C1 = -.6065306596}
> x2 = simplify(subs(Con2,gensol));
X2:={C2=0,C1=-1}

> Con3 := solve({subs(t=-0.5,gensol)=0,subs(t=-
> 0.5,diff(gensol,t))=1},{C1,C2});

Con3 := {C2 = 2.718281828, C1 = -1.648721271}

> x3 := simplify(subs(Con3,gensol));
X3 := —1.648721271¢" 4 2.718281828¢*™

The plot of al three solutionsis givenin Figure 77
> plot({x1,x2,x3},t=-1..1,x=-4..4);

Figure 77: Solution curvesfor X’ — 2X' +2x =0

You should learn to solve simple second order linear differential with constant coefficients by hand. Probably
therewill be problemsin which the computation becomes burdensome and thus you should also learn how to solve
these equations exactly using Maple V. There follows aMaple V segment that indicates the relevent commands.

> deq := diff(x(t),t1$2)-3*diff(x(t),t)+2*x(t)=0;
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deq:= d—zx(t) — SEx(t) +2x(t) =0
= Ge dt N
The next step uses dsolve to find the general solution.

> gensol2 := dsolve(deq,x(t));
gensol2 := x(t) = _C1 €' + _C2 &

If you have ageneral solution, then you can use it to find the constants using solve from the initial conditions.

> constants := solve({subs(t=0,rhs(gensol2))= -1,subs(t=0,

> diff(rhs(gensol2),t))=-1},{ C1,_C2});
constants:= {_C1 = -1, _C2 =0}

Now the solution to the initial value problem is

> xx1 := subs(constants,rhs(gensol2));

xx1:= —¢

This agrees with the answer which was obtained previously. You can aso use dsolve to find the solution to the
other initial value problem.

> xx2 := dsolve({deq,x(0.5)=0,D(x)(0.5)=1},x(t));
xx2 := x(t) = —0.6065306596€" + 0.3678794412¢*!

This aso agrees with the previously found solution. Note that the Maple V output is in the form of an equation,
and thus you may need to use rhs when preparing to work with the solution. The solution to the third initial value
problem can be found in the same way and is left as an exercise.

The Characteristic Equation

Since the characteristic equation
ar’+br+c=0

is so important to solving the differential equation
ax’ +bx +cx=0,
it will now be analyzed. The graph of the second degree polynomial
y=ar’+br+c

is parabolawhich is concave up or concave down depending on the sign of a. There are thus three possibilitiesfor
the roots of the equation. See Figure 78 for the three possibilties that can occur when a > 0. Thegraphsfora < 0
are similar except are concave down.

Inspection of Figure 78 indicates that the roots of the characteristic will be one of the following:
1. twodistinct real roots, r1, and r, (when the vertex of the parabolais below the A-axis),
2. onedoublerooat, r, (when the vertex of the parabolais tangent to the A-axis,
3. apair of complex conjugate roots (when the vertex of the parabolais above the A-axis.

To see this algebraically we simply solve the quadratic equation

a4+ br+c=0.
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Figure 78: Possible positionsof y = ax2+bi + ¢

The quadratic formula gives
b+ vb?—4ac

2a '
Accordingly the roots will be real and distinct if the discriminant satisfies

A=

b? — 4ac > 0.

Let

; _ b—+b?—4ac ; _ b++/b%—4ac
1= 2a Co2T 2a ’

The functions ¢4 (t) = €, and ¢, (t) = €' are solutions. Observes that

¢1(t0)¢,2(t0) - (l);_(to)(f)z(to) =(r,— rl)er1t0+r2to £0,

and hence
B(t) = Crett + Cre?

isageneral solution.
In the second case when the roots merge into a single root the discriminant must vanish

b? —4ac=0
and hence
_b
2a’
In this case we only get one solution, ¢ (t) = €', by the procedure that is under discussion. It turns out that an-

other solution is given by ¢,(t) = te't. Thisfollows by direct substitution after recognizing that in this case the
characteristic equation has the form

a(x2—2ra4+r3=0
which implies that the differential equationis

a(xX’ —2rx +r2x) = 0.
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Thus the general solutionis
$(t) = (C1 + Cot)e'",
since
$1(to)pa(to) — ¢ (to)a(to) = € 0.

Finally, when the discriminant satisfies
b? — 4ac < 0,

the characteristic equation has complex conjugate roots

, _b—ivdac—b? ; _ b+ivdac—b?
1_ 2a ’ 2_ 2a E)

which, for purposes of simplification, will be written as
rh=a—ip, rp=a+Iig.
Two solutions are then given by
Ui (t) = @AY — tg Bty (1) — gHiB _ gutght

These solutions are not so pleasing, since they are complex valued, and, in this course, we are interested only in
real-valued solutions. Recall that

t —pt t - pt
cospt = eﬁi, andsint = eﬂile'
2 2
This means that the functions defined by
d(t) = M — e cospt, da(t) = %Zl‘#z(t) — e"lsint

are solutions and are real valued. Furthermore,

$1(t)5(to) — ¢ (o) P2 (to) = BE # 0.
Thus a general solution for this caseis

@(t) = e(CycosBt + Cosin Bt).

Oscillations

Suppose a mass mis attached to the end of a (massless) spring, the other end of which is attached to a solid hori-
zontal beam. A coordinate system is established along the spring’s axis and when the spring-mass configuration is
in equilibrium the coordinate for the massis zero and measures positive in the downward direction. It is assumed
that the restoring force for the spring obeys Hooke's Law which means that if the mass is displaced to the point
with coordinate x then the force is given by

F = kx,

for acontant k. In the absence of damping Newton's Second Law impliesthat the position x(t) of the mass satisfies
the differential equation

/!

mx” = —kx.

Sometimesiit is assumed that the spring has damping which is proportional to the velocity of the mass and actsin
adirection which is opposite to the motion. In this case x(t) satisfies the differential equation

mx” = —cx’ — kx.

Example 9.7.2 Let the differential equation for a certain spring-mass system be
X'+ 4x=0.
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1. Themassisreleased fromrest at adistance 2 units below the equilibrium position. Find aformulathat gives

the position of the mass as a function of time.

2. The massis set in motion with avelocity of -3 ft/sec from a point a distance 2 units below the equilibrium

position. Find aformulathat gives the position of the mass as a function of time.

3. Expresseach of the solutionsin the form

X(t) = Acos(wt + 0).

4. MakeaMapleV plot of both solutions on the same graph over atime period equal to twice the period of the

solutions.

Solution: The characteristic equation for the differential equationis

A +4=0.

The characteristic roots are £2i. In terms of the discussion above this means that the roots of the characterisic
equation are complex with o = 0, and 8 = 2. More precisely, one says that the roots are pure imaginary. The

genera solutionis
¢(t) = Cycos2t + C + 2sin2t.

If the massis released from rest at a point 2 ft below the equilibrium position the solution must satisfy the initial

conditions
#(0)=2, ¢'(1) =0.
The equations that determine C; and C; are
¢(0) = Cycos(0) + Cosin(0) =C; =2

¢ (0) = —2C, Sin(0) + C,cos(0) = C, = 0.

The solution is
P1(t) = 2cos(2t).

The solution in the second problem satisfies

¢(0) = Cycos(0) + Cosin(0) =C; =2

¢(0) = —2C; sin(0) 4+ C,cos(0) = C, = —3.

The second solution is
¢2(t) = 2cos(2t) — 3sin(2t).

Thefirst solution is already in the form
X(t) = Acos(wt + 0),

with A= 2 and 9 = 0. Recall the addition formulafor cos,
cos(A+ B) = cosAcosB —sin AsinB.

This means the second solution can be written as
3

$2(t) = 2c0s(2t) — 3sin(2t) = JTs(cos(Zt)il —sin(2t)—) = +/13cos(2t + 0),

V13 V13

wheretan(9) = 2% = 3/2. Thus 6 = arctan(3/2) which is approximately equal to

cos6
> theta := evalf(arctan(3/2));
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0 := 0.9827937232
To check the accuracy the following can be used to check the result:
> evalf(sqrt(13)*cos(theta)); evalf(sqrt(13)*sin(theta));

2.000000000

2.999999999

Thusthe answer checksto 8 decimal places. The example will be completed by giving aplot of the two solutions.
The period of each solution is 7, so the plot is over atime length of 2. See Figure 79,

> plot({2*cos(2*t),2*cos(2*t)-3*sin(2*t)},t=0..2*Pi);

-
¢
+

N
h
+

w
T+
+

Figure 79: Two solutions of X” 4+ 4x = 0.

Example 9.7.3 Let the differential equation for a certain spring-mass system with damping is
X" +0.1x +0.2x = 0.

1. Themassisreleased fromrest at adistance 2 units below the equilibrium position. Find aformulathat gives
the position of the mass as a function of time.

2. Themassis set in motion with a velocity of -3 ft/sec from a point a distance 2 units below the equilibrium
position. Find aformulathat gives the position of the mass as a function of time.

3. Expresseach of the solutionsin the form
x(t) = Ae”t cos(wt + 6).

4. Make aMapleV plot of both solutions on the same graph over atimeinterval [0, 30].

Solution: The characteristic equation for the differential equationis
A24+01140.2.

Maple V will ease the burden of some the calculations.
> eq := lambda”*2+0.1*lambda+0.2=0;
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eq:=22+0114+02=0
The characteristic roots can be found using solve.

> sol := solve(eq,lambda);

sol := - .05000000000 + .4444097209 I,
- .05000000000 -.4444097209 |

These roots are complex conjugate with « = —0.05 and 8 = .4444097209. This meansthat the general solutionis
@ (t) = e%(Cy cos(.4444097209t) + C, sin(.4444097209t).

Note that « isthe real part and g is the imaginary part of the complex number « + i8. This suggests the use
of the Maple V commands Re and I m to find the general solution.

> phi = exp(Re(sol[1])*t)*(C1*cos(Im(sol[1])*t)+C2*sin(Im(sol[1])*t));
phi ;= 0:05000000000t ( 77 005(0.4444097209t) + C2 sin(0.4444097209t))

The constants are found for the first initial value problem.

> consl := solve({subs(t=0,phi)=2,subs(t=0,diff(phi,t))=0},{C1,C2});

consl := {C1l = 2., C2 = .2250175802}
The solution to thefirst initial value problem is obtained by substituting these values for the C's.

> xx1 := subs(consl,phi);
xx1 := g~ 0-05000000000t (5 () cos(0.4444097209t) + 0.2250175802 sin(0.4444097209t))

Thelast Maple V output isthe desired solution. The solution to the second initial value problem follows similarly.
> cons2 := solve({subs(t=0,phi)=2,subs(t=0,diff(phi,t))=-3},{C1,C2});

cons2 = {C1 = 2., C2 = -6.525509825}

> xx2 = subs(cons2,phi);
Xx2 ;= @~ 0-05000000000t (5 c0s(0.4444097209t) — 6.525509825 sin(0.4444097209t))

The next thing to do isto express the solution in the form
At cos(wt + 6).

The next Maple V segment finds A and 6 for the first solution.
> Al := subs(consl,sqrt(C172+C272));

Al = 2.012618422

> tanl := subs(consl,-C2/Cl);

tanl := -.1125087901
> thetal := arctan(tanl);
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01 := —0.1120376427
Thus the first solution can be written as
$1(t) = 2.012618422e % c0s(0.4444097209t — 0.1120376427)
The second solution can be treated similarly.
> A2 := subs(cons2,sqrt(C172+C272));
A2 = 6.825121133

> tan2 := subs(cons2,-C2/Cl);

tan2 := 3.262754913

> theta2 := arctan(tan2);
02 := 1.273396582

This means that the second solution can be written as
¢ = 6.825121133e~ %" cos(0.4444097209t + 1.273396582)

The next two maple V commands represent checks of the correctness of the preceding calculations.
> expand(Al*cos(Im(sol[1])*t+thetal));

2.000000000 co0s(.4444097209 t) + .2250175803 sin(.4444097209 t)
> expand(A2*cos(Im(sol[1])*t+theta2));
1.999999997 co0s(.4444097209 t) - 6.525509826 sin(.4444097209 t)
It follows that, except for roundoff error, the above calculations are correct. See Figure 80 for the plot of the two

solutions.
0\ 5 10 x 20 /2;>K\30
/

> plot({xx1,xx2},t=0..30);

Figure 80: Two solutions of x” 4+ 0.1x" 4+ 0.2x = 0.

Exercises 9.7
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1. Find the characteristic equation and use it to obtain the general solution for each of the following second
order linear differential equations.

(@ X" —3x —-10x=0
(b) X" 410X +25=0
(€) X' +4x' +13x=0

2. In each of the following problems the motion of a mass attached a spring is described by an initial value
problem.

(a) Solve each of the problems.

(b) Plot the solution in the specified interval.

(c) Find the maximum of the solution in the specified interval.
(d) When possible express each solution in the form

Ae™ cos(wt + 0).

@ xX"4+15=0, x(0)=-2,X(0)=5,0<t<5

(b) X' +14.9x=0, x(0)=-2,X¥(0)=50=<t=<5

(0 X'+51X +6x=0, x(0)=-12,X(0)=3;0<t<4
(d) X’ +3.9x +18.73x=0, x(0) =3, X(0) =2, 0<t<4

3. In order to examine changes in the amplitude of an oscillation make Maple V plots of the functions
¢() = Acos(t+1), for A=0,1/2,1 2,
on the same graph.
4. In order to examine how changes phase shift changes the graph make Maple V plots of the functions
o) =cos(t+6), for 6=0,1/2,1,2,
on the same graph.
5. In order to examine how changes phase shift changes the graph make Maple V plots of the functions
¢(t) =cos(wt+1), for w=0,1/2,1,2,

on the same graph.
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