8 Applications That Use The Definite Integral

In Chapter 3 it was shown that the concept of the definiteintegral could be used to calcul ate thefollowing quantities:
the distance traveled by a moving object when its instantaneous vel ocity is known, to evaluate the the area under
acurve given by a nonnegative continuous functon defined on a closed interval, and, more generaly, to compute
the total change in a quantity defined as a function which varies over a closed interval. In the preceding chapter
various methods that can be used to evaluate integrals were considered. In this chapter further examples are given
toillustrate how integrals can be used to solve awide variety of problems. In each application thefact that adefinite
integral is defined as the limit of Riemann Sums of the form

n
> feoAt,
k=1
where the ¢, are points from apartition{fa=1tg <t; < --- <ty = b} and Aty = tx — tx_; isused.

8.1 TheAreabetween Two Curves

The problem of finding the area between two curves, will be reviewed, in order to illustrate this approach.

Example 8.1.1 Find the area enclosed by the parabola y = 4 — x? and the straight liney = 1 — 2x.

Solution: The first step in a problem which involves finding the area bounded between two curvesisto plot the
graph of the two curves simultaneously.
Using Maple V we define the two functions.

>fi=x->4-x"2;, g :=x ->1-2%;
fi=xr>4-—x°

g:=X—1-2x
Now plot both curves simultaneously. See Figure 25.
> PItl = plot({4-x"2,1-2*x},x=-1.5..3.5): plots[display](PIt1);
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Figure 25: Curves f(x) =4 — x?and g(x) = 1 — 2x Figure 26: Curveswith an element of area

Recall that to find the area of a region like the one shown in Figure 25 one takes a limit of Riemann Sums
that are defined over a partition of the interval with left-hand endpoint the x— coordinate of the left-hand point of
intersection of the curves and with right-hand endpoint the x— coordinate of the right-hand point intersection of
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8 APPLICATIONS THAT USE THE DEFINITE INTEGRAL 61

the two curves. The summand in this sumis of the form A Ay = (f (ck) — g(ck)) AX. For problemsinvolving the
finding of areasatypical terminthe summand is called an element of area. It isusually agood ideato plot apicture
of the region along with atypical summand from the Riemann Sum or, what is the same, of atypical element of
area. See Figure 26.

The following Maple V segment can be used to plot Figure 26.

> PIt2 := plots[polygonplot]([[1,9(1.2)],[1.4,9(1.2)],
> [1.4,f(1.2)],[1,f(1.2)]):
> plots[display]({PIt1,PIt2});
An approximation to the area bounded between the two curves is given by a Riemann Sum of with summand
as above. Since by definition the Riemann Integral

b
/ (f(x) —g(x) dx

isalimit of Riemann Sums |
D (f() — 9(C)) A,
k=1
it follows that the area between the two curvesis equal to this definite integral with a and b to be determined as

described above.
In order to find a and b, solve the equation

f(x)=4—x2=g(x) =1—2x
for x. Thisiseasily solved by hand by the following steps. Adding to both sides of the equation
4-x2=1-2x

leads to
x> —2x—3=0

Factoring the left-hand side of the last equation leads to
X+1DHx-3)=0

Consequently, the left-hand intersection point has coordinates (—1, 3), and the right-hand intersection point has
coordinates (3, —5). The area, A, of theregion is equal to the value of

3 3 3
A:f (f(x)—g(x))dx:/ ((4—x2)—(1—2x))dx=/ (34 2x— x?) dx.
-1 -1 1

Thisintegral is easily calculated by hand and we have:
313 1 32
= 2——X = — — (— =) = —
A=+ -] =(©@+9-9) - (-3+1+3) ="

In more complicated problems you may need to use Maple V to calculate exactly or, if necessary, approximately,
the intersection points and the value of the integral.
> sol := solve({y=f(x),y=g(x)}{x.y});
sol ={y =-5 x=3} {y =3 x=-1}
Observe that the points of intersection have coordinates given by (—1, 3), and (3, —5), which agrees with the
previous hand calculation. The value of the integral is given by

> Int(f(x)-g(x),x=-1..3): "= value(");
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3
2
/ 3—x2+2xdx=3—
L 3

Therefore, the area between the two curvesis 3—32 .

In the sections that follow the definite integral will be applied to solve what appears to be different types of
problems. But each problem has much in common. In each problem one obtains a Riemann Sum over an interval
that represents an approximation to the actual value of some quantity which whichisto be computed. The summand
of thisRiemann Sum providestheintegrand for adefiniteintegral over the sameinterval whichisequal to the exact
value of this quantity.

Exercises 8.1
1. Find the area bounded between f (x) = cosx and g(x) = sinx and theinterval x=0, and x = 7.
2. Find the areain the first quadrant bounded between the parabola y = /X, and the straight line y = x — 3.
3. Find the areain the first quadrant above theline y = x and below the curve y = sin(x).

4. Find the area of the region bounded between the two curves y = x* — 3x% and y = 2x2.

8.2 Applications To Geometry

In the previous section you saw how the definite integral is used to calculate the area of aregion formed between
to curves. Inthissection weillustrate how the definite can be used to compute the volume of certain solids and the
length of an arc. The approach to finding avolume of asolid will be to think of the solid as approximated by small
elements, each of which is so geometrically simplethat its volume can be calculated directly. Next the volumes of
each of these elements are added to obtain a Riemann Sum. The limit of such Riemann Sums give the volume.

Volumes of Given Cross-Section

When cal culating the volume of asolid using Riemann Sums, slice the solid into thin piecesin which the geometry
is so simple that the volume can be estimated.

Example 8.2.1 The Great Pyramid of Egypt hasasguare base with side 755 feet long and height 410 feet. Compute
the volume of the Great Pyramid in cubic feet.

Solution:
Just as when finding areas of regions the first step in finding volumes is to plot the graph of the solid. The
following Maple V segment creates the plot of the Great Pyramid that is shown in Figure 27.

> facel := [[755,0,0],[755,755,0],[755/2,755/2,410],[755,0,0]]:
> face2 := [[755,755,0],[0,755,0],[755/2,755/2,410],[755,755,0]]:
> face3 := [[0,755,0],0,0,0],[755/2,755/2,410],[0,755,0]]:

> face4 := [[0,0,0],[755,0,0],[755/2,755/2,410],[0,0,0]):

> BASE := [[755,0,0],[755,755,0],[0,755,0],[0,0,0],[755,0,0]I:

> pyrl := plots[polygonplot3d]({facel,face2,face3,face4,BASE},
axes=framed, > style=wireframe,orientation=[30,60]);



8 APPLICATIONS THAT USE THE DEFINITE INTEGRAL 63

Figure 27: The Great Pyramid Figure28: A Faceofthe Great Pyramid showingacross
section of an element of volume

Now think of the pyramid as being made up of layers parallel to the base. Each layer is athin rectangular box
with square base and with thickness A z. Figure 28 illustrates a cross-section of atypical face and rectangular box.
In order to see how to make aplot like in Figure 28, make afew calculations. Let s denote the length of the base
of atypical layer, then the similar triangles shown in Figure 28 imply that

S _410—2
755 410

where z denotes the height above the horizontal that the center of the layer lies. Solving for s one sees that the
length of the rectangular box is given by the formula

755
s=755— mz.

The coordinates of the cross-sectional rectanglewith center at height 200, and with Az= 2 feetisdetermined as
follows. Using amidpoint rectangle observe that, for example, the lower |eft-hand point has horizontal coordinate
at 755/2 — s(200) /2 and vertica coordinate 199. The other three vertices are found similarly and the following
Maple V segment plots Figure 28. The first step is to define the function s(z).

> g := z -> 755 - 755*z/410;
s =z -> 755 - 151/82 z

> pltl := plots[polygonplot]([[0,0],[755,0],[755/2,410],[0,0]]):

> plt2 plots[polygonplot]([[755/2-s(200)/2,199],[755/2+s(200)/2,199],
> [755/2+s(200)/2,201],[755/2-5(200)/2,201],[755/2-5(200)/2,199])):

> plots[display]({plt1,plt2});

The element of volume which corresponds to the rectangle that occursin Figure 28 is a rectangular box with
vertices on the bottom square located at the four points (755/2 — s(200)/2, 755/2 — s(200)/2, 199), (755/2 +
S(200)/2, 755/2 — s(200) /2, 199), (755/2+ s(200) /2, 755/2+ s(200) /2, 199), and (755/2 — s(200) /2, 755/2+
s(200)/2, 199. The top rectangle has similar coordinates, except the z coordinate is 201. The following Maple V
segment illustrates a plot of the pyramid with the central slice of this element of volume. See Figure 29.

> rectl := plots[polygonplot3d]([[755/2-s(200)/2,755/2-s(200)/2,200],
>[755/2+s(200)/2,755/2-s(200)/2,200],[755/2+s(200)/2,755/2+s(200)/2,200],
>[755/2-5(200)/2,755/2+s(200)/2,200],[755/2-s(200)/2,755/2-5(200)/2,200]],
> style=patch):

> plots[display]({pyr1,rectl});
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Figure 29: The Great Pyramid with one cross-sectional Figure 30: The Great Pyramid with numerous slices
slice

In order to get an idea of how the pyramid can be approximated by thin rectangular boxes having square bases
parallel to the base of the pyramid, construct avery ssmple Maple V procedure which gives the coordinates of the
vertices of asguare parallel to the base of the pyramid located a distance z above the base and having vertices on
the edges of the pyramid.

> makerects = proc(z)

> [[755/2-s(z)/2,755/2-s(z)/2,2],[755/2+s(2)/2,755/2-5(2)/2,2],
> [755/2+s(z2)/2,755/2+5(2)/2,2],[755/2-5(2)/2,755/2+5(2)/2,2],
> [755/2-s(z)/2,755/2-s(2)/2,2]);

> end,

makerects =

proc(z)
[[755/2-1/2*s(z),755/2-1/2*s(z),z],[755/2+1/2*s(z),755/2-1/2*s(2),Z],
[755/2+1/2*s(z), 755/2+1/2*s(z),2],[755/2-1/2*s(z), 755/2+1/2*s(2),Z],
[755/2-1/2*s(z),755/2-1/2*s(z),Z]]
end
Using this procedure a plot of The Great Pyramid along with a number of these slicesis given in Figure 30.

for i from 0 to 20 do

plt[i]:= plots[polygonplot3d](makerects(i*20,style=patch)):

od:

plots[display]({pyrl} union {seq(plt[i],i=0..20)});

The volume of atypical rectangle, or element, in this collection is equal to:

V V. V V

755
. Az= (755 — mc') Az.

Thus an approximation to the volume V of the pyramid has the form:

n 755
V) (755 - —c)?Az.
i; 410
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Taking the limit as n tends to oo and using the definition of the definite integral permits on to conclude that the
volume is anumber equal to the value of the integral

410 755
V= 755 — ———27)?dz
/0 (155 = 7102 %

Theintegrand of thisintegral isasecond degree polynomial andiseasily calculated by hand, but when you evaluate
the integral at the end points you will probably need a calculator. Maple V can make this calculation directly.
> Int((755-755/410*2)"2,2=0..410): "= value(");

410 2
/ g5 1512\* 233710250
0 82 3

Thus the total volume of The Great Pyramid is 22290 cubic feet which is approximately

> evalf(rhs(")); .
7790341667 10

cubic feet.

Example 8.2.2 Find the volume of a sphere.

Solution: Here you are asked to solve a problem in which you aready know the answer; i.e. the volume of a
sphereof radiusais %na3. Thisresult can be derived using the Fundamental Theorem of Calculus. First write the
equation of the sphere of radius a centered at the origin for usein aMaple V segment.
> eql = x2 + y*2 +z"2 = a"2;
eql =X+ y* +Z2=a°

Usethe MapleV procedureimplicitplot3d to plot the sphere. See Figure 31 for the plot of the spherewhena = 1.

> plots[implicitplot3d](subs(a=1,eql),x=-1..1,y=-1..1,z=-1..1,
> axes=boxed);

Figure 31: The Unit Sphere Figure 32: The Unit Spherewithadlicex =1/2

A plot of the unit sphere along with the dlice cut by the plane x = 1/2 is shown in Figure 32.
> plots[implicitplot3d]({subs(a=1,eql),x=1/2} x=-1..1,y=-1..1,z=-

> 1..1,axes=boxed);
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Theintersection of a plane of the form x = Xy and the sphere
X4+y+72=a

isadisk. To obtain information about this disk let us view the cross section of the sphere through z= 0. Thisthe
disk enclosed by thecircle x?> + y? = a?. See Figure 33 for thecasea = 1.

> plots[implicitplot](x"2+y"2=1,x=-1..1,y=-1..1,scaling=constrained);

Figure 33: The projection of the Unit Sphere on the Figure 34: The projection withaslicex=1/2
planez=0

Now consider the slice through this disk that is cut out by the intersection of the plane x = Xg, with this disk.
See Figure 34 for the casethat a= 1 and xg = 1/2.

> plots[implicitplot]({x"2+y"2=1,x=1/2},x=-1..1,y=-1..1,
> scaling=constrained);

The radius of the disk which is cut from the sphere by the plane x = 1/2 is equal to one half of the vertical
line segment formed by the intersection of the unit disk and the vertical line x = 1/2 and shown in Figure 34. The
radius of the disk isy = /1 — (1/2)? in this case. In general, for arbitrary a and X, theradiusis ,/a? — x2. Using
plain x instead of X, the following Maple V segment helps with these calculations:

> student[isolate](eql,y"2);

YP=a?—x2- 2
Theradius for the cross section at a specific value of x is

> radius := sqrt(subs(z=0,rhs(")));
Now think of the sphere as approximated by thin cylinderswith radius given as above an thickness Ax. Thevolume

of one of these elementsis )
AV, = 7r(,/a2 — x?) AX;.

A Riemann Sum will consist of asum of such volumesand inthelimit as Ax; tendsto 0, the exact volumeis equal
to

a
V=n| @-x%dx
—-a

The familiar formulafor the volume of a sphere now follows.

> Int(Pi*radius"2,x=-a..a):"=value(");



8 APPLICATIONS THAT USE THE DEFINITE INTEGRAL 67

a Az ad
2 2
/_an(a X%) dx = 3

Volumes of Solids of Revolution

In the preceding section a solid was imagined to be sliced up into thin elements each of whose volume could be
estimated. Thisis particularly easy to accomplish if the solid can be created by revolving a plane region about
some line in space.

Example 8.2.3 The region bounded by the curve y = xe™* and the x-axis between x = 0 and x = 2 is revolved
about the x-axis. Find the volume of the solid which is formed.

Solution: Asusua it is a good idea to make some plots in order to visualize the problem. Define the function
f(x) = xe *inaMaple V session.

> f = x -> x*exp(-x);
fi=xr— xe*

Thenext MapleV segment plotsthe graphs of the function, theline segment from (2, 0) to (2, f(2)), and atypical
element of areafor the region under consideration. See Figure 35.

pltl := plot(f(x),x=0..2):

plt2 := plot([[2,0],[2,f(2)]]):

elementl :=
plots[polygonplot]([[1,0],[1.2,0],[1.2,f(1.1)],[1,f(1)]]):
plots[display]({plt1,plt2,element1});

0.35—+
0.3+

V V.V VYV

Figure 35: Region bounded by xe™*, between x =0  Figure 36: Solid formed by revolving region about x-
andx=2 axis

The solid is formed by revolving the region shown in Figure 35 about the x-axis. An element of volume is
obtained by revolving an element of areafor the region about the x-axis. The solid and atypical element of volume
isshownin Figure 36. TheMapleV procedure called tubeplot isused. The procedureis part of the plots package.
The proper syntax for it istubeplot(C,< options > ), where C is a set of space curves. In our example we assign
the option radius to be the function

f(x) - (H1) —H(1.2),
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where H is the Heaviside Function, for the element of volume created by revolving the rectangle with base the
line segment from (1, 0) to (1.2, 0) and height f(1.1). Thiselement of volumeisathin solid cylinder with radius
f(1.1) and thickness Ax = 0.2. Theradiusisassigned to be f (x) for the tubeplot of the entire solid.

> radius := ’radius’:

> plt3 :=plots[tubeplot]([x,0,0],x=0..2,radius =f(x)*(Heaviside(x-1)

> -Heaviside(x-1.2)),axes=normal,style=patchnogrid):

> plt4 := plots[tubeplot]([x,0,0],x=0..2,radius = f(x),
> style=wireframe):

> plots[display]({plt3,plt4});
One can think of approximating the volume of the solid by adding up the small cylinderswith radius equal to f (x)
and thickness Ax. Such acylinder hasvolume 7 f (x)2Ax. Termslikethis appear asasummand in the sum obtained
by partitioning the interval[0, 2] and writing a Riemann Sum. Therefore, the volumeis

2 2
V= n/ f(x)? dx = 7[/ x?e 2 dx.
0 0

Calculate the volume exactly, as follows:
> Pi*Int(f(x)"2,x=0..2): "=value(");

The volume to ten digits of accuracy is equal to

> evalf(rhs("));
5983922646

The next example illustrates that sometimes the element of volume can be hollow.

Example 8.2.4 Find the volume of the solid obtained by rotating the region bounded by the curves y = 2sinx and
y = x about the x-axes.

Solution: First plot the region bounded between the two curves.

> f = x -> 2*sin(x); g = X -> X;
f =X~ 2sin(x)

g:=Xr X

The following Maple V segment plots the region bounded between the curves along with atypical element of
area. See Figure 37.

rect := plots[polygonplot]([[0.9,9(1)],[1.1,9(2)]
[1.1,£(2)1,[0.9,f(2)1D):

plt := plot({f(x),g(x)},x=0..2):
plots[display]({plt,rect});

\

vV V V
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1.5+

0.5+

Figure 37: Region bounded by y = 2sinx, and y = X. Figure 38: Cross-sectional area of an element of vol-
ume

Now rotate the element of area about the x-axis to create a cylindrical solid with a hole drilled through the
center. Figure 38 isa cross-sectional view of this cylinder as viewed |ooking down the positive x-axis.
> plots[implicitplot]({y"2+z"2=g(1)"2,y"2+z"2=f(1)"2},
> y=-2..2,2=-2..2, scaling=constrained);
Notethat the area of atypical cross-section isequal to the area of the larger circle minusthe area of the smaller
circle:
AA=7- f(X)?—m-g(x)?2

This means that an element of volumeis
AV =7 (f(X)? = g(x)?) - Ax.
Now try to imagine the solid formed by revolving the entire region about the x-axis. Figure 39 is a point plot
of the solid.

> pltl plots[tubeplot]([x,0,0],x=0..2,radius=f(x)):
> plt2 plots[tubeplot]([x,0,0],x=0..2,radius=g(x)):
> plots[display]({plt1,plt2},axes=normal,style=point);

The volume of this solid of revolution is equal to

b
Ver / (FO02 - g00?) dx.
a
where a and b are the x coordinates of the points of intersection of thetwo curves. It iseasy to verify thata= 0=

sin0. Use fsolve to approximate b to ten digits of accuracy.

> b := fsolve(f(x)=g(x),x,0.5..2);
b := 1.895494267
Theintegrd is calculated.

> Int(Pi*(f(x)"2-g(x)"2),x=0..b): "=value(");
1.895494267
/ 7 (4 (sin(x))? — x°) dx = 6.677730766
0

Therefore, the volume of the solid is approximately 6.677730766.
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Figure 39: Region revolve around x-axis

Arc Length

The definiteintegral can also be used to compute the length of a smooth curve. Recall that when using the integral
to find the area of aregion one approximates the region by rectangles the sum of whose areas approximate the area
of theregion. In finding the length of an arc one approximates the arc by afinite set of straight line segments. An
approximation of the length of the arc is made by using the well known formula for the length of aline segment
and taking asum . A limiting process then yields the definite integral which is equal to the length of the arc.

6T y = f(x)

Figure 40: The curvey = f (x) approximated by two line segments

For examplein Figure 40 the curve y = f (X) is approximated by two line segments with slope

Ayt = (O
AX]__ 1-0
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and
Ayy f(2)—- (1)

AXo - 2—-1 ’
respectively. The length of the two arcsis equal to

A+ AY2= 1+ (%)2 AXq
VAXS+ Ay = ‘/1+(i—§§)z AXo,

respectively. The sum of these two lengthsis

Z f (B2 an,

This suggests a Riemann Sum with summand

and

V1+ fr(c)2Ax,
since, if f isdifferentiable, the mean value theorem implies

ey~ BN
f'(c) ~ Ax
Taking alimit of Riemann Sums of thistype as Ax; tendsto zero, one has the following formulafor the length
of asmooth curve given by y = f(x), with f adifferentiable function defined on a closed interval [a, b].

b
Arclength = L:/ V1+ f/(x)2 dx.
a

Example 8.2.5 Find the length of the arc given by the equation y? = x3 between the points (1, 1) and (5, v/125).
Solution: The curve which is given by the equation
> eq = yN2=x"3;
eqi=y' =x°
isshown in Figure 41, where implicitplot has been used.

> plots[implicitplot](eq,x=0..12,y= 0..12);
In order to apply theformulafor arc length we must define afunction whose graph isthe arc. This can be done
with solve.

> solve(eq.y);

3/2

32 _x32

Thefunctionthat definesthe arc must be equal to 1 when x = 1, so choosethe positive expression fromthe previous
Maple V output.

> f = "[1];
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12+

10+

Figure 41: The curve y? = x2

f = x%?
Convert f to afunction using unapply.

> f = unapply(f,x);
f =X X3/2

The formulafor arc length requires f'.
> fprime := D(f);

3VX

fprime:= —
prime:= X —

Compute the length of the arc between (1, 1), and (5, v/125) by the following.

> Int(sgrt(1+fprime(x)*2),x=1..5) . " = value(");
/5~/4+ X 34313713
L 2 T2 27

Thisis approximately equal to
> evalf(rhs("));

10.96769753

Example 8.2.6 Find the length of the perimeter of the ellipse

X2 y2
=1
4 + 25
Solution: The ellipse given by the equation
> eq = x"2/4+y"2/25=1;
X2 y2
=—+==1
=7t

is shown in Figure 42.

> plots[implicitplot](eq,x=-2..2,y=-5..5,scaling=constrained);
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Figure 42: The curve ij + ;’—; =1

Itisclear from Figure 42 that the length of the perimeter isequal to four timesthe length of the arc of the ellipse
from the point (0, 5) to (2, 0). Now define afunction f such that y = f(x) givesthisarc.

> solve(eq.y);

5/-x2+4 5J-x2+4

2 ’ 2

> ="

‘o 5/ +4
' 2
Next the expression is converted into a function.

> f = unapply(f,x);

5/—x2+4
fi=X> ————
2
The derivative f’ is heeded.
> fprime = D(f);
fprime:= x— oX
o 2J=@+4
We now compute the length of the perimeter of the ellipse.
> 4*Int(sqrt(1+fprime(x)"2),x=0..2): " := evalf(");
" = 23.01311260
Exercises 8.2
1. Show that the area of the ellipse
NAY:
2te=1

israb. Hint: Consider using assume(a>0); and additionally(a<1);
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2. Plot thefigure eight
1+X) -y =x-(1-%),
and then show that the enclosed areais equal to 7 — 2.
3. Consider the region bounded by the curve y = xsin®x, between x = 0, x = 7, and the x-axis. Plot this

region and then calculate the exact value of the volume of the solid formed by revolving the region about
the x-axis.

4. Compute the volume of the solid of revolution which isformed by revolving the ellipse

X2 y2
PR
about the x — axis.

5. Plot the curve
y = sin(zsin((x — 2)%))

over theinterval [3, 5]. Estimate the arc length of the curve between x = 3and x = 5.

6. If a> 0and b > 0then show that the arc length of the curve
X\ 2/3 y\2/3
Q) +() =t

a?+ab+b?
at+b
Plot the curve.

7. Let f(x) = cosh(x) and g(x) = 2cosh(x). (Recall: cosh(x) = £LE".)
(@) Find the area bounded by the curve y = f(x) and the x-axis from x = 0 to x = 1. Do the same for

y = g(x), and then compute the ratio of the two areas.

(b) Find the volumes of the solids obtained by rotating each of the regions in part (a) about the x-axis.
Compute the ratio of the two volumes.

(c) Find the lengths of the two curves, y = f(x) and y = g(x), from x = 0to x = 1, and calculate the
ratios of te two lengths.

8. Inthis problem we will study what happensto the ratio of arc length to areaasa — oo for three curves that
depend on a parameter a. For each of the three functions given below perform the following tasks:

(8 Plot the graph of the function for a = 1.

(b) Witha =1, find the area bounded by the curve y = f (x) and the x-axison [0, 1].

(c) With apencil and paper write down integral formulasfor the arc length of thecurve y = f (x) over the
interval [0, 1], and the areaunder the curveon [0, 1]. Usetheseto find anintegral formulafor the limit
of the ratio of arc length to areaas a — oo. (Hint: Factor out a from each integral before taking the
limit.)

(d) Findthelimit asa — oo of theratio of arclength to areaon [0, 1].

(e) By studying the graph found in (@), and using the answer you calculated in (b) can you find away to
answer (d) without doing any further integrations?

i. f(x)=asin’(nx)
ii. f(x)=avx—x2 (Hint: You may wish to use only geometry here.)
iii. f(xX)=xH(@Q/2—x)+ (1—x) H(x—1/2), where H isthe Heaviside function.
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8.3 Applicationsto Physics

It has been seen how cal culus can be applied to find solutions of geometric problems such as problems concerned
with computing area, volume, and arc length. In this section calculus is used to solve problems that arise from
physics.

Work

Consider problems which involve the physical concept of work. The definition of the work done by a constant
force, F, in moving an object a distance, d, is equal to the product of the force and the distance moved.

Definition

When a body moves a distance d along a straight line under the action of a constant force

F in the direction of the motion, then the work W done by the forcein moving the object is
Work = Force x Distance

or
W=F-d

In most cases the applied force is not constant, but varies over the straight line. For example suppose that the
force, F(X), acting on aparticle asit moves along the straight line from a to b varies continuously. See Figure 43.

Figure 43: Force dong an interval

Consider the particle’smovement over avery small subinterval [xx_1, X¢] of theoriginal interval. Then, since F
is continuous, one can approximate its value over asufficiently small subinterval by taking itsvalue at an arbitrary
point, ¢k, inin that interval. Then the work done in moving the particle from x,_1 to X is approximately

F(Ck) - (% — Xk-1) = F(Ck) - AX.
To obtain an approximation to the total work done add up all of the similar elements of work.

Work ~ Z F(Ck) - AX.
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Thisrepresents a Riemann Sum of the continuous function F (x) over theinterval [a, b]. Just asthe areaof aplanar
region described by continuous curves can defined asalimit of Riemann Sums, thework done by acontinuousforce
acting to move a particle between two points on aline may be defined as alimit of Riemann Sums, or what isthe
same thing the definite interval.

Definition
Thework done by a continuous force F(x) directed along the x-axisis

b
W= / F(x) dx.

Example 8.3.1 Suppose that you wish to draw water from awell which has a water level located 20 feet below
the mouth of the well. Your 2 gallon bucket weighs 4 Ibs, and the rope weighs 0.10 Ib/ft. Unfortunately, your
bucket has aleak and even though it isoriginally full, it has only agallon of water by the time you lift it to the top.
Assuming that you pull the bucket up at a constant rate and the water leaks at a constant rate determine the work
you do in lifting the bucket of water to the top. Assume that water weighs 8 Ibs per gallon.

Solution: Consider alinear coordinate system with the origin at the mouth of the well. The coordinate at the the
mouth is x = 0, and the coordinate at the water level is x = 20. The force, F(x), that isrequired to lift the water
F. (X), the bucket, F,(x), and the rope F; (x) will now be computed with

FX) = Fy(X) + F(X) + Fr (X).
1. Theforce contributed by the bucket is a constant, since its weight at any depth isaways 4 Ibs. Thus

Fo(X) =4 1bs.

2. The force contributed by the rope varies with the depth. When 20 feet of rope is out the total weight is
0.101b/ft x 20 = 21bs, and at the mouth the rope is of 0 length and hence weighs 0 Ibs. The weight of the
rope at a point x ft below the mouth is

X
F(X)=0.10x x= 0 Ibs.

3. Sincethebucket leaksthe weight of the water varieswith depth. When the bucket startsits ascent it contains
two gallons of water which weighs 16 Ibs, and the bucket ishalf full at thetop and weighs 8 1bs. It isassumed
that the bucket moves up at a constant rate and the water isleaking out at a constant rate. A formulafor the
weight of water at a depth x can be determined. When the rope is fully extended to 20 ft the weight of the
water is 16 Ibs. When the bucket is raised to the top the weight of the water is 8 Ibs. The bucket israised at
aconstant rate, say v ft/sec and the bucket leaks at a constant rate, say k Ibs/sec. Thetime, z, that it takesto
raise the bucket 20 ft is the same as the time for 8 Ibs of water to leak out. Thus

,_8_2

Tk ov’
This means that

k_8_2

v 20 5

Now the weight of water remaining after timet is

Weight = 16—k - t
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and the length of ropethat isout at timet is
Xx=20—v-t.

Solving the latter equation for t, substituting the result into the equation for weight, and using the fact that

k=2 gives

v

The last equation defines the weight of the water in the bucket at a depth x. Hence we write

The force required to lift bucket, rope, and water from a depth of x feet is

F(x)=(4)+ (%)+ 8+ éx) =12+ )5(

The amount of work done in lifting the bucket, rope, and water the 20 ft

20 X X2 20
W= (12+§)dX=12X+Zo = 240+ 100 = 340 ft — Ibs.
0
When abody is near the surface of the Earth it is usually assumed that the force acting on it due to gravity is
constant i.e. the object’sweight asin the preceding example. However, asthe body movesfurther from the Earth’s
surface theforce acting to bring it back to earth variesinversely asthe square of the distance from the center of the
earth.

Newton’s Law of Gravity
Let my, and m, be the masses of two objects that are a distance r apart. The force, F, of
attraction due gravity is

where G is the universal gravitational constant and depends upon the units of distance,
mass, force, and time that are used. If these units are meters (m), kilograms (kg), Newtons,
(N) and seconds, then G = 6.6720 x 10~ Nm2kg—2.

Example 8.3.2 Find the work required to move a satellite of mass 1250 kg from the surface of the Earth (of mass
5.975 x 10 kg), to the surface of the Moon (of mass 7.35 x 10% kg). Assume that the radius of the earth, ER,
i$6.38 x 10° meters, the moon’sradius, MR, is1.74 x 10° meters, and that the distance, DEM, from the center
of the Earth to the center of the Moon is 3.84 x 108 meters.

Solution: Welet SM, EM, and MM denote the masses of the satellite, Earth, respectively.

> SM:= 1250, EM := 5.975*10"24; MM := 7.35*10"22;
SM := 1250

EM := 5.975000000 x 10%*
MM := 7.350000000 x 10%?

> G = 6.6720*10"(-11); DEM := 3.84*10"8;
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G := 6.672010" 1Y
DEM := 384000000.0

> ER := 6.38*10"6; MR := 1.74*10"6;
ER := 6380000.0

MR := 1740000.0

Let r denote the distance that the satellite is from the center of the Earth, then the force, FE(r), acting to pull it

back to Earthis
G-EM.SM

r2

> FE := r -> G*SM*EM/(r2);
. 498315000000000000.0

r2

At the same time the Moon is attracting the satellite with force, FM(r) is

G-MM - SM
(DEM —n)2"

> FM = r -> G*SM*MM/(DEM-r)"2;

. 6129900000000000.0
" (384000000.0 — r)2

Thusthe entire force F(r) acting on the satelliteis

G-EM-SM G-MM-SM

FO =—2—— " DeEm_nz

This means that the work required to move the satellite from the surface of the earth is given by

MR
/ F(r) dr.
ER

> Int(FE(r)-FM(r),r=ER..(DEM-MRY)) » "= evalf(");

3822600000 49831 ' 12 .
/ 983 50000;)0000000 0 B 6 990000000000020 dr — 73079043410.0
6380000.0 r (384000000.0 —r)

Thework required to movethe satellite from the surface of the Earth to the surface of theMoonis 73, 079, 043, 410
Newton-meters or joules of work.

Example 8.3.3 A tank in the shape of aonefoot high frustrum of a cone has abase radius of two feet, and aradius
at the top of three feet, isfilled with aliquid which weighs 65 pounds per cubic feet. See Figure 44. How much
work isrequired to pump al of the liquid to a height of two feet above the frustrum.

Solution: Choose coordinates (X, Y, z) so that zis height measured from bottom of thetank. Consider athin cylin-
drical disk, AV, as an element of volume for the cone (the same as if you were going to find the volume of the
frustrum). The typical base for such adisk located at a height z has aradius x equal to

X=1+ 2z

and height Az. Thus
AV = (1+ 22)%Az
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Figure 44: Tank containing aliquid

cubic feet. If the element of volumeisfilled with the liquid then it would weigh 65 7 (z— 2)?Az. To lift thismuch
liquid to a height two feet above the top would require

Aw = (3—2) x 65 x 7(1+ 22)°Az

foot-pounds since the liquid must be lifted 3 — z feet. This means that the total work is alimit of sums of these
elements and hence the work required to lift all of the liquid to aheight 2 feet above the top is equal to

1
w:/ (3= 2) x 65 x 7(1+ 22)? dx
0

> Int(Pi*65*(3-2)*(1+2*2)"2,2z=0..1) : " = value(");

1
/ 657 (3— 2) (14 22)2dz= 207
0

6

> evalf(rhs("));

2076.069145

Thus it requires approximately 2076.069145 foot-pounds of work to pump all of the liquid to to a height two feet
above the top of the frustrum.

Exercises 8.3

1. The bucket in Example 8.3.1 is pulled faster and there is a gallon and a half remaining when it reaches the
top. What is the work done in this case?

2. Usingthe physical constants from Example 8.3.2 cal cul ate the amount of work necessary to to carry arocket
with mass 3, 238 kg from the Earth’s surface to a height 43, 257 meters above the Earth’s surface.

3. A fluid which weighs 65 pounds per cubic feet is contained in awell in the shape of a sphere of radius 67
feet. The top of the sphereis 56 feet below the surface of the Earth. How much work is required to pump
all of the fluid up to ground level?
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