
                

8 Applications That Use The Definite Integral

In Chapter 3 it was shown that the concept of the definite integral could be used to calculate the following quantities:
the distance traveled by a moving object when its instantaneous velocity is known, to evaluate the the area under
a curve given by a nonnegative continuous functon defined on a closed interval, and, more generally, to compute
the total change in a quantity defined as a function which varies over a closed interval. In the preceding chapter
various methods that can be used to evaluate integrals were considered. In this chapter further examples are given
to illustrate how integrals can be used to solve a wide variety of problems. In each application the fact that a definite
integral is defined as the limit of Riemann Sums of the form

n∑
k=1

f (ck)1tk,

where the ck are points from a partition {a = t0 < t1 < · · · < tn = b} and 1tk = tk − tk−1 is used.

8.1 The Area between Two Curves

The problem of finding the area between two curves, will be reviewed, in order to illustrate this approach.

Example 8.1.1 Find the area enclosed by the parabola y = 4 − x2 and the straight line y = 1 − 2x.

Solution: The first step in a problem which involves finding the area bounded between two curves is to plot the
graph of the two curves simultaneously.

Using Maple V we define the two functions.

> f := x -> 4 - x^2; g := x ->1-2*x;

f := x 7→ 4 − x2

g := x 7→ 1 − 2 x

Now plot both curves simultaneously. See Figure 25.

> Plt1 := plot({4-x^2,1-2*x},x=-1.5..3.5): plots[display](Plt1);
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Figure 25: Curves f (x) = 4 − x2 and g(x) = 1 − 2x
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Figure 26: Curves with an element of area

Recall that to find the area of a region like the one shown in Figure 25 one takes a limit of Riemann Sums
that are defined over a partition of the interval with left-hand endpoint the x− coordinate of the left-hand point of
intersection of the curves and with right-hand endpoint the x− coordinate of the right-hand point intersection of
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8 APPLICATIONS THAT USE THE DEFINITE INTEGRAL 61

the two curves. The summand in this sum is of the form 1Ak = ( f (ck) − g(ck))1x. For problems involving the
finding of areas a typical term in the summand is called an element of area. It is usually a good idea to plot a picture
of the region along with a typical summand from the Riemann Sum or, what is the same, of a typical element of
area. See Figure 26.

The following Maple V segment can be used to plot Figure 26.

> Plt2 := plots[polygonplot]([[1,g(1.2)],[1.4,g(1.2)],
> [1.4,f(1.2)],[1,f(1.2)]]):
> plots[display]({Plt1,Plt2});

An approximation to the area bounded between the two curves is given by a Riemann Sum of with summand
as above. Since by definition the Riemann Integral∫ b

a
( f (x) − g(x)) dx

is a limit of Riemann Sums
n∑

k=1

( f (ck) − g(ck))1xk,

it follows that the area between the two curves is equal to this definite integral with a and b to be determined as
described above.

In order to find a and b, solve the equation

f (x) = 4 − x2 = g(x) = 1 − 2x

for x. This is easily solved by hand by the following steps. Adding to both sides of the equation

4 − x2 = 1 − 2x

leads to
x2 − 2x − 3 = 0

Factoring the left-hand side of the last equation leads to

(x + 1)(x − 3) = 0

Consequently, the left-hand intersection point has coordinates (−1, 3), and the right-hand intersection point has
coordinates (3,−5). The area, A, of the region is equal to the value of

A =
∫ 3

−1
( f (x) − g(x)) dx =

∫ 3

−1
((4 − x2) − (1 − 2x)) dx =

∫ 3

−1
(3 + 2x − x2) dx.

This integral is easily calculated by hand and we have:

A = 3x + x2 − x3

3

∣∣∣3

−1
= (9 + 9 − 9) − (−3 + 1 + 1

3
) = 32

3
.

In more complicated problems you may need to use Maple V to calculate exactly or, if necessary, approximately,
the intersection points and the value of the integral.

> sol := solve({y=f(x),y=g(x)},{x,y});
sol := {y = -5, x = 3}, {y = 3, x = -1}

Observe that the points of intersection have coordinates given by (−1, 3), and (3,−5), which agrees with the
previous hand calculation. The value of the integral is given by

> Int(f(x)-g(x),x=-1..3): "= value(");
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∫ 3

−1
3 − x2 + 2 xdx = 32

3

Therefore, the area between the two curves is 32
3 .

In the sections that follow the definite integral will be applied to solve what appears to be different types of
problems. But each problem has much in common. In each problem one obtains a Riemann Sum over an interval
that represents an approximation to the actual value of some quantity which which is to be computed. The summand
of this Riemann Sum provides the integrand for a definite integral over the same interval which is equal to the exact
value of this quantity.

Exercises 8.1

1. Find the area bounded between f (x) = cos x and g(x) = sin x and the interval x = 0, and x = π
4 .

2. Find the area in the first quadrant bounded between the parabola y = √
x, and the straight line y = x − 3.

3. Find the area in the first quadrant above the line y = x and below the curve y = sin(x).

4. Find the area of the region bounded between the two curves y = x4 − 3x3 and y = 2x2.

8.2 Applications To Geometry

In the previous section you saw how the definite integral is used to calculate the area of a region formed between
to curves. In this section we illustrate how the definite can be used to compute the volume of certain solids and the
length of an arc. The approach to finding a volume of a solid will be to think of the solid as approximated by small
elements, each of which is so geometrically simple that its volume can be calculated directly. Next the volumes of
each of these elements are added to obtain a Riemann Sum. The limit of such Riemann Sums give the volume.

Volumes of Given Cross-Section

When calculating the volume of a solid using Riemann Sums, slice the solid into thin pieces in which the geometry
is so simple that the volume can be estimated.

Example 8.2.1 The Great Pyramid of Egypt has a square base with side 755 feet long and height 410 feet. Compute
the volume of the Great Pyramid in cubic feet.

Solution:
Just as when finding areas of regions the first step in finding volumes is to plot the graph of the solid. The

following Maple V segment creates the plot of the Great Pyramid that is shown in Figure 27.

> face1 := [[755,0,0],[755,755,0],[755/2,755/2,410],[755,0,0]]:

> face2 := [[755,755,0],[0,755,0],[755/2,755/2,410],[755,755,0]]:

> face3 := [[0,755,0],[0,0,0],[755/2,755/2,410],[0,755,0]]:

> face4 := [[0,0,0],[755,0,0],[755/2,755/2,410],[0,0,0]]:

> BASE := [[755,0,0],[755,755,0],[0,755,0],[0,0,0],[755,0,0]]:
> pyr1 := plots[polygonplot3d]({face1,face2,face3,face4,BASE},

axes=framed, > style=wireframe,orientation=[30,60]);



         

8 APPLICATIONS THAT USE THE DEFINITE INTEGRAL 63

0
100

200
300

400
500

600
700

0
100

200
300

400
500

600
700

0

100

200

300

400

Figure 27: The Great Pyramid
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Figure 28: A Face ofthe Great Pyramid showing a cross
section of an element of volume

Now think of the pyramid as being made up of layers parallel to the base. Each layer is a thin rectangular box
with square base and with thickness 1z. Figure 28 illustrates a cross-section of a typical face and rectangular box.
In order to see how to make a plot like in Figure 28, make a few calculations. Let s denote the length of the base
of a typical layer, then the similar triangles shown in Figure 28 imply that

s
755

= 410 − z
410

,

where z denotes the height above the horizontal that the center of the layer lies. Solving for s one sees that the
length of the rectangular box is given by the formula

s = 755 − 755
410

z.

The coordinates of the cross-sectional rectangle with center at height 200, and with 1z = 2 feet is determined as
follows. Using a midpoint rectangle observe that, for example, the lower left-hand point has horizontal coordinate
at 755/2 − s(200)/2 and vertical coordinate 199. The other three vertices are found similarly and the following
Maple V segment plots Figure 28. The first step is to define the function s(z).

> s := z -> 755 - 755*z/410;
s := z -> 755 - 151/82 z

> plt1 := plots[polygonplot]([[0,0],[755,0],[755/2,410],[0,0]]):

> plt2 := plots[polygonplot]([[755/2-s(200)/2,199],[755/2+s(200)/2,199],
> [755/2+s(200)/2,201],[755/2-s(200)/2,201],[755/2-s(200)/2,199]]):
> plots[display]({plt1,plt2});

The element of volume which corresponds to the rectangle that occurs in Figure 28 is a rectangular box with
vertices on the bottom square located at the four points (755/2 − s(200)/2, 755/2 − s(200)/2, 199), (755/2 +
s(200)/2, 755/2− s(200)/2, 199), (755/2+ s(200)/2, 755/2+ s(200)/2, 199), and (755/2− s(200)/2, 755/2+
s(200)/2, 199. The top rectangle has similar coordinates, except the z coordinate is 201. The following Maple V
segment illustrates a plot of the pyramid with the central slice of this element of volume. See Figure 29.

> rect1 := plots[polygonplot3d]([[755/2-s(200)/2,755/2-s(200)/2,200],
>[755/2+s(200)/2,755/2-s(200)/2,200],[755/2+s(200)/2,755/2+s(200)/2,200],
>[755/2-s(200)/2,755/2+s(200)/2,200],[755/2-s(200)/2,755/2-s(200)/2,200]],
> style=patch):
> plots[display]({pyr1,rect1});
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Figure 29: The Great Pyramid with one cross-sectional
slice
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Figure 30: The Great Pyramid with numerous slices

In order to get an idea of how the pyramid can be approximated by thin rectangular boxes having square bases
parallel to the base of the pyramid, construct a very simple Maple V procedure which gives the coordinates of the
vertices of a square parallel to the base of the pyramid located a distance z above the base and having vertices on
the edges of the pyramid.

> makerects := proc(z)
> [[755/2-s(z)/2,755/2-s(z)/2,z],[755/2+s(z)/2,755/2-s(z)/2,z],
> [755/2+s(z)/2,755/2+s(z)/2,z],[755/2-s(z)/2,755/2+s(z)/2,z],
> [755/2-s(z)/2,755/2-s(z)/2,z]];
> end;

makerects :=

proc(z)
[[755/2-1/2*s(z),755/2-1/2*s(z),z],[755/2+1/2*s(z),755/2-1/2*s(z),z],

[755/2+1/2*s(z),755/2+1/2*s(z),z],[755/2-1/2*s(z),755/2+1/2*s(z),z],
[755/2-1/2*s(z),755/2-1/2*s(z),z]]

end

Using this procedure a plot of The Great Pyramid along with a number of these slices is given in Figure 30.

> for i from 0 to 20 do
> plt[i]:= plots[polygonplot3d](makerects(i*20,style=patch)):
> od:
> plots[display]({pyr1} union {seq(plt[i],i=0..20)});

The volume of a typical rectangle, or element, in this collection is equal to:

s2 · 1z = (755 − 755
410

ci)
21zi.

Thus an approximation to the volume V of the pyramid has the form:

V ≈
n∑

i=1

(755 − 755
410

ci)
21zi.
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Taking the limit as n tends to ∞ and using the definition of the definite integral permits on to conclude that the
volume is a number equal to the value of the integral

V =
∫ 410

0
(755 − 755

410
z)2 dz.

The integrand of this integral is a second degree polynomial and is easily calculated by hand, but when you evaluate
the integral at the end points you will probably need a calculator. Maple V can make this calculation directly.

> Int((755-755/410*z)^2,z=0..410): "= value(");∫ 410

0

(
755 − 151 z

82

)2

dz = 233710250
3

Thus the total volume of The Great Pyramid is 233710250
3 cubic feet which is approximately

> evalf(rhs("));

.7790341667 108

cubic feet.

Example 8.2.2 Find the volume of a sphere.

Solution: Here you are asked to solve a problem in which you already know the answer; i.e. the volume of a
sphere of radius a is 4

3 πa3. This result can be derived using the Fundamental Theorem of Calculus. First write the
equation of the sphere of radius a centered at the origin for use in a Maple V segment.

> eq1 := x^2 + y^2 +z^2 = a^2;

eq1 := x2 + y2 + z2 = a2

Use the Maple V procedure implicitplot3d to plot the sphere. See Figure 31 for the plot of the sphere when a = 1.

> plots[implicitplot3d](subs(a=1,eq1),x=-1..1,y=-1..1,z=-1..1,
> axes=boxed);
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Figure 31: The Unit Sphere
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Figure 32: The Unit Sphere with a slice x = 1/2

A plot of the unit sphere along with the slice cut by the plane x = 1/2 is shown in Figure 32.

> plots[implicitplot3d]({subs(a=1,eq1),x=1/2},x=-1..1,y=-1..1,z=-

> 1..1,axes=boxed);
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The intersection of a plane of the form x = x0 and the sphere

x2 + y2 + z2 = a2

is a disk. To obtain information about this disk let us view the cross section of the sphere through z = 0. This the
disk enclosed by the circle x2 + y2 = a2. See Figure 33 for the case a = 1.

> plots[implicitplot](x^2+y^2=1,x=-1..1,y=-1..1,scaling=constrained);
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Figure 33: The projection of the Unit Sphere on the
plane z = 0
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Figure 34: The projection with a slice x = 1/2

Now consider the slice through this disk that is cut out by the intersection of the plane x = x0, with this disk.
See Figure 34 for the case that a = 1 and x0 = 1/2.

> plots[implicitplot]({x^2+y^2=1,x=1/2},x=-1..1,y=-1..1,
> scaling=constrained);

The radius of the disk which is cut from the sphere by the plane x = 1/2 is equal to one half of the vertical
line segment formed by the intersection of the unit disk and the vertical line x = 1/2 and shown in Figure 34. The

radius of the disk is y =
√

1 − (1/2)2 in this case. In general, for arbitrary a and x0 the radius is
√

a2 − x2
0. Using

plain x instead of x0, the following Maple V segment helps with these calculations:

> student[isolate](eq1,y^2);

y2 = a2 − x2 − z2

The radius for the cross section at a specific value of x is

> radius := sqrt(subs(z=0,rhs(")));

Now think of the sphere as approximated by thin cylinders with radius given as above an thickness 1x. The volume
of one of these elements is

1Vi = π
(√

a2 − x2
i

)2
1xi.

A Riemann Sum will consist of a sum of such volumes and in the limit as 1xi tends to 0, the exact volume is equal
to

V = π

∫ a

−a
(a2 − x2) dx.

The familiar formula for the volume of a sphere now follows.

> Int(Pi*radius^2,x=-a..a):"=value(");
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∫ a

−a
π

(
a2 − x2

)
dx = 4 π a3

3

Volumes of Solids of Revolution

In the preceding section a solid was imagined to be sliced up into thin elements each of whose volume could be
estimated. This is particularly easy to accomplish if the solid can be created by revolving a plane region about
some line in space.

Example 8.2.3 The region bounded by the curve y = xe−x and the x-axis between x = 0 and x = 2 is revolved
about the x-axis. Find the volume of the solid which is formed.

Solution: As usual it is a good idea to make some plots in order to visualize the problem. Define the function
f (x) = xe−x in a Maple V session.

> f := x -> x*exp(-x);

f := x 7→ xe−x

The next Maple V segment plots the graphs of the function, the line segment from (2, 0) to (2, f (2)), and a typical
element of area for the region under consideration. See Figure 35.

> plt1 := plot(f(x),x=0..2):
> plt2 := plot([[2,0],[2,f(2)]]):
> element1 :=
> plots[polygonplot]([[1,0],[1.2,0],[1.2,f(1.1)],[1,f(1)]]):
> plots[display]({plt1,plt2,element1});
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Figure 35: Region bounded by xe−x, between x = 0
and x = 2
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Figure 36: Solid formed by revolving region about x-
axis

The solid is formed by revolving the region shown in Figure 35 about the x-axis. An element of volume is
obtained by revolving an element of area for the region about the x-axis. The solid and a typical element of volume
is shown in Figure 36. The Maple V procedure called tubeplot is used. The procedure is part of the plots package.
The proper syntax for it is tubeplot(C,< options > ), where C is a set of space curves. In our example we assign
the option radius to be the function

f (x) · (H(1) − H(1.2),
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where H is the Heaviside Function, for the element of volume created by revolving the rectangle with base the
line segment from (1, 0) to (1.2, 0) and height f (1.1). This element of volume is a thin solid cylinder with radius
f (1.1) and thickness 1x = 0.2. The radius is assigned to be f (x) for the tubeplot of the entire solid.

> radius := ’radius’:

> plt3 :=plots[tubeplot]([x,0,0],x=0..2,radius =f(x)*(Heaviside(x-1)

> -Heaviside(x-1.2)),axes=normal,style=patchnogrid):

> plt4 := plots[tubeplot]([x,0,0],x=0..2,radius = f(x),
> style=wireframe):

> plots[display]({plt3,plt4});

One can think of approximating the volume of the solid by adding up the small cylinders with radius equal to f (x)

and thickness 1x. Such a cylinder has volume π f (x)21x. Terms like this appear as a summand in the sum obtained
by partitioning the interval[0, 2] and writing a Riemann Sum. Therefore, the volume is

V = π

∫ 2

0
f (x)2 dx = π

∫ 2

0
x2e−2x dx.

Calculate the volume exactly, as follows:

> Pi*Int(f(x)^2,x=0..2): "=value(");

π

∫ 2

0
x2

(
e−x

)2
dx = π

(
−13

(
e−2

)2

4
+ 1/4

)
The volume to ten digits of accuracy is equal to

> evalf(rhs("));

.5983922646

The next example illustrates that sometimes the element of volume can be hollow.

Example 8.2.4 Find the volume of the solid obtained by rotating the region bounded by the curves y = 2 sin x and
y = x about the x-axes.

Solution: First plot the region bounded between the two curves.

> f := x -> 2*sin(x); g := x -> x;

f := x 7→ 2 sin(x)

g := x 7→ x

The following Maple V segment plots the region bounded between the curves along with a typical element of
area. See Figure 37.

> rect := plots[polygonplot]([[0.9,g(1)],[1.1,g(1)]
> ,[1.1,f(1)],[0.9,f(1)]]):
> plt := plot({f(x),g(x)},x=0..2):
> plots[display]({plt,rect});
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Figure 37: Region bounded by y = 2 sin x, and y = x.
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Figure 38: Cross-sectional area of an element of vol-
ume

Now rotate the element of area about the x-axis to create a cylindrical solid with a hole drilled through the
center. Figure 38 is a cross-sectional view of this cylinder as viewed looking down the positive x-axis.

> plots[implicitplot]({y^2+z^2=g(1)^2,y^2+z^2=f(1)^2},
> y=-2..2,z=-2..2, scaling=constrained);

Note that the area of a typical cross-section is equal to the area of the larger circle minus the area of the smaller
circle:

1A = π · f (x)2 − π · g(x)2.

This means that an element of volume is

1V = π · ( f (x)2 − g(x)2) · 1x.

Now try to imagine the solid formed by revolving the entire region about the x-axis. Figure 39 is a point plot
of the solid.

> plt1 := plots[tubeplot]([x,0,0],x=0..2,radius=f(x)):
> plt2 := plots[tubeplot]([x,0,0],x=0..2,radius=g(x)):
> plots[display]({plt1,plt2},axes=normal,style=point);

The volume of this solid of revolution is equal to

V = π

∫ b

a
( f (x)2 − g(x)2) dx,

where a and b are the x coordinates of the points of intersection of the two curves. It is easy to verify that a = 0 =
sin 0. Use fsolve to approximate b to ten digits of accuracy.

> b := fsolve(f(x)=g(x),x,0.5..2);
b := 1.895494267

The integral is calculated.

> Int(Pi*(f(x)^2-g(x)^2),x=0..b): "=value(");∫ 1.895494267

0
π

(
4 (sin(x))2 − x2

)
dx = 6.677730766

Therefore, the volume of the solid is approximately 6.677730766.
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Figure 39: Region revolve around x-axis

Arc Length

The definite integral can also be used to compute the length of a smooth curve. Recall that when using the integral
to find the area of a region one approximates the region by rectangles the sum of whose areas approximate the area
of the region. In finding the length of an arc one approximates the arc by a finite set of straight line segments. An
approximation of the length of the arc is made by using the well known formula for the length of a line segment
and taking a sum . A limiting process then yields the definite integral which is equal to the length of the arc.
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Figure 40: The curve y = f (x) approximated by two line segments

For example in Figure 40 the curve y = f (x) is approximated by two line segments with slope

1y1

1x1
= f (1) − f (0)

1 − 0
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and
1y2

1x2
= f (2) − f (1)

2 − 1
,

respectively. The length of the two arcs is equal to√
1x2

1 + 1y2
1 =

√
1 +

(1y1

1x1

)2
1x1

and √
1x2

2 + 1y2
2 =

√
1 +

(1y2

1x2

)2
1x2,

respectively. The sum of these two lengths is

2∑
i=1

√
1 +

(1yi

1xi

)2
1xi.

This suggests a Riemann Sum with summand √
1 + f ′(ci)21xi,

since, if f is differentiable, the mean value theorem implies

f ′(ci) ≈ 1yi

1xi
.

Taking a limit of Riemann Sums of this type as 1xi tends to zero, one has the following formula for the length
of a smooth curve given by y = f (x), with f a differentiable function defined on a closed interval [a, b].

Arc length = L =
∫ b

a

√
1 + f ′(x)2 dx.

Example 8.2.5 Find the length of the arc given by the equation y2 = x3 between the points (1, 1) and (5,
3
√

125).

Solution: The curve which is given by the equation

> eq := y^2=x^3;

eq := y2 = x3

is shown in Figure 41, where implicitplot has been used.

> plots[implicitplot](eq,x=0..12,y= 0..12);

In order to apply the formula for arc length we must define a function whose graph is the arc. This can be done
with solve.

> solve(eq,y);

x3/2,−x3/2

The function that defines the arc must be equal to 1 when x = 1, so choose the positive expression from the previous
Maple V output.

> f := "[1];
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Figure 41: The curve y2 = x2

f := x3/2

Convert f to a function using unapply.

> f := unapply(f,x);

f := x 7→ x3/2

The formula for arc length requires f ′.

> fprime := D(f);

f prime := x 7→ 3
√

x
2

Compute the length of the arc between (1, 1), and (5,
3
√

125) by the following.

> Int(sqrt(1+fprime(x)^2),x=1..5) : " = value(");∫ 5

1

√
4 + 9 x

2
dx = 343

27
− 13

√
13

27

This is approximately equal to

> evalf(rhs("));

10.96769753

Example 8.2.6 Find the length of the perimeter of the ellipse

x2

4
+ y2

25
= 1.

Solution: The ellipse given by the equation

> eq := x^2/4+y^2/25=1;

eq := x2

4
+ y2

25
= 1

is shown in Figure 42.

> plots[implicitplot](eq,x=-2..2,y=-5..5,scaling=constrained);



              

8 APPLICATIONS THAT USE THE DEFINITE INTEGRAL 73

-4

-2

0

2

4

y

-2 -1 0 1 2
x

Figure 42: The curve x2

4 + y2

25 = 1

It is clear from Figure 42 that the length of the perimeter is equal to four times the length of the arc of the ellipse
from the point (0, 5) to (2, 0). Now define a function f such that y = f (x) gives this arc.

> solve(eq,y);

5
√−x2 + 4

2
,−5

√−x2 + 4
2

> f := "[1];

f := 5
√−x2 + 4

2
Next the expression is converted into a function.

> f := unapply(f,x);

f := x 7→ 5
√−x2 + 4

2

The derivative f ′ is needed.

> fprime := D(f);

f prime := x 7→ − 5 x

2
√−x2 + 4

We now compute the length of the perimeter of the ellipse.

> 4*Int(sqrt(1+fprime(x)^2),x=0..2): " := evalf(");

" := 23.01311260

Exercises 8.2

1. Show that the area of the ellipse
x2

a2
+ y2

b2
= 1

is πab. Hint: Consider using assume(a>0); and additionally(a<1);
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2. Plot the figure eight
(1 + x2) · y2 = x2 · (1 − x2),

and then show that the enclosed area is equal to π − 2.

3. Consider the region bounded by the curve y = x sin2 x, between x = 0, x = π, and the x-axis. Plot this
region and then calculate the exact value of the volume of the solid formed by revolving the region about
the x-axis.

4. Compute the volume of the solid of revolution which is formed by revolving the ellipse

x2

a2
+ y2

b2
= 1

about the x − axis.

5. Plot the curve
y = sin(π sin((x − 2)2))

over the interval [3, 5]. Estimate the arc length of the curve between x = 3 and x = 5.

6. If a > 0 and b > 0 then show that the arc length of the curve( x
a

)2/3
+

( y
b

)2/3
= 1

is
a2 + ab + b2

a + b
.

Plot the curve.

7. Let f (x) = cosh(x) and g(x) = 2 cosh(x). (Recall: cosh(x) = ex+e−x

2 .)

(a) Find the area bounded by the curve y = f (x) and the x-axis from x = 0 to x = 1. Do the same for
y = g(x), and then compute the ratio of the two areas.

(b) Find the volumes of the solids obtained by rotating each of the regions in part (a) about the x-axis.
Compute the ratio of the two volumes.

(c) Find the lengths of the two curves, y = f (x) and y = g(x), from x = 0 to x = 1, and calculate the
ratios of te two lengths.

8. In this problem we will study what happens to the ratio of arc length to area as a → ∞ for three curves that
depend on a parameter a. For each of the three functions given below perform the following tasks:

(a) Plot the graph of the function for a = 1.

(b) With a = 1, find the area bounded by the curve y = f (x) and the x-axis on [0, 1].

(c) With a pencil and paper write down integral formulas for the arc length of the curve y = f (x) over the
interval [0, 1], and the area under the curve on [0, 1]. Use these to find an integral formula for the limit
of the ratio of arc length to area as a → ∞. (Hint: Factor out a from each integral before taking the
limit.)

(d) Find the limit as a → ∞ of the ratio of arclength to area on [0, 1].

(e) By studying the graph found in (a), and using the answer you calculated in (b) can you find a way to
answer (d) without doing any further integrations?

i. f (x) = a sin2(πx)

ii. f (x) = a
√

x − x2 (Hint: You may wish to use only geometry here.)
iii. f (x) = x H(1/2 − x) + (1 − x) H(x − 1/2), where H is the Heaviside function.
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8.3 Applications to Physics

It has been seen how calculus can be applied to find solutions of geometric problems such as problems concerned
with computing area, volume, and arc length. In this section calculus is used to solve problems that arise from
physics.

Work

Consider problems which involve the physical concept of work. The definition of the work done by a constant
force, F, in moving an object a distance, d, is equal to the product of the force and the distance moved.

Definition
When a body moves a distance d along a straight line under the action of a constant force
F in the direction of the motion, then the work W done by the force in moving the object is

Work = Force × Distance

or
W = F · d

In most cases the applied force is not constant, but varies over the straight line. For example suppose that the
force, F(x), acting on a particle as it moves along the straight line from a to b varies continuously. See Figure 43.

xkxk-1

ck

ba

Figure 43: Force along an interval

Consider the particle’s movement over a very small subinterval [xk−1, xk] of the original interval. Then, since F
is continuous, one can approximate its value over a sufficiently small subinterval by taking its value at an arbitrary
point, ck, in in that interval. Then the work done in moving the particle from xk−1 to xk is approximately

F(ck) · (xk − xk−1) = F(ck) · 1xk.

To obtain an approximation to the total work done add up all of the similar elements of work.

Work ≈
∑

F(ck) · 1xk.
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This represents a Riemann Sum of the continuous function F(x) over the interval [a, b]. Just as the area of a planar
region described by continuous curves can defined as a limit of Riemann Sums, the work done by a continuous force
acting to move a particle between two points on a line may be defined as a limit of Riemann Sums, or what is the
same thing the definite interval.

Definition
The work done by a continuous force F(x) directed along the x-axis is

W =
∫ b

a
F(x) dx.

Example 8.3.1 Suppose that you wish to draw water from a well which has a water level located 20 feet below
the mouth of the well. Your 2 gallon bucket weighs 4 lbs, and the rope weighs 0.10 lb/ft. Unfortunately, your
bucket has a leak and even though it is originally full, it has only a gallon of water by the time you lift it to the top.
Assuming that you pull the bucket up at a constant rate and the water leaks at a constant rate determine the work
you do in lifting the bucket of water to the top. Assume that water weighs 8 lbs per gallon.

Solution: Consider a linear coordinate system with the origin at the mouth of the well. The coordinate at the the
mouth is x = 0, and the coordinate at the water level is x = 20. The force, F(x), that is required to lift the water
Fw(x), the bucket, Fb(x), and the rope Fr(x) will now be computed with

F(x) = Fw(x) + Fb(x) + Fr(x).

1. The force contributed by the bucket is a constant, since its weight at any depth is always 4 lbs. Thus

Fb(x) = 4 lbs.

2. The force contributed by the rope varies with the depth. When 20 feet of rope is out the total weight is
0.10 lb/ft × 20 = 2 lbs, and at the mouth the rope is of 0 length and hence weighs 0 lbs. The weight of the
rope at a point x ft below the mouth is

Fr(x) = 0.10 × x = x
10

lbs.

3. Since the bucket leaks the weight of the water varies with depth. When the bucket starts its ascent it contains
two gallons of water which weighs 16 lbs, and the bucket is half full at the top and weighs 8 lbs. It is assumed
that the bucket moves up at a constant rate and the water is leaking out at a constant rate. A formula for the
weight of water at a depth x can be determined. When the rope is fully extended to 20 ft the weight of the
water is 16 lbs. When the bucket is raised to the top the weight of the water is 8 lbs. The bucket is raised at
a constant rate, say v ft/sec and the bucket leaks at a constant rate, say k lbs/sec. The time, τ, that it takes to
raise the bucket 20 ft is the same as the time for 8 lbs of water to leak out. Thus

τ = 8
k

= 20
v

.

This means that
k
v

= 8
20

= 2
5
.

Now the weight of water remaining after time t is

Weight = 16 − k · t
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and the length of rope that is out at time t is

x = 20 − v · t.

Solving the latter equation for t, substituting the result into the equation for weight, and using the fact that
k
v

= 2
5 gives:

Weight = 16 − k
v

· (20 − x) = 8 + 2
5

x.

The last equation defines the weight of the water in the bucket at a depth x. Hence we write

Fw = 8 + 2
5

x.

The force required to lift bucket, rope, and water from a depth of x feet is

F(x) = (4) + (
x

10
) + (8 + 2

5
x) = 12 + x

2
.

The amount of work done in lifting the bucket, rope, and water the 20 ft

W =
∫ 20

0
(12 + x

2
) dx = 12x + x2

4

∣∣∣20

0
= 240 + 100 = 340 ft − lbs.

When a body is near the surface of the Earth it is usually assumed that the force acting on it due to gravity is
constant i.e. the object’s weight as in the preceding example. However, as the body moves further from the Earth’s
surface the force acting to bring it back to earth varies inversely as the square of the distance from the center of the
earth.

Newton’s Law of Gravity
Let m1, and m2 be the masses of two objects that are a distance r apart. The force, F, of
attraction due gravity is

F = Gm1m2

r2
,

where G is the universal gravitational constant and depends upon the units of distance,
mass, force, and time that are used. If these units are meters (m), kilograms (kg), Newtons,
(N) and seconds, then G = 6.6720 × 10−11 Nm2kg−2.

Example 8.3.2 Find the work required to move a satellite of mass 1250 kg from the surface of the Earth (of mass
5.975 × 1024 kg), to the surface of the Moon (of mass 7.35 × 1022 kg). Assume that the radius of the earth, ER,

is 6.38 × 106 meters, the moon’s radius, M R, is 1.74 × 106 meters, and that the distance, DEM, from the center
of the Earth to the center of the Moon is 3.84 × 108 meters.

Solution: We let SM, EM, and M M denote the masses of the satellite, Earth, respectively.

> SM:= 1250; EM := 5.975*10^24; MM := 7.35*10^22;

SM := 1250

EM := 5.975000000 × 1024

M M := 7.350000000 × 1022

> G := 6.6720*10^(-11); DEM := 3.84*10^8;
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G := 6.672010{−11}

DEM := 384000000.0

> ER := 6.38*10^6; MR := 1.74*10^6;

ER := 6380000.0

M R := 1740000.0

Let r denote the distance that the satellite is from the center of the Earth, then the force, FE(r), acting to pull it
back to Earth is

G · EM · SM
r2

.

> FE := r -> G*SM*EM/(r^2);

r 7→ 498315000000000000.0
r2

At the same time the Moon is attracting the satellite with force, FM(r) is

G · M M · SM
(DEM − r)2

.

> FM := r -> G*SM*MM/(DEM-r)^2;

FM := 6129900000000000.0

(384000000.0 − r)2

Thus the entire force F(r) acting on the satellite is

F(r) = G · EM · SM
r2

− G · M M · SM
(DEM − r)2

.

This means that the work required to move the satellite from the surface of the earth is given by∫ M R

ER
F(r) dr.

> Int(FE(r)-FM(r),r=ER..(DEM-MR)) : " = evalf(");∫ 382260000.0

6380000.0

498315000000000000.0
r2

− 6129900000000000.0

(384000000.0 − r)2 dr = 73079043410.0

The work required to move the satellite from the surface of the Earth to the surface of the Moon is 73, 079, 043, 410
Newton-meters or joules of work.

Example 8.3.3 A tank in the shape of a one foot high frustrum of a cone has a base radius of two feet, and a radius
at the top of three feet, is filled with a liquid which weighs 65 pounds per cubic feet. See Figure 44. How much
work is required to pump all of the liquid to a height of two feet above the frustrum.

Solution: Choose coordinates (x, y, z) so that z is height measured from bottom of the tank. Consider a thin cylin-
drical disk, 1V, as an element of volume for the cone (the same as if you were going to find the volume of the
frustrum). The typical base for such a disk located at a height z has a radius x equal to

x = 1 + 2z,

and height 1z. Thus
1V = π(1 + 2z)21z
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Figure 44: Tank containing a liquid

cubic feet. If the element of volume is filled with the liquid then it would weigh 65 π(z − 2)21z. To lift this much
liquid to a height two feet above the top would require

1w = (3 − z) × 65 × π(1 + 2z)21z

foot-pounds since the liquid must be lifted 3 − z feet. This means that the total work is a limit of sums of these
elements and hence the work required to lift all of the liquid to a height 2 feet above the top is equal to

w =
∫ 1

0
(3 − z) × 65 × π(1 + 2z)2 dx

> Int(Pi*65*(3-z)*(1+2*z)^2,z=0..1) : " = value(");∫ 1

0
65 π (3 − z) (1 + 2 z)2 dz = 3965 π

6

> evalf(rhs("));

2076.069145

Thus it requires approximately 2076.069145 foot-pounds of work to pump all of the liquid to to a height two feet
above the top of the frustrum.

Exercises 8.3

1. The bucket in Example 8.3.1 is pulled faster and there is a gallon and a half remaining when it reaches the
top. What is the work done in this case?

2. Using the physical constants from Example 8.3.2 calculate the amount of work necessary to to carry a rocket
with mass 3, 238 kg from the Earth’s surface to a height 43, 257 meters above the Earth’s surface.

3. A fluid which weighs 65 pounds per cubic feet is contained in a well in the shape of a sphere of radius 67
feet. The top of the sphere is 56 feet below the surface of the Earth. How much work is required to pump
all of the fluid up to ground level?
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