
Runtime Supervision of PLC Programs
Using Discrete-Event Systems
Florian Göbe

Department of Computer Science
Technical Report

Aachener Informatik-Berichte (AIB) | ISSN 0935-3232 | AIB-2019-05
RWTH Aachen University | Department of Computer Science | November 2019

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Runtime Supervision of PLC Programs Using
Discrete-Event Systems

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Florian Göbe
(Master of Science RWTH Aachen University)

aus Duisburg

Berichter: Universitätsprofessor Dr.-Ing. Stefan Kowalewski
Universitätsprofessor Dr.-Ing. Jan Lunze

Tag der mündlichen Prüfung: 7. November 2019

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Florian Göbe
Informatik 11 – Embedded Software
goebe@embedded.rwth-aachen.de

Aachener Informatik Bericht AIB-2019-05

Herausgeber: Fachgruppe Informatik
RWTH Aachen University
Ahornstr. 55
52074 Aachen
GERMANY

ISSN 0935-3232

Abstract

The supervisory control theory (SCT) introduced by Ramadge and Wonham is one of
the most noted formalisms for the synthesis of solutions in discrete event control. In
this dissertation, an approach is elaborated which applies the SCT framework for the
supervision of arbitrary existing PLC controller programs. The latter are assumed to be
provided manually by the user and hence are not formally guaranteed to respect certain
constraints, such as demands on safety, in all possible situations. With the presented
approach, these conditions can be formulated in form of discrete-event systems. Using
adaptations of the Ramadge and Wonham framework, a supervision layer is generated
from these models. It prevents the controller from executing critical actions during runtime,
which could eventually lead to the violation of the specified requirements.

In order to address a wide range of realistic use cases, several adaptations and extensions
have been introduced to the original framework, such as conditional transitions, templates
and event enforcement for the preemption of undesired incidents. A concept for an end-to-
end solution from the creation of the requirement models to a ready-to-use safety layer is
presented and has been implemented in a tool.

The suitability of the concept has been evaluated in several case studies, some on
industrial hardware. Furthermore, the usability of the approach as a whole, the introduced
modifications and the tool implementation have been evaluated in a user study.

i

Zusammenfassung

Bei der von Ramadge und Wonham eingeführten Supervisory Control Theory (SCT) handelt
es sich um einen der verbreitesten Ansätze für die Synthese von Lösungen im Bereich
diskreter Steuerungen. In dieser Dissertation wurde ein Ansatz erarbeitet, der das SCT-
Rahmenwerk zur Überwachung existierender SPS-Steuerungsprogramme einsetzt. Letztere
werden als vom Benutzer manuell implementiert angenommen, weswegen ihre Fehlerfrei-
heit in Bezug auf gewisse Anforderungen, beispielsweise an die funktionale Sicherheit, nicht
in allen prinzipiell möglichen Situationen formal sichergestellt werden kann. Im vorgestell-
ten Ansatz können diese Anforderungen als ereignisdiskrete Systeme formalisiert werden.
Mittels einer modifizierten Form des Ramadge-Wonham-Rahmenwerkes wird aus diesen
Modellen schließlich eine Überwachungsschicht generiert. Diese verhindert frühzeitig sol-
che Aktionen der Steuerung, die schlussendlich zu einer Verletzung der Anforderungen
führen könnten.

Um eine möglichst große Bandbreite realistischer Anwendungsfälle abzudecken, wurden
mehrere Anpassungen am ursprünglichen Rahmenwerk vorgenommen und Erweiterungen
eingeführt, beispielsweise bedingte Transitionen, Vorlagen sowie Ereigniserzwingung zur
Verhinderung unerwünschter Vorkommnisse. Das vorgestellte Konzept bildet den gesamten
Prozess von der Erstellung der Anforderungsmodelle bis hin zu einer auf der Zielhardware
direkt einsetzbaren Sicherheitsschicht ab und wurde in Form eines Werkzeugs prototypisch
realisiert.

Die Eignung des Ansatzes zu diesem Zwecke wurde in mehreren Fallstudien demonstriert,
in einigen davon auf Industriehardware. Des Weiteren wurde die Anwendbarkeit des
Gesamtansatzes, der eingeführten Modifikationen und schlussendlich des Werkzeugs selbst
in einer Benutzerstudie evaluiert.

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution and Outline . 2

2 Background 5
2.1 Discrete-Event Systems . 5
2.2 Supervisory Control Theory . 8
2.3 Industrial Automation and PLCs . 11

3 Applied SCT and Related Approaches 21
3.1 Extensions of SCT . 21
3.2 Applicatons – Tools and Case Studies . 27

4 Controller Synthesis with SCT 33
4.1 Synthesis – Definition and Classification . 33
4.2 Continuous Control, Discrete Control and SCT 34
4.3 Requirements and Specifications . 34
4.4 The Role of Specifications in the SCT . 39
4.5 Operational Specifications for Synthesis Techniques 43
4.6 Conclusion . 45

5 A Concept for Runtime Supervision of PLC Programs Using DES 49
5.1 Introduction . 50
5.2 Related Approaches . 56
5.3 Modeling Concept . 57
5.4 Basic Operations . 62
5.5 Preemption . 64
5.6 Cyclic Events . 74
5.7 Conditional Transitions and Prohibitions . 76
5.8 Formal Model . 82

6 SynTACS 119
6.1 Working with SynTACS . 119
6.2 Software Architecture . 126
6.3 SynTACS Runtime Framework . 127
6.4 Limitations . 133

v

Contents

6.5 Remote Supervisor . 135

7 Evaluation 139
7.1 User Study . 139
7.2 Case Study: M3P.AC . 144
7.3 Further Case Studies . 147
7.4 Long-Term Usability . 149
7.5 Benchmark of Incremental Synthesis . 149

8 Conclusion 153

vi

List of Figures

2.1 Example automaton . 7
2.2 The supervisory control closed loop . 9

3.1 Timed DES to capture timing dependencies . 26

4.1 Illustration of productivity requirements . 36
4.2 Categories of requirements and specifications in discrete control 37
4.3 Specification Empty-full-empty-cycle . 42
4.4 Operative controller implementation for dosing tank 43

5.1 Comparison of control loop paradigms . 52
5.2 Execution cycle . 53
5.3 Exemplary specification . 58
5.4 Simple Plant . 59
5.5 SynTACS event scheme . 61
5.6 Composition of a simple specification and plant model 63
5.7 Preemption – motivating example . 65
5.8 Example with preemption . 67
5.9 Preemption of further events . 71
5.10 Cascade of enforced events . 72
5.11 Intended cascade of enforced events . 73
5.12 Uncontrollable cascade, interrupted by controllable cyclic event 75
5.13 Example of a heating tank. All alphabets are disjoint. 76
5.14 Additional plant model to define when gelatinization is possible 78
5.15 Condition refinement in plant composition . 79
5.16 Specification-plant composition with conditions 81
5.17 Specification and regular plant approximation 90
5.18 Example for incremental synthesis . 105
5.19 Preemptively but not conventionally realizable synthesis automaton 112
5.20 Auxiliary plant Gaux . 112

6.1 Screenshot of SynTACS . 120
6.2 Example with preemption and timers . 123
6.3 Template example . 125
6.4 Screenshot: Instantiation of template . 126
6.5 Architecture of SynTACS . 128

vii

List of Figures

6.6 SynTACS event scheme . 129
6.7 SynTACS Runtime Framework . 132
6.8 Problematic enforcement-by-Design . 134
6.9 SyRF for remote supervisor . 136

7.1 User Study: Foreknowledge . 141
7.2 Usability rating for SynTACS . 143
7.3 Degree of difficulty in modeling DES . 143
7.4 M3P.AC . 144
7.5 Evaluation: Example of specification and plant 146
7.6 fischertechnik PPC . 147
7.7 Transfer line . 150
7.8 Several connected TLs with multiple machines each 150

viii

Acronyms and Initialisms

ALARP as low as reasonably practical

BDD binary decision diagram
BSCP basic supervisory control problem
BSCP-NB basic supervisory control problem with nonblocking-

ness

CFC Continuous Function Chart
CS computer science
CTL computational tree logic

DCS distributed control system
DEDS discrete-event dynamic system
DES discrete-event system
DFA deterministic finite automaton

FBD Function Block Diagram

GEF the Graphical Editing Framework
GUI graphical user interface

IDE integrated development environment
IEC International Electrotechnical Commission
IL Instruction List
IPCCSL infimal prefix-closed controllable superlanguage

LD Ladder Diagram

PCS process control system
PFC Procedural Function Chart
PII Process Image of Inputs
PIO Process Image of Outputs
PLC programmable logic controller
POU Program Organization Unit
PPC pneumatic processing center

ix

Acronyms and Initialisms

PROFIBUS process field bus
PROFIBUS DP process field bus (for) decentralized perihperals

RCP rich client platform

SAT satisfiability
SCL Structured Control Language
SCSL supremal controllable sublanguage
SCT supervisory control theory
SFC Sequential Function Chart
SIL safety-integrity level
SMT satisfiability modulo theories
ST Structured Text
STCT SmartTCT
STS state tree structure
SynTACS Synthesis Tool for Automation Controller Supervision
SyRF SynTACS Runtime Framework

TCT Toy Control Theory
TL transfer line
TON on-delay timer

UML Unified Modeling Language

x

Acronyms and Initialisms

xi

Chapter 1

Introduction

Software is one of the most inherent elements of today’s electronic and mechatronic systems.
What originally began with the automated processing of business transactions in mainframe
systems has long since found its way into all areas of daily life. Nowadays, there is hardly
any technical device that does not involve a microprocessor and software to be executed on
it. The opportunities are obvious: Software allows using general-purpose devices, which can
be produced in large quantities, for very specific tasks. It can easily be copied, transferred,
modified and maintained compared to purely hardware-based solutions.

Besides the functional and architectural aspects of a system, nonfunctional requirements
have always played a central role in software development. For the controls of machines
and industrial systems, safety is probably the most prominent example, which is in many
cases even regulated by law. Accordingly, safety must often be enforced by concepts and
systems which are independent from functional aspects of the system.

As the complexity of the tasks solved by software increased over time, it became inevitable
that the actual implementation is preceded by a specification and design phase. Usually,
different kinds of models are invoked to that end, such as the 13 parts of the Unified
Modeling Language (UML) but, particularly in the embedded domain, also block diagrams,
state machines or MATLAB/Simulink.

In that context, there have always been attempts to automate as much of the process of
creating software as possible. That has several reasons. On the one hand, the automatic
derivation of software code from models can save time and cost as the developers and
engineers can concentrate on the modeling and need not bother with implementation
details. Besides, such mechanisms can improve reusability as the same model may serve
as a basis to generate code for multiple different hardware platforms. On the other hand,
a correct method is guaranteed to yield sound results. Apparently, that only holds if the
models which serve as input are correct too. Thus, when using generative methods, the
developer has to entirely rely on the preciseness of these models as the chances to find
errors in generated artifacts are usually small.

Two different kinds of software derivation need be distinguished: The derivation of code
from a model of the solution and the creation of a solution from a model of the problem.
Throughout this dissertation, the first will be referred to as generation whereas the second
is called synthesis.

1

Chapter 1 Introduction

The supervisory control theory (SCT) introduced and formally defined by Ramadge and
Wonham [87] is a calculus for the synthesis of supervisors from discrete-event systems.
It originates from the field of discrete control engineering and hence aims to provide a
method to control a system with a discrete nature. The core idea is that two discrete, state-
or language-based models are provided by the user to describe the control problem: A
model of the uncontrolled plant that represents all possible behaviors, and a specification
of the legal behavior. The main task of the supervisor is first to ensure compliance with
the specification and second to prevent the system from blocking. Some of the system’s
dynamics are assumed to be uncontrollable. Thus, synthesis has to find a solution that does
achieve these two goals in a technically realizable way.

1.1 Motivation

Synthesizing controllers with the Ramadge-Wonham framework has been the subject of
theoretically oriented research for a notable time. Nonetheless, these methods still struggle
with real-world applications for several reasons. One amongst these is the computational
complexity that comes with handling regular state spaces due to the exponentially growing
number of possible state combinations over several components. The majority of contribu-
tions in the area face this issue by introducing abstractions, symbolic methods or heuristics.
What has rarely been addressed though is an analysis on which aspects of a control scenario
can actually benefit from SCT and in which way. Numerous case studies exist in which
a controller for a simple system has successfully been synthesized using that framework.
In that context, particularly process and production plants received frequent attention.
However, it appears unlikely that, e.g., an entire production facility will be controlled by
SCT-synthesized supervisors in foreseeable time.

One of the main objectives of this work, hence, was to identify system aspects and parts
that allow for SCT-synthesized solutions in a way that is computationally tractable, well-
applicable and, first of all, reasonable from the application’s point of view. It turned out that
one class of requirements suits the notion of SCT very well. They will be addressed as side
conditions and basically represent a generalization of safety constraints. A side condition
is a requirement that, independently from the functional goals of the system, needs to be
respected during the entire operation of the facility. Side conditions are not necessarily
invariants but may impose restrictions depending on the current state of the system. More
details will be given in Chapter 4.

1.2 Contribution and Outline

This dissertation comprises mainly two contributions. The first is a critical discussion on
applying syntheses in general and the SCT in particular for the purpose of controller
synthesis. Although several case studies have shown the overall applicability of the method,
there are conceptual limitations one should be aware of. The second and main contribution
is an approach to model side conditions and synthesize a software framework from these.

2

1.2 Contribution and Outline

It monitors and supervises an existing controller implementation with the objective of
guaranteeing compliance with the requirements as the controller is running. The approach
is based on an altered version of the SCT, which turned very suitable for this kind of runtime
supervision. Based on that concept, a tool implementation has been developed to evaluate
its suitability and limitations. The tool is called SynTACS and offers end-to-end support
from the initial modeling up to the generation of executable PLC code. Strong emphasis has
been put on usability and convenient applicability in order to estimate the appropriateness
of SCT to serve that purpose in practice. This particularly includes an intuitive modeling
concept which avoids the necessity of redundant manual tasks.

During the development, the formal framework and the approach were adapted and
modified towards the addressed problems and not the other way around, i.e., the focus was
not to find an example which works well for the SCT but rather to justify and extend SCT
to make it suitable for many practically relevant scenarios. Therefore, concepts as explicit
prohibitions, alphabetless specifications, different trigger and action classes or preemption
are utilized. Furthermore, an incremental method is presented. Since it is tailored to the
needs of the considered use case, it is able to apply narrower criteria for the necessity of
composing modular automata than other approaches, making it more efficient.

Since the introduced modeling concept introduces extensive modifications to the original
framework by Ramadge and Wonham, a formalization is given and the soundness of the
implemented methods is proven on that basis. Moreover, the practicality and usability of
SynTACS has been evaluated.

Chapter 2 gives an introduction to the technical background of this thesis, i.e., to discrete-
event systems, the SCT and, very briefly, to industrial manufacturing and process engineer-
ing. It is followed by Chapter 3 which roughly summarizes various existing contributions to
the SCT which were the results of several different incentives. It further gives an overview
of related work, alternative modeling concepts, tools and case studies. Chapter 4 is con-
cerned with the general discussion about syntheses and SCT mentioned above. Throughout
Chapter 5, the concept for the runtime supervision approach is presented including the
modifications and additions to SCT and a self-contained formalization of the approach.
Based on that concept, the tool SynTACS is introduced in Chapter 6. An evaluation of both
the tool and the formal approach itself is given in Chapter 7. Chapter 8 finally draws a
conclusion.

3

Chapter 2

Background

This chapter is meant to give a brief overview about discrete-event systems (DES) and the
classic supervisory control theory (SCT). The first two sections, 2.1 and 2.2 are mainly
based on the textbook by Cassandras and Lafortune [23], which is widely accepted as a
standard reference in the community.

This dissertation primarily addresses the application domain of industrial automation.
For that reason, an overview of the control methods and components commonly used in
this field is given in Section 2.3.

2.1 Discrete-Event Systems

In the area of systems theory, usually two different types of causal systems are distinguished:
static systems for which the output exclusively depends on the current input, and dynamic
systems, which possess an internal state such that not only current but also past values
influence the system’s current output. Dynamic systems are further partitioned into four
different classes regarding their time and value domains as both can be either continuous
or discrete [23].

DES, sometimes referred to as discrete event systems or – more precisely – discrete-event
dynamic systems (DEDS) are characterized by a discrete state space. Their active state
can change at arbitrary points in time. Thus, DES are counted to the continuous-time
systems although timing is not explicitly considered by most approaches. State changes
are called transitions and are always triggered by events, where an event is usually the
logic representation of a certain physical happening. Both events and transitions have no
duration. Further, two events are assumed to never occur at the exact same time.

Example 2.1. Consider a bucket that can hold 12 identical marbles. Marbles can be put into
the bucket or removed from it one by one in arbitrary order. This bucket can be represented
by a DES with two events (put, remove) and 13 distinguishable states (since the bucket can
be empty too). Í

Languages The dynamics of continuous systems can usually be described with differ-
ential equations, which offer an elegant way to capture the entire possible behavior in a
compact representation. Discrete events are not differentiable though. Besides, a functional

5

Chapter 2 Background

description of a discrete state space would be very cumbersome to work with. Instead, a
standard DES is characterized by the set of its possible event sequences, called the language
of the DES. A formal language is a set of finite strings over an alphabet of events Σ. The
Kleene closure of Σ, denoted by Σ∗ contains all possible finite strings over Σ. Thus, each
language L over Σ is a subset of Σ∗.

In general, both the language but also the DES itself can be infinite. However, the vast
majority of contributions, such as [28, 30, 75, 87, 88, 119], concentrate on DES with finite
state spaces instead. Note that these have regular languages, which can also be infinite in
general.

Since a DES is assumed to be causal, its language must be prefix-closed1. That is, for
every event sequence from the language, all prefixes of this sequence (substrings that start
at the beginning but may be shorter) must be contained in the language as well. From the
perspective of the DES this makes sense as it can only produce events but never take them
back once they are emitted. The prefix closure, i.e., the set of all prefixes, of a language L
is usually denoted by L. Hence, L is prefix-closed if and only if L = L.

Example 2.2. Consider the prefix-closed language L. abc,def ∈ L =⇒ a,ab,d,de ∈ L. Í

More details and examples on prefix closure can be found in [23].

2.1.1 Automata

Infinite languages are difficult to handle in their natural shape of sets of strings. Partic-
ularly, the definition of properties and algorithms, such as analyses and syntheses, can
be problematic using languages only. Hence, a more compact, yet sufficiently expressive,
representation of DES is required. For DES with regular languages, the most popular con-
cepts are deterministic finite automata (DFAs) and Petri nets [48]. While the former offer a
rather generic view on the state space, the latter suit the needs of scenarios where discrete,
countable items are moving through a fixed, predefined topologic structure. Both have
equivalent expressiveness if the Petri nets are restricted to finite markings.

Throughout this dissertation, automata are used extensively to define DES and the
operations on them. Petri nets still represent a niche in the DES community and will not be
considered here. The formalisms sketched in this chapter shall give an impression about
the common modeling paradigm and further provide a basis to understand the techniques
presented in the following sections and in Chapter 3. A detailed and self-contained model
for the approach presented in Chapter 5 will be given in Section 5.8.

In their textbook [23] Cassandras and Lafortune define a deterministic finite automaton
(DFA) as a sextuple G = (Q,Σ, f , Γ , q0,Qm), consisting of a finite set of states Q, an alphabet
Σ, a partial transition function f : Q × Σ * Q, an active-event map Γ : Q * 2Σ, an
initial state q0, and a set of marker states Qm

2. Σ contains all events that the automaton
is concerned with, i.e., the events that play a role for the represented DES. Γ assigns to

1Simply called closed in Wonham’s publications
2In the book, the set of states is denoted X , as common for continuous systems, and the alphabet is called

E. Q and Σ are widely used in computer science as well as in more recent DES publications. In order to
avoid confusion, a consistent notation is used throughout this dissertation.

6

2.1 Discrete-Event Systems

Figure 2.1: Example automaton A

each state q ∈ Q the set of all events e such that f (q, e) is defined. Last, marker states
define those circumstances in which the DES is considered stable or safe. By ensuring the
reachability of at least one such state the system is guaranteed not to block, a property
which is often addressed as nonblockingness.

The majority of contributions inside the DES community have either adopted or slightly
altered this definition to their needs. Note that it differs from the common definition
of theoretical computer science (CS), where the transition function of a DFA, usually
δ : Q×Σ→Q (over a state space Q and alphabet Σ) has to be total. This also affects the
definition of languages. Since the language L of a DES shall reflect all possible behaviors of
the system, it is defined as the set of strings over Σ, where f is transitively defined, i.e.,
which the corresponding automaton G can execute. Hence, it is often called the language
generated by the automaton, L(G). For nonblockingness, additionally the language marked
by G, Lm(G), is considered. It contains all event strings that, executed on G, end in a marker
state q ∈Qm. Obviously, Lm(G) ⊆ L(G).

In CS, the marked language is usually considered exclusively, as for a total transition
function δ of an automaton A, L(A) would always return the alphabet’s Kleene closure Σ∗,
i.e., the set of all possible strings over Σ. Both concepts can be used to express the exact
same problems and properties, e.g. by introducing sink states to the CS automata. Still, this
is a vivid example of how differently both communities have developed during the past
decades. Unfortunately, in many cases it is not trivial to translate knowledge which has
been gained and formally proven in one community to the other, cf. [31].

Example 2.3. Figure 2.1 shows a sample automaton A of three states Q = {1, 2, 3},Qm = {3}.
For Σ = {a,b,c}, its language is given by the prefix closure of the language L,L(A) = L,
where L comprises all words defined by the regular expression (aa(ba)∗c)∗. Lm(A) is
given by Laa. Thus, for instance, a,aab,aabaca,aacaa ∈ L(A) and aacaa ∈ Lm(A) but
aab /∈ Lm(A). Í

2.1.2 Operations on Automata

Cassandras and Lafortune introduce several unary and binary operators on automata that
are relevant for this dissertation. The unary operations are accessible, co-accessible, trim
and complement. The first reduces an automaton to the part reachable from the initial state
while the second rules out the states from which no marked state can be reached. Trim
combines both commutative functions. The binary operators are the parallel composition,
sometimes called shuffle product [88], and the automaton product.

7

Chapter 2 Background

When two automata G1, G2 are composed in parallel, denoted by Gcomp = G1 ‖ G2, their
alphabets Σ1,Σ2 are united to Σ = Σ1 ∪Σ2. The transition function f of Gcomp then reflects
exactly that behavior which is considered possible by both automata. Note that each of
them only reasons about the events contained in its respective alphabet.

The automaton product Gprod = G1 × G2 works similar except it intersects the alpha-
bets: Σ= Σ1 ∩Σ2. Its language L(Gprod) is also the intersection of the original automata’s
languages, i.e., only the strings that were generated by both automata reside. The for-
malization of the parallel composition’s language L(Gcomp) is slightly more complex as it
requires the notion of natural projections. A formal description is omitted here. It can be
found in Section 5.8.1.5 (Lemma 5) and in [23]. Both compositions are commutative and
associative, i.e., G1 ‖ (G2 ‖ G3) = (G1 ‖ G2) ‖ G3 = (G2 ‖ G1) ‖ G3, analogously for ×. The
automaton product is only mentioned for the sake of completeness but does not play a role
in this dissertation.

2.2 Supervisory Control Theory

The SCT is a framework that intends to adapt the classic concept of a closed control loop
containing the uncontrolled plant on the one hand and the controller on the other, as
widely applied in continuous control, to discrete-event systems. It has been developed
by P. J. Ramadge and W. M. Wonham in the 1980’s. Although there have been closely
related papers by these authors before, [87] is widely regarded as the first peer-reviewed
publication3 of the coherent framework, although the term supervisory control theory is not
explicitly mentioned yet. Earlier contributions, e.g., [118], concentrate on language-related
considerations and introduce the concept of the supremal controllable sublanguage but do
not yet apply them onto a closed-loop setup. In addition, several illustrative examples are
given. The invited paper [88] summarizes the earlier papers and examples, including more
advanced scenarios, such as modular SCT or coordinators (see Section 3.1.2).

2.2.1 Setup

The control loop of the basic framework consists of two components: A generator and a
supervisor.

Generator The generator is a DES which spontaneously creates events. The set of all event
sequences that a given generator can produce from its initialization to any arbitrary moment
thereafter forms a prefix-closed language. Since the generator is commonly modeled as a
DFA or Petri net, that language is usually regular. The active-event set Γ of the automaton
determines, depending on the current state, which events can theoretically be emitted next.
In the classic setup, all events are assumed to originate from the generator. It depends on
the application which physical entities the generator represents in the respective case, cf.
Section 5.1.3.

3previously published as a technical report [89]

8

2.2 Supervisory Control Theory

Figure 2.2: The supervisory control closed loop

Supervisor The role of the supervisor is to restrict the behavior of the generator to a
certain subset of its language by disabling single events. To that end, it receives from the
generator all events that have been produced in the order of their emission. In return, the
set of enabled events, i.e., those that the supervisor allows to occur next, are transferred
back to the generator. The resulting control loop is depicted in Figure 2.2.

Since the supervisor is a dynamic system, it can theoretically consider the entire past
event string s ∈ Σ∗ from the very beginning of the execution up to the last generated
event for that decision. Formally, a supervisor is a function S : L(G)→ 2Σ. However, since
L(G) is typically infinite, a technical realization of S would require infinite memory too.
Besides, examples that require a non-regular supervisor for a regular generator seem rather
artificial. For these reasons, usually a regular supervisor realization in terms of another DFA
is used instead. The closed-loop behavior of the supervised generator is in that case given
by L(S ‖ G).

Controllability The alphabet Σ is partitioned into the disjoint subsets of controllable and
uncontrollable events, denoted by Σc and Σuc, such that Σ = Σc]Σuc. A supervisor is called
admissible if it never disables a pending uncontrollable event, i.e., S admissible iff for all
s ∈ L(G) holds

Σuc ∩ Γ (f (q0, s)) ⊆ S(s). (2.1)

The claim for admissibility is sometimes referred to as the control law of SCT [29].

Specification In addition to the generator, which represents the possible, uncontrolled
behavior of the DES, a (safety) specification can be provided to define its legal behavior.
It regularly has the shape of a DFA as well. Thus, for a specification H, the aggregation
of all legal system behaviors is given by the language of that DFA, L(H). Note that in
case of H having an alphabet ΣH 6= Σ, only the events inside ΣH are affected by this
particular specification. That means, if H does not provide an outbound transition for a
certain e ∈ Σ \ΣH leaving the currently active state, this event may still occur legally. In
case of e ∈ ΣH , it has to be prevented though. The entire possible and legal behavior of the
DES can be obtained from the parallel composition of H and G and is given by L(H ‖ G).

9

Chapter 2 Background

Blocking The Ramadge and Wonham framework provides a basic concept for dead-
and livelock avoidance. This is achieved using the marker states Qm defined by G and
H. Additionally to its compliance with the specification, a supervisor must ensure that at
least one marker state is reachable at any time, regardless of which events the generator
produces. Following that definition, a marker state can be understood as a “stable” or “idle”
state to which the system must always be able to return. The marked language consists of
all strings that end in such a marker state. In order to assure that, at any time, at least one
of these can be reached, the supervised system must be restricted to those strings that can
be completed to an element of the marked language, i.e., its prefix closure.

2.2.2 Supervisor Synthesis

In contrast to a supervisor, which has to be admissible, a specification is allowed to exclude
uncontrollable events, even if they are possible according to G in that state. In this case,
obviously no admissible supervisor S exists such that L(S ‖ G) = L(H ‖ G) because S would
need to disable the uncontrollable undesired event at a certain point. H is then called
uncontrollable on G. Note that this conflict does not arise if all prohibited uncontrollable
events are unreachable in G. Thus, admissibility does not depend on S exclusively but also
on Γ as reflected by (2.1).

The main goal of supervisory control theory (SCT) is to synthesize an admissible supervi-
sor S that guarantees

1. Compliance with H, i.e., L(S ‖ G) ⊆ L(H ‖ G)

2. Nonblockingness, i.e., L(S ‖ G) ⊆ Lm(G), where L denotes the prefix closure of L.

When achieving these goals, two issues can still arise: First, the specification can clash with
the required admissibility of the supervisor if it removes states that the generator can enter
on uncontrollable events. Second, there can be situations in which uncontrollable events
lead to blocking. Remember that these can occur spontaneously in any state q where they
are active, i.e., contained in Γ (q).

Controllability Theorem A language is called controllable if an admissible supervisor
exists for that language. That is the case if no uncontrollable event can occur which would
“leave” the language. This is formalized in the controllability theorem [118, 87]:

For languages K and M = M over an alphabet Σ = Σc] Σuc, K is called
controllable with respect to M and Σuc if

KΣuc ∩M ⊆ K . (2.2)

In words, (2.2) claims that any prefix of K (the legal language), complemented by any
uncontrollable event that can occur with respect to M (the possible language), must still
be legal. Consequently, we use M = L(G) to express the controllability of a language K on
the generator G.

10

2.3 Industrial Automation and PLCs

Controllability with respect to L(G) is neither automatically given for L(H ‖ G) nor for
Lm(G) nor the combination of both, Lm(H ‖ G), for the reasons described above. Hence,
in the context of SCT, there exist two primary approaches to establish controllability
for such: The supremal controllable sublanguage (SCSL) and the infimal prefix-closed
controllable superlanguage (IPCCSL). The first technique corresponds to: Restricting the
generator’s behavior further until controllability is achieved. The second addresses relaxing
the specification until it can be guaranteed controllably. In the context of this dissertation,
relaxations will not be considered. Instead, the specification is assumed to be final and does
not allow any tolerance.

BSCP and Maximal Permissiveness The underlying control problem is called basic su-
pervisory control problem (BSCP) or basic supervisory control problem with nonblockingness
(BSCP-NB) if nonblockingness is considered. Note that the empty language K = ;4 does
always fulfill (2.2). Thus, there is always a trivial solution to BSCP. This solution would
basically disallow the system to do anything and is thus reasonable neither for practical
nor theoretical considerations. Nonetheless, it raises the question of how BSCP/BSCP-NB
should be solved optimally. The answer is usually maximally permissive or, equivalently,
minimally restrictive.

Summarized – The result of BSCP/BSCP-NB is the maximally permissive supervisor which
restricts the generator as little as possible in order to ensure goals 1. or 1. and 2. from above.
The language of this supervisor Smp applied to the generator is the SCSL of K = Lm(H ‖ G).
It is denoted by K↑C . Thus, K↑C = L(Smp||G).

Algorithm The standard algorithm to compute Smp for BSCP-NB can be found in [23].
An equivalent algorithm albeit based on the underlying formalism of the Synthesis Tool for
Automation Controller Supervision (SynTACS) is listed and explained in Section 5.8.2.

2.3 Industrial Automation and PLCs

Originally, SCT was meant to provide a versatile theoretical framework for manifold discrete
systems across all branches and domains. Among these, applications from or related to
industrial automation have been of special interest inside the SCT community pretty early.
The SCT-based automation of a “thermal multiprocessor” by S. Balemi et al. [10] was one
of the pioneering contributions in this area. It will be revisited in Section 3.2.2.

Since the approach of this thesis also targets industrial production, even though from
a different perspective, a brief overview of the field, along with the applied measures of
control, is given in the following.

4note that ; 6= {ε}

11

Chapter 2 Background

2.3.1 Discrete Manufacturing and Process Engineering

In factory automation, usually two different branches are distinguished: Discrete manu-
facturing systems and process systems [70]. Although the technical requirements to the
utilized hardware platforms are not that different, two very distinct control cultures have
developed rather independently.

Discrete Manufacturing A manufacturing plant is in general a production facility where
products are thought of and handled as discrete workpieces. A production line usually
consists of several workstations or machines, often connected by a logistic system, e.g.,
conveyor belts. The workstations perform several, precisely defined tasks on the workpieces
as they move through the plant. These processing steps must be triggered, controlled and
coordinated among each other as well as with the transport system. The probably most
advanced examples for manufacturing lines can be found in the automotive industry where
not only the internal procedures must be controlled but also the peripheral logistic is
involved to realize just-in-time supply and delivery of all components.

But also a single multi-purpose machine, carrying out several actions on a workpiece,
each triggered by a human operator, can be regarded as a manufacturing plant.

Both extremes have in common that the plant is equipped with a number of sensors
and actuators which form the interface between the controls and the physics. Real-time
requirements often play an essential role in manufacturing and the time constants are
comparatively short. Disturbances or temporary failure of a component, however, are often
not as costly and severe as in chemical processes as the reactivation times of the facilities
are typically shorter.

Process Engineering The term process engineering subsumes several industrial branches
that deal with liquid or bulk goods. According to [74], five different sectors are subject of
process automation:

• Process industries in the narrower sense (chemistry, pharmaceutics, foods and bever-
ages)

• Primary commodities (coal, oil, etc.)

• Base materials (paper, glass, metals, etc.)

• Power plants

• Environmental facilities (fresh and waste water treatment, garbage incineration, air
purification, etc.)

Usually, two types of processes are distinguished: conti(nuous) and batch processes [70]. In
a conti process, the product is transported through the system and processed continuously.
The desired treatments are performed by the different components along the plant as the
liquid/the good flows by. The main advantage is that these processes often scale very well,
which allows high throughputs at reasonable cost. Disadvantages are low flexibility and

12

2.3 Industrial Automation and PLCs

often extremely high cost in case of a failure. In batch processes, the product is handled in
defined volumes, called batches. The different stages of treatments are applied in terms
of subsequent steps. Usually, one batch of the product or of multiple reagents are poured
into a reactor in which the actual processing takes place. When the reaction has finished,
the product is transported to the next station where it receives the subsequent treatment,
according to the recipe. After the first reactor is evacuated, it can be filled with the next
batch, i.e., the processing steps can usually be carried out in an interleaved manner.

The two types of processes require different kinds of controls. In conti processes, the
methods of continuous control apply widely. The subsequent stages of the recipe are
manifested statically in the structure of the plant. Thus, the controls are mainly responsible
to keep the process stable [70]. This task addresses the fundamental objective of continuous
control engineering: keeping a reference signal as close as possible to the desired set point.
Depending on the process, this can be very challenging indeed. Nonetheless, the methods
of discrete control are hardly applicable on conti processes by nature.

Due to their discretely separable steps, batch processes have much more similarities to
discrete manufacturing than conti processes do. This allows the process to be expressed in
terms of hybrid or even fully discrete models, such as (hybrid) automata or Petri nets.

The presented approach was evaluated on a batch process plant model simulating a
wastewater treatment plant. It could be shown that the presented method is well applicable
for this kind of processes.

2.3.2 PLCs and PCSs

The more different components are involved in a plant the more vital is the need not only
for an automation concept in general but for a unified controller platform. It shall allow
for an easy integration in the plant by the means of the electrical wiring. Additionally, the
system must provide a certain degree of robustness for being suitable to operate on the shop
floor. One of the most important requirements is that the controller logic must be realizable
in a way that enables plant engineers and technical staff to design and implement the
controls with their previous knowledge. At least, no advanced programming or electronic
skills should be necessary.

PLCs Programmable logic controllers (PLCs) are a class of control systems for the automa-
tion of industrial production. In contrast to earlier solutions that often involved customized
hardware, PLCs consist of standard components and can be configured and programmed to
the needs of the respective application by software. Today, they define the de-facto standard
for industrial automation.

Internally, a PLC is a computer system, usually equipped with a medium-sized microcon-
troller, memory and communication interfaces. Nonetheless, a PLC is characterized by two
important concepts which separate them from other embedded systems: First, they consist
of robust, reliable hardware in a solid housing which is modularly extendable by further
components, such as modules for digital or analog I/O. Sensors and actuators can easily be
connected to these I/O terminals without soldering. In particular, layout and production of

13

Chapter 2 Background

customized circuits, as often necessary for other control systems, such as microcontrollers
or FPGAs, is not required. Second, a PLC comes with a full software bundle including a
uniform execution paradigm, five standardized special programming languages and an
integrated development environment (IDE), which, besides the programming, allows to
configure (“to project”) the hardware graphically. Altogether, this makes PLCs not only
extremely versatile in comparison with the earlier hardwired solutions but also easy to
install, configure and program, all reasons that led to the commercial success of the concept.
Up to the 90’s there has been a great variety of PLC vendors following different approaches
and concepts.

In order to improve compatibility, the first international standard for PLCs has been
developed in 1993 and released by the International Electrotechnical Commission (IEC)[54,
55]. It is not mandatory to be followed but means to provide guidelines towards more
consistency. Shortly after that, PLCopen has been founded, a non-commercial organization
that further promotes and encourages unification and exchangeability in the field. Besides,
they released a collection of semi-formal specifications for standard safety function blocks.

PCSs In the field of process automation, hardwired process control systems (PCSs) were
gradually replaced by programmable systems too. Since the facilities can have huge dimen-
sions, even for only a single product, centralized controller solutions were predominantly
used in the earlier days. However, as the cost for installing and maintaining such systems
can be substantial, distributed control systems (DCSs) became prevalent. Another reason
is that since the introduction of programmable PCSs, the lifetime that a generation of
control systems is used has decreased steadily and is nowadays significantly shorter than
the one of the controlled facility itself [74]. DCSs can be renewed significantly quicker than
centralized systems as they require far less wiring due to their close location to sensors and
actuators. Their substitution thus causes shorter idle periods for the facilities and hence
lower cost.

Today, programmable PCSs are often based on PLCs that are significantly cheaper in most
cases and can be installed in the field. In order to fully qualify them as PCSs, vendors offer
special versions of their PLCs which meet the requirements and high quality standards.
Besides, IDEs, programming languages and other software [32], tailored to the needs
for process engineering, are often provided. In parts, these vary significantly from the
toolchains as used for classic PLC programming. The approach presented in Chapter 5
has been developed for and evaluated on PLCs. For that reason, the following paragraphs
concentrate on the characteristics and specialties of the latter. It should be mentioned that,
thanks to the harmonization of PLC and PCS, it was possible to evaluate the presented
concept on a process plant using a Siemens S7-400 PLC.

2.3.3 PLC-based Controllers

When programming PLCs or PCSs some peculiarities need to be considered that distinguish
them from many other, e.g., directly microcontroller-based systems. The most prominent

14

2.3 Industrial Automation and PLCs

are the programming languages that, in parts, differ significantly from those usually applied
for embedded or other software systems.

2.3.3.1 Cyclic Execution

Classically, PLCs programs are ran in the cyclic execution/cyclic operating mode. In that mode,
the PLC cyclically follows a fixed execution routine consisting of mainly four phases [12]:

1. Internal Checks – In the first phase, the PLC performs internal hardware checks that
are predefined by the vendor and which the controls developer need not to care
about.

2. Inputs – The PLC samples the signals at its hardware inputs (analog and digital). The
results are stored in a special memory section called Process Image of Inputs (PII).

3. Program execution – In this phase, the user-defined controller program is executed
once. The program has read access to the PII to get the most recently sampled input
values. Instead of writing output values directly to the hardware signals, these must
be stored in the Process Image of Outputs (PIO).

4. Outputs – The PLC applies the output values stored in the PIO onto the hardware
outputs. Analog values are converted to output voltages according to the projected
configuration.

After the fourth phase, the first one is immediately executed again; the cycle repeats. This
execution paradigm has several consequences that must be respected during program
development. After being captured, the input values are “frozen” in the PII. Although the
terms PII and PIO originally refer to Siemens systems, they will be used for all considered
PLCs architectures throughout this thesis.

For a realistic controller program it can be assumed that the execution of phase 3 takes
significantly longer than aggregated durations of 1, 2 and 4. As a consequence, in the
worst case it takes approximately two full cycles until the PLC’s outputs mirror the reaction
on a change of input. This would be the case when the inputs change right after phase
2. However, the principle of PII and PIO guarantees consistent input- and output values
throughout the entire program execution. This can be a significant benefit in border cases
that can be challenging to detect and, in case of a faulty implementation, might lead to
unexpected or undesired behavior.

The systems controlled by PLCs often involve real-time requirements. Since the worst-case
reaction time of these depends on the cycle length, an upper bound for the duration of one
cycle, i.e., for one program execution, should be defined. The developer must ensure that
this bound is not exceeded by the program. For that reason, typical PLC code rarely contains
loops. In particular, while loops are usually avoided as their runtime is hard to estimate.
The upper bound of the execution can be monitored by a watchdog that automatically
enters an error state when the limit is exceeded, e.g., to trigger an alarm or bring the plant
to a safe state.

15

Chapter 2 Background

2.3.3.2 Program Organization Units

According to the standard, three different categories of software elements, called Program
Organization Units (POUs), exist. They are distinguished by their internal state and their
capabilities to access the peripherals [55, 60, 67].

Function Blocks (FB) represent a certain sub-functionality of the control system, e.g.,
a PID controller or an RS bistable. A function block can contain arbitrarily many
variables, inputs and outputs. Instead of being called or executed directly, function
blocks must be instantiated. Each instance possesses its own internal state which
persists after its execution and throughout the entire cycle. Technically, that means
that the declared variables are stored for each instance separately and kept between
two FB calls. In object-oriented programming, a function block would correspond to
a class containing exactly one method.

Functions (FUN) are used to encapsulate side-effect free computations. They neither
have an internal state nor are they instantiated but called directly instead. Like FBs,
functions can declare arbitrary internal variables, inputs and outputs. Additionally,
a function has exactly one return value. This value is supposed to be consistent on
the inputs, i.e., on the same input values, it is supposed to always produce the same
return value. To guarantee the absence of side-effects, functions are not allowed to
call function blocks but only other functions. After termination, the internal variables
of a function are discarded.

Programs (PROG) form the basis of PLC software. They behave similar like FBs. Addition-
ally, the program can access the PII and PIO of the PLC and declare global variables.
Simple controllers consist of one PROG definition, which is cyclically executed, i.e.,
after termination, the PROG is executed again in terms of the four phases described
above.

2.3.4 Programming Languages

The IEC standard 61131-3 [55] defines five different programming languages to implement
the body of a POU. For the head, which contains variables and defines the interface of the
POU, it specifies a uniform notation. Every PROG, FB or FUN can be provided in one of
these languages independently.

The five standardized programming languages are called Instruction List, Structured Text,
Function Block Diagram, Ladder Diagram and Sequential Function Chart. The first two of
these are textual languages while the remaining three are graphical ones. The standard
and, according to that, several IDEs allow to mix the languages to a certain degree, e.g., a
transition condition inside an SFC function block may be provided as LD.

Structured Text is the only of the five IEC languages which has the shape of a structured
programming language. It contains elements as, e.g., IF or FOR to indicate branches and
for loops. In the industrial context it is still not very widespread. Nonetheless, since the

16

2.3 Industrial Automation and PLCs

language allows fast and highly flexible implementations of POUs, there has been a shift
towards ST from other languages in the past years, especially from the rather inconvenient
LD and IL. Vendors as Siemens additionally try to promote Structured Control Language –
the Siemens dialect of ST – by emphasizing its advantages over the other languages.

Due to its expressiveness, clear readability and purely textual shape, which allows
for a straightforward code generation, Structured Text and its dialects have been used
exclusively to implement the SynTACS Runtime Framework presented in Section 6.3.
Extensive information about the all five languages can be found, e.g., in [60] or [67].

Languages for PCS Traditional PCS are very complex and include multiple control layers
that can be realized very differently. For recipes, for example, there exist plenty of repre-
sentations. It depends on the PCS which one is used to configure or program the recipe
controller. An important one is the Procedural Function Chart [34, 58], which has some
similarities to SFC. For PLC-based PCSs, there also exist further languages, tailored to the
needs of process engineering. Although not explicitly standardized, vendors share at least
some concepts regarding these languages. A prominent one is Continuous Function Chart,
which models signal flows is very similar to FBD. Besides, SFC plays an important role in
controlling batch processes.

2.3.5 Safety and Reliability

Many production or process systems impose strict requirements on safety. The reasons are
manifold: Delicate materials that are toxic, hot, very reactive, caustic or radioactive must
be handled with special care when involved in processes. In manufacturing facilities on
the other hand any deformation or damage of expensive components, for instance due to
inaccurately placed or stuck workpieces, must be avoided. In all cases, the risk of humans,
employees but also local residents, being harmed or killed by malfunctioning production
facilities, must be reduced to an acceptable measure [102].

In general, risk is a measure that involves likelihood and impact of damage. Leveson
defines risk as the combination of hazard level, likelihood and exposure/duration[66]. Ac-
cording to Montenegro, it is the product of probability and impact [80] of a damage. Birolini
additionally emphasizes the importance of weighting [15].

Usually, risks shall be kept as low as reasonably practical (ALARP)[66]. However, it can
be very controversial what reasonably practical means, especially due to the fact that safety
often increases cost. The persons who are in lieu of cost (e.g. product managers) are often
not the same as who are affected by the risk (workers, residents, the environment in general,
etc.) [66]. To that end, most countries claim automated systems to comply with certain
standards by law. The international standard IEC 61508 [56] defines the requirements to
functional safety in electric, electronic and programmable electronic systems. By that, it
also covers production plants. Which requirements have to be respected in a particular
case depends on the safety-integrity level (SIL) that applies to the scenario, see [56, 102].
The standard IEC 61511 [57] additionally defines specialized requirements for the process
industry, where the highest layers, SIL 3 and SIL 4 apply in most cases.

17

Chapter 2 Background

2.3.5.1 Redundancy

One central concept to achieve safety is redundancy. In the following, two types of redun-
dancies are distinguished as they address different kinds of hazards, caused by different
reasons.

Homogeneous Redundancy Redundant hardware can be used to face failures of con-
trollers and sensors during runtime. In that case, two or more controllers, potentially
equipped with their own sensors and communication systems, can perform the same calcu-
lations by running the same software. If one device fails, the other can fully replace it. This
kind of redundancy is called homogeneous [80] or design redundancy [66].

Diverse Redundancy Homogeneous redundancy is only able to cope with random run-
time faults caused by hardware failure. Systematic or design errors would still affect all
redundant components though. In these cases, diverse redundancy, sometimes called design
diversity, can be applied. Instead of multiple hardware components executing the same
software code, different implementations from distinct developer teams are used.

Goals of Redundancy Redundant hard- or software obviously produce redundant data.
Depending on the kind of redundancy and the quality and expressiveness of that data, it
can be used to improve the system in one of the following ways:

• As soon as the observations or calculated results deviate (more than tolerated), a fault
is detected. The plant can then be driven to a safe state and/or alarm can be triggered.
In that case, the system is called fail safe [80]. Safety is improved but reliability is
not.

• Based on additional measurements and models of the system the failure can not only
be detected but corrected, i.e., the redundancy is able to reconstruct all necessary
data and stay functional. These systems are called fault tolerant. Additionally to their
safety, the redundancy also enhances their reliability5.

2.3.5.2 Formal Methods

On SIL 3 and SIL 4, formal methods are recommended or even required. A formal method
is a paradigm for the development or analysis of software which is based on a mathematical
calculus. A calculus is called sound if every result that it yields on a given input is correct.
In turn, it is called complete if it yields a result for all inputs.

The correctness of the results thus follows directly from the soundness of the method,
which can be proven. Additionally to the soundness, some formal methods are also complete,
e.g. model-checking [27], a formal verification technique, while others, like static interval
analysis, are not.

5Indeed, improved reliability can even decrease safety [66], e.g., because the system is not shut down but
run on a less confident basis, i.e., without or with less redundancy.

18

2.3 Industrial Automation and PLCs

Formal analysis methods have successfully been applied to PLC programs in the past.
The tool Arcade.PLC [14, 13] is able to verify PLC programs with respect to an efficiently
computable subclass of computational tree logic (CTL). Additionally, it offers several static
analyses, such as interval and value set analysis, reachable and dead code analysis and
many more [108]. However, formal verification is computationally expensive and often
intractable due to huge state spaces.

An alternative to the analysis of existing code is to synthesize the controller or parts of
the software from a formal specification straight-ahead. SCT has often be used to serve
as a calculus for controller synthesis. Although formally sound, several, rarely discussed
conceptual issues exist with this approach. These will be the main subject of Chapter 4.

A different technique is runtime verification. As for analysis, a formal calculus is used to
guarantee compliance with formal specifications. However, that is achieved during runtime.
The main advantage of runtime verification is that it avoids an exhaustive analysis of
the entire achievable state space ex-ante but concentrates on the current and imminent
states during runtime, yet still on a formally sound foundation. The price to pay are the
additionally required memory and CPU capacities. The supervision of controllers using
formally synthesized code as proposed by this dissertation can be counted to the runtime
verification methods.

19

Chapter 3

Applied SCT and Related Approaches

This chapter gives an overview about the most important extensions and improvements of
the classical SCT. Thereafter, several SCT tools will be introduced and discussed, followed
by some case studies that are relevant for the succeeding chapters.

3.1 Extensions of SCT

Since Ramadge and Wonham presented their approach in the 80’s, many interpretations,
modifications and extensions on and around SCT, as introduced in Chapter 2, have been
conceived. One of the most important among these is certainly the utilization of modularity.
In this section, the core ideas of some existing approaches are briefly sketched. The concepts
of in/out automata and condition/event systems are omitted here for the sake of brevity but
will be discussed roughly in the sections 5.5 and 5.7.1.

3.1.1 Modular DES

A DES is called modular if the specification, the supervisor, the generator or several of these
are not given as one but in terms of multiple models which usually represent different parts
or aspects of the whole system. The interoperation of these modular parts then yields the
semantics that would apply for the entire system.

In most cases, a modular DES provides a set of automata which synchronize via their
events. The behavior of the composite DES can be obtained by the parallel composition of
all automata. There are exceptions though, e.g., the state tree structures approach by Ma
and Wonham [73].

Modular Specification Wonham and Ramadge examined how multiple supervisors can
be combined in order to controllably satisfy several specifications at the same time without
blocking [120]. For that, the languages of the supervised closed-loop system need to be
nonconflicting, which means that for every shared prefix they share at least one word
containing that prefix: L(S1)∩L(S2) = L(S1)∩L(S2). Wonham and Ramadge showed that
this is always the case for so-called nested supervisors [120]. An alternative is calculating
the minimally restrictive non-innerblocking solution as proposed by Chen and Lafortune [24].

21

Chapter 3 Applied SCT and Related Approaches

The presented algorithm subsequently prunes the language by removing shared prefixes of
uncommon words, until the solution is nonconflicting. For regular languages, this solution
can always be calculated [24]. Prefix-closed languages are trivially always nonconflicting.

In [19, 18], a slightly different approach is followed: The authors subsequently add
(local) sub-specifications to the system in a counter-example guided manner until a global
specification can be guaranteed.

Modular Plant While the approaches sketched above consider modularity in terms of
multiple specifications and supervisors on one monolithic plant model, De Queiroz and
Cury analyzed modular plants. They showed that, for two independently modeled plant
parts with disjoint alphabets, synthesis and composition are commutable, i.e., the SCSL for
the plants’ composition is the same as the composition of their respective SCSLs [28].

Handling distinct parts of the plant independently is highly desirable as the state space of
the full composition of all sub-plants, which would be necessary for monolithic supervisor
synthesis using the Ramadge and Wonham’s algorithm, can become enormously large
for realistic systems. In the worst case, the growth is exponentially over the number of
automata [51]. This is often referred to as state explosion [115, 48, 113, 30] or exponential
state space blow-up [3, 101].

This method has been refined by Åkesson et al. [3]. They propose a procedure where
several supervisors are computed subsequently in order to establish controllability when
composed with each other. For each not yet controllable supervisor, the automata of all
plant parts are gathered which share an uncontrollable event with that supervisor. Based
on their composition, the algorithm synthesizes an additional supervisor, which guarantees
controllability and maximal permissiveness when composed with the original supervisors.
The method presented in Section 5.8.3 of this dissertation operates in a similar way but
uses an even narrower criterion for including a plant into consideration that still guarantees
maximal permissiveness when applied incrementally.

Hill and Tilbury [49] lifted the modular plant approach to nonblocking supervisors, which
naturally requires larger state spaces and hence causes higher computational complexity.

3.1.2 Nonblockingness in Modular DES

A modular plant model consists of multiple automata, which usually define the behavior
of local components. Likewise, it is often the case that specifications also deal with local
requirements, such as a safety rule for a certain component. The approach by Åkesson
et al. [3] as well as the incremental method in Section 5.8.3 exploit this fact by only
considering the relevant plant parts, which keeps the models relatively small. Theoretically,
one single supervisor can be built from every (sub)specification and operate concurrently
to the others1. This works perfectly fine to guarantee compliance with all specifications.

1There is no need to compose the supervisors on the automata level. However, an event must be enabled or
ignored by all supervisors to be admissible; otherwise it is disabled.

22

3.1 Extensions of SCT

Though, to guarantee nonblockingness it is necessary to preclude that the supervisors’
languages are nonconflicting, which in principle can involve the entire system. The reason
is that nonblockingness is in general a global system property.

Several approaches exist to avoid exhaustive composition by still achieving maximal
permissiveness provably. Some of these will be sketched in the following.

Compositional Synthesis The compositional synthesis, presented by Flordal et al. [35],
is an elegant incremental method to solve nonblockingness problems using abstraction and
masking.

In the first step, the specification is transformed to a nonblockingness problem. This
is done by converting it into an additional plant model (generator) GR by introducing a
blocking state q⊥. For every event e ∈ ΣR and every state q which does not allow e, i.e.,
e /∈ ΓR(q), a transition to q⊥ is introduced: f (q, e) := q⊥. All actions which were forbidden
by R would thus block on GR and hence also on the composition with the plant model. This
obviously works for multiple specifications and a modular plant model too. The problem is
this way reduced to establishing nonblockingness on GR1

, . . . , GRn
, G1, . . . , Gm.

Instead of computing G = GR1
‖ . . . ‖ GRn

‖ G1 ‖ . . . ‖ Gm directly, a procedure of
interleaved composition steps, masking steps and partial synthesis steps is applied. The
basic idea is that for each intermediate result the local events, i.e., those that are not shared
with any further plant, are anonymized. In general, this can result in nondeterministic
automata. If such an event leads to blocking, it can be disabled in the controllable case or
isolated in the uncontrollable case, which shrinks the reachable state space. Further, as
other automata will neither synchronize on these local nor on the anonymized events, the
corresponding transitions can be hidden. The origin and target states are joined, which
further decreases the size of the automaton. Each joined state is annotated with the name
of the original states it represents. That allows to reconstruct which events were allowed
and which were not. After that, the following iteration adds the next plant component and
so forth.

Using this method, the size of intermediate automata can be reduced significantly. How-
ever, the ordering of the plants is crucial for the algorithm’s performance. Its worst-case
complexity is the same as for the monolithic approach.

State Tree Structures In their work [73, 72], Ma and Wonham present a framework to
synthesize nonblocking supervisors from state tree structures (STS), allowing for very large
state spaces in the magnitude of 1024 [73]. Instead of considering a set of automata, an
STS provides the behavior of the entire system in one hierarchical representation. The STS
consists of hierarchically organized states, which are the nodes of a tree. A state can either
be a composite AND state, a composite OR state, or a simple (atomic) state. Composite
states embody the inner nodes of the tree whereas the atomic states form its leaves.

An OR state has the following semantics: When it is active, exactly one of its child states,
w.r.t. the tree structure, must be active too. Each OR state is provided with a holon, a
structure similar to a classic automaton. Like the latter, it owns a function which defines
the transitions between its child states.

23

Chapter 3 Applied SCT and Related Approaches

For an AND state, all children, typically OR states, are active at the same time. They
synchronize via their events as ordinary modular automata. There can also be transitions
leaving the entire AND state for another AND, OR or atomic state. These transitions are
defined in the holon of the parent OR state. The root of an STS is a composite state which
trivially is always active and subsumes the entire system as its children.

Due to their structure, STS can be abstracted very well, allowing for efficient symbolic
algorithms. However, the theory behind STS and these methods is rather complex and
would exceed the scope of this overview by far.

Hierarchical Approaches with Coordinators The coordinator approach by Su et al.
[109] refines the notion of coordinators by Ramadge and Wonham [88]. It exploits the
typical locality of specifications that has been mentioned above. The approach is based on
the assumption that for each plant Gi, the majority of requirements can be handled locally.
Thus, every plant is provided with its own specification Hi where Hi ’s alphabet is a subset
of Gi ’s.

First, for each plant-specification pair Gi, Hi, a local supervisor Si is computed using the
standard synthesis algorithm. According to [120], these Si can have conflicting languages
and hence lead to blocking. This issue can be tackled using a coordinator.

A coordinator is basically a supervisor for supervised systems, i.e., instead of enforcing
H1, . . . , Hn on G1, . . . , Gn, it enforces nonblockingness for (S1 ‖ G1), . . . , (Sn ‖ Gn). The
problem is that this generally still requires an analysis of the global system behavior.
However, instead of composing all supervised subsystems (S1 ‖ G1) ‖ . . . ‖ (Sn ‖ Gn), which
would again end in an exponential blow-up of the statespace, the subsystems are abstracted
first. Similar as for the compositional approach described above, some local events are
masked out while the states only divided by those events are fused. Finally, the coordinator
can be synthesized based on the composition of the abstracted subsystems, which is typically
much smaller.

Since the local systems are ensured to be nonblocking due to their local supervision,
blocking is only possible as a result of their interaction. This suggests the assumption that
it could be suitable to consider shared events only, i.e, those which are contained in the
alphabets of at least two subsystems, and mask out all purely local events. Unfortunately,
although this would indeed be sufficient to guarantee nonblockingness, it is not maximally
permissive in general. The reason is that disabling a shared event in many cases imposes
a stronger restriction on the system than actually required. This is particularly the case
when one or several disabled local events would be able to reliably prevent blocking “at a
later stage” than the shared event would. Finding the optimal projection alphabet for the
abstraction is essential for the coordinative approach to succeed. If it is too large, the state
space grows unnecessarily large and with it the time and memory consumption. If it is too
small, the result is not the supremal controllable sublanguage. Unfortunately, the problem
of finding that alphabet is NP hard over the number of events.

Closely related is the aggregative synthesis method [110]. Conceptually it is a mixture
of the compositional and the coordinator approach by introducing coordination on an
incrementally growing model.

24

3.1 Extensions of SCT

Further, it should be mentioned that there is another hierarchical approach, developed
by Schmidt et al. [94, 95]. It realizes a similar idea as the coordinator method but operates
on languages rather than on automata.

3.1.3 Timed DES

In many applications, timing plays an essential role. This is not surprising since DES are
dynamic systems. While timing is crucial for continuous systems, DES can in many cases
circumvent the need for an explicit time model. This comes from the fact that for discrete
problems, the order of event occurrences is often of much higher relevance than the actual
moments of their happening. Nonetheless, formalizing time can bring some advantages,
such as:

• Provide a foundation for preemption

• Extending controllability to otherwise uncontrollable problems

• Increase permissiveness by considering time dependencies

To that end, Brandin and Wonham introduced timed DES [20]. Following their approach,
events can be equipped with time constraints over a clock. Each event has a lower bound
and an upper bound for the timespan that has to pass before its (next) occurrence. The
alphabet is partitioned into the classes of prospective events and remote events, where the
first are assumed to happen before a finite deadline while the second can occur within
finite time but need not to.

In contrast to timed automata [5], the authors pragmatically discretized time. That allows
to treat the timed DES as a finite-state system, provided that the underlying untimed model
is also finite. The result is an ordinary DFA, where a special tick event is used to indicate
that one discrete time unit has passed. The transitions for the remaining events reflect
the structure of the untimed model. Further, they respect the events’ timing constraints
in accordance with the number of tick transitions which have been taken since their last
occurrence.

Since timed DES take into account the temporal dependencies of events, they allow for an
increased permissiveness in many situations or find controllable supervisors for problems
which were uncontrollable using untimed DES.

Example 3.1. Consider the plant G1 and specification H in Figure 3.1a, where a ∈ Σc, b,c ∈
Σuc. Ignore the tick transitions for the moment. Blocking is not considered. The specifica-
tion prohibits b to occur before c. According to G1, this order would be possible though.
Hence, a supervisor would need to disable a in the initial state. Now assume that it is
known that b will not happen before two time units of well-defined length have passed.
Also, c is guaranteed to happen right after a. Thus, the tick transitions are added to G1

indicating that no time can pass between a and c. Moreover, G2 as shown in Fig. 3.1b is
introduced. The composition of G1 and G2 reveals that, thanks to the time dependencies of
a,b and c, H is immediately fulfilled. Thus, a can stay enabled – the permissiveness has
increased. Í

25

Chapter 3 Applied SCT and Related Approaches

(a) Plant G1 and specification H

(b) Plant G2 captures the timing of a and b

(c) Composition G1 ‖ G2 shows that H is controllable

Figure 3.1: Timed DES to capture timing dependencies

In this small example, the timing constraints are rather trivial so that the logical ordering
of b and c is obvious and could have been incorporated in an untimed plant model as well.
This is usually not the case for more complex systems though when time dependencies
between multiple events need to be considered which exclude each other only under certain
circumstances.

Enriching DES with timing also allows to indirectly enforce controllable events in certain
settings. The detailed description of this technique and how it can be used to realize
preemption of undesired uncontrollable events is postponed to Section 5.5, where timed
DES will be revisited.

3.1.4 Reactive Synthesis

The theory of infinite games and, closely related to it, the field of reactive synthesis are
research areas in theoretical computer science. They are based on classic automata theory,
augmented with concepts as Büchi or Rabin automata, and have their origins in Church’s
Problem [25, 112] of synthesizing a finite automaton (called “circuit”) for specifications over
infinite languages. Büchi and Landweber [21] solved that problem and, by that, formed the
foundation of the field of reactive synthesis. Ever since, a variety of amendments, adaptations
and interpretations have been contributed to that field. The framework of Ramadge and
Wonham is one of them. Nonetheless, due to the control engineering background of the
latter, the focuses of both communities drifted apart as well as the employed formalisms.
Although there have been attempts to bridge that gap [31], the communities mainly still

26

3.2 Applicatons – Tools and Case Studies

follow different objectives and the results are often hardly transferable. Hence, concerns
and approaches of reactive synthesis will not be addressed throughout the rest of this
dissertation. Instead, the presented methods are discussed on the background of DES and
SCT.

3.1.4.1 Symbolic Methods

Already since the early 90’s, symbolic methods have been used to encode the transitional
structure of automata. The majority of attempts is based on binary decision diagrams
(BDDs), e.g., [50, 113, 73]. More recent approaches use satisfiability or satisfiability modulo
theories solvers [116] or the model checker IC3 [101, 103].

Using symbolic methods, i.e., expressing automata by logic formulae, has three major
advantages. First, the representation is often significantly smaller in terms of memory
consumption than an object-oriented or array-based format, which makes it more suitable for
large-scale intermediate or final results. Second, the community developing and improving
the methods on SAT/SMT/BDDs is very vivid and has gained impressively performant
solvers during the last decade allowing for much larger state spaces than conventional
implementations. The third advantage is the flexibility of symbolic methods. Nearly every
DES-related problem can be translated to one or even all of the mentioned formalisms,
which allows to use the efficient heuristics “on top” of other DES-based techniques.

3.2 Applicatons – Tools and Case Studies

This section gives an overview about existing approaches and successful applications of the
SCT.

3.2.1 Tools

First, an excerpt of the existing tool landscape is given. It is in large parts based on the
results of [Ney, 2014].

TCT Toy Control Theory (TCT) was the very first SCT tool implementation. It has been
developed by Wonham’s research group at the University of Toronto. The main purpose
was to show the theory’s feasibility. TCT is entirely command-line based. Sequences of
actions must be defined in terms of scripts. Since its first version, TCT underwent multiple
improvements and has been ported onto several operating systems under different names.
The probably most important enhancement is the spin-off SmartTCT (STCT) that introduced
a new algorithm which improved the tool’s resource consumption for complex systems
significantly [123]. The formalism of state tree structures discussed above has also been
integrated to TCT. Still, the tool addresses theoretical purposes rather than practical
applications. Code generation is not provided. It should be mentioned though that TCT has
successfully been used in such scenarios, e.g. [65]. Wonham’s monograph [117] gives a

27

Chapter 3 Applied SCT and Related Approaches

comprehensive introduction not only to the original SCT but also to TCT and is still updated
regularly.

UMDES and DESUMA The tool UMDES is a C library of algorithms for DES developed at
and named after the University of Michigan Discrete Event Systems Group. Automata can be
provided and stored as UMDES files. The library provides the general operations, such as
composition, trim, SCSL, and so forth.

DESUMA [91], developed at Mount Allison University, is a graphical editor for UMDES
that improves the manual definition of automata significantly. As for TCT, code generation
is not supported natively.

Nadzoru Nadzoru is an open-source SCT tool which has been presented rather recently
[84]. It includes a graphical automaton editor. The user is supposed to automate the
workflow by scripts, but which can be written inside the tool GUI. Scripting is supported by
a list of available functions which can be inserted to the script using the mouse. Besides
several analyses on the DES models, Nadzoru includes a general-purpose code generation
of IEC compliant Structured Text and ANSI-C.

Supremica Supremica is a DES analysis and synthesis tool developed at Chalmers Univer-
sity [2]. It has served as prototyping platform for plenty of the highly sophisticated methods
developed by Fabian, Åkesson, et al. (cf. Section 3.1.2). Further, its main functions such as
modeling and syntheses are fully accessible via a conveniently usable GUI. General-purpose
code generation was present in former versions of Supremica but seems discontinued.

In [Ney, 2014], the suitability of Supremica’s code generation for SCT-synthesized con-
trols for two model plants2 has been examined. Unfortunately, notable additional effort
in terms of transformations and manual programming was necessary until the code was
actually executable and worked in the desired way. However, it should be emphasized that
the experiment succeeded and the controls did indeed work finally.

In comparison to other tools, the variety of advanced available synthesis methods [35,
113, 3, 1, 75, 78], especially to efficiently achieve non-blocking, combined with a good
usability, lifts Supremica on an outstanding position.

libFAUDES and DESTool The project of libFAUDES was started by Bernd Opitz and is a
C++ library for discrete-event system [81, 83]. Although conceptually similar to UMDES, a
much stronger emphasis was put on modularity and extendability. Since then, the library
was further developed, maintained and extended by Thomas Moor and his group.

Like DESUMA for UMDES, DESTool represents a graphical user interface to conve-
niently work and interact with the functionalities provided by libFAUDES. Further powerful
extensions of the original library are: Coordination Control, (hierarchical) I/O systems, fault-
tolerant control, and more. Another extension worth mentioning is Pushdown. It lifts the

2fischertechnik® pneumatic processing center, see Section 7.3, and 3D robot

28

3.2 Applicatons – Tools and Case Studies

expressiveness of DES from regular to context-free languages using pushdown automata
instead of ordinary DFAs based on the approach of Schmuck et al. [96].

Altogether, libFAUDES and DESTool provide a powerful toolbox. They address both
theoretical and applicational aspects of DES, including advanced methods of SCT.

Further tools Apparently, the above list is far from being complete. Several further tools
and approaches exist. Some of these are Grail [90], Valid and Ver, to name a few.

3.2.2 Case Studies

The tools listed above have been evaluated in several contexts. Additionally, a number
of case studies exist which involved a straightforward implementation of the formalisms
instead of utilizing one of these tools. In the considered context, those case studies which
dealt with the control of physical systems are of particular interest.

Supervisory Control of a Rapid Thermal Multiprocessor This case study by Balemi et
al. [10, 9] was one of the most remarkable in the field of applied SCT. It is very relevant
for the approaches presented in this dissertation for mainly two reasons. It does not only
include a successfully operating end-to-end approach from theoretical foundations to a
soft- and hardware realization, but also is its architecture similar to the one of presented
here. Its goal was the complete automation of a rapid thermal multiprocessor using the SCT.
The presented approach is characterized by three major aspects:

1. Distinction between implicit specifications and explicit specifications, also called recipes.
These different types of specifications are handled and synthesized independently.

2. From the explicit specifications, a controller is derived instead of a supervisor. In
contrast to a standard supervisor, as described by Ramadge and Wonham (cf. Section
2.2), it does not disable a subset of controllable events but produces those. In return,
the plant only emits uncontrollable events.

3. Instead of automata, languages are represented by BDDs in the implementation. The
presented formalism concentrates on the languages themselves though.

According to the first two aspects, the control loop of Balemi’s approach does not contain
two logical participants but three. The plant, the supervisors synthesized from implicit
specifications, and the controllers derived from the explicit ones. Although motivated
differently (cf. Chapter 4), this is very similar to the three-participants concept introduced
in Section 5.1.3.

The implicit specifications serve to define constraints and side conditions for the plant.
This includes what Balemi calls fundamental liveness, the claim that all plant components
can always return to their initial state. Indeed, this addresses the standard nonblockingness
property of DES rather than real liveness. A recipe is basically an automaton, typically of
linear or circular shape, which defines a sequence of events that is necessary to achieve the
actual production goal.

29

Chapter 3 Applied SCT and Related Approaches

In the final setup, the controller communicates with the plant via the supervisor. Addi-
tionally to the automated controls, a user can interact with the system through a graphical
control interface at the computer. The supervisor checks the operations and enters an error
state if the implicit constraints are violated [10].

Although the case study was regarded a success and therefore has often been cited, it
seems that the core idea of separating explicit and implicit requirements fell into oblivion
and had little impact on the later work inside the community. Instead, the majority of
upcoming approaches tried to address both kinds within one supervisor, leading to the
choice problem, see Section 4.4.1.

Untimed Operating Procedures in Batch Chemical Processes In their paper [121] Yeh
and Chang present the synthesis of controls for chemical batch processes, including three
examples. In comparison to Balemi, they apply the SCT rather straightforwardly, which
gives a good impression about the results that the Ramadge-Wonham framework produces.
The examples seem to not deal with physical components. At least, the paper does not
mention that the supervisors have actually been tested on real hardware.

In a second paper [122], the authors introduce a method for “emergency response proce-
dures”, also based on the SCT, which addresses aspects of fault-tolerant control. This way,
it has some similarities to the approach by Schuh and Lunze, which is briefly introduced in
Section 5.2

Theme Park Vehicles Another case study was subject of Stefan Forschelen’s Master’s
Thesis and the follow-up paper [36, 37]. Its goal was to realize the controller of a theme
park vehicle, called Multimover, that allows one or more passengers to ride on it through
a theme park attraction. An operator can control the movement by three buttons, a reset
button and one respective button to trigger the vehicle driving forwards and backwards.
When driving, the Multimover is supposed to follow a wire in the ground using a built-in
steering motor. Besides, a number of additional control tasks, such as emergency stops and
operating LED lights, has to be achieved.

While plant models are defined in terms of modular automata as usual, for specifications
the formula-based description by Markovski [77] is used. This allows particularly to for-
mulate state-to-state requirements, i.e., which states may/must/must not be active at the
same time. In contrast to that, traditional specification automata allow for state-to-event
requirements only, which can be a significant disadvantage (cf. Section 5.7).

Supervisor synthesis has been performed using BDDs as well as the coordinated and the
aggregative approaches [109, 110] described in Section 3.1.2.

All control tasks have been specified in terms of DES. The resulting supervisors were
embedded into an execution framework implemented in Python. This framework includes
certain interpretations of several aspects of the SCT which influence the semantic notion of
both the modeling and the supervisors: Like in Balemi’s approach, a controller is realized
which executes controllable events, while uncontrollable events are considered to originate
from the plant only. However, in this case study all requirements have to be realized
through the supervisor. Whenever the plant emits an uncontrollable event, the supervisor

30

3.2 Applicatons – Tools and Case Studies

implementation tracks it on its state space by executing the according transitions. In the
next step, a so-called control decision maker picks one of the admissible controllable events
leaving the new state and executes it. If there are more than one of such, it is assumed
that the requirements, which the supervisor has been derived from, allow for any of the
associated actions to be eligible. In that case, one of them is picked arbitrarily: “[. . .] the
first controllable event that is allowed [. . .]”, [37]. Finally, the chosen event is executed on
the supervisor and the associated control action is transmitted to the plant.

This interpretation of the SCT leads to a reactive system that replies with a control
action on every uncontrollable event, if any is feasible. Naturally, this hardly influences
how operational requirements – in the wording of Balemi: explicit specifications – are
handled. If a specific action is desired deterministically in response to a certain occurrence
on the plant, the modeler has to exclude that further controllable events will be available
in the succeeding state. This, however, sometimes requires detailed knowledge about other
components of the plant, which need not necessarily be directly related to the considered
one.

Note further that the scenario targeted by the study does not involve real explicit spec-
ifications like a recipe. Instead, the entire behavior of the Multimover is determined by
the buttons used by the operator, and the wired route. The controller that results from the
cooperation of the synthesized supervisor and the control decision maker only has to react
on these inputs as specified. Complex automation tasks, however, are not required. The
authors claim that maintenance has been improved as applying changes to the automata,
followed by synthesis, took less time than introducing the same change to a manually im-
plemented controller. However, it is questionable whether this applies for arbitrary changes
of the requirements or only for specific ones. Further, the effort of initially establishing
and debugging the required automata, compared to a conventional implementation, is not
mentioned. Also, a comparison between the presented reactive framework and reactive
languages such as Céu [6], which are mainly designed to solve tasks as the one from this
case study, would be interesting. Apparently, this would clearly have exceeded the scope of
a single Master’s thesis though.

In the context of another scenario [Ney, 2014], the providing of automata to synthesize
a controller through the SCT consumed twice the amount of development time and was
significantly more error-prone than a manual implementation. A more detailled discussion
on the advantages and disadvantages of formal synthesis methods to derive controllers will
be postponed to the succeeding chapter.

Flexible Manufacturing System Another interesting case study is the one presented by
Schmidt, Moor and Perk [82]. It is based on libFaudes [81] and the hierarchical synthesis
algorithm [94, 95], mentioned in Section 3.1.2. The authors synthesized the controller for a
fischertechnik® model plant, similar to the one described in Section 7.3. In order to capture
simple timing conditions, Brandin and Wonham’s time model [20] was used, i.e., a special
controllable event is introduced to embody the passage of time. Recall that disabling this
event claims the controller to execute another event immediately. The problem of CHOICE

31

Chapter 3 Applied SCT and Related Approaches

is addressed using event priorities: When more than one controllable event is admissible
by the supervisor, the one having the highest priority is picked.

3.2.3 Industrial Application

Despite the age and maturity of SCT within the scientific community, industrial applications
are still pending. There have indeed been several contributions that analyzed the industrial
applicability of SCT or SCT-based methods, some even on real components, e.g., [111]. To
the best of the authors knowledge, however, there is no actual application in the area of
process or manufacturing systems yet in the sense that a plant is productively operative
using an SCT-synthesized supervisor or controller.

This stands in harsh contrast to other formal methods, such as formal verification and
there is a simple reason for that: Verification can be performed on top of an established
existing development process. Although it obviously causes additional effort, and hence
cost, it cannot affect the result, i.e., the controller in a negative sense.

Synthesized controllers, however, would replace certain steps in the established develop-
ment processes. Even if the chances for provenly error-free code increased3 on the long
term, it would still mean a considerable risk in the first place.

3Errors can still be introduced during the specification.

32

Chapter 4

Controller Synthesis with SCT

The automated synthesis of solutions is one of the oldest objectives in classical engineering
as well as in software engineering. This section discusses the different meanings of the
term synthesis in several areas. This ambiguity can lead to misconceptions. After that, the
requirements for a successful application of synthesis are analyzed, first in general, then
transferred to the setting of DES and SCT. Based on that, a critical debate is added on
why applying the SCT for controller synthesis goals in the shape of how it is usually done
might be an undesirable path and why a partial synthesis, which concentrates on certain
aspects, can be more reasonable in practice. That motivates the main contribution of this
dissertation, an approach for synthesizing safety measures, presented in Chapter 5.

4.1 Synthesis – Definition and Classification

The term synthesis in general stands for “the combination of components or elements to
form a connected whole”1. Originally, the word was used to describe the mathematical
method of deriving a geometrical construction or, later, a theorem from already proven
ones. Philosophy transferred the term to a more generalized level: For Aristotle, a synthetic
method is a general method for realizing an objective from existing ones (in analogy to
Plato’s hypothetic method) [79]. Ever since, synthesis has been closely related to its opposite,
the process of analysis, which tries to extract information from a given situation, also
by utilizing formal rules. Today, the term synthesis is used in a large variety of scientific
and technical areas, amongst which chemistry is probably the most prominent. Nearly all
of these agree on synthesis being a process that respects rules which are, depending on
the context, formally defined or apply by nature. Nonetheless, in applications which are
located on the edge between several areas of research, confusion is not unlikely as different
objectives might be addressed by the term.

Supervisory control theory is a branch of control engineering. Hence, for continuous
systems, it is not surprising that each system is described by a mathematical model first. In
a second step, a suitable controller can be designed and developed based on that model
[71]. In discrete control, including the fields of DES and SCT, the same paradigm is applied
in general [70].

1Source: Oxford English Dictionary

33

Chapter 4 Controller Synthesis with SCT

In controls, the term synthesis became established to subsume methods for the (semi-)
automated derivation of controllers. In the continuous world, this often refers to finding
the right parameters, e.g., for a PID controller, whereas in DES the supervisor itself or its
language are synthesized.

4.2 Continuous Control, Discrete Control and SCT

Ramadge and Wonham built their theory on the view that the admissible behavior of a
system is always a subset of its physical capabilities. In analogy to continuous closed-loop
controllers, formal descriptions of the possible and the legal behaviors, both given as DES,
serve as input. The output is a supervisor. On the foundation of both the models and the
theory itself being correct, it guarantees that the legal behavior will not be exceeded.

The main objective of a continuous closed-loop controller, for instance, for a conti
process, cf. Section 2.3.1, is to keep the system’s trajectory inside a tolerated deviation from
a reference value [39]. In other words, the task of the controller is to guide the system
inside an admissible part of the continuous state space and counteract every attempt of the
system to eventually escape this state space before it is too late. The SCT aims to realize
the exact same goal for discrete systems. In fact, the sentence above is still accurate if the
term “continuous” is replaced by “discrete” and “controller” by “supervisor”.

In practice, the main tasks of discrete control differ from those of continuous control [70].
The latter deals with stabilizing highly dynamic processes whereas the former typically
has the task of coordinating sequences of several steps in a production chain or a recipe.
These sequences are often realized on a higher layer of abstraction while continuous control
directly deals with the (usually continuous) physics of the system. Hybrid systems aim to
merge both aspects into one model.

To summarize, the SCT adopts the notion and objective of continuous control for discrete
systems. Both restrict the system behavior to the admissible part of the state space.

4.3 Requirements and Specifications

Software engineering distinguishes between two types of requirements, which are called
functional and nonfunctional [104]. The former define the central functionalities of the
product while the latter, also called software qualities, define how good and under which
conditions these functionalities must be realized. Nonfunctional requirements cover way
more aspects than the actual behavior of a system, such as time-to-market, reliability or
cost, and hence go far beyond the scope of controller synthesis.

However, in several experiments [Ney, 2014], it turned out that some requirements could
conveniently be modeled, while others were difficult and seemed less suitable for SCT-based
synthesis. It appears appropriate to analyze the nature of these types of requirements and
identify a suitable distinction for them.

34

4.3 Requirements and Specifications

4.3.1 Goals of Discrete Control

Following the definition by Lunze [70], the main objective in controlling discrete systems
is to find a controller that chooses inputs for the system depending on its outputs in a way
that the control goal is achieved. He further distinguishes four categories of objectives:
Reaching a predefined state, realizing a predefined sequence of steps, avoiding prohibited states
and avoiding prohibited transitions. The formalization of these goals is called a specification.
In the remainder of this chapter, Lunze’s notion of control goals will serve as a foundation
for the further discussion.

The former two of them, reaching a certain state or realizing a given sequence will be
addressed as productivity requirements in the following as they define what is necessary
for the facility to be productive at all. The latter two types reflect aspects which have to
be respected while the productivity requirements are achieved. They will be called side
conditions from here on. Note that the name shall not suggest that these conditions were
less important than the productivity requirements, as actually the opposite is often the case.

Productivity requirements and side conditions seem to be closely related to functional
and nonfunctional requirements from software engineering and could be considered as
special cases of those. Yet, the latter terms will be avoided in the discussion since they are
too coarse and ambiguous.

On a more abstract level, productivity requirements can be perceived to define the
minimally necessary behavior of the system, i.e., they specify what has to be done at
least. Side conditions in return delimit the supremal legal behavior, i.e., they introduce the
boundaries of what a system is allowed to do. Only if the latter shape a superset of the
former, the system is actually implementable. In that case, every implementation which
meets at least the productivity requirements but does not exceed the requirements of the
side conditions is admissible. Figure 4.1 illustrates that. The productivity requirements
need all × markings to be covered as these represent the required system behaviors. Side
conditions abstractly disqualify entire spaces embracing those behaviors which would
violate them.

The following example intends to further improve the intuition for these two categories:

Example 4.1. Consider a tank which is equipped with a stirrer and a heating unit. The
productivity requirements claim that a liquid shall be poured into the tank, then heated
up to 70◦ C. Finally the tank shall be drained. The side conditions claims that the heating
must never be operated without the stirrer being active to avoid local overheating, which
could permanently damage the plant. The productivity requirement needs the specified
steps to be followed by the controller. However, it does not explicitly preclude additional
actions before, after or between those steps, as long as these to not interfere with the actual
goal. This leads to an infinite set of admissible control sequences. From this set, the side
condition removes all those behaviors which at any time involve the heating being active
while the stirrer is off. Note that in this example still an infinite number of admissible
control sequences remains, which is usually the case. If a stirrer was not installed in the
tank at all, the cost and power consumption would probably decrease without affecting the
productivity requirement. The side condition does not require a stirrer to be present or run
as long as the heater is off. Nevertheless, it restricts the solution space to those solutions

35

Chapter 4 Controller Synthesis with SCT

Figure 4.1: Illustration of productivity requirements, represented by ×, and side conditions.

where a stirrer is used while the liquid is heated. Both requirements are necessary to realize
proper controls. Due to the potential damage when neglecting the side condition, it can
even be accredited a greater importance than the productivity requirement. This, of course,
always depends on the particular scenario. Í

Multiple productivity requirements are logically joined by considering their least upper
bound, which specifies what at least has to be performed in order to fulfill all of them.
Accordingly, side conditions must be composed by finding a common lower bound of legal
behaviors. In Figure 4.1 these bounds correspond to the union of all × and the intersection
of all safe (white) areas.

4.3.2 Operational and Declarative Specifications

Besides the two requirement types, there exist also two different kinds of specifications,
declarative and operational ones [59]. An operational, or model-based, specification provides
an abstracted version of a solution. Hence it may also be considered as an abstracted imple-
mentation. A declarative, also called denotational, specification instead makes statements
about properties of the solution and of the problem itself using some logic, e.g., proposi-
tional or linear temporal logic. Usually, it encompasses a pre- and a postcondition with
the semantics that whenever the precondition holds before the execution of the specified
system or operation then the postcondition must hold thereafter. If this implication is true
for every possible execution, the specification is fulfilled. In other words, operational speci-

36

4.3 Requirements and Specifications

Figure 4.2: Categories of requirements and specifications in discrete control

fications abstractly define how the implementation is supposed to work whereas declarative
specifications only state what it may, must or must not do.

Having this in mind, the four categories of goals in discrete control each fit one of
these two specification types. Side conditions can usually best be defined using declarative
specifications. Logics allow to declare certain classes of behaviors either undesired or legal
using their attributes. In the field of temporal logics and distributed computing, this is
called a safety property [7], an assumption that can be disproven by a finite counterexample.
In contrast, an operational definition of forbidden states or events is hardly possible as that
would require either operational instructions for every particular situation which can lead
to a violation of the requirement for every single possible implementation, or an exhaustive
negative list of all critical implementations, which would usually be infinite.

The two subtypes of productivity requirements must be considered independently. The
first one, which defines an initial and a target state, precisely meets the notion of a declarative
specification. If time or the number of operations until that target is reached are not of
particular interest, this corresponds to a liveness property, as it can only be disproven by an
infinite counterexample [7]. If time, cost or the number of operations required to reach
the target state do matter, there are two options: Either the according measure is assigned
a hard limit which must not be exceeded, or the value shall be minimized. The first case
must be formulated as a safety property again, yet on a domain that supports counting or
measuring time. Real-time critical control tasks are a good example. Each of their deadlines
can be violated by a finite counterexample, so they can be specified using safety properties
exclusively.

In the second case, where no explicit limitations exist, an optimization problem needs to
be defined over the solution space. The latter is declaratively specified by the productivity
requirement’s liveness properties on the one hand and the side conditions’ safety properties
on the other hand. Nonblockingness, as achieved by traditional SCT, is a declaratively

37

Chapter 4 Controller Synthesis with SCT

definable requirement too. Although not precisely a liveness property2, it can also be used as
a basis for that optimization procedure, since it guarantees the goal states being reachable.
Assuming that not reaching that goal is the worst possible outcome through the eyes of
optimization, the liveness property becomes dispensable in this case.

The second category of productivity requirements, realizing a predefined sequence of
steps, requires an operational specification, i.e., a model of the desired procedure. The
final implementation is supposed to match that model in terms of the latter being a valid
abstraction of the former. Figure 4.2 illustrates the relationships of the different requirement
and specification types as discussed above.

Usually, a combination of operational and declarative specifications is used to describe a
given control scenario in practice.

4.3.3 Specifications through Automata

DES and automata embody a mathematically formalized and graphically displayable view
onto a regular language or a system with regular behavior [51, 23]. Automata are also widely
used in control engineering and embedded systems to operatively specify the behavior of
a controller or a part of it. The organization PLCopen, for instance, provides a reference
automaton, along with a textual declarative specification, for every function block in their
safety library [85].

Theoretical computer science uses automata as a concept to formally describe the behavior
of a system or a regular relaxation of it, e.g., for the sake of formal verification. Engineering,
including software engineering, instead uses them rather to prescribe the desired behavior
before it has actually been implemented. In this case, the semantics are often less strict and
allow for elements that are not regular by nature, such as arithmetics. In these cases they
are often referred to as state machines or state charts to emphasize their figurative character.
In both cases, descriptive or prescriptive, the automata have operational semantics.

The case of automata being used as prescriptive, operational models for code generation,
is particularly interesting from the viewpoint of this discussion. States, transitions and
transition guards, which are often part of prescriptive state charts, then possess strict
semantics and are accurately translated to the according code snippets. The PLC language
Sequential Function Chart (cf. Section 2.3.4) is another example for a prescriptive state
machine, even though it allows multiple active steps at once and hence slightly differs from
ordinary state machines.

Automata can also be used to represent declarative specifications. Thus, every safety
property can be translated to a DFA without loss of expressiveness. This is possible be-
cause, first, an automaton allows multiple paths even when these are initiated by different
controllable operations – this leaves room for multiple acceptable solutions. Second, an
automaton in the narrower sense only makes assumptions or imposes restrictions about
the symbols (events) of its own alphabet. This way, automata are well suited to formulate
requirements which are only based on a small portion of aspects of the entire system, in

2Nonblockingness claims that a marker state stays reachable whereas liveness demands that it is eventually
reached.

38

4.4 The Role of Specifications in the SCT

analogy to temporal logic formulae. It should be mentioned that liveness properties require
more powerful structures to be expressed, such as Büchi or Rabin automata [7].

4.4 The Role of Specifications in the SCT

SCT establishes controllability on a given regular specification language (or automaton) on
given system models. This is done by imposing a controllable sub-behavior (sublanguage)
of the specification, i.e., by further narrowing its restrictions. It has been discussed above
that reducing a specified behavior is only admissible for side conditions, as they define
the supremal legal behavior. Cutting down on productivity requirements would instead
result in an insufficient realization as that would mean to drop certain production goals.
Indeed, SCT specifications typically have a declarative character. Apparently, it would
also be possible to feed the algorithm with a full, linear sequence of operations, i.e., an
operational specification of productivity requirements. Section 4.5 discusses why this is not
desirable.

There are many problems for which providing a declarative specification is much easier
than finding an implementation. A simple example is the square root function: The specifi-
cation is as compact as: The square of the result always equals the input value. The research
area of program synthesis deals with such problems by consulting heuristics for automated
proof tree deduction. However, that is far beyond the capabilities of SCT.

It seems that SCT is rather problematic when it comes to the realization of productivity in
general. The following sections discuss that in detail and analyze the formerly introduced
case studies regarding this concern.

But first, based on the above observations, the main thesis of this Chapter can be antici-
pated:

1. Supervisory control theory is a well-suitable framework to enforce compliance with
side conditions which are not controllable by nature, i.e., which involve undesired
yet uncontrollable events.

2. The derivation of a full controller is rather impractical as the SCT lacks appropriate
support for productivity requirements.

The validation of the first point, is the central objective of the tool implementation presented
in Chapter 5. The second aspect has been one result of the case studies by [Ney, 2014].

4.4.1 Using Nonblockingness to Achieve Productivity

Often, marker states and nonblockingness are employed to achieve productivity. Intuitively
that makes sense, since a plant which does not operate appears like it would block. Claiming
that a certain state – representing the production goal – is reached is, in accordance with
Lunze’s goals of discrete control, an appropriate way to declaratively specify what the
controller is supposed to do. Nevertheless, in the context of SCT this is a fallacy, as the goal
of synthesis is still maximal permissiveness. As long as the generator, i.e., the plant, does

39

Chapter 4 Controller Synthesis with SCT

neither (uncontrollably) head towards a state from which that goal would be unreachable
nor to a state forbidden by the specification, the supervisor would not intervene.

The CHOICE Problem Several approaches have been presented of how to tackle this
issue and enforce productivity on the plant. There seems to be a broad consensus on
that controllable events are rather suitable to express operations of actuators, whereas
uncontrollable events represent the dynamic responses of the plant to these actions, which
are measured and captured by sensors [9, 10, 29, 37, 50, 82].

Based on this perception, Dietrich et al. distinguish between a supervisor and its imple-
mentation [30], an automaton that allows at most one controllable event per state. This
event then corresponds to the control action which is to be executed next. Whether it is
always triggered immediately, e.g. [37, 82] or, in case of timed DES, only when an action is
due [20, 117], depends on the notion of the execution framework. The problem of selecting
one amongst multiple admissible candidates has been formulated by Fabian and Hellgren
[33] and is called the CHOICE problem.

In a number of case studies, it rather seemed to be treated like a peripheral matter, solved,
e.g., by fixed priorities [82] or by random choice [37].

However, when automatic controller synthesis is the goal, the CHOICE problem should
be considered as one of the most crucial and central aspects of the entire procedure.
Unfortunately, even the identification of what characterizes a good solution to it is highly
nontrivial [22].

When utilizing simple criteria for CHOICE, the specification needs to be designed tight
enough to lead to a usable implementation afterwards. For the presented case studies, this
worked well indeed. Nonetheless, during the specification phase it is not an easy task to
determine when the specification is unambiguous enough to lead to the expected controller
finally. At least, this is not possible if the specification designer is not aware of the details
of the final result in advance. Thus, providing a sufficient set of specifications for that
is a manual task and can be challenging. Besides, Schmidt et al. pointed out that “[. . .]
profound knowledge of DES theory and the use of a suitable software tool are essential
[. . .]” [82].

For a more reasonable solution to CHOICE, it is necessary to provide a metric, such as
cost, to rate the available options. The supervisory control problem then automatically
becomes or at least involves an optimization problem. The optimal control theory approach
by Sengupta and Lafortune [100] as well as the optimal directed control framework by
Kumar et al. [52, 53, 64] address this optimization aspect. Unfortunately, they only work
for monolithic models.

4.4.2 Requirements and Specifications in Existing Case Studies

Considering the aspects discussed above in the context of the case studies described in
Section 3.2.2, one similarity stands out: Explicit specifications of productivity requirements
are avoided. Although the introduction of the studies usually involves a textual description of
either what the system shall do (e.g., Theme Park Vehicles [37] and Flexible Manufacturing

40

4.4 The Role of Specifications in the SCT

System [82]) or even about the order of necessary actions (Untimed Operating Procedures in
Batch Chemical Processes [121]), these requirements are almost never formalized explicitly.
Indeed, marker states are used to identify goals to a certain degree. But still, a proper
CHOICE mechanism is required to realize productivity through nonblockingness.

The study Theme Park Vehicles leaves most control decisions to the wire that is installed
in the ground and to be followed. In this case, the productivity requirements are literally
hardwired into the system. The remaining instructions are given by the user via the buttons,
obviating the need for further productivity requirements. The remaining control tasks are
all purely reactive, which the SCT is not precisely designed for [22]. Since the implemented
control decision maker is based on randomization, additional specification automata are
required to restrict the solution space to the actually desired result. Note that side conditions
were successfully enforced using the SCT in this example. For plant automation in general,
however, it cannot be assumed that all choices regarding productivity would either be
prescribed by the hardware itself or made by a human operator. Instead, it is one of the main
objectives of factory automation to allow more flexible hardware and leave control decisions
to programmable, software-based controllers without the need of human interaction.

In case of the Batch Chemical Processes study [121], an implicitly given productivity spec-
ification is missing. There is no “wire” to follow. Hence, even larger specification automata
are required that are not directly related to an actual side condition. Whenever there is
a fork of two or more possible control actions, one specification implicitly forbids all but
one alternative, such that finally exactly one control strategy remains. Some specifications,
called “auxiliary automata”, even have rather operational character, meaning they prede-
termine many decisions in advance. The resulting supervisors are so linearly shaped that,
in consideration of how SCT synthesis works, it does not appear very convincing that they
are the result of a specification representing arbitrary factory requirements. Instead, they
seem to precisely circumscribe a certain, desired solution, which also could have been
implemented right away, once it is known.

Another, though entirely conceptual, example can be found in [30]. It is based on [47]
and synthesizes the controls for a dosing tank, equipped with an inlet and a drainage
valve, two level sensors, one at the top and one at the bottom of the tank, and a stirrer.
The productivity requirement is textually declared as “supply a defined amount of liquid
material to subsequent process units” [30]. Additionally, the side condition “The fluid must
be stirred since it will gelatize [sic.] [. . .] if the substance is not in motion.” is given.

From the productivity requirement, multiple automata are derived. One of them is
depicted in Figure 4.3. It restricts the behavior in the sense that, it disallows to open the
drainage during the procedure until the tank is full. The event openA opens the inlet
valve, openB the drainage valve. L1on, L2on, L1off and L2off are uncontrollable events
which represent the two level sensors of the tank. L2on indicates that the upper level
sensor, corresponding to the volume of one dose, has been reached whereas L2off occurs
when the level decreases below that sensor. L1on/off work accordingly for the second
sensor indicating that the tank contains a notable amount of liquid at all, i.e., the tank is
considered empty after L1off has occurred. Note that the automaton only has the semantics
that it prohibits certain events state-wise, e.g., L1off in the bottom-right state, which would
correspond to emptying the tank before the dose is reached. The remaining automata

41

Chapter 4 Controller Synthesis with SCT

Figure 4.3: Specification Empty-full-empty-cycle, redrawn after [30]

further restrict the system, e.g., by forbidding gelatinization, direct pass through or closing
valves before a change of level has been detected.

By these automata, the state space is again declaratively reduced by ruling out those
instances that do not meet the productivity requirement. Of course, eliminating potential
solutions that contradict the desired goals is reasonable. Problematic is that the requirement
must be manually broken down into a set of safety properties until the desired solution is
found – a criterion which also must be checked manually as there is no formalization of
the productivity requirement. There is even one automaton of 6 states and 20 transitions
that only servers the purpose to avoid the stirrer being switched on and off when that shall
not or even must not happen. The former refers to the productivity – a controller that turns
on and off the stirrer several times before the tank is filled for the first time would be legal
but not optimal – while the latter is a side condition due to the risk of gelatinization.

In case of this example, the productivity requirement can be described by one sentence.
An operational procedure which realizes that requirement by only triggering controllable
events and branching on uncontrollable ones comprises eleven lines of pseudo-code or,
alternatively, a 2-step SFC. Both are listed in Figure 4.4 (“R” resets a variable to false. “N”
sets a variable to true as long as the step is active and resets it to false thereafter.). The SCT
realization instead requires 10 automata with a total of 33 states and 56 transitions to be
manually defined before synthesis is invoked. These automata have to be defined closely
“around” the desired solution in order to actually yield it. For more complex scenarios with
much more sophisticated recipes, it appears unlikely that all necessary automata will be
provided correctly in the first place in a way that a solution is obtained which meets the
recipe. Even more unlikely is a reduction of effort, especially due to the necessary manual
double-checking of the result. Since synthesis is correct by construction, verification against
the original models is pointless. Instead, a separation of productivity requirements and
side conditions would help to guarantee the latter to be satisfied. The automata of both
could be used as input for synthesis at the same time. Nonetheless, this would not reduce

42

4.5 Operational Specifications for Synthesis Techniques

1 while (t rue)
2 c loseB
3 openA
4 s t i r r e r O n
5 while not L2On
6 wait
7 c loseA
8 openB
9 s t i r r e r O f f

10 while not L1Off
11 wait

(a) Pseudo code (b) SFC implementation

Figure 4.4: Operative controller implementation for dosing tank

the overhead and error-proneness of the transformation from productivity requirements to
safety properties.

In the study Flexible Manufacturing System [82], timing constraints are invoked to
achieve progress. These allow the productivity requirements to be expressed as a safety
property straightforwardly. The idea is simple (cf. Section 3.1.3): A deadline is introduced
for every action that the controller has to trigger eventually for the sake of productivity. Since
time is represented by controllable tick events [20, 117] a reaction must be enforced before
time is allowed to continue to elapse. When there is only one controllable event leaving
the current state, the corresponding operation is guaranteed to be executed immediately.
It is up to the framework implementation to realize these model semantics. Although
using the notion of timing to guarantee productivity has a certain elegance, two problems
remain. First, it still requires a manual transformation from the textually given sequential
requirements to declaratively specified side conditions. Second, following this paradigm,
control actions might be unnecessarily delayed by the supervisor as maximal permissiveness
is a fundamental concept of SCT. In this case the result would, instead of being optimal,
rather be the worst, still legal solution.

4.5 Operational Specifications for Synthesis Techniques

Balemi [9, 10] used operational specifications (“explicit liveness specifications”) to formalize
productivity requirements and declarative (”implicit”) specifications for side conditions.
Both are given in terms of automata, however, designed towards divergent paradigms
and hence differently shaped. Automata defining operational specifications usually consist
of long sequences of succeeding states and transitions with few branches. Forks labeled
by controllable events are avoided as these correspond to situations where the expected
behavior is not clearly defined. In contrast, declarative specifications leave the greatest

43

Chapter 4 Controller Synthesis with SCT

possible degree of freedom to the system by prohibiting only those transitions which
contradict the represented requirement.

Operational specifications have one inherent drawback, which becomes crucial when used
for any kind of automated syntheses. First, it must be noticed that a concrete controller or,
generally speaking, software implementation can be referred as an operational specification
too, even though one of very fine granularity. It precisely instructs the hardware about
every single action, depending on the current and past inputs. Operational specifications
as used in classical (software) engineering are usually incomplete and hence must be
accompanied by declarative ones, i.e., postconditions on the result. Compared to the final
implementation, the elicited operational specifications are usually formulated more coarsely,
either verbally or through well-defined abstractions. They rather represent a procedural
pattern than full information about what shall be achieved. Filling the gaps inside the
operational specification towards the full implementation, according to the declarative
specifications, is a manageable task for a human programmer. His or her experience, together
with creativity and intelligence help interpreting and thus interpolating the operational
aspects correctly, i.e., in the sense that the declaratively given postcondition is guaranteed.
Still, misconceptions are possible and an apparent source of software errors.

The problem is that high-level operational specifications need abstractions. By definition, a
proper abstraction cannot provide the same amount of information as the concrete solution.
In return, to be complete with respect to the desired goals, an operational specification
must contain at least the amount of information as the solution does. Otherwise, the system
is underspecified and hence, from a formal point of view, underdefined.

Of course, it is possible to unambiguously describe a certain procedure using high-level
operations. Basically, that is the core idea of structured programming languages, such as C,
where subroutines are encapsulated in high-level functions. This, however, is a matter of
software architecture and code reusability but not of synthesis, as all low-level functionality
needs to be explicitly defined at any time. Thus, for purely operational specifications, there
are only two possible scenarios: Either the system is underspecified and a human needs to
reasonably fill the gaps, or the system is fully defined and synthesis is not necessary. Since
supervisory control is not able to derive solutions from declaratively specified productivity
requirements, all aspects which are missing within the operational specification need to
be covered by side conditions. For that reason, the size of the models, in terms of their
informative content, is likely to exceed the size of the desired synthesis result. Intuitively,
that makes sense as no synthesis technique has the ability to divine unstated requirements.

In Balemi’s explicit liveness specifications, several events (operations) are abstracted by the
one that is considered most important. Declarative specifications and plant automata define
the circumstances which make these events possible. This way, the outcome of synthesis is
a refinement of the abstract operational sequence which is guaranteed to respect the side
conditions. This worked well for Balemi’s sample recipe. But simply abstracting a procedure
by one of its events can be problematic if the final result is to be synthesized:

• Whenever the side conditions or plant models do not restrict the occurrences of that
event to precisely those scenarios the designer of the operational automation had in
mind, synthesis is likely to produce unexpected results.

44

4.6 Conclusion

• Optimality (cost, time, etc.) is still not achieved or even approximated by any means.

• Full specification is still necessary.

Indeed, the presented approach avoids exhaustive declarative side-condition specifications
“around the solution” and instead uses an operational “recipe automaton” to reduce the
solution space towards the desired controller. Technically, the applied method stays the
same, except that the input specifications are stricter in the operational case. The most
compact way to operationally specify the system would again be a linear automaton only
containing high-level events which represent, or encapsulate, well-defined sub routines,
i.e., a concrete implementation.

4.6 Conclusion

A novel method can be reasonable if it has the potential to either improve the quality of
the results or reduce the effort, and thus cost, in producing them. A discrete control task
is characterized by two kinds of goals: productivity requirements and side conditions. An
operational specification for the former kind needs to be either complete or accompanied
by sufficiently restrictive declarative side conditions and information about the plant’s
capabilities (e.g. in the shape of plant automata). In both cases, at least the same amount
of information is necessary as for the solution itself as, otherwise, the system would
be underdefined. The same holds if all productivity requirements are circumscribed by
“artificial” auxiliary side conditions until the solution space is reduced to reasonable ones.
In both cases, the effort of providing the necessary modeling is expected to be higher than
for a particular implementation which respects all real side conditions.

Supervisory control theory The SCT is based on regular languages and automata. Its
specifications are only able to restrict a given behavior, which rather suits the needs of
continuous than discrete controllers. There is no way to provide information about what
the system is supposed to do as input information to the SCT but only what it may or must
not do. Accordingly, in most case studies, the behavior was enriched by randomized control
decision makers and restricted by declaratively specified auxiliary side conditions until
the productivity requirements were met. Besides, the fundamental objective, maximal
permissiveness, conceptually clashes with the idea of a straight ahead, deterministic and
predictable final controller. Due to that, even the simplest aspects regarding optimality,
which a human programmer would naturally follow, are not considered in SCT-synthesized
solutions. The case study developed in the context of [Ney, 2014] substantiates these points.
Providing the models for SCT synthesis required approximately twice the amount of time
compared to a conventional controller implementation. It turned out more error-prone and
the result was less adapt- and extendable.

“Eine geradlinige Entwicklung ist ohne tiefgehende Planung und ein ausge-
prägtes Bewusstsein für die Arbeitsweise mit ereignisdiskreten Systemen sehr

45

Chapter 4 Controller Synthesis with SCT

erschwert. Bei instinktiver und modularer Modellierung ergeben sich oft nicht-
steuerbare Systeme oder solche mit unbewusst falschem Verhalten durch kleine
Fehler in der Modellierung. Eine manuelle Analyse des Ergebnisses ist aufgrund
der Größe des resultierenden Zustandsraumes ausgeschlossen. [. . .] Insgesamt
zeigte sich, dass die Entwicklung unter Nutzung der Synthese deutlich um-
fangreicher und aufwändiger als eine direkte manuelle Implementierung einer
Steuerung ist” [Ney, 2014, p. 60]3

The main focus of all discussed case studies was showing the feasibility of SCT for realizing
hardware controllers but not to critically evaluate its suitability. The presented examples
in all studies would have been easy to implement by hand compared to the number and
complexity of the required automata.

The SCT itself is a formal framework which intends to formally reason about controllable
and uncontrollable behaviors of discrete-event systems, including the notion of the supremal
controllable sublanguage. However, it seems hardly suitable for the synthesis of runtime
controllers for technical systems. The author believes that the root of this misconception
could be the ambiguous uses of the terms controller and synthesis in different areas.

Loss of Redundancy Finally, one general point remains which has not been considered
yet. Syntheses are meant to provide solutions that are correct-by-construction. This brings
up the problem that these can only be correct with respect to the originally provided
specifications.

In formal verification, the specifications do not influence the result. Instead, the latter is
checked against the former. This can be seen as a form of design diversity (cf. Section 2.3.5),
at least for the software implementation, as the specification and the implementation are
manual tasks, usually performed by different persons. In contrast to that, all syntheses
have in common that this redundancy is lost [17]. Verifying a synthesized software against
its original specifications is obviously pointless. That means, one must fully rely on the
correctness of the specifications, which, at least in case of the SCT can be much more
sophisticated to design than an equivalent (operational) implementation.

Program Syntheses from Declarative Specifications Synthesis techniques which are
based on declarative productivity requirements, i.e., that derive a procedure based on pre-
and post-conditions can indeed have the potential to actually decrease the manual modeling
effort. One example, the square root function, was already given above. These methods
are summarized under the term program syntheses and apply (semi-)automated verification
techniques backwards. Most of them invoke heuristics and symbolic methods to deduct
typical operations for certain criteria. In the past years, deductive, counter-example guided
inductive (CEGIS) and syntax-guided syntheses [4, 11, 45, 46, 76, 106, 107] have gained

3Translation by the author: Without extensive planning and deep knowledge about discrete-event systems,
a straight development is very difficult. Intuitive and modular modeling often yields systems that are
uncontrollable or show wrong behavior due to small mistakes in the models. Manual analysis of the result
is impossible for the size of its state space. [. . .] Altogether, development turned out more extensive and
required significantly higher effort compared to manual implementation of a controller.

46

4.6 Conclusion

impressive results. Unfortunately, the methods are still struggling with large problem and
solution spaces and hence far from being applied in practical or industrial scenarios.

Essence The supervisory control theory by Ramadge and Wonham is a theoretical frame-
work that transfers the notion of systems and control onto discrete-event system borrowing
the formalisms and algorithms of automata theory. It lacks in realizing productivity re-
quirements and hence misses one of the two main aspects of discrete control. Although
several case studies show that it is indeed possible to synthesize proper controllers using
the SCT, it is hardly practical and seems unlikely to reduce the effort or enhance the quality
of the results. In the current stage of synthesis methods and particularly in the field of the
SCT, the author proposes to stick to conventional implementations by-hand in order to
realize productivity requirements. The PLC programming languages specified by the IEC
[55] include several high-level paradigms to allow for a convenient and problem-oriented
implementation, such as the sequence-of-steps perspective realized by SFC or the signal-flow
approach of FBD. For mainly reactive systems, alternative implementation concepts, such
as Céu, could be utilized in the future [93].

Nevertheless, the SCT is an elegant way to establish controllability for potentially uncon-
trollable side conditions. Since it constantly follows the paradigm of maximal permissive-
ness, it is perfectly suitable for a minimally invasive controller supervision. Particularly in
situations in which the controller tends to be changed frequently or compliance with all
side conditions is difficult to ensure, runtime supervision can be a solution to guarantee
safety. The succeeding Chapter 5 presents an approach which addresses precisely this kind
of application of SCT.

47

Chapter 5

A Concept for Runtime Supervision of
PLC Programs Using DES

The supervisory control theory by Ramadge and Wonham aims to enforce a given declarative
specification on a discrete-event system by limiting its uncontrolled behavior. The framework
follows the philosophy of maximal permissiveness, which means that the system is restricted
as little as possible. The previous chapter pointed out why this concept is rather unsuitable
to handle those requirements which prescribe what the system under control is supposed
to do and which steps it shall follow to that end. Nevertheless, besides these requirements
on productivity, there usually exist numerous side conditions which must be respected.
Demands on functional safety are probably the most prominent examples.

The origins of the requirements and the aspects they are concerned with can be manifold.
Some, for example, arise from the characteristics of delicate goods, some originate from
the physical capabilities of the plant while others formalize the demands of legal safety
regulations. What they all have in common, though, is the fact that they reduce the space of
permissible behaviors of the system under control. It is the task of the controller to enforce
compliance with these restrictions while accomplishing productivity. However, correctness
cannot always be guaranteed. Particularly in case of complex, manually implemented
controllers, critical border cases can be missed quickly. This chapter introduces a new
concept for DES-based supervision of PLC programs with the goal of enforcing these side
conditions during runtime. Its core is a framework which monitors the plant along with its
controller and validates the controller’s decisions. In order to deal with uncontrollability, the
specifications that reflect the side conditions are not used for supervision directly. Instead,
a supervisor is synthesized using methods that are inspired by and closely related to the
original SCT.

This chapter consists of the following contents. First, an introduction to the addressed
problem are given including a description of the primary use case. Then, in Chapter 5.2
related approaches are discussed that, in contrast to the ones presented in Section 3, are not
based on SCT but address a similar use case in practice. Section 5.3 gives an overview on
how specifications and the system are to be modelled. It is followed by Section 5.4, which
introduces basic functionalities such as composition and synthesis. On that basis, Section
5.5 discusses some conceptual limitations of SCT when dealing with unstable states and
presents a possible solution to these, called preemption. An alternative to that is discussed

49

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

in the follow-up Section 5.6. In Section 5.7, conditional transitions are introduced as a
way towards more intuitive and efficient modeling by relating transitions to existing states.
Finally, Section 5.8 puts the presented concepts and algorithms on a formal basis and proofs
the soundness of the approach.

5.1 Introduction

The presented concept aims to examine the practicability of supervisor synthesis in the
context of production and process control. Compared to those approaches and tools that
primarily address algorithmic and complexity aspects of SCT, a stronger emphasis is put on
a convenient and intuitive way of modeling and the integrability of the solutions to soft-
and hardware platforms as used in industrial automation.

5.1.1 Motivation

Side conditions in the sense of Chapter 4 play an essential role in industrial processes.
Particularly for the sake of safety, it is not unusual that additional measures, realized in
both hard- and software, are added to a control system to preclude violations of the given
requirements. These measures can approach different scenarios. Some aim to reduce risks
caused by human interaction while others primarily address hardware issues, e.g., due to
mechanical blocking or damaged components. Another source of malfunction can be an
inaccurate controller implementation itself. Software tests are a good way to find bugs in
an implementation. Nonetheless, exhaustive, systematic black- and white-box testing is
still rarely applied in factory automation. Besides, several possible ways exist how safety
critical misbehaviors can come to execution on real hardware:

• A failed test indicates that the software contains errors whereas the opposite is not
necessarily true

• The safety critical behavior arises only under very special circumstances which have
not been considered while testing although they are possible

• The controller is still under development and tested or parameterized on the hardware
without executing an entire test suite after every change

• The controller, its parameters or implementation undergo frequent changes

Formal verification techniques, such as model checking, theoretically can be invoked to
ensure compliance with all side conditions on every possible execution. Unfortunately, this
is not always feasible due to the significant amounts of required computing power. The
presented work uses a different approach. Instead of statically analyzing1 the controller
in advance, its actions are monitored during runtime, with respect to the imposed side

1Some sources count model checking to the dynamic analyses instead. Anyway, the behavior of the controller
implementation is analyzed pre-runtime.

50

5.1 Introduction

conditions, and intervenes if necessary. In the context of future Industry 4.0 applications,
especially the last of the above bullets will become vital. When methods, algorithms and
controllers are dynamically distributed, shared or borrowed via the Internet [16, 114],
mechanisms that guarantee safety for humans and the equipment itself will be inevitable.

5.1.2 Setting

The addressed base scenario consists of a hardware plant whose sensors and actuators are
connected to the I/O ports of a PLC. The latter hosts a controller program which implements
the productivity requirements of a process or recipe that shall be realized on the plant.
Although the controller is supposed to respect all specified side conditions, it is assumed
that this has not been formally verified and hence cannot be guaranteed with certainty.

Many side conditions can be broken down to regular properties, which hence can be
formalizd declaratively in terms of discrete states and events, i.e, as finite automaton (cf.
Chapter 4). The developer of the controls is not necessarily the same person as the one who
provides these models. In case of foreign control routines, as loaded from a future Industry
4.0 cloud service, an employee of the plant operator could create the models to make sure
that the controller does not damage the plant and respects all relevant restrictions.

Additionally, information about the plant’s physical operating capabilities should also
be provided in order to establish controllability and increase permissiveness. The user
provides plant model automata to that end. These only need to contain events which are
actually related to or relevant for the specifications. An exhaustive behavioral model, as
it would theoretically be required to synthesize a controller from any kind of productiv-
ity requirements, is usually not necessary. A single supervisor is synthesized from each
specification. Finally, all supervisors are subsumed in an executable framework which is
generated from the automaton representations and can be integrated to the original PLC
project. The framework also monitors the relevant signals of the controller and the plant
during runtime. Operations that have been approved by the supervisor, are forwarded to
the plant while rejected ones are blocked.

5.1.3 Framework

Supervision should operate in a minimally invasive way in order to minimize interference
with a correctly working controller. That includes the following goals.

• Allow to implement the controller without knowledge of the supervision.

• The controller’s actions and output signals should be distorted as little as possible.

• The supervision itself shall be maximally permissive.

Nonetheless, a violation of all specified side conditions shall be excluded by any means.
The supervisors themselves are synthesized using the concepts and algorithms of DES

and SCT. However, the closed-loop structure differs from the one defined by Ramadge and
Wonham and as presented in Section 2.1 in the sense that it is adapted to three participants:

51

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

(a) Ramadge and Wonham’s control loop (b) Control Loop of presented approach

Figure 5.1: Comparison of control loop paradigms

the plant, the controller and the supervisor(s). Figure 5.1 shows the two control loops
schematically.

Similar to many case studies and applications, uncontrollable events are used to represent
things that originate from the plant and therefore cannot simply be disabled. Actions that
are triggered by the controller are modeled as controllable events as the supervisor can
inhibit them.

5.1.3.1 Connection to SCT

In traditional SCT, the supervisor can disable controllable events and by that declare them
as inadmissible to occur next. If it is maximally permissive, it disables exactly those events
which would leave the SCSL of the closed-loop system. Transferred to the setting of the
presented approach, such an event corresponds to a controller action that leads to a state
from which undesired behavior cannot be prevented anymore by disabling events. This
state does not necessarily need to be specified illegal itself. To be outside the SCSL it suffices
that a transition or a cascade of several transitions exists that leads from that state to a
specification violation and is uncontrollable. The strength of SCT in this context is its ability
to estimate the potential consequences of an action with respect to what is uncontrollable
and hence cannot be averted, but also to what is possible to happen in which situation.
Nonetheless, some major changes have been introduced to the formal framework, mainly to
account for the circumstance that an existing controller shall be supervised instead of being
replaced by the supervisor. Instead of transforming the modeling concepts onto existing
formalisms, a complete and self-contained formalization is given and used to prove the
algorithms’ correctness.

52

5.1 Introduction

controller

event generator

supervisor

signal generator

safety commands +
controller commands

sensor events +
controller commands

output signals
(possibly harmful)

plant

Fr
am

ew
or

k
on

 P
LC

input signals

output signals (safe)

Figure 5.2: Execution cycle (Figure taken from [43], slightly adapted)

5.1.3.2 Execution Cycle

In order to realize supervised controls on the target PLC, a runtime framework is required
to coordinate the control flow and provide the necessary data to supervision. In the
presented concept, the controller is executed in advance of the supervisors. This stands in
contrast to the majority of other approaches and case studies where the supervisor offers
the controller/control decision maker a variety of admissible events to choose from. The
reason is that the framework is supposed to supervise arbitrary controllers. Thus, it cannot
be assumed that the controller is able to interpret a list of admissible events properly or
that its logic operates in terms of discrete events at all. Instead, the controller is treated as
a black-box which the entire event system is built around.

The supervision framework exploits the cyclic execution model of PLCs (cf. Section
2.3.3.1) as sketched in Figure 5.2. It is dynamically generated from the synthesized
supervisors and the event definitions provided by the user.

First, the controller is executed. Remember that it only operates on the PII and PIO caches
but cannot access the hardware in- and outputs directly. An event generator analyzes both
input and output signals on these caches to detect occurrences of the defined controllable
and uncontrollable events. Next, the supervisors are consulted. They execute uncontrollable
events first since these had physically occurred before the controller was invoked. After
that, the admissibility of the controllable events caused by the controller is checked. If one
of them is forbidden/disabled by any supervisor, it is marked as rejected and the current
state of all supervisors stays unaffected by that event. Only if all supervisors agree that an
event was triggered legitimately, they execute their according transitions, if applicable. A
final step is responsible for all approved controllable events being realized appropriately,
while rejected events must not take effect. The different methods for that are subsumed as

53

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

signal generator in the scheme. Apparently, the most intuitive and easiest solution to this
is resetting all events which correspond to blocked events to the values they had before
the cycle while leaving the remainder of PIO as is. However, some assumptions must be
made for this approach to be applicable, which imposes several restrictions on the kinds of
requirements and scenarios which can be addressed this way [Timmermanns, 2015]. More
details on the realization of blocked and approved events will be given in Section 6.3.

Anyhow, it is not possible for the controller to bypass the supervisor as all produced
output values are cached in PIO first. Since the output phase concludes the PLC cycle as
a whole, the supervisors are always invoked before any operations are propagated to the
hardware.

5.1.4 Nonblockingness

One of the most critical issues of SCT is the exponential state space blow-up when all
components of a modular system are composed, cf. Section 3.1.1. However, dealing
with the behavior of the entire system is not always necessary. The Ramadge-Wonham
framework originally defines two main objectives for supervisor synthesis, first to establish
controllability for a given specification and second to guarantee nonblockingness.

However, enforcing nonblockingness on a fixed controller implementation is either not
possible or at least impracticable for several reasons beyond the computational complexity.
First, it must be assumed that none of the controller’s actions is expendable, i.e., disabling
one of them would probably jeopardize the result. Remember that productivity requirements
delimit the minimally necessary behavior of a production goal. Second, since the controller
is assumed to be developed without awareness of the supervision, it is probably not able to
recognize that one of its actions has been disabled. In return, on the one hand, a controller
which reckons being blocked at any time must be implemented very conservatively – not
precisely the use case addressed above. On the other hand, it would need to provide an
alternative recipe for that case to still guarantee productivity and nonblockingness.

A controller that holds a set of spare actions for every thinkable combination of blocked
operations is obviously not possible. Hence, a controller would need to recompute its
procedure dynamically in order to work around the disabled operation towards its control
goal. Due to the large variety of combinations of disabled events, this corresponds to
an on-the-fly controller synthesis, which would be even more challenging than controller
synthesis ex-ante. It is questionable whether supervision would still be required if that
problem was solved satisfactorily.

Assume that a controller exists which provides a manageable number of spare recipes such
that, in case one of them is disabled, another could be chosen. Then synthesis would need to
estimate the impact of blocking a certain action to still guarantee nonblockingness. In other
words, a model of the controller in the shape of a DES would be necessary, a task which is
highly non-trivial to achieve automatically. Still, the designer of the controller would need
to purposely implement those spare methods for the sake of providing alternatives for the
supervisor.

This approach concentrates on enforcing the specifications of top-priority side-conditions
like safety. If one of these is imperiled to be violated, e.g., by a cascade of uncontrollable

54

5.1 Introduction

events, supervision intervenes. In that situation, blocking is tolerated. Note that this only
affects controllers which are erroneous in the sense that they disrespect such a requirement.
Proper controls, however, would not block.

From an applicational perspective, disregarding nonblockingness avoids computational
problems such as the state space blow-up, which is not sufficiently solved yet. Besides, it
allows for more efficient synthesis methods which focus on the avoidance of critical states
using narrower criteria than it would be necessary for nonblocking.

5.1.5 Classification of the Approach

Consider a set of critical safety requirements that has been modeled successfully and
synthesized into a supervisor. When applied onto the controller as shown in Figure 5.2, it
ensures that the latter will not violate these requirements as long as the framework runs.
In the light of safety and reliability as shortly introduced in Section 2.3.5, this principally
makes the control system fail safe regarding implementation errors in the controller.

If the safety requirements have also been taken into account during controller develop-
ment, they are realized redundantly in the sense that two different representations of the
requirement have come to implementation – the controller and the supervisor. Only if both
are erroneous, the system would fail against these requirements. Therefore, the approach
can be classified as a measure of diverse redundancy. Note that, as long as the framework is
run on the same device as the controller, hardware failure is not covered. This could be
changed in future versions using independent external devices for supervision.

While safety is improved, reliability stays unaltered. Apparently, supervision cannot
replace the controller as it does not realize productivity requirements.

Amongst the formal methods, the presented one is situated between synthesis and runtime
verification. On the one hand, supervisors are synthesized from specifications and plant
automata in order to achieve controllability in a maximally permissive way. On the other
hand is the result, which is correct by construction, used to guarantee compliance with that
specification during runtime.

5.1.6 Further Techniques

In the following, some additional techniques are sketched briefly. A detailed motivation and
description of these can be found in the succeeding sections. Control scenarios frequently
involve real-time requirements. Safety specifications in particular often include hard
deadlines, e.g., for a certain reaction. Unfortunately, SCT is not capable of dealing with
timing constraints at all. The timed-DES formalism by Brandin and Wonham presented in
Section 3.1.3 tackles this issue. However, it usually comes with a significant growth of the
state space and often even requires more complicated models from the user since all events
need to be related to tick events.

In this work, enforceable events are utilized directly. Conceptually, they roughly work as
follows: Whenever a supervisor enters a state which has an outbound enforced transition,
this transition has to be taken immediately. This stands in contrast to the behavior of a

55

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

supervisor derived from a timed DES, which would actively trigger a transition no earlier
than ultimately necessary. The reason is that synthesis yields a maximally permissive
supervisor and therefore prohibits the tick event, which represents the passage of time,
only in states where waiting any longer would be illegal, cf. Section 3.1.3.

In the presented approach, an action is only enforced by synthesis if it preempts an
imminent, undesired and uncontrollable incident. Since enforceable events are not reduced
onto the two classical event classes, an explicit time model is not required.

An alternative method, based on a simple cyclic re-evaluation of events, also allows the
supervisor to react on critical states by prohibiting the controller to “continue its current
operation”. In order to avoid problematic safety reactions being triggered too early, it is
necessary to measure the time that has passed since the occurrence of a certain event and
thus delay an action or a prohibition.

In order to enhance the process and decrease the effort of modeling, conditional transi-
tions are introduced. These allow to relate transitions and prohibitions to the currently
active state of other components. By that, the need to model paths redundantly, particularly
in specifications and plant models, is mostly eliminated.

5.2 Related Approaches

Besides the academic tools that exist in the SCT area (cf. Section 3.2.1), there are approaches
from other domains which address a similar use case but apply different methods and
formalisms.

Software-based safety measures are not a new concept but have already existed for several
decades. However, from simple, low-level mechanisms as interlocks, they have evolved
towards advanced, model-based safety systems. By adding the SCT-based framework on top
of safety models, this approach goes one step further and, by that, lifts interlocks towards
specifications which are uncontrollable in the first place using their SCSL.

Balemi’s work (see Section 3.2.2) already included a basic version of a supervision
framework similar to the one presented in this chapter. Although it was tailored to the
presented case study, it already offered a certain degree of flexibility and even a basic
graphical user interface. However, only the supervision of manual operation was supported.
Monitoring manually implemented controllers was not part of his research nor was the
integration to the cyclic setting of PLCs.

One recent contribution which should be mentioned in this context has been presented
by Riera et al. [92]. Similarly as described above, a framework is installed on a PLC in
order to monitor a given controller and guarantee safety during runtime. The specifications
are provided in terms of plain logic formulae over the signals. It seems that a model-
based forecast of unavoidable violations as performed by the SCT, is not supported by this
approach.

Another distantly related work has been presented by Prati et al. [86]. It takes specifica-
tions in the shape of Petri nets and transforms them into systematic test cases reflecting the
requirements defined by the cause-and-effect matrix of the process.

56

5.3 Modeling Concept

Schuh and Lunze use deterministic I/O automata to realize fault-tolerant controllers
[97, 98, 99]. These automata can be understood as a hybrid of DES and reactive controller
models. On the one hand they represent the physical capabilities of the plant using states
and transitions. On the other hand does every transition of the controller assign an output
action to every transition, i.e., every input is reactively associated with an output, depending
on the current state. Instead of deriving an entire controller from the models, the focus
of this work is set to adapting an existing one in case of a runtime fault. When a fault is
detected, a model of the faulty plant is computed from the diagnostic result of the detector.
Based on the existing controller and that model, an alternative controller is derived.

5.3 Modeling Concept

The strength of applying formal methods is that they produce results that are correct by
construction. Therefore, it is essential that also the models which serve as input for the
algorithms have clear and unambiguous semantics. Nonetheless should the manual effort
in providing these be as little as possible when the methods come to application.

5.3.1 Automata

The original Ramadge and Wonham framework already uses automata to describe the be-
havior of generator and specification [87]. Finite-memory supervisors are often represented
by automata too [23].

Although these automata have very different semantics and serve different purposes, they
are usually defined the same way. The meaning of a transition, or its absence, thus always
depends on the current role of the automaton but also on the context and the progress
of synthesis. In the following, four different types of automata are introduced to express
different kinds of logic statements. These are specifications, supervisors, plant models and
synthesis automata.

Specifications Through the eyes of a user, specifications are the most important type of
automaton as they serve to express the actual requirements which shall be enforced. Side
conditions are often formulated in a prohibitive way. In consequence, all actions and events
which do not contradict the requirement are implicitly allowed. Specification automata
work analogously [43]. Instead of defining the entire legal behavior over a given alphabet,
as common in SCT, they impose explicit event prohibitions. This is similar to the notion
of bad states as used in some other approaches, except the bad states themselves are not
part of the model. Instead, the events which would lead to these states are forbidden
straightforwardly. Every event which is not prohibited in a state is principally allowed to
occur.

Specifications can consist of multiple states. When a transition for the event e exists from
one state q to another one q′, the current state will be changed from q to q′, once e occurs.
When there is no such transition, the current state is kept, i.e., the specification ignores the
event.

57

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

(a) Specification automaton (b) Equivalent SCT specification, Σ= {a,b,c}

Figure 5.3: Exemplary specification

Example 5.1. Figure 5.3a shows an exemplary specification. The initial state 1, for instance,
has an outbound a-transition leading to state 2. a and c are permitted in all states, although
they do not always cause a state change. The only prohibition is the forbidden b-event
in the state 4, denoted by a rectangular tag next to the state. 5.3b shows the equivalent
specification for the Ramadge-Wonham framework. Í

Obviously, both specification types offer the same expressiveness and can easily be
transformed into each other. Nevertheless, the prohibitive shape in Figure 5.3a has some
advantages in the application. First, an explicitly defined alphabet is not required for this
type of automaton. Instead, it depends on the particular states which events are relevant
in a certain situation. For an event which does neither define an outgoing transition nor
is prohibited in the current state, it is regardless whether it is considered somewhere else
in the automaton, and hence part of the alphabet, or not. Second, prohibitions are more
apparent as they can clearly be seen and easily be added to arbitrary states. The third
beneficial aspect regards prohibitions in synthesis automata and thus is discussed below.

Supervisors Supervisors are very closely related to specifications. They have the same
semantics and structure, except that they only prohibit controllable events. Hence, every
supervisor can be considered as a specification whereas the opposite is not true in general.
Thus, the automaton depicted in Figure 5.3a would also be a valid supervisor if b is
controllable. Supervisors can be synthesized from specifications using the algorithms of
SCT. Thanks to their controllability in the sense of [87, 23], they do not only define what is
legal and what is not but include how that can be achieved.

Plant Models Plant models define the physical limitations of certain parts of the plant.
In contrast to specifications and supervisors, they have an explicit alphabet containing all
events of which the model makes statements about.

Plant models take the place of the generator in traditional SCT. However, they have a
slightly different connotation. A generator is intended to represent the entire behavior
of the uncontrolled system. Correspondingly, the SCSL of the closed loop of generator
and supervisor covers all eligible behaviors. In the presented apporach, plant models
instead only serve the purpose of increasing the permissiveness of synthesized supervisors.

58

5.3 Modeling Concept

Figure 5.4: Simple Plant, Σ= {a,b,c}

There are indeed cases in which a supervisor cannot even be derived without the necessary
knowledge about the plant, meaning that safe operation of the system would be considered
impossible. However, the bare existence of a supervisor does not give any guarantee for the
productivity requirements being achievable. It is possible that the SCSL is nonempty but
supervision is still too restrictive for productivity without further plant models. Hence, the
step from an empty supervisor to a nonempty one is considered equivalently to an increase
of permissiveness.

Example 5.2. Figure 5.4 shows an example of a simple plant model. It expresses the fact
that the event c can only occur if both a and b happened before since c’s last occurrence
as well as initially. It does not capture any limitations of a and b since every state has
outbound transitions on these two events. The same holds for all remaining events e that
are not in the alphabet, e /∈ Σ, and which the plant model thus does not make any claims
about. Í

Plant Contract It is very important that a plant model is complete with respect to its
alphabet. Therefore, the following contract forms the basis for the correctness of synthesized
supervisors.

In a plant model, for every controllable and uncontrollable event in the alphabet,
a transition must be provided in every state where it is possible to occur.

This usually involves self-loops, i.e., transitions from a state to itself. When a given state has
no outbound transition for a certain event in the alphabet, it is considered to be physically
impossible to occur in this situation. A plant model may, however, over-approximate when
events can arise, i.e., it may define a transition on e ∈ Σ even in states where it is or
might physically not possible. This must be regarded particularly if it depends on further
components whether or not an event e can take place. If the granularity of information
that one plant automaton has is insufficient to definitely exclude the occurrence of e in a
state q, an e-transition must be established at q. Adding too many transitions to a plant
can result in worse permissiveness or even the nonexistence of a supervisor, whereas too
less of them can cause an incorrect and thus unsafe one.

Synthesis Automaton The supervisor synthesis algorithm which is utilized by Ramadge
and Wonham in their original publication [87], and can be found in [23], operates on one

59

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

specification and one generator at the same time. It further requires a mapping between
the states of these automata to determine which ones are controllably safe and which are
not.

In modular approaches, this association is not implicitly given anymore as specifications
and plant automata may have extremely different structures. Several solutions exist for
that issue. The compositional synthesis approach, which is implemented in Supremica [35]
for instance, introduces an artificial blocking state, i.e., a sink. The algorithm inserts a
transition to that sink for every illegal event. This way, the problem of safety is transformed
into a nonblockingness problem on plant automata. A state mapping is no longer required
and the automata can simply be composed with each other.

Since nonblockingness is disregarded, this technique would not work. However, thanks
to the explicitly modeled prohibitions, it is still possible to join specifications and plants
into one compact representation. In case of the monolithic method, this composition is
done before invoking the actual synthesis, which then is carried out on the composite
and operates purely destructive2. Thus, an automaton type for the intermediate result is
required. It needs to cover the aspects of specifications and plant automata, i.e., which
events are (im)possible and which are (il)legal. As it represents an intermediate artifact
for synthesis, it is called synthesis automaton. It has transitions, prohibitions and a plant
alphabet, containing all events of which the automaton has “plant knowledge”, i.e., for which
the plant contract holds. Note that the automaton may have transitions and prohibitions
of events which are not contained in that alphabet. These have the same semantics as in
specifications, i.e., a transition changes the state but it is not known whether an event is
physically possible or not. The formal definition and semantics of synthesis automata are
given in Section 5.8.1.

A synthesis automaton which is free of uncontrollable prohibitions can be converted to a
supervisor by simply discarding its alphabet.

5.3.2 Events

Events represent everything which can in principle change the physical state of the plant or
the logic state of a requirement. This includes actions from the PLC as well as events on
the plant which are measured through sensors. The presented event scheme of the tool has
been developed in the context of the thesis project [Gatto, 2016]. Parts of it have already
been published in [41]. It involves a significant variety of different kinds of events, which
are distinguished by means of the following criteria: The event type, the trigger class and
the action class. A graphical overview about the event classification scheme can be found
in Figure 5.5.

Event Types The key distinction of events is by their type. The classical partitioning into
controllable and uncontrollable events is extended by a third type, the enforceable events.
Controllable events originate from the controller and must be approved by all supervisors
whereas uncontrollable events represent things that happen on the plant. Enforceable events

2If preemption is disabled, synthesis does only delete but never insert or change states and transitions.

60

5.3 Modeling Concept

Figure 5.5: Types of events, figure based on [Gatto, 2016]

can be triggered by a supervisor independently from the controller and other supervisors
to prevent uncontrollable events. This is explained in Section 5.5 in detail.

Trigger Classes In the standard case, controllable events are detected after the controller
has finished its cycle by analyzing its output. When the latter changes in a specific way, an
event has occurred. Alternatively, the controller can be allowed to execute events explicitly.
These two modes of operation will in the following be referred to as event detection and
event execution.

In contrast to the controllable ones, uncontrollable events always need to be detected as
it is not possible for the plant to communicate with the supervisor directly in the considered
setting. Enforceable events in return are always triggered by the supervisor and thus can
be counted to the executed events as well.

Action Classes Controllable and enforceable events need to be assigned a certain kind of
action which is either carried out when they are approved or when they are blocked. Since
the ways of how events influence a system can be manifold, it depends on the situation and
the single case which kind of action suits best. There are three action classes called reset on
denial, code on acceptance and code on denial available for detected controllable events.

The first of these appears most intuitive. The relevant output values are captured before
the controller execution. If an event is disapproved by a supervisor, the corresponding
parts of PIO can be reset to their original values before being applied to the hardware.
Controllers frequently work on numerical values and often involve logics which go beyond

61

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

the scope of the provided regular DES. Also, there can be multiple events manipulating the
same outputs. In both cases, it would be too limiting to only allow to reset all outputs that
an event potentially writes to [Timmermanns, 2015].

The action class code on denial allows the user to specify one or several instructions
which are executed when the event is blocked. This way, she can manually specify how the
actions which correspond to that particular event can best be reversed. Code on acceptance
works similarly except the code is executed when the event was approved. For executable
controllable events and enforceable events, code on acceptance is mandatory as they are
always explicitly invoked, in the former case by the controller, in the latter by the supervisor
itself. It is allowed to use this action class for detected controllable events too, e.g., if the
controller writes a value to a cache outside PIO, which shall be copied to the latter if the
event is authorized.

Section 6.3.1 illuminates how the different trigger and action classes are technically
realized.

5.4 Basic Operations

After the user has provided all relevant specifications, plant models and events, the su-
pervisors can be synthesized. Within the scope of this thesis, two different algorithms are
utilized and discussed to that end, the classical monolithic one and a new incremental
method. For the monolithic method, the user first has to compose each specification with
all relevant plant models, while the incremental algorithm adds available plant information
automatically.

An exhaustive and formally founded description of the algorithms is postponed to Sec-
tion 5.8.

5.4.1 Composition

The rules of composing two automata depends on their respective types and so does the
outcome. The composition of two specifications again yields a specification. Analogously
can two plants be composed to another plant. In both cases, the order does not matter as the
operations are commutative. Note that it rarely makes sense to compose two specifications
as the resulting supervisor is very likely to be larger than two separately synthesized
supervisors. An exception is the use of enforceable events which are potentially prohibited
by another specification. To detect such conflicts, the composition of both is necessary.

When a specification is composed with a plant model, the result is a synthesis automaton.
It reflects all prohibitions of the specification as well as the limitations of the plant. Concep-
tually, the specification is refined on the information given by the plant model in the sense
that the resulting automaton is able to distinguish between prohibitions of events which
are possible and those which are impossible or can occur only under certain circumstances.
Hence, this process is also referred to as the plant model being applied onto the specification.
After that, the resulting synthesis automaton can be composed with more plant models to
further refine its permissiveness. However, it is illegal to compose a synthesis automaton

62

5.4 Basic Operations

(a) Specification (b) Plant, Σ= {a,c}

(c) Composition of both automata, ΣΠ = {a,c}

Figure 5.6: Composition of a simple specification and plant model

with another specification as this can cause inconsistent models and hence lead to incorrect
results.

Example 5.3. Figure 5.6 shows a simple specification (alphabetless), a plant model featuring
the two events a and c, and their composition. The permissiveness alphabet ΣΠ of the
latter also involves only a and c as it is not known yet when b is possible. Í

5.4.2 Monolithic Synthesis

Monolithic Synthesis is applicable onto specifications and synthesis automata. It establishes
controllability given on the information contained in the automaton, i.e., the more plant
models are included, the more permissive will the supervisor be. It is up to the user which
ones she wants to add to the composition. Adding all available plants always guarantees
the maximally achievable permissiveness although the same can often be accomplished more
efficiently by using only a subset of these. Note that in the literature, monolithic synthesis
usually addresses the former case where the entire knowledge about the model is taken
into account. In the context of this work, it instead means that a supervisor is derived from
an already computed composition using all contained but no further information.

The non-preemptive variant of this synthesis works analogously to the original SCSL
algorithm given in [23] except it operates on a single synthesis automaton instead of
separate specification and plant automata.

5.4.3 Incremental Synthesis

This technique interleaves synthesis with the required compositions. It is invoked on either
a single or a composite specification and lazily adds the necessary plant models from the
project on demand. Using this technique, a user can obtain a supervisor from a specification
without bothering about which plant models are relevant. Thanks to that it is very easy
to use. Nonetheless, does it guarantee a maximally permissive result and automatically

63

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

neglects irrelevant plants parts. Especially larger projects with several specifications for
different, loosely connected components can significantly benefit from that when supervisors
are incrementally synthesized from the specifications independently as the algorithm
automatically picks the relevant models.

The key idea of incremental synthesis is to compute the composition of specifications and
plants only in situations where supervision can potentially benefit from the information of
the plant. In contrast to the modular synthesis algorithm by Åkesson et al. [3] where the
applied necessary criterion for that is the closure of event sharing3, incremental synthesis
only adds a plant model if a state would need to be isolated by synthesis in the very next
step. The results are still maximally permissive, however the models can be significantly
smaller. A detailed explanation of the criterion and a formal definition of the algorithm,
including a comparison to Åkesson’s method, are postponed to Section 5.8.3.

5.4.4 Minimization

Intermediate results can be trimmed by removing unreachable states. This corresponds to
the accessible function as defined and used in the literature, e.g. [23].

Further minimization is possible by adapting the common method [51, 23] to the au-
tomaton types described above. The result is a worklist algorithm that tries to distinguish
states by their prohibitions and their adjacent successor states. First, all states are assumed
to be equivalent and added to the worklist. During the procedure, states are compared
pair-wise. Whenever a difference is found, the pair is marked as distinguishable and the
predecessors of the respective states are added to the worklist to be checked again. Once
the worklist is empty, the algorithm terminates. All non-distinguishable state pairs are
fused.

5.5 Preemption

Real plants frequently involve unstable states. Here, “unstable” addresses a situation in
which the system may not reside arbitrarily long but which instead must be left within a
certain amount of time. Often, that is not only a matter of proper productivity but also of
safety.

In practice, real-time hardware and software allow to safely and legally operate systems
which involve unstable states. Note that this is not an issue of speed or computational
performance. Real-time requirements sometimes allow reaction times in the magnitude of
several seconds. It must be guaranteed though that the reaction can by no means be delayed
any longer, regardless of the circumstances. Controllers for hard real-time requirements
are widely accepted in practice and legally acknowledged. Neglecting this kind of reactive
control paradigm would result in unnecessarily narrow restrictions to the system. In the
following, the term preemption addresses the anticipation of a, typically undesired, incident
by a timely reaction.

3The smallest set of automata where each of them shares an event with the specification or with another
automaton in that set.

64

5.5 Preemption

(a) P&I diagram (figure
taken from [41])

(b) Specification (c) Conventionally synthesized
supervisor

(d) Plant model, Σ= {openInlet,closeInlet,levelAlarm,overflow}

Figure 5.7: Motivating Example. Uncontrollable events are underlined.

5.5.1 Limitations of Classic SCT

The supervisory control theory conservatively avoids unstable states that can lead to a
violation of the specified requirements. In particular, this rules out any situations which are
unstable with respect to uncontrollable events. When the SCT is used for the supervision
of practical applications, this can be a significant limitation. This shall be illustrated by an
introductory example.

Example 5.4. Consider the physical plant sketched in Figure 5.7a. It shows a tank, equipped
with a level sensor, one inlet and one drainage valve. The inlet can be opened and closed
by the controller, represented by the controllable events openInlet and closeInlet.
As soon as the liquid inside the tank reaches the level sensor, the uncontrollable event
levelAlarm is detected. The level sensor has the purpose to indicate when the inlet must
be closed to prevent the tank from overflowing. Thus, a manually implemented safety
system would enforce closing the corresponding valve as soon as levelAlarm arises.

Consider the specification in Figure 5.7b. It globally prohibits an overflow. Since that
is uncontrollable, synthesis requires an additional plant model to identify the situations in
which overflow can actually occur. It is shown in Figure 5.7d. Based on these automata,
conventional SCT would yield a supervisor which disables openInlet in the initial state.
The reason is that it represents the last controllable event before the undesired overflow
is imminent. This supervisor is obviously able to guarantee safety. Nonetheless, it is far
more restrictive than the manually implemented safety system mentioned above. It even

65

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

makes the entire plant unusable in this case as the tank may never be filled under this kind
of supervision. Í

The above example illustrates the limitations of classic SCT, which affect its applicability
already in this simple scenario. In Section 4.2, it was already mentioned that SCT prunes
the reachable state space and its corresponding language down to its controllably safe and,
in some cases, nonblocking parts. This seems apparent since obviously neither a supervisor
nor any other controller can add behaviors to a system which are not considered possible
to occur. In the application, however, the decisions about if and when controllable events
are triggered, is entirely made by the controller under supervision. For that reason, the
supervisor would not even be able to constructively influence the language of the entire
closed-loop system inside the boundaries about what is possible on the plant. Instead, it
can only grant or block the controller’s actions. This problem does not arise in those case
studies which deal with the CHOICE problem (cf. Section 4.4.1), e.g., by randomly executing
one of the admissible events in every controller/supervisor iteration. The core difference to
these approaches is that here a control loop of three participants is considered (cf. Figure
5.1). Thus, the controller makes its choices independently from the supervisor and hence
cannot be influenced or even restricted down to execute an appropriate action in a specific
moment.

What the methods of classic SCT do allow in this setting is preventing undesired incidents
in advance by early restricting the controller in its operation. These kind of safety measures
are called interlocks as they lock a certain action until it can safely be executed. Indeed, the
presented method performs well in synthesizing interlocks using non-preemptive methods,
even for complex scenarios involving many different events and states to consider. However,
in order to synthesize safety measures that have equivalent permissiveness to the manually
implementable one sketched above, either the synthesis method or the notion of events
must be altered. The first option, which addresses synthesis of preemptive supervisors, is
introduced in the following, while the second will be discussed in Section 5.6.

Note that the plant automaton shown in Figure 5.7d can actually be transferred onto sev-
eral scenarios, such as a vehicle striving towards an obstacle (replace openInlet by start,
closeInlet by stop, levelAlarm by obstacleAhead and overflow by crash) or the
doors of an elevator (replace openInlet by closeDoor, closeInlet by openDoor,
levelAlarm by lightBarrierInterrupted and overflow by objectJammed). In all
cases, the same issue arises: The synthesized interlocks disallow any operation of the
respective system due to the unstable state.

5.5.2 Enforceable Events

In the past, there have been numerous contributions which deal with augmenting SCT by
enforceable4 events. The earliest among these is the work by Golaszewski and Ramadge
[44]. They assume that an enforced event precludes all other events in that state. The
conception in this section roughly follows this principle in the sense that enforced events can

4Often referred to as forcible events

66

5.5 Preemption

(a) Alternative plant model,
Σ= {openInlet,closeInlet,

levelAlarm,overflow,?closeInlNow}

(b) Preemptive supervisor.

Figure 5.8: Example with preemption

be used to preempt undesired uncontrollable events in order to obtain a more permissive,
yet safe, supervision.

Consider again the manually realized safety system for the tank in Figure 5.7. When
safety shall be guaranteed using this mechanism, two constraints need be imposed. First,
the level sensor must be installed in a way that, respecting the maximal inflow, the valve can
still be closed before the overflow occurs. Second, the safety system must be reliably fast
enough to guarantee a sufficiently instant response. Note that the latter aspect is indeed a
real-time requirement to the hard- and, if applicable, software of the system. An explicit
time model or time measuring capabilities are not required though, as the reaction is to be
triggered as soon as possible. Preemption follows the exact same principle.

Example 5.5. Consider the alternative plant model in Figure 5.8 for the scenario from
Example 5.4. It has been supplemented by a transition carrying the event ?closeInlNow.
The question mark indicates the enforceability of the event. The synthesis routine detects
that the unsafe state C can be actively left using this transition and activates/enforces it.
The resulting supervisor, shown in Figure 5.8b, now allows the openInlet transition and
triggers ?closeInlNow immediately after levelAlarm has been detected. The ‘?’ in the
label of the enforceable transition has been replaced by a ‘!’ to emphasize the difference
between a yet enforceable and an already enforced transition. This supervisor is obviously
more permissive than the conservative one in Figure 5.7c and shows indeed the same
behavior as the manual safety system. Note that an additional specification which disallows
openInlet after ?closeInlNow could serve to synthesize an additional interlock. Í

Preemption Contract When preemptive synthesis is supposed to result in a safe sys-
tem, the same assumptions must hold as for the manually realized system mentioned
above. While the second constraint (that the system is sufficiently fast) rather affects
the hardware and the real-time properties of the framework implementation, it must still
be guaranteed that levelAlarm (or, for the analogue examples, obstacleAhead and
lightBarrierInterruped) occurs early enough to successfully intervene. Without a
time model, it is not possible to embed these aspects into the automata. Thus, it is up to

67

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

the user to decide whether an enforced reaction that is triggered once a state is entered,
would be timely or not. The following contract, in the following referred to as preemption
contract, is imposed between the user and preemptive synthesis:

1. If an enforceable transition is “offered”, synthesis assumes that it can successfully
preempt every uncontrollable event leaving the same state.

2. An enforceable event which is modeled possible by all plants (or not declared im-
possible by any plant) in a certain logical state, can indeed be executed on the
plant.

For the sake of stronger permissiveness, preemption is always favored over isolating the
state. The latter option is only chosen if there is no enforceable transition or all of them lead
to another unsafe state. The second item of the contract becomes vital in the context of plant
models being interpreted as an over-approximation of the actually possible behavior, as
claimed by the plant contract in Section 5.4. For enforceable events the reversed semantics
are required, i.e., the enforced events must form an under-approximation of the actually
enforceable actions. This is necessary to make sure that every enforced action can indeed
be executed when it is expected.

Example 5.6. Consider a model for a chemical plant. Not all physical aspects need to be
covered by the plant model (over-approximation). Let es be an event representing a sensor
reporting a certain threshold. If es is part of a plant model’s alphabet then there must be
an outgoing es transition at every state where es is physically possible so that synthesis is
aware of when this threshold can be reached in principle. Let e f represent the activation of
an emergency cooling mechanism. Then the model must not contain any e f transitions in
states where enabling that mechanism would not be possible (under-approximation). Í

When several enforceable transitions exist, one of them is picked randomly. Remember
that solving optimization problems is beyond the scope of the presented approach. Hence,
it is not able to determine which choice amongst several transitions would be the “best” one.
Instead, it is assumed that all enforceable transitions that leave the problematic unstable
state equivalently suitable. The significant difference to the approaches which solve CHOICE

by randomness is the fact that randomized decisions are applied only for the sake of hazard
prevention if more than one enforceable event is safely possible whereas those use them to
generate productivity.

5.5.3 Relation to Other Formalisms

Enforcement in Timed DES In his monograph [117], Wonham describes how control-
lable events can theoretically be enforced on timed DES (see Section 3.1.3). The key is
the controllable tick event, which can be disabled to enforce an immediate action. This
way, the resulting closed-loop language does not tolerate the passage of time until tick is
admissible again.

To enforce a specific event in a given state, it is necessary that all other events are disabled
in that state [44]. Thus, the specification and plant models must set the circumstances

68

5.5 Preemption

that finally cause the remaining events being disabled. There are methods, e.g., [29], to
translate untimed DES with enforced transitions to timed DES that use the Wonham method
and involve only the two classical event types.

Although Wonham’s method allows an elegant integration of event enforcement into the
classic framework of SCT and indeed leads to languages that reflect the desired behavior, it
is problematic when supervisors shall be executed during runtime due to several reasons.
It is obviously not possible to physically stop time. Hence, it would be necessary that
the respective part of the control loop which is responsible for the remaining events
interprets the disabled tick event properly and instantly executes an event. In the considered
application the controller triggers all controllable events (or performs the actions that lead
to their detection). However, the reason why supervision is installed on the system is
that it must be assumed that the latter is faulty and omits the necessary reactions. As a
consequence, if the event is crucial and supervision shall guarantee that it is applied to
the plant reliably, it must be the supervisor to execute it. Hence, in this specific scenario it
makes sense to stick to three event classes that allow a distinguished handling and formal
representation of the events from three different participants.

When controller supervision shall comprehensively realize timing coherences, there is
obviously no way around a modeling paradigm that provides full expressiveness on these
aspects, such as timed DES. Enforceable transitions instead offer a straightforward method
to introduce definite actions which must be executed immediately, even if the controller
does not trigger them. Therefore, they combine the advantages of easier modeling, smaller
models and a more direct relation to the runtime problem to the price of having no complete
time model, which would allow to consider arbitrary dependencies.

I/O Automata This automaton type has been utilized, e.g., by Balemi [9] and by Schuh
and Lunze [98]. Regarding the controller response, I/O automata have a reactive design:
Instead of passively monitoring the plant and disabling some transitions, the controller
enforces one specific action after every sensor event. This direct association between
observations and reactions is not provided by Ramadge and Wonham’s SCT, neither is the
concept followed here. However, since an enforced transition in a supervisor is executed as
soon as the corresponding source state is entered, the combination of an uncontrollable
transition and a succeeding enforced one can be seen as one logic I/O transition because
the supervisor never resides in the intermediate state between both. Still, the goal is not
to realize reactive controllers. Enforceable events shall provide a way for the supervisor
to actively leave critical states and thus allow the controller to enter them in general.
Nonetheless, should these events not be misused to implement productivity requirements
or longer sequences as indeed several problems can arise when enforceable events are used
too exhaustively. This will be discussed in Section 6.4.2.

5.5.4 Which Events Shall be Preempted?

The basic idea of preemption is that undesired uncontrollable events can be precluded
by actions which are enforced timely by the supervisor. This, however, leaves open the

69

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

question whether these enforced events preempt the remaining events of the same states
as well. Most approaches follow Golaszewski and Ramadge [44] and claim that either one
enforced event is enabled or all uncontrollable events. In their work on event enforcement,
Diekmann and Weidemann [29] relaxed the control law (Equation 2.1) accordingly.

When an existing controller implementation shall be supervised by the framework, this
interpretation of enforcement would collide with the intention of the presented approach.
In Section 5.1 it was mentioned that a correctly operating controller should be distorted
as little as possible. Hence, the supervisor should only enforce a reaction if the controller
misses to do so. Still, it is assumed that a deliberate reaction to a sensor event, triggered by
the controller, is likely to be more prudential, differentiated and thus preferable compared
to an (emergency) action by the supervisor.

Consider the preemptive supervisor in Figure 5.8b. The enforced event !closeInlNow
would not only preempt the uncontrollable overflow but also the controllable event
closeInlet. However, closeInlet is the proper reaction intended and expected by
the control designer. Thus, !closeInlNow shall be executed if and only if that action is
missing. Adopting Diekmann and Weidemann’s control law here would defeat this purpose.
Note that the controller is executed before the supervisor but within the same PLC cycle
(cf. Figure 5.1b). As a consequence, both receive the information about the tank being full
(levelAlarm) at the same time. To not interfere with a correct controller implementation
it is necessary to not preempt controllable events, given that these are not prohibited due
to other aspects of the specification. The formalization of preemption, given in Section
5.8.5, follows this principle and indeed yields the very supervisor shown in Figure 5.8b
where closeInlet is not preempted. That means that !closeInlNow is only executed
in C’ during runtime if closeInlet has not been detected.

For uncontrollable events, the situation is a bit different. Based on the preemption
contract, they are considered as successfully preempted in case a transition is enforced. A
permissive method would only discard uncontrollable prohibitions (those which shall be
preempted) while leaving uncontrollable transitions untouched. This can be done without
risk as it can only enhance the supervisor’s preciseness in tracking the plant. Thus, if
a sensor event is immediately followed by another uncontrollable event (e.g. a safety
reaction implemented in hardware), the supervisor can track both events before a reaction
is enforced if that is still necessary at all. Unfortunately, although this notion can be
implemented and also formally modeled straightforwardly, it turns out very unhandy when
proving the correctness of preemption as it requires to treat events differently that are or
will be prohibited at any time during execution. Thus, the definition of the algorithm on
the one hand and safety itself on the other hand would depend on each other, making
the proof of the algorithm’s safety significantly more cumbersome. For these reasons, the
formal model and the tool implementation presented in the following chapter diverge in
this aspect.

Example 5.7. Figure 5.9 shall illustrate this. u1 represents a sensor, u3 an undesired
incident and ci a controller reaction to u1 and u2 a hardware reaction. Part 5.9a shows the
composition of a specification prohibiting u3 and a plant which offers f to escape from the
only state where u3 can happen before the latter occurs. Synthesis finds the f transition,

70

5.5 Preemption

(a) Synthesis Automaton before preemption (b) Preempt only prohibitions

(c) Preempt all uncontrollable events (d) Preemption as suggested by [44, 29]

Figure 5.9: Preemption of further events. ui uncontrollable, c controllable, f enforceable

enforces it and removes the prohibition of u3. The result is shown in Part 5.9b. When the
sensor is triggered, u1 is detected. If the controller reacts properly, c2 would be recognized
too, both would be tracked and the supervisor ends in state 5 at the end of the cycle. f
would not be executed. In case of an immediate hardware reaction, u1 and u2 would be
detected and the supervisor would stop in state 45. Thus, f is only enforced if neither c2

nor u2 occur in the same cycle as u1. The control law suggested by [44] and formulated
by [29] would preempt both events in state 2. Thus, f would always be enforced and the
supervisor would not be able to track either of them, i.e., it would intervene in a correctly
working controller. Í

When more than one enforceable event is possible at one state and synthesis enforces
one of them, the other one is neither explicitly preempted nor triggered. The reason is
that, if there are several supervisors, the other event can still be enforced too. When only
one supervisor is used, all enforceable events which are not executed can be taken as
preempted as no other participant of the control loop will trigger them. Practically, this
is not relevant because synthesis explicitly prohibits events which lead to critical states.
If these are not uncontrollable, their preemption is not required since they would not be
executed (enforceable events) or granted (controllable events) by the supervisor anyway.

5.5.5 Enforcement Cascades

Sequences of multiple subsequent enforceable transitions should be handled with care.
Enforcement is meant to provide a technique for preemption but not to replace operational
implementations. When several enforced events are cascaded, they will all be executed by

5If events are statically ordered in a reasonable way, see Section 6.4

71

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

Figure 5.10: Cascade of enforced events

the supervisor within the same PLC cycle. That means that the plant will not recognize the
events in their order within the supervisor but simultaneously.

Example 5.8. Given the supervisor shown in Figure 5.10, the framework executes f1,f2

and f3 in the same cycle. The associated actions are executed after c’s action in the given
order but still within the same PLC cycle. Hence, the corresponding electric outputs of the
PLC are altered at the same time. Í

Indeed would it be possible to introduce a special end-of-cycle event that could be used
to delay the execution of further enforceable events by one cycle each. The cycle time,
however, is only assumed to be sufficiently short to capture relevant event sequences from
the plant but there is no reasonable lower limit to it. As a consequence, even if events were
enforced in subsequent cycles, it would not be guaranteed that the plant would be able to
properly recognize the events in the correct order and, even more important, physically
put them into effect with appropriate timings. The latter is even rather unlikely in practice
as actuators are usually significantly slower than the controller operating them. Instead,
this matter can be solved with timers, see Section 6.1.3.

If multiple enforced events originate from different requirements, their combination is
uncritical and even intended, as shown by the following example.

Example 5.9. Consider the specification and two plant models in Figure 5.11. The two plant
models indicate that for each of the prohibited events, u2 and u3, there is one respective
enforceable preemption, ?f1 and ?f2. Part 5.11d shows the composition of all three
automata. It is clearly visible that both enforceable events need to be executed to effectively
preclude both incidents. One of the two possible maximally permissive supervisors is shown
in Subfigure 5.11e. The alternative one is analog except it enforces ?f2 first. In either
case, both events are enforced within the same cycle. The user could declare priorities for
the enforceable events in order to deterministically yield their proper order of execution.
This becomes relevant if the events operate on the same variables or memory addresses.
However, the user has to make sure that their actions are insensitive with respect to their
order, e.g., when writing to the same variables or output addresses. Í

More problematic is a cycle of several enforced transitions, which should be avoided by
all means. Solving that problem during synthesis would require lookahead mechanisms to
find alternative enforceable events. Nonetheless, these cycles are only possible if the user
has built them into one model as they cannot be introduced by synthesis or composition.
Detecting these cycles can be automated. Resolving them, however, must be a manual task
as it affects the semantics of model and specification.

72

5.5 Preemption

(a) Specification H (b) Plant G1 (c) Plant G2

(d) Application of G1 and G2 onto H (e) One maximally perm. supervisor

Figure 5.11: Intended cascade of enforced events

5.5.6 General Limitations of Preemption

In the above examples, enforced events immediately cause the unstable, thus hazardous,
states to be left. However, assuming that the true hazard has only been averted after a
sensor confirms this, for example, that a valve has not only been instructed to close, but also
the flow has been measured to have stopped (uncontrollable sensor event), this is no longer
sufficient. In that case, the enforced transition only leads to a state that is still unstable, i.e.
contains the forbidden, uncontrollable event, which inevitably leads to the conservative
truncation of the state.

Summarized, preemption in untimed DES can only work if the enforceable event itself
leads to a safe and stable state. An alternative is to provide and investigate cause-effect
models, for instance in the shape of [105, 63, 61, 47], which are able to capture the relation
between the enforcement of the actuator on the one hand and the sensor entering the safe
state on the other. Unfortunately, even then, success is questionable without a time model,
because it needs to be known how long it takes for the measure to take effect and whether
this is early enough to reliably prevent undesired incidents. Note that this would involve
time constraints on the plant hardware and even the controlled process itself whereas the
preemption contract only makes real-time claims to the controller hardware.

5.5.6.1 Fundamental Problem

There is an inherent conflict between the required (deterministic) correctness of the model,
which can assert, for example, that a valve is closed after no more than 5 seconds after
triggering the actuator, and the fact that a non-controllable event is triggered by a physical
sensor. This cannot be solved even with a time model: Either that model is assumed to
be correct and the valve always stops the flow before it is too late, or the sensor will wait
for feedback for an indefinite period of time and the model is potentially unsafe. In the

73

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

first case, the timely effect of the enforced event would be guaranteed and the sensor was
dispensable. The enforced event could legitimately lead to the safe state as in the presented
examples. In the second case, even a time model would not help.

Requirements such as “The valve closes regularly within 5 seconds. If this does not happen,
an alarm must be triggered.” would be implementable with a time model. However, they
can also be accomplished by measuring time outside the model as discussed in Section
6.1.3.

5.6 Cyclic Events

Above it was demonstrated that classic SCT is not able to deal with unstable states without
the support of either a time model or enforceable events. An alternative approach is to
shift the timing considerations from the model to the execution framework.

The cyclic runtime paradigm of the host PLC causes a natural discretization of time. In
every cycle, the controller is able to update its output values based on the information
it gets from the hardware inputs. Hence, the resulting reaction time is guaranteed to be
below twice the worst-case cycle time.

In contrast to that, controllable events are classically detected upon a rising or falling edge
of the specified trigger condition, i.e., when the controller changes its output in a manner
which is relevant for the supervised requirement (cf. Section 5.3.2). As a consequence,
the supervisor can only authorize these outputs once. If it does so, the values are allowed
to stay unaltered for an arbitrarily long time. That means in return, if the values can
eventually cause any undesired yet uncontrollable events, the only way how the supervisor
can avoid these is to reject the values right in the moment they are applied.

Cyclic events integrate the aspect of a the bounded reaction time of the PLC with discrete-
event systems. They have been presented in [41]. A cyclic event is not only detected
when the trigger condition changes from false to true (or reversely) but every time that
the condition holds after the controller has been executed. This limits the impact of the
event to the duration of one cycle and particularly gives the supervisor the opportunity to
reconsider its decision if the current state has changed. In contrast to enforceable events,
cyclic events do neither represent a new event class nor do they require special treatment
by the synthesis algorithms. Instead, they are ordinary controllable events except that they
are not triggered only when the controller’s output has changed but after every execution
of the controller routine, i.e., once a cycle, as long as their trigger is true.

From an SCT perspective, the key to better permissiveness without explicit preemption
is to break uncontrollable cascades. Typically, these involve one or several sensor events
which finally lead to a state with some forbidden uncontrollable event. Cyclically triggered
controllable events provide a way to interrupt such cascades.

To make cyclic events work, it is necessary to provide them with Code on denial which
revokes the output values that triggered the respective event. An alternative was an altered
Reset on denial action which sets the outputs back to the values they had in the last cycle
where the event was not detected.

74

5.6 Cyclic Events

Figure 5.12: Uncontrollable cascade, interrupted by controllable cyclic event

Example 5.10. For this example, the problem of the overflowing tank in Figure 5.7 (pg. 65) is
revisited. The cascade of the succeeding uncontrollable events levelAlarm and overflow
needs to be interrupted to increase permissiveness. The event openInlet is defined as
detected, controllable event. It is triggered when the valve is opened, i.e., on a (rising) edge
of an input. Its action class is Reset on denial, i.e., the hardware output which is connected
to the valve is set back to the value it had before the controller was invoked if the supervisor
rejects it. Remember that synthesis disables openInlet in this case.

Figure 5.12 shows an alternative plant automaton where inletOpen1Cyc takes the
place of openInlet. In contrast to the latter, it is not only triggered once the open signal
is detected but cyclically as long as the valve is kept open. Further does it have the action
class code on denial where the provided code serves to close the valve. Using this plant
model, the tank can be filled safely. As soon as the controller attempts to open the valve,
the supervisor changes to state 2 and stays there until levelAlarm occurs. If then the
controller does not close the inlet by setting the output back to value which corresponds to
close, the supervisor detects inletOpen1Cyc once again and rejects it. The specified code
then shuts the valve. Í

At the first glance, using cyclic events seems counter-intuitive as the controller does
not perform an active action which could logically be blocked. On the other hand, the
undesired incident (above, overflow) does not stay impossible but becomes imminent
after some time. Thus, something must happen on the plant that causes a logic change of
state.

When comparing the situations (remember the vehicle or the elevator example from
Section 5.5.1) which benefit from preemption or cyclic events in terms of increasing
permissiveness, one similarity is apparent. They all involve states in which the plants’
dynamics evolve on its own after they are entered. In case of Example 5.10, that is the tank
which continues being filled without any further action by the controller once the inlet is
open. When considering the plant on a more abstract level by hiding the actuators and
sensors, the cyclic event makes more sense. It now represents adding a certain volume of
liquid to the tank. The precise amount is not known but an upper bound for it thanks to
the bounded cycle time. This way, supervision can reasonably determine whether another
portion of the liquid can safely be added or not after the level sensor has been reached.
The required knowledge about the maximal flow, the worst-case closing time of the valve
and the maximum reaction time of the controller are exactly the same as they would be
necessary for a conventional safety system.

Example 5.11. Consider a vehicle equipped with a supersonic sensor installed at the front
for the sake of obstacle avoidance. Assume that the vehicle has only two possible physical

75

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

Y2

Y2

Y3

M

L3
L2

L1

(a) Plant schema

(b) Plant model for Y3

(c) Plant model for M

(d) Specification

(e) Plant model Lvl representing discretized fill levels

Figure 5.13: Example of a heating tank. All alphabets are disjoint.

states: driving forwards and standing still. Instead of capturing the rising and falling edges
of triggers over the speed or the engine’s angular momentum for the controllable events,
a cyclic event can be defined on the trigger condition speed > 0. Knowing the maximum
speed and the cycle time, this event corresponds to moving the vehicle by a certain known
distance. Again, this event can be granted as long as no obstacle is detected and rejected
thereafter. Its action on denial then stops the engine and thus prevents a crash. The plant
structure is analog to the one in Figure 5.12. Í

By breaking uncontrollable cascades already in the automaton, the combination of cyclic
events and action on denial increases the permissiveness of supervision to a similar extend
as preemption6. In contrast to the latter it does neither require a third event type nor an
adaptation of the synthesis algorithm but can be achieved with conventional SCT.

5.7 Conditional Transitions and Prohibitions

When capturing the coherences and collaboration between several plant parts, states and
transitions often need to be provided several times. This is particularly the case when an
event needs to be modeled as being possible only when two or more plant components are
in a specific state.

Example 5.12. Consider the heating tank example shown in Figure 5.13 which is inspired by
the one from [47]. By opening valve Y3, hot liquid streams through a heat exchanger inside
the tank. The stirrer can be switched on and off through the motor M. The states of the

6The actual preemption is moved out of the scope of DES/SCT into the generated code. The action on denial
obviously still preempts the incident physically.

76

5.7 Conditional Transitions and Prohibitions

plant automaton depicted in Part 5.13e represent four discretized fill levels including empty
(emp). As in the original example, the liquid must be avoided to gelatinize (uncontrollable
jelly event). In order to yield a controllable problem, another plant model is required to
identify the states in which jelly can occur. Assume that it is only possible when the tank
contains at least as much product that L1 is reached while the heating is on. Stirring the
substance preserves it from gelatinization. The necessary automaton needs to distinguish
states of all three existing plant models, i.e., it consists of 16 states, three of which have an
outgoing jelly transition whereas 13 have none. Í

It would in principle be possible to first compute the composition of the existing plant
automata, yielding a new plant automaton, and manually add the additional transition
afterwards. However, this would not be a well-maintainable and hence not very satisfying
solution as it would require to repeat this procedure each time that the original plant
automata are changed.

The concepts and results of this section have been published in [42] unless stated
differently.

5.7.1 Introduction

Although automata provide a state-based perspective on DES, the semantic notion of these
states is not visible outside the automaton they are defined in. Instead, automata are only
synchronized on their events, thus on the possible orders of their transitions. From a formal
point of view, that makes sense as it allows to intersect their languages, inversely projected
onto each other’s alphabets.

The human mind, however, rather makes considerations in terms of events (time points)
and states (time intervals) and relating both to each other [8]. Hence, for humans modeling
automata, i.e., thinking about which event can occur in which state and then causes which
transition, is usually easier than providing the language of a plant right away. Unfortunately,
this connection of states and transitions is missing amongst several automata. Thus it is not
possible to model statements as “Gelatinization can happen when enough product is in the
tank to reach the enabled heating while not being stirred.” without providing an automaton
which is able to embody the described situation including all possible paths leading there
from the initial state. This issue becomes even more significant when a greater number
of plant components are involved and can finally eliminate all benefits of modeling DES
modularly.

5.7.1.1 Conditional Transitions and Prohibitions

In order to avoid the necessity of providing all paths to specific, already modeled states re-
dundantly, transitions and prohibitions are equipped with conditions over other automata’s
states. Depending on the context, these must, may or may not be active for a transition to
be takeable and for a prohibition to apply. Practically, such a condition is a propositional
logic formula over state identifiers.

77

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

Figure 5.14: Additional plant model to define when gelatinization is possible, Σ = {jelly}

If a condition evaluates to false, the corresponding transition/prohibition is ignored as if
it did not exist. In the following, A.q addresses the state q of automaton A.

Example 5.13. Figure 5.14 shows the missing plant model for Example 5.12 using a
conditional transition. It replaces the 16-states automaton mentioned above, which would
be necessary without conditions. Í

5.7.1.2 Former Approaches

The idea of augmenting transitions with logic propositions is not new. Lind-Nielsen et
al. already applied conditions on active/inactive states to automaton transitions [69],
even though in another scientific context. Supremica [1, 2] (cf. Section 3.2.1) follows a
slightly different approach and introduces numeric variables to the automata which can be
arithmetically manipulated by transition actions and checked on transition guards. Since
these variables are restricted to finite, thus regular, domains [1], Supremica’s concept and
the one introduced here can theoretically be translated into each other.

Another modeling paradigm is followed by condition/event systems [105], which have
successfully been used for supervisory control scenarios in the past [61, 63]. The idea of
relating logic events with logic states, represented by conditions, forms the conceptual
foundation of these systems. One application is the modeling and analysis of cause-effect
relationships between several transitions. Condition/event systems are always based on a
discrete time model [105].

5.7.2 Resolving Conditions in Composite Automata

Conditional transitions and prohibitions introduce further dependencies between the au-
tomata describing a problem. Since the methods of SCT require definite, unconditional
transitions, these dependencies need be resolved before synthesis. This is done during
automaton composition. Since conditions may only reference existing states of other au-
tomata from the scope of the same control problem, the comprehensive composition of
all these automata is, by definition, condition-free. This is because in the result of that
composition, every condition can finally be evaluated to either true or false. On true, the
condition can be omitted, whereas on false, the entire transition is dropped. Thanks to that,
the expressiveness of DES with conditions is still regular as long as these can be properly
resolved.

If a project contains more than two automata, conditions cannot always be fully evaluated
immediately. Nevertheless, when two automata are composed, the conditions of the one
can be refined on the state information of the other and vice versa.

78

5.7 Conditional Transitions and Prohibitions

Figure 5.15: Condition refinement in plant composition (figure based on [42])

Example 5.14. Figure 5.15 shows two exemplary plant automata A and B, both having
conditional transitions, and their composition. Assume ΣA = {a,b},ΣB = {b,c}, thus
ΣA‖B = {a,b,c}. All occurrences of states inside A and B can be resolved within the
composition, whereas [C.V] remains. Í

In general, a variable inside a condition evaluates to true if it references to the source
state of the respective transition or prohibition. This naturally includes composite states.
For instance, the conditions [G.q] and [H.p] would both evaluate to true on transitions
leaving the state (G ‖ H).qp. In return, a reference to another state of the same automaton
evaluates to false, such as G.r in (G ‖ H).qp if r 6= q.

5.7.2.1 Multiple Transitions

In principle, multiple conditional transitions can be defined on the same event and state
without violating determinism as long as their conditions logically exclude each other.
Satisfiability checkers could be instrumentalized in order to verify that. An easier solution
is to warn the user when the conditions of two outbound transitions of the same state both
evaluate to true during composition, and abort.

Multiple conditional prohibitions of the same event are not necessary as these can easily
be substituted by one prohibition with a disjunction of several conditions c1 ∨ · · · ∨ cn.

5.7.2.2 Plant Composition

Consider two plants G1 and G2 which have conditional transitions and shall be composed
with each other. Both plants are still synchronized via their events. Hence, transitions on
different events can be handled independently from each other.

For each event e for which a transition exists at the currently considered state, several
cases need to be distinguished: (1) e, is not in the alphabet of one plant Gi, i ∈ {1, 2}, (2) it
is in both plants’ alphabets but only one plant Gi defines e-transitions on the current state,
and (3) the respective current states of both plants provide transitions on e. In case (1) the
conditions can be refined on Gi ’s current state as described above since G3−i can neither
provide any information on e nor change its state on this event. In the second case, Gi

claims that the event is not possible to occur, i.e., all e transitions can be omitted at this

79

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

state regardless of their conditions. Case (3) requires that the conditions of all e-transitions
are combined pairwise. For every such pair one new transition to the respective composed
target state is inserted. The two conditions are conjuncted because both must hold for the
new transition to be feasible. The formal composition of plants with conditional transitions
is given in Section 5.8.4.

5.7.2.3 Specification and Plant Models

When a plant model is applied onto a specification or on an existing synthesis automaton,
the situation is slightly more complicated. The reason is that specifications include both
transitions and prohibitions. Besides, they may reside in their current state if first no
condition on any outbound transition is fulfilled, and second the event is not part of the
plant’s alphabet or, equivalently, the synthesis automaton’s plant alphabet (cf. Section 5.3).
Plant models serve the purpose to narrow specifications onto actually possible cases. A
prohibition is only kept in the composition if either the plant does not know the event or it
has a transition for it leaving the current state. Otherwise, the event is not imminent in
that situation.

Removing prohibitions of such impossible events is important to ensure maximal permis-
siveness of the result, at least if the event is uncontrollable. Hence, prohibitions depend on
the existence of corresponding transitions on the plant and, by that, on their respective
conditions. On the other hand, prohibitions obviously need to be dominant over transitions
to not violate the specification. These three aspects, specification resides in current state,
forbidden events need to be possible to stay prohibited, prohibition dominates transitions, must
be considered when composing a specification/synthesis automaton with a plant. As for
the plant-plant case, a formal definition can be found in Section 5.8.4.

Example 5.15. Figure 5.16 shows all cases for the composition of a specification H and a
plant G schematically. It is assumed that no refinements can be applied on the conditions
between H and G, i.e., they all exclusively address states of other automata. Í

5.7.3 Synthesis on DES with Conditions

The user is responsible for applying all relevant plants to the specification before monolithic
synthesis is invoked. This also includes resolving all conditions. Transitions and forbidden
events which still carry conditions in the stage of synthesis will be treated conservatively,
i.e., controllable and uncontrollable events are assumed to be possible in principle and thus
potentially need to be avoided, whilst conditional enforceable transitions are ignored. If a
supervisor exists, it is guaranteed to be safe but unlikely to be maximally permissive.

Incremental synthesis is meant to be executed on a bare specification and includes all
required plants automatically. Conditional prohibitions of uncontrollable events are always
resolved by composition with the referenced automata before any further actions are
taken which would change the behavior of the supervisor. The same holds for enforceable
transitions before they are activated, i.e., the algorithm makes sure that preemption is
indeed possible in the respective situation.

80

5.7 Conditional Transitions and Prohibitions

H: 1

23

e[cp]

e[c1]e[c2]

G: A B

C

e[d1]

e[d2]

H@G:

1A1B 1C

2B

3B 2C

3C

e[cp ∧ (d1 ∨ d2)]

e[¬c1 ∧ ¬c2 ∧ ¬cp ∧ d1] e[¬c1 ∧ ¬c2 ∧ ¬cp ∧ d2]

e[c1 ∧ d1]

e[c2 ∧ d1] e[c1 ∧ d2]

e[c2 ∧ d2]

Figure 5.16: Specification-plant composition with conditions (figure taken from [42])

Anyway, the final supervisor must not contain multiple transitions per event anymore as
the presented approach does not provide condition evaluation during runtime yet. However,
detecting such in the resulting automaton is trivial.

5.7.4 Outlook

In general, conditional transitions provide the user with a powerful yet efficient way of
modeling. They allow to restrict statements, such as something being prohibited, possible
or causing the current state to change, to certain states of other components or even
combinations of these. In the presented approach, conditions still need to be resolved by
composition with the referenced automata before or, at the latest, during synthesis. In the
future it would be desirable to allow synthesis to operate with conditional transitions rather
than just resolving them by composition. When using symbolic methods which invoke
satisfiability or BDD solvers like [26, 50, 116, 113], this could increase performance and,
by that, the admissible size and complexity of models significantly. Ultimately, it could
be possible to support conditional transitions and prohibitions in the final supervisors.
However, this would require communication and synchronization of supervisors during
runtime which can be problematically in terms of time predictability. Either way, additional
research would be necessary to investigate the chances, risks and limitations in actually
lifting synthesis to conditional DES. As long as nonblockingness is neglected, the state
spaces often keep manageable sizes anyhow, such that resolution by composition is usually
practicable.

81

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

5.8 Formal Model

The supervisory control theory as defined by [87, 88, 23] and sketched in Chapter 2 is a
formal framework that addresses a specific problem, thus a calculus. The concepts and
alterations introduced in the previous sections do not precisely match the definitions of
SCT. Instead of transferring the existing calculus onto the practical problem, the modeling
concept has been derived from an applicational point of view. A dualism between the latter
and the SCT could serve as a basis to prove the correctness of the methods. However, since
the classic SCT lacks in the combined representation of admissible and possible behaviors
within the same automaton, the algorithms for composition and synthesis in this case had
to undergo substantial transformations as well. Without these being proven to be sound as
well, an implementation had to be based on the SCT models directly or their classification
as a formal method would be at least questionable. In order to avoid that detour through
SCT, a new, self-contained formalization is given in this section. The different automata
types (specifications, supervisors, etc.) are formalized as separate entities with their own
semantics as informally introduced before.

Compared to the Ramade-Wonham formalism, the presented framework is rather tech-
nical as it represents an ex-post formalization. However, its intention is rather to reflect
the models and methods as precisely as possible in order to prove their soundness than to
give an intuitive introduction to a concept. The two synthesis algorithms are defined on
top of the formal model along with certain properties which are necessary to prove their
correctness.

Unlike the traditional SCT, the discussed formalism is entirely based on automata as these,
besides the events, form the basis of the model. The user provides both the requirements
and the physical plant capabilities in the shape of automata. Hence it makes sense that
also the algorithms operate on these. Formal languages as primarily used by Ramadge and
Wonham only serve to define and proove properties but at no time need to be stored or
handled by the algorithms.

Another difference is that the language of the entire physically possible plant behavior
is not assumed to be known as in many other contributions where the generator defines
that language. It will be referenced by Lphy within this section. The plant contract only
applies some restrictions on Lphy but does not allow to produce or reconstruct it in detail.
The same holds for the alphabet of all possible events, Σ̂, which will be used to define and
proove properties but also needs not to be known entirely.

The incremental synthesis algorithm has not been part of former publications or tools
yet, neither in the presented shape nor based on traditional SCT automata.

5.8.1 Basic Concepts

In this section, the basic automaton concepts will be defined as well as their compositions.
To formally capture the scope of the requirements that shall be enforced by supervision,
the environment is introduced.

82

5.8 Formal Model

DEFINITION 1 (Environment) A supervisory control environment E is a tuple E = (Σ̂, Lphy,
H,G) of

• a master alphabet Σ̂

• the prefix-closed language Lphy ⊆ Σ̂∗ of the physical plant’s possible behavior

• a set of plant models G

• a set of specifications H.

The master alphabet represents the set of all events that are possible in the considered
scenario. It is partitioned into the classes of controllable events Σ̂c and uncontrollable events
Σ̂u. Note that neither Σ̂ nor Lphy have to be known and Lphy does not necessarily have to be
regular. G and H are the sets of plant models and specifications the user has provided for
the problem. As usual on modular systems, events form the basis for the synchronization
of multiple automata. The master alphabet Σ̂ must at least contain all events used in G,H
and Lphy but may be larger.

5.8.1.1 Safety Specifications

The starting point for supervisor synthesis is a specification automaton.

DEFINITION 2 (Specification) A specification is a quadruple H = (Q, f , P, q0) of

• a finite set of states Q

• a partial transition function f : Q× Σ̂*Q

• a prohibition map P : Q→ 2Σ̂

• an initial state q0.

For f and all other partially defined functions we use the notation f (x)! if f is defined
on x and f (x)�! if not. Further, when for a set M it is stated that f (x) ∈ M we implicitly
include f (x)! to the statement.

When clear from the context, the index notation XY refers to the element X in the tuple
Y = (. . . , X , . . .), e.g., QH addresses the state space of H = (Q, f , P, q0). Note that Definition
2 does not involve a dedicated alphabet for the specification as it reflects the automaton
type as described in Section 5.3.

In the following we assume all specifications to be consistent, i.e., ∀q ∈ Q holds e ∈
P(q) =⇒ f (q, e)�!.

DEFINITION 3 (Transitive Path Function) The transitive path function f ∗ : Q × Σ̂∗ * Q
for specifications is recursively defined by

f ∗(q,ε) = q

f ∗(q, es) =

f ∗(q, s) if f (q, e)�! ∧ e /∈ P(q)
f ∗(f (q, e), s) if f (q, e)!
undefined otherwise

83

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

where e ∈ Σ̂, s ∈ Σ̂∗. For brevity, we sometimes write f ∗(e) instead of f ∗(q0, e). The
transition function f is an essential element of each automaton definition, which has to be
stored explicitly, whereas f ∗ is implicitly given. It is required for propositions and proofs
only but not needed for operators and algorithms. Each specification defines two languages
over Σ̂.

DEFINITION 4 (Languages of a Specification) Let H ∈ H be a specification and f ∗ its
transitive path function. The prohibited language of a specification is defined by LP(H) =
{ses′ ∈ Σ̂∗ | s, s′ ∈ Σ̂∗, f ∗(s)!, e ∈ P(f ∗(s))}, its safe language by LS(H) = Σ̂∗ \LP(H).

Intuitively, all words that end on a prohibited event and all possible continuations of
those words are contained in LP(H), i.e., LP(H)Σ̂∗ = LP(H). We hence call LP(H) closed
under continuation over Σ̂. This suits the common definition of safety properties in the
theory of ω-regular languages7. LS(H) contains all event sequences of Σ̂∗ that are not
forbidden, by H, i.e., allowed.

LEMMA 1 (Prefix closure of LS) Let H ∈ H be a specification. LS(H) is prefix closed.

Proof. Obviously, Σ̂∗ is prefix-closed. LP is closed under continuation. The complement of
a such a language inside a prefix closed domain is prefix-closed.

That means that a safe event sequence must have been safe all the time before.

DEFINITION 5 (Dual SCT Specification) Every specification H can be translated to an
equivalent specification H ′ in the sense of [87, 88, 23] where H ′ = (Q,Σ′, f ′, Γ , q′0), f ′ :
Q×Σ′*Q, Σ′ :=

⋃

q∈Q

�

{e ∈ Σ̂ | f (q, e)!} ∪ P(q)
�

, Γ (q) := Σ′ \ P(q), q′0 := q0, and

f ′(q, e) :=

q if f (q, e)�!∧ e /∈ P(q)
f (q, e) if f (q, e)!
undefined if e ∈ P(q)

The first case in the definition of f ′ inserts loops for legal events. Σ′ contains all events
that occur at H ’s transitions or that are prohibited at some state.

Definition 5 illustrates that the expressiveness of both ways of modeling does not differ.
The translation to the opposite direction is omitted but works in exact analogy.

5.8.1.2 The Specification Product

In most cases it makes sense to synthesize the supervisor for each specification separately as
the state space is smaller on average. However, it is sometimes reasonable to fuse multiple
specifications to one, e.g., to avoid prohibited enforceable events being used for preemption
(cf. Section 6.4.2). This can be done with the specification product.

DEFINITION 6 (Specification Product, |) Given two specifications H1 = (Q1, f1, P1, q01), H2 =
(Q2, f2, P2, q02) their product “|” is defined by H1|H2 = Ac(Q, f , P, q0) = H where

7Inω-regular language theory, an infinite string is unsafe if it has a finite prefix that violates a safety property,
cf. Section 4.3.2.

84

5.8 Formal Model

• Q :=Q1 ×Q2

• P : Q→ 2Σ̂, P(q1, q2) := P1(q1)∪ P2(q2)

• f : Q× Σ̂*Q

f ((q1, q2), e) =

(f1(q1, e), f2(q2, e)) if f1(q1, e)!∧ f2(q2, e)!
(f1(q1, e), q2) if f1(q1, e)!∧ f2(q2, e)�!∧ e /∈ P2(q)
(q1, f2(q2, e)) if f2(q2, e)!∧ f1(q1, e)�!∧ e /∈ P1(q)
undefined otherwise

• q0 := (q01, q02)

Ac denotes the accessible function which reduces an automaton to the parts reachable from
its initial state q0

8: Ac(Q, f , P, q0) = (Q′, f ′, P ′, q0) where

• Q′ = {q ∈Q | ∃s ∈ Σ̂∗ : f ∗(q0, s)!}

• f ′ : Q′ × Σ̂*Q′, f ′(q, e) = f (q, e)

• P ′ : Q′→ 2Σ̂, P ′(q) = P(q)

LEMMA 2 Let H1, H2 ∈ H be consistent. Then H = H1|H2 is also consistent.

Proof. For each q1 ∈Q1, q2 ∈Q2, e ∈ Σ̂ holds:

• If f1(q1, e)! and f2(q2, e)! then (due to consistency of H1, H2) holds e /∈ P1(q1) ∪
P2(q2) = P(q) −→ consistent.

• If f1(q1, e)! and e ∈ P2(q2) then f ((q1, q2), e)�! by construction.

• If f2(q2, e)! and e ∈ P1(q1) . . . (analogue).

• If f1(q1, e)�! and f2(q2, e)�! then also f ((q1, q2), e)�!.

This covers all cases that could possibly violate consistency.

The result of the specification product is again a specification, which prohibits every
word that has been prohibited by one of its operands.

LEMMA 3 Consider two Specifications H1, H2 ∈ H then

LP(H1|H2) = LP(H1)∪LP(H2)
LS(H1|H2) = LS(H1)∩LS(H2)

The intuition is: Everything forbidden by at least one specification stays forbidden in the
specifications’ product. Everything that has not yet been forbidden stays allowed.

8In a software implementation, Ac is implicitly given when the composition is calculated by traversal from
q01 and q02 instead of the cartesian product

85

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

Proof. First line (LP):
From the definition of LP we obtain9:

LP(H1) = {ses′ ∈ Σ̂∗ | s, s′ ∈ Σ̂∗, f ∗1 (q01, s)!, e ∈ P1(f
∗

1 (q01, s))}
LP(H2) = {ses′ ∈ Σ̂∗ | s, s′ ∈ Σ̂∗, f ∗2 (q01, s)!, e ∈ P2(f

∗
2 (q01, s))}

LP(H1|H2) = {ses′ ∈ Σ̂∗ | s, s′ ∈ Σ̂∗, f ∗| (q01, s)!, e ∈ P|(f
∗
| ((q01, q02), s)}

⊆:
Let w ∈ LP(H1|H2). Then there is a representation ses′ = w so that f ∗| ((q01, q02), s)!
and e ∈ P|(f ∗((q01, q02), s)). Due to the definition of f ∗ and the consistency claim this
representation is unique as s cannot contain prohibited events. In other words e is the
“first” prohibited event in string w. By the definition of f| holds for all σi, 1≤ i ≤ n where
σ1 . . .σn = s 10 that

σi /∈ P1(f
∗

1 (q01,σ1 . . .σi−1)) and

σi /∈ P2(f
∗

2 (q02,σ1 . . .σi−1))

which means that no event before e has been forbidden in H1 or in H2. From the definition
of P| we achieve

e ∈ P1(f
∗

1 (q01, s)) or e ∈ P2(f
∗

2 (q02, s))

Hence se ∈ LP(H1) or se ∈ LP(H2) (or both). As in the definition of LP the forbidden event
e can be continued by an arbitrary string taken from Σ̂∗ the above also holds for the suffix
s′ within w, i.e., ses′ = w ∈ LP(H1) or ses′ = w ∈ LP(H2) and hence w ∈ LP(H1)∪LP(H2).
⊇:
I. Let w ∈ LP(H1). Then there is a unique representation ses′ = w with f ∗1 (q01, s) defined
and e ∈ P1(f ∗1 (q01, s)). Regarding s and H2 there are two cases:
1. s /∈ LP(H2). Then f2(q02, s) is defined. Due to construction of f| and f ∗| , f ∗| ((q01, q02), s)

is also defined and e ∈ P|(f ∗| ((q01, q02), s)). It follows se ∈ LP(H1|H2). For the same
reason as in “⊆” (closed under continuation), w= ses′ ∈ LP(H1|H2).

2. s ∈ LP(H2). In return, there is a decomposition ŝêŝ′ = s such that II. applies. Since LP
is closed under continuation, s = ŝêŝ′es′ = w ∈ LP(H2), thus II. applies to w, too.

II. w ∈ LP(H2). Since the definitions of f|, P| and f ∗| are commutative w. r. t. H1 and H2,
w ∈ LP(H1|H2) holds in analogy to I.

For the second line (LS) holds

LS(H1|H2) = Σ̂
∗ \LP(H1|H2) = Σ̂

∗ \ (LP(H1)∪LP(H2)) = LS(H1)∩LS(H2)

5.8.1.3 Supervisors

A supervisor is modeled like a specification except it may disable controllable events only.

DEFINITION 7 (Supervisor) A supervisor is a quadruple S = (Q, f , P, q0) with

9For brevity we use f|, P|, . . . for fH1|H2
, PH1|H2

, . . .
10Define σ1σ0 := ε

86

5.8 Formal Model

• a finite set of states Q

• a partial transition function f : Q× Σ̂*Q

• a prohibition map P : Q→ 2Σ̂c

• an initial state q0

DEFINITION 8 (Disabled Language of a Supervisor) The disabled language of a supervisor
is defined by: LD(S) = {ses′ ∈ Σ̂∗ | s, s′ ∈ Σ̂∗, f ∗(s)!, e ∈ P(f ∗(s))} where the definition of
f ∗ is analog to Definition 3.

DEFINITION 9 (Supervised Plant) Let S be a supervisor. The language of the supervised
(physical) plant is Lphy \LD(S).

LEMMA 4 (Controllability of L\LD) Let S be a supervisor and L ⊆ Σ̂∗ an arbitrary language.
Its “enabled” sublanguage L \LD(S) is controllable with respect to L.

Proof. Let s ∈ L \LD(S) and s′ an arbitrarily chosen prefix of s, i.e., s′s′′ = s for some s′′.
For every e ∈ Σ̂U holds one of the following two cases:
1. s′e ∈ L. Since s /∈ LD(S) holds s′ /∈ LD(S), so f ∗(s′) is defined. We know that a supervisor

does not prohibit uncontrollable events, P(f ∗(s′))∩ Σ̂U = ;. It follows s′e /∈ LD(S).
2. s′e /∈ L. In that case s′e /∈ (L \LD(S))Σ̂U ∩ L. Thus it can be ignored.
Finally, we obtain L \LD(S) Σ̂U ∩ L ⊆ L \LD(S).

Lemma 4 holds particularly for Lphy ⊆ Σ̂∗. The distinction of LP and LD is meant to
emphasize that lemma 4 holds for LD but not necessarily for LP of an arbitrary specification
or synthesis automaton.

5.8.1.4 Safety and Permissiveness

A supervisor is intended to enforce a specification on the physical plant. If this is the case
for some H ∈ H, we call the supervisor H-safe.

DEFINITION 10 (Safety) Let H ∈ H be a specification, S a supervisor and L ⊆ Σ̂∗ a
language. S is called H-safe w.r.t. L iff L \LD(S) ⊆ LS(H).

It follows that S is H-safe ⇐⇒ L ∩LP(H) ⊆ LD(S). A given specification H ∈ H may
define a safe language which is not controllable. Uncontrollable events cannot be disabled
by definition. Instead, the circumstances where the event is (1) not allowed and at the
same time (2) possible to occur have to be avoided by a suitable supervisor. Aspect (1)
addresses the specification state containing the prohibition, aspect (2) depends on physical
limitations of the plant which can be captured in plant models as introduced in section 5.3.

There can be specifications though which are not realizable on L as they prohibit events
which can happen in unavoidable circumstances.

DEFINITION 11 Let H ∈ H a specification. H is unrealizable on L if L ∩LP(H)∩ Σ̂∗u 6= ;.

87

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

For these problems exists no H-safe supervisor. Accordingly, the SCSL of H is empty.
Since a safe supervisor could be more restrictive than necessary, the optimality criterion

for supervisors is maximal permissiveness, defined in analogy to [23].

DEFINITION 12 (Maximal Permissiveness) An H-safe supervisor S is maximally permissive
w.r.t. L ⊆ Σ̂∗ iff ∀S′: S′ is H-safe w.r.t. L =⇒ L \LD(S′) ⊆ L \LD(S)

When L is not explicitly stated, we implicitly refer to Lphy. In many cases it is possible to
obtain a safe supervisor without any knowledge about the plant. This refers to aspect (1),
prevent the circumstances where an event is prohibited. However, a reasonable supervisor
should be both safe and maximally permissive, which involves taking into account where
an event is able to happen.

5.8.1.5 Plant Models

In order to determine when events are physically able to happen, and only for that, it is
necessary to take into account available knowledge about the plant. This can be done by
providing automata which model the reachable state space of plant parts and thus provide
an approximation of Lphy.

In contrast to specifications, plant models are defined with respect to a given alphabet.
That alphabet is the most important component of a plant automaton as it defines which
events are related to each other. Dependent on that alphabet the states and transitions
have to define all constellations and sequences of the contained events that can possibly
occur in order to comply with the plant contract. The plant automata thus yield the same
languages as in other modular approaches [23, 117, 120, 35], although they do not serve
as generators, cf. Section 2.1.

DEFINITION 13 (Plant Model) A plant model is a quadruple G = (Q,Σ, f , q0) with

• a finite set of states Q

• a finite alphabet Σ ⊆ Σ̂

• a partial transition function f : Q×Σ*Q

• an initial state q0 ∈Q

DEFINITION 14 (f ∗) For a given plant model G we define the transitive path function
f ∗ : Q×Σ∗*Q recursively:

f ∗(q,ε) = q
f ∗(q, es) = f ∗(f (q, e), s)

DEFINITION 15 (Languages of a Plant, L,LΠ) The internal language L of a plant is defined
by: L(G) := {s ∈ Σ∗ | f ∗(q0, s)!}. Its achievable language LΠ is defined by LΠ(G) :=
Π−1
ΣG
(L(G)) where Π−1

Σ
is the inverse of the natural projection from Σ̂∗ to Σ∗ [23], element-

wise lifted to sets of strings. It is defined by:

Π−1
Σ

: 2Σ
∗
→ 2Σ̂

∗
, L 7→

⋃

e1...en∈L

Me1M . . . MenM , where M := (Σ̂ \Σ)∗

88

5.8 Formal Model

The set LΠ(G) contains all words that the G is able to capture by ignoring all events
e /∈ ΣG. To guarantee correct synthesis, we must claim that all plant models are correct,
meaning their achievable languages are over-approximations of Lphy. Therefore, Definition
16, the formalization of the plant contract, is established.

DEFINITION 16 (Plant contract, correctness of plant models) Let L be a language.

• A plant model G is called correct w.r.t. L if L ⊆ LΠ(G).

• A set B of plant models is called correct w.r.t. L if all G ∈ B are correct w.r.t. L.

According to the plant contract, we assume the provided set G to be correct w.r.t. Lphy.
The interaction of two plant models is given by their parallel composition. The following
conception is common in the community [23].

DEFINITION 17 (Plant Composition, ‖) Given two plant models G1 = (Q1,Σ1, f1, q01) and
G2 = (Q2,Σ2, f2, q02), their parallel composition is defined by G1 ‖ G2 = Ac(Q,Σ, f , q0),

• Q :=Q1 ×Q2

• Σ := Σ1 ∪Σ2

• f : Q×Σ*Q

f ((q1, q2), e) :=

(f1(q1, e), f2(q2, e)) if f1(q1, e)!∧ f2(q2, e)!
(f1(q1, e), q2) if f1(q1, e)!∧ e /∈ Σ2

(q1, f2(q2, e)) if f2(q2, e)!∧ e /∈ Σ1

undefined otherwise

• q0 := (q01, q02).

Ac is defined in analogy to Definition 6 where Σ′ = Σ and P is ignored.

LEMMA 5 (Conservation of LΠ, from [23]) Let G1, G2 ∈G. For G1 ‖ G2 holds

LΠ(G1 ‖ G2) = LΠ(G1)∩LΠ(G2).

We denote the product of all plants within G as Ĝ := ‖G∈G G and the set of all possible
plant products in G as Ĝ := {G1 ‖ . . . ‖ Gn | G1, . . . , Gn ∈G}. Obviously, Ĝ ∈ Ĝ.

LEMMA 6 All G ∈ Ĝ are correct and all LΠ(G), G ∈ Ĝ are prefix-closed.

Proof. Correctness: Via induction.
Basis: Let G1, G2 be correct. Then (due to Lemma 5) holds Lphy ⊆ LΠ(G1) ∩ LΠ(G2) =
LΠ(G1 ‖ G2). Thus, G′ = G1 ‖ G2 is correct.
Step: Let G1, G2 be products of plants and correct. Then, analogously to induction basis,
G1 ‖ G2 is correct. Since G is assumed to be correct it follows Ĝ is also correct.

Prefix Closedness: The prefix closedness of L(G) follows directly from the recursive
definition of f ∗ (Definition 14), i.e., f ∗(q, se)! =⇒ f ∗(q, s)!. Since the inverse natural
projection injects all possible sequences of events outside Σ, it also injects all prefixes of
those sequences. Thus, for each word uvu′ ∈ LΠ(G), where all prefixes of uu′ are in LΠ(G)
and an injected string v ∈ (Σ̂ \Σ)∗ holds that uv′ ∈ LΠ(G) for every prefix v′ of v.

89

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

(a) Specification H (b) Plant G

Figure 5.17: Specification and regular plant approximation

5.8.1.6 Maximal Achievable Permissiveness

As discussed above, the criterion for an optimal supervisor is its permissiveness w.r.t. Lphy.
Since the latter is in general not known, it is not always possible to find the maximally
permissive supervisor. For that reason, we relax this requirement and settle to a supervisor
that is maximally permissive as far as we know, i.e., with respect to the provided plant
models in G. Hence, we define LΠ(G) := LΠ(Ĝ) as the best available approximation of
plant behavior.

LEMMA 7 Let H ∈ H, G ∈ Ĝ and S a supervisor. It holds: S is H-safe w.r.t. LΠ(G) =⇒ S
is H-safe w.r.t. Lphy.

Proof. From the correctness of G (Lemma 6) follows Lphy ⊆ LΠ(G) and hence LΠ(G) \
LD(S) ⊆ LS(H) ⇒ Lphy \LD(S) ⊆ LS(H).

This allows us to derive safe supervisors without detailed knowledge about Lphy but on
the basis of the regular over-approximations given by G.

Example 5.16. Consider the specification H as shown in Figure 5.17a, a,c,d ∈ Σ̂c, b ∈
Σ̂u, and Lphy = {ancdnb | n ∈ N}. Lphy is obviously not regular thus no DFA is able to
recognize Lphy. As an approximation, we got G as depicted in Figure 5.17b. L(G) =
(aa)∗c(dd)∗b∗ ∪ a(aa)∗cd(dd)∗b∗. Since Lphy ⊆ LΠ(G), G is correct and thus fulfills the
plant contract. However, acdddb ∈ LΠ(G) \ Lphy, i.e., it is a proper over-approximation
of Lphy. The best possible (non-regular) supervisor would disable d after ancdn−1 for odd
values of n, resulting in the SCSL of Lphy. Using the regular approximation given by G, we
get a supervisor S which is as permissive as maximally achievable with G. It disables all
words in LD(S) = (a(aa)∗cd)Σ̂∗. Í

In order to accomplish the best available permissiveness, the entire plant model has to be
taken into account in general. In Section 5.8.3 it is shown that there are sufficient criteria
for when a single plant model can be ignored by still achieving the same permissiveness
though.

Note that a specification that is realizable on Lphy might not be realizable on LΠ(G) if the
over-approximation given by the plant model G is too coarse. This is the case if an undesired
uncontrollable event depends on a preceding controllable one which is not known by G.

90

5.8 Formal Model

5.8.1.7 Applying Plant Models to Specifications

A specification defines certain situations in which a supervisor is supposed to restrict the
physical plant’s behavior to guarantee safety. This way, a specification forms the basis for
the process that finally results in the synthesis of a supervisor. As the optimization criterion
for that supervisor is its permissiveness, it should prohibit upcoming events only where
necessary. For controllable events, the decision of whether or not to apply a prohibition
is straightforward. If a specification requires a controllable event not to happen, there is
no potential increase of permissiveness possible as any occurrence of that event would
instantly violate the safety conditions defined by the specification.

Prohibitions of uncontrollable events have to be handled differently. Since it cannot be
disabled, alternative ways must be found of how to prevent a forbidden uncontrollable
event. The restrictions imposed to that end often affect the legal behavior as well. Hence,
in contrast to controllable prohibitions, it does play a role for the overall permissiveness
whether and under which circumstances an uncontrollable event can occur and, in return,
in which situations further restrictions are not necessary.

In the following, the synthesis automaton from Section 5.3 is formally defined, the
representations which unites aspects of legality and physical possibility.

DEFINITION 18 (Synthesis Automaton) A synthesis automaton is a quintuple C = (Q,ΣΠ, f , P, q0)
of

• a set of states Q,

• a plant alphabet ΣΠ,

• a transition function Q× Σ̂*Q,

• a prohibition map P : Q→ 2Σ̂ and

• an initial state q0.

By C we denote the set of all synthesis automata with ΣΠ ⊆ Σ̂. The plant alphabet ΣΠ

contains all events which came into the automaton “by plant”, i.e., which the automaton has
full transitional knowledge about. In other words, an event e ∈ ΣΠ for which no transition
exists from the current state, is considered to be impossible while for e′ /∈ ΣΠ this is not
known yet. Synthesis automata allow for a successive refinement by further plant models.
This way they are suitable to represent intermediate results of the incremental synthesis
procedure.

As already mentioned in earlier sections, there have been several concepts for that
purpose in former contributions. The most prominent approaches to marry the legal with
the physically possible in one representation are forbidden states [68] or blocking states
[35]. The former are modeled and considered as potentially reachable and distinguishable
parts of the state space. This, however, can lead to misconceptions, especially in the context
of preemption. Forbidden states must not be confused with unstable states which are not
illegal yet but need to be left immediately. Artificial blocking states, on the other hand,
would require to solve the nonblockingness problem.

91

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

DEFINITION 19 (Languages of a Synthesis Automaton, LΠ,LP) The achievable language
of a synthesis automaton C = (Q,ΣΠ, f , P, q0) contains all possible, allowed strings. The
prohibited language contains all forbidden strings that would be possible in the scope of C
and thus need be avoided.

LΠ(C) = {s ∈ Σ̂∗ | f ∗(q0, s)!}
LP(C) = {ses′ ∈ Σ̂∗ | s, s′ ∈ Σ̂∗ ∧ f ∗(q0, s)!∧ e ∈ P(f ∗(q0, s))}

where f ∗ is defined by (e ∈ Σ̂, s ∈ Σ̂∗):

f ∗(q,ε) = q

f ∗(q, es) =

f ∗(f (q, e), s) if f (q, e)!
f ∗(q, s) if f (q, e)�!∧ e /∈ P(q)∧ e /∈ ΣΠ
undefined otherwise

The language LΠ(C) is the set of all words that are considered possible by all plant models
that are contained in C and allowed by the specification inside C . This may still involve
forbidden uncontrollable events. Like for plants, LΠ(C) is prefix-closed. A formal proof
is omitted here, but works very similar. Each H ∈ H can be represented as an equivalent
synthesis automaton:

LEMMA 8 Let H ∈ H and CH = (QH ,;, fH , q0,H). Then LS(H) = LΠ(CH) and LP(H) =
LΠP(CH).

Thanks to that compatibility, every property that holds for a synthesis automaton also
holds for a specification.

In the following, the application product is introduced. It adds the information from
a plant model to a specification or an existing synthesis automaton. Thus, according to
Lemma 8, C can also represent a specification CH .

DEFINITION 20 (Application product, @) The application of plant model G ∈ G to a
synthesis automaton C ∈ C is a synthesis automaton C@G = Ac(Q,ΣΠ, f , P, q0) ∈ C, where

• Q :=QC ×QG

• ΣΠ := ΣΠC ∪ΣG.

• f : Q× Σ̂*Q,

f ((qC , qG), e) :=

(fC(qC , e), fG(qG, e)) if defined
(qC , fG(qG, e)) if defined ∧ fC(qC , e)�!

∧ e /∈ PC(qC)∧ e /∈ ΣΠC
(fC(qC , e), qG) if def. ∧ fG(qG, e)�!∧ e /∈ ΣG

undefined otherwise

• P : Q→ 2Σ̂, P((qC , qG)) := {e ∈ Σ̂ | e ∈ PC(qC)∧ (fG(qG, e)!∨ e /∈ ΣG)}

• q0 := (q0,C , q0,G)

92

5.8 Formal Model

Again, Ac is defined in analogy to Definition 6, where ΣΠ is untouched.

The relationship between || and @ is captured by the following lemma.

LEMMA 9 For all C ∈ C, G1, G2 ∈G holds:

C@(G1 ‖ G2) ∼ (C@G1)@G2 ∼ (C@G2)@G1

where A∼ B denotes that A and B have the same size, structure and languages.
The formal proof is omitted as it is very technical and needs an exhaustive enumeration of
combinations of possible cases. The correctness follows by construction of ‖ and @.

While Definition 20 defines the technical construction of a synthesis automaton, the
impact of the application product is much easier to understand in terms of the languages
associated to the automata, as the following lemma shows.

LEMMA 10 (Properties of LP(C@G) and LΠ(C@G)) Let C ∈ C be a synthesis automaton
(or specification) and G ∈ Ĝ a plant model. Then the following equations hold.

I. LP(C@G) = [LP(C)∩LΠ(G)]Σ̂∗

II. LΠ(C@G) = LΠ(C)∩LΠ(G)

Proof. Within this proof we abbreviate PC@G, fC@G, q0C@G
, . . . by P@, f@, q0@,

I. – Proof by induction over length of event string s.
Induction basis: Let s = e ∈ Σ̂. It holds e ∈ LP(C@G) iff e ∈ P@(q0@) iff
e ∈ PC(Q0C) and (case 1) fG(q0G) defined OR (case 2) e /∈ ΣG. Both cases imply e ∈ LΠ(G)
and either the first or the second is in return implied by e ∈ LΠ(G).
Induction step: We prove the claim for se, e ∈ Σ̂ on the assumption that it holds for s. There
are two cases for s:
1. let s ∈ LP(C@G) and s ∈ [LP(C)∩LΠ(G)]Σ̂∗. Since LP is closed under continuation,

se ∈ LP(C@G) and trivially also se ∈ [LP(C)∩LΠ(G)]Σ̂∗.
2. let s /∈ LP(C@G) and s /∈ [LP(C)∩LΠ]Σ̂∗, i.e., s is legal. We distinguish two sub-cases:

a) s ∈ LΠ(C@G) and s ∈ LΠ(C)∩LΠ(G) (s is possible). Let (qc, qG) := f ∗@((q0C , q0G), s).
The rest of this sub-case is analog to the induction basis s = e, where qG and qC are
substituted by q0G and q0C .

b) s /∈ LΠ(C@G) and s /∈ LΠ(C)∩LΠ(G) (s is not possible). Then holds by construction
of P@ and PC and the definition of LP that se /∈ LP(C@G) and either se /∈ LP(C) or
se /∈ LΠ(G) – or both. That leads to se /∈ (LP(C)∩LΠ(G))Σ̂∗.

II. – This proof is analogously structured to the proof of III.
Induction basis: Let s = ε. Trivially, ε ∈ LΠ(C@G) and ε ∈ LΠ(C) and ε ∈ LΠ(G). Hence,
ε ∈ LΠ(C)∩LΠ(G).
Induction step: We again distinguish two cases.
1. s ∈ LΠ(C@G) and s ∈ LΠ(C)∩LΠ(G).

For brevity, we define q@ := f ∗@(q0@, s), qC := f ∗C (q0C , s) and qG = f ∗G (q0G, s). Let e ∈ Σ̂
arbitrary. Three bidirectional sub-cases:

se ∈ LΠ(C)
∧ se ∈ LΠ(G)⇐⇒

(1) fC(qC , e)!, fG(qG, e)!
(2) fC(qC , e)�!, e /∈ ΣΠC , e /∈ PC(qC), fG(qG, e)!
(3) fC(qC , e)!, fG(qG, e)�!, e /∈ ΣG

93

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

. . . (1)

. . . (2)

. . . (3)

⇐⇒ f@(q@, e)! ⇐⇒ se ∈ LΠ(C@G)

2. Since LΠ is prefix-closed, we obtain:
• s /∈ LΠ(C) =⇒ se /∈ LΠ(C)
• s /∈ LΠ(G) =⇒ se /∈ LΠ(G)
• s /∈ LΠ(C@G) =⇒ se /∈ LΠ(C@G)
Where the first two bullets imply s /∈ LΠ(C)∩LΠ(G) =⇒ se /∈ LΠ(C)∩LΠ(G).

We see that a synthesis automaton C = H@G conserves the information about what is
possible (LΠ(G)) and what is not safe (LP(H)). But it dispenses strings that are neither
allowed nor possible. That comes from the fact that all considered (infinite) languages
LP ,LΠ, etc. are represented by finite automata. To keep those automata as compact as
possible, they do not distinguish whether an impossible string was allowed or not. In other
words, they concentrate on the reachable state space. Note that the sets LΠ(H@G) and
LP(H@G) do in general not sum up to Σ̂∗. However, they are always disjoint.

Transitions and states which represent forbidden yet impossible strings are neglected
during composition of C@G. As a consequence, LP(C@G) indeed prohibits potentially
less event sequences than LP(C) did. For a specification H and plant G, that can cause
Σ̂∗ \LP(H@G) * LS(H), which appears problematic at the first glance. However, as we
claim G being correct, LP(H@G) prohibits all sequences with respect to Lphy, as formalized
by the following Lemma.

LEMMA 11 (Safety of @-Product) Let G ∈ Ĝ be a plant and C a synthesis automaton. It
holds

Lphy \LP(C@G) = Lphy \LP(C) (Safety)

Proof.
Lphy \LP(C@G)

= Lphy \ [(LP(C)∩LΠ(G)) Σ̂∗]
= [Lphy \LP(C)]∪ [Lphy \ (LΠ(G) Σ̂∗)]
= [Lphy \LP(C)]∪ [(Lphy \LΠ(G)

︸ ︷︷ ︸

=; (†)

) \ (LΠ(G) Σ̂∗)]

= Lphy \LP(C)

(†) since Lphy ⊆ LΠ(G) (correctness of G).

5.8.2 Monolithic Synthesis

This section adapts the classical, monolithic synthesis algorithm for supervisor derivation
onto the presented formalism. In contrast to the common literature, the algorithm does
not consider a plant model and specification separately from each other but carries out
the necessary steps on a synthesis automaton that contains information about both. The

94

5.8 Formal Model

definitions and lemmas provided in the following will be recycled to define and proof the
soundness of the incremental method as well.

As already mentioned above, the plant information provided in a synthesis automaton C
can be insufficient to derive a supervisor. Since the prohibited language is refined on every
composition according to Lemma 10, it is realizable if LP(C) ∩ Σ̂∗u = ;, i.e., if all purely
uncontrollable sequences have turned out spurious. Otherwise it is unrealizable yet. In
that case, adding more plant models can further reduce LP .

LEMMA 12 (Directedness of @) Let C ∈ C, G ∈ Ĝ. Then holds

LP(C@G) ⊆ LP(C) (5.1)

LΠ(C@G) ⊆ LΠ(C) (5.2)

LΠ(C@G) ⊆ LΠ(G) (5.3)

Proof. Line 5.1: LP(C@G) = [LP(C)∩LΠ(G)] Σ̂∗ = LP(C) Σ̂∗ ∩LΠ(G) Σ̂∗
= LP(C)∩LΠ(G) Σ̂∗ ⊆ LP(C)
Line 5.2 and 5.3 follow directly from Lemma 10.

Lemma 12 or, more precise, the situation where ⊆ becomes ⊂, is the key for the increase
of permissiveness and realizability when plants are taken into consideration instead of
using the specification barely. A sufficient criterion for that will be given in Section 5.8.3.

The monolithic synthesis algorithm is a fixpoint procedure. It operates in terms of
succeeding iterations, called steps.

DEFINITION 21 (Synthesis Step, sys) A synthesis step is a mapping sys : C → C and
sys(Q,ΣΠ, f , P, q0) = (Q′,ΣΠ, f ′, P ′, q′0), where

• Q′ := {q ∈Q | P(q)∩ Σ̂u = ;}

• f ′ := f|Q′×Σ̂*Q′
11

• P ′ :=Q′→ 2Σ̂, s.th. e ∈ P ′(q) ⇐⇒ e ∈ P(q)∩ Σ̂c or f (q, e) ∈Q \Q′

• q′0 =
§

q0, q0 ∈Q′

undefined otherwise

A synthesis step is the standard way to “increase the controllability” of the resulting
allowed language. It represents the adaptation of one iteration of the SCSL algorithm given
by [23] to the presented formal model. In contrast to the latter, it operates on a single
synthesis automaton. Therefore, for a given C ∈ C, C ′ := sys(C) represents again a valid
synthesis automaton which can be composed with further plant components, a property
which will be used for incremental synthesis.

We call an automaton void if it does not have an initial state. The composition of a void
automaton with another automaton is always void too due to the absence of a proper initial
state. For a void automaton A, QAc(A) = ;.

11The reduction of f to those (q, e) ∈Q′ × Σ̂ for which f (q, e) ∈Q′

95

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

LEMMA 13 Let C ∈ C and C ′ := sys(C).

1. If C ′ is void, then C is not realizable.

2. If C is realizable, then C ′ is realizable.

Proof. Line 1: q0C ′ �! =⇒ q0C /∈Q′ =⇒ P(q0C)∩ Σ̂u 6= ; =⇒ LP(C)∩ Σ̂∗u 6= ;.
Line 2: By construction of sys holds for all q ∈QC ′ that P ′(q)∩ Σ̂u ⊆ P(q)∩ Σ̂u.

Since in the realizable case, all prohibited events either stay prohibited or become
unreachable by P ′, sys is directed in the following sense.

LEMMA 14 (Directedness of sys) Let C ∈ C be a realizable synthesis automaton. It holds

LP(C) ⊆ LP(sys(C))
LΠ(C) ⊇ LΠ(sys(C))

Proof. Let C ′ = sys(C). By the construction of sys we see that ∀q ∈QC ′ : PC(q) ⊆ PC ′(q) and
fC ′(q, e)!⇒ fC(q, e)!. Further holds for all q ∈QC \QC ′ (the eliminated states) and q′ ∈QC ′

that fC(q′, e) = q⇒ e ∈ PC ′(q′), thus the event leading to q has been forbidden. Hence a
previously prohibited string sêe with e ∈ PC(f ∗C (sê)) stays forbidden as ê ∈ PC ′(f ∗C ′(s)) and
LP is closed under continuation. From Definition 19 follow the propositions.

When multiple synthesis steps are applied subsequently, a fixpoint is reached after finitely
many steps. This is always the case since Q′ shrinks monotonically and f ′, P ′, q′0 purely
depend on Q′, which is finite. Thus, if Q′ = Q, then f ′ = f , P ′ = P, q′0 = q0 and hence
Qsys(sys(C)) =QC and inductively Qsys(...sys(C)) =QC .

Let sysi(C) := sys(. . . sys(
︸ ︷︷ ︸

i times

C) . . .). Then for some n ∈ N : sysn(C) = sysn+1(C). We

denote that fixpoint by sysfix(C). By definition of Q’ (Def. 21), we see that

∀q ∈Qsysfix(C) : Psysfix(C)(q)∩ Σ̂u = ;

since if there was an uncontrollable, prohibited event left, sys would change the automaton
and a fixpoint would not have been reached yet. This fact allows us to use sysfix(C) as
supervisor S = (Q, f , P, q0), where (Q,ΣΠ, f , P, q0) := sysfix(C), by simply dropping the
permissiveness alphabet ΣΠ. For brevity we write S := sysfix(C) and implicitly omit ΣΠ.

Adding plant models can increase but never decrease the effective permissiveness of
the result of a synthesis step. The reason for that is that an additional plant model can
potentially eliminate prohibitions of uncontrollable events, or at least do so in certain states
(state splitting, cf. [23]). As a consequence, those prohibitions do not have to be considered
by sys anymore.

THEOREM 15 (Correctness of synthesis) Let G ∈ Ĝ and H ∈ H such that H is realizable
on LΠ(G). Then S := sysfix(H@G) is a supervisor that is

• not void,

96

5.8 Formal Model

• H-safe w.r.t. Lphy,

• H-safe and maximally permissive w.r.t. LΠ(G).

Proof. Realizability: Assume that S was void. Choose i s.th. C := sysi(H@G) 6= sys(C) =
sysfix(H@G) = S. Then, by Lemma 13(1), C is not realizable. Given that H is realizable on
LΠ(G) we obtain from Lemma 13(2) that C is also realizable. Contradiction.

Safety: Follows directly from lemmas 11 and 14.
Maximal Permissiveness. To show: For all H-safe supervisors S′ holds LΠ(G) \LD(S′) ⊆

LΠ(G) \LD(S).
Assume, there is a H-safe S′ that is more permissive than S. Then exists a string v ∈

LΠ(G) \LD(S′) and v /∈ LΠ(G) \LD(S). Then, v ∈ LD(sysfix(H@G)). Let v0 be the shortest
forbidden prefix of v, i.e., v0 ∈ LD(sysfix(H@G)) and i0 the iteration of sys where the
fixpoint has been reached first, i.e., sysi0(H@G) = sysi0+1(H@G) 6= sysi0−1(H@G). There
are two cases that lead to v0 being prohibited by S due to the construction of sys:

case 1 – v0 ∈ LP(H). In this case, S′ is obviously not H-safe. Contradiction.

case 2 – v0 /∈ LP(H). Then exists an event e0 ∈ Σ̂u, s.th. v0e0 ∈ LΠ(G), i.e., inside G e0

is considered possible after the legal string v0. Further exists a previous iteration
i1 ∈ N, 0 ≤ i1 < i0, such that v0e0 ∈ LP(sysi1(H@G)) and v0 /∈ LP(sysi1(H@G))
and v0 ∈ LP(sysi1+1(H@G)). In iteration i1 + 1, sys prohibited v0 to prevent the
uncontrollable e0 from occurring. Note, that this happens only when such e0 exists
inside LP(G), otherwise only case 1 is applicable. Since e1 is uncontrollable, S′ cannot
disable it either: v0e0 /∈ LD(S′).

Define v j := v j−1e j−1. For v1, we inductively obtain the same two cases again, as
for every further v j, as long as case 2 applies. Note, that i j = i j−1 − 1 holds by con-
struction for j > 1, since sys isolates a state containing an uncontrollable prohibition
immediately in the next iteration. Due to that, eventually, im = 0 is reached, where
case 2 collapses to vmem ∈ LP(sys0(H@G)) = LP(H@G) ⊆ LP(H). The last equality
holds due to lemmas 8 and 10. Since vmem = v0e0 . . . em and all e j ∈ Σ̂u, S′ can still
not disable any of them, ergo vmem /∈ LD(S′) and S′ is not H-safe. Contrad.

The supervisor with the maximal achievable permissiveness can always be obtained by
taking all available knowledge about the plant into account, thus by basing the synthesis
on C = H@(‖G∈G G). This is commonly referred to as monolithic synthesis. Corollary 16
explicitly addresses the special case where the plant models together form a generator, thus
define the entire possible behavior instead of an over-approximation.

COROLLARY 16 Let H ∈ H be realizable on LΠ(Ĝ) = Lphy. Then S := sysfix(H@Ĝ) is a
supervisor that is H-safe and maximally permissive.

Proof. Follows directly from Theorem 15.

Algorithm 1 sketches the monolithic supervisor synthesis for the computation of sysfix

procedurally.

97

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

Algorithm 1 Monolithic supervisor synthesis without preemption, mon(C)

Input: C = (Q,ΣΠ, f , P, q0)
1: fixpoint := false
2: while ¬ fixpoint do
3: fixpoint := true
4: for all q ∈Q do
5: if P(q)∩ Σ̂u 6= ; then
6: fixpoint := false;
7: ∀e remove (q, e) from f ;
8: Q := Q \ {q};
9: for all (q′, e′) ∈ f −1(q) do

10: remove (q′, e′) from f ;
11: P(q′) := P(q′)∪ {e′};
12: end for
13: remove all unreach. states from Q and their outg. trans. from f ;
14: end if
15: end for
16: end while
17: if q0 ∈Q then
18: return (Q, f , P, q0);
19: else
20: return "unrealizable!";
21: end if

98

5.8 Formal Model

The method is very straightforward. It searches for uncontrollable prohibited events and
isolates all states that contain such by removing all incoming transitions and prohibiting
the respective events instead. That corresponds to one synthesis step sys(). To increase
performance all states that have become unreachable can instantly be removed, too. A
previously constructed reachability map that tracks, which state is reachable via which
other states, helps. Alternatively, it is also possible to remove all unreachable states at the
very end of the algorithm: However, it may take longer until a fixpoint is reached in that
case. Line 10 ensures that consistency is not violated: The (q′, e′) transition is removed
before an e′ prohibition is inserted.

5.8.3 Incremental Synthesis

In order to get the best achievable permissiveness, it seems reasonable to take as many
plant models into account as possible. However, the size of the intermediate state space
increases dramatically by doing so. An intelligent approach thus should add a plant model
only if it can possibly increase permissiveness in the current situation. Besides, it would
do that as late as possible as synthesis steps can decrease the state space of intermediate
results and, by that, the size of further compositions.

Lemma 9 allows us to replace the parallel composition of several plants by succeeding
application products. For a delayed product computation, we must also show that it is
legitimate to interleave product computations and synthesis steps. Moreover, a criterion
for the cases where the latter does not affect the permissiveness of the result is needed.

The presented incremental synthesis automates the decision on which plant models are
suitable to increase permissiveness and when. To that end, it is essential to recapitulate
what permissiveness actually means. Basically, it describes the goal that nothing more is
prohibited than actually required to ensure safety. In the following we present a necessary
criterion for a plant automaton to increase the permissiveness of the supervisor resulting
from the current synthesis automaton. Due to explicit prohibitions and the fact that
everything not stated in a specification is implicitly allowed, it is very easy (and performant)
to locate states where uncontrollable events are prohibited. When a prohibition is found,
two cases have to be distinguished.

• The forbidden event is uncontrollable (e ∈ Σ̂u). This means the event cannot be
disabled. Before the corresponding specification state is isolated it has first to be
checked whether that state has logically to be split into several states (w. r. t. the
plant) or if the undesired event is even impossible to occur.

• The forbidden event is controllable (e ∈ Σ̂c). In this case the event can simply be
disabled without worrying about any plant models. There is no real increase of
permissiveness possible that would not instantly violate the specification.

The following lemma summarizes that condition formally.

99

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

LEMMA 17 (Ineffective plant) Let C = (QC ,ΣΠC , fC , PC , q0C) ∈ C be a synthesis automaton
and G = (QG,ΣG, fG, q0G) ∈G be a plant model. For a string v ∈ LΠ(G) and a succeeding
prohibited, uncontrollable event e ∈ PC(f ∗C (v))∩ Σ̂u holds

e /∈ ΣG ∧ sys(C@G) not void =⇒ v ∈ LP(sys(C@G))

Proof. Let v ∈ LΠ(G). From e /∈ ΣG follows ve ∈ LΠ(G). Further, f ∗C (v)! implies v ∈ LΠ(C)
and e ∈ PC(f ∗C (v)) implies ve ∈ LP(C).
Together, that makes ve ∈ LP(C@G) = [LP(C)∩LΠ(G)]Σ̂∗ and v ∈ LΠ(C@G) = LΠ(C)∩
LΠ(G). That means f ∗C@G(v)! and e ∈ PC@G(f ∗C@G(v)).
We define C ′ := sys(C@G) and we′ := v. By the definition of sys (Def. 21) and q0C ′ ∈Q′C
follows that e′ ∈ PC ′(f ∗C ′(w))

12 and fC ′(f ∗C ′(w), e′)�!. Hence, from the definition of LP (Def.
19), we obtain we′ = v ∈ LP(C ′) = LP(sys(C@G)).

Based on this result, the following lemma allows us to delay plant compositions.

LEMMA 18 (Postponed @-Product) Let C = (QC ,ΣΠC , fC , PC , q0C) ∈ C be a synthesis au-
tomaton and G = (QG,ΣG, fG, q0G) ∈G a plant model. Then it holds

⋃

q∈QC

PC(q)∩ΣG ∩ Σ̂u = ; =⇒ LP(sys(C@G)) = LP(sys(C)@G)

Proof. This proof shows the equality of both languages by showing the two inclusions ⊆,⊇
separately. Note, that the “interesting”, non-trivial case is the second case of “⊇”, where
the plant model may be “drawn outside” the sys function although sys actually changes
the automaton.

“⊆”: Let v ∈ LP(sys(C@G)). Without loss of generality, we assume for we := v that
w /∈ LP(sys(C@G)), since LP is closed under continuation on both sides of the equation
and every word has a shortest forbidden prefix.
There are two cases for v in relation to C@G:

case 1: v ∈ LP(C@G) (v was already forbidden before the synthesis step). Since its
longest proper prefix w is not forbidden after the synthesis step, w /∈ LP(sys(C@G)), e
must be controllable, e ∈ Σ̂c. Due to the definition of LP (Def. 19) follows w ∈ LΠ(C@G) =
LΠ(C) ∩ LΠ(G) and e ∈ PC(f ∗C (w)). As e is controllable, we get w ∈ LΠ(sys(C)) and
e ∈ Psys(C)(f ∗sys(C)(w)). It follows we ∈ LP(sys(C)) ∩ LΠ(G) ⊆ LP([sys(C) ∩ LΠ(G)]Σ̂∗) =
LP(sys(C)@G).

case 2: v /∈ LP(C@G). Since v ∈ LP(sys(C@G)) holds v ∈ LΠ(C) ∩ LΠ(G), i.e., both
C and G consider e possible to occur. There must be e′ ∈ Σ̂u s. th. ve′ ∈ LP(C) ∩ LΠ(G).
Due to e′ being uncontrollable, v ∈ LP(sys(C)) and finally v ∈ LP(sys(C)) ∩ LΠ(G) ⊆
LP(sys(C)@G).

“⊇”: Let v ∈ LP(sys(C)@G). Again, w.l.o.g., we assume for we := v that w /∈ LP(sys(C)@G).
The fact that w is not in that prohibited language, but we is, leads to f ∗sys(C)(w)!, f ∗G (v)! and
e ∈ Psys(C)(f ∗sys(C)(w)). There are two cases again:

12Remember: f ∗(ε) := q0

100

5.8 Formal Model

case 1: v ∈ LP(C) and e ∈ Σ̂c (as above). It follows that v ∈ LP(C@G) and, due to the
directedness of sys (Lem. 14), v ∈ LP(sys(C@G)).

case 2: v /∈ LP(C). Since v ∈ LP(sys(C)), v ∈ LΠ(C). There must be e′ ∈ Σ̂u, s. th.
ve′ ∈ LP(C), which means f ∗C (v)! and e′ ∈ PC(f ∗C (v)). Further, from f ∗G (v)!, we know
v ∈ LΠ(G). Because we assume

⋃

q∈QC
PC(q)∩ Σ̂u ∩ΣG = ; to hold, e must be unknown to

G, e /∈ ΣG. By Lemma 17 finally follows v ∈ LP(sys(C@G)).
“v→ vΣ̂∗”:

For both directions we have shown that for the respective shortest forbidden words
v ∈ LP(sys(C@G)) =⇒ v ∈ LP(sys(C)@G) and vice versa. Since LP is closed under
continuation that also holds for all vw, w ∈ Σ̂∗ in both directions, which lifts the proof from
the shortest forbidden prefixes to arbitrary strings. Hence both languages are equal.

Note that the “⊆” direction of the proof does not make use of the condition
⋃

q∈QC
PC(q)∩

Σ̂u ∩ΣG = ;, which means that LP(sys(C@G)) ⊆ LP(sys(C)@G) holds in general.
Lemma 18 unveils that it makes no difference whether a plant is applied before a synthesis

step or afterwards as long as the set of uncontrollable, prohibited events that are shared with
the plant,

⋃

q∈QC
PC(q)∩ΣG∩Σ̂u, is empty. However, the performance of the delayed product

calculation can benefit from the fact that each synthesis step (except the fixpoint is reached)
shrinks the state space and the number of transitions. When we interpret sys(C) := C ′ we
can apply the lemma again, LP(sys(C ′)@G) = LP(sys(C ′@G)) = LP(sys(sys(C@G))), as
long as the condition holds for QC ′ and PC ′ too.

If the product with a plant model has been repeatedly delayed and a fixpoint, i.e., a valid
supervisor has been found before the plant has been used, it can be completely neglected.

LEMMA 19 (Early Fixpoint) Let C = (QC ,ΣΠC , fC , PC , q0C) ∈ C be realizable and G =
(QG,ΣG, fG, q0G) ∈G. Let further

⋃

q∈QC
PC(q)∩ΣG ∩ Σ̂u = ; and C ′ := sys(C). Then

∀q ∈QC ′ : PC ′(q) ⊆ Σ̂c =⇒ Lphy \LP(sys(C)) = Lphy \LP(sys(C@G))

Proof. Follows directly from Lemmas 18 and 11.

The presented check of whether a plant model G is a reasonable candidate to improve
permissiveness under the assumption that state q of a prohibition P(q) is reachable (i.e., ve ∈
Lphy, q = f ∗(q0, v) exists) fits perfectly into the backwards-orientated standard synthesis
algorithm: The procedure of repeatedly executing the steps

1. search for permissiveness-increasing candidates (plants G with e ∈ ΣG for some
forbidden e)

2. @-product calculation

3. single synthesis step

results in an incremental synthesis technique that computes product automata only if reason-
able and as late as possible. Additionally, the interleaved synthesis step shrinks the state
spaces of intermediate results.

101

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

The pseudo code in Algorithm 2 describes the incremental synthesis procedure in detail.
It starts with a pure specification H and extracts all uncontrollable prohibitions. For each
respective event e ∈ Σ̂u it searches for all available plant models Gi ∈G whose alphabets con-
tain that event (e ∈ ΣGi

) and applies the specification to all of them: C1 := H@G1@ . . . @Gn.
After that step there is no plant left that could increase permissiveness at the currently
considered states. Next, for all uncontrollable prohibitions which remain in C1 one synthesis
step is executed. Since this might introduce new uncontrollable prohibitions, the procedure
is looped until a fixpoint is found. The set G̃remain ensures that no plant model is used
twice. Doing so would have no effect on the result. Still, it would dramatically increase
the runtime. In the current tool implementation, the plants for product calculation are
picked in arbitrary order (line 15). In the future, heuristics for an intelligent selection order
could improve this algorithm’s performance. In that case, even an event-wise iteration
over all three steps could be reasonable. The central question in that context is typically
whether a product calculation and subsequent synthesis step enlarge or reduce the size
of the state space. While Step 2 can have either effect, Step 3 always decreases it. The
synthesis step itself is carried out in lines 20–31, where all states containing uncontrol-
lable, prohibited events are removed and their incoming transitions are transformed into
prohibitions respectively. The absence of such prohibitions is also the fixpoint criterion.

THEOREM 20 (Correctness of Incremental Synthesis) Let H ∈ H be a specification that is
realizable on LΠ(G). The supervisor S = inc(H,G) is

• not void,

• H-safe w.r.t. Lphy,

• H-safe and maximally permissive w.r.t. G.

Proof. Realizability: Assume S was void. Since a composition is only void if one of the
composed automata is void and the plants G ∈G are not void, there must have been C ∈ C

s.th. C is not void and S = sys(C). Then exists eu ∈ P(q0C)∩ Σ̂u. By construction of inc (ll.
9–11), all G where such an eu exists in ΣG have been considered in C in terms of previous
compositions. Hence (Lemma 13), C is unrealizable. As C is either already the specification
H or a result of interleaved synthesis steps and compositions between H and the G ∈ G,
where none of these operations can introduce unrealizability (thanks to lemmas 12 and
13), H is not realizable on LΠ(G). Contradiction.

Safety: We have to show that Lphy \LD(S) ⊆ LS(H). The algorithm performs two types
of operations on H. Products with plants and synthesis steps. The order varies but plays
no role for safety. Let C be an intermediate result of Algorithm 2 at Line 4, i.e., at the
very beginning of a loop iteration. From Lemma 11 (safety of @-Product) we know
that for all G ∈ G: Lphy \ LP(C@G) = Lphy \ LP(C). Lemma 14 (monotonicity of sys)
states LP(C) ⊆ LP(sys(C)). It follows Lphy \LP(sys(C)) ⊆ Lphy \LP(C). Hence, all for all
intermediate results C holds Lphy \ LP(C) ⊆ Lphy \ LP(H) and consequently for the final
supervisor S: Lphy \LD(S) ⊆ Lphy \LP(H).

102

5.8 Formal Model

Algorithm 2 Incremental supervisor synthesis without preemption, inc(H,G)
Input: H = (Q, f , P, q0), G
1: fixpoint := false
2: G̃remain := G

3: C := convertToSynthAut(H)
4: while ¬ fixpoint do
5: fixpoint := true
6:
7: // Step 1: Gather plants to consider in G̃
8: G̃ := ;
9: for all q ∈QC do

10: G̃ := G̃ ∪ {G ∈ G̃remain | P(q)∩ Σ̂u ∩ΣG 6= ;}
11: end for
12: G̃remain := G̃remain \ G̃
13:
14: // Step 2: Compute application products
15: for all G ∈ G̃ do
16: C := C@G
17: end for
18:
19: // Step 3: Perform one synthesis step
20: for q ∈QC do
21: if P(q)∩ Σ̂u 6= ; then
22: fixpoint := false
23: Q :=Q \ {q}
24: ∀e remove (q, e) from f
25: for all (q′, e′) ∈ f −1(q) do
26: remove (q′, e′) from f
27: P(q′) := P(q′)∪ {e}
28: end for
29: remove all unreachable states from Q and their respective outgoing transitions from f .
30: end if
31: end for
32: end while
33: if q0 ∈Q then
34: return (Q, f , P, q0);
35: else
36: return "unrealizable!";
37: end if

103

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

Permissiveness: From Lemma 15 we know that the monolithic synthesis computes the
maximally permissive supervisor for H w.r.t. G by

C = sysfix(H@(‖
G∈G

G)) and finally S := C

Corresponding to Lemma 9 that is equivalent to

sysfix(H@G1@. . . @Gn), {G1, . . . , Gn} :=G

Lemma 18 allows us to draw plants outside a synthesis step if ∀q ∈QC : PC(q)∩ΣG∩Σ̂u = ;
holds. (?)
For H@G1@G2, that means that in order to check the eligibility of G2 for being drawn
outside it suffices to check the prohibitions of H, i.e., iterate over q ∈QH and check PH(q),
since G1 does not introduce new prohibited events. Accordingly, that holds for all further
Gis. That checks are performed in ll. 9–11 where the plants that stay inside the sys() braces
are gathered. The remaining plant models (l. 12) stay in G̃remain ergo they are ensured to
be checked in the next iteration again. Lines 20–31 implement the synthesis step function
sys, cf. Definition 21. The result of the first iteration is C ′ = sys(H@G11@ . . . @G1n) where
G11, . . . , G1n are those plants where (?) does not hold. All subsequent iterations follow the
same principle, except H is now replaced by C ′ and only the plant inside G̃remain are checked
for (?) again. Lemma 19 allows to terminate as soon as a fixpoint is found. The sufficient
condition for that fixpoint is ∀q ∈QC : P(q)∩ Σ̂u = ;, which is checked in Line 21. Finally,
it is returned as the supervisor.

104

5.8 Formal Model

Figure 5.18: Example for incremental synthesis. Only three plant automata are required to
obtain a maximally permissive supervisor.

Example 5.17. Let H= {H},G= {G1, . . . , G6}, as depicted on the left-hand side of Figure
5.18, b,e,f ∈ Σ̂u, a,c,d,g ∈ Σ̂c, and Lphy unknown. The first iteration starts with H. The
only uncontrollable forbidden event is e. Accordingly, all plants G where e ∈ ΣG are
gathered in G̃, i.e., G̃ = {G1}. All other automata have no knowledge about when e is
or is not possible. Then, H@G1 is computed. It is shown on the right-hand side. Since
the resulting synthesis automaton contains a prohibition of an uncontrollable event, e, a
fixpoint is not yet reached and the algorithm invokes a synthesis step, yielding sys(H@G1).

In the next iteration we obtain G̃ = {G2, G3} since b ∈ G2, b ∈ G3 and b /∈ G4 ∪ G5 ∪ G6

and the composition sys(H@G1)@G2@G3 is computed. After the next synthesis step,
all existing prohibitions address controllable events, namely a and d. Hence, a fixpoint
is reached. Thanks to Theorem 20, S := sys(sys(H@G1)@G2@G3) is the maximally
permissive supervisor. Note that in the final result the a-loop plays no role anymore and
could be deleted. However, G1 ‖ G2 ‖ G3 ‖ G4 ‖ G5 ‖ G6, which consists of 26 states and 91
transitions in this example, does not have to be computed to obtain S. Í

Comparison to Modular Synthesis by Åkesson et al. In Section 5.4, it was already
mentioned that the presented incremental method appears at the first glance similar to the
modular approach by Åkesson et al. [3]. However, there are significant differences. The
latter picks the relevant plant models using the transitive hull of the function Dep, defined

105

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

by “Dep(F,Σ′) = {Fi | ∃σ ∈ Σ′ ∩ΣFi}” [3]. Transferred to the formalisms of this chapter,
this would correspond to Dep(G,Σ) = {G ∈ G | ΣG ∩Σ 6= ;}. First, Σ is initialized to the
set of all uncontrollable events of the specification13 and then incrementally extended by
{e ∈ ΣG | G ∈ Dep(G,Σ)} ∩ Σ̂u until a fixpoint Σfix is reached. The specification is finally
composed with all plants in Dep(G,Σfix) and a monolithic synthesis is performed on the
result.

Consider again Example 5.17 and the automata on the left-hand side of Figure 5.18. The
transitive closure of Dep would involve G1, G2 and G3 because of e and b as well, but also
G4 and G5 as the uncontrollable event f is shared amongst G3, G4 and G5. This Dep-based
criterion for the relevance of a plant is strictly coarser than the one presented in Lemma 18.

Åkesson et al. over-approximate the set of plants that during synthesis could eventually
become relevant. The presented incremental method instead postpones this decision until
an event is actually prohibited and performs compositions lazily.

A comparison of the runtime performance between the monolithic, the modular and the
incremental method is given in Section 7.5.

5.8.4 Conditions

Conditions relate the transitions and prohibitions of an automaton to the states of other
automata. Within the formal model, the scope of what is addressable is given by the super-
visory control environment E. In the following, first conditions are formalized. Thereafter,
the definitions for the composition operators ‖ and @ on conditional automata are given.

5.8.4.1 Formalization, Evaluation and Refinement

Although the implementation allows to reference states of already calculated compositions,
this ability can be neglected here as a reference to a composite state (q1, q2) can always be
replaced by the conjunction q1 ∧ q2. Q̂E contains all atomic states.

DEFINITION 22 (Q̂E) Let E = (Σ̂, Lphy,H,G). The global state domain is defined by Q̂E :=
{q ∈QA | A∈G∪H}

Using the elements of Q̂E as variables, conditions can be defined.

DEFINITION 23 (from [42]) A condition over Q̂E is a propositional formula with the syntax

c → c ∨ c | c ∧ c | ¬c | q | t | f

where q ∈ Q̂E. PQ̂E
denotes the set of all such conditions over Q̂E.

In order to resolve or refine conditions, they need be evaluated on the state where the
corresponding transition or prohibition is located. This can have three possible outcomes:
> (true), ⊥ (false) and � (maybe). The latter is the case if the current state still allows both
evaluations as more information is needed for a definite result. Thus, conditions form a
three-valued logic.

13In [3] the specification is called “uncontrollable supervisor”

106

5.8 Formal Model

DEFINITION 24 For a composite state q = (q1, . . . , qn) the set of its atomic substates is
defined by atom(q) := {q1, . . . , qn}. For an atomic state q ∈ Q̂E, atom(q) := {q}.

DEFINITION 25 (Evaluation, Refinement adapted from [42]) The evaluation of a condition
c on a state p, denoted by ¹cºp, is defined by:

¹tºp :=>, ¹fºp :=⊥,

¹qºp :=

> q ∈ atom(p)
⊥ ∃p′ ∈ atom(p), p′ 6= q and p, q are in the same automaton
� otherwise

,

¹¬cºp :=

> ¹cºp =⊥
⊥ ¹cºp =>
� otherwise

,

¹c1 ∨ c2ºp :=max{¹c1ºp,¹c2ºp},

¹c1 ∧ c2ºp :=min{¹c1ºp,¹c2ºp},

where ⊥ < � < >. The refinement of a condition c ∈ PQ̂E
on a state p is defined by the

refinement function refp,

refp(q) =

t ¹qºp =>
f ¹qºp =⊥
q otherwise

, refp(¬c) =

f ¹cºp =>
t ¹cºp =⊥
¬refp(c) otherwise

,

refp(c1 ∨ c2) =

t ¹c1 ∨ c2ºp =>
f ¹c1 ∨ c2ºp =⊥
refp(c1)∨ refp(c2) otherwise

,

refp(c1 ∧ c2) =

t ¹c1 ∧ c2ºp =>
f ¹c1 ∧ c2ºp =⊥
refp(c1)∧ refp(c2) otherwise

.

5.8.4.2 Compositions

Conditions allow multiple transitions of the same event at the same state. Hence, the
definition set of the transition function from Definition 13 need to be supplemented with
the condition. In order to achieve a more compact definition for the composition of two
conditional plants, the transition function f is converted to a relation T ⊆Q×Σ×PQ̂E

×Q
[42]. Each element t = (q1, e, c, q2) ∈ T represents one transition from q1 to q2 on the event
e and the condition c. Unconditional transitions can be realized using c = t. The transition
function f of an entirely unconditional plant is represented by T = {(q1, e, t, q2) | f (q1, e) =
q2}. Ãc is a modified version of the accessible function Ac which additionally removes all
transitions (q, e, c, q′) and prohibitions (q, e, c) where c = f

107

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

DEFINITION 26 (Plant composition, from [42]) Let G1 = (Q1,Σ1, T 1, q1
0) and G2 =

(Q2Σ, T 2, q2
0) two plant automata. Their composition is defined by G1||G2 = Ãc(Q1 ×

Q2,Σ1 ∪Σ2, T ′, (q1
0, q2

0)) . The new transition relation T ′ is the smallest set such that for
all q1

1, q1
2 ∈ Q1, q2

1, q2
2 ∈ Q2, e ∈ Σ1 ∪Σ2, c1, c2 ∈ PQ̂E

the following three implications are
satisfied

(q1
1, e, c1, q1

2) ∈ T 1, e /∈ Σ2 =⇒ ((q1
1, q2

1), e, refq2
1
(c1), (q1

2, q2
1)) ∈ T ′,

(q2
1, e, c2, q2

2) ∈ T 2, e /∈ Σ1 =⇒ ((q1
1, q2

1), e, refq1
1
(c2), (q1

1, q2
2)) ∈ T ′,

(q1
1, e, c1, q1

2) ∈ T 1 and (q2
1, e, c2, q2

2) ∈ T 2 =⇒ ((q1
1, q2

1), e, refq2
1
(c1)∧ refq1

1
(c2), (q1

2, q2
2)) ∈ T ′.

Ãc, the accessible function for automata with transition relations, is defined by Ãc(Q,ΣΠ, T, P, q0) =
(Q′,ΣΠ, T ′, P ′, q0), where

• T̃ is the largest set so that T̃ ⊆ T and for all (q, e, c, q′) ∈ T̃ exist (q0, e1, c1, q1), . . . ,
(qn, en, cn, qn+1) ∈ T̃ and q = qn+1.

• Q′ = {q ∈Q | ∃(q′, e, c, q) ∈ T̃}

• T ′ = T̃ ∩ (Q′ × Σ̂× c ×Q′)

The first two lines cover the case where the event is only known by one of the two plants.
In each case, the condition is refined on the other one. The third implication handles events
which are in both plants’ alphabets. The conditions are refined on each other’s states and
conjuncted as in this case both must hold for the transition to be valid. Note that this line
creates one element in T ′ for each combination of e-transitions in T 1 and T 2 and thus for
their conditions. Example 5.14 on Page 79 demonstrates the composition of two plants.

The application product needs to consider that the plant contract does not hold for
specifications, i.e., an event not contained in the synthesis automaton’s plant alphabet
ΣΠ can occur in absence of a transition. In a conditional setting, this requires that the
conditions of competing transitions all evaluate to false as otherwise one of those would be
taken. Hence, these conditions are state- and event-wise gathered in cc : Q× Σ̂* 2PQ̂E to
finally form a counter condition for staying in the current state.

DEFINITION 27 (Application product, from [42], extended) Let C = (QC ,ΣΠC , T C , PC , qC
0)

be a synthesis automaton and G = (QG,ΣG, T G, qG
0) a plant model. The application of G

onto C is given by C@G = Ãc(QC ×QG,ΣΠC ∪ΣG, T ′, P ′, (qC
0 , qG

0)). T ′, P ′ and cc(q, e) are
the smallest sets such that for all globally known events e ∈ Σ̂:

• if e /∈ ΣG then

– for all (qC
1 , e, cC , qC

2) ∈ T C , qG ∈QG : ((qC
1 , qG), e, refqG(cC), (qC

2 , qG)) ∈ T ′

– for all (qC , e, cP) ∈ PC , qG ∈QG : ((qC , qG), e, refqG(cP)) ∈ P ′

• if e ∈ ΣG, then for all (qG
1 , e, cG, qG

2) ∈ T G holds:

– for all (qC
1 , e, cC , qC

2) ∈ T C :
((qC

1 , qG
1), e, refqG

1
(cC)∧ refqC

1
(cG), (qC

2 , qG
2))∈ T ′ and refqG

1
(cC) ∈ cc(qC

1 , e)

108

5.8 Formal Model

– for all (qC , e, cP) ∈ PC :
refqG

1
(cP) ∈ cc(qC , e) and ((qC , qG

1), e, refqG
1
(cP)∧ refqC (cG)) ∈ P ′

– if e /∈ ΣΠC then for all qC ∈QC :
((qC

1 , qG
1), e, ccc, (qC

1 , qG
2)) ∈ T ′, where ccc := cG ∧

∧

c∈cc(qC
1)
¬c

As for the unconditional case (definitions 17 and 20), the composition operator can
be implemented in an exploratory way, traversing both automata from their respective
initial states. Thus, Ac is implicitly applied as unreachable states are automatically avoided.
Further, as soon as a condition evaluates to ⊥, the corresponding transition or prohibition
is removed, finally yielding the semantics of Ãc. Note that consistency of C is crucial for
Definition 27 to yield the expected result [42], i.e., that no prohibition and transition with
non-excluding conditions are defined at the same state for the same event.

Figure 5.16 on Page 81 illustrates the above definition for a specification, i.e., ΣΠC = ;.
The transitions to 1B and 1C involve the counter condition ¬c1 ∧ ¬c2 ∧ ¬cp. In case of
e ∈ ΣΠC , these two transitions would be dropped.

5.8.5 Preemption

Adding preemption to the formal model requires several adaptations. To not overload the
formalisms, this section considers only straight, unconditional transitions and prohibitions
using the functional notion of f and P from Section 5.8.1. For the monolithic method this
is unproblematic as all conditions are assumed to be eliminated until synthesis is invoked.
Remember that those transitions which are enforced-by-specification are technically possible
but their use is discouraged, cf. Section 6.4.2. Hence, they will not be covered in this section
either. Due to the missing synchronization of enforced events amongst several supervisors
in the runtime framework (cf. Section 6.4.2), the following formalisms are based on
the assumption that only one supervisor is synthesized. Hence, all given specifications
H1, . . . , Hn need be composed to one H ∈ H first.

5.8.5.1 Extensions of the Model

In order to allow preemption, Σ̂ is extended by the class of enforceable events, Σ̂ f . While
specifications and plants need not be touched, synthesis automata must be able to distinguish
between enforced and not (yet) enforced transitions.

DEFINITION 28 (Preemptive synthesis automaton) A preemptive synthesis automaton is a
tuple (Q,ΣΠ, f ,γ, P, q0) where the partial function γ : Q* Σ̂ f defines which event e f = γ(q)
is enforced at q. The rest is analog to Definition 18.

For all states q, where no event is enforced yet, γ(q) is undefined. Throughout this
section, Cδ addresses the set of all preemptive synthesis automata.

As preemption aims for more permissive, yet safe, solutions, it is necessary to relax the
definition of safety in a sense that considers preempted events as successfully averted. But
first, it needs to be declared when an event is regarded as preempted, based on the second
aspect of the preemption contract (cf. Section 5.5.2)

109

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

DEFINITION 29 (Preemption contract, enforcement completeness) Let L be a language
and B a set of plants that are correct w.r.t. L. B is enforcement complete w.r.t. L iff for all
s ∈ L, e ∈ Σ̂ f holds

se ∈
⋂

G∈B

LΠ(G) =⇒ se ∈ L.

The preemption contract claims that G is enforcement complete w.r.t. Lphy, i.e., all
enforceable events are realizable.

DEFINITION 30 (δ) Let C = (Q,ΣΠ, f ,γ, P, q0) a synthesis automaton. The events pre-
empted in a state q are given by δC : Q→ 2Σ̂u∪Σ̂ f where

δC(q) :=

�

Σ̂u ∪ Σ̂ f \ γ(q) if γ(q)!
; if γ(q)�!

Note that all unenforced enforceable events are treated as preempted. In a 1-supervisor
setting, that makes sense as those events cannot occur anymore. Practically, however, a
second supervisor which is executed in parallel could still enforce one of them as long as it
is not prohibited.

The consistency requirement is extended by the claims that first only available events
can be enforced, i.e., for all q ∈ Q holds γ(q)! =⇒ f (q,γ(q))! and second there are no
transitions on preempted events, i.e., for all q ∈Q, e ∈ δC(q) : f (q, e)�!. The operators and
functions defined in the following always yield consistent results on consistent inputs.

DEFINITION 31 (Preempted Language Lδ) Let C = (Q,ΣΠ, f ,γ, P, q0) ∈ Cδ a preemptive
synthesis automaton. The language preempted by C is defined by

Lδ(C) := {ses′ | f ∗(q0, s)!, e ∈ δC(f
∗(q0, s)), s′ ∈ Σ̂∗}

Like LP , Lδ is obviously closed under continuation by construction. Note that Lδ(C) = ;
for a non-preemptive C since γ is undefined on all states and δ thus empty on all states.

The application product needs slight modification to fit preemptive automata.

DEFINITION 32 (Supplement of application Product for Cδ) Let C ∈ Cδ and G ∈ G.
C@G = Ac(Q,ΣΠ, f ,γ, P, q0) ∈ Cδ is defined as in Definition 20, except

• γ(qC , qG) =
§

γC(qC) if f ∗G (qG,γC(qC))!
undefined otherwise

• f ((qC , qG), e) =

...
(qC , fG(qG, e)) · · · ∧ e /∈ δC(qC) (add this constraint to 2nd case)
...

Definition 32 is straightforward: An enforced event stays enforced if possible on the
plant and preempted events are removed from the transition function.

For the sake of brevity, the formal definition of a preemptive supervisor is omitted. It
is basically a supervisor in the sense of Definition 7 (no uncontrollable prohibitions, no

110

5.8 Formal Model

alphabet) augmented with the enforcement function γ as in Definition 28. The functions
of preempted events δ and the preempted language Lδ are defined exactly as on synthesis
automata (definitions 30 and 31).

Based on these foundations, safety can be defined for preemptive supervision.

DEFINITION 33 (Safety) Let H ∈ H a specification, S a supervisor and L ⊆ Σ̂∗ a language.
S is called H-safe w.r.t. L iff L \ (LD(S)∪Lδ(S)) ⊆ LS(H)

While for safety only the absence of undesired strings is relevant, be it via disabling or
preemption, permissiveness is more challenging to grasp. Of course, a supervisor which
disables more events than necessary shall still be conceived worse than one that is less
restrictive in these regards. Further, it is obvious that preemption of an event e in a state
q is more permissive than isolating q by prohibiting all incoming transitions. When there
are multiple enforceable events available in q which all would preempt e, the situation
is less clear. Indeed, since optimization and nonblockingness are not addressed, one of
them may be picked arbitrarily. The consequence is that more than one legit, maximally
permissive solution may exist. The following relation is introduced to capture this aspect
when comparing two languages.

DEFINITION 34 (⊆F ,⊇F) Let L1, L2 ⊆ Σ̂∗ two languages. L1 is a sublanguage modulo
enforcement of L2, denoted by L1 ⊆F L2 iff for all s ∈ L1 holds

• s ∈ L2 or

• ∃s′, s′′ ∈ Σ̂∗, e, e′ ∈ Σ̂ f s.th. s = s′es′′, s′e ∈ L1 \ L2 and s′e′ ∈ L2 \ L1.

The second criterion allows a string of L1 to be not in L2 if it contains an enforced event
and there is a string with the same prefix in L2 where an alternative event is enforced
instead.

DEFINITION 35 (Maximal permissiveness) Let S be a H-safe supervisor and L ⊆ Σ̂∗. S is
maximally permissive w.r.t. L if for all supervisors S′ holds

S′ is H-safe w.r.t. L =⇒ L \ (LD(S
′)∪Lδ(S′)) ⊆F L \ (LD(S)∪Lδ(S))

5.8.5.2 Preemptive Synthesis

In the following, supervisor synthesis with preemption is introduced. In analogy to Section
5.8.2, a function sysp is defined to embody one iteration of the algorithm.

As for non-preemptive synthesis, a specification can be unrealizable on the given set
of plants or even on Lphy itself. Apparently, realizability for non-preemptive synthesis is a
sufficient criterion for the preemptive method to succeed. It is not necessary though. There
are examples that are conventionally unrealizable, i.e., LP(H@G) ∩ Σ̂∗u 6= ;, but where
for each string of this set a suitable preemption can be triggered, making the problem
preemptively realizable. Unfortunately, this is a recursive property and thus badly definable
on languages. Basically, it needs to ensure that for each uncontrollable forbidden string
there is an available preemption such that the same holds for the state reached thereafter.

111

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

Figure 5.19: Synthesis automaton that is preemptively but not conventionally realizable,
u1, . . . ,u8 ∈ Σ̂u, f1, . . . ,f3 ∈ Σ̂ f .

Figure 5.20: Auxiliary plant Gaux

Example 5.18. Figure 5.19 illustrates that. All three enforceable events need be enforced to
guarantee safety. ?f1 and ?f2 together establish safety for q0. This, in return, requires ?f3

as outlet from state t as otherwise executing ?f2 would not be safe. Í

The algorithm presented later in this section is able to handle cases like that as it operates
backwards from uncontrollable prohibitions towards an entirely safe statespace in which all
critical states are either left immediately or unreachable. However, the property sketched
above cannot be defined on the languages of H and G straightforwardly. Fortunately,
realizability can easily be reduced to a permissiveness problem as shown in the following.
For that, we introduce an auxiliary controllable event α and a plant model: Gaux :=
({q0, q1}, Σ̂, faux , q0) where

faux(q, e) :=

q1 q = q0 ∧ e = α
q1 q = q1 ∧ e 6= α
undefined otherwise

Since its alphabet is Σ̂, it specifies that α must be the very first event to happen for all
strings in LΠ(Gaux). Since α is controllable, it can always be disabled as ultima ratio. Thus,
the synthesized supervisor is never void. If it disables α, however, this means that the
specification was unrealizable on the original plants in G.

Disabling α is apparently more restrictive than allowing it. Hence, by introducing Gaux ,
an unrealizable problem can without loss of generality be transformed to one that yields the
maximally restrictive supervisor. In return, if the provenly maximally permissive supervisor
disables α, there is no H-safe supervisor for the original problem at all.

When using the monolithic procedure, the scope of synthesis is set by the user. Hence the
user is also responsible to ensure compliance with the preemption contract. The incremental
method can be extended to support preemption too. Unfortunately, the directedness of
@ regarding LP (Line 5.1 of Lemma 12) does not hold for Lδ. The reason is that an

112

5.8 Formal Model

additional plant model G can theoretically unveil the infeasibility of an event enforced in
an automaton C , causing the previously preempted events δC() and their continuations to
be not preempted anymore in C@G.

Nonetheless, the incremental method can safely be used when all such dependencies are
resolved by composition before an event is enforced. Preemption is hence always based
on full information about the events to enforce, as in the monolithic case, which will be
presented and proven sound in the following.

DEFINITION 36 (Preemptive synthesis step, sysp) A preemptive synthesis step is a mapping
sysp : Cδ→ Cδ and sysp(Q,ΣΠ, f ,γ, P, q0) = (Q′,ΣΠ, f ′,γ′, P ′, q′0), where

• Q′ is the biggest set s.th. Q′ ⊆ Q, and for all q ∈ Q′ : P(q) ∩ Σ̂u = ; or ∃e ∈ Σ̂ f :
f (q, e) ∈Q′.

• γ′ : Q′* Σ̂ f s.th.

γ′(q) =

γ(q) if γ(q)! ∧ f (q,γ(q)) ∈Q′

choose(Fq) if Σ̂u ∩ P(q) 6= ; ∧ Fq 6= ;
undefined otherwise

where Fq := {e ∈ Σ̂ f | f (q, e) ∈ Q′} is the set of enforceable events available in q.
choose(F) picks one arbitrary event from F .

• f ′ : Q′ × Σ̂*Q′ s.th.

f ′(q, e) :=

f (q, e) if f (q, e) ∈Q′ and e ∈ Σ̂c

f (q, e) if f (q, e) ∈Q′ and γ′(q)�!
f (q, e) if f (q, e) ∈Q′ and e = γ′(q)
undefined otherwise

• P ′ : Q′→ 2Σ̂ s.th. e ∈ P ′(q) ⇐⇒ e ∈ P(q)∩ Σ̂c or f (q, e) ∈Q \Q′

• q′0 =
§

q0 if q0 ∈Q′

undefined otherwise

Monolithic synthesis applies sysp subsequently until a fixpoint is reached.

LEMMA 21 (Fixpoint) Let C ∈ Cδ. There is n ∈ N s.th. ∀m> n : syspn(C) = syspm(C).

Proof. sysp shrinks down Q monotonically. Further, it can be seen for C ′ = syspn−1(C)
that if QC ′ = Qsysp(C ′), then PC ′ = Psysp(C ′), i.e., no further prohibitions are established.
Indeed can γsysp(C ′) change compared to γC ′ . As there are no new prohibitions, a fixpoint
is reached then since γ only reacts on new newly imposed forbidden events. Hence,
sysp(C ′) = sysp(sysp(C ′)).

We label that fixpoint for a given C by syspfix(C). Like in the non-preemptive case, we
can ensure the directedness of sysp. In that context, it is important that the two languages
LP and Lδ are considered together because a string can move from one language to the
other if one of its prefixes becomes forbidden or preempted. Remember that neither LP
nor Lδ are in general prefix-closed.

113

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

LEMMA 22 (Directedness of sysp) Let C ∈ Cδ be realizable.

LP(C)∪Lδ(C) ⊆ LP(sysp(C))∪Lδ(sysp(C))

Proof. Throughout this proof, define C ′ := sysp(C).
Let s ∈ LP(C). There is a decomposition s′es′′ = s s.th. s′ ∈ LΠ(C), e ∈ PC(f ∗C (q0C , s′)).
• If e ∈ Σ̂c ∪ Σ̂ f then, by construction of sysp, e ∈ PC ′(f ∗C ′(q0C ′ , s′)) and hence s′e ∈ LP(C ′).

Due to the closedness under continuation, s′es′′ ∈ LP(C ′).
• If e ∈ Σ̂u, there exist two sub-cases. Let q := f ∗C (q0C , s′).

– Case 1: ∃e f ∈ Σ̂ f s.th. fC(q, e f)!. Then f ∗C ′(q0C ′ , s′) = q ∈ Q′ and γC ′(q)!. It follows
e ∈ δC ′(q) and s′e ∈ Lδ(C ′) and finally s′es′′ = s ∈ Lδ(C ′).

– Case 2: ∀e f ∈ Σ̂ f : fC(q, e f)�! (there is no enforceable event in q). Then, by the
definition of sysp, q /∈ Q′ and thus either q0 /∈ Q′ or ∃u ∈ Σ̂∗ s.th. s′ = ue′ and
e′ ∈ PC ′(f ∗C ′(q0, s′)). It follows s′, s′e, s′es′′ ∈ LP(C ′).

Let s ∈ Lδ(C). Then there is a decomposition s′es′′ = s s.th. s′ ∈ LΠ(C) and e ∈
δC(f ∗C (q0C , s′)). Again, two sub-cases emerge:
• Case 1: s′ /∈ LΠ(C ′). Then s′ ∈ LP(C ′)∪Lδ(C ′) and hence s′es′′ ∈ LP(C ′)∪Lδ(C ′).
• Case 2: s′ ∈ LΠ(C ′). Then e ∈ δC ′(f ∗C ′(q0C , s′)). It follows s′e, s′es′′ ∈ Lδ(C ′).

LEMMA 23 (Safety of sysp) Let L ∈ Σ̂∗ a language, H ∈ H a specification and C ∈ Cδ a
synthesis automaton such that L ⊆ LΠ(C) (C fulfills the plant contract) and ∀s ∈ L, e ∈ Σ̂ f :
se ∈ LΠ(C) =⇒ se ∈ L (C fulfills the preemption contract). Let further LΠ(C) ⊆ LS(H) (C
is H-safe). Then S := syspfix(C) is an H-safe supervisor if q0S is defined.

Proof. Supervisor: Assume S is not a supervisor. Then exists q ∈QS s.th. P(q)∩ Σ̂u 6= ;. In
that case, by construction of sysp, we get sysp(S) 6= S = syspfix(S). Contradiction.

Safety: From LΠ(C) ⊆ LS(H) and LΠ(C)∩ (Lδ(C)∪LP(C)) = ; follows that L \ (Lδ(C)∪
LP(C)) ⊆ LS(H). Thanks to Lemma 22, that yields L \ (Lδ(syspfix(C))∪LP(syspfix(C))) ⊆
LS(H).

THEOREM 24 (Correctness of preemptive synthesis) Let H ∈ H a specification and S :=
syspfix(H@Ĝ).

1. If S is void, then there is no H-safe supervisor.

2. If S is not void, it is H-safe w.r.t. Lphy.

3. If S is not void, it is H-safe and maximally permissive w.r.t. Ĝ.

Proof. 2. Follows directly from the correctness and the completeness w.r.t enforceable
events of G, and Lemma 23.

3. Safety can be proven in analogy to 2. For the maximal permissiveness, show that for all
supervisors S′ holds S′ H-safe =⇒ LΠ(Ĝ) \ (LD(S′)∪Lδ(S′)) ⊆F LΠ(Ĝ) \ (LD(S)∪Lδ(S)).
Assume there is some S′ more permissive than S and H-safe. Define the following abbrevia-
tions: LS := LΠ(Ĝ) \ (LD(S)∪Lδ(S)), LS′ := LΠ(Ĝ) \ (LD(S′)∪Lδ(S′)).
Then exists v ∈ LS′ , v /∈ LS, ergo v ∈ LD(S) ∪ Lδ(S), so that there is no decomposition

114

5.8 Formal Model

v = s′es′′, s′, s′′ ∈ Σ̂, e, e′ ∈ Σ̂ f , where s′e′ ∈ LS \ LS′ and s′e ∈ LS′ \ LS, i.e., S and S′ do not
differ just in the choice of an enforced event. Let v0 be the shortest forbidden or preempted
prefix of v, i.e., every proper prefix of v0, if it exists, is legal.
Case 1: v ∈ LD(S). Two sub-cases exist:
Case 1a: v0 ∈ LP(H). Then S′ is not H-safe. Contradiction.
Case 1b: v0 /∈ LP(H). Let i0 denote the iteration where the fixpoint is reached for the
first time, i.e., syspi0(H@G) = syspi0+1(H@G). Then there has been a previous iteration
0 ≤ i1 < i0, where v0 was legal. Let C1 := syspi1(H@G) and C0 := sysp(C1). Then
v0 /∈ LP(C0), v0 ∈ LP(sysp(C0)). For the prohibition of v0 in sysp(C0) the definition of
sysp requires that q0 := f ∗(q0C0

, v0) /∈QC0
, which is only the case if there is e0 ∈ Σ̂u so that

e0 ∈ P(q0) (e0 is forbidden in q0) and preemption of e0 was not possible, >e f , f (q0, e f)!. De-
fine v j := v j−1e j−1. The same two cases (1a or 1b) apply again inductively for v1 = v0e0 and
every further v j. Since i j = i j−1−1 for j > 1, eventually im = 0 is reached where Case 1b col-
lapses to vmem ∈ LP(sysp0(H@G)) = LP(H@G) ⊆ LP(H). Since vmem = v0e1 . . . em and all
e j are uncontrollable and preemption is not available for any of them, vmem /∈ LD(S′)∪Lδ(S′).
Thus, S′ is not H-safe. Contradiction.
Case 2: v0 ∈ Lδ(S). Again, two sub-cases are obtained.
Case 2a: v0 ∈ LP(H) then S′ is not H-safe. Contradiction.
Case 2b: v0 /∈ LP(H). Again, let i0 address the iteration where the fixpoint is found
and i1, 0 ≤ i1 < i0, the iteration where v0 was legal for the last time, i.e., for C1 :=
syspi1(H@G), C0 := sysp(C1) holds v0 /∈ Lδ(C1), v0 ∈ Lδ(C0). Let v′0 ∈ Σ̂

∗, e ∈ Σ̂, s.th.
v0 = v′0e. For v0 being preempted in sysp(C1), there must be an enforced e f ∈ Σ̂ f s.th. for
q := fC0

(q0C0
, v′0) holds γC0

(q) = e f and fC0
(q, e f) ∈QC0

. Since v0 /∈ Lδ(C1) and thus γC1
(q)�!,

it is required that there is an uncontrollable prohibited event e0 ∈ Σ̂u ∩ PC1
(q) which is

preempted in C0 but not yet in C1. For v1 := v′0e0 holds v1 ∈ LP(C1), i.e., Case 1 applies
for v1. This, again, inductively leads to some vmem ∈ LP(H@G). Again, the prohibition of
all e j, 0< j ≤ m, in vmem = v′0e0 . . . em requires that there is no enforceable event available
to allow for preemption. Since v ∈ LΠ(G) \ (LD(S′) ∪ Lδ(S′)) and the prefix-closedness
of the latter set, v0 /∈ LD(S′) ∪ Lδ(S′). Due to that and v0e0 . . . em ∈ LP(H) where all
e0, . . . , em ∈ Σ̂u, it must be e ∈ Σ̂ f and e = γS′(f ∗S′(q0S′ , v′0)), i.e., e is the enforced event after
v′0 to preempt the undesired e0. As e preempts e f in S′ and e f preempts e in S, with the
decomposition v = v0s′′ = v′0es′′ we get that v′0 ∈ LS′ , v′0e f /∈ LS′ and v′0e /∈ LS and finally
v′0e f ∈ LS \ LS′ and v′0e ∈ LS′ \ LS. Contradiction.
Hence, S is maximally permissive w.r.t. Ĝ.

1. Follows from the maximal permissiveness of S when G is replaced by G ‖ Gaux as
described on Page 111.

Algorithm 3 sketches the monolithic synthesis with preemption procedurally.
It should be mentioned that the presented method is not able to detect enforcement cycles

as mentioned in Section 5.5.5. Formally, safety is established as every forbidden event
uncontrollable in that cycle is considered as preempted and the corresponding string is
contained in Lδ(S). In real scenarios, this is obviously more problematic as time is not
considered in the formal model. Detecting cycles can be realized straightforwardly. It
is, however, non-trivial to algorithmically decide which of the enforced transitions shall

115

Chapter 5 A Concept for Runtime Supervision of PLC Programs Using DES

Algorithm 3 Monolithic supervisor synthesis with preemption, monP(C)

Input: C = (Q,ΣΠ, f ,γ, P, q0)
1: fixpoint := false;
2: while ¬ fixpoint do
3: fixpoint := true
4: for all q ∈Q do
5: if P(q)∩ Σ̂u 6= ; then
6: if γ(q)�! ∧ ∃e f ∈ Σ̂ f : f (q, e f)! then
7: γ(q) := choose{e f ∈ Σ̂ f | f (q, e f)!}; // picks arbitrary element from set
8: else if γ(q)�! then
9: fixpoint := false;

10: ∀e remove (q, e) from f ;
11: Q := Q \ {q};
12: for all (q′, e′) ∈ f −1(q) do
13: remove (q′, e′) from f ;
14: remove q′ from γ;
15: P(q′) := P(q′)∪ {e′};
16: end for
17: remove all unreach. states from Q and their outg. trans. from f ;
18: end if
19: end if
20: end for
21: end while
22: for all q ∈Q where γ(q)! do
23: P(q) := P(q)∩ (Σ̂c ∪ Σ̂ f); // remove preempted prohibitions
24: end for
25: if q0 ∈Q then
26: return (Q, f ,γ, P, q0);
27: else
28: return "unrealizable!";
29: end if

116

5.8 Formal Model

be replaced by another one or even dropped to achieve the maximally permissive result.
Accordingly, the definitions of δ and Lδ needed to be strengthened in an appropriate way
to declare cycles of enforced transitions as unacceptable.

117

Chapter 6

SynTACS

The Synthesis Tool for Automation Controller Supervision (SynTACS) is a software tool
which utilizes DES for the monitoring and supervision of controllers. It prototypically
realizes the supervisory control concept presented in the previous chapter and this way
allows to analyse and evaluate its suitability for the addressed scenario. Therefore, SynTACS
explicitly addresses the enforcement of high-priority side conditions which must not be
violated at any time. It offers an end-to-end solution from convenient and efficient modeling
support to a smooth and easy integration of synthesized supervisors to the final controller
code.

This chapter puts a focus on technical aspects such as the management of modeling arti-
facts, the software architecture in general and, particularly, the runtime framework which
integrates the supervisors with the controller under supervision on the target hardware.

The first international presentation of the tool was on the 2016 Workshop on Discrete
Event Systems [43].

6.1 Working with SynTACS

When using SynTACS the user needs to provide specfications and plant models as described
in Section 5.3. The tool can compute compositions (synthesis automata) and supervisors
based on these input automata. To that end, it provides an implementation of all concepts
and methods discussed in Chapter 5.

6.1.1 User Interface

Graphical user interfaces (GUIs) and even graphical programming languages (cf. Section
2.3.4) are widely spread and gain larger acceptance in the area of industrial automation
compared to textual ways of programming. SynTACS follows this paradigm and can entirely
be controled through its GUI.

The screenshot in Figure 6.1 shows the main window of SynTACS. On its very left, the
project structure is displayed, containing modules, automata and event definitions. The
graphical automaton editor is situated in the center. States can be added and freely moved

119

Chapter 6 SynTACS

Figure 6.1: Screenshot of SynTACS

around with the mouse. The same holds for transitions between two states. On the right,
the automaton’s alphabet is shown.

Drag and Drop is widely supported within the GUI to allow for a quick and intuitive
workflow. Access to all functions (minimization, synthesis, composition, etc.) is provided
through the UI.

After providing all required events, specifications and plant models, synthesis can be
started. The user can, for instance, select a specification and trigger incremental synthesis
on it. SynTACS then computes one supervisor for each given specification automatically,
using the method described in Section 5.4.3 and formalized in Section 5.8.3. Finally, the
generation of PLC code can be invoked through a wizard.

6.1.2 Project Structure

SynTACS subsumes all user-provided and generated entities, such as events and automata,
in a project tree. On the top layer, the project consists of two groups: Automaton Templates
and Model Structure. Templates allow to reuse the structure of an automaton to represent
or address multiple parts of actual hardware. They will be the subject of Section 6.1.4.

SynTACS follows a strictly modular approach. To support that, the user can group together
elements as automata or events in modules. These may also contain arbitrarily many levels
of further (sub-)modules. Since the module structure also establishes a namespace hierarchy,
multiple modules may contain events or automata with identical names as long as no name

120

6.1 Working with SynTACS

occurs twice in the very same module, outside its submodules. The qualified name of a
module, automaton, event or state is constructed by concatenation of the names of the
superordinate containers, separated by a dot. For instance, Machine1.React.S2 refers to
the state S2 in automaton React of module Machine1 (cf. Figure 6.1). In the conditions
of transitions and prohibitions (cf. Section 5.7), states are also referenced by their qualified
name. Qualified names can be used relatively. The condition [P2.X] on the a transition
from S1 to S2 inside the React automaton in Figure 6.1 for example refers to the state X
of the plant automaton P2 within the same module Machine1. In case of a name collision,
absolute qualified names overrule relative ones.

Modules are meant to represent different parts of the plant. In many academic publica-
tions, single components are represented by one automaton each. This, however, can be
confusing for several reasons [42]. First, ordinary automata cannot reflect the hierarchical
structure of a plant where each component can also be made of further sub-components
and so forth. Second do events have a much stronger connection to the actual hardware
than automata do. This is because they represent concrete actions or happenings, whereas
automata only relate those events to each other, i.e., their are only indirectly connected to
the hardware through the events. For these reasons, it makes sense to include the events
into the modular organization. As automata synchronize via events, they do not actually
host them in the sense of an event being “local” or “homed” in one particular automaton.
Instead, there can even be multiple automata defining several behavioral aspects of the
same component by establishing different relationships on its events, which is the third
reason for the module hierarchy.

6.1.3 Accessing PLC Timers

Some of the requirements which shall be realized with SynTACS involve spans of time.
When time is entirely neglected, the supervisor often needs to be more restrictive to
guarantee compliance with the specification, similarly to the non-preemptive case sketched
in Example 5.4. It is obviously not possible to represent timing coherences in untimed
models as ordinary DES. It is possible, though, to measure time in an absolute manner
outside of the models to realize delays. Although this rarely influences permissiveness
fundamentally, it can be used to realize a more tolerant kind of supervision, e.g., by delaying
enforced reactions.

Like events and automata, timers can be added to any module of a SynTACS project [41].
Each timer definition consists of the following elements.

• A duration, given in hours, minutes, seconds and milliseconds

• One associated event which starts the timer

• Arbitrarily many associated events which stop and reset the timer

• One dedicated timeout event

The term “associated” means that existing events can be referenced in order to start or stop
the timer. An event can be associated with multiple timers and even serve as start event

121

Chapter 6 SynTACS

for one and as stop event for another timer. A dedicated uncontrollable timeout event is
automatically created for every timer.

When the start event of a timer occurs in a supervisor, the corresponding timer begins
measuring time. Once the specified duration is reached, the timeout event is triggered
and tracked by every running supervisor that has a transition for it in the currently active
state. When one of the stop events is detected before the timeout, the timer is stopped and
reset. All these events can be handled as usual and particularly be shared among several
supervisors.

Time measurements can be relevant in situations in which a correct behavior of the
controller cannot be detected immediately after some sensor event.

Example 6.1. Consider again the plant model and preemptive supervisor shown in Figure
5.8 and the specification from Figure 5.7b (simply prohibits overflow). It was assumed
that the controller has to react immediately by closing the inlet valve once levelAlarm has
been detected. If the corresponding controllable event openInlet is not recognized within
the same cycle, the enforced event !closeInlNow would be triggered to preempt the
overflow. There may be situations where this reaction is still too harsh. Assume that, due
to the maximum inflow, it is known that an overflow cannot occur within two minutes after
the level sensor is reached. Upstream of the valve, a pump is installed which the controller
regularly shuts down before closing the inlet. The emergency action !closeInlNow can
potentially damage the pump when applied too often and hence should be avoided. Thus,
supervision should give the controller some additional time to execute the proper reaction
sequence before closure is ultimately enforced.

Figure 6.2 shows the plant model augmented with a timer set to 15 seconds, sufficient time
for the controller to shut down the pump and close the valve regularly but still sufficiently
early to reliably prevent a critical filling level in the tank. The uncontrollable levelAlarm
starts the timer. The new plant model includes the physical aspect that the overflow will
not occur before the timeout. Hence, synthesis does not enforce ?forceCloseInlet in
state 1′ but in 2′ where the prohibited overflow is imminent. For the sake of simplicity,
stop-and-reset events are not considered here. An event indicating that the level has fallen
below the sensor again would be a good candidate for that. Í

6.1.4 Templates

Use cases that deal with realistic plants often involve several instances of the same hardware
type, e.g., valves, tanks, pumps, etc. Therefore, it is usually necessary to provide multiple
automata for these components. Since the connection between the modeling world and the
real hardware is established via the triggers and actions of the events (cf. Section 5.3.2),
these automata usually include diverse events to address different pieces of hardware.
Often, they share the same behaviors and requirements among the same hardware type
though. That means the user has to define almost the same automaton several times,
containing the same states and equivalent transitional structure, yet on different events.
To reduce that effort, SynTACS provides the concept of automaton templates. It has been
published in [42], which this section is largely based on.

122

6.1 Working with SynTACS

(a) Plant model

(b) Maximally permissive preemptive supervisor

Figure 6.2: Example with preemption and timers

A template can be understood as a generic automaton for a given hardware or specification
type. It comprises states, transitions and, in case of specifications, prohibitions like every
ordinary automaton. In contrast to the latter, transitions and prohibitions in a template can
be labeled with placeholders, called binding events. These are defined right in the template
and are not visible from outside.

A template can be instantiated once or multiple times at any arbitrary module in the
SynTACS project hierarchy. The instance must provide a mapping from every binding event
onto a proper event somewhere in the project.

Binding events can be grouped in namespaces. On instantiation, an entire namespace
can be assigned to a module in the project at once. That module then inherits its events
to the binding events of the namespace, meaning that SynTACS automatically associates
all contained binding events with the events of the module which match the name, if they
exist. Missing events need to be mapped manually. The user can override an inherited
event mapping, e.g., if one specific event does exist in the chosen namespace but another
event shall be used instead.

Namespaces can be used to define abstract roles within the template. This suites the
notion of modules representing certain pieces of hardware. A namespace represents the
abstract “interface” of a component, declaring the necessary events and the template itself
provides the behavior or requirement based on this interface. A module containing an
instance of that template represents real hardware to fullfill that role. The binding events
of the template are matched to the module’s events which finally provide the connection to
the hardware through their triggers and actions.

When all events required in a namespace are found in a module, the entire binding can
be inherited and the template instance needs not being touched at all.

123

Chapter 6 SynTACS

The following example is quoted verbatim, yet syntactically adapted to the style of this
thesis, from the original paper [42] and demonstrates how templates can be used. Altered,
adapted or corrected words and phrases are written in brackets.

Example 6.2. Consider the example shown in Figure 6.3 containing three tanks and five
valves which are connected as shown in Part 6.3a. In this scenario, three safety requirements
are claimed, which are: (1) a reflux of liquid from T1 to T2 or vice versa may never happen,
(2) it is not allowed that the inlet and drainage valve of a tank are open at the same time
to avoid a straight flow through the tank and (3) only one of the two liquids A and B may
be drained into T3 at each time to avoid them to react. The subfigures 6.3e and 6.3f show
the specification automata that prohibit the events reflux and reaction to occur at any
time. Both are [underlined] to indicate that they are uncontrollable. Transitions are not
required in these specifications since the state of the requirements does never change. In
other words, there is no state where reflux or reaction would be allowed.

In order to make the problem controllable, plant models are needed to define in which
situations those undesired events are possible to occur. To that end, the user has to provide
the plant automata jnPps (Fig. 6.3c) and T3 (Fig. 6.3g). According to the first, a reflux is
only possible when Y2 and Y3 are open at the same time. The second claims that, after
the drainage [of] one of the tanks T1 or T2 has been started, the level sensor event empty
has to occur before the other one may be drained to avoid a reaction. While empty and
reaction are local events inside T3’s namespace [(module)1], the events of Y2 and Y3 are
referenced using the namespaces in which they are defined. Figure 6.3b shows the plant
automaton template for arbitrary valves. In contrast to the concrete automata JnPps and
T3, the template Vlv has to be instantiated once for every concrete valve. The left-hand
side of Fig. 6.3h shows these five instantiations into the namespaces Y0 to Y4. In all five
cases, the automaton instance itself is called behavior. Note that each of Y0 to Y4 must
contain the events op (open) and cl (close) [to allow their inheritance from the module].
Since Vlv does not use roles, a role mapping is not required.

Figure 6.3d shows the specification template VlvMutex that forbids two valves, addressed
by the role names local and remote, to be open at the same time. The instantiations of
VlvMutex, depicted on the right-hand side of Fig. 6.3h, are created in the [module] Mtx
for the valve pairs Y0 & Y2, Y1 & Y3, Y2 & Y4, Y3 & Y4 and vice versa. For every instance,
the roles local and remote are mapped to the [module] of the according valve. Without
templates, all those instances would have to be defined as separate automata.

After the user has provided all necessary event definitions, the automata and templates
as shown in Figure 6.3 and the instantiation mappings, the synthesis of the supervisors can
be triggered. Í

Figure 6.4 exemplarily shows the instance Mtx.Y0Y2 of the template VlvMutex as it
would be defined in SynTACS. The namespaces remote and local are bound to the
modules Y2 and Y0 respectively. It is clearly visible that the bindings for the comprised
binding events are inherited from these modules. To change the bindings, the user can click

1In the original paper, modules and namespaces were not strictly distinguished yet. The term “module” is
technically correct here.

124

6.1 Working with SynTACS

(a) P&ID

(b) Plant automaton template for a valve: Vlv

(c) Plant automaton for joining pipes: JnPps

(d) Specification template for mutual exclusion of
two open valves: VlvMutex

(e) Specification prohibiting reflux

(f) Specification prohibiting the
liquids to react

(g) Plant Automaton for T3

Y0.behavior : Vlv
Y1.behavior : Vlv
Y2.behavior : Vlv
Y3.behavior : Vlv
Y4.behavior : Vlv

Mtx.Y0Y2 : VlvMutex
local Y0
remote Y2
Mtx.Y2Y0 : VlvMutex
local Y2
remote Y0

...

(h) Instantiations of templates. left: valve plant models. right: mutex specifications with namespace
mapping to valve modules.

Figure 6.3: Template example – Excerpt of a chemical plant containing three tanks and
five valves: Reflux from T1 to T2 and vice versa, both liquids in T3 at the same time, and

straight flow through any of the tanks are forbidden (figure based on [42])

125

Chapter 6 SynTACS

Figure 6.4: Instance of VlvMutex from Example 6.2 with namespace mapping in SynTACS

on the corresponding cell in the displayed table and a drop-down menu appears, offering all
suitable modules or events. The editor above shows an immutable2 version of the template
automaton where all binding events are substituted by their associated concrete events for
the sake of illustration.

6.2 Software Architecture

The first version of SynTACS was realized in 2014 as a plugin for Eclipse 3, a conveniently
extendable and highly customizable IDE. In 2015, the new and current version of the tool
was developed on top of the Eclipse 4 rich client platform (RCP)3. The latter embodies a
framework for standalone applications rather than for extensions to the original IDE and
thus offers significantly better flexibility. Besides, concepts as dependency injection and
the unified eclipse application model improve the usability of the RCP compared to older
versions.

SynTACS is modularly organized. Figure 6.5 shows its architecture schematically. The
four main components are briefly described in the following.

Core Contains a basic model of states, transitions and a simple abstraction of events.
Further, all algorithms including the mechanisms for composition and condition

2States and transitions may moved around and bended to get a better overview but no structural modifiactions
can be applied as these would affect the template itself.

3Project website: https://eclipse.org/

126

https://eclipse.org/

6.3 SynTACS Runtime Framework

resolution (cf. Section 5.8.4) are part of the core. It distinguishes the introduced
automaton types plant, specification, supervisor and synthesis automaton. This mod-
ule has no dependencies to the other components and thus is still runnable when
decoupled from the rest of SynTACS, e.g., as a library.

Model The SynTACS model captures all aspects of how the elements of a SynTACS project,
modules, automata, events and timers, are organized. In particular, it provides the
set of available automata to the incremental synthesis method and offers a state
path resolver to transform the qualified state names in conditions to proper object
references. The Model is further responsible for storing and loading projects from
the file system. The template system presented in 6.1.4 is entirely realized and
encapsulated in this component too.

Editor The automaton editor of SynTACS is implemented upon the Graphical Editing
Framework (GEF) 4, which follows the model–view–controller principle. Every
displayable and editable core object such as states, transitions, etc. is supplemented
with view data using the decorator pattern [40], mainly about the positioning of
objects. The implemented EditParts, policies and behaviors4 provide GEF with the
necessary code for an appropriate user interaction with the displayed model on the
one hand and a correct propagation of changes to the core components on the other.
Besides, the EditParts trigger drawing the views as JavaFX elements using the view
data.

Code generator This component translates the synthesized supervisors to executable PLC
code using the Apache Velocity engine. In addition to the supervisor, an entire runtime
framework is created, including the handling of events, timers, in- and output signals.
Several dialects of Structured Text are already supported. However, thanks to a
template managing system, the introduction of new languages is easily possible5.

6.3 SynTACS Runtime Framework

SynTACS aims to make the methods of SCT available for monitoring and supervision
of existing PLC programs. For this reason, strong emphasis was put on the possibility
of generating an executable representation of the supervisor directly from the tool with
minimal necessary user interaction. The result is the SynTACS Runtime Framework (SyRF)
which roughly implements the work flow sketched in Figure 5.2 on Page 53.

The framework introduces pre- and succeeding operations to the actual controller. Thanks
to the cyclic execution model of PLCs it can be guaranteed that these steps are carried out in
perfect synchronization with the controller without the need of interrupts or manipulations
on the operating system. More precisely, the framework is able to capture every changed
input that the controller recognizes as well as all its modifications on the outputs. In that

4For detailed information on these concepts, refer to the project website: https://eclipse.org/gef/
5Code access is required to migrate the new templates into SynTACS.

127

https://eclipse.org/gef/

Chapter 6 SynTACS

SyRF

Figure 6.5: Architecture of SynTACS

context, it is vital that the latter are applied to the hardware no earlier than at the end of
the entire cycle, which allows the framework to effectively block doubtful actions.

Large parts of SyRF have been developed in the context of [Timmermanns, 2015] and
[Gatto, 2016].

6.3.1 Event Management

SyRF allows to use events with different trigger and action classes, as described in Section
5.3.2 at the same time. Further is it technically possible to use preemption (Section 5.5) and
cyclic events (Section 5.6) in parallel or even in the same supervisor. Since the controller is
assumed to react on what the plant did, where the supervisor evaluates the controller’s
decisions and potentially reacts these in turn, the logic order of events on the supervisor is
always uncontrollable events first, controllable events second, enforceable events last. In the
following, the technical realization of trigger and action classes is discussed. Figure 6.6
gives an overview about the SynTACS event scheme in full detail.

Trigger Classes In Chapter 5, two different tigger classes were introduced: events that
are detected by the supervision framework and those which are explicitly executed by the
controller. In case of the former, the controller manipulates the PIO of the PLC as usual. The
user specifies a trigger condition on one or several values of the PIO as an ST expression.
She can also access global controller variables with the macro \var{varname}. Additionally,
the trigger direction needs to be specified, i.e., whether the event shall be triggered on a

128

6.3 SynTACS Runtime Framework

Figure 6.6: SynTACS event scheme, figure based on [Gatto, 2016]

rising edge, a falling edge or both. Rising edge means that the condition is true and has
been false at least in the cycle before, while falling edge addresses the opposite. If the
built-in edge detection is not sufficient, it is also possible to access the PIO values of the
previous cycle using the macro \last{address}. Note that this macro cannot be nested as
accessing the cycle before the previous one is not supported. Besides the two edges and
their combination “rising or falling edge”, a fourth option exists to realize cyclic events (see
Section 5.6). These need to be re-approved by the supervisor in every cycle, i.e., the event
is triggered every time that the condition evaluates to true.

Detected events allow the supervisor to work with arbitrary controllers which have not
been specifically designed for the framework nor know about being supervised, one of the
objectives stated in Section 5.1. If the controller is developed in parallel to the SynTACS
model, it is also possible to execute controllable events directly from the controller. Every
event is given a unique ID in the framework, which is stored in a constant, named after the
qualified name of the event. To execute an event, a special function block must be called,
passing the event’s ID as argument. The event is then checked on the supervisor right away
as the controller is running and executed in case of approval.

Uncontrollable events are always detected by the framework in the same manner and
using analogous triggers as controllable ones, except they are usually formulated over the
addresses of the PII. Cyclic uncontrollable events are technically possible but should be
avoided as they are logically not sensible. Enforceable events apparently have no trigger.

129

Chapter 6 SynTACS

Virtual Events It is often the case that automata provided by the user contain uncontrol-
lable events which are prohibited in all states where they can occur as they are always
undesired, e.g., over-heating or damage. Usually there is no dedicated sensor hardware to
detect this kind of events, thus a trigger cannot be formulated. Since synthesis is meant to
transform the uncontrollable specification into a controllable supervisor, these events will
be dropped during the process anyway. They are called virtual events as they will never
happen under supervision. A supervisor may of course not contain virtual events anymore.
If one still does, an error is displayed during code generation.

Action Classes Recall the three action classes from Section 5.3.2, Reset on denial, Code
on acceptance and Code on denial. When the user enters a trigger condition, SynTACS
lexically scans that string for PIO addresses and displays one checkbox for each address
below. By these she can select which outputs shall be reset in case that the event has been
denied while the others stay unaltered. For the action classes Code on acceptance and Code
on denial, the user needs to explicitly specify the ST code that is to be executed in the
respective situation.

6.3.2 Supervisors

The code representation of synthesized supervisors is the core element of SyRF. The first
version of the code generator, realized in the context of [Timmermanns, 2015], translated
every supervisor to a simple lookup table in the shape of a two-dimensional array. This
implementation had several drawbacks though. On the one hand, it turned out that the
states of realistic supervisors are not very strongly connected, meaning that the majority of
table entries represented loops. On the other hand are arrays on most PLCs stored in the
main memory.

In the revised version [Gatto, 2016] the transitional structure is entirely implemented in
terms of conditional jumps (usually via an extensive switch/case construction). This way
the entire supervisor is kept in the usually much larger program storage. Further can the
memory consumption of implicit loops, i.e., the absence of a transition or prohibition for
an event, be reduced to zero.

All supervisors are accessed via one PLC function (POU of type FUN) which calls the
functions of the corresponding supervisors and evaluates their results.

6.3.3 Timer Management

In Section 6.1.3, the definition and usage of timers within the SynTACS models has been
explained. Apparently, the employed timers must be functionally realized in the SyRF too.
Similar as for the supervisors, one function block manages all timers. Internally, each timer
is represented by an on-delay timer (TON) instance. The timer manager instantiates all
timers, starts and resets them and calls them on every cycle to update their status. When a
timer has reached its user-defined value, the timeout event is triggered.

130

6.3 SynTACS Runtime Framework

6.3.4 Procedure

Figure 6.7 shows the control flow and internal communication of SyRF during one PLC cycle
schematically. At the beginning, i.e., right after the PII has been sampled, some initializations
are performed. This includes refreshing the timers by calling the corresponding TONs.
Further, all signals from the last cycle are captured that are relevant for edge detection or
for triggers that use the \last{} macro on the corresponding signals. In the second step,
the triggers of all uncontrollable events are evaluated and the supervisor FUN is called on
all detected occurrences of these, including timeouts that are due.

Next, the embedded, user-defined controller routine is executed. Meanwhile, the frame-
work propagates executed controllable events immediately to the supervisor and receives
the result (authorized or denied). Authorized events are further transmitted to the timer
manager which, if applicable, starts the timers associated with these events. After the con-
troller cycle has finished, the framework checks the triggers for the remaining controllable
events and processes the detected ones accordingly. The following step resets the signals
that were manipulated by detected events which the supervisor has rejected, except they
provide code on denial instead. Thereafter, the actions of granted controllable events are
carried out, followed by the enforced ones. For the events which were explicitly executed by
the controller, the original execution order is kept. For detected events this is not possible.
Therefore, the user should be very careful when using events that operate on the same
variables/signals and are not order invariant. Finally, the framework executes the specified
code on denial for rejected events.

The workflow sketched above describes the generic shape of the SyRF. The actual code
varies slightly depending on the selected PLC dialect. For instance does Siemens STEP
7 not support functions with a non-elementary return type. This is why in that case the
supervisor is generated as an FB POU with empty data instead of a FUN.

6.3.5 Generation

The entire SyRF is generated dynamically from a SynTACS project. Technically, this is
realized by using the Apache Velocity Engine6.

The user can trigger code generation using a button in the toolbar. A wizard shows up
in which he can select an output format, the supervisors to include in the framework and
a target folder. The currently implemented dialects are IEC-compliant Structured Text,
Siemens SCL for S7-300/400, Siemens SCL for S7-1200/1500, CoDeSys-compliant ST and
PLCopen XML with embedded IEC ST. In addition, for S7-1200/1500 a remote supervisor
option exists, which is introduced in Section 6.5.

Velocity uses textual templates7 for code generation. Besides plain code, these contain
directives for case distinctions, repetitions (loops) and to access, evaluate or insert data from
the velocity context, an object that has to be filled with key-value pairs before generation.
SynTACS uses it to store all information which is relevant to generate the SyRF, such as
transitional structures, event definitions, actions, triggers, and so forth.

6Project website: http://velocity.apache.org
7Do not confuse with automaton templates (Section 6.1.4).

131

http://velocity.apache.org

Chapter 6 SynTACS

Figure 6.7: The SynTACS Runtime Framework
(Figure taken from [Gatto, 2016], translated from German)

132

6.4 Limitations

6.4 Limitations

The SynTACS Runtime Framework allows a minimally restrictive supervision of existing
controllers thanks to the maximal permissiveness of the implemented syntheses on the one
hand and the non-invasive event detection on the other. Particularly the latter comes with
some drawbacks though, which should be mentioned.

6.4.1 Event Order

The framework is able to keep executed controllable events in their proper order. Apparently,
that is not possible for detected events, neither for controllable nor uncontrollable ones.
However, this limitation is fortunately not as significant as it may seem at the first glance.
Consider two physical events which occur in quick succession. If controls shall depend on
which of them occurred first, the controller must in any case be hosted by sufficiently fast
hardware in order to reliably determine the chronological order of these events. In return,
SynTACS assumes that two events which occurred within the same cycle, and hence are
detected simultaneously, are order-insensitive.

The same holds for the controller’s output signals. Again, the hardware would have to be
fast enough to propagate order-sensitive signals and operations in their accurate order, i.e.,
at least in two subsequent cycles. Since the control designer should be aware of the fact
that the entire PIO is applied to the hardware outputs of the PLC simultaneously, SynTACS
in this case also assumes the order insensitivity of the corresponding event pairs.

Nonetheless, the supervisor needs to fulfill the property of interleave insensitivity, discov-
ered by Fabian and Hellgren [33], to tolerate arbitrary orders of these events. SynTACS
does not include a method for that yet but an algorithmic check is proposed by these
authors, which could be integrated in the tool.

Currently, the order of events being detected and executed is arbitrarily determined
during code generation. Future versions of SynTACS should allow the user to define a
customizable event prioritization.

6.4.2 Synchronization of Enforced Events

In Section 5.5.1, it is motivated why allowing unstable states is crucial for the supervision
of realistic systems. Preemption by enforced events is one way to cope with that issue and
has been successfully implemented in SynTACS. Although it yields well-usable results and
behaves as expected in practice (cf. Section 7.2), some limitations exist.

Supervisors do not synchronize on enforceable events. Thus, although technically pos-
sible, enforceable events should not be prohibited in specifications. Nevertheless, if an
enforceable transition leads to a state hosting an uncontrollable prohibition, synthesis
would automatically illegalize this transition, i.e., convert it to a forbidden event. The
situation of a prohibited enforceable event which is at the same time enforced by another
supervisor cannot be resolved during runtime anymore. It is possible though to check the
sets of enforced and prohibited events of all supervisors for disjointness and show a warning
to the user if they share an event. In that case, she can still compose the corresponding

133

Chapter 6 SynTACS

(a) Specification H (b) Specification Hd (c) Plant Model Gd

Figure 6.8: Problematic enforcement-by-Design

specifications first and let the tool synthesize one supervisor for both. This way, the conflict
is avoided and the event would only be enforced in states in which it is uncritical. Note
that these two sets being disjoint is a sufficient but by no means a necessary condition for
conflict-free supervisors. However, using the composition can involve larger state spaces
and higher cost of computation but is obviously never less permissive within the scope of
legal solutions.

Within the current version of the tool, one supervisor is not able to track the events
enforced by another supervisor. This has several implementation-related reasons. First,
the necessary communication between the supervisors could require multiple iterations
until all enforcements are processed. For instance, when one supervisor enforces an event
f1, a second tracks it and decides to enforce f2 thereafter, which again induces the first
supervisor to enforce another event f3, and so on. These constellations make it difficult to
estimate the runtime of the framework and thus the cycle time. Unbounded loops (while
loops) are in general undesired in PLC programs for the sake of runtime predictability. The
second reason is that the runtime framework cannot distinguish between enforceable and
enforced transitions. Hence, all enforceable but not yet enforced transitions are removed
from the automaton before it is finally converted to a supervisor.

6.4.3 Manually Enforced Events

SynTACS allows the user to directly define explicitly enforced events. This is done by adding
an enforceable event to a specification’s transition. This way of explicit enforcement should
be used carefully as it can be delicate.

Enforcing an event via the specification does not guarantee that it is eventually executed
as this is not covered by the preemption contract. In particular, the user should not prescribe
critical reactions on events right away. The following example illustrates that.

Example 6.3. Consider the specification depicted in Figure 6.8a. It specifies an instant
reaction on the event sensor in the shape of the enforced event react. But, if it is
composed with the specification shown in Figure 6.8b, the reaction would be disabled once
ed occurred. Even if no specification forbids any enforceable events, as recommended above,
there can still be a plant model which indicates that the reaction is not even physically
possible after ed , such as the one in Figure 6.8c. In both cases react cannot be executed,
something the designer of H did probably not take into consideration. Í

This example shows that enforcement does not replace a proper declaration of undesired
happenings. If the user added an uncontrollable prohibition to state q in Figure 6.8a,

134

6.5 Remote Supervisor

synthesis would disable ed in both cases to ensure that react can take place, provided
that Hd or Gd are composed with H. Still, it is recommended to omit enforced-by-design
transitions and instead provide enforceable transitions to safe states within the plant models.
The reason is that incremental synthesis automatically consults all plant models regarding
the feasibility of enforceable transitions before choosing one. When monolithic synthesis is
invoked, the user can apply the relevant plant automata manually and this way obtain a
correct solution.

6.4.4 Conflicting Transitions

SynTACS allows multiple transitions with the same event leaving the same state as long
as both transitions are conditional. The logic mutual exclusion of both conditions is not
checked ex-ante although this would technically be possible using satisfiability checkers. It
is not necessary though as all conditions need be resolved by composition before or during
synthesis anyway. As soon as SynTACS detects two transitions at the same state which
eventually both are evaluated to true, i.e., proper non-determinism, an error message is
displayed to the user referring to the problematic transitions so she can fix the conditions.

Unconditionally conflicting transitions are not allowed. When an e-transition is added to
a state where an outbound e-transition exists already, SynTACS prompts the user to enter a
condition for the new transition. The original one automatically gets the negated condition
by default to avoid inconsistent models.

6.5 Remote Supervisor

On conventional PLCs, both program and data storage is usually very limited. Particularly
the transition function can become very large for complex scenarios. In the context of
[Osetinski, 2017] it was evaluated whether it is possible to detach the transition function
from the rest of the framework and relocate it onto an external device, which adaptations
need to be performed for that and which restrictions apply. For the case study, the Texas
Instruments AM3359 ICEv28, in the following ICEv2, was used to host the transition table
(the remote supervisor). It is shipped with the proprietary real-time OS SYS/BIOS and a
C compiler. The remainder of SyRF and the controller were to be executed on a Siemens
S7-1516 PLC.

6.5.1 Communication

For the exchange of data between both devices, a communication protocol was designed
on top of the process field bus (for) decentralized peripherals (PROFIBUS DP). High data
rates are not required for this purpose. The real-time capabilities of the underlying bus
system, however, are crucial as an indefinite delay of control actions is not tolerable. This,
along with the good availability of PROFIBUS on PLCs made it the means of choice.

8Technical identification: TMDSICE3359

135

Chapter 6 SynTACS

Figure 6.9: SyRF in the remote supervisor setting
(Figure taken from [Osetinski, 2017], translated from German)

Both parts of the framework need to be generated at the same time so they fit to each other.
When the communication is initialized, this is checked using a randomized fingerprint. If
the result is positive, the actual supervision can start. The PLC transmits the list of event
occurrences to the remote supervisor, which executes them on its transition table. The result,
a list of “authorized” and “rejected” notifications followed by the list of enforced events, is
sent back to the PLC, which performs the necessary operations. For technical reasons9, very
long event lists of more than 238 occurrences have to be split into multiple segments which
are transmitted subsequently. The same holds for the result and enforcement lists.

6.5.2 Cyclic Execution

The main challenge for the adaptation of the original SyRF is the asynchronous communica-
tion paradigm of PLCs when communicating with peripherals. The PLC treats data that shall
be submitted to these as output signals and received data as inputs. As a consequence, data
is sent and received only once a cycle in analogy to the digital and analog I/O ports. This
method is tailored to field devices such as sensors and actuators, which are often connected
via PROFIBUS. In the considered scenario, however, bidirectional communication would be
necessary within the same cycle.

For that reason, SyRF is transformed to a sequence of multiple steps which are, similar
to SFC, distributed over several succeeding cycles, as sketched in Figure 6.9. Technical
details such as executing actions, resets or timers are omitted in the illustration for reasons
of clarity. Every dashed box on the left-hand side represents one or even multiple cycles of
the host PLC, including the corresponding in-/output phases. These are used to transmit

9A closed-source PROFIBUS driver on SYS/BIOS with a maximal supported segment length of 240 Bytes.

136

6.5 Remote Supervisor

and receive the event and result lists mentioned above. Note that the controller is executed
only once during the entire sequence which makes the latter a logic cycle.

Thanks to, first, both hardware components being real-time capable as well as SYS/BIOS
and PROFIBUS and, second, that the maximal count of event occurrences is limited by
the number of different events10, the maximal duration of one logic cycle is bounded by a
constant.

6.5.3 Evaluation

The presented framework for remote supervision has been evaluated on several examples.
In particular, it was tested on generated supervisors with large state spaces in order to
show its suitability to tackle the addressed issue of memory consumption. These supervi-
sors had nz states, q1, . . . , qnz

, and were defined over ne different events. Each state had
outbound transitions to three other states, labeled by randomly picked events, such that
all of them were reachable. The only exceptions were q1, q2, qnz−2, qnz−1 and qnz

which had
less transitions.

As expected, it could be observed that the size of the PLC part of the framework grows
roughly linearly over ne while nz only affects the size of the transition table, stored on the
external device [Osetinski, 2017]. The largest tested supervisor had nz = 60,000 states
and 179,994 transitions over n3 = 10 different events. While the generated PLC framework
consumed only a few kilobytes of memory (9 KB of POUs and 2 KB of data) during runtime,
the binary of the transition table was larger than 6 megabytes and, by that, would on its
own exceed the memory capacity of most ordinary PLCs.

Using that supervisor, the average duration of one logic cycle was 12 ms, fast enough
for plenty of factory- or process-related applications. In further experiments, a linear
correlation between the number of events that were detected in a cycle and its duration
was observed [Osetinski, 2017]. This is not surprising as the size of transmitted messages
mainly depends on that number. For 100 event occurrences, the average cycle time was
16 ms on average, for 1000 it was between 557 ms and 590 ms. In contrast, the state space
size and transition density had nearly no impact on the performance thanks to the very
efficient realization of switch/case statements by most C compilers11.

Since the ICEv2 only has a flash memory of 8 MB, it was not possible to compile signifi-
cantly larger supervisors for that device. However, thanks to the fact that the generated C
code neither involves any hardware-related aspects nor does it require specific drivers, it
should be possible to adapt the remote supervisor framework to other devices without too
much effort.

In general, it can be stated that outsourcing the memory-intensive transition tables to
an external device is feasible if a real-time capable communication channel is used. The
performance decreases only locarithmically over the size of the supervisors but suffers from
large numbers of event occurrences within a short time.

10Given that an executed event is not triggered multiple times within the same cycle, which does neither
make sense from the controls’s point of view nor is it supported by SyRF

11Theoretically, switch/case has logarithmic runtime on large blocks of succeeding integer entries

137

Chapter 7

Evaluation

In order to estimate the suitability of the approach and the tool SynTACS for the purposes
described in chapters 4 and 5, an evaluation of the following aspects is required.

• How well are unexperienced users able to express requirements and behaviors using
the modeling principle introduced in Section 5.3?

• How is the latter improved by the advanced modeling concepts such as conditional
transitions or templates?

• How good is the general usability of SynTACS?

• Is it able to supervise a real controller that is attached to a physical plant; does it
behave as expected and which restrictions apply?

These questions have been investigated by [Aydin, 2017]. The first three of them were
covered by a user study. Its setting as well as the findings are summarized in the following
Section 7.1. The general applicability of the methods, the tool and finally the generated
code have been demonstrated on the M3P.AC, a didactic process plant situated at the RWTH
institute of process control engineering [62]. This study mainly addresses the last question.

7.1 User Study

In early 2017, a user study was conducted to evaluate their suitability for the designated
purpose. It has been presented in [41]. Thus, this section is mainly based on that publica-
tion.

7.1.1 Object of Investigation

The study was intended to independently assess the three aspects mentioned above in the
context of controller supervision: appropriateness of automata/SCT in general, improve-
ment by the advanced concepts mentioned above and usability of the tool. It consisted
of three tasks complemented by two questionnaires, one to query the background and

139

Chapter 7 Evaluation

foreknowledge of the participants before accomplishing the tasks and the second to collect
their experiences thereafter.

In the first task, the subjects were asked to model a simple specification and a plant
monolithically only by pen and paper. The second one involved a slightly more complex
scenario that should be expressed with modular models including conditional transitions
and prohibitions, again handwritten. The reason why these tasks were designed as pen-
and-paper exercises is that any distortion of the results by limitations and benefits of the
tool should be avoided. Finally, the participants had to implement specifications and plant
models in SynTACS. This included the usage of automaton templates and instances. This
time, all events and automata were given to exclude modeling difficulties and thus provide
the same circumstances for all participants when using the tool for the sake of more credible
results.

7.1.2 Procedure

After filling out the first questionnaire, the participants were given a short introduction to
the use case, to DES and SCT1, and finally to SynTACS. Five A4-sized cheat sheets were
used to support the explanations. The participants were allowed to use these sheets during
the entire case study. Before each exercise, the subjects were presented a sample solution
for another but similar example to get a hint about the semantics of the elements.

Exercise 1 – Collision Avoidance System In the first task, the necessary models to syn-
thesize a supervisor for a crane controller should be created. The crane trolley was
assumed to be mounted on a rail at the ceiling, able to move to the left or to the
right in terms of discrete steps. At both ends of the rail, sensors were installed to
indicate that the left- or rightmost legal position has been reached. All five events
(stepRight, stepLeft, sensorRight, sensorLeft, crashLeft, crashRight)
were given including their triggers. The subjects were asked to provide a plant model
for one of the two sides that correctly defines the situations in which a crash can
potentially occur. Additionally, the specification that illegalizes that crash should be
modeled. For a proper solution, the experimentees had to consider several aspects:
They needed to distinguish between what is (il)legal, what is (im)possible and how
these statements are mapped onto the model. According to the plant contract, a
plant model needs to over-approximate the entire possible behavior (plant contract)
with respect to its alphabet. Yet, it must be precise enough to make the specification
realizable.

Exercise 2 – Workpiece Singularizer The second exercise involved two hardware com-
ponents: A conveyor belt and a reservoir equipped with a clasp. When the clasp was
opened, one workpiece was dropped onto the conveyor. After that, the clasp should
automatically close again, indicated by a sensor. The belt was able to be started or
stopped. The subjects should provide a specification that prevents objects to stack on
the belt. The necessary modular plant model needed to capture that stacking is only

1The adapted shape of SCT as introduced in Section 5.3

140

7.1 User Study

0 1

6

16

4
5

8

2

8

8

4

0

6
4

0
0

0

2

4

6

8

10

12

14

16

18

DFAs PLCs DES SCT

no little some much

Figure 7.1: Foreknowledge of the participants (Figure based on [41])

possible while the conveyor is standing and the clasp is open. This time, the events
had to be identified and defined on the described actors and sensor signals by the
participants on their own.

Exercise 3 – Using SynTACS In the last exercise, a sample solution for the crane example
from the first task was given for both sides, left and right. The subjects should use
SynTACS to synthesize the corresponding supervisors. For that they were provided
with the scaffold of a SynTACS project, consisting of one module and four predefined
events. First, they had to add the two missing events to the project.

Since the considered problem is symmetric, the given plant models and specifications
have the same shapes for both sides. Thus, the participants were asked to set up one
template for each kind and instantiate these for either side by using the respective
events. Finally, they should synthesize a supervisor from each specification instance
using both available methods: Manual composition followed by monolithic synthesis,
and the incremental procedure.

At the end, each attendee filled out the final survey.

7.1.3 Participants

18 persons attended the user study. 10 of which hold a Master’s degree while 8 were students.
All of them study or work in the fields of engineering or computer science. Nobody had
previous experience with SynTACS nor were the subjects involved in its development by
any means. While many had basic knowledge about classical automata theory, only few of
them were familiar with DES or even SCT. Figure 7.1 shows the foreknowledge, broken
down to these four categories.

141

Chapter 7 Evaluation

7.1.4 Significance

The user study was carried out subsequently with one attendee at a time to avoid mutual
influencing. To prevent disturbance, a separate room was used. Every subject got the same
introduction and was provided with identical materials. It cannot be excluded for sure that
information was shared amongst the participants between the experiments. However, a
significant bias appears unlikely.

The strict decoupling of pure modeling tasks on the one hand and those involving the
tool on the other hand allows a clear association between the results of the exercises and
the objects of investigation. Concrete questions from the subjects were answered. Apart
from that, only small hints were given if somebody got obviously stuck. In particular, no
feedback about the correctness or quality of the provided solution was given.

7.1.5 Results – Modeling

The crane exercise was for all participants the first time that they had to design a DES
model for a given system on their own. Seven of them created erroneous solutions with
varying severity, while nine provided correct and sufficiently precise models. In all cases, the
subjects had more difficulties in modeling the plant than the specification. Three common
types of mistakes could be identified:

Over-simplification In many cases it could be observed that the expressiveness of the
plant model was over-estimated. Models with too few states or transitions were the
result. Two logically distinct states that were treated as one was a common mistake.
That state usually contained the outbound transitions of both where the participants
implicitly assumed that in one case the first and in another case the second transition
would be taken. Such assumptions, however, need be made explicit in the models
in order to yield a correct solution. If the plant model describes the behavior of the
plant too restrictively, the resulting supervisor would be too permissive and hence
eventually violate the specification.

Missing backwards transitions The provided models were often designed too tightly
around the specification. In principle, that is uncritical as long as the plant contract is
not violated. This, however, was the case quite frequently, especially due to forgotten
backwards transitions. For instance, it was assumed that, once the crane from the
first exercise has moved back from the end position, that position would become
unreachable, i.e, according to the model a crash was not possible anymore.

Missing dependencies Some of the models were sound in the sense of the plant contract
but incomplete, i.e., the abstraction was too coarse. The reason was that physical
dependencies were not considered accurately. In that case, the result is either a safe
but too restrictive supervisor or even a void supervisor if controllability cannot be
established.

The second exercise was correctly solved by all eighteen attendees although it required
more automata and events. Since the participants did not receive feedback about wrong

142

7.1 User Study

Figure 7.2: Usability rating for SynTACS (figure taken from [41])

Figure 7.3: Degree of difficulty in modeling DES (figure taken from [41])

answers in the first exercise, it is unlikely that the significantly better solutions to the
second are already the result of training or experience. Instead, it clearly points out how
the manual process of modeling benefits from modularity and the possibility of restricting
transitions to other automata’s states by conditions.

7.1.6 Results – User Experience

The subjects used SynTACS for the third exercise. All users were able to accomplish the
task with only minor difficulties. In the final survey, their experiences with the tool were
polled in terms of seven categories: create states, create and edit transitions, using templates,
using conditional transitions, code generation, create and edit events and supervisor synthesis.
Further, the attendees were asked to rate the overall usability of SynTACS. All disciplines
could be graded from 0 (worst) to 4 (best). Figure 7.2 shows the results as boxplots.
Additionally, the participants were asked to grade the difficulty of modeling plants and
specifications using DES as performed in the first two exercises. The corresponding boxplot
is shown in Figure 7.3. Again, it must be emphasized that the participants only got a short
introduction and had no former experience in modeling DES.

143

Chapter 7 Evaluation

Figure 7.4: M3P.AC

Apparently, not only the first intuition and learning curve in using DES and SynTACS are
relevant but also the experiences a user makes on the longer term after the initial barriers
have been overcome. These will be discussed in the context of the case studies described in
the following section.

7.2 Case Study: M3P.AC

In order to validate the suitability of SynTACS for the supervision of actual controller code,
several case studies were carried out in the scope of [Aydin, 2017], addressing different
applicational contexts. A summary of the results has been published in [41]. In the first
and most comprehensive study, the safety measures of M3P.AC should be synthesized, a
didactic laboratory plant which consists of real components as used in industrial settings.
In the following, the case study on M3P.AC is summarized.

7.2.1 Setting

The M3P.AC is a simplified model of a wastewater treatment plant near Cologne, Germany
[62] and usually serves for educational purposes, particularly in process engineering courses.
It comprises 3 tanks, 5 pumps and 7 valves which are connected by pipes. Further does it
provide 5 level, 6 temperature, 2 pressure and 4 flow sensors to monitor the current status
of the plant. Figure 7.4 shows a photograph of the M3P.AC. The components are attached
to the controllers via connectors which allow to quickly detach it from one PCS and connect
it to another. For the case study, a Siemens S7-400 PLC was used.

The communication between the PLC’s CPU and the field devices was managed by an ET
200M interface module which was connected to the CPU via PROFIBUS. The controller

144

7.2 Case Study: M3P.AC

under supervision was developed with SIMATIC STEP7 TIA-Portal V13 SP1 using the
language SCL, Siemens’ ST dialect. The same IDE served to finally migrate the generated
code onto the controller.

7.2.2 Safety-Critical Requirements

While operating M3P.AC, it can come to several safety-critical situations. In the regular
courses, the students are provided a list of aspects which they are supposed to implement
safety measures for. Examples are preserving tanks from overfilling and pumps from
running dry or working against closed valves. Furthermore, the liquid is not allowed to
enter one of the tanks if the temperature difference is too significant.

Some of these measures are simple interlocks while others require unstable states being
left actively, cf. Section 5.5.1. This already shows the necessity of either preemption or
cyclic events when realizing such measures with SCT.

The productivity requirements to establish the desired function on the plant will not be
discussed here as they are not relevant for supervision but only for the implementation of
the controller. A short summary can be found in [Aydin, 2017].

7.2.3 Synthesized Safety System

12 specifications were derived from the side conditions mentioned above. The dependencies
of the overall 64 events were captured by 15 plant models. As an example, Figure 7.5
shows a simple 1-state specification prohibiting the virtual uncontrollable event danger,
which combines several incidents. Next to it, a plant model is depicted which narrows
down the situations where that event is imminent, namely one of the pumps N13 or N18
is started or one of the valves Y21 or Y16 is opened in the state S2. The latter is entered
once the level sensor L10, evaluated by the triggers of the events empty and notempty,
reports that reservoir B1, which is connected to these components, has fallen dry.

Some recurring behavioral models were successfully realized using templates and in-
stances thereof.

From the specifications, 12 supervisors were synthesized and passed on to the code
generator. The resulting SyRF was supposed to implement all side conditions required
by the process documentation. Their integration with the controller succeeded without
any problems. On a Siemens system, that involves the following steps: The content of the
original main block2 needs to be moved to another new function block as SyRF brings its
own OB1. This new FB then must be called at the designated position inside FB_Cycle of
the generated SyRF. The procedure for other vendors’ PLCs looks similar.

2The Organizational Block 1 (OB1) represents the entry point of the user-defined control program in STEP7
and can be compared to the PROG POU specified by the IEC [12, 55]

145

Chapter 7 Evaluation

(a) Specification (b) Plant model

Figure 7.5: Example of a specification and a plant that is relevant to realize that specification.
Original screenshots from SynTACS (Figure taken from [Aydin, 2017]).

7.2.4 Execution Procedure

The combined framework and controller were first tested on an industrial simulator, which
mimics the entire behavior of M3P.AC, before they were executed on the real plant. The
operation of the supervisor was monitored using the online mode of TIA-Portal, which
allows to inspect the variables of the PLC during runtime. This way, and thanks to the long
time constants of the plant in the order of minutes, it was possible to track blocked events
as well as the actual output signals produced by the PLC.

In a second step, some bugs were introduced to the controller to deliberately violate one
or several requirements. Additionally, the conventionally implemented safety measures
were removed or disabled. The blocked events were again monitored along with the PLCs
outputs sent to the actuators. The behavior of the physical plant was captured with a video
camera. Eight different, possibly harmful situations were tested this way one after another
or combined, covering every considered safety aspect at least once.

7.2.5 Evaluation

Given a correct controller, proper operation was possible without any interference by SyRF.
However, it was observable that all critical events were indeed listed as disabled in the
respective situations. In the second step, SyRF successfully blocked all operations which
were either harmful or could lead to such uncontrollably. In these cases it was clearly visible
that the output operations imposed by the controller were revoked by the supervisor before
being applied to the outputs. As expected, the actuators did not respond in these cases.

Nearly all aspects involved safety-critical reactions in addition to interlocks. These were
all reliably triggered and executed in the induced situations. That also worked in more
complex cases which involved multiple supervisors as in the following observed situation:

146

7.3 Further Case Studies

Figure 7.6: pneumatic processing center by fischertechnik®

One of the tanks had reached its maximum level and the controller correctly
closed its inlet valve. After that, the inlet was locked by one supervisor to
avoid the tank to overflow. A little later, when the faulty controller tried to
activate a pump upstream that valve and therefore open it again, the mentioned
supervisor blocked the valve while another one disabled the activation of the
pump.

This also worked when the controller did not close the inlet in the first place.
In that case, the first supervisor enforced the closing while the second enforced
the pump to stop and locked it afterwards.

A table that summarizes all safety measures implemented by the synthesized supervisors
can be found in [Aydin, 2017, p. 26].

7.3 Further Case Studies

Besides the M3P.AC, which has been controlled by a Siemens S7-400, further plants, PLCs
and IDEs have been tested with SynTACS.

One of them is the fischertechnik® model plant pneumatic processing center, depicted in
Figure 7.6 [41]. It takes discrete workpieces in the shape of cylinders from a magazine,
one at a time, and pushes them onto a rotary table which has four cages and positions.
The first is the entry position. At the second, a stamp is installed to punch the workpieces.
The third position is equipped with a puller which draws the pieces onto a conveyor belt to
deliver them to the next machine.

147

Chapter 7 Evaluation

The PPC comprises several safety-critical aspects: The stamp and workpiece can be
damaged if the rotary table moves while the piece is being punched. The pusher that
fetches the workpiece from the magazine may only do so if the currently proximate cage
of the table is free. The same holds for the puller, which may neither operate while the
conveyor is moving nor before the previous workpiece has been carried away and the way
is clear. Furthermore, there is a barrier above the fourth position of the rotary table, thus
only empty cages may be moved in this position.

From these aspects, four supervisors were synthesized with SynTACS. Their generated
code was tested on two different PLCs, a Siemens S7-300 and an ABB PC5003. As for the
S7-400, STEP 7 TIA-Portal was used for the S7-300. The ABB system was programmed using
ABB Automation Builder 1.2 which includes CoDeSys 2.3 for the controller implementation.
Both systems do not support PLCopen XML imports, hence all generated POUs were
imported manually. SynTACS offers a dedicated generation profile for the CoDeSys dialect
of Structured Text as well as separate S7-300 and S7-400 SCL exports as these languages
differ in terms of available data structures.

As for the M3P.AC, no disturbance of the regular workflow could be observed when a
correct controller was used on either PLC. When bugs were introduced, e.g., the stamp
moving down before the rotary table has stopped, the supervisors successfully obstructed
critical actions such that the safety constraints described above were not violated.

It should be mentioned that applications from the domain of discrete manufacturing
rarely involve hazy interdependencies of uncontrollable events. Hazards can almost always
be averted by blocking the specific action which is directly related to the incident that shall
be avoided, since machines and workpieces involve much less internal dynamics as, for
instance, chemicals do.

Last, some small conceptual plants were simulated on CoDeSys 2.3 in order to evaluate
some border cases. It could be observed that SynTACS does not check or guarantee interleave
insensitivity yet, cf. Section 6.4 and [33]. The example of a washing machine [Aydin, 2017]
shows that, even for interleave-sensitive supervisors, it would be desirable to allow user-
defined event priorities. Besides, SynTACS is not able to check logic coherences between
the triggers of two events. If a supervisor imposes two prohibitions which exclude each
other logically, e.g., one prohibits an output being set to true while the other one forbids
false, the result is not well-defined. Satisfiability checkers could help detecting these
issues. Unfortunately, this would require the entire semantics of the target language being
provided to the checker to cover all possible cases. Furthermore would it be necessary
to exhaustively enumerate all reachable combinations of prohibitions amongst multiple
supervisors, which, in the worst-case, requires their full composition.

The PLCopen XML generation was evaluated for earlier versions of SynTACS on CoDeSys
3.5 and the IDE TwinCat by Beckhoff Automation, although not with all currently available
special functionalities yet (Timers, etc.).

3The particular CPU modules were an S7-313C (Siemens) and an PM554 (ABB)

148

7.4 Long-Term Usability

7.4 Long-Term Usability

Besides the intuitive usability of SynTACS and the underlying modeling concepts for novices
as investigated in Section 7.1, their long-term usability is essential. Therefore, the case
studies sketched above were mainly performed by a computer science student who had
no former knowledge about SCT. Her experiences can be read in her bachelor’s thesis
[Aydin, 2017].

Summarizing, she learned quickly how to apply the modeling concepts of SynTACS.
Initially, she tended to model supervisors instead of specifications and plant models straight-
ahead. This is problematic as some scenarios often stay unconsidered which can result
in a less permissive or even unsafe supervisor. Also did she try to condense too many
aspects in one plant model which often resulted in too complex and error-prone automata.
However, she internalized the idea of modular modeling after only a few days. In general,
she appreciated the concept of explicit prohibitions as she perceived it as more intuitive
and the safety requirement was apparently visible in the specification:

“Zudem ist in SynTACS die Sicherheitsanforderung anhand der Spezifikation
sofort erkennbar. Somit ist die veränderte Modellierungsform intuitiver und im
Aufwand reduziert.” [Aydin, 2017]4

Nonetheless, she observed that, although the distinct modeling paradigms for plants and
specifications exist purposely in SynTACS to emphasize their different semantics, one
sometimes forgets to add the necessary loops to the state of plant models. An automated
function add missing loops, which adds loops to all states which must be deleted manually
in order to specify that an event is not possible, could help.

The concept and realization of templates and conditional transitions turned out very
useful and particularly reduced the effort on very large models with similar components.
The action class reset on denial needs revision because it only supports hard-coded addresses
whereas symbolic identifiers are not recognized [Aydin, 2017].

The missing undo/redo functionality for the automaton editor [Aydin, 2017] has been
implemented in the meanwhile.

7.5 Benchmark of Incremental Synthesis

The strength of the incremental synthesis introduced in Section 5.8.3 is its strict limitation
to the scope of the specification’s needs. Consider the transfer line (TL) example introduced
by Zhang and Wonham [88]. Figure 7.7 shows the topological structure of the plant
schematically. It consists of two machines M1 and M2, and two buffers B1 and B2, which
can each store up to two workpieces between and after these have been processed by the
machines. The test unit TU checks the workpieces and either outputs them or sends them
back to B1 for reprocessing.

4Translation by the author: Besides, the safety requirement is instantaneously apparent in SynTACS.
Therefore is the altered kind of modeling more intuitive and requires less effort.

149

Chapter 7 Evaluation

Figure 7.7: Transfer line (Figure redrawn after [117])

Figure 7.8: Several connected TLs with multiple machines each

The TL is characterized by the fact that just the machines and the test unit are modeled
as plants while the behavior of the buffers is only limited by specifications. These prescribe
that a buffer may not provide a workpiece when it is empty and that it may not take more
workpieces than a specified capacity (3 and 1 in the original example; here we assume
capacities of 2 pieces for each buffer). Although there appears to be no natural justification
which leads to that kind of modeling, as obviously the buffers are physically limited to a
certain capacity and particularly cannot hold a negative number of workpieces, this structure
of alternating specifications and plants is beneficial for certain synthesis techniques. The
fact that all plant models’ alphabets are pairwise disjoint, as well all specifications, allows
for “decentralized supervision” [117]. However, using conventional monolithic or even
modular-specification methods, it is still up to the user to decide which automata should
be composed and which ones should not. This becomes apparent when multiple TLs are
connected as in the evaluation of [123] and/or the number of machines inside one TL
between its TU and the return buffer B1 is increased. Figure 7.8 shows the setup of several
connected TLs as used for this benchmark. An additional buffer TB has been introduced
between the TU of one TL and its successor, resulting in |machines per TL| · |TLs|−1 buffers
and thus specifications in total.

Table 7.1 lists several such modifications and subsequent concatenations of the TL along
with the cumulated size of the resulting supervisors and their computation time on an
Intel Core i5 750, 4 × 2.67 GHz, 4 GB RAM. The column MonSyn represents the results
for a full composition of all plant and specification automata while ModSyn carries out a
single synthesis for every specification yet still on a monolithically composed plant model.
Apparently, both methods fail on more than 2 TLs or TLs with more than 2 machines due
to the large state space. TO/MO denotes that the computation did not terminate within 10
minutes or the process went out of memory.

150

7.5 Benchmark of Incremental Synthesis

MonSyn ModSyn iModSyn IncSyn

2 TLs, 2 machines each (6 plants, 5 specifications)

time 25 s 985 ms 96 ms 164 ms
supervisors 1 5 5 5
Σ supervisor states 9000 5994 114 38

2 TLs, 4 machines each (14 plants, 13 specifications)

time TO/MO TO/MO 165 ms 242 ms
supervisors 1 13 13 13
Σ supervisor states 306 112

3 TLs, 2 machines each (9 plants, 8 specifications)

time TO/MO 60 s 109 ms 186 ms
supervisors 1 8 8 8
Σ supervisor states 262440 180 60

4 TLs, 2 machines each (12 plants, 11 specifications)

time TO/MO TO/MO 134 ms 194 ms
supervisors 1 11 11 11
Σ supervisor states 246 82

5 TLs, 2 machines each (15 plants, 14 specifications)

time TO/MO TO/MO 194 ms 238 ms
supervisors 1 14 14 14
Σ supervisor states 312 104

Table 7.1: Experimental Results

The method iModSyn utilizes the Dep criterion by [3], adapted to the setting of SynTACS
as explained in Section 5.8.3 (page 105). Due to the limited horizon of synchronization in
the TL example, it performs very well and comparable to the incremental synthesis.

This changes dramatically, when events are introduced that are shared amongst several
plants. Therefore, the abstract machines inside the TL were replaced by a more detailled
modeling consisting of three automata each: a process model (6 states), a drill (5 states)
and a cooling unit (2 states). The considered modified TL contains three of these “extended
machines”. As for the original TL these are topologically connected by buffers which are
only modeled as specifications. Further, one global sensor (3 states) is introduced that
shares an event with the process model of all three machines. Although the latter does not
play a role for the considered specifications, it causes all plants to be in the Dep set of all
specifications, making the problem intractable for iModSyn. Indeed, the algorithm stopped
while generating the third supervisor due to an out-of-memory exception. Table 7.2 shows
the results. The numbers in brackets refer to the computation of the first two supervisors.

151

Chapter 7 Evaluation

MonSyn ModSyn iModSyn IncSyn

1 TL, 3 “extended machines” (15 plants, 4 specifications)

time TO/MO TO/MO TO/MO [40 s] 156 ms
supervisors 1 4 [2 of 4] 4
Σ supervisor states [223608] 48

Table 7.2: Experimental Results for modified TL with globally shared sensor events

Contrary, the incremental method only synchronizes with plant models that provide
information about uncontrollable prohibitions, which the sensor does not. It hence needs
significantly less supervisor states and terminates quickly although all plants transitively
share events.

152

Chapter 8

Conclusion

The automatic derivation of software solutions from a description of the problem that shall
be solved was and still is one of the most inspiring but also challenging ambitions in the
field of computer science. Numerous approaches exist to achieve that goal in very different
ways. One amongst these is the supervisory control theory by Ramadge and Wonham [87].
It provides a formal calculus to synthesize supervisors for discrete-event systems based on
regular formal languages and, in later contributions, automata. Although it originates from
the field of discrete control engineering and hence should be concerned with the typical
goals of discrete control tasks as, for example, described by Lunze [70], it struggles with
some of the objectives.

SCT appears rather unsuitable to find decent control sequences for chemical batch or
manufacturing processes as it lacks liveness properties and, in particular, optimization
mechanisms. Even if nonblockingness is considered, a solution is only guaranteed to be
realizable but is by no means computed as the CHOICE problem is not covered by the
methods of SCT. Where it does perform well, however, is handling side conditions that are
under all circumstances required to hold as the production goal is achieved. The most
prominent example for that is safety requirements, which must never be violated by the
plant or the controller. The maximally permissive nature of SCT-synthesized supervisors
along with the fact that they are able to controllably guarantee compliance with the specified
constraints makes them a perfect match for that task. The presented approach and its tool
implementation SynTACS, which both have been developed in the scope of this dissertation
project, address precisely this use case. Accordingly, the concerns of implementing a
decent controller to realize the actual production goals on the one hand and establishing
a supervision layer that definitely ensures compliance with side conditions on the other
hand are separated. A violation of safety requirements can thus be excluded even if the
controller fails.

SynTACS offers end-to-end tool support. It comprises all necessary algorithms as well
as a graphical automaton editor and a code generator to map the results of synthesis to
executable code. The latter, being conventionally implemented as an ordinary PLC program,
is embedded in a runtime framework, the SyRF. It is generated from the results of supervisor
synthesis accompanied by user-provided event definitions. Both framework and controller
are programmed into the PLC.

153

Chapter 8 Conclusion

During runtime, SyRF monitors the PLC’s inputs as well as the output values of the
controller and detects event occurrences based on changes of the signals. In order to make
supervision available for a broader class of requirements, the user can choose between the
combinations of multiple action and trigger classes for every event independently. It turned
out that a flexible notion of what an event is, whether its occurrences should be detected or
explicitly executed by the controller, and which effects the acceptance or rejection of such
an occurrence has to the system is crucial for a successful application in practice. The same
holds for the support of unstable states, i.e., states that cannot safely be kept arbitrarily
long without violating or imperiling the specifications. Wonham proposes to utilize timed
DES to that end [20, 117]. Unfortunately, these require more complicated models and
can significantly affect the computational complexity of the problem. In this thesis, two
alternative approaches were presented.

Preemption, the first one, solves the issue by imposing a contract between synthesis and
the user. It claims that an enforceable action which has been modeled to leave the critical
state can reliably preempt any uncontrollable event that is possible before but not after this
action. In other words, if such an action can prevent an uncontrollable event, it is assumed
to be executable fast and timely enough to also preempt it. Therefore, a third event class,
the enforceable events, has been introduced to both the conceptual approach and the tool.
They represent actions that the supervisor can actively trigger without the controller being
involved. The synchronization of supervisors on enforceable events during runtime is not
yet supported. This was discussed in detail in Section 6.4.2 and should be targeted in future
contributions. In the presented case studies, preemption was able to realize all considered
specifications with the same permissiveness that a manually implemented safety system
could achieve.

The second option to handle unstable states is by defining cyclic events. Technically, these
are ordinary, usually controllable, events which are detected recurringly in every PLC cycle
as long as their trigger condition holds. That way, they implicitly yield a discretized notion
of time similar to Brandin’s and Wonham’s approach, except that timing does not have to be
considered in the models explicitly. When combined with the action class action-on-denial,
a reaction to leave the critical state can be executed outside the scope of SCT. If the PLC
is fast enough to be eligible for the considered control problem, the sampling rate that
goes along with the resulting discretization of time is automatically high enough to cope
with the situation. Furthermore, SynTACS allows the user to define timers for explicit time
measurement. Although originally intended to give the controller additional time to react
on a critical event before an emergency action would be enforced, they can be used for
numerous other applications.

Despite the fact that SynTACS it is still a prototype, a smooth, easy-to-learn workflow
was one of the main targets in order to evaluate how well the methods of SCT can be
applied and integrated to the concepts used in factory automation. One of the main issues
when providing plain DES models is the necessity of redundant modeling for multiple
individual components of the same type that have equivalent behaviors but deal with
physically different events. SynTACS allows the user to capture such behaviors once in
terms of an automaton template which contains binding events and namespaces (roles).
These can be instantiated several times inside the project. The instance maps the binding

154

events to concrete ones and the namespaces to existing modules in order to represent the
individual physical components appropriately.

Moreover, SynTACS allows to restrict the scope of a transition or event prohibition to
certain states of other automata by applying conditions to transitions or prohibitions. Since,
in many cases, the advantages of modular modeling are consumed by the need of capturing
aspects that depend on more than one component, these conditional transitions further
reduce the manual modeling effort significantly. The user study further revealed that the
participants made less modeling mistakes when they were allowed to define conditional
transitions instead of providing equivalent unconditional models. In the current version,
all conditions are resolved upon automaton composition.

Symbolic methods represent the state-of-the-art technique for efficiently coping with
large state spaces. If realized in future versions of SynTACS, these could also help to handle
conditions more effectively, potentially even without the need of explicit composition.

The idea of synchronizing (composing) subsystems not only by their events but also
by their states, as suggested by conditional transitions, could be extended by means of
alternative modeling languages, e.g., the one introduced by Förster et al. [38], in order to
evaluate their suitability for supervisor synthesis.

An algorithm that either produces interleave insensitive supervisors right away or at least
validates this property would be another desirable feature. Alternatively, a customized
event priorization could be installed that allows the user to define the order in which events
shall be applied to the supervisor that were detected concurrently, i.e., within the same
PLC cycle. Event priorities would also help to select an enforceable event for preemption
if more than one is available. Note that in case of multiple enforcements being necessary
to avoid several forbidden uncontrollable events at once, the current version of SynTACS
would already enforce all of them to achieve safety. In that case, priorities would only be
relevant if the order of execution within the cycle influences the results. Note further that
amongst multiple options of enforceable events, the algorithm would never pick one which
could cause an uncontrollable event to happen that is forbidden within the same supervisor.

Synchronization between the supervisors during runtime would be required, particularly
to track events in one supervisor that were enforced by another one. The tool would further
benefit from an efficient method to detect prohibitions of enforceable events that were
introduced during synthesis of another supervisor. The aspect whether this issue is better
resolved during synthesis or dynamically during runtime needs further investigation.

Supervisory control theory, as well as its modification presented in this thesis, provenly
yields correct results for correct inputs. The same holds for the maximal permissiveness
which also is formally backed. Together with the fact that supervision does not add func-
tionality to the controller, this basically characterizes the approach as a runtime verification
method although the formalization is not yet grounded in the runtime verification calculus.
The marriage of these two formalisms could be the subject of future research, similar to
the existing approaches to unify SCT and reactive synthesis [31].

Compared to a straight controller synthesis, which is not available to a satisfying extent
yet, the presented approach of runtime supervision allows a certain degree of redundant
design for critical requirements. Although the current shape of the framework does not
allow to operate SyRF entirely on technically independent hardware yet, which would be

155

Chapter 8 Conclusion

required for redundancy in the narrower sense, these requirements are at least considered
and realized by redundant pieces of software. Indeed that does neither enable fault-
tolerant operation nor prevent violations due to hardware failure. The presented approach
can, however, exclude the infringement of side conditions due to errors in the controller
implementation. In a world of flexible manufacturing facilities, out-of-the-cloud controllers,
batch size 1 productions and industry 4.0, controller routines will be dynamically exchanged
and will undergo frequent modification in future process and manufacturing systems. SCT-
based runtime supervision could contribute the necessary measures to watch over these
controllers, keeping the systems safe.

156

Related Supervised Theses

[Aydin, 2017] Aydin, S. (2017). Evaluation eines Werkzeugs zur Supervisorsynthese auf
einer prozesstechnischen Anlage. Bachelor’s thesis, RWTH Aachen University.

[Gatto, 2016] Gatto, N. (2016). Erweiterte Codegenerierung für ein Werkzeug zur Synthese
von ereignisdiskreten Überwachern. Bachelor’s thesis, RWTH Aachen University.

[Ney, 2014] Ney, O. (2014). Evaluation von Synthese-Werkzeugen für Steuerungssoftware
im Bereich der Automatisierungstechnik Engineering. Bachelor’s thesis, RWTH Aachen
University.

[Osetinski, 2017] Osetinski, M. (2017). Remote Supervisor for Programmable Logic Con-
trollers. Bachelor’s thesis, RWTH Aachen University.

[Timmermanns, 2015] Timmermanns, T. M. (2015). Code-Generator und Framework für
synthetisierte Sicherheitsmechanismen in SPS-Programmen. Bachelor’s thesis, RWTH
Aachen University.

Comment on the Neutrality of the Evaluation

In the scope of Ms. Aydin’s bachelor thesis [Aydin, 2017], the synthesis and supervision
concept presented in Chapter 5 and the tool SynTACS have been evaluated. I suggested
an extendable scope for the evaluation which she mainly followed: two case studies to
determine the practical applicability of the approach and the tool, and a user study to
collect information about its intuitive understanding and usability.

I encouraged Ms. Aydin to face my approaches and the tool with a neutral attitude, to see
it as her object of investigation rather than as the embedding scope of her work and hence
analyze it critically through the eyes of an external person. She was explcitly told that a
bad rating of concepts and the tool would not have any consequences for her assessment or
grade. As a consequence, she worked rather independently from me to avoid a significant
bias. Particularly when gathering and resuming the user study’s results and writing down
her own experiences with the tool, I did not interfer with her work. My editing of the
corresponding sections of her thesis were confined on grammatical and orthographical
corrections but not on the presented findings.

157

Bibliography

[1] Knut Åkesson, Martin Fabian, and Hugo Flordal. Supremica in a Nutshell – Draft.
Technical report, Chalmers, 2007.

[2] Knut Åkesson, Martin Fabian, Hugo Flordal, Arash Vahidi, Knut Akesson, Martin
Fabian, Fabian Flordal, Arash Vahidi, Knut Åkesson, Martin Fabian, Hugo Flordal,
and Arash Vahidi. Supremica – A Tool for Verification and Synthesis of Discrete Event
Supervisors. Proc. of the 11th Mediterranean Conference on Control and Automation,
2003.

[3] Knut Åkesson, Hugo Flordal, Martin Fabian, Knut Åkesson, Hugo Flordal, and Martin
Fabian. Exploiting modularity for synthesis and verification of supervisors. In Proc.
of the IFAC, 2002.

[4] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M K Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak,
and Abhishek Udupa. Syntax-guided synthesis. In Formal Methods in Computer-Aided
Design (FMCAD), 2013.

[5] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[6] Francisco Sant Anna, Francisco Sant’Anna, Noemi Rodriguez, and Roberto Ierusal-
imschy. Advanced control reactivity for embedded systems. Choice, 9:1, 2013.

[7] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press
Cambridge, 2008.

[8] Philippe Balbiani, Valentin Goranko, and Guido Sciavicco. Two-sorted point-interval
temporal logics. Electronic Notes in Theoretical Computer Science, 278:31–45, 2011.

[9] Silvano Balemi. Control of discrete event systems. PhD thesis, ETH Zürich, 1992.

[10] Silvano Balemi, Gérard J. Hoffmann, Paul Gyugyi, H Wong Toi, and Gene F. Franklin.
Supervisory control of a rapid thermal multiprocessor. Automatic Control, IEEE
Transactions on, 1993.

[11] David Basin, Yves Deville, Pierre Flener, and Andreas Hamfelt. Synthesis of Programs
in Computational Logic. Program Development in Computational Logic, pages 30–65,
2004.

159

Bibliography

[12] Hans Berger. Automatisieren mit STEP 7 in AWL und SCL. Publicis Publishing,
Erlangen, 7th edition, 2011.

[13] Sebastian Biallas, Jörg Brauer, and Stefan Kowalewski. Counterexample-guided
abstraction refinement for PLCs. 5th International Workshop on Systems Software
Verification (SSV 2010), Vancouver, Canada, page 2, 2010.

[14] Sebastian Biallas, Jörg Brauer, and Stefan Kowalewski. Arcade.PLC: A Verification
Platform for Programmable Logic Controllers. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, 2012.

[15] Alessandro Birolini. Reliability Engineering. 6th edition, 2010.

[16] Bitkom, VDMA, and ZVEI. Umsetzungsstrategie Industrie 4.0. - Ergebnisbericht der
Plattform Industrie 4.0. Technical Report April, Plattform Industrie 4.0, 2015.

[17] Roderick Bloem. Reactive Synthesis, ExCAPE Summer School, Cambridge MA, 2015.

[18] Bertil A. Brandin, Robi Malik, and Petra Dietrich. Incremental system verification and
synthesis of minimally restrictive behaviours. In Proceedings of the 2000 American
Control Conference, pages 0–5, 2000.

[19] Bertil A. Brandin, Robi Malik, and Petra Malik. Incremental verification and synthesis
of discrete-event systems guided by counter-examples. IEEE Transactions on Control
Systems Technology, 12(3):387–401, 2004.

[20] Bertil A. Brandin and W. Murray Wonham. Supervisory Control of Timed Discrete-
Event Systems. Automatic Control, IEEE Transactions on, 39(2):329–342, 1994.

[21] J. Richard Buchi and Lawrence H. Landweber. Solving sequential conditions by finite-
state strategies. Transactions of the American Mathematical Society, 138:295–311,
1969.

[22] Matteo Cantarelli and Jean-Marc Roussel. Reactive control system design using the
supervisory control theory: evaluation of possibilities and limits. In Proceedings of
the 9th International Workshop on Discrete Event Systems. IEEE, 2008.

[23] Christos Cassandras and Stéphane Lafortune. Introduction to Discrete Event Systems.
Kuwer Academic Publishers, 2nd edition, 2009.

[24] Enke Chen and Stéphane Lafortune. On nonconflicting languages that arise in
supervisory control of discrete event systems. Systems and Control Letters, 17(2):105–
113, 1991.

[25] Alonzo Church. Application of Recursive Arithmetic to the Problem of Circuit
Synthesis. Journal of Symbolic Logic, 28(4):289–290, 1963.

[26] Alessandro Cimatti and Alberto Griggio. Software Model Checking via IC3. In
Proceesdings of the International Conference on Computer Aided Verification, 2012.

160

Bibliography

[27] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press,
1999.

[28] Max Hering De Queiroz and José Eduardo Ribeiro Cury. Modular control of composed
systems. In Proceedings of the American Control Conference, 2000.

[29] Robin Diekmann and Dirk Weidemann. Event Enforcement in the Context of the
Supervisory Control Theory. In Proceedings of the 18th International Conference on
Methods and Models in Automation and Robotics, 2013.

[30] Petra Dietrich, Robi Malik, W Murray Wonham, and Bertil A. Brandin. Implementa-
tion considerations in supervisory control. In Synthesis and control of discrete event
systems, pages 185–201. Springer, 2002.

[31] Rüdiger Ehlers, Stéphane Lafortune, Stavros Tripakis, and Moshe Vardi. Reactive
Synthesis vs . Supervisory Control Synthesis: Bridging the Gap. Technical report,
Electrical Engineering and Computer Sciences, University of California at Berkeley,
2013.

[32] Ralf Ermlich and Uwe Maier. Speicherprogrammierbare Steuerungen (SPS) und SPS-
Systeme. In K. F. Früh and U. Maier, editors, Handbuch der Prozessautomatisierung,
chapter 4.3, pages 229–249. Oldenbourg Industrieverlag, München, 3rd edition,
2004.

[33] M Fabian and A Hellgren. PLC-based Implementation of Supervisory Control for
Discrete Event Systems. In Proceedings of the 37th IEEE Conference on Decision and
Control, 1998.

[34] Herbert Fittler and Reiner Uhlig. Funktionen der Prozessleitebene: Rezeptfahrweise,
Führung von Chargenprozessen. In K. F. Früh and U. Maier, editors, Handbuch der
Prozessautomatisierung, chapter 3.2, pages 72–112. Oldenbourg Industrieverlag,
München, 3rd edition, 2004.

[35] Hugo Flordal, Robi Malik, Martin Fabian, and Knut Åkesson. Compositional synthesis
of maximally permissive supervisors using supervision equivalence. Discrete Event
Dynamic Systems, 2007.

[36] Stefan T. J. Forschelen. Supervisory control of theme park vehicles. Master’s thesis,
Eindhoven University of Technology, 2010.

[37] Stefan T. J. Forschelen, Joanna M. van de Mortel-Fronczak, Rong Su, and Jacobus E.
Rooda. Application of supervisory control theory to theme park vehicles. Discrete
Event Dynamic Systems: Theory and Applications, 22(4):511–540, 2012.

[38] Marc Förster, Marko Auerswald, Phillip Keldenich, and Stefan Kowalewski. Semantic
interfaces for automotive software components: exemplary development & valida-
tion of a practical specification language. Technical Report ESL-TR-2014-AK-02,
RWTH Aachen University, Aachen, 2014.

161

Bibliography

[39] Georg Frey. Regeln und Steuern. In Hans-Jürgen Gevatter and Ulrich Grünhaupt,
editors, Handbuch der Mess- und Automatisierungstechnik in der Produktion, chapter 4,
pages 39–52. Springer Berlin Heidelberg, Berlin/Heidelberg, 2nd edition, 2006.

[40] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns –
Elements of Reusable Object-Oriented Software. 2002.

[41] Florian Göbe, Selin Aydin, and Stefan Kowalewski. Applicability of Supervisory
Control Theory for the Supervision of PLC Programs. In Proceedings of the 22nd IEEE
International Conference on Emerging Technology & Factory Automation, 2017.

[42] Florian Göbe, Oliver Ney, and Stefan Kowalewski. Reusability and Modularity
of Safety Specifications for Supervisory Control. In Proceedings of the 21st IEEE
International Conference on Emerging Technology and Factory Automation, 2016.

[43] Florian Göbe, Thomas Timmermanns, Oliver Ney, and Stefan Kowalewski. Synthesis
Tool for Automation Controller Supervision. In Proceedings of the 13th International
Workshop on Discrete Event Systems, pages 424–431, 2016.

[44] C.H. Golaszewski and P.J. Ramadge. Control of Discrete Event Processes with Forced
Events. In Proceedings of the 26th Conference on Decision and Control, 1987.

[45] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis
of loop-free programs. In ACM SIGPLAN Notices, 2011.

[46] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program analy-
sis as constraint solving. In ACM SIGPLAN Notices, 2008.

[47] Hans-Michael Hanisch and Stefan Kowalewski. Algebraic synthesis and verification
of discrete supervisory controllers for forbidden path specifications. In Proceedings
of the Fourth International Conference on Computer Integrated Manufacturing and
Automation Technology, 1994.

[48] Anders Hellgren, Bengt Lennartson, and Martin Fabian. Modelling and PLC-based
implementation of modular supervisory control. Sixth International Workshop on
Discrete Event Systems, 2002. Proceedings., (FEBRUARY 2002):371–376, 2002.

[49] R.C. Hill and D.M. Tilbury. Incremental hierarchical construction of modular super-
visors for discrete-event systems. International Journal of Control, 2008.

[50] Gérard J. Hoffmann and H. Wong-Toi. Symbolic Synthesis of Supervisory Controllers.
In Proceedings of the American Control Conference, number L, pages 2789–2793,
1992.

[51] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Automata theory, lan-
guages, and computation. International Edition, 24, 2006.

162

Bibliography

[52] Jing Huang and Ratnesh Kumar. An optimal directed control framework for discrete
event systems. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 2007.

[53] Jing Huang and Ratnesh Kumar. Optimal nonblocking directed control of discrete
event systems. Automatic Control, IEEE Transactions on, 2008.

[54] International Electrotechnical Commission. International Standard IEC 61131-
1:2003: Programmable Controllers – Part 1: General Information.

[55] International Electrotechnical Commission. International Standard IEC 61131-
3:2013: Programmable Controllers – Part 3: Programming Languages.

[56] International Electrotechnical Commission. International Standard IEC 61508:1998:
Functional Safety of Electrical, Electronic and Programmable Electronic Safety-
Related Systems.

[57] International Electrotechnical Commission. International Standard IEC 61511:2005
Functional safety - Safety instrumented systems for the process industry sector.

[58] International Electrotechnical Commission. International Standard IEC 61512-
2:2002: Batch Control - Part 2: Data structures and guidelines for languages.

[59] Daniel Jackson. Software Abstractions: logic, language, and analysis. The MIT Press,
Cambridge, MA, USA, revised edition, 2012.

[60] Karl-Heinz John and Michael Tiegelkamp. SPS-Programmierung mit IEC 61131-3.
Springer-Verlag, Berlin Heidelberg, 4th edition, 2009.

[61] Stefan Kowalewski and H-M Hanisch. Permissive control of boolean condition/event
systems: synthesis and limits. In Proceedings of the International Symposium on
Intelligent Control, pages 118–123, Columbus, OH, USA, 1994. IEEE.

[62] Tina Krausser, Lars Evertz, and Ulrich Epple. A Hands-On Laboratory on Industrial
Hardware, Process Control and Advanced Automation. IFAC Proceedings Volumes,
2012.

[63] Bruce H. Krogh and Stefan Kowalewski. State Feedback of Condition/Event Control
Systems. Mathematical and Computer Modelling, 23(11):161–173, 1996.

[64] Ratnesh Kumar and Vijay K. Garg. Optimal supervisory control of discrete event
dynamical systems. SIAM Journal on Control and Optimization, 33(2):419–439,
1995.

[65] Ryan James Leduc. PLC implementation of a DES supervisor for a manufacturing
testbed: An implementation perspective. PhD thesis, University of Toronto, 1996.

[66] Nancy G. Leveson. Safeware: System Safety and Computers. Medical Physics,
23(10):1821, 1995.

163

Bibliography

[67] R. W. Lewis. Programming industrial control systems using {IEC} 1131-3 – Revised
Edition. The Institution of Electrical Engineers, London, UK, 1998.

[68] F. Lin, A.F. Vaz, and W.M. Wonham. Supervisor specification and synthesis for discrete
event systems. International Journal of Control, 48(1):321–332, 1988.

[69] Jørn Lind-Nielsen, Henrik Reif Andersen, Henrik Hulgaard, Gerd Behrmann, Kåre
Kristoffersen, and Kim G Larsen. Verification of large state/event systems using
compositionality and dependency analysis. Formal Methods in System Design, 18(1):5–
23, 2001.

[70] Jan Lunze. Automatisierungstechnik. Oldenbourg Wissenschaftsverlag GmbH,
München, 2003.

[71] Jan Lunze. Regelungstechnik 1 - Systemtheorietische Grundlagen, Analyse und Entwurf
einschleifiger Regelungen. Springer, 9 edition, 2012.

[72] Chuan Ma and W. Murray Wonham. Nonblocking Supervisory Control of State Tree
Structures. Lecture Notes in Control and Information Sciences, Springer Berlin
Heidelberg New York, Heidelberg, Germany, 2005.

[73] Chuan Ma and W. Murray Wonham. Nonblocking supervisory control of state tree
structures. Automatic Control, IEEE Transactions on, 2006.

[74] Uwe Maier. Situation der Prozessautomatisierung: Marktsituation und Markttrends.
In K. F. Früh and U. Maier, editors, Handbuch der Prozessautomatisierung, chapter
1.1, pages 2–6. Oldenbourg Industrieverlag, München, 3rd edition, 2004.

[75] Robi Malik and Hugo Flordal. Yet another approach to compositional synthesis of
discrete event systems. Proceedings - 9th International Workshop on Discrete Event
Systems, WODES’ 08, pages 16–21, 2008.

[76] Zohar Manna, Richard Waldinger, Zohar Manna, and Richard Waldinger. Funda-
mentals of deductive program synthesis. IEEE Transactions on Software Engineering,
18(8):674–704, 1992.

[77] Jasen Markovski, Koen G.M. Jacobs, Dirk. A. Van Beek, Lou J.A.M. Somers, and
Jacobus E. Rooda. Coordination of resources using generalized state-based require-
ments. In Proceedings of WODES, volume 2010, pages 300–305, 2010.

[78] S Miremadi, B Lennartson, and K Akesson. A BDD-Based Approach for Modeling
Plant and Supervisor by Extended Finite Automata. Control Systems Technology, IEEE
Transactions on, 2012.

[79] Jürgen Mittelstraß. Enzyklopädie Philosophie und Wissenschaftstheorie, Bd. 5. J.B.
Metzler, Springer-Verlag, 2013.

164

Bibliography

[80] Sergio Montenegro. Sichere und fehlertolerante Steuerungen. Entwicklung sicher-
heitsrelevanter Systeme. Hanser. M{ü}nchen, Wien, 1999.

[81] Thomas Moor, Klaus Schmidt, and Sebastian Perk. libFAUDES: An open source C++
library for discrete event systems. In Proceedings of the 9th International Workshop
on Discrete Event Systems, 2008.

[82] Thomas Moor, Klaus Schmidt, and Sebastian Perk. Applied supervisory control for a
flexible manufacturing system. IFAC Proceedings Volumes, 43(12):253–258, 2010.

[83] Bernd Opitz. Methods of supervisory control: A software implementation. PhD thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg, 2005.

[84] Lucas P. Pinheiro, Yuri K. Lopes, André B. Leal, and Roberto S.U. Rosso Junior.
Nadzoru: A Software Tool for Supervisory Control of Discrete Event Systems. IFAC-
PapersOnLine, 48(7):182–187, 2015.

[85] PLCopen Technical Committee 5 – Safety Software. Technical Specification – Con-
cepts and Function Blocks, Version 1.0, 2006.

[86] T. J. Prati, J. M. Farines, and M. H. De Queiroz. Automatic test of safety specifications
for PLC programs in the oil and gas industry. IFAC-PapersOnLine, 48(6):27–32, 2015.

[87] Peter J. G. Ramadge and W. Murray Wonham. Supervisory Control of a Class of
Discrete Event Processes. SIAM Journal on Control and Optimization, 63(1):206–230,
1987.

[88] Peter J G Ramadge and W Murray Wonham. The Control of Discrete Event Systems.
In Proceedings of the IEEE, 1989.

[89] Peter J.G. Ramadge and W. Murray Wonham. Supervisory control of a class of discrete
event processes. Technical Report 1, Systems Control Group, Dept. of Electrical
Engineering, Univ. of Toronto, Toronto, Ont., Canada, 1984.

[90] Christianne Reiser, Antonio E C Da Cunha, and José Eduardo Ribeiro Cury. The
environment grail for supervisory control of discrete event systems. In Discrete Event
Systems, 2006 8th International Workshop on, pages 390–391, 2006.

[91] L. Ricker, S. Lafortune, and S. Gene. Desuma: A tool integrating giddes and umdes.
In Software tools, 8th international workshop on discrete-event systems, 2006.

[92] B. Riera, A. Philippot, R. Coupat, F. Gellot, and D. Annebicque. A non-intrusive
method to make safe existing PLC program. IFAC-PapersOnLine, 28(21):320–325,
2015.

[93] Francisco Sant’Anna, Roberto Ierusalimschy, Noemi Rodriguez, Silvana Rossetto,
and Adriano Branco. The Design and Implementation of the Synchronous Language
Céu. ACM Transactions on Embedded Computing Systems (TECS), 16(4):98:1–98:25,
2017.

165

Bibliography

[94] Klaus Schmidt. Hierarchical Control of Decentralized Discrete Event Systems. Disserta-
tion, Universität Erlangen-Nürnberg, 2005.

[95] Klaus Schmidt, Thomas Moor, and Sebastian Perk. Nonblocking hierarchical control
of decentralized discrete event systems. Automatic Control, IEEE Transactions on,
2008.

[96] Ann-Kathrin Schmuck, Sven Schneider, Jörg Raisch, and Uwe Nestmann. Extending
supervisory controller synthesis to deterministic pushdown automata—enforcing
controllability least restrictively. In Proceedings of the 12th International Workshop
on Discrete Event Systems, Cachan, France, 2014.

[97] M. Schuh, M. Zgorzelski, and J. Lunze. Experimental evaluation of an active
fault–tolerant control method. Control Engineering Practice, 43:1–11, 2015.

[98] Melanie Schuh and Jan Lunze. Feedback control of nondeterministic Input/Output
automata. In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on,
pages 6737–6743. IEEE, 2014.

[99] Melanie Schuh and Jan Lunze. Fault-tolerant control of deterministic I/O automata
with ambiguous diagnostic result. In 13th International Workshop on Discrete Event
Systems. IEEE, 2016.

[100] Raja Sengupta and Stéphane Lafortune. an Optimal Control Theory for Discrete
Event Systems. SIAM Journal on Control and Optimization, 36(2):488–541, 1998.

[101] Mohammad Reza Shoaei, Laura Kovács, and Bengt Lennartson. Supervisory Control
of Discrete-Event Systems via IC3. In Hardware and Software: Verification and Testing,
pages 252–266. Springer, 2014.

[102] David Smith and Kenneth Simpson. Functional Safety: A Straightforward Guide to
Applying IEC 61508 and Related Standards. Routledge, 2nd edition, 2004.

[103] Fabio Somenzi and Aaron R. Bradley. IC3: Where monolithic and incremental meet.
Formal Methods in Computer-Aided Design, pages 3–8, 2011.

[104] Ian Sommerville. Software Engineering. Addison-Wesley, 6th edition, 2001.

[105] R. S. Sreenivas and B. H. Krogh. On condition/event systems with discrete state
realizations. Discrete Event Dynamic Systems: Theory and Applications, 1(2):209–236,
1991.

[106] Saurabh Srivastava and Sumit Gulwani. Program verification using templates over
predicate abstraction. In ACM Sigplan Notices, 2009.

[107] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verification
to program synthesis. In ACM Sigplan Notices, 2010.

166

Bibliography

[108] Stefan Stattelmann, Sebastian Biallas, Bastian Schlich, and Stefan Kowalewski. Ap-
plying Static Code Analysis on Industrial Controller Code. In 19th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2014.

[109] Rong Su, Jan H. Van Schuppen, and Jacobus E. Rooda. Synthesize nonblocking
distributed supervisors with coordinators. In Proceedings of the 17th Mediterranean
Conference on Control and Automation, 2009.

[110] Rong Su, Jan H. Van Schuppen, and Jacobus E. Rooda. Aggregative synthesis
of distributed supervisors based on automaton abstraction. IEEE Transactions on
Automatic Control, 55(7):1627–1640, 2010.

[111] Rolf J M Theunissen, M Petreczky, Ramon R H Schiffelers, Dirk A van Beek, and
Jacobus E Rooda. Application of Supervisory Control Synthesis to a Patient Support
Table of a Magnetic Resonance Imaging Scanner. IEEE Trans. Automation Science
and Engineering, 11(1):20–32, 2014.

[112] Wolfgang Thomas. Church ’s Problem and a Tour through Automata Theory. In
Pillars of computer science, pages 635–655. Springer-Verlag, Heidelberg, Germany,
2008.

[113] Arash Vahidi, Martin Fabian, and Bengt Lennartson. Efficient supervisory synthesis
of large systems. Control Engineering Practice, 2006.

[114] VDI/VDE-GMA. Industrie 4.0 Service Architecture. Technical Report November,
2016.

[115] Agnelo D. Vieira, José E.R. Cury, and Max H. de Queiroz. A Model for PLC Imple-
mentation of Supervisory Control of Discrete Event Systems. In Proceedings of IEEE
Conference on Emerging Technologies and Foctory Automation, 2006.

[116] Alexey Voronov and Knut Åkesson. Supervisory control using satisfiability solvers.
Proceedings - 9th International Workshop on Discrete Event Systems, WODES’ 08, pages
81–86, 2008.

[117] W. M. Wonham. Supervisory Control of Discrete-Event Systems. Edward S. Rogers Sr.
Dept. of Electrical & Computer Engineering, University of Toronto, 2014.

[118] W. M. Wonham and P. J. G. Ramadge. On the supremal controllable sublanguage
of a given language. In Proceedings of the 23rd Conference on Decision and Control,
1984.

[119] W. M. Wonham and P. J. G. Ramadge. On the supremal controllable sublanguage of
a given language. SIAM Journal on Control and Optimization, 25(3):637–659, 1987.

[120] W. M. Wonham and P. J. G. Ramadge. Modular supervisory control of discrete-event
systems. Mathematics of Control, Signals and Systems, 1(1):13–30, 1988.

167

[121] Ming-Li Yeh and Chuei-Tin Chang. An automata-based approach to synthesize
untimed operating procedures in batch chemical processes. Korean Journal of
Chemical Engineering, 29(5):583–594, 2012.

[122] Ming-Li Yeh and Chuei-Tin Chang. An automata based method for online synthe-
sis of emergency response procedures in batch processes. Computers & Chemical
Engineering, 38:151–170, 2012.

[123] Zhonghua Zhang and W. Murray Wonham. STCT: An Efficient Algorithm for Super-
visory Control Design. In Synthesis and Control of Discrete Event Systems. Springer
US, 2002.

168

Aachener Informatik-Berichte

This list contains all technical reports published during the past three

years. A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request

to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2016-01 ∗ Fachgruppe Informatik: Annual Report 2016

2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement of

Computational Approaches to Reachability Analysis of Linear Hybrid

Systems

2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and

Jürgen Giesl: Lower Runtime Bounds for Integer Programs

2016-04 Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder: Proving

Termination of Programs with Bitvector Arithmetic by Symbolic Exe-

cution

2016-05 Mathias Pelka, Grigori Goronzy, Jó Agila Bitsch, Horst Hellbrück, and

Klaus Wehrle (Editors): Proceedings of the 2nd KuVS Expert Talk on

Localization

2016-06 Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle: The Sen-

sorCloud Protocol: Securely Outsourcing Sensor Data to the Cloud

2016-07 Sebastian Biallas : Verification of Programmable Logic Controller Code

using Model Checking and Static Analysis

2016-08 Klaus Leppkes, Johannes Lotz, and Uwe Naumann: Derivative Code by

Overloading in C++ (dco/c++): Introduction and Summary of Features

2016-09 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius As-

chermann: Automatically Proving Termination and Memory Safety for

Programs with Pointer Arithmetic

2016-10 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel: Towards Privacy-

Preserving Multi-Party Bartering

2017-01 ∗ Fachgruppe Informatik: Annual Report 2017

2017-02 Florian Frohn and Jürgen Giesl: Analyzing Runtime Complexity via In-

nermost Runtime Complexity

2017-04 Florian Frohn and Jürgen Giesl: Complexity Analysis for Java with

AProVE

169

2017-05 Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs, and

Jürgen Giesl: Complexity Analysis for Term Rewriting by Integer Tran-

sition Systems

2017-06 Oliver Kautz, Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe:

CD2Alloy: A Translation of Class Diagrams to Alloy

2017-07 Klaus Leppkes, Johannes Lotz, Uwe Naumann, and Jacques du Toit:

Meta Adjoint Programming in C++

2017-08 Thomas Gerlitz: Incremental Integration and Static Analysis of Model-

Based Automotive Software Artifacts

2017-09 Muhammad Hamad Alizai, Jan Beutel, Jó Ágila Bitsch, Olaf Landsiedel,

Luca Mottola, Przemyslaw Pawelczak, Klaus Wehrle, and Kasim Sinan

Yildirim: Proc. IDEA League Doctoral School on Transiently Powered

Computing

2018-01 ∗ Fachgruppe Informatik: Annual Report 2018

2018-02 Jens Deussen, Viktor Mosenkis, and Uwe Naumann: Ansatz zur vari-

antenreichen und modellbasierten Entwicklung von eingebetteten Sys-

temen unter Berücksichtigung regelungs- und softwaretechnischer An-

forderungen

2018-03 Igor Kalkov: A Real-time Capable, Open-Source-based Platform for Off-

the-Shelf Embedded Devices

2018-04 Andreas Ganser: Operation-Based Model Recommenders

2018-05 Matthias Terber: Real-World Deployment and Evaluation of Syn-

chronous Programming in Reactive Embedded Systems

2018-06 Christian Hensel: The Probabilistic Model Checker Storm - Symbolic

Methods for Probabilistic Model Checking

2019-01 ∗ Fachgruppe Informatik: Annual Report 2019

2019-02 Tim Felix Lange: IC3 Software Model Checking

2019-03 Sebastian Patrick Grobosch: Formale Methoden für die Entwicklung von

eingebetteter Software in kleinen und mittleren Unternehmen

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

170

	1 Introduction
	1.1 Motivation
	1.2 Contribution and Outline

	2 Background
	2.1 Discrete-Event Systems
	2.1.1 Automata
	2.1.2 Operations on Automata

	2.2 Supervisory Control Theory
	2.2.1 Setup
	2.2.2 Supervisor Synthesis

	2.3 Industrial Automation and PLCs
	2.3.1 Discrete Manufacturing and Process Engineering
	2.3.2 PLCs and PCSs
	2.3.3 PLC-based Controllers
	2.3.3.1 Cyclic Execution
	2.3.3.2 Program Organization Units

	2.3.4 Programming Languages
	2.3.5 Safety and Reliability
	2.3.5.1 Redundancy
	2.3.5.2 Formal Methods

	3 Applied SCT and Related Approaches
	3.1 Extensions of SCT
	3.1.1 Modular DES
	3.1.2 Nonblockingness in Modular DES
	3.1.3 Timed DES
	3.1.4 Reactive Synthesis
	3.1.4.1 Symbolic Methods

	3.2 Applicatons – Tools and Case Studies
	3.2.1 Tools
	3.2.2 Case Studies
	3.2.3 Industrial Application

	4 Controller Synthesis with SCT
	4.1 Synthesis – Definition and Classification
	4.2 Continuous Control, Discrete Control and SCT
	4.3 Requirements and Specifications
	4.3.1 Goals of Discrete Control
	4.3.2 Operational and Declarative Specifications
	4.3.3 Specifications through Automata

	4.4 The Role of Specifications in the SCT
	4.4.1 Using Nonblockingness to Achieve Productivity
	4.4.2 Requirements and Specifications in Existing Case Studies

	4.5 Operational Specifications for Synthesis Techniques
	4.6 Conclusion

	5 A Concept for Runtime Supervision of PLC Programs Using DES
	5.1 Introduction
	5.1.1 Motivation
	5.1.2 Setting
	5.1.3 Framework
	5.1.3.1 Connection to SCT
	5.1.3.2 Execution Cycle

	5.1.4 Nonblockingness
	5.1.5 Classification of the Approach
	5.1.6 Further Techniques

	5.2 Related Approaches
	5.3 Modeling Concept
	5.3.1 Automata
	5.3.2 Events

	5.4 Basic Operations
	5.4.1 Composition
	5.4.2 Monolithic Synthesis
	5.4.3 Incremental Synthesis
	5.4.4 Minimization

	5.5 Preemption
	5.5.1 Limitations of Classic SCT
	5.5.2 Enforceable Events
	5.5.3 Relation to Other Formalisms
	5.5.4 Which Events Shall be Preempted?
	5.5.5 Enforcement Cascades
	5.5.6 General Limitations of Preemption
	5.5.6.1 Fundamental Problem

	5.6 Cyclic Events
	5.7 Conditional Transitions and Prohibitions
	5.7.1 Introduction
	5.7.1.1 Conditional Transitions and Prohibitions
	5.7.1.2 Former Approaches

	5.7.2 Resolving Conditions in Composite Automata
	5.7.2.1 Multiple Transitions
	5.7.2.2 Plant Composition
	5.7.2.3 Specification and Plant Models

	5.7.3 Synthesis on DES with Conditions
	5.7.4 Outlook

	5.8 Formal Model
	5.8.1 Basic Concepts
	5.8.1.1 Safety Specifications
	5.8.1.2 The Specification Product
	5.8.1.3 Supervisors
	5.8.1.4 Safety and Permissiveness
	5.8.1.5 Plant Models
	5.8.1.6 Maximal Achievable Permissiveness
	5.8.1.7 Applying Plant Models to Specifications

	5.8.2 Monolithic Synthesis
	5.8.3 Incremental Synthesis
	5.8.4 Conditions
	5.8.4.1 Formalization, Evaluation and Refinement
	5.8.4.2 Compositions

	5.8.5 Preemption
	5.8.5.1 Extensions of the Model
	5.8.5.2 Preemptive Synthesis

	6 SynTACS
	6.1 Working with SynTACS
	6.1.1 User Interface
	6.1.2 Project Structure
	6.1.3 Accessing PLC Timers
	6.1.4 Templates

	6.2 Software Architecture
	6.3 SynTACS Runtime Framework
	6.3.1 Event Management
	6.3.2 Supervisors
	6.3.3 Timer Management
	6.3.4 Procedure
	6.3.5 Generation

	6.4 Limitations
	6.4.1 Event Order
	6.4.2 Synchronization of Enforced Events
	6.4.3 Manually Enforced Events
	6.4.4 Conflicting Transitions

	6.5 Remote Supervisor
	6.5.1 Communication
	6.5.2 Cyclic Execution
	6.5.3 Evaluation

	7 Evaluation
	7.1 User Study
	7.1.1 Object of Investigation
	7.1.2 Procedure
	7.1.3 Participants
	7.1.4 Significance
	7.1.5 Results – Modeling
	7.1.6 Results – User Experience

	7.2 Case Study: M3P.AC
	7.2.1 Setting
	7.2.2 Safety-Critical Requirements
	7.2.3 Synthesized Safety System
	7.2.4 Execution Procedure
	7.2.5 Evaluation

	7.3 Further Case Studies
	7.4 Long-Term Usability
	7.5 Benchmark of Incremental Synthesis

	8 Conclusion

