
Incremental Integration and
Static Analysis of Model-Based
Automotive Software Artifacts
Thomas Gerlitz

Department of Computer Science
Technical Report

Aachener Informatik-Berichte (AIB) | ISSN 0935-3232 | AIB-2017-8
RWTH Aachen University | Department of Computer Science | September 2017

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Incremental Integration and Static Analysis of
Model-Based Automotive Software Artifacts

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Ingenieurswissenschaften genehmigte Dissertation

vorgelegt von
Thomas Gerlitz, M.Sc. RWTH

aus Neuss

Berichter: Universitätsprofessor Dr.-Ing. Stefan Kowalewski
Universitätsprofessor Dr.-Ing. Ina Schaefer

Tag der mündlichen Prüfung: 29. Mai 2017

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Thomas Gerlitz
Lehrstuhl Informatik 11 - Embedded Software
gerlitz@embedded.rwth-aachen.de

Aachener Informatik Bericht AIB-2017-08

Herausgeber: Fachgruppe Informatik
RWTH Aachen University
Ahornstr. 55
52074 Aachen
GERMANY

ISSN 0935-3232

Abstract
In recent years, the automotive industry adopted model-based development of software
components as an integral part of the automotive software development process. The
use of models enables the simulation and testing of system behavior even in early stages
of development. They can further serve as input to code generators, allowing the model-
based development of firmware for complex systems such as the electronic control units
(ECU) of an automobile. As the complexity and size of models continues to grow, a need
has arisen for dynamic and static model analysis techniques to keep costs for quality
assessment as required by norms and standards such as ISO 26262 in check. While a
plethora of tools exists for the analysis of software source-code, the tool landscape for
the analysis of software models is still sparsely populated. Due to abstractions used
within models and their heterogeneous and often proprietary file formats, the realization
of generic model analysis tools cannot be performed to the same extent as for software
source-code.

In this thesis, we present a method for the incremental integration and static analysis of
model-based software artifacts comprising the extraction, storage, analysis and evolution
of model data. The proposed incremental integration approach allows the conversion
of supported artifacts into a well-defined representation and subsequent storage in a
model repository, enabling seamless access to stored artifacts as well as synchroniza-
tion with changes made to their source models. We further propose multiple static
analysis techniques for MATLAB/Simulink models, a prevalent model-based software
artifact in automotive software development. These analyses support various activities
during different stages of a model-based development process. We present a signal
reconstruction and slicing algorithm that supports debugging, testing and exploration
activities of MATLAB/Simulink models. A clone detection procedure allows the auto-
matic identification of cloned model fragments and their subsequent controlled reuse by
refactoring into generic library blocks. Further quality and design defects are detected
by a model smell analysis, identifying anti-patterns that negatively influence quality
properties of MATLAB/Simulink models. Furthermore, we propose an inter-artifact
consistency analysis targeting traceability links between artifacts of a product line and
its accompanying variability documentation. All proposed techniques are realized in the
form of an integrated software framework called artshop.

To show the applicability of the artshop framework, we applied the realized techniques
on a set of real-world models taken from academic and industrial case studies to assess
the overall scalability and performance of the framework. We show that the integration
and analysis capabilities of the artshop framework are already applicable to real-world
models.

i

Zusammenfassung
In den letzten Jahren setzt die Automobilindustrie für die Entwicklung von Software-
komponenten verstärkt auf die modellbasierte Softwareentwicklung. Die Verwendung von
Modellen ermöglicht bereits in frühen Entwicklungsstadien die Simulation und das Testen
von Verhaltensmodellen sowie die Generation des Programmcodes, welcher schlussendlich
auf die Steuergeräte eines Automobils geladen wird. Mit steigender Größe und Kom-
plexität verwendeter Modelle gewinnen Qualitätsanalysen in Form von statischen und
dynamischen Modelanalysen an Bedeutung, um die Gesamtkosten der Qualitätssicherung,
wie sie von Normen und Standards wie der ISO-26262 gefordert wird, zu reduzieren.
Während auf dem Markt eine Vielzahl von Analysewerkzeugen für Software-Quellcode
zur Verfügung stehen, existieren nur wenige Werkzeuge, welche Qualitätsanalysen di-
rekt auf Modellebene umsetzen. Durch die in Modellen üblichen Abstraktionen und
ihre oftmals heterogenen proprietären Dateiformate ist die Realisierung von generischen
Modellanalysewerkzeugen nicht mit ähnlichem Aufwand und Vorgehen realisierbar wie
für Software-Quellcode.

In dieser Arbeit präsentieren wir einen Ansatz für die inkrementelle Integration und
statische Analyse von modellbasierten Softwareartefakten, welcher die Extraktion, Ver-
waltung, Evolution und Analyse von Modelldaten umfasst. Der vorgestellte Ansatz zur
inkrementellen Integration erlaubt die Extraktion und Konvertierung von unterstützten
Artefakten in eine definierte Modellrepräsentation und Ablage in einem Modellrepository.
Dieses ermöglicht den nahtlosen Zugriff auf die darin gespeicherten Artefakte und die
Synchronisation von Änderungen, die an den Quellartefakten außerhalb des Repositories
vorgenommen wurden. Eines der weitverbreitetsten Artefakte in der Automobilindustrie
sind MATLAB/Simulink Modelle. In dieser Arbeit werden statische Analysetechniken für
diese Art von Modellen diskutiert, welche Aktivitäten innerhalb eines modellbasierten Ent-
wicklungsprozesses unterstützen. Unter anderem stellen wir einen Signalrekonstruktions-
und Slicingalgorithmus vor, welcher das Debugging, Testen und die Exploration von
MATLAB/Simulink Modellen unterstützt. Ein Klonerkennungsprozess erleichtert die
Detektion von duplizierten Modellfragmenten und ermöglicht deren kontrollierte Wie-
derverwendung durch Modelltransformationen, welche gefundene Klone mit Hilfe eines
generischen, parametrierbaren Bibliotheksblocks refaktorieren können. Weitere Qualitäts-
und Designdefizite können durch eine Model-Smell-Analyse detektiert werden, welche
Anti-Pattern in MATLAB/Simulink Modellen identifiziert die Qualitätseigenschaften
eines Modells negativ beeinflussen. Weiterhin führen wir eine artefaktübergreifende Kon-
sistenzprüfung von Traceability-Links zwischen Artefakten einer Produktlinie und deren
Variabilitätsdokumentation ein. Die in dieser Arbeit diskutierten Techniken wurden im
experimentellen Softwareframework artshop implementiert.

Um die praktische Anwendbarkeit von den in artshop realisierten Techniken zu demons-
trieren, wurden diese auf eine Menge von Modellen aus akademischen und industriellen
Fallstudien angewendet um deren Skalierbarkeit und Performanz auf realen Beispielen zu
beurteilen. Dabei kommen wir zu dem Schluss, dass die Integrations- und Analysemög-
lichkeiten von artshop bereits auf reale Modelle anwendbar sind.

iii

Acknowledgments
This thesis was created as part of my activities as a research assistant at the chair of
embedded software at RWTH Aachen University. The creation of this thesis would not
have been possible without the support of many others that accompanied me during my
time as a research assistant.

First, I would like to thank Prof. Dr.-Ing. Stefan Kowalewski for giving me the
opportunity to join his group, supporting my thesis and for the great collaboration during
this time. I would also like to thank Prof. Dr.-Ing. Ina Schaefer for serving as the second
supervisor of this thesis. Furthermore, I thank Prof. Dr. Stefan Decker and Prof. Dr.
Jürgen Giesl for participating in my examination committee.

I have to thank Christian Dernehl and Norman Hansen who were always open for
discussions about various concepts of MATLAB/Simulink and animated me to drive
the capabilities of the artshop framework further. I would also like to thank Quang
Minh-Tran from the DCAITI for fruitful discussions and collaborations on analyses and
model transformations on MATLAB/Simulink models.

Special thanks go to all my former colleagues and friends for constructive discussions
(un)related to my area of research, welcome work environment and the awesome time I
had at the chair during both research and non-research related activities.

Moreover, I would like to thank all my students for their active support during the
development of the techniques described in this thesis. This thesis would not have been
possible without the contributions to algorithms, user-interfaces, test cases and the
maintenance of the projects infrastructure by my students. In particular, Stefan Schake
and Mirko Kugelmeier have contributed a lot of effort towards the successful realization
of the techniques within this thesis.

I also thank everyone that reviewed my thesis for grammatical and spelling errors and
thereby contributed to the successful completion of this thesis.

Finally, I would like to thank my family for the backing during my studies and Jennifer
Janas for the never-ending support especially during the final stages of this thesis.

Thomas Gerlitz
February 2017, Aachen

v

Contents
1 Motivation 1

1.1 Problem and Objectives . 2
1.2 Solution Approach . 2
1.3 Contributions . 3
1.4 Bibliographic Notes . 5
1.5 Outline . 6

2 Foundations 9
2.1 Model-Based Development of Automotive Embedded Software 9

2.1.1 Model-Based Software Development 9
2.1.2 Model-Based Software Development in the Automotive Industry . 10

2.2 MATLAB/Simulink . 11
2.2.1 Blocks and Signals in MATLAB/Simulink 12
2.2.2 Model Simulation . 17
2.2.3 MATLAB/Stateflow . 19
2.2.4 Formalization . 21

2.3 Software Product Lines . 23
2.3.1 Software Product Line Development 23
2.3.2 Modeling Variability . 25

2.4 Industrial Application and Tools . 26
2.4.1 Development Process . 27
2.4.2 Tools . 28

3 Incremental Integration of Model-Based Software Artifacts 31
3.1 Overview and Outline . 31

3.1.1 The artshop Framework . 32
3.1.2 Related Work . 34
3.1.3 Bibliographic Notes . 37

3.2 Metamodel . 37
3.2.1 Entity Structure . 37
3.2.2 Artifact Attributes . 38
3.2.3 Annotations and Associations . 40

3.3 Tool Adapter . 41
3.3.1 MATLAB Simulink/Stateflow . 41
3.3.2 IBM Rational DOORS . 50
3.3.3 pure::variants . 53
3.3.4 Tool Adapter Integration in artshop 55

vii

Contents

3.4 Repository and Synchronization . 56
3.4.1 Repository . 56
3.4.2 Synchronization . 57

3.5 Evaluation . 60
3.5.1 Evaluation of the MATLAB/Simulink Tool Adapter 60
3.5.2 Evaluation of the IBM Rational DOORS Tool Adapter 68
3.5.3 Evaluation of the Model Synchronization Mechanism 71

3.6 Conclusion and Future Work . 72
3.6.1 Future Work . 73

4 Consistency Checking in Software Product Lines 75
4.1 Approach . 75

4.1.1 Related Work . 75
4.1.2 Bibliographic Notes . 76

4.2 Preliminaries . 76
4.3 Automatic Feature Derivation . 77
4.4 Consistency of Connected Feature Mappings 80

4.4.1 Categorization of Inconsistencies Between Related Family Models 82
4.4.2 Inconsistency Resolution . 84
4.4.3 Construction of Feature Mappings 85

4.5 Evaluation . 86
4.5.1 Execution of the Derivation Procedure 87
4.5.2 Execution of the Consistency Check 88

4.6 Conclusion and Future Work . 88

5 Dependency Analysis and Slicing of MATLAB/Simulink Models 91
5.1 Overview . 91

5.1.1 Related Work . 92
5.1.2 Contributions and Bibliographic Notes 93

5.2 Foundations . 94
5.2.1 Dependency Analysis . 94
5.2.2 Slicing . 96

5.3 Signal-Flow in MATLAB/Simulink . 97
5.3.1 Signals in MATLAB/Simulink . 99
5.3.2 Data Dependence in MATLAB/Simulink 102
5.3.3 Control Dependence in MATLAB/Simulink 108

5.4 Slicing Simulink Models . 108
5.4.1 Building the Dependence Graph 108
5.4.2 Slice Computation . 109
5.4.3 Presentation . 110

5.5 Evaluation . 112
5.5.1 Evaluation of the Flow-Based Slicing Algorithm 113
5.5.2 Impact of Flow Sensitive Slicing 114

5.6 Extension for MATLAB/Stateflow . 115

viii

Contents

5.7 Conclusion and Future Work . 119
5.7.1 Further Applications . 120
5.7.2 Future Work . 121

6 Detection and Refactoring of Clones in MATLAB/Simulink Models 123
6.1 Overview and Outline . 124

6.1.1 Related Work . 125
6.1.2 Contributions and Bibliographic Notes 127

6.2 Clone Detection Process . 127
6.2.1 Layout-Based Clone Detection . 129
6.2.2 Clone Consolidation . 132
6.2.3 Presentation . 133

6.3 Clone Refactoring . 134
6.3.1 Refactoring Procedure . 135
6.3.2 Modification Commands . 137
6.3.3 Limitations . 138

6.4 Evaluation . 138
6.4.1 Performance . 139
6.4.2 Quality . 140
6.4.3 Refactoring Procedure . 142

6.5 Repository Guided Cross-Clone Detection 143
6.6 Conclusion and Future Work . 144

7 Model Smell Detection in MATLAB/Simulink Models 147
7.1 Overview and Outline . 147

7.1.1 Related Work . 148
7.1.2 Contributions and Bibliographic Notes 150

7.2 Model Smells for MATLAB/Simulink Models 150
7.2.1 Naming Conventions . 151
7.2.2 Partitioning . 151
7.2.3 Interface Definition . 153
7.2.4 Signal Flow . 154
7.2.5 Signal Structure . 158

7.3 Detection of Model Smells . 160
7.3.1 Implementation . 161
7.3.2 Integration in artshop . 164

7.4 Evaluation . 165
7.4.1 Relevance . 165
7.4.2 Performance . 167

7.5 Conclusion and Future Work . 168

8 Conclusion 171
8.1 Summary . 171
8.2 Future Work . 172

ix

List of Tables
2.1 Functions for the navigation and exploration of a formalized MAT-

LAB/Simulink model M . 22

3.1 Comparison of supported functionalities of evaluated tool adapters 61
3.2 Comparison of imported model data on MAV model 62
3.3 Comparison of supported export functionality of evaluated tool adapters 65
3.4 Overview of MATLAB/Simulink models used throughout this thesis . . . 68

4.1 Overview of the artifact elements in the DAS system including imported
and computed links(*) . 87

5.1 Functions for the navigation and exploration of the signal segments C,
paths SP and signals S of a MATLAB/Simulink model M 101

5.2 Average forward slice sizes of the flow-based slicing algorithm 112
5.3 Average backward slice sizes of the flow-based slicing algorithm 113
5.4 Bus signal complexity of the evaluated models 113
5.5 Comparison of forward and backward slices of a line-based and the flow-

based slicing approaches . 114

6.1 Performance and results of the clone detection algorithms 139
6.2 Performance and results of the clone consolidation procedure 140
6.3 Quality of detected clones . 141
6.4 Performance evaluation of the refactoring procedure for the clone group

shown in Figure 6.3 . 142

7.1 Overview of analysis techniques needed for model smell detection 161
7.2 Detected model smells . 166
7.3 Average computation time (in ms) for the findings shown in Table 7.2 . . 167

xi

List of Figures
1.1 Exemplary model analysis process . 3

2.1 Example for a hierarchical simulink model 12
2.2 Bus signal creation/manipulation/resolution in MATLAB/Simulink . . . 14
2.3 Examples for indirect signal flow using Goto/From and DataStoreWrite/-

Read blocks in MATLAB/Simulink . 16
2.4 Execution contexts in MATLAB/Simulink demonstrated at an example

model . 18
2.5 Stateflow chart contained in the example model sldemo_fuelsys 20
2.6 Activities of SPLE (based on [37]) . 24
2.7 Example feature model (adapted from [161]) 26
2.8 Model-based design process at Daimler AG (adapted from [100]) 27
2.9 Example of a formal module in IBM Rational DOORS 28

3.1 Architecture of the artshop framework (adapted from [57]) 33
3.2 Base elements of the artshop metamodel 38
3.3 Dynamic attributes in the artshop metamodel 39
3.4 Representation of meta-information and associations in the artshop meta-

model . 40
3.5 Communication between artshop and MATLAB/Simulink 42
3.6 Concrete representation of a functionmodel from MATLAB/Simulink

based on the artshop metamodel . 43
3.7 Concrete representation of stateflow model elements from MATLAB/S-

tateflow based on the artshop metamodel 45
3.8 Overview of the incremental parameter deduplication component 47
3.9 Visualization of virtual lines between hierarchy layers and Goto/From

blocks of a model . 48
3.10 Examples for the visualization of imported model elements from MAT-

LAB/Simulink using the demo model sldemo_fuelsys (MATLAB/Simulink
2014a) . 49

3.11 Communication between artshop and IBM Rational DOORS 50
3.12 Concrete representation of elements from IBM Rational DOORS based on

the artshop metamodel . 51
3.13 Communication between artshop and pure::variants 52
3.14 Concrete representation of feature and variant description model elements

from pure::variants based on the artshop metamodel 53

xiii

List of Figures

3.15 Concrete representation of family model elements from pure::variants
based on the artshop metamodel . 54

3.16 Import wizards in artshop . 55
3.17 Detailed view of the repository component 56
3.18 Procedure of the artshop synchronization mechanism 59
3.19 Inspection of history information for a block in artshop 60
3.20 MATLAB/Simulink tool adapter import performance for functionmodels

containing up to 100.000 blocks . 63
3.21 MATLAB/Simulink tool adapter import performance for functionmodels

containing up to 50.000 blocks . 64
3.22 MATLAB/Simulink tool adapter export performance 65
3.23 artshop tool adapter and Massif export performance 66
3.24 IBM Rational DOORS tool adapter import performance 69
3.25 IBM Rational DOORS tool adapter export performance 70
3.26 Performance of the synchronization mechanism across all evaluated model

∆ and detected differences . 71

4.1 Exemplary illustration of a family model for an artifact AF am 78
4.2 Component path and obligatory features of component c3 79
4.3 Sketch of a feature consistent component 81
4.4 Contradictory feature mapping between c and KF,F ′(c) 82
4.5 Incomplete feature mapping between c and KF,F ′(c) 83
4.6 Redundant feature mapping between c and KF,F ′(c) 84
4.7 Dependence view showing the traceability links of a requirement in artshop 88

5.1 Example program (a) and slice of (a) with slicing criterion <9, sum> (b) 94
5.2 CFG of the program displayed in Figure 5.1a adapted from [151] 95
5.3 PDG of the example program from Figure 5.1a adapted from [151] 97
5.4 Signal propagation over different block types 98
5.5 Application of signal representation on signal C from shown in Figure 5.4 102
5.6 Switch block controlling signal propagation 106
5.7 Visualization of the forward slice on the block SrcC in artshop 110
5.8 Simple MATLAB/Stateflow state chart 116
5.9 Result view of the complexity metric analysis on the example model

sldemo_fuelsys . 120

6.1 Clone detection process . 128
6.2 Visualization of the relative layout expressed by v1 and v2 130
6.3 Visualization of clone groups in artshop 134
6.4 Example of the clone refactoring procedure 135
6.5 Synchronous model transformation in artshop and MATLAB/Simulink . 137
6.6 Overlap detected between the clone groups detected by the clone detection

algorithms applied on the EL model . 141
6.7 Generated query for the clone group shown in Figure 6.3 143

xiv

List of Figures

7.1 Example for the model smell Subsystem Interface Incongruence (see Def.
7.7) . 153

7.2 Example for the model smell Redundant Signal Paths (see Def. 7.11) . . 155
7.3 Example for the model smell Independent Local Signal Paths (see Def. 7.14)156
7.4 Example for the model smell Multiple Signals with same Signal Name in

Bus (see Def. 7.23) . 160
7.5 EVL specification of the Unnamed Signal Entering Bus smell (see Def. 7.21)163
7.6 The EVL rule editor in artshop . 164
7.7 Example report for the single occurrence of the Superfluous Bus Signal

smell in the PI model . 168

xv

1 Motivation
In the past decade, the automotive industry adopted and backed model-based development
of software components in an effort to yield a substantial increase in productivity and
software quality. The abstraction capabilities enabled by structural and behavioral models
allow the use of traditional mechanical engineering methods and domain specific concepts
such as function block diagrams for modeling control algorithms instead of writing code.
Code generators then allow engineers without prior software development experience to
turn modeled diagrams into optimized processor firmware. It is further possible to simulate
and verify models even in the early stages of development. One of the most established
tools for model-based development in the automotive domain is MATLAB/Simulink
developed by The Mathworks [46]. It allows the modeling of dynamic systems and control
algorithms using functional block diagrams and further includes a code generator.

With the increased use of model-based software development in the automotive domain,
models slowly replace source code as the main development artifact. Since the source
code of the software deployed on the individual ECUs in an automobile is generated
from models, the quality of the model directly influences the quality of the generated
software [53]. Quality control of automotive software is fundamental to the automotive
industry, as errors in the software cost billions due to recalls and warranties and may
further endanger the lives of passengers or other road users [1]. Since 90 % of innovations
made in the automotive domain are driven by software and electronics [18], quality
assurance is a necessity during the development process and required by safety norms
such as the ISO 26262 [73]. While there exists a huge range of syntactic, semantic and
structural software source code analysis tools, the tool landscape for tools analyzing the
quality of software models is still sparse. One reason is that the primary representation
for source code is text observing a well-defined syntax. Models on the other hand are
typically saved in proprietary file formats with no explicit documentation of the model
files structure, imposing a higher effort to extract relevant model data and processing it
in a format suitable for quality analyses. Applying source code quality analysis to code
generated from model files would require more time and effort, as source code is usually
not generated until late development stages and mapping found flaws to constructs within
the respective models might prove to be infeasible in certain cases. Nevertheless, with
rising complexity and size of models, quality analysis of models in early development
stages is important for cost-efficient removal of quality defects. Hence, quality analyses
are needed that directly target the actual model-based software artifacts to increase the
overall quality of models starting from early development stages.

1

1 Motivation

1.1 Problem and Objectives
In this thesis, we address multiple problems arising during the integration and analysis
of artifacts of a typical model-based software development process in the automotive
domain. As models are saved in heterogeneous proprietary file formats, uniform and
structural storage of model files is not possible. While certain artifacts are saved as files,
others are stored in databases of their respective development tools and are not locally
available on the client system. Thus, tracing changes on a structural level is only possible
if directly supported by the individual development tool as the flat textual representation
cannot be mapped to the often-complex structures contained in a software model. As
models grow in size and complexity throughout the development process, in particular
during the development of MATLAB/Simulink models, manual quality assessment of
models containing tens of thousands of model elements becomes impractical.

Hence, prior to the development of quality analyses in the form of static model
analyses, the accessibility of models and their encapsulated information must be ensured
by extracting and integrating artifact data in well-defined data structures. A well-defined
interface to models and their data structures enables seamless processing of model data
and the development of static model analysis techniques that target quality properties
of software models or support a developer during common development tasks such as
debugging, testing or change-impact analysis. These techniques can then be applied for
early-stage quality assessment, reducing the overall cost of the development process. As
MATLAB/Simulink models are one of the primarily used models within the automotive
domain, analyses targeting these models are of particular importance.

1.2 Solution Approach
The aim of this thesis is to provide a framework for the integration and static analysis of
model-based software artifacts comprising the extraction, storage, analysis and evolution
of model data as shown in the process depicted in Figure 1.1.

Artifact Integration In the first phase of this process, model data shall be extracted
from their respective sources, converted into a well-defined representation and integrated
into a model repository supporting version control of stored data on a structural level.
To support the model conversion process, a metamodel shall be defined which serves
as a foundation for the representation of extracted model data. The metamodel shall
also contain structures expressing traceability links between arbitrary model elements,
enabling inter-artifact consistency analyses.

Model Analysis Artifact data in the model repository shall be available for the con-
duction of model analyses. Thus, all kinds of static model analysis techniques for the
analysis of single or set of artifacts can be realized within the framework.

2

1.3 Contributions

Figure 1.1: Exemplary model analysis process

Flaw Localization / Refactoring Results of analyses must be traceable to their respec-
tive occurrence. As development tools such as MATLAB/Simulink only have limited
visualization capabilities, graphical views shall be included in the framework to realize
arbitrary visualization of analysis findings. To further ease the resolution of found defects,
refactoring operations shall be included to assist a developer during the resolution of
defects.

Artifact Synchronization To continuously monitor the state of an artifact during
its evolution as part of the development process, the framework shall support the
synchronization of already imported artifacts with their source artifacts in an incremental
fashion, i.e. the change ∆ between the imported and current state of the source artifact
is identified and applied to the version stored in the repository.

Reporting A common tool for the communication of defects to the various stakeholder
of an artifact are reports. These summarize the findings of analyses and document the
state of one or multiple artifacts with regard to the analyzed model characteristics.

1.3 Contributions
The main contributions of this thesis are:

• An approach for the incremental integration of model-based software artifacts.
By supplying a tool-independent metamodel, tool adapters define specializations
of this metamodel to create model representations of tool specific artifacts. Three

3

1 Motivation

adapters are defined to extract model data from the tools MATLAB/Simulink,
IBM Rational DOORS and pure::variants and provide customizable views on
these artifacts. The data extracted by these adapters can be saved within a model
repository for the subsequent use in model analyses. Additionally, a synchro-
nization mechanism is proposed that is able to identify changes between an
imported representation and its source artifact and apply them to the representa-
tion stored within the repository, while simultaneously preserving the history of
the synchronized artifact.

• A method for the extraction of feature mappings from the variability docu-
mentation of a product line and a subsequent feature consistency analysis to
check the correctness of the extracted mapping. This mapping can be stored within
the model repository and be used for further consistency or feature-based analyses
of the artifacts of a product line.

• A signal reconstruction, dependency analysis and flow-sensitive slicing
approach for MATLAB/Simulink models. Signal relationships within a MAT-
LAB/Simulink model are complex and partially obscured through the application
of architectural patterns within a model. The reconstruction of all atomic and
composite signals in a model allows the creation of comprehensive analyses on
the signals of a MATLAB/Simulink model. We use the signal information for the
computation of static forward and backward slices within a MATLAB/Simulink
model with respect to a certain point of interest.

• A clone detection and refactoring procedure for MATLAB/Simulink models.
This approach uses two known detectors from the literature in addition to a novel
layout-based copy-clone detector. By consolidating the result set of all three
detectors, i.e. removal of duplicate occurrences and subsuming clones representing
subsets of other clones, the overall quality of the result set of individual clone
detectors can be increased. Furthermore, a refactoring procedure for detected
clones is defined, which eases the controlled reuse of clones.

• The definition of a set of model smells for MATLAB/Simulink models, i.e.
anti-pattern, which negatively affect the overall quality of a model but do not
necessarily represent semantic or syntactic errors. Model smells are defined for a
number of different categories. We further created a detector for these smells,
based on a validation language that can directly be specified within the proposed
framework, allowing a user to adapt/extend the set of pre-defined model smells
with further smells specific to his application scenario. The findings of the detector
can subsequently be used for report generation.

• Integration of all aforementioned components into a research framework for the
analysis of model-based software artifacts called the artshop framework.

• Evaluation of all aforementioned contributions with a set of real-world artifacts
from academic and industrial case studies from the automotive, avionic and medical

4

1.4 Bibliographic Notes

domain. This highlights the scalability and applicability of all techniques and
analyses presented throughout this thesis.

1.4 Bibliographic Notes
Parts of this thesis were already published in publications authored or coauthored by the
author of this thesis or were the results of bachelor’s or master’s theses that we supervised.
In the following, we relate the chapters of this thesis to these publications/theses and
detail the contributions of the author of this thesis.

The foundations described in Chapter 2 are mostly summarized from different sources
that are cited accordingly. The summary of the characteristics of blocks and signals
in MATLAB/Simulink models was initially created by the author as part of the work
published in [59] and extended within the context of this thesis. The formalization of
MATLAB/Simulink models introduced in Section 2.2.4 were partially contained in [59]
and were created and later extended by the author of this thesis.

The incremental integration approach of model-based software artifacts described in
Chapter 3 including the techniques describing the model repository, metamodel, tool
adapters, graphical views, synchronization procedure and the subsequent use during
static model analyses has been partially described in [57, 58]. The artshop metamodel and
the import procedure of the tool adapter for MATLAB/Simulink models were created by
the author of this thesis with minor contributions of various student research assistants.
Julius Nehring Wirxel implemented the export procedure for the MATLAB/Simulink
tool adapter as part of his bachelor’s thesis [102]. An initial realization of the graphical
viewer for MATLAB/Simulink models has been developed by René Rousseau as part of
his bachelor’s thesis [133] and was later extended by Stefan Schake and the author of this
thesis. The tool adapter for IBM Rational DOORS was developed during the bachelor’s
thesis of Mirko Kugelmeier [87] including the model representation, the import/export
procedures as well as the graphical views for these artifacts. We created the model
representation for feature models and the generic import procedure described in Section
3.3.3 that was later extended for family and variant description models created with
pure::systems pure::variants as part of the bachelor’s thesis of Oliver Blasius [15]. The
repository component and the synchronization mechanism were created by the author of
this thesis.

The concepts for the feature derivation procedure and subsequent consistency check
described in Section 4.3 and 4.4 were contributed by the author. A first implementation
of these mechanisms was created as part of the bachelor’s thesis of Oliver Blasius [15] and
was later extended by Mirko Kugelmeier as part of his activities as a student research
assistant.

Chapter 5 is based on ideas published in [59], which describes a first version of the
signal reconstruction and flow-sensitive slicing approach for MATLAB/Simulink models.
The concept, implementation and evaluation presented in this publication were created by
the author. We further extend the techniques described in this publications by refinements
of the overall signal dependency detection procedure and introduce further application

5

1 Motivation

scenarios using the reconstructed signal information as well as the implemented slicing
algorithm. The proof-of-concept data dependency check for MATLAB/Stateflow Chart
blocks described in Section 5.6, has first been implemented by Stefan Schake and was
later refined by the author of this thesis. The slice-based cohesion and coupling metrics
mentioned in Section 5.7.1 were implemented by Mirko Kugelmeier under the supervision
of the author. The other extensions were created by the author of this thesis.

The techniques presented in Chapter 6 were initially developed during the bachelor’s
thesis of Stefan Schake [136]. The results of this thesis were published in [61] and later
extended by the author. The concept for the repository guided cross clone detector
proposed in Section 6.5 was created by the author, first implemented by Stefan Schake
and later extended by the author of this thesis.

Parts of Chapter 7 were first published in [60], where an initial definition of the model
smells for MATLAB/Simulink models was presented. They were developed in cooperation
with Quang Minh-Tran from the Daimler Center for Automotive Information Technology
Innovations (DCAITI) and Christian Dziobek from Daimler AG. The descriptions of the
model smells from this publication were used for the formal definitions in Section 7.2.
These definitions rely on the reconstructed signal information described as part of the
flow-sensitive slicing approach presented in Chapter 5 and were created by the author.
The refactoring operations described in [60], were created by Quang Minh-Tran as part
of his research activities at the DCAITI. The EVL-based model smell detector and the
report generator has been developed as part of the bachelor’s thesis of Dennis Weir [159]
and was later extended by Mirko Kugelmeier and the author of this thesis. The EVL
model smell detection rules used during the evaluation of the model smell detector were
created by the author.

In addition, all evaluations presented within this thesis were conducted by the author
of this thesis.

Furthermore, we supervised the master’s thesis of Norman Hansen who developed
the initial version of a static value range analysis for MATLAB/Simulink models that
relies on the model representations of the artshop framework [66]. The implemented
techniques were later extended by joint work of Christian Dernehl and Norman Hansen
[40, 41, 42, 43, 44].

1.5 Outline
The remainder of this thesis is structured as follows. Chapter 2 introduces the founda-
tions and terminology of the processes, models, tools and concepts used throughout this
thesis. Following that, Chapter 3 introduces the incremental integration approach for
model-based software artifacts that the remainder of this thesis is based on, as well as
the most important components of the artshop framework. The subsequent chapters
describe the static intra- and inter-artifact analyses developed as part of the artshop
framework. Chapter 4 outlines the feature derivation and subsequent consistency check
developed for the variability documentation of a product line. After that, the signal
reconstruction, dependency analysis and slicing algorithm are introduced in Chapter 5.

6

1.5 Outline

Following this chapter, Chapter 6 presents the clone detection and refactoring proce-
dure for MATLAB/Simulink models. Chapter 7 describes the concept of model smells
for MATLAB/Simulink models in relation to the common concept of code smells as
known from traditional software engineering. Finally, Chapter 8 concludes this thesis by
summarizing the results and discussing future work regarding the techniques presented
throughout this thesis.

7

2 Foundations
This chapter introduces the foundations and terminology that are used throughout this
thesis. First, we briefly introduce the concept of model-based software development in
Section 2.1. After that, we describe the modeling tool MATLAB/Simulink and provide
essential information regarding the syntax and semantics of its graphical block diagram
notation as an example for an industrially used model-based development tool in Section
2.2. Section 2.3 introduces the concept of software product lines and the models used
during its application in a software development process. Finally, further tools and their
integration within industrial development processes are described in Section 2.4.

2.1 Model-Based Development of Automotive
Embedded Software

In traditional software development, the main development artifact is represented as the
source code of the system that is accompanied by various forms of documentation artifacts.
Documentation artifacts include textual requirements or test specifications but may also
include models that capture various views on the developed software system. Models can
be used to describe the architecture of a software system, functional dependencies and
interface or behavior specifications, but may become inconsistent to the source code they
refer to, as updating is a time- and cost-intensive process [12].

In the last 20 years, the development processes for automotive embedded software
have slowly shifted from traditional software development, with source code as its main
development artifact, to model-based software development [12, 19, 20, 47].

2.1.1 Model-Based Software Development
In model-based software development, models represent the main development artifacts.
These models are represented by a graphical notation, with defined syntax and semantics
[12]. The key benefit of model-based software development in comparison to traditional
software development is that domain specific concepts can be used to model the desired
behavior of a program. These concepts are usually closer to the actual problem domain
than the source code of programming languages used to program an embedded system
[143].

Models are particularly useful if domain experts, such as engineers, are involved in the
software development process, e.g. to provide input for control algorithms. Due to the
abstractions that are offered by the modeling elements of a modeling language, even an
engineer with no prior software development experience can create software by modeling

9

2 Foundations

a control algorithm using functional block diagrams, where typical operations from the
engineering domain are available as basic model elements. Instead of using control and
data structures like variables, loops or functions from traditional software engineering,
an engineer can use a domain specific modeling language that he is proficient in and use
constructs such as transfer functions, state charts and PID-controller [12].

Besides their descriptive nature, models can typically be executed in model-specific
simulation environments, which enables early-stage testing and functional validation
as well as subsequent reuse of validated model components [47]. Most modeling tools
also include code generators that convert the platform-independent models [20, 143]
into source code that is tailored to be executed in a specific hardware environment,
representing a key criterion for the application of model-based development [137].

2.1.2 Model-Based Software Development in the Automotive
Industry

One of the first industries to promote model-based software development intensively,
was the automotive industry [30, 147]. While parts of a car have traditionally been
developed independently from each other by a chain of suppliers and were more or
less only assembled by the OEM, the innovation force of software forces OEMs to not
only assemble the mechanical parts but also perform system integration of the software
solutions developed by their suppliers. This highlights the demand for clear interface and
behavior descriptions provided by the OEM to the supplier, as suppliers typically have a
lot of freedom to realize individual solutions [113]. In addition, model-based development
of automotive software is attractive due to its benefits in evolutionary development, i.e.
the reuse and extensibility of existing functionality from previous system versions, and
its platform-independent development [20, 143].

The benefits of model-based development in the automotive industry have been pre-
sented in a study discussed in [20]. Participants reported that a model-based development
approach improved the communication regarding modeled system functionality, because
of the use of domain specific modeling languages, e.g. function block diagrams. The
study also highlights the benefits of the involvement of domain experts, which were not
familiar with traditional software development but due to the use of the aforementioned
domain-specific modeling language could contribute their know-how during system design.
Other positive aspects include the application of rapid control prototyping enabled
by early-state model behavior simulation, model verification techniques such as static
analysis and model-in-the-loop tests.

To structure the interaction between supplier and OEM in terms of expected model
formats, various company and domain specific norms and standards have been estab-
lished, e.g. the ISO 26262 [73] or the AUTOSAR-Initiative [22]. These standards and
norms significantly influenced currently applied development processes and the usage of
consistent software architectures, which resulted in a nearly uniform domain-wide tool
landscape [163].

10

2.2 MATLAB/Simulink

Typical modeling tools used during model-based development of embedded software
include AUTOSAR [22], MATLAB/Simulink [129], Modelica [124], LabView [125], AS-
CET [121] and SCADE [120]. Of these tools, MATLAB/Simulink is the defacto standard
tool for functional behavior modeling in the automotive industry [47].

2.2 MATLAB/Simulink
The tool MATLAB from The MathWorks [127] integrates various algorithms to solve
numerical problems and allows the graphical visualization of computation results. MAT-
LAB features operations allowing matrix manipulation, function plotting, the creation of
user interfaces and offers capabilities for user-specified algorithms.

Algorithms can be specified in the MATLAB programming language, also known as .m
scripts, which offers access to a wide-array of built-in computation operations and can
even be used to call libraries created in other programming languages such as C, C++
and Java. Within the MATLAB programming language, all data available in MATLAB
can be accessed and manipulated. Furthermore, there exist internal interfaces that allow
external applications to interact with MATLAB by executing MATLAB code via remote
method invocation.

While MATLAB is primarily intended to be used for numerical computations, its
functionality can be extended by various toolboxes that are offered by The MathWorks
and third party vendors. Toolboxes can either provide completely new functionality
or further enhance existing functionality of MATLAB or even other toolboxes. Avail-
able toolboxes provide algorithms for image acquisition and processing, bioinformatics,
statistics, symbolic computation or the graphical specification and simulation of control
systems. The latter toolbox is officially called the Simulink programming environment
and extends MATLAB by capabilities to graphically model control algorithms in the
form of function block diagrams. In addition, Simulink also includes a parameterizable
simulation environment, which offers multiple techniques to simulate the functionality of
modeled diagrams with different sampling times.

The notation of a functional block diagram modeled in Simulink (also called function-
model) is data flow oriented with most blocks representing atomic logical or mathematical
operations connected by directed lines, which carry signals from one block to another.
Other blocks structure a model by composing multiple blocks or lines into a single
element and therefore reduce the visual complexity due to the introduction of hierarchic
structures in a model.

An example for a MATLAB/Simulink model can be seen in Figure 2.1. The upper half
of the figure shows the root of the model, while the lower half shows the content of a
Subsystem block that introduces an additional hierarchy level within the model where
further elements can be placed. A signal is routed from the Constant block in the root of
the model into the Subsystem block, where it is first emitted by the Inport block In1
and subsequently multiplied with the value 42 by the Gain block. The resulting value is
further propagated into an Integrator block that accumulates its received signal values

11

2 Foundations

Figure 2.1: Example for a hierarchical simulink model

over time. The signal that is emitted by the Integrator block is finally routed back to the
root of the model where it terminates at the Scope block.

While Simulink is shipped with a block set realizing logical and mathematical operations,
additional blocks can be integrated by the use of various toolboxes. The MATLAB/State-
flow toolbox integrates statecharts into the blockset, which extend the Simulink modeling
language by state- and event-based language constructs. This allows the modeling of
state-based sequential decision logic via hierarchical finite automata.

Other toolboxes such as the embedded coder or dSpace Target Link extend Simulink
with the capabilities for code generation. Functionmodels can then be transformed into
C-Code that is then compiled for execution of a chosen target platform. The generated
code for each block depends on its individual configuration.

In the next section, we will discuss the different block categories of MATLAB/Simulink
and highlight the impact they have on the semantics of a Simulink model.

2.2.1 Blocks and Signals in MATLAB/Simulink
A block in a Simulink model is a processing unit that receives a set of input signals via
its input ports (inports) that are transformed into a set of output signals emitted via its
output ports (outports). The actual syntax and semantic of a Simulink block is defined
by its type and block parameters. Blocks are provided to a modeler via so-called block
libraries, which group blocks with similar functionality, e.g. logical, discrete or continuous
operations. The type of a block defines its general appearance and the operation it
performs. A block can further be configured by its block parameters by changing the
semantics of its operation or its appearance. While certain parameters are shared among
all Simulink blocks, such as the Simulink Identifier (SID), background color, position or
name, some attributes are unique to certain block types like the Gain parameter of the
Gain block shown in Figure 2.1.

Blocks in MATLAB/Simulink are connected by lines that transfer a signal from the
outport of one block to the inport of one or multiple blocks. Signals carried by a line
represent typed data values, e.g. (u)int8/16/32, double, float or fix-point numbers. These
data values do not necessarily have to be scalar values but can also be a vector or matrix
of values. The type of a signal is usually derived from the block that created it and

12

2.2 MATLAB/Simulink

can be influenced with the help of block parameters. By assigning a name to a line, its
carried signal is also automatically named or assigned an alias if it is already named.
Properties such as the name and data type inference rules for ports and lines are stored
as parameters attached to the configured port or line.

While lines represent connections from one block to multiple blocks, depending on the
block category of the destination block, signals might be propagated through multiple
blocks and lines until they are consumed. Two of these block categories will be introduced
in the following section.

Virtual Blocks vs. Nonvirtual Blocks

Simulink blocks belong to either of two categories, virtual or nonvirtual blocks. Nonvirtual
blocks realize the semantic behavior of a model during its execution, such as the Gain
block shown in Figure 2.1, which multiplies an incoming signal value with a term specified
in the blocks parameters. Signals emitted from nonvirtual blocks are always new signals
created as part of the transfer function of a block. In contrast, the main purpose of virtual
blocks is the graphical organization of a model, i.e. signals received by a virtual block are
not altered and the emitted signal of the virtual block is the same signal that entered
the block. Examples for virtual blocks are the Subsystem and Inport blocks in Figure
2.1. A subset of the virtual block set is only considered virtual under specific conditions1.
Depending on the configuration or the environment these blocks are placed in, they may
become nonvirtual blocks and play an active role during the execution of a model.

Direct-Feedthrough vs Non-Direct-Feedthrough Blocks

Another way to categorize blocks is how their outputs are calculated. If the outputs of
a block are directly calculated from one of its input signals, then this block is a direct-
feedthrough block. However, if the output signal of a block is driven by a state of the block
that depends on its input signals, the block is categorized as a non-direct-feedthrough
block. An example for a direct-feedthrough block is a Gain block that multiplies its
incoming signal by a value, while an Integrator block is a non-direct-feedthrough block
as it internally accumulates all received signal values.

Bus-Capable Blocks

Bus signals can be used to reduce the visual complexity of a model by lowering the
amount of lines visible on the screen or to trim the interface of Subsystem blocks in
a model. There exist numerous ways to create bus signals in a MATLAB/Simulink
model. The most common way to create and manipulate bus signals are the BusCreator,
BusSelector and BusAssignment blocks.

1MATLAB/Simulink Web Help - Nonvirtual and Virtual Blocks: http://de.mathworks.com/help/
simulink/ug/nonvirtual-and-virtual-blocks.html

13

http://de.mathworks.com/help/simulink/ug/nonvirtual-and-virtual-blocks.html
http://de.mathworks.com/help/simulink/ug/nonvirtual-and-virtual-blocks.html

2 Foundations

Figure 2.2: Bus signal creation/manipulation/resolution in MATLAB/Simulink
(adapted from [59])

BusCreator The BusCreator block receives one or multiple input signals and hierarchi-
cally composes them into a bus signal emitted from this block as shown in Figure 2.2.
Here, the signals AccA, B and C are composed into the bus signal Bus. A bus created by
a BusCreator block must assert that no duplicate signal names are contained on the top
level of the newly created bus, so that each signal can be identified explicitly by its fully
qualified signal name ([bus name].[signal name]). The BusCreator block automatically
renames all duplicate signal names by appending the string ’(signal x)’, where x is the
position of the renamed signal within the bus, to the name of a signal. Unnamed signals
entering a BusCreator block are labeled in the same fashion.

BusSelector To extract a signal from a bus signal, a BusSelector block can be used as
shown in Figure 2.2. This block can select and emit signals contained in a bus signal even
if they are embedded in multiple hierarchically nested bus signals. Selected signals are
identified based on their fully qualified signal name in the bus that has entered the block.
Additionally, the block can be configured to select (output) the same signal multiple
times and again create a bus signal from the selected signals to reshape the incoming
bus signal. In the example, the signal name (AccA) is sufficient to select the signal with
the corresponding name, as no additional bus hierarchy is present in the incoming bus
signal. Signals that are not selected by the block are terminated, e.g. signal B.

BusAssignment The BusAssignment block allows the manipulation of a bus signal by
replacing one or multiple signals in a bus signal with another signal with matching data
type. The replaced signal is again identified by its fully qualified signal name in the bus
signal entering the BusAssignment block. Signals that are replaced are terminated at the
BusAssignment block, while the names of the replacing signals are aliased to match the
replaced signals name. Further, the replacing signals position in the bus signal is also
inherited from the replaced signal. In the example shown in Figure 2.2, the signal AccA
is replaced by signal D and renamed to AccA.

14

2.2 MATLAB/Simulink

While the BusCreator, BusSelector and BusAssignment block are virtual blocks, they
also belong to the category of bus-capable blocks that are considered capable of handling
bus signals2. These blocks can receive and/or emit bus signals. If a bus signal is propagated
over a bus-capable block, it is continued with identical signal flow characteristics, i.e.
bus structure, signal names etc. In addition to all virtual blocks, the set of bus-capable
blocks also contains a set of nonvirtual blocks, which do not necessarily change the
meaning of a signal. Examples for the functionality of nonvirtual bus-capable blocks are
signal delay, signal characteristic checks or propagation of its incoming signals into a
datastore or workspace variable. The Memory block shown in Figure 2.2 is an example
for a nonvirtual, bus-capable block that temporarily delays its incoming signal. Signals
that are propagated over a nonvirtual, bus-capable block are usually copied and treated
as new signals by Simulink.

Modeling Hierarchy

While bus signals can be used to reduce the amount of lines in a model, the same concept
can be applied to blocks by composing multiple blocks by the use of the Subsystem block.
A Subsystem block can also have in- and outports and can be used as each other block
in Simulink. Internally, a Subsystem creates a new hierarchical layer in a Simulink model
where blocks, even Subsystem blocks, can be placed in. Signals are transported to this
layer by so-called Inport and Outport blocks that propagate the signals received by the
actual ports of the Subsystem block. This allows the creation of custom functionality
and modularization of a Simulink model into smaller components with defined interfaces.

Masked subsystems One way to further model a Subsystem block as a distinct function,
is to apply a so-called mask on it. A masked subsystem can be configured to change its
visual appearance and provides a user interface where parameters can be specified that
can be accessed by the blocks contained in the Subsystem block. In addition, parameters
of distinct blocks can be promoted to be directly configurable via the configuration dialog
associated with the masked subsystem. While unmasked subsystems can be navigated to
via the Simulink IDE, masked Subsystem blocks need the user to enter a specific key
combination to navigate to its content, which further establishes the masked subsystem
as a self-contained function.

User-defined library blocks Subsystems can also serve as the basis for creating user-
defined block libraries. Library blocks are stored in a so-called library repository managed
by MATLAB/Simulink. This repository contains all default blocks available within the
common blockset of MATLAB/Simulink. Once defined and populated with the desired
functionality, a user-defined library block can be reused throughout one or multiple models
by adding it via the library browser. Changes made to a library block are propagated

2MATLAB/Simulink Web Help - Bus-Capable Blocks: http://de.mathworks.com/help/simulink/
ug/bus-capable-blocks.html

15

http://de.mathworks.com/help/simulink/ug/bus-capable-blocks.html
http://de.mathworks.com/help/simulink/ug/bus-capable-blocks.html

2 Foundations

Store

Data Store
Memory

Store

Data Store
Read

Store

Data Store
Write

[GoTo]

From

[GoTo]

Goto

{GoTo}

Goto Tag
Visibility

1

A

1

B

Scope
B

A

B

A

Figure 2.3: Examples for indirect signal flow using Goto/From and DataStoreWrite/Read
blocks in MATLAB/Simulink

to all instances of the library block in a model. When combined with a mask, different
instances of a library block can receive context-dependent parametrization.

Indirect Signal-Flow

As mentioned in the sections before, signals in Simulink are propagated over the lines
attached to the ports of the blocks in a Simulink model. We already introduced one
exception to this rule that describes the indirect signal-flow between different hierarchy
layers of the Simulink models, which is not represented by a line in a model. There exist
further modeling concepts that introduce indirect signal-flow within Simulink models.
The Goto and From blocks that are displayed in the lower-half of Figure 2.3 can exchange
signals between each other without being connected by a line. Goto and From blocks
can even exchange signals over multiple hierarchy layers and from one Goto to numerous
From blocks. These indirect connections are established via so-called goto tags, defined by
a GotoTag block that defines a scope, which regulates where the goto tag associated with
the block can be used. The scope can be local, i.e. only visible in the same subsystem,
global, which means that it can be used in the complete model or scoped. The latter
means that the tag is visible on the current hierarchy level and all hierarchy levels below
it.

A similar concept that resembles the concept of global variables from traditional
software engineering in Simulink are DataStoreMemory blocks. These blocks can store
a passed signal value of arbitrary type for a given identifier and can be accessed and
modified by the DataStoreRead and DataStoreWrite block displayed in the upper-half of
Figure 2.3. Similar to the concept of scopes defined by GotoTag block, data stores, by
default, can be accessed in a scoped fashion, meaning that it can be read/written from/to
by DataStoreRead and DataStoreWrite blocks on the same hierarchy level or below. In
contrast to Goto and From blocks, the actual values read from a DataStoreMemory may
change throughout an execution cycle of a model as the read and write order depends on
the execution order of the model. This might lead to read-before-write, write-after-read
or write-after-write errors if the blocks are not correctly sequenced [9].

16

2.2 MATLAB/Simulink

In the next section, we will introduce the concept of sorted order and control flow for
Simulink models.

2.2.2 Model Simulation
One of the features of the Simulink toolbox is that the behavior of specified functionmodels
can be simulated in an integrated simulation environment. Simulation is composed of
three phases: model compilation, linking and the actual simulation loop3. The results of
the simulation loop are computed by a so-called solver, which computes the states of the
dynamic system expressed by a model at different time steps.

Model compilation phase Before a model can be simulated, it needs to be compiled
into an executable form. During this phase, the model compiler, among others, evaluates
the models block parameters to determine their actual values, calculates signal data
types, performs block optimization, removes virtual blocks and calculates the sorted
order of the model. The sorted order specifies the sequence of block invocation during a
time step of the simulation. To express dependencies between the execution orders of
blocks during simulation, MATLAB/Simulink uses so-called execution contexts.

Definition 2.1 (Execution Contexts in Simulink).
An execution context contains a sorted list of blocks from a Simulink model that have to
be sequentially executed during model simulation. It is associated with either the model
(root execution context) or a block of a Simulink model and is entered once either the
model or its associated block would be executed next. Once entered, all contained blocks
and their associated execution contexts have to be executed before execution can continue
in the parent execution context.

An execution context is called a conditional execution context if its execution depends
on a condition specified in a block able to influence the control flow of a model.

Figure 2.4 shows an example model and its accompanying execution contexts. The
sorted order of the blocks is annotated to each block and highlighted red. Most blocks of
the shown model reside in the root execution context, while the Switch block creates two
conditional execution contexts that are not executed until the condition of the Switch is
evaluated. Depending on the result, either CEC1 or CEC2 is executed. After that, the
signal computed by the respective execution context is propagated by the Switch block.

Typically, the sorted order cannot be influenced as it depends on the data dependencies
between the blocks of an execution context. Nonvirtual blocks can be assigned priorities to
indicate a relative order between blocks, which Simulink tries to honor during simulation
[9]. Virtual blocks are not assigned a sorted order, as they do not influence the simulation.

As already shown in the example in Figure 2.4, a subset of the Simulink blockset
actively influences which model parts are executed during simulation, by manipulating
the control flow of a model. The following blocks can influence the sorted order and
control flow of a model:

3MATLAB/Simulink Web Help - Simulation Phases in Dynamic Systems: http://mathworks.com/
help/simulink/ug/simulating-dynamic-systems.html

17

http://mathworks.com/help/simulink/ug/simulating-dynamic-systems.html
http://mathworks.com/help/simulink/ug/simulating-dynamic-systems.html

2 Foundations

Figure 2.4: Execution contexts in MATLAB/Simulink demonstrated at an example model

• Conditional Subsystem blocks

• Loop Subsystem blocks

• Switch and MultiPortSwitch blocks

Conditional Subsystem blocks are defined to inherit one or multiple special inports whose
input determines if the blocks contained in the conditional subsystem are executed. This
can be dependent on a rising or falling edge received on these special inports or driven
by an action signal that is emitted from a Switch-Case or If-then-else block. Conditional
subsystems are said to be atomic, meaning that they are assigned a new execution
context, which again contains all nonvirtual blocks of the conditional subsystem.

Loop subsystems are also considered to be atomic and trigger the execution of the
subsystem as long as a condition defined in the block evaluates to true or for a set amount
of times [116].

Switch and MultiPortSwitch blocks allow the propagation of one of their input signals
based on a condition that is specified with respect to the signal value of a control port
of the block. If the simulation environment is configured to allow conditional execution
behavior, the evaluation of the control port of a Switch block precedes the blocks actually
computing the signal propagated by the block in the sorted order. Based on the evaluation
result of the conditional property controlling the selection of the propagated signal, the
simulation environment can entirely skip the computation of the signal that is not
propagated by the Switch block as shown in Figure 2.4.

18

2.2 MATLAB/Simulink

Linking phase During the linking phase, MATLAB/Simulink allocates memory for the
signals, states and run-time parameters of the model and initializes them according to
the parameters given in the model.

Simulation loop During the simulation loop, the simulation environment successively
executes all blocks in the sorted order computed in the model compilation phase to com-
pute the model’s state and outputs for a given time horizon and resolution. Consecutive
executions of the model are called time steps and changes to states and input/output
values in time step tn are propagated to time step tn+1. In each time step, the simulation
environment performs the following actions:

• Compute the model’s output In this phase, all block outputs are calculated by
executing all blocks in the sorted order of the execution contexts.

• Compute the model’s state Based on the outputs calculated in the previous
steps, stateful blocks compute their new state.

• Check for discontinuities in the continuous states of blocks An optional
step only executed if a variable time step solver is used. During this step, a
technique called zero-crossing detection is used to detect discontinuities in the
variables (outputs/states) of the model and adaptively change the step-size to
increase the accuracy around the discontinuity, as variables change rapidly in the
vicinity of a discontinuity.

• Compute the time for the next time step In the last step, the time of the
next time step is calculated.

2.2.3 MATLAB/Stateflow
A toolbox that expands the functionality and the modeling notation of Simulink is MAT-
LAB/Stateflow [130]. MATLAB/Stateflow is an environment that allows the modeling
of discrete controllers using hierarchical state-machines in combination with flowchart
diagrams. The Stateflow modeling environment is completely integrated within MAT-
LAB/Simulink and can be used by placing a so-called Chart block in a Simulink model.
By navigating into the Chart block, statechart semantics can be used to model the
internal behavior of the Chart block as it can be seen in Figure 2.5 that contains the
statechart contained in the Simulink example model sldemo_fuelsys.

A stateflow diagram, also called statechart, consists of

• States An active state captures the current state of the statechart. Can be enhanced
with operations from MATLAB or C that are executed on certain state-action, e.g.
when the state is entered, active or exited. States can again contain other states.

• Transitions Connects two states and/or junctions with each other representing
the transition of the system from one state to another. Can be enhanced with a

19

2 Foundations

Figure 2.5: Stateflow chart contained in the example model sldemo_fuelsys

label that may specify a guard that has to be satisfied before the transition can be
taken, a condition action performed once the guard is satisfied and/or a transition
action that is executed once the final transition destination has been found to be
valid. Syntax of these actions again are either MATLAB or C.

• Junctions A junction may be used to represent multiple different transition paths
for a single transition. They may be placed as an endpoint of a transition and
can spawns one or more new transitions with different destinations. Each of these
transitions again may have guards and actions attached to them.

• Functions Can be used to add user-specified functions in the form of flow chart
algorithms, MATLAB functions, Simulink functions, truth tables or custom code.
Defined functions can be called from state- or transition actions.

• Variables Intermediate results of state and transition actions can be stored in
variables associated to the chart. They are also used to access the signals received
by a Chart block in Simulink, as a corresponding variable is created for each input
and output signal received/emitted via the ports of the Chart block.

Further information about the syntax and semantics of Stateflow can be found in [132].

20

2.2 MATLAB/Simulink

2.2.4 Formalization
To ease the creation of definitions regarding certain structures of Simulink models
throughout this thesis, we introduce a formalization of Simulink models in this section.

Definition 2.2 (MATLAB/Simulink Model).
A MATLAB/Simulink model M is defined as

M = (B, P = Pin ∪ Pout, L, I, fp : P → B, h : L→ I)

The set B denotes the set of blocks contained in the modelM. Each block is associated
with a set of in- and outports from P = Pin∪Pout, that are mapped to their corresponding
block, by the mapping function fp. Blocks can be connected by a line l ∈ L that carries
a signal from one specific outport of a block to one or multiple inports of one or multiple
blocks. Lines are labeled by the labeling function h that assigns each line an atomic signal
name from the set of signal names I. For the sake of simplicity we assume that each line
in L connects exactly one port from Pout with one port from Pin, which is represented by
the graph G = (P, L). Thus, branches in lines are resolved by creating a distinct line for
each destination port of the initial line.

To express signal relationships created by implicit signal flow (see Section 2.2.1, we
use the notation of virtual lines/ports first introduced by Merschen et al. in [97]. Virtual
lines and ports are added to blocks connected by indirect signal flow and are included in
the set of lines L and ports P .

A block of a MATLAB/Simulink model M is further defined as follows.

Definition 2.3 (Blocks in MATLAB/Simulink).
A block b from a MATLAB/Simulink model M is defined as b = (l, t, Pb, A, bP) with

• Block label l

• Block type t

• Set of ports Pb

• Set of attributes A

• Block parent bP , ⊥ if contained in the root of the model.

To allow the differentiation between different types of blocks, the block type t stores
the block type as a string. Moreover, each block contains a set of attributes A that
correspond to its block parameters. Each attribute is represented as a key-value pair. For
the sake of simplicity, we refrain from further defining individual attributes but directly
refer to them as needed.

During simulation, the sorted order computed by the simulation environment determines
the order of execution of nonvirtual blocks in a time step of a model.

21

2 Foundations

Table 2.1: Functions for the navigation and exploration of a formalized MATLAB/Simulink
model M = (B, P = Pin ∪ Pout, L, I, fp, h)

Relation Logical Definitionsignature

Block parent B → B parent(b = (l, t, Pb, A, bP)) =

bP , if bP ̸= ⊥
⊥, otherwise

Direct block
containment B → P(B) cssysdir(b) = {bc|bc ∈ B ∧ parent(bc) = b}

Recursive block
containment B → P(B) cssysrec(b) = ⋃

bc∈cssysdir(b)
{bc} ∪ cssysrec(bc)

Block ports B → P(P) ports(b = (l, t, Pb, A, bP)) = Pb

Block inports B → P(P) portsin(b) = ports(b) ∩ Pin

Block outports B → P(P) portsout(b) = ports(b) ∩ Pout

Block successor B ×B → B succ(b1, b2) =


true, if ∃ (p1, p2) ∈ L :

p1 ∈ portsout(b1) ∧
p2 ∈ portsin(b2)

false, otherwise

Definition 2.4 (Sorted Order of Nonvirtual Blocks in MATLAB/Simulink).
Let BNonvirtual be the set of nonvirtual blocks of a MATLAB/Simulink model M. The
sorted order between the blocks of BNonvirtual is captured by a linear order ≤SO. If a ≤SO b
holds with a, b ∈ BNonvirtual, then block a is executed before block b.

Each block contains a set of ports containing in- and outports that are used by the
block to receive and emit signals to its neighboring blocks.

Definition 2.5 (Ports in MATLAB/Simulink).
A port p from a MATLAB/Simulink model M is defined as p = (n, l, bp) with

• Port number n

• Port label l

• Parent block bp

The definitions provided in this section and the functions shown in Table 2.1 will be
used for the formal definition of properties and characteristics of MATLAB/Simulink
models throughout this thesis.

22

2.3 Software Product Lines

2.3 Software Product Lines
A characteristic problem OEMs from the automotive industry are facing is that they need
to develop multiple automobile models as fast as possible, while at the same time ensuring
high product quality. In addition, each car can be configured individually by the customer
and has to satisfy legal restrictions imposed by the market it is sold in, which results
in a multitude of functional variants of an automobile. As most customer configurable
functions are software-based, the variability within an automobile also implies variability
in software [46]. An established method to pool and manage multiple variants is the
use of so-called Software Product Lines (SPL) [28]. SPLs promote systematic reuse of
software artifacts, by creating the common and variable properties of all variants of
the software artifacts in an SPL. Individual variants, also called products, can then be
derived from this SPL.

Definition 2.6 (Software Artifact).
A software artifact A is an element created during a software development process and
may refer to architecture specification, requirements, test cases, source code or models.

Definition 2.7 (Variant [110]).
A variant, also called product, of a variable artifact represents an instance of this artifact,
which is distinguishable from all other instances of this artifact by at least one property.

A property may refer to software functionality, e.g. a driver assistance or navigation
system, but can also refer to physical properties of the product, e.g. sensors, engine type
or infotainment systems.

While SPLs provide benefits during the development and maintenance of software vari-
ants, additional effort has to be invested to create, maintain and manage the complexity
that is introduced by the SPL and its contained artifacts during Software Product Line
Development.

2.3.1 Software Product Line Development
Software product line development introduces two essential principles that distinguish
this process from single product development [16]:

• Analysis and modeling/documentation of the variability of the product line (variant
management)

• Separating development activities into domain and application engineering

The aspect of variant management addresses the necessity of continuous analysis and
documentation of the communal and variable properties within all artifacts of the product
line. This ensures the availability and consistency of the variability documentation across
all artifacts of the product line during all phases of the development process. The variant
management method used throughout this thesis will be introduced in Section 2.3.2.

The second aspect addresses how the artifacts of the product line are developed and
used to derive individual variants. These development activities are logically separated

23

2 Foundations

Figure 2.6: Activities of SPLE (based on [37])

into domain and application engineering [110, p. 20-21]. A core concept of software
product line development is the use of a so-called platform, which represents a set of
reusable software artifacts. The development of the platform and the derived products
are typically logically separated.

• Domain engineering During this process, the platform artifacts of the product
line are developed including all commonalities and variability of the product line.

• Application engineering In this process, a product is derived from the defined
platform artifacts by instantiating a certain variant and ensuring its correctness
according to the needs of the derived product.

Variant instantiation is performed by selecting a subset of the platform artifacts and
configuring them to fit the need of a specific software product variant [37].

The activities of domain and application engineering can further be divided by sepa-
rating both processes by activities concerning the problem and the solution space as it
can be seen in Figure 2.6 [34, 37].

Problem Space In the problem space, the development process starts with a speci-
fication of the desired common and variable properties of the platform artifacts. This
specification also includes documentation of inter-dependencies or constraints between the
variable properties of the product line on the domain engineering level. A product variant
on the application engineering level is then described by a product configuration including
a combination of variable properties that were defined in the variability documentation
of the problem space.

24

2.3 Software Product Lines

Solution Space The solution space describes the instantiation of the common and
variable properties of the problem space as actual development artifacts of the platform.
These artifacts are developed during domain engineering where they have to be linked
to the properties from the problem space by the use of the variability documentation.
Application engineering finally includes the derivation of a product variant, based on a
given product configuration from the problem space, which is used in combination with
the links of the variability documentation.

One approach to model variability in the problem and solution space are variation
points that can be defined in the variability documentation of the artifacts of a product
line.

Definition 2.8 (Variation Point[110]).
A variation point is a location within the variability documentation, which documents the
possibility to select one or multiple variable properties of the product line for different
product configurations. These variation points are linked and instantiated in the artifacts
of the platform of the product line, to allow configuration-based product derivation during
application engineering.

Modeling variation points and tracing them to their respective instantiations in the
solution space is a fundamental part of variant management [10]. Many different methods
of variability modeling and management have been established in the literature: feature
models proposed by Kang et al. [76], orthogonal variability model by Pohl et al. [110] or
delta modeling proposed by Schaefer et al. [135]. In this thesis, we will use the feature
modeling approach by Kang et al. [76] to document variability in the problem space that
will be introduced in the next section.

2.3.2 Modeling Variability
One approach to model variability in the problem space is the Feature-Oriented Domain
Analysis (FODA) approach introduced by Kang et al. [76, p. 36], which proposes the use
of so-called feature models. Features contained in a feature model represent the properties
that products of a software product line may contain.

Kang et al. divide the set of features contained in a feature model in three categories:

• Mandatory features These features represent the commonality of the artifacts of
the product line. They are present in every product derived from the product line.

• Optional features Optional features may be, but do not necessarily need to be
part of a product.

• Alternative features These features typically appear in groups of features of
which exactly one has to be selected as part of a product.

Further structures exists that enable the modeling of feature interdependencies. Some
features might require the presence of other features or may only be present if certain
other features are excluded. These require and exclude relationships may also be modeled

25

2 Foundations

Figure 2.7: Example feature model (adapted from [161])

in a feature model. For example, a driver assistance system might require the presence of
certain sensor packages within a car, while a certain series might exclude the configuration
of a low class sensor package, because its base-line features already require the high-class
sensor package. Thus, a downgrade is not possible.

Feature models have a tree-like structure with the root feature representing the product
itself that is decomposed into the subsystem it contains. Figure 2.7 shows an example of
a simple feature model for a radio that was adopted from [161]. This example includes
mandatory as well as optional features. Furthermore, the features that are subordinated
to the Playback feature are part of an alternative feature group of which exactly one has
to be selected.

Since its initial introduction, several extensions have been proposed to the initial
notation by Kang et al. Notable example are the introduction of Or features, which
represent a group of features of which at least one has to be selected [34, p. 91-94] (see
Interaction feature in Figure 2.7) or the introduction of cardinalities, which describe how
many child features can be selected from a given parent feature [33].

2.4 Industrial Application and Tools
In addition to the management overhead introduced by software product line develop-
ment, software for electronic control units (ECU) is developed using company-specific
development processes.

In the following, we will introduce an exemplary software development process from the
automotive industry and describe additional tools that are used during this development
process.

26

2.4 Industrial Application and Tools

Figure 2.8: Model-based design process at Daimler AG (adapted from [100])

2.4.1 Development Process
The development process of model-based automotive software is typically structured as a
V-model. Instead of performing the process steps of the development process in a linear
step-by-step fashion, the V-model introduces inter-relationships between process steps,
which promote the subsequent validation of early-stage development artifact. Figure 2.8
shows an exemplary model-based software development process used at the Daimler AG
[100]. The process starts with the system specification, which includes variant management
in the form of feature modeling and the specification of requirements that correspond
to the modeled features that the system is composed of. The resulting requirements
specification is used to create a MATLAB/Simulink model of the system including
all common and variable features of the variability documentation. The requirements
specification also serves as a reference document for the definition of the test plans for
all test phases of the development process, which can be created before the artifacts
to be tested are developed. Thus, a test plan in the form of model-in-the-loop tests is
developed in parallel to the design of the functionmodel in MATLAB/Simulink and later
used to systematically test and refine the created behavior model.

The artifacts created up to this point are then handed over to a supplier for implemen-
tation and ECU integration. The supplier implements the model, generates the code for
the implemented models and performs software module tests in the form of software-in-
the-loop tests on the target ECU. These tests are again derived from previously created
model-in-the-loop tests and subsequently refined/extended.

After these steps the ECU and the integrated software is again handed back to the
OEM, where component (component hardware-in-the-loop) and system (system hardware-
in-the-loop) tests are defined and carried out. Finally, the process concludes with the
integration into the physical vehicle and respective integration tests.

Various tools are used to create and manage the software artifacts during the different
stages of the development process. Besides MATLAB/Simulink, notable tools in the
context of this thesis are IBM Rational DOORS and pure::systems pure::variants. IBM
Rational DOORS can be used to create and manage requirement or test case specifications,
while also managing the traceability links between the elements of these specifications.

27

2 Foundations

Figure 2.9: Example of a formal module in IBM Rational DOORS

The variant management tool pure::variants is used to create and manage the variability
documentation in both problem and solution space. Both tools will be introduced in the
next section. Further information about the described development process at Daimler
AG and the tools that are used during this process can be found in [46, 100].

2.4.2 Tools
Besides MATLAB/Simulink, two other tools were mentioned in the previous section that
are commonly used during automotive software development processes: IBM Rational
DOORS and pure::systems pure::variants. These tools will be described in the following
sections.

IBM Rational DOORS

IBM Rational DOORS (Dynamic Object Oriented Requirements System) is a require-
ments management tool developed by IBM. It is a client-server application and saves
application data in a proprietary database. Users login to the server via the client appli-
cation and can collaborate on the data available in the database. Application data mainly
consists of so-called formal modules, which contain objects associated with user-defined
and -selected attributes. Each object of a formal module is assigned a unique id – to enable
requirements traceability and to track the object during its lifecycle – and can contain
child objects. Within the client application, a formal module is typically represented

28

2.4 Industrial Application and Tools

as a table with rows representing the objects of the module and columns representing
the attributes of the object as it can be seen in Figure 2.9. The object hierarchy of the
module is flattened in the tabular view but still available in the navigation pane on the
left-hand side. Attributes of objects, i.e. cells of the table, can contain data of varying
data types. Besides text, integer, floating-point numbers and images, DOORS allows the
storage of OLE (Object Linking and Embedding) objects, e.g. excel diagrams or word
documents, RichText and user-defined enumerations.

IBM Rational DOORS further supports the creation of traceability links between
objects of the same and/or different formal modules. Links can be analyzed, visualized
in a graphical tree view and used for navigation between linked objects.

Formal modules can be organized within projects and folders and restricted for single
or groups of users via a role management system that is available for the administrators
of the server.

The functionality of the client-application can be extended by the use of the DOORS
Extension Language (DXL). The DXL allows the creation of additional elements in the
graphical user interface and the specification of user-specified analyses on the data stored
in the database. DXL is an imperative programming language resembling C or C++ and
includes typical control structures and primitive datatypes, e.g. bool, char, int, real, but
also complex datatypes such as strings, structs and types for tool internal structures
as the aforementioned modules, objects, folders and projects. More information on the
syntax and available API in DXL can be found in the DXL reference manual [122].

As certain base functionality, e.g. import/export functions and impact analyses, are
already implemented in DXL, the integration of DXL in DOORS resembles the integration
of the MATLAB programming language in MATLAB.

pure::systems pure::variants

The tool pure::variants from pure::system is a variant management tool that supports
developers during the lifecycle of a software product line. It supports the creation of
variability models in the problem space using the notation of feature models as introduced
in Section 2.3.2. In addition, the tool allows to trace features from their definition in
the problem space to their realization and corresponding variation points in the solution
space, by the use of component family models.

Family models were first proposed by Beuche et al. in [13] to capture the formal
relationship between the variability documentation in the problem space (feature model)
and the solution space. A family model consists of components that describe the internal
structure of an artifact of a product line and their relationships to the features of the
problem space. Components contain functionality that realize one or more features
from the product line and may be decomposed into further components and elements
specifically targeting elements and logical structures from the solution space [13]. Feature
restrictions can be specified for all elements of the component model, which represent the
traceability links connecting the elements from the problem with the solution space. It is
also possible to generate a family model based on feature annotations in the artifacts
from the solution space and synchronize these annotations with a created family model

29

2 Foundations

by the use of available tool adapters. For example a family model for a formal module in
IBM Rational DOORS might contain feature annotations that can be synchronized to
the corresponding family model in pure::variants.

pure::variants further allows the specification of specific product variants on the basis
of feature models by the use of so-called variant description models. A variant description
model describes the set of features that form a specific product in a product line. Violated
feature restrictions imposed by requires and excludes relationships among features are
highlighted by the tool to prevent the derivation of incorrect variants. The tools further
supports the configuration of variation points in the artifacts of the solution space, based
on a given variant description model. For this operation, various tool/artifact adapters
are available that realize the actual application engineering within the artifacts of the
solution space. As a result of the derivation process, copies of the platform artifacts are
generated that only contain the elements that are associated with the features of the
variant description model.

30

3 Incremental Integration of
Model-Based Software Artifacts

During the phases of a model-based software development process, different tools are
used to create the software artifacts that capture the various characteristics of software,
e.g. requirements, architecture, test specifications or behavior models. These tools are
usually isolated from each other, only focus on particular phases of the development
process and target a specific engineering domain [19]. While most tools offer interfaces
that can be used to access or manipulate tool-specific artifact data, these interfaces
are not standardized between tool vendors and inter-tool information exchange via
these interfaces is realized on a case-by-case basis. In addition, each tool uses unrelated
and often proprietary model representations that are isolated from each other, which
further complicates traceability and documentation across tool borders. Consequently,
traceability information and documentations are scattered across all artifacts of the
development process. This is further aggravated if the evolution of model data also has
to be taken into account, as not all tools support the storage of revision information in
their artifacts.

Another problem imposed by proprietary model representations is that model analyses
used during verification and validation phases are limited to the analyses supported by
the tools themselves. While some tools can be extended by the use of included scripting
languages or even by a plugin architecture, analyses need to be customized for each tool
environment. Depending on this environment, certain analyses might not be applicable
at all, as the resources or performance of the programming language provided for user-
defined analyses are not sufficient. Additionally, time and effort has to be invested to learn
and apply the concepts needed to extend a proprietary tool/framework. Visualization of
analysis results is also limited to the API available within the respective tool environment.

To be able to perform tool-independent consistency and static model quality analyses
across tool borders, a model repository is needed which stores artifact information in a
uniform way and preserves change information across artifact revisions. This enables the
uniform creation of model analyses targeting artifacts from different tools, which can
then be implemented against the interface of the model repository.

3.1 Overview and Outline
In this chapter, we first discuss concepts for an incremental integration process for
model-based software artifacts and then show how they have been realized in the artshop
framework. During artifact integration, artifacts from different sources are transformed

31

3 Incremental Integration of Model-Based Software Artifacts

into a tool-independent representation based on a common metamodel and are integrated
into a joined representation, usually stored in a model repository [95]. Traceability
information and documentation can directly be annotated to the integrated artifacts
and their elements but should be logically separated from actual model data to prevent
the entanglement of model and meta-data in the joined representation. As artifacts are
constantly evolving outside the model repository, synchronization mechanisms are needed
to incrementally integrate changes of the source artifacts into the artifacts of the model
repository. By applying changes incrementally to the current revision of the integrated
representations, modeled traceability links and documentation between/on integrated
artifacts and their elements are preserved. This also enables the tracking of changes to an
artifact on a structural level, which is typically not possible in file-based version control
systems that only track changes in the binary representation of a file.

Thus, to realize incremental integration of model-based software artifacts the following
concepts need to be addressed:

• Metamodel This metamodel is shared across all integrated artifacts and provides
common concepts present in most source artifacts. It also shall provide strictly sep-
arated concepts for model data and meta-information to prevent the entanglement
of data from different information sources.

• Tool adapter Provide an interface to a specific tool by providing a model, derived
from the common metamodel, that represents an artifact from the tool and an
import process that can instantiate this model based on a source artifact from that
tool.

• Model repository The repository is used to manage artifacts imported by the
tool adapters, i.e. storing and providing access to artifacts, as well as managing the
history of stored artifacts.

• Synchronization A method to synchronize the artifacts stored in the repository
with its source artifacts.

These components have been realized as part of the artshop framework, a client-server
application that consists of a client Eclipse E4 RCP application while the server is based
on the Connected Data Objects (CDO) [119] framework as the repository backend. It has
been developed to support the described incremental artifact integration process and as
a research platform for the development of model analysis techniques for the supported
artifacts.

3.1.1 The artshop Framework
Figure 3.1 shows an abstract view of the architecture of artshop. The framework is
partitioned into 4 components responsible for distinct tasks:

• artshop.core The core component supplies the metamodel that is needed for the
derivation of specific artifact representation models. Furthermore, it manages results

32

3.1 Overview and Outline

artshop Repository

Model Evolution

Data Access

artshop.extensions

Consistency Checking

Static Value Analysis

Clone Detection Clone Refactoring

Model Smell Analysis

Model Slicing

Reporting
MATLAB
Simulink/StateflowTM

pure::variantsTM

IBM Rational
DOORSTM

Tool adapter

artconnect

Import

Export

Viewer

Manipulation

artshop.core

Tag Management

Meta-Data Management

Metamodel

Model InspectionUser-Defined Analyses

Figure 3.1: Architecture of the artshop framework (adapted from [57])

detected by the analyses of the framework as well user-created meta-information,
e.g. comments or traceability links.

• artconnect The artconnect component encapsulates tool adapters for three model-
ing tools and provide interfaces for the import and export of model data. These tool
adapters also provide the data structures based on a specialization of the metamodel
supplied by the artshop.core component and may register artifact specific views that
are used for visualizations. Tool adapters are added via plugins and automatically
register their data structures and operations in the application.

• Repository This component is responsible for the storage and synchronization
of model data extracted via the artconnect component, as well as all further data
introduced by analyses of the framework. In addition, it manages the history of
elements during their evolution and can execute queries against data stored in the
repository.

• artshop.extensions The artshop.extensions component is freely extensible and can
use all operations and services offered by the other components to realize analyses,
visualize their results, derive and store traceability links or provide services such
as report generation to other components of the framework. Again, extensions
can be provided via plugins that automatically register provided operations in the
graphical user interface of the framework.

The rest of this chapter is structured as follows. First related work regarding artifact
integration is discussed in Section 3.1.2. After that, the realization of the aforementioned
concepts as part of the artshop framework are introduced, including the technologies used
during this process. The metamodel of the artshop framework is presented in Section 3.2
and utilized throughout Section 3.3, where concrete instantiations of the metamodel are
discussed in the context of the artshop tool adapters. The technologies and techniques
used to realize the model repository and its accompanying synchronization mechanism are
described in Section 3.4. In Section 3.5, an evaluation of the import/export procedures
of the tool adapters and the performance of the synchronization mechanism is presented.
Finally, the chapter is concluded in Section 3.6.

33

3 Incremental Integration of Model-Based Software Artifacts

3.1.2 Related Work
The concept for artifact integration used in this chapter is based on the concept presented
in the PhD thesis of Merschen [95], which proposes the use of tool specific adapters
to import model data and store them in a database. The PhD thesis of Merschen
focuses on non-incremental artifact integration and therefore does not address artifact
synchronization mechanisms and artifact revisions in the model repository. The tool
adapters described by Merschen can only import a fraction of the data actually available
within targeted tools, which limits the scope of analyses. As we will show during the
evaluation in Section 3.5, the tool adapters presented by Merschen miss up to 99.96%
of available tool data in the case of MATLAB/Simulink models. Merschen proposes
the use of so-called virtual lines/ports, which represent connections between elements
of a MATLAB/Simulink model connected by indirect signal flow (see Section 2.2.1).
Virtual lines are calculated during model import and added to the model to ease the
application of model analysis techniques. An extended version of this technique has been
developed in the context of this thesis. Additionally, the annotation concept presented
by Merschen, which was also discussed in [96], proposes the entanglement of model data
with meta-information, which is avoided by a strict separation of model data and meta
information in the artshop metamodel.

Broy et al. [19] describe an ideal approach to solve the problems introduced by the
isolated tool landscape in the domain of model-based software engineering by introducing
a pervasive modeling theorem across all phases of the development process.

Artifact integration was also targeted by the MESA project [51] as part of an effort
to support tool independent conformity analyses on MATLAB/Simulink models and
formal modules from IBM Rational DOORS. The approach of MESA is similar to
the one presented in this thesis, as a metamodel is defined for the targeted modeling
languages based on the MOF Standard [126]. In case of MATLAB/Simulink, the model
is instantiated by a tool adapter that directly communicates with MATLAB via a COM-
Interface to extract model data. Extracted models are stored in a model repository
generated by a proprietary tool based on the created metamodel. Analyses can then be
performed on the models stored in the repository, which are conformity and consistency
checks based on OCL constraints. Unlike the solution presented in this thesis, meta
information are not considered as part of the model and inter-artifact relationships are
derived based on shared identifiers.

The MATE project [91, 148] also aims to implement tool independent analyses and
model transformations for MATLAB/Simulink models. As in the MESA project, a
tool-independent meta-model based on MOF 2.0 [126] is defined using MOFLON, that
can either be instantiated by directly communicating with MATLAB/Simulink via a
tool adapter or by a model parser that instantiates a model based on the binary model
files created by MATLAB/Simulink. MOFLON is a meta-CASE-Tool [4] that allows
the generation of a model repository to store created model instances. All analyses are
performed on the instances of the metamodel, which can either be obtained from the
repository or generated in an online-fashion via the mentioned tool adapter.

34

3.1 Overview and Outline

Besides the MESA and MATE projects, several other approaches have been presented
to ease the creation of analyses of MATLAB/Simulink models as the API provided by
Simulink to access its model data is complicated and not suited to implement complex
analyses. The Simulink Library for Java developed by CQSE GmbH supports the import
of Simulink models directly from supplied model files. It includes a metamodel for the
representation of MATLAB/Simulink and Stateflow models and can instantiate these
models by directly parsing supplied MATLAB/Simulink model files (.mdl/.slx). As the
importer is not backed by information from the Simulink runtime, no compile-time
attributes, e.g. signal dimensions or data types, are available in imported models. In
addition, model libraries cannot be dynamically fetched as it is the case for models
imported via the MATLAB API.

In his PhD thesis, Reicherdt presents the MeMo tool suite capable of importing
MATLAB/Simulink models and applying formal verification on the imported repre-
sentation [115]. Reicherdt uses the Simulink Library for Java for the creation of an
initial representation of the Simulink model that is further enriched with compile-time
information extracted using the external API of MATLAB/Simulink, while at the same
time pre-processing the model to include the concept of virtual lines as introduced by
Merschen [95]. Imported models are persisted in a PostgreSQL database via the Hibernate
framework that was also used in the PhD thesis of Merschen [95].

Giese et al. [62] present a prototypical implementation for guideline checking and model
transformation for MATLAB/Simulink models using the Fujaba framework. The authors
first specify a metamodel based on the Fujaba metamodel [23] for MATLAB/Simulink
models and extend it to wrap the actual model representation of a MATLAB/Simulink
model using the MATLAB/Simulink API. The metamodel presented in this paper only
includes elements to represent the functionmodel itself, a small subset of blocks and
the lines between them. The resulting metamodel and its accompanying Fujaba tool
suite is directly integrated in MATLAB/Simulink and can be used to perform various
analyses. As the instantiated model only wraps the actual Simulink model, no standalone
representation is available with this approach and the wrapped model cannot be changed.

Another tool adapter called MAnTrAS (MATLAB Analysis and Transformation API
for Simulink) for MATLAB/Simulink models is presented by Kolassa et al. in [81]. Again
a metamodel of MATLAB/Simulink models is created and instantiated by using the API
provided by MATLAB/Simulink, which is similar to the approach used in this thesis. The
authors also present techniques that transform a Simulink model during the application
of a visitor pattern in MATLAB/Simulink. These transformations target the analyzability
of the model by converting 1:n connections between blocks into 1:1 connections or allow
to flatten the hierarchy of the model. Similar transformations were also proposed by
Merschen et al. in [97] and are used by the tool adapter presented in this thesis.

Massif (MATLAB Simulink Integration Framework for Eclipse) [70] is a tool adapter
for MATLAB/Simulink that also imports model data via the MATLAB API and is
implemented as a plugin for the Eclipse IDE. Massif employs a metamodel based on the
Eclipse Modeling Framework (EMF) that defines corresponding entities for each element
of the Simulink data model. Massif supports the resolution of library blocks and model
references contained within a Simulink model, but can also perform a shallow import,

35

3 Incremental Integration of Model-Based Software Artifacts

where model and library references are not resolved. As the tool adapter presented in
this thesis, the MASSIF framework also supports the export of once imported Simulink
models back into its source format.

In [27] Choi et al. present a tool adapter for IBM Rational DOORS. As data stored
within the DOORS server repository cannot be directly accessed, the authors propose
the use of a server application started from a DXL-script in a DOORS Client started in
Batch-Mode (without a user interface) to communicate with external applications. This
interface can be used to extract data from the model, which is supplied by the adapter
as an instance of a metamodel defined to represent DOORS data. The synchronization of
local changes to retrieved model data with the DOORS server repository is also possible.
Using a server started by a DXL-Script to fetch/change data from the repository is also
described in the DOORS DXL reference manual [122]. Besides this approach, we propose
another adapter concept in this thesis that is based on the OLE Automation protocol
developed by Microsoft [101].

As seamless tool integration and interoperability is an important aspect in various
domains with a diverse tool landscape, several frameworks have been proposed to provide
interfaces for data exchange and services across tool-borders. The ModelBus framework
presented by Hein et al. [68] was created as part of the EU project Modelware and uses a
SOA (Service Oriented Architecture) based approach. In the ModelBus framework, data
and functionalities are published via a central repository using URLs and can be accessed
in a service-like fashion. Communication between tools is managed via a ModelBus
specific interface that needs to be implemented by the tool vendors to conform to the
ModelBus approach.

Gleirscher et al. [63] present the ToolNet integration framework, which covers similar
aspects concerning artifact integration in the context of model-based software development
in the avionic domain. The authors propose the separation of model data from meta-data
by introducing four layers for the data addressed by the framework. The tool layer includes
not yet integrated data, while the model layer includes explicit model data extracted
from a tool via a tool adapter. This data can further be enhanced by meta-information
such as associations or annotations in the integration layer and focuses on concerns across
tool boundaries. On the last layer, the logical layer, all information regarding integrated
artifacts is made available. By explicitly separating meta data from model data via the
model and integration layer, a similar concept is applied with regard to entanglement of
model and meta-data as in this thesis. The approach is evaluated by integrating block
diagrams from SCADE and requirements documentation from IBM Rational DOORS.

The Crystal project [92] focuses on the creation of a tool interoperability specification
and the creation of a reference technology platform. It builds on the result of similar
predecessor projects, e.g. Cesar and MBAT. The project aims to create the interoperability
specification by incorporating already existing specifications and data exchange formats
as the OSLC (Open Services for Lifecycle Collaboration) [11], the ReqIf (Requirements
Interchange Format) and the FMI (Functional Mockup Interface). The paper presented
by the authors focuses on aspects of tool integration with the OSLC, mainly addressing
traceability aspects across tool borders. Unlike the approach presented in this thesis,
data is not centrally stored in a repository but links across tool borders are created using

36

3.2 Metamodel

the concept of linked data by querying available data via the OSLC interface of a tool
and creating a link to a particular set of data using its URI (Unique Resource Identifier).

3.1.3 Bibliographic Notes
In this chapter, an approach for the incremental integration of model-based software
development artifacts is presented. The concept and architecture of the described approach
were partially published in [57, 58].

Parts of the tool adapter for MATLAB/Simulink that are described in Section 3.3.1,
were developed during three bachelor’s theses. The export function for MATLAB/Simulink
models has been developed by Julius Nehring-Wirxel [102] and a part of the integrated
visualization of MATLAB/Simulink models has been developed by René Rousseau [133].
The tool adapter for IBM Rational DOORS, described in Section 3.3.2, has been developed
during the bachelor’s thesis of Mirko Kugelmeier [87].

3.2 Metamodel
One problem that arises during the integration of artifacts from different sources is
that each software artifact may have different characteristics with respect to its syntax
and its internal structure. To describe the fundamental aspects of integration artifacts,
a metamodel is needed that defines basic representation of artifacts, their contained
artifact elements and the dependencies and relationships between these elements [19].
This further eases the creation of tool adapters and, subsequently, the representation of
the artifacts targeted by the tool adapters, as common elements and concepts are defined
in the metamodel.

We decided to create the artshop metamodel based on the Eclipse Modeling Framework
[145], as it provides a formal representation of all modeled entities and their attributes.
It allows multiple inheritance as part of its class structures, which is resolved by the
integrated code generator. The metamodel defines abstract representations of artifacts
and their elements, highly customizable attributes, that can be attached to artifacts
as well as their elements and includes constructs representing annotations/associations
on/between artifacts and their elements.

The following sections will describe the general structure of the metamodel and the
properties provided to the concrete model representations implemented by the tool
adapters of the framework.

3.2.1 Entity Structure
One concern of the metamodel is to define basic representations for artifacts and their
elements. Figure 3.2 shows an excerpt of the metamodel in the form of an UML class
diagram, focusing on the classes corresponding to these basic representations. The root
class of this class diagram is the TraceableElement class, which is the base class of all
entities in the artshop metamodel. Entities in the metamodel are separated into model

37

3 Incremental Integration of Model-Based Software Artifacts

Figure 3.2: Base elements of the artshop metamodel

elements, representing actual development artifacts, and meta-information that represent
dependencies or relationships between model elements.

A core property of model elements is their unique id introduced by the class Unique-
ModelElement. This class is used as the base representation of all model elements. Using
the id stored by this class, a model element can be uniquely identified in the context of
its defining artifact. This class is further refined into the classes representing artifacts
and their contained elements, namely AbstractArtifact and AbstractArtifactElement. The
Artifact class contains bidirectional references to all artifact elements it subsumes and
stores a reference to each top-level artifact element. The rest of the internal structure
of the artifact has to be defined by refining the AbstractArtifactElement class. These
two classes from the metamodel should further be refined to create a concrete model
representation based on the metamodel. Examples for the creation of concrete model
representations will be given in Section 3.3.

Meta-information is represented by MetaInformation instances, which store information
about their creation date, author, whether they have been manually or automatically
created and a topic by which they can be grouped. Further refinements of the MetaInfor-
mation class will be introduced in Section 3.2.3.

3.2.2 Artifact Attributes
A recurring property among model-based software artifacts are dynamic attributes of
their contained artifact elements. These attributes typically can be freely defined by the
user and therefore cannot be modeled as part of a static concrete model representation.
To deal with user-defined attributes, the artshop metamodel introduces the concept of
AttributableElements as shown in Figure 3.3.

38

3.2 Metamodel

Figure 3.3: Dynamic attributes in the artshop metamodel

The AttributableElement class manages a set of key-value pairs mapping attribute
names, also called keys, (typed as Strings) to a corresponding AbstractAttribute.

While the AbstractAttribute class only contains the name of an attribute, it is refined
by further attributes, which can store values of specific data types. These data types
range from single values of primitive data types such as int, double and boolean to
more complex data types like String, Object or references to objects specified by the
artshop metamodel.

In addition to the representation of distinct values of specific data types, the metamodel
also includes attribute representations that can store multiple values of the same type.
The names of these attributes are prefixed with the Multi character string and can be
seen on the left hand side of Figure 3.3.

ListAttributes allow the hierarchic aggregation of multiple attributes and the representa-
tion of complex data structures by nesting available attribute instances in a ListAttribute
instance. Further hierarchical attribute layers can be expressed by multiple instances of
nested ListAttributes.

By default, both the AbstractArtifact and AbstractArtifactElement class subclass
AttributableElement, which enables the use of dynamic attributes across all Artifacts
and ArtifactElements.

39

3 Incremental Integration of Model-Based Software Artifacts

Figure 3.4: Representation of meta-information and associations in the artshop metamodel

3.2.3 Annotations and Associations
Besides the base representations of model elements and their attributes, the artshop
metamodel further provides basic concepts for relationships, dependencies and annotations
between and to arbitrary elements of the metamodel, called MetaInformation. The data
structures of model elements and meta-information are strictly separated by the artshop
metamodel to prevent the entanglement of model data with meta information. To realize
this separation, we use the asset referencing approach introduced by Schulze et al. in
the context of variability management [142]. The idea behind this approach is to use a
referencing model that stores the relationships between the elements of one or multiple
assets, corresponding to artifacts and their contained elements.

The MetaInformation class is further refined by the Annotation and AssociationSet
classes. An annotation represented by the Annotation class can be attached to an
arbitrary element. As it also inherits the properties of the AttributableElement class,
arbitrary attributes can be attached to an Annotation. This may range from simple
textual comments to a set of key performance indicators obtained from static analysis.

While the Annotation class enriches an element with additional information, the
AssociationSet class represents a relationship between multiple elements, where each
element has the same role. This representation can be used to express an undirected
relationship between a set of elements. It is further refined by the Association class that

40

3.3 Tool Adapter

adds a source element to the association set. This class can be used to represent directed
relationship between one element and a set of elements.

All previously introduced representations of meta-information have in common that
their respective destination and source elements have to exist, to be connected by a
meta-information. To enable the declaration of an association with one unspecified end,
the UnresolvedAssociation class is included as a refinement for an association. This class
stores essential information that is needed to import the artifact a it points to as well as
information needed to identify the actual targets of the unresolved association end within
a. The method importUnresolvedArtifact needs to be implemented while subclassing
the UnresolvedAssociation class using the import operations of its accompanying tool
adapter.

3.3 Tool Adapter
To integrate artifact data from a tool in the repository, artifact data has to be processed
and converted into a concrete representation based on the artshop metamodel. Depending
on the tool the artifact data is created in, artifact data may not be directly accessible
from the file system or may even be stored on a server only accessible via the respective
client software. To encapsulate tool specific artifact integration processes, the artshop
framework uses so-called tool adapters. Tool adapters provide a model based on the
artshop metamodel describing a concrete representation of the artifacts of the corre-
sponding tool as well as import procedures to access and convert tool-specific artifacts
into this model format. Optionally, tool adapters may include the following components:

• Export procedures An export procedure again converts the representation based
on the artshop metamodel into its source format

• Artifact-specific views To visualize data imported via the tool adapters, artifact
specific views can be provided by an adapter for proper visualization in artshop

In the following, we will describe the tool adapters for MATLAB/Simulink, IBM
Rational DOORS and pure::variants.

3.3.1 MATLAB Simulink/Stateflow
One of the most extensive tool adapters in the artshop framework is the tool adapter
for MATLAB/Simulink. As discussed in Section 3.1.2, there exist three approaches in
the literature to realize a tool adapter for the import and export of MATLAB/Simulink
models.

• Import/Export by parsing/writing model files [118]

• Import/Export by directly interfacing MATLAB/Simulink via the MATLAB pro-
gramming language [51, 62, 70, 81, 91, 95]

41

3 Incremental Integration of Model-Based Software Artifacts

artconnect.simulink

artshop

Simulink Interface MATLAB Script
Generator

JMI Adapter
(MatlabControl)

MATLAB/Simulink

Java MATLAB Interface
(JMI)

Figure 3.5: Communication between artshop and MATLAB/Simulink

• Hybrid approach of both [115]

While the first approach would be very performant as it only requires parsing the XML
structure of the model files, the internal structure of model files from MATLAB/Simulink
(*.mdl,*.slx) is neither documented nor stable and may change without notice between
releases. The MATLAB API is well documented and can be used to access and manipulate
models, but has the disadvantage of requiring a running instance of MATLAB/Simulink.
In addition, accessing compile-time parameters, e.g. signal data types, signal dimensions
or execution order, of MATLAB/Simulink models is only possible via the MATLAB API.
Furthermore, the MATLAB API also eases the resolution of block libraries and model
references that can be placed in a MATLAB/Simulink model. A hybrid approach, as
implemented by Reicherdt [115], might have advantages regarding the overall performance
but still relies on the MATLAB API for the extraction of compile-time information. At
the same time, a hybrid approach is still susceptible to changes of the MATLAB/Simulink
file format.

The tool adapter presented in this thesis uses the second approach for model import,
manipulation and export, as we believe that the stability and well-defined functionality
of the MATLAB API outweighs potential performance advantages of the first and third
approach. The communication between artshop and MATLAB/Simulink is visualized
in Figure 3.5. The Simulink interface of the tool adapter exposes basic model import,
export or model manipulation functionality as part of its Java implementation. These
functionalities are realized by invoking scripts written in the MATLAB programming
language and access or manipulate model data in MATLAB/Simulink. Scripts are supplied
by the MATLAB Script Generation component and invoked in MATLAB/Simulink by
using the Java MATLAB Interface, which allows the execution of MATLAB scripts in a
running instance of MATLAB from an application running in or outside of MATLAB itself.
To connect the tool adapter to the Java MATLAB Interface we use the MatlabControl

42

3.3 Tool Adapter

Figure 3.6: Concrete representation of a functionmodel from MATLAB/Simulink based
on the artshop metamodel

library1. Results of executed scripts are passed back to the tool adapter and can be
converted into a concrete model representation based on the artshop metamodel.

Model Representation

A concrete representation of a MATLAB/Simulink model has to include all relevant
elements and parameters described in Section 2.2. As each block type has its own set of
individual block parameters, it is not feasible to create a concrete model element class for
every Simulink block type. Nevertheless, different block types and their corresponding
parameters need to be represented accordingly to enable syntactic and semantic analyses
of MATLAB/Simulink models.

Figure 3.6 shows the concrete model representation of functionmodels imported from
MATLAB/Simulink as a class diagram. Associations between model elements have been
omitted to improve the readability of the diagram. Classes with a gray background are
defined as part of the metamodel introduced in the previous section. The FunctionModel
class inherits from the AbstractArtifact and represents a functionmodel as defined in
MATLAB/Simulink. The top-level elements of a MATLAB/Simulink model are stored
within the references defined in the FunctionModel and the AbstractArtifact class
respectively. Additionally, the representation defines classes for each type of element
present in a MATLAB/Simulink model, e.g. blocks, block ports, lines and annotations.
The model distinguishes between four different types of blocks. Each of these classes are

1http://code.google.com/p/matlabcontrol/

43

3 Incremental Integration of Model-Based Software Artifacts

derived from the AbstractBlock class, which contains base properties of each block, e.g.
its block type, simulink path, a reference to its containing subsystem or null if the block
resides on the top-level of the corresponding model and references to its owned in- and
outports. Further block parameters are saved by using the concept of dynamic attributes
from the artshop metamodel, as enabled by the AbstractArtifactElement class. The
IOBlock class are used for blocks that define the interface of a functionmodel or subsystem
respectively, e.g. Inport or Outport blocks. The Subsystem class is used to represent
Subsystem blocks and provides fields to store contained blocks, lines and annotations on
its related hierarchy level. Instances of the ChartBlock class are used to represent the
content of a MATLAB/Stateflow model embedded into the MATLAB/Simulink model.
All other blocks not covered by the aforementioned cases are represented by the Block
class.

Each block has an interface defined by the ports associated to it. Ports are represented
by the AbstractPort class and store their number, i.e. their position in the interface of the
block, their type (as specified by the PortType enumeration) and their associated lines
and virtual lines. To distinguish the inports from the outports of a block, the AbstractPort
class is refined by two classes representing these ports. Again, port parameters are stored
using the concept of dynamic attributes. Each port is typically associated with a datatype
that is derived from the signal that is propagated over the port. It can be extracted from
its parameters using the getPortDataType method.

The Line class represents the actual lines of the MATLAB/Simulink model between
two ports. As we use the concept of virtual lines introduced by Merschen et al. in [97],
lines can further store a virtual connection between two ports connected by indirect
signal flow using the virtualSrc/DestPort references. Line parameters are again stored
using the concept of dynamic attributes as inherited from the AbstractArtifactElement
class.

Moreover, the Annotation class represents textual annotations that can be placed on
every layer of a MATLAB/Simulink model.

MATLAB/Stateflow To support the representation of MATLAB/Stateflow models,
the ChartBlock class, introduced in the previous paragraph, is refined as shown in the
class diagram in Figure 3.7. In contrast to the model representation of MATLAB/Simulink
models, all elements of the model are mapped to specific classes. We again use the concept
of dynamic attributes to store parameters not directly defined within their respective
model classes. The model representation includes elements to represent the States of
the MATLAB/Stateflow model, including their labels, defined variables and hierarchy
levels. Transitions describe how the ConnectableElements, i.e. states and junctions, of the
model are connected with each other and store the corresponding transition label and its
execution priority. The SFVariable class stores information about the variables of the
MATLAB/Stateflow model, which can be used to store intermediate calculation result or
exchange data between states. Variables that are used to connect a MATLAB/Stateflow
model to its containing MATLAB/Simulink model are represented by the SFPortVariable
class, which refers to the port its containing value is driven by. User-defined functions are

44

3.3 Tool Adapter

Figure 3.7: Concrete representation of stateflow model elements from MATLAB/Stateflow
based on the artshop metamodel

mapped to the specializations of the FunctionProvider class, while the SFAnnotations
class represent user-defined textual annotations on the diagram.

Import Procedure

The tool adapter uses the MATLAB API to access elements of a given model and
converts them into instances of the previously shown model representations. Elements
in MATLAB/Simulink can be accessed using so-called object handles, which behave
similar to pointers as known from traditional computer programming. A handle represent
a reference to an actual MATLAB object. After a handle is obtained, the fields of the
actual MATLAB objects can be accessed in a generic way by using the built-in get
function of the MATLAB API. The result of this function is subsequently used to extract
the necessary information to instantiate and populate the concrete model representation
and instantiate dynamic attributes for each field not directly addressed in the respective
model representation class. Elements are imported from a MATLAB/Simulink model in
a top-down fashion.

45

3 Incremental Integration of Model-Based Software Artifacts

1. Functionmodel The model object is loaded and its attributes are imported

2. Blocks Blocks contained in the loaded model are imported, including their param-
eters

3. Ports Port handles are extracted from the imported blocks and imported including
their parameters

4. Lines Line handles are extracted from the imported functionmodel/subsystem
blocks and imported including their parameters. Line branches are resolved to
individual lines connecting exactly two ports with each other

5. Annotations Annotation handles are extracted from the functionmodel and im-
ported

6. Resolve Stateflow models Resolve all Stateflow models associated with the
ChartBlocks imported during Step 2 by using the MATLAB/Stateflow API in a
similar fashion as the import procedure for MATLAB/Simulink elements

As the FunctionModel instance is populated by imported elements, relationships between
elements, e.g. containment relationships of ports within blocks, of blocks into their
corresponding containing element or the assignment of source and destination ports
to created lines, are resolved in the created model representation. During the import,
all visible parameters of each element are imported and saved as dynamic attributes
as specified in the artshop metamodel. Compile-time parameters, e.g. execution order
(see Section 2.1), signal dimensions and dimensions, are extracted if the model can be
compiled. Otherwise the import of these parameters is skipped.

Model libraries are automatically resolved during step 2 of the import procedure,
while model reference blocks can be resolved by activating an option prior to the import
procedure.

The result of the import procedure is a coherent instance of the model representation
presented in the previous section.

Parameter deduplication Since typically many parameters are shared across blocks,
ports and lines, the tool adapter reassigns recurring dynamic attribute values among
instances of the model representation elements, reducing the amount of instances of
the AbstractAttribute class from the metamodel by up to 99%, without losing informa-
tion. Figure 3.8 shows the inner structure of the component responsible for parameter
deduplication. After all attributes for an AttributableElement e have been created, the
attributes of e are entered into the queue of the attribute deduplication component.
Attributes are retrieved by the attribute classifier concurrently to the thread that handles
the creation of the actual model elements. The classifier classifies an attribute based
on the type of its owner and retrieves an attribute processor based on the identified
class. This processor is responsible for managing all attributes for a given equivalence
class and for the actual deduplication operation. The attribute is then entered into a
worklist associated to its assigned processor. After all attributes from the queue have been

46

3.3 Tool Adapter

artconnect.simulink

artshop

Simulink Interface
MATLAB

Script
Generator

JMI Adapter

MATLAB/Simulink

Java MATLAB Interface
(JMI)

Incremental Parameter Deduplication

artconnect.simulink

Thread poolAttr. queue Attribute classifier

Attribute processor registry

Pop
attribute

Request processor for
attribute class

Schedule processor for attribute
registration/deduplication

P1 P2 P3Processors manage minimal state
of all attribute within a model

associated to given class of objects
…

…W1 W3

Figure 3.8: Overview of the incremental parameter deduplication component

assigned to a worklist, the processors are scheduled once a slot in the thread pool of the
component becomes available. Processor scheduling is prioritized based on the backlog of
the worklist associated to the respective processor. Attributes assigned to a processor
are again internally classified based on their name, i.e. only attributes with the same
name are considered during attribute deduplication. Once scheduled, the processor looks
up already processed attributes based on the attribute class of the currently processed
attribute and performs a deep-equal comparison against the current attribute. If a match
is found, the current attribute is replaced by the matched attribute. If no match is found,
the processor puts the current attribute into the registry associated with its attribute
class. This process is repeated until the worklist of the processor is empty.

Virtual line creation To ease the navigation on the created model during model analyses,
the concept of virtual lines has been adopted from Merschen et al. [97]. The authors
enriched each line representation in an imported MATLAB/Simulink model by a virtual
source and destination, to enable the navigation of implicit signal flow (see Section
2.2.1) across subsystem boundaries and between Goto and From blocks. During virtual
line creation, the virtual destination/source port of each line attached to a subsystem
is set to a virtual port created on the In-/Outport blocks corresponding to the actual
destination/source port of the line as it can be seen in Figure 3.9. In this figure, the virtual
part of each line is shown as a separate dashed line. Virtual ports are marked by setting
their portType attribute to the enumeration value PortType.VIRTUAL. Goto/From
blocks that communicate via implicit signal flow are handled in a similar way, but as
no line exists between these blocks, a new Line instance is added between the created
virtual in- and outports. This concept was extended to respect different configurations of
Goto/From blocks regarding their scope (accessibility) in the model, by considering the
scope of the Goto block (local, global and scoped) and detecting all From blocks that are
enclosed in the given scope. An example for a virtual line connecting a Goto and From
block can be seen in the lower half of Figure 3.9.

47

3 Incremental Integration of Model-Based Software Artifacts

Figure 3.9: Visualization of virtual lines between hierarchy layers and Goto/From blocks
of a model

The algorithm further has been extended to connect the active variant in a Vari-
antSubsystem block, which is a special type of subsystem block that contains multiple
subsystems corresponding to variants of the functionality implemented by the block.
The subsystem corresponding to the active variant, set in the block parameters of the
VariantSubsystem block, is connected to the In-/Outport blocks of the VariantSubsystem
by line elements. The aforementioned virtual line calculation algorithm is further used to
add virtual source and destination ports for the computed virtual lines.

At last, further line elements are added between Inport blocks and their associated
ShadowInport blocks, which output the same signal as its associated Inport block. Each
ShadowInport block is connected to its associated Inport block by adding a line to a
virtual inport created on the ShadowInport block.

Tool Specific Views

A typical problem that arises when trying to visualize analysis results in MATLAB/Si-
mulink is that visual changes to a model element in the tool are directly changing the
underlying model representation. Furthermore, the visual transformation capabilities of
MATLAB/Simulink are limited to annotations added on the canvas and changing the
color of elements. To support the creation of views and the annotation of information
to elements based on analysis results or user input, views have been created for the
representation of MATLAB/Simulink and MATLAB/Stateflow models, which can be
used to visualize, navigate and visually enrich the imported model without changing its
underlying representation. Figure 3.10 shows the realized visualization for the top-level
of the demo model sldemo_fuelsys from MATLAB/Simulink. Elements in the views
are created based on the layout information of the imported model elements. The view
supports the annotation, filtering, highlighting and selection of displayed elements. New
views can either be created and altered manually or based on the results of analyses.

48

3.3 Tool Adapter

Figure 3.10: Examples for the visualization of imported model elements from MAT-
LAB/Simulink using the demo model sldemo_fuelsys (MATLAB/Simulink 2014a)

Export Procedure

The tool adapter further offers the functionality of exporting an imported model back to
MATLAB/Simulink. This functionality was developed as part of the bachelor’s thesis of
Julian Nehring-Wirxel [102]. Currently, the export function is limited to the export of
elements from MATLAB/Simulink but could be extended to support MATLAB/State-
flow models. The export functionality also utilizes the JMI interface introduced at the
beginning of Section 3.3.1 to create model files and elements. The workflow of the export
functionality is organized in a top-down fashion.

1. Create model: First, a new model file is created that will hold the exported model
and loaded to set the parameters of the actual model element

2. Create blocks: In this step, all blocks are placed in the newly created model file
and their corresponding block parameters are set to the attributes present in the
artshop model representation

3. Create lines: After all blocks have been created, all lines have valid source and
destination blocks and can be created and enriched with their corresponding
parameters

4. Create annotations: Finally, the annotations of the model are created

One important characteristic of model elements from MATLAB/Simulink is the unique
id (SID) that is attached to each block of a model. As these ids depend on the actual

49

3 Incremental Integration of Model-Based Software Artifacts

IBM Rational
DOORSTM Client

artconnect.doors

artshop

Doors Interface DXL Query
Generator

OLE
Dispatcher

Batch
Dispatcher

Doors Server

Doors Database

Network

DXL Dispatcher

Figure 3.11: Communication between artshop and IBM Rational DOORS

order of creation of elements in a model, these ids would not match the ids that were
present in the initial artshop model representation. Unfortunately, there exist no function
in the MATLAB API to manipulate the SID of a model element. To fix the SIDs after
the export has finished, the XML representation of the created model file is traversed
after the export is finished and SIDs are set to the values present in the artshop model
representation.

3.3.2 IBM Rational DOORS
IBM Rational DOORS was introduced as a client-server application, which stores its data
on the server-side to enable collaborative use of authenticated clients in Section 2.4.2.
The development of a tool adapter for IBM Rational DOORS therefore has to leverage a
trusted communication channel to the DOORS server, i.e. the client application. By using
the DXL scripting language, data can be queried and modified on the server by executing
DXL scripts via an authenticated client application. The DOORS DXL reference manual
[122] describes two approaches to realize data exchange with the DOORS client and an
external application.

• Start the DOORS client in batch mode and execute a script acting as a DXL
execution server by opening a network port to receive and execute DXL scripts
against the data managed by the DOORS server. Starting a DOORS client in
batch mode requires user credentials during the authentication process against the
DOORS server. This method was also used in the work of Choi et al. in [27]

• Execute DXL scripts in a running DOORS client application by transferring
scripts via the OLE Automation protocol [101]. This approach is only available on
computers with the Windows operating system

50

3.3 Tool Adapter

Figure 3.12: Concrete representation of elements from IBM Rational DOORS based on
the artshop metamodel

As shown in Figure 3.11, the tool adapter implemented as part of this thesis can use both
of these approaches to exchange data with a DOORS server. The tool adapter exposes
an interface, which provides basic functionality such as model import and export as part
of its Java implementation. The interface delegates these functions to the DXL query
generator component, which translates requests to corresponding scripts in the DXL
scripting language. Generated scripts are executed via the DXL Dispatcher component
by either using the OLE automation protocol or by starting a DOORS client in batch
mode. Results of the executed DXL scripts are encoded in the JSON (JavaScript Object
Notation) format, a compact text-based data format, and passed back to the tool adapter.
The tool adapter converts received JSON objects into instances of the DOORS model
representation, which are returned to the application that requested them.

Model Representation

The tool adapter targets formal modules saved on a DOORS server that represent docu-
ments storing development specific information, e.g. requirements or test specifications.
As mentioned in Section 2.4.2, formal modules are organized in folders and projects that
can be nested into each other. To represent the organization hierarchy a formal module
resides in, the model representation of the tool adapter has to contain classes for projects
and folders, beside the class of formal modules. Figure 3.12 shows the classes used by
the tool adapter to represent the aforementioned elements. The DoorsFolder and Project
classes are only used to represent the organization hierarchy of the server and are not
intended to be saved as a result of the import procedure. Formal modules are represented
by the Module class and contain a set of DoorsObject elements that represent the rows of
the module. To represent the hierarchical structure of a Module, DoorsObjects may again
contain child objects. The concept of dynamic attributes is used to represent the columns
of a DoorsObject, as the columns are customizable by the user. All model elements of
IBM Rational DOORS can further be identified by a unique id that is stored in the
attribute inherited by the UniqueModelElement class provided by the metamodel.

51

3 Incremental Integration of Model-Based Software Artifacts

artconnect.pv

artshop

pure::variants
File Parser JMI Adapter

pure::variants

Filesystem

XML Parser

pure::variants files
(*.xfm, *.ccfm, *.vdm)

Figure 3.13: Communication between artshop and pure::variants

As DoorsObjects in a formal module can be linked to other DoorsObjects, either within
the same or another module on the DOORS server, classes representing these traceability
links need to be provided. The DoorsLink class, that inherits the base functionality of
the Association class, represents a link in the same Module. To represent links to other
modules the DoorsExternalLink class is used, which inherits the functionality of the
UnresolvedAssociation class to link to an element that is not available in the scope of
the currently imported Module. Additionally, the ExternalDoorsLink class implements
the needed methods to import/resolve the Module its unresolved association end resides
in. Once resolved, both links are associated with their defining Module element.

Import and Export Procedure

The import of formal modules from IBM Rational DOORS is realized using DXL
scripts by first importing the hierarchy and the formal modules of the DOORS database
excluding its content. After converting received data from the query into an instance of
the representation introduced in the previous section, a formal module can be selected
and imported by the adapter. The import procedure of a module is organized as follows:

1. Import Module metadata In the first step, metadata of the module is imported.
This includes attributes like the module description, last modification/modifying
date/user, its creation date and the user that created the module.

2. Import DoorsObjects The hierarchy of the module is then extracted and all
containing DoorsObjects are created. This includes metadata and all attributes
representing the rows of the created DoorsObjects.

3. Import Links Finally, all links of the module are imported and linked to their
respective elements. ExternalDoorsLinks are created for links that target a currently
unresolvable model element.

52

3.3 Tool Adapter

Figure 3.14: Concrete representation of feature and variant description model elements
from pure::variants based on the artshop metamodel

Once imported, a Module can be exported to a DOORS server by importing the hierarchy
of the DOORS database and selecting a folder/project within the returned representation
where the module should be saved in. After that, the artshop representation of the
module is used to create a DXL query that creates a new module at the chosen location
and recreates the module’s structure and content in the DOORS database.

3.3.3 pure::variants
The tool pure::variants, introduced in Section 2.4.2, is a desktop application used to
manage variability documentation in the form of feature, family and variant description
models. Models are saved as XML documents, which contain all information present in
the tool.

The tool adapter for pure::variants directly imports model data from the model files
created in the file system as shown in Figure 3.13. The import process is started by
handing a path to a pure::variants model file to the pure::variants model file parser that
then parses the file via a standard XML parser and instantiates a model corresponding
to the content of the parsed model file.

Model Representation

The tool adapter targets three different kinds of models created as part of the variability
documentation of a software product line: feature, family and variant description models.
Figure 3.14 contains the metamodels used for feature and variant description models.
Latter only contains a list of features that are selected to form a concrete variant
out of the features contained in a linked feature model and is represented by the
VariantDescriptionModel class. Features are contained in the FeatureModel class as part
of the content and rootElement references introduced by the AbstractArtifact class.
FeatureGroups again contain feature elements and are associated with a FeatureGroup
enumeration value that expresses the category of features contained within the feature

53

3 Incremental Integration of Model-Based Software Artifacts

Figure 3.15: Concrete representation of family model elements from pure::variants based
on the artshop metamodel

group. This enables the distinction of mandatory, optional and alternative features as
introduced in Section 2.3.2, as well as further feature categories that are application specific
to pure::variants and are omitted within the diagram. To express feature interdependencies
as requires and exclude relationships, the FeatureRelation class has been created. It is
derived from the association class of the artshop metamodel that already provides
means to link multiple artifact elements with each other. The feature relation is typed
by the FeatureRelationType enumeration, which contains further pure::variants specific
dependency types. To link arbitrary artifact elements with a given feature, the FeatureLink
association can be used to allow the creation of custom feature associations that allow
artifact elements of other tool adapters to be linked to a feature.

Besides feature and variant description models, the tool adapter also provides means
to represent family models. An overview of the classes used to represent family models is
given in Figure 3.15. The overall structure of the family model in pure::variants is very
similar to the structure of feature models. Variability instantiations are represented by
the AbstractComponent class that is further refined by the Component class representing
a partition of the solution space that realizes the particular variability component.
Atomic partitions of the associated artifact are represented by the Part class. With
features being categorized by feature groups, the ComponentGroup class is used to
categorize components by the types provided by the ComponentGroupType. Moreover,
interdependencies between Components are expressed by the ComponentRelation and
are categorized by the ComponentRelationType enumeration. Dependencies between
feature model and family model are represented by ComponentFeatureLink associations,
while ComponentLink associations can be used to connect components to their actual
representations in the solution space that were imported by other tool adapters.

Import Procedure

Figure 3.13 shows that model data created with pure::variants is imported by parsing
the XML files created by the modeling tool. As the XML format of the three model
files is supported by the tool adapter, a generic parser has been implemented that

54

3.4 Repository and Synchronization

Figure 3.16: Import wizards in artshop

converts the content of the respective XML files into an intermediate representation. This
representation is then used to instantiate the EMF models presented in the previous
section by model specific converters. Created model files are then passed back to the
calling application. As variant description and feature models contain a reference to a
corresponding feature model, the importer requires an imported feature model instance
as a parameter to resolve cross-references between these models.

3.3.4 Tool Adapter Integration in artshop
Tool adapters are integrated as plugins in the artshop framework. Once registered, the
import procedures of the adapters can be selected by the user in the import wizard
selection dialog shown on the left-hand side of Figure 3.16. Here, all available tool adapters
and their import procedures are listed. An import wizard can only be selected if its
prerequisites are satisfied, e.g. an installation of MATLAB/Simulink has been detected
on the client computer to activate the tool adapter for MATLAB/Simulink. Otherwise,
an error is displayed and the adapter is deactivated.

The right-hand side of Figure 3.16 shows the import dialog of the MATLAB/Simulink
tool adapter. Besides the selection of the model file that shall be imported into the tool,
the version of MATLAB/Simulink that shall be used for the import procedure can be
selected. Available versions are automatically detected on the client system. Furthermore,
a start-up script can be selected that is executed prior to the start of the import procedure.
Other options allow the deactivation of the parameter deduplication procedure, the direct
commit of imported model files into the model repository or the activation of the model
reference resolution procedure.

55

3 Incremental Integration of Model-Based Software Artifacts

Services

Repository

Model evolution

Data Integrity

artshop

artshop model repository

Persistency
controller

Command
factory

Model
synchronization

Query controller

SQL OCL HQL

DAO

History

CDO

Persistency
Controller

Query
Controller

Revision
Manager

CDO Server

Database Store

Figure 3.17: Detailed view of the repository component

3.4 Repository and Synchronization
While the tool adapters presented in the previous section provide means to import and
export model data from external applications, this section describes the technologies used
in the artshop framework to persist and update imported models. After describing the
technologies used related to the model repository, the model synchronization mechanism
of the artshop framework is introduced.

3.4.1 Repository
The repository component of the artshop framework manages the storage and retrieval
of model elements into/from the repository backend. It supplies the basic functionality
of a version control system for models imported via the tool adapters. Figure 3.17 shows
the innards of the repository component. The main component of the repository is the
backend based on the CDO model repository framework [119].

The CDO model repository is a distributed shared model framework for EMF models
supporting, among others, the persistence of models in a database, multi-user access/-
collaboration, lazy model loading strategies and auditing of past model versions. CDO
uses so-called stores to abstract the database technology realizing the actual storage
of data, while supporting various relational, non-relational and object databases from
different vendors. It is possible to query the models stored in the database to search for
specific model elements and/or properties. Supported query languages depend on the
used store and the database type it supports. The artshop framework configures CDO to
use a relational store (DB) with an in-memory SQL database (H2), and supports both
SQL and OCL to query the underlying model repository. The schema of the underlying
database is automatically derived from the definition of the EMF model when a model
is registered in the repository. Objects committed to the repository are then mapped

56

3.4 Repository and Synchronization

to rows within tables that were created corresponding to their respective classes. This
is different to the approach used by Merschen [95], which required an a priori design
of a relational database schema to map created objects to tables in a database. The
repositories used in the MATE [91, 148] and MESA [51] projects were derived from the
underlying metamodels and therefore all metamodels need to be known a priori and
cannot be added dynamically. When using CDO, new model representations can be added
to the repository in an ad-hoc fashion, which might happen when a new tool adapter is
added to the framework or new model representations are added to the database. CDO
can also be configured to track changes of model elements imported into the repository.
Past model revisions can then be accessed via read-only views.

The functionality of the CDO framework can be accessed in the artshop framework via
three distinct components. The persistency controller handles the storage and commit of
unversioned or changed EMF model data, while the query controller provides generic
DAOs (Data Access Objects) to query objects from the repository, as well as the possibility
to execute queries against the actual model repository. Revision information can be
retrieved via the revision manager to obtain details about the changes between different
model revisions.

3.4.2 Synchronization
As artifacts are frequently changing during software development, importing an artifact
through a tool adapter only provides a snapshot of the artifact at the time of import. The
CDO framework can already track changes between different model revisions; therefore,
a synchronization mechanism is needed to incrementally update the model data available
in the repository to the most current version of the respective artifact. By using an
incremental approach, changes made to elements already present in the database can be
mapped to these elements and tracked by the CDO framework, while at the same time
preserving references to this element from other sources, e.g. meta information such as
associations or annotations.

IBM Rational DOORS already includes change management as part of its internal
management system and stores change information between user-defined baselines. The
change management systems of individual tools as well as their stored information could
potentially be used as part of the synchronization mechanism, but as not all tools do
supply such fine-grained change information, a more generic solution is required. The
synchronization mechanism should be applicable to arbitrary instances of model elements
derived from the artshop metamodel, to avoid the implementation of custom synchro-
nization algorithms for each model representation supplied by the tool adapters. Due to
the explicit distinction between model data and meta-information, the synchronization
algorithm only needs to calculate changes in the model data already present in the repos-
itory with regard to an updated version of the same artifact. Therefore, a mechanism is
needed to identify and merge changes on instances of arbitrary models derived from the
artshop metamodel. After such a mechanism is applied to an existing model instance,
the information hold by the synchronized model instance must be equal to the updated
source artifact.

57

3 Incremental Integration of Model-Based Software Artifacts

One reason EMF was chosen as the underlying modeling technology for the model
representations of the artshop framework is that the structural features of its model
element instances are easily accessible at runtime, i.e. all fields and attributes of EMF
model instances can be accessed in a generic way.

The EMF Compare framework [21, 152] leverages this property of EMF models
to implement a generic model comparison and merging algorithm. The comparison
algorithm implemented by EMF Compare takes two loaded EMF models, m1 and m2,
and successively runs through the following phases:

• Matching: In the matching phase, the framework tries to map elements from m1
to elements from m2. By default, this is done via identifiers if the objects have one
or by the use of a distance mechanism. This behavior can be customized to use a
custom matching function. If no match is found for an object this is registered and
handled accordingly in the next phase. The result of this phase is a set of matches
containing either a matched pair of objects or an unmatched object from one of
the models m1 or m2.

• Differencing: In the differencing phase, the differences of all matches are deter-
mined using the aforementioned general access to the objects structure. Again, the
differencing phase can be customized to, for example, ignore certain structural
features. Differences are created for changes in structural features, e.g. the name
attribute of an AbstractArtifactElement changed from ’Name’ to ’New Name’, or
for added/deleted objects. The latter are typically created for new objects that
could not be mapped to another object in the matching phase.

• Equivalences: In some cases, two distinct differences calculated in the differenc-
ing phase might actually represent the same change, therefore all differences are
compared to each other to link equivalent differences together.

• Requirements: To be able to merge differences into either m1 or m2, the framework
needs to determine dependence relations between differences, i.e. a difference is
dependent on another difference if it cannot be merged without it.

• Conflicts: In case m1 and m2 have both been changed, the framework determines
conflicts between the previously detected differences. These conflicts need to be
resolved during the merge process.

Differences detected by EMFCompare can be merged from m1 to m2 or vice versa on an
individual basis. All phases of the comparison and merge process can be customized or
adapted to the actual use-case as it has already been noted for some of the phases of the
comparison process.

As all models in artshop are represented by EMF models, it is possible to use EMF
Compare to realize the aforementioned model synchronization mechanism. While alter-
natives to EMFCompare exist, as mentioned in a survey of model differencing techniques
by Kolovos et al. [83], the seamless integration of EMFCompare in the EMF ecosystem
eases the integration of the algorithm into the framework. To realize the synchronization

58

3.4 Repository and Synchronization

Import

Model source Updated
Objectmodel

Repository

Persist*

Compare
models

Select target artifact

Project Δ

Merge
models

Input

Input

Change set

Figure 3.18: Procedure of the artshop synchronization mechanism

mechanism in a generic way, the updated artifact is again imported using the import
procedure of the corresponding tool adapter and compared with the artifact already
present in the repository using a customized version of the EMF Compare framework as
shown in Figure 3.18.

To ensure the correct matching of elements during the matching phase, the unique
ids provided by the UniqueModelElement class of the artshop metamodel are used in a
custom match function. A subset of structural features related to the concept of dynamic
attributes has been excluded during the differencing phase, because of performance
reasons due to large amount of soft references to shared attributes in the model, which
needed to be processed. As certain assumptions can be made on the structure of these
references, a custom merge procedure for these structural features is provided, which
significantly increased the performance of the merge procedure. This includes specific
pre- and post-processing routines that are applied before and after the execution of the
merge procedure of EMF Compare. Within the pre-processing routine, a mapping for
the shared attributes of m2 is created, that maps all attributes from m2 to the ids of
their corresponding AttributableElements. This mapping is used during post-processing
to merge all attributes into the merged model m1 by mapping the Additionally, the
customized version of EMF Compare changes the behavior of the actual difference
detection algorithm, as the default behavior does not guarantee to preserve the ordering
and completeness in multi-valued attributes, once differences on this kind of structural
features are merged.

Committing the merged model creates a new revision of the affected artifact in the
repository while its previous versions can still be accessed.

Change information of a given revision with respect to its previous one can be accessed
through the GUI of the artshop framework. Figure 3.19 shows the history view and the
change information for a block of a MATLAB/Simulink model. In the bottom history
view, all revisions including the committer and timestamp can be seen, while the upper-
left view shows in-depth change information of the elements contained in the selected
Subsystem block.

59

3 Incremental Integration of Model-Based Software Artifacts

Figure 3.19: Inspection of history information for a block in artshop

3.5 Evaluation
Throughout this section, we will present the results of the performance evaluation of the
presented tool adapters, repository and synchronization mechanism. The evaluation has
been performed on a desktop computer equipped with an Intel Core i5-6600 processor
with two cores, which run at 3.3 GHz, 16 GB RAM and a solid-state drive with 256 GB
of memory. The operating system of this computer is Windows 7. During the evaluation,
no other processes beside the system processes were running.

First, the evaluation of the tool adapters for MATLAB/Simulink and IBM Rational
DOORS is presented. Second, the performance evaluation of the repository and the
synchronization mechanism are shown.

3.5.1 Evaluation of the MATLAB/Simulink Tool Adapter
As part of the evaluation, the tool adapter for MATLAB/Simulink presented in Section
3.3.1 is evaluated against the tool adapter presented by Merschen [95] and version 0.5 of
the Massif framework [70]. The evaluation includes a short discussion about the model
data from MATLAB/Simulink considered by the import processes of the evaluated
approaches before the performance of the import and export processes is evaluated.

The major difference between the approaches proposed by Merschen and the artshop
tool adapter/Massif, is that latter are executed outside of MATLAB itself, while the
import procedure of Merschen is realized as a MATLAB script executed within the tool
itself. All approaches use the MATLAB API to extract model data from a loaded Simulink
model. Table 3.1 gives an overview of the functionality supported by the evaluated tool
adapters with respect to the data imported by their import procedures. Another major

60

3.5 Evaluation

Table 3.1: Comparison of supported functionalities of evaluated tool adapters
Functionality artshop tool adapter Merschen [95] Massif [70]
Model parameter x - -
Block elements/parameter/SID x/x/x x/-/x x/partial/-
Port elements/parameter x/x -/- x/-
Line elements/parameter x/x x/- x/-
Stateflow elements/parameter x/x -/- -/-
Compile-time parameter x - -
Library block resolution always always optional
Model reference resolution optional - optional
Parameter deduplication x - -
Export functionality x - x

difference between the artshop tool adapter in comparison to the other adapters is the
extent to which parameters are imported. While artshop supports the import of all
parameters from all objects considered during the import, the other tool adapters either
ignore or only partially support the import of parameters from a Simulink model. The
Massif adapter only imports the parameters of each block that are tunable via the user
interface of MATLAB/Simulink, also called Dialog parameters. In addition, imported
parameters are deduplicated by the artshop tool adapter, reducing the overall amount of
parameters present in the resulting model instance. Furthermore, the import of statecharts
from MATLAB/Stateflow is only supported by the artshop tool adapter. Considering
library block resolution, both the artshop adapter and the adapter of Merschen always
resolve library blocks within a model, while the Massif adapter offers an import option to
configure if they should be resolved or not. Model reference blocks can only be resolved
by the artshop and the Massif adapter if configured to do so. Moreover, exporting an
imported model to MATLAB/Simulink is also only supported by the artshop and Massif
tool adapter. To evaluate the tool adapters, we use them to import a MATLAB/Simulink
model containing the control model of a micro aerial vehicle (MAV) that was described by
Meyer et al. in [98]. First, the extent of imported model data of the individual adapters
is compared to each other. We use a running instance of MATLAB/Simulink 2014b for
all tool adapters and assign each adapter the maximum amount of RAM available on the
test system.

Table 3.2 shows the amount of imported model elements for each tool adapter. When
comparing the amount of imported model elements, all tool adapters import the same
amount of blocks and lines. Only the tool adapter by Merschen creates four additional
virtual lines representing connections between Goto and From blocks. As mentioned
in Section 3.3.1, the artshop tool adapter represents virtual lines in a slightly different
format and does not need to create additional line objects. Ports of blocks are only
imported by the artshop and Massif adapter. The amount of elements created by the
artshop tool adapter differs slightly from the Massif adapter, as virtual ports are created

61

3 Incremental Integration of Model-Based Software Artifacts

Table 3.2: Comparison of imported model data on MAV model

Element type artshop Merschen [95] Massif [70]tool adapter
Model parameter 700 0 0
Blocks 1023 1023 1023
Block parameters (with deduplic.) 146850 (13526) 0 (-) 16064 (-)
Ports (including virtual ports) 2093 (2487) 0 (-) 2093 (-)
Port parameters (with deduplic.) 96278 (3975) 0 (-) 0 (-)
Lines 1064 1069 1064
Line parameters (with deduplic.) 37240 (1818) 0 (-) 0 (-)
Total model elements 29030 2193 25698

during the import procedure to create valid source and destination ports for virtual lines
as introduced in Section 3.3.1.

As the artshop adapter is the only adapter capable of importing all parameters
related to the model itself and its containing elements, only the model imported by
our adapter includes an extensive amount of properties. In total 193718 parameters are
imported by the artshop tool adapter, which are reduced to 19319 distinct parameters
by applying parameter deduplication during their import. On average, the artshop tool
adapter imports 143 block parameters, 38 port parameters and 35 line parameters for
the elements of the MAV model. Only the Massif adapter can import a subset of the set
of block parameters, while not supporting deduplication of duplicate parameters.

When comparing the total amount of elements contained in the imported models,
the model created by the artshop tool adapter contains the biggest amount of elements
due to the amount of parameters imported, followed by the model imported by Massif
framework, which would contain less attributes if the import procedure would also support
parameter deduplication. One thing to note is that the model created by Massif creates
an identifier object containing the name and simulink path of each line, port and block
element imported, which does not appear in the statistics. This information is directly
stored in the model elements created by the tool adapters of artshop and Merschen. The
model created by the tool adapter presented by Merschen is the smallest one, as neither
ports nor parameters are imported.

To compare the import performance of the three adapters, we measured the time to
import the aforementioned MAV model for each individual tool adapter. During this
performance evaluation, the MAV model was multiplied by the factors 1, 2, 3, 4, 5, 10,
20, ..., 100 to get an impression on how the performance of the individual tool adapters
scales with respect to the size of an imported model.

Figure 3.20 shows the import time for each tool adapter for each version of the
scaled MAV model. First thing to note about the import performance of the Massif tool
adapter is that no performance information is displayed beyond the scaled model size
of 10000 blocks because importing the MAV model scaled by factor 20 resulted in an

62

3.5 Evaluation

0 20,000 40,000 60,000 80,000 100,000 120,0000

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Blocks per model

Im
po

rt
tim

e
in

s
artshop tool adapter
Merschen [95]
Massif [70]

Figure 3.20: MATLAB/Simulink tool adapter import performance for functionmodels
containing up to 100.000 blocks

OutOfHeapException on our test system, i.e. the import required more heap memory
than what was available. In addition, the Massif adapter performs and scales the worst
of all adapters, taking 103 seconds for the initial version of the MAV model and 840
seconds for the version scaled by the factor ten. As industrial size models easily reach
sizes of around 20.000 - 50.000 blocks or can even be bigger, tool adapters need to reliably
work on models of this size, which was only accomplished by the artshop tool adapter
and the tool adapter of Merschen. When comparing the artshop tool adapter against
the adapter of Merschen, it can be observed that the latter performs better for models
containing up to 20.000 blocks, while the artshop adapter performs much better beyond
that region. While the curve connecting the import times of Merschen represents an
exponential function, the curve of the artshop tool adapter progresses nearly linearly.
This is probably related to the limitations of the MATLAB scripting language, leading to
performance degradations due to memory consumption, as both the model representation
in MATLAB/Simulink and the intermediate data structures of the tool adapter use a lot
of memory. The difference between the approaches is at most 10 seconds in the region of
up to 20.000 blocks.

Figure 3.21 shows the same data only up to a scaled model size of factor 50. Here the
intersection of the curves representing the adapter of Merschen and artshop is reached at
around 22.000 blocks. As the artshop tool adapter imports much more data than the
adapter presented by Merschen, it is expected that the artshop tool adapter experiences
performance degradation to a certain degree when compared to an approach that only
imports a subset of the information available within a model. Additionally, the tool

63

3 Incremental Integration of Model-Based Software Artifacts

0 20,000 40,000 60,0000

200

400

600

800

Blocks per functionmodel

Im
po

rt
tim

e
in

s

artshop tool adapter
Merschen [95]
Massif [70]

Figure 3.21: MATLAB/Simulink tool adapter import performance for functionmodels
containing up to 50.000 blocks

adapter of Merschen is realized as a MATLAB script, which uses the underlying Java VM
of MATLAB to execute Java code and store intermediate model data. In comparison, the
artshop tool adapter reduces the amount of MATLAB code to be executed to a minimum
and stores intermediate model data external to MATLAB, reducing the amount of load
on the running instance of MATLAB/Simulink.

Export Functionality Both the artshop and Massif tool adapter also support the export
of models imported via their respective import processes. Again, the MATLAB API is
utilized by both tools to recreate imported models from the information available in
the imported models. The features of the export functionality of both tools are listed in
Table 3.3.

Both tool adapters support the export of blocks and line elements into a Simulink model.
Neither adapter supports the export of Stateflow elements, with artshop only inserting
an empty dummy stateflow block. Furthermore, the artshop tool adapter supports the
recreation of library links as well as the export of annotation elements and the parameters
of all supported elements including the Simulink model itself. Finally, the artshop tool
adapter is able to preserve the SIDs of the blocks of a model.

We first tried to evaluate both approaches by using the imported models from the
evaluation of the import procedure. Unfortunately, even for the initial version with
around 1000 blocks, the Massif tool adapter failed with an exception, as it tried to write
into a read-only attribute of a Subsystem block. Figure 3.22 shows how the artshop tool
adapter scales during the export of the imported models.

64

3.5 Evaluation

Table 3.3: Comparison of supported export functionality of evaluated tool adapters
Functionality artshop tool adapter Massif [70]
Model parameter x -
Block elements/parameter/SID x/x/x x/partial/-
Line elements/parameter x/x x/-
Annotation elements/parameter x/x -/-
Stateflow elements/parameter -/- -/-
Library block insertion x n/a
Model reference insertion - n/a

In contrast to the import procedure, the export procedure of the artshop tool adapter
takes much longer than the import procedure but still scales nearly linearly with regard
to the size of the exported models. As the default parameters for a given model element
are not known a priori, the exporter still has to export and set each individual parameter
for each exported model element. This takes considerably more time than just reading
(importing) all parameters, as done during the import procedure. Moreover, the artshop
tool adapter detects exceptions thrown by MATLAB once a read-only parameter is
written and skips all subsequent occurrences of these parameters for the given class of
elements.

0 20,000 40,000 60,000 80,000 100,0000

500

1,000

1,500

2,000

2,500

3,000

Blocks per model

Ex
po

rt
tim

e
in

s

artshop tool adapter

Figure 3.22: MATLAB/Simulink tool adapter export performance

65

3 Incremental Integration of Model-Based Software Artifacts

0 2,000 4,000 6,000 8,000 10,0000

100

200

300

400

500

600

700

Blocks per model

Ex
po

rt
tim

e
in

s

artshop tool adapter
Massif tool adapter

Figure 3.23: artshop tool adapter and Massif export performance

To evaluate the artshop tool adapter against the Massif framework, we tried to use the
export function of Massif with multiple models from the MATLAB/Simulink example
models and the model used during the evaluation presented by Merschen in [95]. Finally,
we constructed a simple model fragment that consists of one Constant, three Gain and
one Terminator blocks that are connected by lines. Massif was then able to export this
model fragment to a new model. To evaluate the performance of the framework we
duplicated this model fragment to create evaluation models with 100, 200, ..., 500, 1000,
2000, ..., 10000 blocks respectively. Each of these models are then imported by both the
artshop and the Massif tool adapter and we measure the time it takes both adapters to
export the imported models.

Figure 3.23 shows how both adapters scale during the export of the constructed
example. Up to 3000 blocks, both adapters perform equally well with the export time
scaling linearly with respect to the exported model size. After that, the performance of
the Massif adapter diverges from the artshop adapter, which continues to scale linearly
as it was the case for the initial batch of exports of the MAV model.

Besides the performance of both tool adapters, we also evaluated how much the
exported model differs from the initial model by using the comparison utilities of the
MATLAB/Simulink Model Comparison API. For the artshop tool adapter, only slight
differences between the parameters of the actual and exported model could be detected.
Differences were detected for parameters that cannot easily be manipulated, as they reside
within specific MATLAB objects. The only difference found between the elements of both

66

3.5 Evaluation

models are the position of labels on lines. The parameter controlling this property is not
accessible via the MATLAB API and can only be accessed by parsing the accompanying
model file. Models exported with the Massif framework differ by quite a margin from the
initial model. Besides some differences in the model parameters, neither block nor line
positions match the position of the initial model. This leaves the model in an unreadable
state, with blocks and lines overlapping and being randomly distributed all over the
model. Additionally, the SIDs of the model elements do not match anymore, as the SIDs
depend on the order of insertion into the model that is not considered by the Massif
framework.

While the export function of the artshop tool adapter is much more reliable and
produces higher quality models than the Massif framework, further work has to be
invested to refine the export of the remaining differing model parameters, model reference
blocks and elements from MATLAB/Stateflow. Due to the errors occurring during the
use of the Massif framework, we could not verify if Massif can insert library blocks or
export model reference blocks.

MATLAB/Simulink Evaluation Models

Besides the import/export of the relatively simple MAV model, we have successfully
used the tool adapter to import/export a multitude of academic and industrial models
that include the use of Stateflow models, various library blocks, model reference blocks,
masked subsystems and custom signal types. The models were retrieved from academic
and industrial case studies, the Matlab File Exchange (a repository for MATLAB related
files hosted by The Mathworks), MATLAB/Simulink demo models from versions ranging
from MATLAB/Simulink 2008a to 2016b and openly available model repositories, e.g.
the ReMoDD (Repository for Model-Driven Development) repository [55]. The size of
these models ranges from a few hundred blocks in the case of simple example models to
proprietary models created by an OEM from the automotive domain containing more
than 100.000 blocks. In total, the adapter has been used to import over 2.200 models
from the aforementioned locations.

A subset of these models will be referenced throughout this thesis during the evaluation
of static analysis techniques on MATLAB/Simulink models. A few key indicators of these
models are shown in Table 3.4. For the sake of completeness, the MAV model is also
listed in this table. The DAS model is a control system for a driver assistance system,
while the EL model contains the controller for an exterior light system of an automobile
Both the DAS and EL model originate from an industrial case study from the automotive
domain [111, p. 11-25]. The MAV model is a control model for an autonomous micro air
vehicle described in [98]. The PI model has been taken from Matlab File Exchange and
models the interpretation of a pedal in an automobile including a test harness and is
described in [165]. Taken from an ongoing research project in a complex medical intensive
care system, the ECLA model realizes a control model for an extracorporeal lung assist
system (ECLA) applied to treat severe cases of the acute respiratory distress syndrome
[17]. While the ECLA model does not originate from the automotive domain, the used

67

3 Incremental Integration of Model-Based Software Artifacts

Table 3.4: Overview of MATLAB/Simulink models used throughout this thesis
Model Number of Number of Hierarchy Number of Percentage of Closed
name blocks lines depth subsystems virtual blocks loop
DAS 1043 975 (47) 13 195 56.56 Yes
EL 1635 1791 (49) 10 197 58.10 No

MAV 1017 1069 (70) 5 96 50.24 No
PI 8224 9169 (272) 8 1038 42.92 No

ECLA 8746 9953 (516) 11 723 44.90 Yes

model paradigms are the same. Furthermore, the overall complexity of the model proved
to be a valuable evaluation target, as we will show in later chapters.

Only the DAS and ECLA model are closed loop models. These kind of models use
information calculated in a previous time step, introducing cyclic data dependencies, by
feeding its output signals back to its inputs.

3.5.2 Evaluation of the IBM Rational DOORS Tool Adapter
Throughout this section, we show the evaluation results of the IBM Rational DOORS
tool adapter presented in Section 3.3.2. Unlike the MATLAB/Simulink tool adapter, no
proprietary tool adapter for IBM Rational DOORS was available for evaluation purposes
but as we have implemented two different approaches to realize the import/export of
formal modules from/to the tool, we will evaluate these approaches against each other.
During the evaluation, we considers both the import and the export procedure and use
artificially created data to evaluate both the OLE and Batch DXL dispatcher. We used
IBM Rational DOORS 9.3 to perform the evaluation.

Evaluation of the import functionality To evaluate the import functionality, we cre-
ated 13 formal modules containing 1, 100, 500, 1000, 2000, ... , 10000 objects respectively,
with each of these objects having a fixed size of 1 byte by setting the default attribute
Object Text of the respective DoorsObject to a string with length 1. This process was
repeated three times with varying object sizes of 100 byte, 1 kilobyte and 10 kilobyte.
All 52 formal modules were then imported using both DXL dispatching approaches.

Figure 3.24 shows the result of these import evaluation runs. The red graphs display
results recorded using the OLE dispatcher, while the blue graphs display the results
recorded with the batch dispatcher. It can be noted that the import performance for both
dispatchers is nearly identical for the runs targeting the modules containing objects of size
1 byte and 100 byte with the OLE dispatcher having a slight edge in comparison to the
batch dispatcher. These modules can be imported in 1-5 seconds. Starting with the import
of modules containing objects of size 1 kbyte, the performance of both dispatchers starts
to degrade with the OLE dispatcher again getting an edge over the batch dispatcher with
increasing module size. Neither approach takes more than 10 seconds. The performance

68

3.5 Evaluation

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,0000

5

10

15

20

25

30

35

Objects per Module

Im
po

rt
tim

e
in

s
OLE Dispatcher (1Byte)
OLE Dispatcher (10Byte)
OLE Dispatcher (1kByte)
OLE Dispatcher (10kByte)
Batch Dispatcher (1Byte)
Batch Dispatcher (10Byte)
Batch Dispatcher (1kByte)
Batch Dispatcher (10kByte)

Figure 3.24: IBM Rational DOORS tool adapter import performance

impact becomes even more notable when the size of the individual objects contained
in a module are increased to 10 kilobyte. Again both dispatchers start with similar
performance characteristics, with the batch dispatcher performing slightly worse than
the OLE dispatcher, taking at most 31 seconds. It has to be noted that the last data
point of the batch dispatcher is missing as we were not able to finish the import of the
formal module containing 10000 objects with the Batch dispatcher due to an internal
exception within DOORS itself. In total, the OLE dispatcher performs slightly better
during the import procedure than the Batch dispatcher while at the same time having
the upside of using the credentials of a user that has started an instance of the DOORS
client application.

Evaluation of the export functionality The artificial data used in the previous para-
graph was created using the export functionality of the tool adapter. Again, the OLE
and batch DXL dispatcher can be used to issue commands to the DOORS application. A
module is exported by first creating a new module as an instance of the model represen-
tation described in Section 3.3.2, adding its containing objects and setting all attributes
to the desired properties. A DXL command that creates these instances within the
DOORS client application is derived from the created model instances and handed to
the respective DXL dispatcher. Figure 3.25 shows the results of the export procedures

69

3 Incremental Integration of Model-Based Software Artifacts

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,0000

100

200

300

400

500

600

Objects per Module

Ex
po

rt
tim

e
in

s

OLE Dispatcher (1Byte)
OLE Dispatcher (10Byte)
OLE Dispatcher (1kByte)
OLE Dispatcher (10kByte)
Batch Dispatcher (1Byte)
Batch Dispatcher (10Byte)
Batch Dispatcher (1kByte)
Batch Dispatcher (10kByte)

Figure 3.25: IBM Rational DOORS tool adapter export performance

for these modules for both the OLE (red) and Batch (blue) dispatcher. While the import
procedure of both dispatchers took at most 31 seconds to import the biggest module,
the export procedure takes up to 351 seconds with the OLE dispatcher and 496 seconds
with the Batch dispatcher. This discrepancy between the import and export procedure
originates from the fact that the DXL scripts used throughout the import procedure
simply query data stored in the DOORS server, while new objects have to be created by
the scripts of the export procedure. Therefore, the complete content of each individual
object has to be sent to the server that stores it in its underlying database. Unlike the
performance graphs of the import procedure, all graphs shown in Figure 3.25 display an
exponential function, which is related to the memory management of the DXL scripting
environment in the DOORS client. Overall, the OLE dispatcher performs much better
than the Batch dispatcher and only suffers performance degradation for the modules
containing objects with a size of 10 kByte. However, the Batch dispatcher performs and
scales much worse than the OLE dispatcher, which is related to the construct used to
perform inter-process communication with the DXL server created by the DOORS client
started in batch mode.

After the evaluation of both DXL dispatchers, it can be concluded that the OLE
dispatcher should be used as the default DXL dispatcher in the IBM Rational DOORS
tool adapter. Performance-wise the OLE dispatcher outperforms the Batch dispatcher

70

3.5 Evaluation

0 2 4 6 8 10 12 14
200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

∆i between revision ri and ri+1

D
ur

at
io

n
in

m
s

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

#
D

iff
er

en
ce

s

Compare time (ms)
Merge time (ms)

Differences

Figure 3.26: Performance of the synchronization mechanism across all evaluated model ∆
and detected differences

during import and export of module data and operates slightly more stable than the
batch dispatcher. As a result, the OLE dispatcher was chosen as the default dispatcher
in the implementation of the Doors tool adapter.

3.5.3 Evaluation of the Model Synchronization Mechanism
To evaluate the model synchronization mechanism we used a proprietary set of control
models from MATLAB/Simulink taken from an industrial automotive-related project
realized at the chair for embedded software. The control model is responsible for controlling
the movement of a prototypical mobile device based on environmental inputs. It consists
of 4 distinct MATLAB/Simulink models that include each other via model reference
blocks. In total, 15 revisions of the control model were available for the evaluation. The
models evolved over time starting at around 250 blocks in the first revision with the final
revision contained about 400 blocks.

We evaluated the synchronization mechanism by importing the first revision of the
model and then subsequently synchronizing it with all following revision. For each
synchronization step we recorded the time it took to analyze the differences between
the current revision ri and the new one ri+1 and the time it took to merge the found

71

3 Incremental Integration of Model-Based Software Artifacts

differences into revision ri. Moreover, we stored the amount of differences detected by the
mechanism to relate them to the time consumed by the individual synchronization steps.
After all differences have been merged and ri has been updated to ri+1, we imported
the model of ri+1 again, perform another comparison between the updated model and
the newly imported model and execute a deep-equality check on these models. This
checks if each object in the synchronized model is equal to its corresponding object in
the newly imported model. Finally, we save both models on the file system and perform
a text comparison of the files created during the serialization of both models. None of
these checks were able to detect a difference between a synchronized and newly imported
version of the control model. Therefore, we conclude that the synchronization mechanism
correctly preserves the structure of a model while synchronizing it with an evolved version
of the same model.

Figure 3.26 shows the performance of the synchronization mechanism across the 14 ∆
between the 15 model revisions of the evaluated model. The durations of the individual
phases of the synchronization mechanism are shown on the left-hand y-axis while the
amount of differences are displayed on the right-hand y-axis. It can be noted that the
time it takes to calculate and merge the differences between two model revisions directly
depends on the amount of differences between two model revisions as it can be seen for
∆3 and ∆6. Further, it can be noted that regardless of the amount of detected differences,
the time to merge the differences between two model revisions at least takes one second.
This is related to the custom handling of the attribute introduced by the artshop
metamodel, which requires a pre-processing routine that analyzes the complete model
to capture attribute mappings to their corresponding AttributableElement instances as
these are excluded from the comparison performed by EMFCompare. When configuring
EMFCompare to also analyze the attributes of a model, comparison and merge times of
EMFCompare increase to over 30 seconds in the worst case, while at the same time not
producing equal models due to the shortcomings of the merge of multi-valued attributes
mentioned in Section 3.4.2. Thus, the overhead of the custom solution is acceptable
with respect to the performance degradation of the unaltered EMFCompare framework.
Overall, even for a huge amount of differences, the synchronization procedure takes
around 2.4 seconds not including the import of the updated model revision.

3.6 Conclusion and Future Work
In this chapter, we have presented the base components of the artshop framework, which
is a research platform for the analysis of model-based software artifacts. We defined
a metamodel able to represent common properties of model-based software artifacts
as well as specializations of this metamodel for three specific development artifacts:
functionmodels from MATLAB/Simulink, formal modules from IBM Rational DOORS
and feature models, family models and variant description models from pure::systems
pure::variants. A tool adapter was created for each model refinement of the metamodel
that allows the import and instantiation of these models based on real-world artifacts.
These artifact instances can be stored in a model repository offering version control and

72

3.6 Conclusion and Future Work

querying capabilities. The metamodel further includes concepts to express traceability
links between imported model elements as well as links to artifacts outside of the
repository. Furthermore, a synchronization mechanism has been integrated to synchronize
models loaded in the repository with respect to changes made to the initially imported
artifacts. This allows the incremental application of changes, while at the same time
preserving existing traceability links in the repository.

The evaluation of the presented components indicates that the presented approaches
can be used to import and store models from academic and industrial contexts and scale
well enough to support the complexity of real-world industrial models. Therefore, the
base components of the artshop framework, artconnect, the repository and artshop.core
provide a solid foundations for the analysis of model-based software artifacts, as im-
ported models have a well-defined and documented structure that allows the access
of all imported properties for use in various syntactic and semantic intra- and inter-
artifact analysis techniques. Besides the techniques described in subsequent chapters, the
framework was adopted by Dernehl et al. to implement a static value range analysis on
MATLAB/Simulink models [40, 41, 42, 43, 44] as well as in a multitude of bachelor and
master’s theses [15, 66, 87, 102, 133, 136, 159] that were either directly or co-supervised
by myself. In addition, a traceability link discovery tool that is currently being developed
at our chair also uses the foundations of the artshop framework.

3.6.1 Future Work
In future work, the base framework could be extended by integrating an OSLC interface
into the tool. This could potentially increase the interoperability of the framework
with other tools, as currently no external API is exposed by the framework itself. The
development of an external API or a batch mode of the framework to fetch data or trigger
implemented analyses from external applications could further broaden the use-cases of
the framework.

Currently, the tool adapter for MATLAB/Simulink requires an activated copy of
MATLAB/Simulink to import a model as it significantly eases accessing static and
compile-time model data as well as library and model reference block resolution. A hybrid
approach such as the MeMo tool suite [115] developed by Reicherdt imports models
directly from their model files by parsing their contents and enriching these imported
models by compile-time attributes from Simulink. Such an approach could also be adopted
for the artshop tool adapter and further refined by implementing the automatic inference
of compile-time attributes from the model files, e.g. type inference, sorted order and
execution contexts. A simple type inference algorithm for MATLAB/Simulink models has
already been proposed by Preoteasa et al. [112]. It needs to be evaluated if the increased
effort needed to manually implement and maintain the model file parsers, model/library
resolution techniques and the inference of compile-time attributes for all available and
future versions of MATLAB/Simulink is worth the performance advantages over the
approach presented in this chapter.

A limitation of the tool adapter for MATLAB/Simulink is that it does not support the
import of lines created between blocks of the SimPower toolbox. This toolbox allows the

73

3 Incremental Integration of Model-Based Software Artifacts

modeling of electrical circuits in MATLAB/Simulink. Therefore, lines connecting blocks
from this toolbox carry electrical current and are undirected. Correctly representing the
lines from the SimPower toolbox should be addressed in future work.

Adding new tool adapters should also be considered as part of future work. With
architectural models slowly gaining traction within the automotive domain, modeling
languages such as the UML and SysML can also be used to derive corresponding
MATLAB/Simulink models directly from the components described in these tools, as
it is currently possible by various implementations of the AUTOSAR standard. The
adoption of other data flow languages similar to MATLAB/Simulink, e.g. SCADE or
ASCET, might further increase the viability of the framework to other domains, e.g. the
avionic domain.

The views provided by the framework might also be improved in future work. In
particular, views related to the evolution of models are currently only prototypical
implementations showing the history of elements including their changes as it is shown
in Figure 3.19. Further integration of this information within the other views provided
by the tool adapters as well as graphical change views could enhance the usability of
history information captured by the framework.

While we tested the synchronization mechanism on a case study containing 15 model
revisions, we could not assess its performance on a large-scale industrial model, as such
a model was not available for evaluation purposes. In the future, the model evolution
techniques should be evaluated in a longer and more complex case study.

74

4 Consistency Checking in Software
Product Lines

A typical problem in product and software development is the consistent handling of
traceability information between problem and solution space in the context of software
product lines [10]. To guarantee the correct derivation of a product from a product line,
variability needs to be documented consistently across all involved artifacts. Due to the
amount of involved artifacts and their increasing complexity, manual consistency checking
of these variability documentations is becoming more costly and economically infeasible.
At the same time, the consistency of the variability documentation is an important quality
criterion, as errors induced by inconsistencies might be propagated to additional artifact
elements [162]. The manual detection and correction of such errors is an error-prone and
time-intensive process. Therefore, automatic analyses for the detection of inconsistencies
are required that can be integrated into existing development processes. Suchlike analyses
need to support the recognition of variability information in the artifacts of the product
line as well as the detection of inconsistent mappings of this information.

4.1 Approach
Throughout this chapter, we introduce a method for the automatic extraction of variability
information and inter-artifact consistency checks for product lines managed by the tool
pure::variants (see Section 3.3.3). As pure::variants documents variability in the form of
feature and family models, the presented methodology targets features as introduced in
Section 2.3.2. Features are extracted from the variability documentation of the artifacts
of the product line, i.e. family models, and validated against each other by utilizing
additional inter- and intra-artifact relationships, e.g. test cases associated to requirements.
The method includes the detection, categorization and resolution of inconsistent mappings
of variability information attached to the artifacts of the product line.

4.1.1 Related Work
To tackle the complexity involved in performing consistency checking on the dependencies
and relationships in a real-world industrial product line, Vierhauser et al. propose
an incremental consistency checking approach to increase the responsiveness of the
consistency checker [156, 157]. The approach can detect inconsistencies of the variability
documentation and its implications in and between all levels of a software product line.
For each inconsistency type, the authors define constraints that can be checked by an

75

4 Consistency Checking in Software Product Lines

incremental consistency checker inspired by the work of Egyed [48]. This enables the
change based checking of large-scale variability models across all levels of the product
line.

Another approach for incremental consistency checking for UML models with delta-
based variability modeling is presented by Kowal et al. [86]. In contrast to the approach of
Vierhauser et al. [156, 157], the authors do not define inconsistencies based on the levels
of the product line but rather on different perspectives on the UML-Model, i.e. workflow,
architectural and behavior. Consistency rules are categorized as intra-perspective affecting
a single perspective, inter-perspective rules that affect all perspectives of a derived variant
and cross-variant rules affecting the complete product line. Rules have been defined
manually and have been evaluated in a case study involving an automation system called
the Pick and Place Unit described by Legat et al. [90].

An approach for feature-based consistency checking has been presented by Cmyrev et
al. [29]. The authors present an approach to check if the feature mappings of requirements
and test cases are consistent to each other. Detected inconsistencies are classified into
three categories: contradictoriness, redundancy and incompleteness. The feature mapping
of a requirement is contradictory regarding its associated test cases if the requirement is
mapped to features disjoint to the feature mapped to its test cases. The paper formalizes
the approach of detecting these inconsistencies. A prerequisite for this approach is that the
associations between requirements and test cases are given and complete. An extension to
this approach is given by Wiechowski et al. in [162]. The authors extend the scope of the
analysis by function models from MATLAB/Simulink and introduce the concept of cliques,
which bundle semantically associated artifact elements with each other. Inconsistencies
within the feature mappings are detected between the elements of a clique. In addition,
the paper proposes a set of resolution operations for the inconsistency categories proposed
in [29]. These operations can be used for the semi-automatic resolution of inconsistencies
found by the analysis.

4.1.2 Bibliographic Notes
The approach presented in this chapter extends the methodology presented in the PhD.
thesis of Merschen in [95] that was also published in [162]. It was developed during the
project SPES_XT that has been funded by the German Federal Ministry of Education
and Research (BMBF) [56]. The development of the methods presented in this chapter
were driven by the artifacts contained in the case studies developed by Daimler [111, p.
11-25] and therefore focus on a specific set of tools.

4.2 Preliminaries
We will first introduce basic concepts and terminology related to software product lines
not yet covered by the foundations presented in Section 2.3.

Throughout this chapter, we will refer to the artifacts of a software product line by
the following definition.

76

4.3 Automatic Feature Derivation

Definition 4.1 (Artifacts of a Product Line).
The artifacts A1, .., An that are used in a product line PL are denoted by the set ΛP L =
A1, .., An. Each artifact Ai itself represents a set of artifact elements it contains.

The construction of a feature mapping for arbitrary elements of the artifacts of a
product line is an important part of the methodology we have presented in [162]. A
feature mapping describes how features of a feature model are mapped to the artifact
elements of the product line.

Definition 4.2 (Feature Mappings for Artifacts).
Let F be the set of features contained within a feature model. A feature mapping f : A→
P(F), A ∈ ΛP L maps a set of artifact elements A′ ⊆ A to a set of features F ′ ⊆ F .

f(A′) = F ′ = {f1, .., fn}

With rising size and complexity of the underlying product line, the manual creation and
annotation of features to their respective artifacts, as suggested in [95], is a time-intensive
and error-prone process. Therefore, a pre-processing procedure that automatically derives
the current feature mappings from the available artifacts of the product line can increase
the quality of the feature mapping used for consistency checks of the variability docu-
mentation. Such a procedure needs to analyze the structure and links of the variability
documentation of the problem space to the artifacts in the solution space.

4.3 Automatic Feature Derivation
Mappings from the variability documentation to the artifacts of the solution space, e.g.
mapping a feature to a requirement, can be documented in diverse ways, depending on the
tools and methods used to manage the product line. In this thesis, we will focus on family
models created and managed by the tool pure::variants to document feature mappings
to development artifacts. These models define the mapping of an artifact element to
a feature defined in a feature model, which allows the derivation of a specific product
variant in combination with the variant description model (see Section 3.3.3). A family
model F (AF am) is associated to one artifact AF am and contains a tree of components
representing a subset of the artifact elements from AF am.

Definition 4.3 (Family Model).
A family model F (AF am) = (C, E, rc, α, fF am) for an artifact AF am has the properties:

• C: Finite set of components

• E: Finite set of edges so that holds E ⊆ {(u, v)|u, v ∈ C}

• α: Artifact mapping function α : C → AF am

• rc: Root component

• fF am: Mapping function fF am : C → P(F)

77

4 Consistency Checking in Software Product Lines

𝑎𝑎2f2

f1

𝐹𝐹(𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹)𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹(𝑐𝑐) 𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹

𝑟𝑟𝑐𝑐

𝑐𝑐1

𝑐𝑐2

𝑎𝑎1

𝑎𝑎3f3 𝑐𝑐3

Figure 4.1: Exemplary illustration of a family model for an artifact AF am

(figure taken from [56])

Figure 4.1 shows the structure of an exemplary family model for an artifact AF am with
four components. Each component of a family model can be connected to an artifact
element of the underlying artifact AF am using the mapping function α. Furthermore, a
component is associated with a set of features specified by the mapping function fF am,
which connects a component to a set of features from the associated feature model. A
component and its sub-components are only considered during product derivation if
their associated feature restrictions are satisfied by the feature configuration used for
product derivation defined in the variant description model. Thus, a family model might
impose additional constraints and dependencies in addition to the ones defined in the
underlying feature model. Both mapping functions are shown by the lines connecting the
components with the elements from AF am in the case of α and from the components to
the features of the feature model for the feature mapping function fF am.

Based on the mapping function α, it is possible to collect the obligatory features of an
artifact element a ∈ AF am that need to be selected in a variant description model V to
include a component as part of the product defined by V . The obligatory features are
computed by collecting all features attached to the components that are encountered on
the path p(c) from the root component rc to c with α(a) = c. We will denote the path
p(c) as the component path of c.

Definition 4.4 (Component Path).
A component path p(c) in a family model F (A) = (C, E, rc, α, fF am) is defined as a
sequence of c1, .., cn so that holds:

• 1 ≤ i ≤ n : (ci, ci+1) ∈ E

• c1 = rc

• cn = c

78

4.3 Automatic Feature Derivation

𝑝𝑝(𝑐𝑐3)

𝑟𝑟𝑐𝑐

𝑐𝑐1

𝑐𝑐2

𝑐𝑐3

(a) Component path to component c3 (b) Obligatory features of component c3

Figure 4.2: Component path and obligatory features of component c3
(figures taken from [56])

Figure 4.2a shows the component path from the root component rc, over component
c2 to component c3 from the family model shown in Figure 4.1. All other components
are ignored.

Based on the definition of the component path in Definition 4.4, the obligatory features
of a component c, and therefore also for an artifact element a with α(c) = a, can be
determined by collecting all features attached to the components on the component path
p(c).

Definition 4.5 (Obligatory Features).
The obligatory features of a component MO(c) are defined as

MO(c) =
n⋃

i=1
fF am(ci) with ci ∈ p(c)

On the left-hand side of Figure 4.2b, the obligatory features MO(c3) of component c3
are displayed. The information obtained from the obligatory features of a component
can be used to construct a feature mapping for the artifact elements associated to the
components of the family model via the mapping function α. An artifact element a is then
mapped to the obligatory features MO(c) of its associated component c with α(c) = a, if
such a component exists. The mapping can then be defined as follows:

Definition 4.6 (Feature Mapping from Family Model).
The feature mapping f(F,A)(a) from a family model F (A) and an artifact A of an artifact
element a ∈ A is defined as

f(F,A)(a) =

MO(c), if holds: ∃ c, c ∈ C ∧ a(c) = a

∅, otherwise

79

4 Consistency Checking in Software Product Lines

Following Definition 4.6, the mapping is dependent on the information of the family
model and maps all features required for the derivation of a component c to its corre-
sponding artifact element. The mapping could also be altered to map only the features
directly associated with c. We include this as an option during the actual derivation
procedure. As a family model only contains the variability information of one artifact
A ∈ ΛP L, multiple family models need to be taken into consideration when deriving the
feature mappings of all artifacts in ΛP L. Before using the feature mappings during the
methodology described in [162], the consistency of the mappings obtained from all family
models can be checked with the help of additional traceability information connecting
the artifacts of the product line, similar to the approach presented by Cmyrev et al.
[29]. A major difference to the approach of Cmyrev et al. is that the structure of the
family models used to create the feature mappings contain additional information in the
form of the obligatory features of an artifact element, i.e. the features needed to include
an artifact element during product derivation. If the obligatory features of two artifact
elements a and b, with a ∈ A, b ∈ B, A, B ∈ ΛP L, connected by additional traceability
information differ from each other, a might be included in a product while b which a
might depend on, is not included, leading to an inconsistent state in the derived product.
Thus, our method includes the dependencies and constraints imposed by the family model
into the consistency checking process in addition to the constraints and dependencies
considered by [29, 162].

4.4 Consistency of Connected Feature Mappings
As mentioned in the previous section, a consistency check of the derived feature mapping
from Definition 4.6 can be applied if multiple family models exist for the artifacts ΛP L and
there exist inter-artifact traceability links connecting semantically associated elements
with each other.

Definition 4.7 (Inter-artifact Relationships).
Given two artifacts A, B then the inter-artifact relationship between the elements of these
artifacts is defined as

gA,B(a, b) =

1, if (a, b) ∈ EA,B

0, otherwise

with EA,B ⊆ {(a, b) | a ∈ A ∧ b ∈ B}

The actual relationship expressed by gA,B is stored as a set of 2-tuples EA,B. The
contained 2-tuples (a, b) represent a connection between the artifact elements a ∈ A and
b ∈ B. In combination with Definition 4.5, the defined inter-artifact relationship can be
used to determine if the feature mapping of two family models are consistent to each
other. To check the consistency of the feature mappings derived from a component c
from a family model F (A) against the feature mappings of an associated family model
F ′(B), the set of related components from F ′(B) needs to be computed by using the
inter-artifact relationship between the artifacts A and B from Definition 4.7.

80

4.4 Consistency of Connected Feature Mappings

𝐾𝐾𝐹𝐹,𝐹𝐹′(𝑐𝑐)

𝑐𝑐 𝑘𝑘2𝑎𝑎 b2

𝑘𝑘3b3

𝑘𝑘1b1

f2

f3

f1

f2

f3

f1

𝐹𝐹(𝐴𝐴) 𝐹𝐹𝐹(𝐵𝐵)𝐵𝐵𝑀𝑀𝑂𝑂(𝑐𝑐) 𝑔𝑔𝐴𝐴,𝐵𝐵𝐴𝐴 �
𝑘𝑘∈𝐾𝐾𝐹𝐹,𝐹𝐹′(𝑐𝑐)

𝑀𝑀𝑂𝑂(𝑘𝑘)

Figure 4.3: Sketch of a feature consistent component (figure taken from [56])

Definition 4.8 (Related Components).
Let F (A) = (C, E, rc, α, fF am) and F ′(B) = (C ′, E ′, r′

c, α′, f ′
F am) be two family models.

The set of related components K of a component c ∈ C with K ⊆ C ′ is defined as

KF,F ′(c) = {k|∃a,∃b (g(a,b) ∧ (α(a) = c) ∧ (α′(k) = b))}

Following this definition, a component c from F (A) is related to another component k
from F ′(B) if the artifact elements associated to c and k are connected by an inter-artifact
relationship.

Based on this component relationship we can now define an invariant describing a
feature consistent component.

Definition 4.9 (Feature Consistent Component).
Given a family model F (A) = (C, E, rc, α, fF am) then a component c ∈ C is feature
consistent to its related components K = KF,F ′(c) if it holds

K ̸= ∅ ∧MO(c) =
⋃

k∈K

MO(k)

Figure 4.3 shows a component c and its related components that satisfy the invariant
from Definition 4.9. All features present in the set of obligatory features MO(c) of
component c are also present in the union of obligatory features from the set of related
components FF,F ′(c).

The defined invariant for feature consistent components is only checked for components c
from F (A) that have related components in F ′(B). It is recommended that the consistency
check be performed with one of the family models as a reference model, which is assumed
to be correct. Depending on the family model that is chosen as the reference model,
different types of inconsistencies can occur which are discussed in the following section.

81

4 Consistency Checking in Software Product Lines

𝐾𝐾𝐹𝐹,𝐹𝐹′(𝑐𝑐)

𝑐𝑐 𝑘𝑘2𝑎𝑎 b2

𝑘𝑘3b3

𝑘𝑘1b1

f2

f3

f1

f5

f6

f4

𝐹𝐹(𝐴𝐴) 𝐹𝐹𝐹(𝐵𝐵)𝐵𝐵𝑀𝑀𝑂𝑂(𝑐𝑐) 𝑔𝑔𝐴𝐴,𝐵𝐵𝐴𝐴 �
𝑘𝑘∈𝐾𝐾𝐹𝐹,𝐹𝐹′(𝑐𝑐)

𝑀𝑀𝑂𝑂(𝑘𝑘)

Figure 4.4: Contradictory feature mapping between c and KF,F ′(c)
(figure taken from [56])

4.4.1 Categorization of Inconsistencies Between Related Family
Models

If the invariant of Definition 4.9 is not satisfied for a given component, an inconsistency
is most likely to be present in the analyzed family models and thus in the variability
documentation of the product line. Inconsistencies can be tracked back to the feature
restrictions of the components in the family model and are detected by comparing the
obligatory features of two related components.

As in our previous work [162], we differentiate between three types of inconsistencies
of the compared feature sets obtained from the related components of two family models:
contradictory, incomplete and redundant. In the following sections, we will describe
these three inconsistency types and assume that the family model F is chosen as the
reference family model for feature comparison, i.e. inconsistencies are detected against
the feature mappings present in F . In addition, we assume the inter-artifact relationship
from Definition 4.7 to be correct.

Inconsistency by Contradictoriness

The obligatory features of a component c and its related components KF,F ′(c) contradict
each other if they are disjoint. An example for an inconsistency by contradictoriness
between the obligatory features of a component c and its related components KF,F ′(c) is
shown in Figure 4.4, as none of the features mapped to component c is contained in the
obligatory features of KF,F ′(c).

82

4.4 Consistency of Connected Feature Mappings

𝐾𝐾𝐹𝐹,𝐹𝐹′(𝑐𝑐)

𝑐𝑐 𝑎𝑎

𝑘𝑘2b2

𝑘𝑘1b1

f2

f3

f1

f2

f1

𝐹𝐹(𝐴𝐴) 𝐹𝐹𝐹(𝐵𝐵)𝐵𝐵𝑀𝑀𝑂𝑂(𝑐𝑐) 𝑔𝑔𝐴𝐴,𝐵𝐵𝐴𝐴 �
𝑘𝑘∈𝐾𝐾𝐹𝐹,𝐹𝐹′(𝑐𝑐)

𝑀𝑀𝑂𝑂(𝑘𝑘)

Figure 4.5: Incomplete feature mapping between c and KF,F ′(c) (figure taken from [56])

Definition 4.10 (Inconsistency by Contradictoriness).
An inconsistency by contradictoriness between the obligatory features of a component c
and its related components K = KF,F ′(c) is present if holds∣∣∣∣∣∣MO(c) ∪

⋃
k∈K

MO(k)

∣∣∣∣∣∣ ≥ 1 ∧
MO(c) ∩

⋃
k∈K

MO(k)
 = ∅

Inconsistency by Incompleteness

The obligatory features of a set of components KF,F ′(c) related to component c are
incomplete in regard to MO(c) if they represent a subset of MO(c). Figure 4.5 shows an
example for an inconsistency by incompleteness, as the feature f3 is missing among the
obligatory features of KF,F ′(c).
Definition 4.11 (Inconsistency by Incompleteness).
An inconsistency by incompleteness between the obligatory features of a component c and
its related components K = KF,F ′(c) is present if holds∣∣∣∣∣∣MO(c) ∪

⋃
k∈K

MO(k)

∣∣∣∣∣∣ ≥ 1 ∧MO(c) ⊃
⋃

k∈K

MO(k)

Inconsistency by Redundancy

If the obligatory features in the set of related components KF,F ′(c) for a component c
are a superset of MO(c), we assume them to contain one or more redundant features.
An example for such an inconsistency by redundancy is shown in Figure 4.6, where
component k3 ∈ C ′ is mapped to feature f4 that is not present in MO(c). If k3 is related
to another component c′ ∈ C that requires f4, the redundancy regarding component c is
not treated as an inconsistency by redundancy. This is reflected by the second part of
the following definition.

83

4 Consistency Checking in Software Product Lines

𝐾𝐾𝐹𝐹,𝐹𝐹′(𝑐𝑐)

𝑐𝑐 𝑘𝑘2𝑎𝑎 b2

𝑘𝑘3b3

𝑘𝑘1b1

f2

f3

f1

f2

f3

f1

f4

𝐹𝐹(𝐴𝐴) 𝐹𝐹𝐹(𝐵𝐵)𝐵𝐵𝑀𝑀𝑂𝑂(𝑐𝑐) 𝑔𝑔𝐴𝐴,𝐵𝐵𝐴𝐴 �
𝑘𝑘∈𝐾𝐾𝐹𝐹,𝐹𝐹′(𝑐𝑐)

𝑀𝑀𝑂𝑂(𝑘𝑘)

Figure 4.6: Redundant feature mapping between c and KF,F ′(c) (figure taken from [56])

Definition 4.12 (Inconsistency by Redundancy).
An inconsistency by redundancy between the obligatory features of a component c and its
related components K = KF,F ′(c) is present if holds∣∣∣∣∣∣MO(c) ∪

⋃
k∈K

MO(k)

∣∣∣∣∣∣ ≥ 1 ∧MO(c) ⊂
⋃

k∈K

MO(k)

and there exists no set of components C from F so that holds

(K ∩K = ∅) ∧ (((∪k∈KMO(k))\(MO(c))) ∩ (∪c∈CMO(c))) ⊆ (∪c∈CMO(c))

with K =
⋃

c∈C

KF,F ′(c)

After we have described the invariants of the three types of inconsistencies, the next
section will cover how detected inconsistencies can be resolved.

4.4.2 Inconsistency Resolution
The inconsistencies described in the previous section can have different causes. As the
inconsistencies are always described relating to a family model F (A), the cause of the
inconsistencies lies in the feature mappings of the components of family model F ′(B). In
reality, errors may also be present in the inter-artifact relationship described in Definition
4.7 and the feature mappings of F (A). These types of errors are not handled within this
work but can still be detected based on the inconsistencies described in the previous
section.

Resolution of inconsistencies by contradictoriness To resolve the inconsistency im-
posed by disjoint obligatory features of component c and its related components KF,F ′(c),

84

4.4 Consistency of Connected Feature Mappings

the user needs to be involved because expert knowledge is required. One possibility to
remove such an inconsistency is to either correct the feature mappings of all components
residing on the component path of c or KF,F ′(c) manually or to perform this process
semi-automatically by choosing either F or F ′ as the reference model and reassign the
corresponding feature mappings of the components in the other family model.

Resolution of inconsistencies by incompleteness Inconsistencies on the basis of miss-
ing features in the set of obligatory features of KF,F ′(c) can be resolved by adding these
missing features (∪c∈CMO(c))\(∪c′∈C′MO(c)) to the feature mappings of the component
paths of KF,F ′(c). This process also has to be performed semi-automatically by preparing
the set of features that need to be assigned to the component paths of al l components
in the set of components KF,F ′(c).

Resolution of inconsistencies by redundancy Redundant features among the set of
obligatory features of KF,F ′(c) are the only kind of inconsistencies that can be resolved
automatically. Removing the set of features (∪c∈CMO(c) ∩ (∪c′∈C′MO(c′)) from the
mappings of the component paths of KF,F ′(c) removes the redundant features.

Choosing to apply the resolution operations described in this section might induce
other inconsistencies within the analyzed family models as changing the feature mappings
has implications on the validity of the derived mappings of other components. Therefore,
resolution operations need to be used with care and resulting inconsistencies need to be
resolved until a consistent state is reached. If a consistent state across all family models
of the product line is reached, a generic feature mapping can be derived from the feature
mappings of these family models.

4.4.3 Construction of Feature Mappings
To construct a generic feature mapping for the artifact elements of a product line, all
family models need to be taken into account. Thus, we use Definition 4.6 to create a
feature mapping for individual artifact elements as defined in Definition 4.2.

Definition 4.13 (Construction of a Generic Feature Mapping).
A feature mapping f : A→ P(F) A ∈ ΛP L based on a set of family models FS is defined
as

f(FS ,A)(a) =

fF (A),A(a), if ∃ F (A), F (A) ∈ FS ∧ A ∈ ΛP L

∅, otherwise

With the help of the techniques presented in this section, it is possible to define a
consistent feature mapping for artifact elements of a product line based on existing
variability documentations in the form of family models. The mapping from Definition
4.13 can be used during the application of the methodology presented in [162].

85

4 Consistency Checking in Software Product Lines

4.5 Evaluation
During the SPES_XT project a multitude of external and internal case studies have been
conducted by the project partners. Internal case studies were conducted by industrial
partners on real-world software artifacts using the methods developed during the runtime
of the project, while external case studies were developed by an industrial partner and
provided for project-wide utilization. These external case studies included a set of artifacts
from a fictional product line based on a real-world example. One of these case studies was
the ’automotive case study’ developed by Daimler [111, p. 11-25]. In this case study, the
development artifacts of two product lines were provided to the other project partners.
One of these systems is a control system for the external light of an automotive (EL)
while the other one is a control system responsible for the velocity of a driver assistance
system (DAS).

We evaluated the methodology presented in this chapter with the artifacts related to
the DAS system:

• Functionmodel MF AS: MATLAB/Simulink model (FAS model introduced in
Section 3.5.1)

• Requirements documentation AR: Formal module from IBM Rational DOORS

• Test case description AT : Formal module in IBM Rational DOORS

• Feature, family and variant description models F, F (AR), F (AT), V : Created
with pure::variants

Test cases that realize specific requirements are linked to them via cross module links. For
each DOORS module, a family model is available that maps features to their respective
DoorsObjects via their unique identifier. Further links exist between feature, family and
variant description models, expressed by the unique identifier in the respective model,
e.g. a link to a feature from a component in a family model is captured by storing the
unique id of the feature in the feature model.

While the artifacts of the DAS system further include the functionmodel and variant
description model, we could only apply the automatic feature derivation procedure and
the consistency checker to the requirements documentation, test specification and their
corresponding family models. Only these artifacts contained sufficient traceability links
to apply the processes described in Section 4.3 and 4.4.

Both processes have been implemented as an extension component in the artshop
framework. Based on the information provided by the tool adapter, intra- and inter-
artifact traceability links can be reconstructed and stored in the model repository. These
links can then again be queried and validated by the consistency checker.

The next section describes how we applied the feature mapping derivation procedure
to the provided artifacts.

86

4.5 Evaluation

Artifact Elements Links
AR AT F (AR) F (AT) F

AR 86 - 52 86 - 176*
AT 136 52 - - 136 128*
F (AR) 86 86 - - - 86
F (AT) 136 - 136 - - 101
F 31 176* 128* 86 101 -

Table 4.1: Overview of the artifact elements in the DAS system including imported and
computed links(*)

4.5.1 Execution of the Derivation Procedure
We first imported all artifacts into the artshop framework and stored them in the
repository. An overview of the amount of involved artifact elements is shown in Table
4.1.

After that, we resolved the links between the requirements documentation AR and
the test case specification module AT by querying the repository for the unresolved
association ends of imported ExternalDoorsLinks. As each unresolved link is imported
for both modules, we only resolve one of them and delete the redundant one. This
results in 52 links shared across both modules. The tool adapter for feature and family
models automatically resolves inter-dependencies between these artifacts; therefore, no
further adaptations were necessary. In total 187 links exists between the feature and
family models. Traceability links between family model and DOORS modules can then
be recreated based on the information stored in the family model by mapping each
component to its corresponding DoorsObject, resulting in 222 traceability links between
the family models and their associated DOORS modules. Finally, features can be mapped
to their linked artifact elements contained in the formal modules by transitively following
the traceability links via the family model as described in Definition 4.13, resulting in
176 features being mapped to the elements of AR and 128 features being mapped to the
elements of AT .

The complete link derivation process takes approximately 330 ms, including all database
queries needed for the resolution process. This represents a significant speed up in
comparison to a manual feature annotation process, as manual annotation of features
to their respective development artifacts in artshop takes around 5-10 minutes for each
individual feature, as all artifacts have to be thoroughly examined to capture all feature
dependencies. As the artifacts of the DAS case study are relatively small, it can be
assumed that even more time is needed to create a feature mapping for industrial-size
artifacts manually. In contrast, the automatic derivation procedure can automatically
extract and map all features defined in the variability documentation to the respective
development artifacts, based on the assumption that the variability documentation
contains the correct mapping.

87

4 Consistency Checking in Software Product Lines

Figure 4.7: Dependence view showing the traceability links of a requirement in artshop

4.5.2 Execution of the Consistency Check
After a feature mapping has been obtained, its consistency can be checked using the
technique described in Section 4.4. On average, the consistency check took around 2.6
ms on the artifacts of the DAS system, while assuming the feature mappings of F (AT)
as a reference for the consistency check. Overall, 37 inconsistencies by incompleteness
have been found between the variability documentation of requirements and test case
specification. Of these 37 inconsistencies, 27 could be mapped to an erroneous feature
mapping on the root level of one of the analyzed family models, resulting in an inconsistent
set of obligatory features for the components of this family model. 8 other inconsistencies
can be attributed to the application of different mapping paradigms within the feature
mappings of both family models. While F (AR) also maps features to DoorsObjects
representing intermediate hierarchy layers that group a set of DoorsObjects to a certain
feature, F (AT) only contains feature mappings to the leaf nodes of the associate DOORS
module AT . The other two inconsistencies are attributed to two individually incomplete
mappings between two pairs of DoorsObjects.

The found inconsistencies could easily be resolved using the descriptions of the indi-
vidual inconsistencies.

4.6 Conclusion and Future Work
In this chapter, we have presented a method for the automatic derivation of feature
mappings from the variability documentation of a software product line managed by
pure::variants. Feature mappings are derived via the relationships stored in feature and
family models and mapped to the development artifacts references by the family models.
The correctness of the extracted mappings can be verified via an inter-artifact analysis
using traceability links between elements of artifacts that were part of the feature mapping
derivation process.

88

4.6 Conclusion and Future Work

We empirically evaluated the approach on the artifacts of a case study from the
SPES_XT project. The feature derivation procedure can significantly speed up the
enrichment of artifacts with variability information, in comparison to a manual feature
annotation approach. Moreover, we checked the consistency of the extracted feature
mappings using the proposed consistency checker and were able to find a set of inconsis-
tent feature mappings in the variability documentation. While the proposed approach
performed well on the artifacts of the FAS case study, further evaluations of the techniques
should be conducted on industrial sized artifacts.

The techniques proposed in this chapter are well suited as a pre-processing step of other
analysis techniques such as the consistency analysis we described in [162]. In addition,
the extracted information could potentially be used for the creation of context-sensitive
views, by only showing artifacts connected to the features selected in a variant description
model. The artshop framework already supports the visualization of the traceability links
computed by the proposed approach as it can be seen in Figure 4.7. By double clicking,
the links of the selected model element are also propagated into this view, allowing the
navigation of extracted traceability information.

Limitations of the current approach still exist with respect to the resolution of in-
consistencies found by the consistency checker. Currently, inconsistencies need to be
manually resolved in the source artifacts that were imported into artshop. It would be
desirable to employ an automatic resolution mechanism that can directly correct found
inconsistencies into the source artifacts of pure::variants.

89

5 Dependency Analysis and Slicing of
MATLAB/Simulink Models

MATLAB/Simulink was already introduced in Section 2.2 as an important development
tool for the creation of model-based software in the automotive domain. Industrial sized
MATLAB/Simulink models may contain dozen of hierarchy levels and tens of thousands
of blocks due to the sheer amount of functionality modeled within these diagrams.
MATLAB/Simulink offers certain architectural patterns to cope with the complexity
introduced with such an amount of elements. These include Subsystem blocks needed to
modularize a model and encapsulate distinct functions with a defined interface. Bus signals
can be used to compose multiple visual signals into one composite signal. Both of these
patterns reduce the overall visual complexity of a model but also hide information from
the modeler that might be needed to understand the model, i.e. dependencies between
model parts. As bus signals containing more than 100 signals that are routed across
multiple hierarchy levels are common in industrial size models, automatic techniques
are needed to cope with the complexity of manual dependency review. These techniques
need to be able to reconstruct the signal flow in a MATLAB/Simulink model, while at
the same time respecting all factors influencing dependencies within a model, e.g. block
and signal flow types as introduced in Section 2.2.1.

Dependency analysis techniques have multiple applications during the design and
maintenance of model-based software created with MATLAB/Simulink. They can be
leveraged to compute context-sensitive views including only parts of the model that are
currently relevant for the modeler during model maintenance, testing and debugging.
Such model slices could also be used to reuse a subset of a given model with respect to a
certain functionality by exporting the slice of the model into a separate model. Further
application scenarios include change-impact analyses during model evolution that can be
leveraged to realize incremental static analyses.

5.1 Overview
In this chapter, we first present a dependency analysis for MATLAB/Simulink models to
determine signal dependencies between blocks within a model. The analysis distinguishes
between data and control dependencies, which are incorporated into a dependence
graph of the Simulink model, similar to the concept of Program Dependence Graphs
first introduced by Ferrante [52]. Besides dependence relations from related work on
dependency analysis of MATLAB/Simulink models [9, 97, 115, 116], the presented
dependency analysis respects the influence of all block and signal flow types on data

91

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

dependence that have been introduced in Section 2.2.1. Moreover, we propose the
extraction of control dependency relations directly from MATLAB/Simulink.

To leverage the results of the dependency analysis for complexity reduction of a model
with respect to a scope of elements, we integrate the results of the analysis into a slicing
algorithm adapted to MATLAB/Simulink models. In later chapters of this thesis, the
dependency graph and slicing algorithm will be used to realize further structural static
analyses as they provide powerful tools to reason about the internal structure of a
MATLAB/Simulink model, which was also noted by Hu et al. in [71]. We evaluate the
resulting approach against state-of-the-art slicing techniques from the literature using
models from industrial case studies, academic projects as well as models provided as
examples by MATLAB/Simulink. Finally, we propose a definition for data dependence in
MATLAB/Stateflow models and discuss how this dependency relation can be incorporated
into the presented slicing algorithm.

5.1.1 Related Work
Merschen et al. [97] present a signal reconstruction approach for MATLAB/Simulink
models, which respects implicit signal flow via Goto and From blocks. The presented
analysis is based on a model created by the tool adapter that has been mentioned in
Section 3.1.2 and includes virtual lines across subsystem borders and between Goto and
From blocks to enable the seamless traversal of the model. Signals are identified and
created based on labels attached to lines, which might lead to an inaccurate representation
of the signal flow graph when bus-capable blocks are used in the model. The authors do
not address implicit signal flow via datastore blocks, signal renaming and only partially
cover tracing atomic signals through bus signals.

Bender et al. [9], introduce an approach to analyze the signal flow within Simulink
models. In their work, explicit and implicit interfaces of subsystems are defined and
discussed. The authors extensively explain implicit signal flow between Goto/From and
Datastore blocks, but omit the discussion of signal flow across bus signals for matters of
simplicity. The influence of specific block types on data dependence is not mentioned as
part of their work.

The first slicing approach for MATLAB/Simulink models has been presented by
Reicherdt et al. in [116], which is based on program dependence graphs. The authors
construct a data dependence relation only with regard to the lines that are used to
connect blocks. This disregards the influence of virtual blocks and bus-capable blocks
onto the signal flow, potentially leading to imprecise slices if bus signals are used within
an analyzed model. The authors further present an algorithm to compute conditional
execution contexts needed to create the control dependence relations in a Simulink model.
In contrast, the slicing approach introduced in this thesis uses information available
within Simulink to compute the control dependence relation. In his PhD thesis, Reicherdt
extended the data dependence relation of his approach from [116] to bus signals [115].
While signal information is computed in a different way, the approach is similar to the one
used in this thesis, but does not include indirect signal flow across DataStoreRead and
DataStoreWrite blocks obtained by the sorted order of the model. In addition, Reicherdt

92

5.1 Overview

ignores signal boundaries imposed by nonvirtual blocks, e.g. an atomic signal exchanged
between two nonvirtual blocks is not propagated over the receiving nonvirtual block.
These boundaries are not relevant for the computation of slices but need to be considered
during the model smell analyses presented in Chapter 7. In addition, we provide an
over-approximation for the input-output relationships of MATLAB/Stateflow charts
(see Section 5.6). Reicherdt uses computed signal information during the verification of
MATLAB/Simulink models using the Boogie framework [117]. Similar information are
used in the static value analysis framework developed by Dernehl et al. [40, 41, 42, 43, 44],
that uses the signal information of models imported with the artshop framework.

Another slicing algorithm was presented by Pantelic et al. [108] as part of the Reach/-
Coreach tool. Here the definitions for dataflow from [9] are used to perform impact
analysis and slicing on the model. Again, the characteristics of bus signals and the impact
of specific block types on the dataflow properties of the model are not discussed within
this work. Neither the approach of Reicherdt et al. nor Pantelic et al. discuss dependency
analysis of MATLAB/Stateflow models, which is also addressed in this chapter.

In addition to the presented approaches for slicing Simulink models, slicing algo-
rithms have been applied to various kinds of models, e.g. extended finite state machines,
Statecharts and UML/SysML models.

An extensive survey of slicing techniques for state-based models, i.e. extended finite
state machines and statecharts, is given in [5]. Lano et al. [89] introduce slicing techniques
for a subset of the UML, i.e. class diagrams, state machines and communicating sets of
state machines. Their approach respects both declarative elements of the UML such as
pre- and post-conditions and imperative elements (state machines).

Nejati et al. [103] propose to use slicing during safety certification by extracting model
fragments from SysML models relevant to a particular safety requirement. The authors
use traceability links as a starting point for their slicing algorithm and then compute a
set of relevant elements in all block definition, internal block and activity diagrams.

Lallchandani et al. present a slicing approach for UML models via the construction of
a so-called Model Dependence Graph based on the dependence relations of the model
and slice this graph to obtain the actual model slice [88]. A similar approach is used
within this thesis to realize a slicing algorithm on MATLAB/Simulink models.

5.1.2 Contributions and Bibliographic Notes
In this chapter, we provide an extensive discussion of factors influencing the signal
flow in MATLAB/Simulink models and propose an algorithm to reconstruct all atomic
and bus signals exchanged within these models. We use the signal information derived
by this algorithm, to define a signal flow-based data dependence relation and use this
relation in conjunction with further control dependence information extracted from MAT-
LAB/Simulink for the computation of the dependence graph of a model. To our knowledge,
this is the first approach to include all factors influencing data dependencies in MAT-
LAB/Simulink models. Finally, we propose a slicing algorithm for MATLAB/Simulink
models by performing a reachability analysis on the computed dependence graph. Fur-

93

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

1 read(n);
2 i = 0;
3 sum = 0;
4 product = 1;
5 while (i < n)
6 sum = sum + i;
7 product = product * i;
8 i = i + 1;
9 write(sum);
10 write(product);
11

(a)

1 read(n);
2 i = 0;
3 sum = 0;
4

5 while (i < n)
6 sum = sum + i;
7

8 i = i + 1;
9 write(sum);

10 write(product);
11

(b)

Figure 5.1: Example program (a) and slice of (a) with slicing criterion <9, sum> (b)

ther, we provide a proof-of-concept algorithm to extend the dependence analysis of the
algorithm to Chart blocks from MATLAB/Stateflow.

The proposed techniques are extensively evaluated and their importance for the analysis
of MATLAB/Simulink models is highlighted by their use in further application scenarios.

The flow-based definition for data dependence and the slicing algorithm have partially
been published in [59].

5.2 Foundations
We will first introduce basic concepts and terminology related to dependency analysis and
slicing on program code before we map these concepts to MATLAB/Simulink models.

5.2.1 Dependency Analysis
The literature distinguishes two types of dependencies between statements of a program:
data and control dependence. They are defined based on the control flow graph (CFG)
of a program P . Such a graph contains a node for each program statement in P and an
edge between two nodes representing a flow of control between two statements.

Definition 5.1 (Control Flow Graph [14]).
A control flow graph for a program P is a graph GCF G = (N, E) in which each node
is associated with a statement from P and the edges represent the flow of control in P .
Let V be the set of variables in P . With each node n ∈ N (i.e., each statement in the
program and node in the graph) associate two sets: REF (n), the set of variables whose
values are referenced at n, and DEF (n), the set of variables whose values are defined
at n. START and STOP nodes represent the start and end of the respective program P
within GCF G.

94

5.2 Foundations

Figure 5.2: CFG of the program displayed in Figure 5.1a adapted from [151]

Data dependencies between nodes of a CFG are intuitively formed based on so-called
def-ref relationships between program statements, i.e. if a variable is defined at node i
and later referenced at node j.

Definition 5.2 (Data Dependence [151]).
A node j is data-dependent on a node i via a variable x if the following conditions hold:

• x ∈ DEF (i)

• x ∈ REF (j)

• There exists a path between node i and j without intervening definitions of x

Control dependence is a property of control flow between nodes in a CFG and defined
in terms of post-dominance of nodes. A node i in the CFG is post-dominated by another
node j, if all paths from node i to the STOP node contain node j [151].

Definition 5.3 (Control Dependence [52]).
A node j is control-dependent on a node i if the following conditions hold:

• There exist a path p from node i to node j so that node j post-dominates every
node on p excluding node i and j

• Node i is not post-dominated by node j

Based on the CFG and the two definitions for data and control dependence, dependency
analysis can be performed on a program. Consider the CFG shown in Figure 5.2, which
represents the control flow of the example program in Figure 5.1a. The example program
reads an input into variable n and, based on its value, computes the sum and product of
all natural numbers up to n within the variables sum and product and outputs their
values at the end of the program. In terms of data dependence, node 5 in the CFG is
data-dependent on node 2, as i ∈ DEF (2) and i ∈ REF (5) and no intervening definition
of variable i is present on the path between node 2 and 5. Furthermore, node 8 is control
dependent on node 5 as node 8 post-dominates all nodes between node 5 and 8 and node
5 is not post-dominated by node 8.

95

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

5.2.2 Slicing
Program slicing, as introduced by Weiser [160], is a mechanism to extract a slice of a
program that affects a given point of interest [151]. Formally, such a point of interest
encompasses one statement s of a program and a set of variables V and is defined as the
slicing criterion < s, V > of a given slice. Based on the dependence relations discovered
by dependence analysis, a slice can be computed by transitively determining all program
statements that affect the values of the variables from V at program point s. An example
slice is shown in Figure 5.1b. Here, the program shown in Figure 5.1a is sliced with
respect to the slicing criterion <s9,sum>, with s9 being the program statement of line 9,
i.e. all statements that do not affect the value of variable sum in line 9 are removed.

While the original approach introduced by Weiser [160] utilized data-flow equations to
calculate a slice from a program’s CFG, most modern slicing techniques utilize Program
Dependence Graphs (PDG) for slice computation. As the CFG, the PDG is a directed
graph that contains a vertex for each statement of a program P . In contrast to CFGs,
the vertices of a PDG are connected based on their dependencies to each other, which
can be discovered by dependency analysis on the CFG.

Definition 5.4 (Program Dependence Graph [52]).
A program dependence graph for a program P is a directed graph GP DG = (V, E) with
the following properties:

• N : Contains a vertex for each statement in P and an entry vertex representing the
start of the program.

• E: Contains a set of pairs of V × V , representing data and control dependence
edges between the vertices of V .

The entry vertex cannot be the target of any dependence edge contained in E and all
other vertices in V are directly or transitively control dependent on the entry vertex.

Using PDGs, program slices can be calculated by solving a vertex reachability problem
on the PDG [107]. For a given vertex v in the PDG, it is sufficient to compute all vertices
that v directly or transitively depends on. Therefore, the slicing criterion is no longer
a combination of a statement and a set of variables but is expressed by the statement
associated to the vertex in the PDG and all variables that are defined/used within this
statement.

Figure 5.3 shows the PDG for the example program from Figure 5.1a. Here, solid edges
represent control dependence between two vertices, while dashed edges represent data
dependence. All grayed out nodes are directly or transitively dependent on the node with
the label write(sum) corresponding to statement 9 in the example program shown in
Figure 5.1a. These vertices correspond to the slice with the slicing criterion <s9, sum>
shown in Figure 5.1a.

Slicing algorithms may be classified based on various properties as highlighted by Silva
in [144] and Tip [151]. In the context of this thesis, we only consider a subset of these
classifications that have first been mentioned by Venkatesh in [155].

96

5.3 Signal-Flow in MATLAB/Simulink

Figure 5.3: PDG of the example program from Figure 5.1a adapted from [151]

• Slice direction: A slice can be calculated either in forward or backward direction.
Up until now, we only considered backward slices that contain all program state-
ments that influence the program location given by the slicing criterion. Forward
slices contain the statements that depend on the statement described by the slicing
criterion.

• Static vs. dynamic slicing: A static slicing technique does not make any as-
sumptions of the state of the variables of the program and therefore contains all
possible execution paths from or to the respective slicing criterion. By utilizing
information about a given state of the program, a dynamic slicing technique can
calculate a slice on a program that is actually reachable based on a given state
of a program. Such techniques require the evaluation of conditional statements to
compute control and data dependence relations correctly.

• Closure vs. executable slice: A slice can contain either an executable subset of
the statements of the program or a non-executable subset of the program through
a closure of dependencies.

5.3 Signal-Flow in MATLAB/Simulink
In comparison to program code, where data dependencies between statements are ex-
pressed via def-ref relationships of variables declared/used within these statements (see
Definition 5.18), data flow in MATLAB/Simulink is more or less directly modeled by
the lines connecting the blocks in a model. Lines carry one or multiple signals from one
outport to one or multiple inports attached to the blocks of a model (see Section 2.2.1).
Signals are generated by the nonvirtual blocks of the model. While the general data
flow can be visually followed by tracing the lines connecting blocks in the model, the
application of architectural pattern such as bus signals allow the recursive composition of
multiple signals into one visual line. Moreover, some blocks exchange signals via indirect
signal flow as introduced in Section 2.2.1. The usage of these architectural patterns as
well as the usage of indirect signal flow within a model reduce the visual complexity of

97

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

Figure 5.4: Signal propagation over different block types

the model but complicate the visual analysis of dependency relations between blocks of
the model.

Dependencies between two blocks b1, b2 are established based on the signals b1 emits
and b2 consumes. The type of a block, nonvirtual or virtual, determines if it emits new
signals, consumes signals or just propagates them. Nonvirtual blocks emit/consume
signals and realize the semantic behavior of a model. Virtual blocks are the organizational
elements of a model and simply propagate received signals. A block can be either virtual
or nonvirtual but a subset of virtual blocks becomes nonvirtual under certain conditions,
e.g. their configuration or their immediate environment. Another block type are bus-
capable blocks, which are capable of emitting and receiving bus signals (see Section
2.2.1). If a bus signal is propagated over a bus-capable block, it is continued with the
same signal characteristics, i.e. bus structure, signal names etc. All virtual blocks are
also bus-capable blocks, with a subset of bus-capable blocks being nonvirtual. While
nonvirtual bus-capable blocks consume an incoming bus signal, they also emit a new
bus signal, which is a copy of the signal they have received. Tracing an atomic signal s
contained within a bus signal that is propagated over a nonvirtual bus-capable block bbcb

requires a mapping that maps the atomic signal received by bbcb to its equivalent output
signal. Otherwise, the complete bus signal emitted by the bus-capable block needs to be
traced, which does not solely depend on the initially received signal s. Consider signal C
emitted from the Constant block SrcC in Figure 5.4. The signal is entered into the bus
signal Bus created by the BusCreator block and ends at the Memory block. A copy of
the bus signal is emitted by the Memory block leading to the termination of the copy
of signal C at the Terminator block. In terms of data dependence, mapping the signal
C that terminates at the Memory block to its equivalent copy in the emitted signal is
therefore preferred as it results in a finer level of signal traceability.

In the remainder of this section, we will provide a flow-based definition for data
dependence in MATLAB/Simulink models and discuss how control dependencies are
formed based on the sorted order of a model. The flow-based definition of data depen-
dence accounts for the impact of the block types on signal propagation characteristics

98

5.3 Signal-Flow in MATLAB/Simulink

described in the previous paragraphs. Indirect signal flow across model hierarchy levels
and Goto/From blocks is reconstructed using the concept of virtual lines introduced in
Section 3.3.1, while signals exchanged via DataStore blocks are handled separately.

To reason about the signal flow in a MATLAB/Simulink model, we first define a
representation of signals within a Simulink model, to express the possibility of a signal
being propagated over a multitude of virtual blocks.

5.3.1 Signals in MATLAB/Simulink
Signals can be propagated over multiple lines and blocks depending on the block type of
the receiving blocks. Such a signal can be partitioned into multiple segments, with each
segment corresponding to the signal flow of the signal between an outport and an inport.
In the following, we will use the formalization and definitions introduced in Section 2.2.4
as the basis for the definition of signal flow in MATLAB/Simulink model M. We start
with the definition of the signal flow between two ports called a signal segment.

Definition 5.5 (Signal Segment).
A signal segment c contained in a MATLAB/Simulink model M is defined as a triple
c = (Ls, Ld, l) with:

• Source location of segment Ls = (bs, ps) with bs ∈ B and ps ∈ portsout(bs)

• Destination location of segment Ld = (bd, pd) with bd ∈ B and pd ∈ portsin(bd)

• l = The fully qualified signal name of c

• (ps, pd) ∈ L or ps = pd = ⊥

The set of signal segments of a MATLAB/Simulink model M is denoted as C.

A signal segment ((b1, pout), (b2, pin), l) describes a signal exchanged between two blocks
b1 and b2 that are connected via their respective in- and outport pin, pout. The relationship
between an outport and an inport of two blocks is typically established based on a line
(pout, pin) ∈ L that connects these ports. If a signal segment represents a signal exchanged
via indirect signal flow, the source and destination ports may be set to ⊥ as some of
these blocks do not have ports emitting and receiving the indirectly exchanged signal,
e.g. DataStore blocks.

The current fully qualified signal name of a signal segment is stored in l. A signal
segment not contained in a bus signal is usually named after the line e = (pout, pin)
it is associated with or, in case of indirect signal flow, by the last line the signal was
propagated over. To ease later definitions, we assume that each line is associated with a
name. If a signal segment is contained in a bus signal, its fully qualified signal name is
constructed as a sequence of names derived from the bus signals it is contained in, in
descending hierarchical order.

99

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

Definition 5.6 (Fully Qualified Signal Name (FQSN)).
Let I be the finite set of all signal names used in a Simulink model M.

• The structure of the FQSN(c) of a signal segment c is defined as a sequence q over
I where q is an ordered list ⟨q1...qn⟩ with qi 1 ≤ i ≤ n denoting a signal name from
I and n the length of the sequence

• The empty sequence is defined as ⟨⟩ and has a length of 0

• A sub sequence q|i of a sequence q with length n is defined as q|i = ⟨qi...qn⟩ for
i < n and as ⟨⟩ otherwise

• The concatenation operation ◦ of two sequences q = ⟨q1, ..., qn⟩ and v = ⟨v1, ..., vm⟩
over I is defined as

l ◦ v = ⟨q1...qnv1...vn⟩

FQSN(c) describes the hierarchical sequence of bus signals, a signal segment c is
located in, based on their respective signal names. Reconsider the example model shown
in Figure 5.4. The fully-qualified signal name of the signal segment c of signal C between
the BusCreator and Memory block would be FQSN(c) = ⟨Bus, C⟩. The first element in
the sequence of names represents the name of bus signal Bus, expressing the inclusion of
c in a signal segment of this signal. The last element represents the current name of the
signal represented by c.

Based on the definition of FQSN(c), we can formulate a signal inclusion relationship
based on two signal segments.

Definition 5.7 (Signal Containment).
A signal segment c = (Ls, Ld, FQSN(c) = ⟨c1...cm⟩) is contained in another signal
segment d = (Ls, Ld, FQSN(d) = ⟨d1...dn⟩) iff it holds that ∀ i ∈ [1..n], ci = di. The
signal segment containment relation shall be defined as

⊂c: C → B

As mentioned before, based on the block type of the block bd a signal segment
c = ((bs, ps), (bd, pd), l) ends at, the signal s represented by c might be propagated over
bd without being changed. To represent a continuation of s from bd, a succeeding signal
segment d = ((bd, p′

s), (b′
d, p′

d), l′) can be created that starts at one of the outports of bd.
Multiple succeeding signal of a signal s can then be aggregated into a signal path through
a model.

Definition 5.8 (Signal Path).
A signal path sp=(Ls,Ld,Cp) describing the trace of a signal through a modelM is defined
as:

• Signal path start location Ls = (bs, ps) with bs ∈ B and ps ∈ portsout(bs)

• Signal path destination Ld = (bd, pd) with bd ∈ B and pd ∈ portsin(bd)

100

5.3 Signal-Flow in MATLAB/Simulink

Table 5.1: Functions for the navigation and exploration of the signal segments C, paths
SP and signals S of a MATLAB/Simulink model M = (B, P = Pin ∪ Pout, L, I, fp, h)
Relation Logical signature Definition
Signal segments
of signal path segSP : SP → P(C) segSP ((Ls, Ld, ⟨c1...cn⟩) = {c1, .., cn}

Signal segments
of signal segS : S → P(C) segS((Ls, PS)) = ⋃

p∈PS

segSP (p)

Signal segment
at port segP : P → P(C) segP (p) = {c|c ∈ C ∧ (p1 = p ∨ p2 = p)}

with c = ((b1, p1), (b2, p2), l)
Signal paths
containing segment paths : C → P(SP) paths(c) = {sp = (Ls, Ld, ⟨c1...cn⟩)|

∃ i ∈ N : i ≤ n ∧ ci = c}

Signal for segment signalc : C → S
signalc(c) = s = (Ls, Ps)

so that holds: path(c) ⊆ Ps

Destination of
signal path destSP : SP → P destSP ((Ls, (bdest, pdest), CP)) = pdest

Destinations of
signal destS : S → P(P) destS((Ls, PS)) = ⋃

p∈PS

{destSP (p)}

• Sequence of signal segments Cp=⟨c1...cn⟩ with ci = ((bsi
, psi

), (bdi
, pdi

), li):
– ps1 = ps and pdn = pd

– bdi
= bsi+1 : ∀ 1 ≤ i < n

The set of signal paths in a MATLAB/Simulink M is denoted as SP .

A signal path sp starting at Ls=(bs, ps) describes a trace of a signal through the model
that is created at Ls and terminates at Ld=(bd, pd). The segments contained within the
sequence Cp must succeed each other, i.e. the start and destination blocks of subsequent
signal segments in Cp are equal. Thus, a signal path describes exactly one path a signal
takes through the model, without being changed, i.e. all blocks on the path must either
be virtual or bus-capable blocks.

By applying both definition 5.5 and 5.8, we can now define a signal emitted from the
port of a specific block.

Definition 5.9 (Signal).
A signal s is defined as s = (Ls, Ps) and consists of

• Signal start location Ls=(bs, ps) with bs ∈ B and ps ∈ portsout(bs)

• Set of signal paths Ps for that holds: ∀ pS = (L′
s, L′

d, C ′) ∈ Ps : Ls = L′
s

The set of signals of a MATLAB/Simulink model M is denoted as S.

101

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

(a) Propagation of signal C over the blocks of the model shown in Figure 5.4

(b) Signal representation of signal C in the model excerpt from Figure 5.5a

Figure 5.5: Application of signal representation on signal C from shown in Figure 5.4

A signal emitted from the port of a block bundles all signal paths that start at that
port and therefore contains information about all blocks that are potentially dependent
on the signal. With the help of this definition, we can now formally represent the signal
flow relationships of signals emitted and received by blocks of a Simulink model.

An example for a signal with one signal path would be signal C emitted by the block
SrcC in Figure 5.4. If traced over the nonvirtual bus-capable Memory block, the signal
path contains four signal segments of which two are contained in a bus signal. The blocks
reachable by this signal are visualized in Figure 5.5a. By using Definition 5.9, 5.8 and 5.5
we can represent signal C as shown in Figure 5.5b.

In addition, we provide a set of functions that ease the formalization of latter definitions
in Table 5.1. These functions enable the extraction of properties out of signals and signal
paths, enable the ascending navigation between the different granularity levels of signals
and provide a mapping for signal segments flowing over a specific port p.

5.3.2 Data Dependence in MATLAB/Simulink
As we are now able to represent the flow of signals within a MATLAB/Simulink model
M, we can describe how signals are propagated. Propagation will be described in the
form of expansion functions, which compute a set of succeeding signal segments based on
a given signal segment c. Based on the block type c ends at, an appropriate expansion
function must be chosen that respects the signal propagation characteristics introduced

102

5.3 Signal-Flow in MATLAB/Simulink

at the beginning of Section 5.3. Starting from the set of initial signal segments of a
signal s created by a nonvirtual block, these functions can then iteratively be applied to
construct the signal paths of s. Expansion functions receive a signal segment c as input
and create a set of succeeding signal segments. If a function determines that a signal
terminates at a block, the function returns ∅.

Definition 5.10 (Nonvirtual Block Expansion Function).
The expansion function for nonvirtual blocks (NVB) is defined as

expandNV B(c) = ∅

Each signal received by a nonvirtual block terminates, as a nonvirtual block uses its
received signals to calculate a new set of output signals. Therefore, expandNV B always
returns an empty set of signal segments. An example for this behavior is the signal AccA
that is received by the Sum block in Figure 5.4, which terminates at the Sum block as
its value is used to compute the output value of the block.

A block type that supports the propagation of input signals are virtual blocks.

Definition 5.11 (Virtual Block Expansion Function).
The expansion rule for virtual blocks (VB)

expandV B(c = (Ls, Ld = (b, p), l))

is defined as

expandV B(c) = {c′|succc(c, c′)}
with c′ = ((b, ps), (b′, pd), h((ps, pd)) ◦ l|2) and

succc(c, c′) = ((fp(ps) = fp(pd)) ∧ (fp(pd) = b′)∧
(ps, pd) ∈ L)

Virtual blocks do not affect the semantic of a model, which means that the function
expandV B will expand every segment over the current block b, as long as it has a successor
b′. When a segment is expanded, the first name in the sequence of FQSN(s′) is changed
according to the line label mapped to (po, pi), while the rest of the FQSN remains
unchanged. This way, signals contained in a bus signal are not renamed when the name
of their containing signal changes. Only the first qualifier of their FQSN is updated.

In Section 2.2.1, we have introduced the BusCreator, BusSelector and BusAssignment
blocks as a way to create, resolve and manipulate bus signals. Even though these blocks
also belong to the block category of virtual blocks, they present exceptions to the
expandNV B rule and need to be handled separately. In the following, we will detail how
the creation, resolution and manipulation of bus signals during signal propagation is
handled.

Definition 5.12 (BusCreator Block Expansion Function).
Let uniqueb : I → I be the aliasing function of BusCreators described in Section 2.2.1
for a BusCreator block b. The expansion function for BusCreator blocks (BC)

expandBC(c = (Ls, Ld = (b, p), l = ⟨l1...ln⟩))

103

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

is defined as

expandBC(c) = {c′|succc(c, c′)}
with c′ = ((b, ps), (b′, pd), l′)

and l′ = h((ps, pd)) ◦ uniqueb(l1) ◦ l|2

To reflect that the signal represented by the expanded segment c′ is contained within
the bus signal emitted by BusCreator b, the FQSN of the initial segment c is prepended
with the name of this signal and set as FQSN(c′). Additionally, the aliasing function
uniqueb is applied to the first segment of FQSN(c) to assert that there exists no signal
in the bus signal that has the same name as another signal. As the BusSelector and
BusAssignment blocks resolve and manipulate signals in a bus signal via their FQSN, we
need to assure that the FQSN of all signals within a bus signal are unique at all times.

To extract a signal segment from a bus signal, it needs to be expanded over a BusSelector
that selects the signal represented by this segment.

Definition 5.13 (BusSelector Block Expansion Function).
Let IBS(b) be the set of tuples of fully qualified signal names of the signals and their
resulting ports selected by a BusSelector block b. The expansion function for BusSelector
blocks (BS)

expandBS(c = (Ls, Ld = (b, p), l = lpre ◦ la))

is defined as

expandBS(c) = {c′|
succc(c, c′) ∧ (lpre, ps) ∈ IBS(b)}

with c′ = ((b, ps), (b′, pd), h((ps, pd)) ◦ la)

The set IBS(b) represents the set of tuples of FQSN and port pairs selected by the
BusSelector b, i.e. for a tuple (l, p) the signal with the FQSN l is emitted from b on port
p. Each segment c whose FQSN either exactly matches or is contained in a segment with
FQSN(c) = lpre is expanded over b, and their label is updated accordingly. This way we
assure that signal segments contained within a selected bus signal are also propagated
over the BusSelector block.

BusAssignment blocks are able to manipulate existing bus signals by exchanging a
signal currently present in a bus with another signal with identical data type.

104

5.3 Signal-Flow in MATLAB/Simulink

Definition 5.14 (BusAssignment Block Expansion Function).
Let A(b) be the set of tuples of fully qualified signal names of the signals and their
incoming ports assigned by BusAssignment b and pbus the port of the incoming bus signal.
The expansion function for BusAssignment blocks (BA)

expandBA(c = (Ls, Ld = (b, p), l))

is defined as

expandBA(c) = {ca|
succc(c, ca) ∧ ∃ l′ : (l′, ps) ∈ A(b)}

⋃
{(c, cc)|

succc(c, cc) ∧ pbus = p ∧ ∀ (l′, p′) ∈ A(b) : l′ ̸= l}
with ca = ((b, ps), (b′, pd), h((ps, pd)) ◦ l′|2)
with cc = ((b, ps), (b′, pd), h((ps, pd)) ◦ l|2)

The expansion function expandBA is split into two parts. The first part handles the
expansion of segments that enter b through one of the ports p ̸= pbus. The signals of
these segments replace an existing signal in the bus signal entering b via pbus. A signal
is replaced by creating a segment ca and setting its FQSN to the FQSN of the signal
it is assigned to, which is retrieved from the set A(b). The second part handles the
termination of all signals that are assigned by b but were received via pbus as well as the
continuation of all segments cc that represent signals not assigned by b.

Besides the BusCreator, BusSelector and BusAssignment block, there exist further
bus-capable blocks. These blocks are handled by the following expansion function.

Definition 5.15 (Bus-capable Block Expansion Function).
The expansion function for bus-capable blocks (BCB)

expandBCB(c)

is defined as

expandBCB(c) = expandV B(c)

Virtual and nonvirtual bus-capable blocks continue an incoming bus signal with the
same signal characteristics. In terms of data dependence, we handle nonvirtual bus-
capable blocks like virtual blocks, as the signals in the emitted copy are dependent on
their respective original signals.

One further refinement of the expansion function for bus-capable blocks can be applied
in the context of Switch and MultiPortSwitch blocks. These blocks choose one incoming
signal to be propagated during a step of the model simulation based on the signal value
received at a control port of the switch. Figure 5.6 shows a simple model that uses a
Switch block for selective signal propagation. The Switch block has a logical condition
attached to its control port (inport 2). If the value received via its control port exceeds the
value 4, the signal received at the first port is propagated. Otherwise, the signal received

105

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

Figure 5.6: Switch block controlling signal propagation

at the third inport is propagated. As the evaluation of the control condition is run-time
dependent, we need to trace both signals over the Switch block while terminating the
received control signal. MultiPortSwitch blocks can have an arbitrary amount of incoming
signal propagation candidates.

Definition 5.16 (Switch/MultiPortSwitch Block Expansion Function).
Let pc ∈ P be the control port of a Switch or MultiPortSwitch block b. The expansion
function for Switch/MultiPortSwitch blocks (SW)

expandSW (c = (Ls, Ld = (b, p), l))

is defined as

expandSW (c) =

∅, if p = pc

expandBCB(c), otherwise

The expansion function expandSW terminates the signal received at the control port
pc of the respective switch block b. For Switch blocks, this is always the second inport of
the block, while for MultiPortSwitch blocks the control port is always the first inport.

Signal graph construction To compute all signals and signal paths of a Simulink
model M, we initially create a signal segment for each signal that is emitted from each
nonvirtual block, virtual block without inports and all BusCreator blocks represented
by the set Bstart ⊂ B. By iteratively applying the defined rules in a fix point depth-first
search on the resulting signal segments, we can compute all related signal segments
that describe the propagation of the signals emitted from the blocks b ∈ Bstart. When
selecting a rule to apply on a signal segment c = (Ls, Ld, l), we always choose the most
fitting rule with respect to the block described by the destination tuple Ld of c. We can
then construct the signal paths of each signal starting in b, by computing all transitive
arrangements of the computed related signal segments. If an expansion function returns

106

5.3 Signal-Flow in MATLAB/Simulink

multiple expanded signals segments |Cc| > 1 due to multiple lines leaving at a specific
outport, the current signal path is copied |Cc| − 1 number of times, so that each segment
in Cc can be added to a distinct path. By repeating this process for each b ∈ Bstart, we
can compute all signal paths SP for a Simulink model M and associate them to their
respective signals in S.

As mentioned in Section 2.2.1, signals can also be exchanged using a DataStoreMemory
block via indirect signal flow but were not covered by an explicit expansion function. A
DataStoreMemory block can save an arbitrary signal via a DataStoreWrite block. The
currently stored value of the datastore can be retrieved using a DataStoreRead block. As
the actual value that is read via a DataStoreRead block depends on the sorted order of
the model, signals exchanged via a datastore need to respect this order.

Definition 5.17 (Signals Exchanged via DataStoreMemory Blocks).
Let BDS(bDS) = BDR(bDS) ∪BDW (bDS) be the set of DataStoreRead/Write blocks asso-
ciated to a DataStoreMemory block bDS with BDR(bDS) being the set of DataStoreRead
blocks and BDW (bDS) being the set of DataStoreRead blocks associated to bDS.

A signal s is exchanged between a DataStoreWrite block bDW ∈ BDW (bDS) and a
DataStoreRead block bDR ∈ BDR(bDS) if one of the following conditions holds:

1. bDW ≤SO bDR ∧ ¬∃ b′
DW ∈ BDW (bDS) : bDW ≤SO b′

DW ≤SO bDR

2. ¬(bDW ≤SO bDR) ∧ ¬∃ b′
DW ∈ BDW (bDS) : b′

DW ≤SO bDR ∨ bDW ≤SO b′
DW

A signal s = (Ls, Ps) emitted from a DataStoreWrite block bDW to a set of DataStoreRead
blocks BDR(bDW) is defined as follows:

• Ls = (bDW ,⊥)

• Ps = ⋃
bDR∈BDR(bDW)

pDS(bDW , bDR)

• pDS(bDW , bDR) = (Ls, Ld = (bDR,⊥), ⟨(Ls, Ld, lDS)⟩)

Here, lDS represents the name of the datastore associated with bDW .

The union of signals defined in Definition 5.17 for all DataStoreWrite blocks and the
signals constructed via expansion functions is represented by the set S.

Using the set of signal paths SP associated with the signals of S, we can formulate a
flow sensitive definition for data dependence.

Definition 5.18 (Flow Sensitive Data Dependence).
Let SP be the set of signal paths of a Simulink model M. A block b2 is data dependent
on a block b1 iff ∃ sp = (Ls, Ld, C = ⟨c1...cn⟩) ∈ SP such that ∃ i, j ∈ N so that holds:

• ci = (Lsi
= (b1, pout), Ldi

, li)

• cj = (Lsj
, Ldj

= (b2, pin), lj)

• i <= j <= n

107

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

Following this definition, a block b2 is data dependent on another block b1 if there
exists a signal path sp in the model, which contains a signal segment ci starting at an
outport of b1 that either directly ends at b2 or contains another segment cj : i < j ending
at b2.

5.3.3 Control Dependence in MATLAB/Simulink
MATLAB/Simulink also allows the modeling of conditionally executed model parts,
resulting in conditional execution contexts during model simulation (see Section 2.2.2).
The Switch block handled in Definition 5.16 is an example for a block introducing
conditional execution contexts in a model (see Definition 2.1).

To describe control dependencies in a MATLAB/Simulink model, we need information
about the conditional execution contexts of the model [116]. While Reicherdt et al. intro-
duced an algorithm to calculate the execution contexts of a model [116]; we implemented
a method as part of the MATLAB/Simulink tool adapter of the artshop framework (see
Section 3.3.1) that automatically extracts all execution contexts and the sorted order
of nonvirtual model elements from the simulation environment of MATLAB/Simulink.
This information can be used to calculate control dependencies of a MATLAB/Simulink
model in the same fashion as proposed by Reicherdt et al. [116].

5.4 Slicing Simulink Models
We will now introduce how we incorporated the flow-based definition for data dependence
into a slicing algorithm. As the algorithm presented by Reicherdt et al. [116], our algorithm
calculates a slice of a model on the dependence graph of the model via reachability
analysis. The dependence graph is derived from introduced data and control dependence
relations.

5.4.1 Building the Dependence Graph
While building the dependence graph GD for a MATLAB/Simulink model M we need
to assure that all signal paths of each individual signal s ∈ S are encoded in GD. The
nodes of GD are created by iterating over all signal paths SP of M and adding a node v
for each block encountered on a signal path sp and an edge for signal segment connecting
two blocks on sp. After that, we merge all nodes in GD that represent a block in the set
of nonvirtual, non-bus-capable block BNV B ∈ B fromM and update the edges ending at
these nodes accordingly. Finally, we add edges between control dependent nodes in GD.

Definition 5.19 (MATLAB/Simulink Dependence Graph).
A dependence graph GD = (VD, ED, fD) for a MATLAB/Simulink model M is a directed
graph with

• VD being the set of nodes of the graph representing blocks in M

108

5.4 Slicing Simulink Models

• ED being the set of tuples VD × VD representing directed dependence edges between
the nodes in VD

• fV : VD → B being a function mapping the nodes of VD to the blocks in M

• fE : ED → C ∪ {⊥} being a function mapping the edges in ED to the segments in
C or to ⊥ if an edge represents a control dependence relation

The encoding of all signal paths in GD leads to multiple nodes in VD being mapped to
the same block. We further define the mapping function fV that maps nodes from VD to
the blocks in M and fE mapping edges in ED to the signal segments.

Encoding all signal paths in GD and only merging nonvirtual, non-bus-capable blocks
enables the traceability of atomic signals across bus-capable blocks as described in the
context of Definition 5.15.

5.4.2 Slice Computation
Prior to slice computation, a slicing criterion must be chosen as a start point of the
reachability analysis in the dependence graph GD of a model M. The slicing criterion is
a set of blocks BSC ∈ B with BSC = ∅ resulting in an empty slice. Otherwise, the slicing
algorithm returns a connected slice of the model, which contains blocks that are directly
or transitively data/control dependent on the blocks of the slicing criterion.

Definition 5.20 (MATLAB/Simulink Model Slice).
A slice MS(BSC) = (BS, CS) of a Simulink Model M = (B, P, L, I, fp, h) for a slicing
criterion BSC contains a set of blocks BS ⊆ B and a set of signal segments CS for that
holds:

• ∀ b ∈ BS: b is directly or transitively data/control dependent on BSC (forward) or
vice versa (backward)

• ∀ c = (Ls = (bs, ps), Ld = (bd, pd), l) ∈ CS : bs, bd ∈ BS

Besides the reachable blocks, the slice also contains all signal segments that were
passed to reach the blocks in BS. This preserves the signals that were relevant during the
computation of the slice and can be used to calculate all other elements contained in the
slice, e.g. lines and ports, for latter visualizations or further use during other analyses.
A slice MS(BSC) = (BS, CS) can be computed by performing a forward or backward
reachability analysis on the nodes of the dependence graph from the nodes corresponding
to the blocks of the slicing criterion.

Algorithm 1 shows a sketch of the slicing algorithm in pseudo code. Besides the slicing
criterion BS, the algorithm receives the dependence graph GD and a boolean value dF

indicating if the slice has to be performed in forward (df = 1) or backward (df = 0)
direction. The algorithm starts by mapping the blocks of the slicing criterion to the
nodes of the dependence graph and storing them within a worklist (line 1). After the
initialization of the sets of reached nodes and edges in line 2 - 3, the algorithm continues

109

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

Figure 5.7: Visualization of the forward slice on the block SrcC in artshop

by processing the nodes in the work list (line 5 - 24). If a forward slice is computed
(df = 1), the algorithm determines all outgoing edges of a node v and adds all nodes
reachable from these edges to the set reachedv, while also storing each used edge to
determine a reachable node in the set reachede (line 6 - 14). After all nodes have been
processed, the worklist is set to the nodes that have been added during the reachability
analysis of the nodes currently contained in the worklist (line 25). This procedure is
continued until the worklist no longer contains elements. The resulting slice MS(BSC)
is then computed by mapping the nodes and edges contained in reachedv and reachede

to their respective blocks and signal segments. If a backward slice shall be computed
(df = 0), the algorithm works analogous but traverses the edges of GD in backward
direction (line 15 - 23).

5.4.3 Presentation
We have integrated the slicing algorithm as an extension component into the artshop
framework. A slice can directly be computed from a selection of blocks in the graphical
view of a MATLAB/Simulink model provided by the respective tool adapter (see Section
3.3.1).

From this view, a slicing criterion can be chosen via a selection of blocks and slice
calculation can be triggered. Slicing is performed on the model representation imported
by the tool adapter. The result is displayed by either hiding elements that are not
contained in the slice or fading them into the background, as it can be seen in Figure 5.7.
A calculated slice can be exported into a stand-alone MATLAB/Simulink model. During

110

5.4 Slicing Simulink Models

Algorithm 1: Slicing algorithm
Input: Slicing criterion BSC , GD = (VD, ED, fD), Slice direction forward df ∈ B
Output: Slice MS(BSC)

1 worklist = { v | v ∈ VD ∧ fV (v) ∈ BSC};
2 reachedv = ∅;
3 reachede = ∅;
4 while worklist ̸= ∅ do
5 foreach v ∈ workList do
6 if df then
7 outv = {(v, v′)|(v, v′) ∈ ED};
8 foreach e = (v, v′) ∈ outv do
9 if v′ /∈ reachedv then

10 reachedv = reachedv ∪ {v′};
11 reachede = reachede ∪ {e};
12 end
13 end
14 end
15 else
16 inv = {(v′, v)|(v′, v) ∈ ED};
17 foreach e = (v′, v) ∈ inv do
18 if v′ /∈ reachedv then
19 reachedv = reachedv ∪ {v′};
20 reachede = reachede ∪ {e};
21 end
22 end
23 end
24 end
25 worklist = reachedv \ worklist;
26 end
27 BS = { b | ∃ v ∈ reachedv : fV (v) = b};
28 CS = { c | ∃ e ∈ reachede : fE(e) = c};
29 return MS(BSC) = (BS, CS)

this procedure, a copy of the initial model is created and subsequently all lines and blocks
that are not contained in the slice are deleted by issuing commands via the interface
provided by the tool adapter. By deleting lines, block configurations of BusCreator and
BusSelector blocks may become inconsistent as previously available signals are missing
and prevent the model from being compiled. We have implemented a cleanup script that
fixes inconsistent block configurations by using the signal information present in the
respective slice. The resulting model should be in an executable state if a backward slice

111

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

Table 5.2: Average forward slice sizes of the flow-based slicing algorithm

Model tGD

(ms)

DD DD + CD
tAV G MAV G σ tAV G MAV G(m) σ
(ms) (%) (%) (ms) (%) (%)

MAV 13.33 0.72 19.46 17.83 1.32 24.56 22.89
DAS 14.85 0.41 8.98 12.72 1.40 42.77 25.0
EL 15.1 0.15 2.80 4.48 0.53 10.51 12.47
PI 79.6 0.89 3.51 8.66 1.55 5.33 12.54

ECLA 200.67 31.7 42.06 26.41 34.64 44.08 26.01

is exported, while in forward slices blocks might be missing that do not depend on the
slicing criterion but are needed to execute the model.

5.5 Evaluation
In the following, we present the evaluation results for the flow-based slicing algorithm
from the previous section. The evaluation has been performed on the same system as the
evaluation presented in Section 3.5 and with the models introduced in Section 3.5.1.

We already compared the evaluation results of the models analyzed by Reicherdt et al.
in [116] with the results of the flow-based slicing approach in [59]. As no bus signals were
used in these models, no differences between the average slice sizes of the line-based and
flow-based slicing algorithms could be detected. In this work, we used the same metric as
Reicherdt et al. to compare the precision of both approaches, the average slice size.

Definition 5.21 (Average Slice Size of a MATLAB/Simulink Model).
Let M = (B, P, L, I, fp, h) be a MATLAB/Simulink model. The average slice size
MAV G(B) on the blocks of M is then defined as:

MAV G(B) = 1
|B|

∑
b∈B

|MS({b})|
|B|

Following this definition, MAV G(B) represents the average percentage of blocks con-
tained in the slices of all blocks in M.

We first assess the performance of our approach by analyzing key performance indicators
(KPI), e.g. dependence graph computation time, average slice time and slice sizes on a set
of industrial size models that extensively use bus signals. In comparison to the evaluation
results presented by Reicherdt [115, 116], the models used during this evaluation are
3-27 times bigger and extensively use bus signals. Second, we show the impact of the
flow-based slicing approach, by comparing the average slice sizes between the flow-based
and a line-based data dependence relation as initially introduced by Reicherdt et al. [116].
We could not evaluate the algorithm presented by Pantelic et al. [108], as the MATLAB
script realizing their approach did not run successfully on our set of evaluation models.

112

5.5 Evaluation

Table 5.3: Average backward slice sizes of the flow-based slicing algorithm

Model tGD

(ms)

DD DD + CD
tAV G MAV G σ tAV G MAV G(m) σ
(ms) (%) (%) (ms) (%) (%)

MAV 14.85 0.85 19.71 21.97 2.41 23.99 23.14
DAS 15.1 0.58 14.35 18.37 0.77 42.26 36.94
EL 13.33 1.09 8.0 11.9 1.30 9.88 12.38
PI 79.6 2.24 6.08 7.03 2.77 6.42 6.96

ECLA 200.67 34.5 48.63 38.26 37.69 51.10 38.17

5.5.1 Evaluation of the Flow-Based Slicing Algorithm
Table 5.2 and 5.3 show the empirical evaluation results of the slicing algorithm on the
evaluated models. For each model, the table displays the time tGD

needed to construct
the dependence graph GD of the model, as well as the average slice size MAV G and its
corresponding standard deviation σ. These KPIs are displayed for all slices in forward
and backward direction, based on data dependence (DD) and data + control dependence
(DD+CD).

For all models, the dependence graph can be constructed in under 300 ms and the
average time tAV G to compute a slice in either forward or backward direction does not
exceed 40 ms. It can be noted that while the PI and ECLA model have similar overall
sizes (8224 blocks vs. 8639 blocks), the average construction time of the dependence graph
as well as the average computation of a slice differ by quite a lot. As the performance
of the slicing algorithm is heavily influenced by the amount of actual signals (not lines)
contained in a model, we analyzed the complexity of the signals in the evaluation models.
The results of this analysis are shown in Table 5.4. When comparing the amount of signals,
bus signals and signal segments in both models, it becomes apparent that the ECLA
model contains about 1000 additional actual signals that are routed through 4-times
more bus signals in comparison to the the PI model. The amount of signal segments
contained in bus signals also highlights this fact, as 72 % of all segments are encapsulated

Table 5.4: Bus signal complexity of the evaluated models

Model Signals Bus Signal seg. Avg/Min/Max Avg/Min/Max
signals (cont. in bus) cont. signals bus depth

DAS 413 24 2397 (606) 5/2/16 1/1/1
EL 714 27 1302 (327) 9/3/25 1/1/1

MAV 553 15 2584 (1482) 11/4/48 1/1/2
PI 4370 48 10989 (1820) 8/3/71 1/1/3

ECLA 5186 211 36393 (26440) 15/2/348 1/1/6

113

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

Table 5.5: Comparison of forward and backward slices of a line-based and the flow-based
slicing approaches

Model

Forward Backward
DD DD + CD DD DD + CD

ML
AV G MF

AV G ML
AV G MF

AV G ML
AV G MF

AV G ML
AV G MF

AV G

(%) (%) (%) (%) (%) (%) (%) (%)
MAV 33.11 19.46 40.65 24.56 33.09 19.71 39.97 23.99
DAS 31.11 8.98 59.98 42.77 31.13 14.35 59.01 42.26
EL 25.77 2.80 31.15 10.51 24.58 8.00 28.61 9.88
PI 9.91 3.51 10.48 5.33 9.90 6.08 10.29 6.42

ECLA 60.92 42.06 64.72 44.08 60.92 48.63 64.72 51.10

in a bus, with the biggest bus signal containing 348 individual signals in up to 6 nested
bus signals.

When comparing the average slice size across both directions, it can be noted that
the average slice size is heavily influenced by the actual composition of the respective
model. For example, the average slice sizes of the closed loop models (DAS, ECLA) is
much higher than for the other models. Due to feedback signals, strongly connected
components are formed in the dependence graph, resulting in an overall increase of slice
sizes. Slice sizes are further influenced by control dependence relations. While the average
slice size in forward direction of the DAS model is 8.8 %, it increases to 42.77 % if
control dependence relations are considered during slice computation. The increase of the
average slice size from DD+CD depends on the amount of blocks influencing the control
flow of the respective models. Although the average slice sizes for each model in forward
and backward directions do not diverge much from each other, the standard deviation
of the average slice size indicates that the distribution of slice sizes between forward
and backward direction differ by up to 10-12 %. This is consistent with the findings of
Reicherdt [115].

Across all evaluated models, the flow-based slicing algorithm achieves an average slice
size of 25.45 % in forward and 26.73 % in backward direction when both data and
control dependencies are considered by the algorithm. These findings are consistent to
the evaluation results of Reicherdt [115] that were obtained from the application of his
slicing techniques to MATLAB/Simulink models containing bus signals.

5.5.2 Impact of Flow Sensitive Slicing
To show the impact of the flow-based data dependence relation, we implemented the
line-based data dependence relation introduced by Reicherdt et al. [116]. In the following,
we compare the average slice sizes of both approaches against each other.

Table 5.5 displays the average slice sizes of both approaches in forward/backward
direction in the same fashion as in the previous section. When comparing the average
slice sizes in forward direction, whereby only considering data dependencies (DD), the

114

5.6 Extension for MATLAB/Stateflow

average improvement of the flow-based against the line-based one is around 16.80 % in
favor of the flow-based approach. Adding control dependencies to these slices degrades
the improvement slightly to approx. 15.95 %. Depending on the size of the model, this
results in an absolute average block difference of 165 blocks for the MAV model to 1783
blocks in case of the ECLA model (DD+CD). The maximal absolute deviation recorded
during the evaluation of the approaches in forward direction, is one slice of the ECLA
model, covering 71.81 % (6208 blocks) of the model using the line-based approach. A slice
computed with the flow-based approach with the same slicing criterion only resulted in a
slice coverage of 0.13 % (12 blocks). As the flow-based slicing approach considers signals
terminating at BusSelector, BusAssignment and BusCreator blocks, this slice represents
one of the cases where a flow-based approach vastly outperforms the line-based approach.

Comparing both approaches in backward direction, similar results can be observed as
for the slices in forward direction. Average differences across both approaches are 12.57 %
(DD) and 13.79 % (DD+CD) respectively, slightly lower than the average differences
for slices in forward direction. Therefore, the average absolute difference also decreases
slightly to 164 in case of the DAS model and up to 1177 blocks in case of the ECLA model
(DD+CD). The maximal recorded absolute deviation in backward direction was again
encountered during the analysis of the ECLA model. A slice was found that contained
90.02 % (7793 blocks) of all blocks of the model for the line-based approach and 6.94E-4 %
(6 blocks). Again, this slice was related to a signal being exchanged at a BusAssignment
block.

Overall, the flow-based slicing approach is superior to the line-based data dependence
approach, if the analyzed models contain bus signals. As we have already noted in [59],
for models that do not contain bus signals both approaches result in the same average
slice sizes.

5.6 Extension for MATLAB/Stateflow
A block type not specifically handled by the signal reconstruction and slicing algorithms
are Chart blocks introduced by the MATLAB/Stateflow toolbox (see Section 2.2.3).
While a Chart block is currently treated as a nonvirtual block, i.e. all signals entering it
may potentially influence all outgoing signals, the interface of these blocks typically grows
linearly with increased complexity of the modeled behavior. As for Subsystem blocks,
the dependencies between the in- and outports of a Chart block depend on its internal
composition. To increase the precision of the Simulink slicing algorithm, we present a
proof-of-concept algorithm to determine the dependencies between in- and outports of a
MATLAB/Stateflow Chart block by analyzing the statechart contained within a Chart
block.

To trace dependencies between the in- and outports of a Chart block, the usage of the
in- and output variables within the statechart have to be analyzed, similar to traditional
dependency analysis. As states and transitions may contain operations that manipulate
the variables of the statechart, we can compute the transitive relationships of variables
by analyzing assignments made to these variables.

115

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

A
entry: x_new=0;
 y_new =0;

B
entry: x_new = x+1;
 y_new = y+1;

[enabled]

[~enabled]

Figure 5.8: Simple MATLAB/Stateflow state chart

Consider the statechart shown in Figure 5.8. The statechart has three inports named x,
y and enabled as well as two outports named x_new and y_new. These ports are mapped
to equally named in- and output variables used within the statechart. To determine
which input variables are used to calculate the value of output variable x_new, we first
determine all assignments made to this variable and analyze the variables referenced
within these assignments.

Definition 5.22 (Stateflow Assignment).
An assignment to a variable v within a MATLAB/Stateflow statechart is expressed as
a tuple (v, R) with R being the set of variables referenced on the right-hand side of the
assignment to compute the new value of v.

The assignment
x_new = x + 1;

contained in state B can be expressed as the assignment a = (x_new, {x}). Therefore,
we can deduce that x_new depends on variable x. As this assignment has been made
in a state that is not part of the initial states of the state chart, we need to determine
all paths from the initial state A to state B. Furthermore, we need to treat all variables
referenced within the guards of transitions contained within these paths as an influence to
x_new as they affect the reachability of state B, yielding a type of control dependence for
statecharts similar to the one discussed in Section 5.3.3 for blocks in MATLAB/Simulink.
In the example, the single path from A to B uses a transition referencing the variable
enabled within its guard. Therefore, this variable is also added to the set of variables
that x_new depends on. Thus, the output variable x_new within the example statechart
would depend on the set of variables {x, enabled}.

Typically, statecharts also contain transitive relationships among variables that need
to be considered during dependency detection. We have implemented a proof-of-concept
algorithm that can transitively calculate an over-approximation of the dependencies for
all variables used within a given statechart.

Algorithm 2 shows the variable dependence algorithm in pseudo code. It returns a
map D that maps each variable v ∈ V to a set of variables that it potentially depends
on. The algorithm first collects all assignments for each variable v ∈ V by using the
assignments function on each variable and storing it in the set of all assignments A as
well as initializing the dependence map D with an empty set for each variable (line 2-5).

116

5.6 Extension for MATLAB/Stateflow

Algorithm 2: Statechart variable dependence detection
Input: Set of variables V used in a statechart
Output: Dependence map D for each variable v ∈ V

1 A = ∅;
2 foreach variable v ∈ V do
3 D(v)← ∅;
4 A = A ∪ assignments(v);
5 end
6 foreach a = (v, R) ∈ A do
7 ref v = R ∪ {v};
8 P = paths(a);
9 if P ̸= ∅ then

10 P = P ∪ cycles(a);
11 end
12 foreach path p ∈ P do
13 foreach state s on p do
14 foreach a′ = (v′, R′) ∈ A on s do
15 if v′ ∈ refv then
16 ref v = ref v ∪R′;
17 end
18 end
19 foreach transition t leading to s in p do
20 foreach a′ = (v′, R′) ∈ A on t do
21 if v′ ∈ refv then
22 ref v = ref v ∪R′;
23 end
24 end
25 foreach r ∈ guard(t) do
26 ref v = ref v ∪ {r};
27 end
28 end
29 end
30 end
31 D(v)← D(v) ∪ ref v;
32 end
33 return D

117

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

Following, the algorithm traverses over each assignment a = (v, R) ∈ A and collects all
variables affecting v in the set ref v. The variables of ref v are calculated by first computing
all paths P potentially leading to an execution of the assignment a from one of the
initial states, using the paths function. Paths are calculated on a graph of the flattened
statechart. If there exists at least one path leading to the potential execution of the
current assignment a, we also consider all cycles leading to an execution of a during
dependence analysis to incorporate all possible dependencies to variables residing on
these cycles. Cycles are retrieved with the cycle function using an implementation1 of
the cycle detection algorithm proposed by Szwarcfiter et al. [150] (line 9-11).

The set ref v is further populated by iterating over all paths p ∈ P and adding all
references R′ in assignments of the form a′ = (v′, R′), v′ ∈ refv encountered in transitions
and states on the path p in descending order with respect to the path and the order of
assignments on the respective states/transitions (line 14-24). Additionally, all variables
referenced within the guards of transitions p are also added to ref v using the guard
function (line 25-27). By considering all references to v stored in the set ref v, we compute
the transitive closure of all references and assignments encountered on a given path p.

In its current form, the algorithm does not support the analysis of user-defined functions
but still recognizes the parameters of a function whose result is assigned to a variable v
as dependencies for v. Furthermore, the algorithm currently cannot correctly evaluate
state charts containing parallel states because changes to a variable in one state cannot
be related to the other state as part of a path.

The algorithm has been implemented within the artshop framework and integrated into
the slicing algorithm. The model representation of the MATLAB/Simulink tool adapter
(see Section 3.3.1) is used to access MATLAB/Stateflow elements. To extract information
about assignments and references of states and transitions, we first implemented a parser
capable of extracting relevant code sections from the labels attached to these elements.
We use a built-in MATLAB function to create an abstract syntax tree (AST) for extracted
code sections, e.g. guards and actions for transition labels and state operations for state
labels. The AST is then used to extract variable assignments and references from the
respective code sections. We further provide a wrapper that maps a given inport/outport
to the respective input/output variable, performs the dependency analysis shown in
Algorithm 2 and maps the variables of the result set to their respective inport/outport.

We evaluated the impact of the shown algorithm by calculating the inport-outport
relationships for 10 Stateflow statecharts taken from industrial and academic models.
In total, the analyzed Stateflow models contain 39 outports and 61 inports. For each
outport we calculated all inports that a given port depended on and vice versa for each
inport. The data dependencies obtained during slicing can be reduced when the algorithm
determines that an outport depends only on a subset of the inports and vice versa. This
was the case for 5 of the 10 analyzed statecharts. In forward direction, the algorithm
determined that 21 of the 61 inports that do not influence all outports of their respective
Stateflow statecharts leading to an average weighted improvement of the data dependency
relation between the in- and outports of the analyzed Stateflow statecharts of 17.47 %.

1http://jgrapht.org/

118

http://jgrapht.org/

5.7 Conclusion and Future Work

In backward direction, 24 of the 39 outports could be identified that do not depend on
all inports of their respective statecharts. This leads to an average weighted improvement
of the data dependency relation between outports and inports of around 20.38 %.

This empirical evaluation shows that the technique can further improve the data
dependency relation if MATLAB/Stateflow Chart blocks are used within a model M.
However, the effectiveness is highly dependent on the inner structure of the analyzed
statechart, as the desired behavior might require all inports to influence all outports of
the respective statechart.

5.7 Conclusion and Future Work
In this chapter, we extensively discussed signal flow within MATLAB/Simulink mod-
els and proposed an algorithm to reconstruct all atomic and bus signals exchanged
within a MATLAB/Simulink model. The signals derived by this algorithm were used
to define a signal flow-based data dependence relation for the use within a slicing al-
gorithm. Using the data dependence relation in combination with control dependence
information extracted from MATLAB/Simulink, we can construct the dependence graph
of a MATLAB/Simulink model. A slice on the model can then be computed by per-
forming a reachability analysis on this graph in either forward or backward direction.
Slices computed in the artshop framework are directly visualized within the graphical
viewer provided by the MATLAB/Simulink tool adapter and can again be exported as a
stand-alone MATLAB/Simulink model.

The evaluation of the flow-based slicing algorithm showed that, on average, the proposed
slicing algorithm can reduce the size of a MATLAB/Simulink model by about 75 %. This
makes the slicing algorithm particularly useful during debugging, testing or change-impact
analysis of MATLAB/Simulink models. Further, we showed that the use of a flow-based
data dependence relation is superior to a line-based relation on models containing bus
signals. On average, the difference between the average slice sizes using a flow-based
or line-based data dependence relation is about 12-15 % of all model elements. As bus
signals are commonly used in large scale academic and industrial size models, the use of
our proposed flow-based data dependence relation is a reasonable way of reducing slices
of MATLAB/Simulink models.

The slicing algorithm can further be improved by also considering the initial structure
of Chart blocks during the slicing algorithm to derive a dependence mapping between the
in- and outports of a Chart block. We proposed a proof-of-concept algorithm that derives
such a mapping based on the usage of Stateflow variables within the statechart contained
in the Chart block. An evaluation of the prototypical algorithm showed that the computed
mapping on average provides an improvement of approx. 20.38 % in comparison to the
treatment of a Chart block as a nonvirtual block, where all input signals are assumed to
influence all output signals.

By extending the definition of the slicing criterion to signals emitted by the blocks
selected as part of the slicing criterion, the dependencies of specific signals emitted by
a block could be explored. This would resemble the definition of the slicing criterion

119

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

Figure 5.9: Result view of the complexity metric analysis on the example model
sldemo_fuelsys

initially proposed by Weiser [160], who defined the slicing criterion as a statement and a
set of variables that occur within this statement.

5.7.1 Further Applications
The slicing algorithm and the reconstructed signal information can further be used to
construct analyses that need information about the signal characteristics and dependence
relations within a model. As already noted during the discussion of related work, the static
value range analysis developed by Dernehl et al. uses the signal information calculated
by artshop to reconstruct the initial signal structure of the model [40, 41, 42, 43, 44].

Slice-based complexity metrics We used the slicing algorithm to implement slice-
based cohesion and coupling metrics for Subsystem blocks. The metrics were derived
from corresponding slice-based metrics on program code and adapted to the syntax
of MATLAB/Simulink models. The cohesion metrics were derived from the initial
definitions by Ott and Thuss [106], while the coupling metric was derived from a metric
proposed by Harmann et al. [67]. In contrast to existing cohesion and coupling metrics
for MATLAB/Simulink models [35, 36, 104, 105] that only define these metrics on
a structural and not on a functional level, slice-based metrics include the semantic
dependencies contained within the individual slices of the model. Further information
about the benefits of slice-based metrics can be found in the empirical study on slice-based
coupling and cohesion metrics published by Meyers and Binkley [99].

Figure 5.9 shows the result of the metric calculation on a slightly modified version
of the example model sldemo_fuelsys included in MATLAB/Simulink. Results can be
browsed in a sorted list, based on metric value while the trend of all metrics calculated for
a selected Subsystem block can be seen over its evolution within the graph on the upper

120

5.7 Conclusion and Future Work

right-hand side. This is the first analysis that uses the history information of the repository
to perform trend analysis. To show the trend analysis, we modified the initial version of
the Controller subsystem in three versions to show the resulting change in metric values.
Additionally, a view of the analyzed model is provided where each subsystem is colored
corresponding to its calculated metric value. In future work, the adapted metrics from
Ott and Thus as well as Harman et al. should be compared in a correlation analysis
against existing cohesion and coupling metrics proposed by Dajsuren and Olszewska
et al. [35, 36, 104, 105]. In addition, structural metrics of MATLAB/Simulink models,
e.g. amount of blocks contained in a subsystem, should also be considered during this
correlation analysis.

Model transformation The reconstructed signal information were further used to
extract the signal dependencies between a selection of Subsystem blocks within a
MATLAB/Simulink model and transform the selection into a corresponding SysML
architectural model. As MATLAB/Simulink was one of the earliest adoptions of model-
based development within the automotive domain, there usually do not exist further
architectural description models of legacy MATLAB/Simulink models. With architec-
tural modeling with SysML slowly gaining traction within the automotive domain, the
implemented transformation process is a useful tool to derive an initial basis for the
reconstruction of the functional architecture of a legacy MATLAB/Simulink in SysML.
As no concept similar to bus signals exists within SysML, we flatten each bus and assign
the fully qualified signal name to each signal created in the SysML model. The SysML
model is created via a small tool adapter written for the modeling tool MagicDraw using
its exposed external API.

Model smells Finally, the model smell detector, which is described in Chapter 7,
also uses the reconstructed signal information to detect design flaws within the signal
architecture of a MATLAB/Simulink model.

5.7.2 Future Work
In future work, the proof-of-concept dependence mapping for Stateflow charts needs to
be extended to support the use of parallel states as well as the resolution of Stateflow
functions. These extensions would enable the use of the algorithm on large scale Stateflow
charts as these typically use the aforementioned concepts.

Another block currently treated as a nonvirtual block are Embedded-Matlab-Function
blocks. These blocks contain a MATLAB script realizing the behavior of the block. By
analyzing the dependence relations of the contained script, it would be possible to refine
the dependence mapping of in- and outports of these block in the same way as for Chart
blocks from MATLAB/Stateflow. The script information is already available within the
representation created by the artshop tool adapter and used as part of a value range
analysis of MATLAB code by Dernehl et al. [42]. Extending the slicing algorithm to this
code could be realized by the use of standard slicing techniques for program code.

121

5 Dependency Analysis and Slicing of MATLAB/Simulink Models

In combination with the static value range analysis developed by Dernehl et al., it
would also be possible to extend the slicing algorithm to support dynamic slicing of
MATLAB/Simulink models. This would further extend the usefulness of the slicing
algorithm for debug and test purposes of MATLAB/Simulink models. A dynamic slicing
approach could potentially be used to improve the performance of the static value range
analysis by excluding the evaluation of irrelevant parts of the model, similar to the
conditional execution behavior of MATLAB/Simulink.

While we already provide a special view of the sliced model, the slicing algorithm
could be further used to create context sensitive views based on traceability links or
variability information provided by other artifacts. For example, a view could be created
that excludes all features unselected within a given variant description model created in
pure::variants. In combination with a feature mapping to the blocks of a model, dependent
blocks can be determined and excluded from a view to show only those parts of the
model that are active based on the selected features within the variant description model.
Further views can be created to improve change-impact analyses on MATLAB/Simulink
models based on the history information available within the model repository of the
framework.

122

6 Detection and Refactoring of Clones
in MATLAB/Simulink Models

We already highlighted the complex nature of industrial size MATLAB/Simulink models,
in Chapter 5. Due to the size and complexity of these models and the lifecycles they are
developed in, quality defects like code clones that are commonly found in traditional
software artifacts, e.g. source code, are also relevant for graphical dataflow diagrams such
as MATLAB/Simulink models.

As in traditional software development, clones might be created in a multitude of ways
during the application of model-based development. Copying model fragments within
the graphical modeling environment provided by MATLAB/Simulink without creating
suitable abstractions for controlled reuse of an already existing functionality, is a tempting
way to quickly transfer functionality from one model location to another. Furthermore,
using patterns or idioms for the solution of commonly encountered problems might also
lead to clones within a model when applied in a wrong or naive way. Only rarely are
clones created unintentionally by remodeling already existing functionality.

Cloned model fragments increase the effort needed to perform model maintenance,
as changes to cloned model fragments need to be applied to all (potentially unknown)
instances of the respective clone [38]. If a change is not propagated to all cloned model
fragments, erroneous behavior might be introduced as highlighted by Juergens et al. in
the context of cloned code [75]. Correct handling of model clones is even more important
in the context of model-based development in the automotive domain, as models are
heavily reused during the often product line oriented development processes [38]. Besides
the relevance of clone detection for model maintainability, controlled reuse of model
fragments and their traceability throughout a product line is at least equally important
to increase the overall quality of model-based artifacts of a product line.

While techniques for model clone detection have received a fair amount of attention
within the literature, most techniques focus on a specific type of clones, with the type of
a clone specifying the degree of similarity between two sets of model elements. Typically,
clone detectors use heuristics to identify clones to increase the overall performance,
as solving the maximum common subgraph problem is NP-complete and therefore no
polynomial algorithm exists for the computation of an exact solution [39]. Therefore, to
analyze a model with regard to multiple type of clones, different tools have to be used
that potentially produce disjoint or overlapping results in different output formats. In
addition, detected clones still need to be resolved in a manual process. In this chapter,
we present an approach to consolidate the results of multiple clone detectors and perform
automatic clone resolution for a fixed set of clone types.

123

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

6.1 Overview and Outline
For the past years, clone detection in model-based software development, in particular
for MATLAB/Simulink models, has been an active research area. Different techniques
exist that detect model clones based on the similarity between a duplicate base and
its duplicate occurrences. A taxonomy of clone types for data-flow models was first
introduced by Gold et al. [64] that distinguishes between four clone types:

• DF0: Exactly copied model fragment

• DF1: Duplicate occurrence only differs with regard to layout or non-semantic
properties

• DF2: DF1 + duplicate occurrence additionally differs by literal values configured
within blocks, e.g. the gain of a Gain block

• DF3: DF2 + may include modifications to the duplicate base, e.g. added/deleted
blocks/lines within a duplicate occurrence

Additionally, Bellon et al. [8] mention semantic clones as a fifth type in the context
of code clone detection. While the similarity relation of the clone types introduced by
Gold et al. is based on the structural similarity of a model, semantic clones can only be
identified based on their realizing behavior.

There exist many approaches targeting specific clone types within MATLAB/Simulink
models ranging from DF0 to DF3 [3, 38, 109] as well as approximate approaches based
on model metrics [45] with diverse result sets. Result sets of certain techniques might
contain clone groups that contain all clone occurrences with respect to a given clone base
or only return an unordered set of clone pairs. We present an approach for sorting and
merging clones detected by various duplicate detection techniques into an unambiguous
result set, which reduces the overall amount of clones that need to be inspected. Within
this approach, we combine two well-known detectors from the literature, namely ConQAT
[38, 39] and gApprox [26], in addition to a novel copy-clone detector that is based
on relative layout information. The result set of this combined detector consists of
hierarchical clone groups that are consolidated across all applied clone detectors. As
already noted by Gold et al., layout information provide an important factor during the
clone detection in graphical data flow languages that is disregarded by both ConQAT
and gApprox [64]. With the novel layout-based copy clone detector, we specifically target
model fragments that were duplicated via the copy & paste actions available within the
MATLAB/Simulink IDE.

To ease the process of clone resolution into reusable model fragments, we propose
a process to generalize clones of type DF0-DF2 and transform them into a generic
library block. Clone occurrences can then automatically be replaced by an instance of the
created generic library block that is configured to match the initial behavior of the clone
occurrence. The aforementioned clone detection process is specifically adapted for the
detection of clones that can be refactored in a meaningful way, e.g. clones are detected
on subsystem level and do not cross model hierarchy levels.

124

6.1 Overview and Outline

In the following, we will first discuss related work in the area of clone detection for
MATLAB/Simulink models and then introduce the contributions of this chapter. After
the introduction of our clone detection architecture at the beginning of Section 6.2, we
will present the layout-based copy clone detector in Section 6.2.1 before introducing the
clone consolidation procedure in Section 6.2.2. After we introduce the clone resolution
procedure in Section 6.3 we will provide an evaluation of our approach in Section 6.4.
Finally, we give an outlook on how the repository of the artshop framework can be
utilized to perform cross-clone detection based on clones found within one model, to
detect clones within other models stored in the repository.

6.1.1 Related Work
Deissenböck et al. [38, 39] present a heuristic graph-based clone detection technique for
MATLAB/Simulink models integrated into the software quality framework ConQAT. The
targeted MATLAB/Simulink model is imported via a model parser (Simulink Library for
Java) that is converted into a flattened directed multi-graph with no hierarchy. Clones are
detected on this flattened graph by using an extended breadth-first search in combination
with a heuristic to identify isomorphic sub-graphs. Due to the use of a heuristic during
clone identification, the technique does not necessarily detect all clones within a model.
The detector of Deissenböck et al. is able to detect the clone types DF0, DF1 and DF2
and outputs them as a list of clone pairs.

Hummel et al. describe an index-based clone detector for the incremental detection of
clones within MATLAB/Simulink models [72]. The authors index all k-subgraphs of a
flattened MATLAB/Simulink model with a canonical label. This index can be updated
once a model is changed. Clone groups are then derived for all k-subgraphs indexed with
the same canonical label. For k < 4 computation is feasible even for larger models but
degrades for k ≥ 4 making it inferior to existing approaches like ConQAT.

Another clone detector for MATLAB/Simulink models has been presented by Pham et
al. with the ModelCD detector in [109]. The detector is based on two separate algorithms,
eScan, which is responsible for the detection of clone types DF0, DF1, and DF2, and the
aScan algorithm that can be used to detect DF3 type clones. The authors use the library
developed by Deissenböck et al. to convert a model file created by MATLAB/Simulink
into a flattened directed multi-graph. The approach uses so-called exas-vectors that
capture the structural properties of a node within a graph and can be used during the
aScan algorithm to approximate the similarity of two nodes. Unlike the approach of
Deissenböck et al., this algorithm promises completeness as it does not rely on a heuristic
to find clone pairs. In a comparison between ConQAT and ModelCD, Deissenböck et
al. found that due to the size of industrial size models, the approach typically does not
terminate in an adequate amount of time. Clones detected by ModelCD are pruned and
grouped, resulting in a set of clone groups containing all clones related to each other.

Al-Batran et al. [2] explore the detection of semantic clones within a MATLAB/Simulink
model by introducing normal forms of these models. By converting a model into a normal
form, semantic clones can be detected by searching for syntactically equivalent model

125

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

fragments within a model. A model is converted into its normal form by successively
applying transformation pattern on a model.

An approach to detect clones within MATLAB/Simulink models based on the textual
representation of model files has been presented by Alafi et al. [3]. The authors created
SIMONE, an adaptation of the tool NICAD [134], which is a widespread tool for code
clone detection, to find clones within model files of MATLAB/Simulink. Adaptations
include filtering for relevant properties, establishing a consistent order of parameters,
blocks and ports, as well as renaming all identifiers to anonymize names and parameters
within the textual representation. This normalizes the textual representation of all model
elements within the model file and allows the text-based matching and comparison of
these elements. Due to these pre-processing steps, the clone types detected by SIMONE
cannot be directly mapped to the type definition proposed by Gold et al., which is
also recognized by the authors. SIMONE is able to detect exact clones, renamed clones
as well as near-miss clones, without considering changes to the properties of Simulink
model elements like layout, non-semantic or semantic properties. The detector operates
on three levels of syntactic granularity: model-, subsystem- and block-granularity, with
subsystem-granularity receiving most of the authors’ attention. While the approaches
of Deissenböck et al. and Pham et al. focus on clones on the block granularity level,
SIMONE is also able to determine if two models or subsystems are clones of each other.
Clones detected by SIMONE are reported as clone pairs and directly displayed within
MATLAB/Simulink. SIMONE can also be used for anti-pattern detection, by performing
cross-clone detection against a set of pre-defined models that contain model fragments
considered to represent examples of anti-patterns. During cross-clone detection, clones
are detected that cross between two or multiple models [146].

Doerr et al. present Just Simplify [45], a pure heuristic clone detection approach that
identifies potential subsystem clones in MATLAB/Simulink models based on a modified
Halstead metric [65]. For each subsystem, this complexity metric is computed based on
the blocks contained within the respective subsystem. Subsystems with similar complexity
metrics are candidates for potential subsystem clones. Partial model clones cannot be
identified by this approach. In addition, the authors sketch a process for automatic clone
refactoring similar to the approach presented in this chapter but do not give detailed
information about its realization or potential shortcomings.

To resolve model clones, Tran et al. [154] propose the use of atomic refactoring opera-
tions that can be used to perform model transformations on a MATLAB/Simulink model.
The authors discuss several use cases for these refactoring operations, e.g. reordering
ports in subsystems, union of two or more distinct subsystems or the extraction of single
signals from a bus signal. Unfortunately, no approach is outlined within their work to
realize clone resolution, only proposing it as future work.

The gSpan algorithm implemented by Yan et al. [164] is a graph-based pattern mining
algorithm from the domain of graph mining developed to discover frequent substructures
within a graph. Deissenböck et al. evaluated this algorithm on MATLAB/Simulink models
and concluded that it is not suited for the use of clone detection on this type of model
[38].

126

6.2 Clone Detection Process

Chen et al. present the gApprox algorithm for the mining of frequent approximate
patterns within single graphs [26]. Unlike the gSpan algorithm, which finds exact occur-
rences of a pattern, the gApprox algorithm further is able to find approximate patterns,
i.e. pattern that maximally differ by a set amount of nodes but otherwise are the same.

Basit et al. present a mechanism for clone management based on a variant configuration
language (VCL) [7]. Detected clones are converted into a VCL representation and stored
within a clone repository. Subsystems generated by a VCL managed clone, are highlighted
in the model. Developers can then reuse clones managed in the repository for new/other
models. The refactoring procedure presented in this chapter similarly stores refactored
clones within the MATLAB/Simulink library browser that can be accessed by each
developer in a familiar fashion.

6.1.2 Contributions and Bibliographic Notes
The contributions of this chapter revolve around the layout-based clone detection algo-
rithm presented in Section 6.2.1, the clone consolidation algorithm presented in Section
6.2.2 and the refactoring process for clones of type DF0, DF1 and DF2 in Section 6.3.2.
The first realization of these contributions has been implemented by Stefan Schake as
part of his bachelor’s thesis [136] and have been published in [61].

Based on the results of the combined clone detection algorithm, we further show the
feasibility of a repository guided cross clone detector building on the model repository
introduced in Chapter 3.

6.2 Clone Detection Process
The clone detection process is used as a means to identify clones that can be refactored
into generic library blocks as explained in Section 6.3. The overall clone detection
process is shown in Figure 6.1. It allows for the analysis of models imported with the
MATLAB/Simulink tool adapter (see Section 3.3.1) and supports three algorithms.
The heuristic graph-based ConQAT-algorithm developed by Deissenböck et al., the
approximate graph-based gApprox-algorithm developed by Chen et al. [26] and a novel
layout-based copy clone detection algorithm for MATLAB/Simulink models.

In contrast to the default behavior of ConQAT and gApprox that operate on a flattened
graph, we detect clones within the graphs spanned by the blocks of either individual or a
pair of subsystems. By using this restriction, all clones of type DF0-DF2 detected by the
applied algorithms, can be refactored into a generic library block without altering its
containing environment. Except the restricting the scope of the overall clone detection
algorithm, we have implemented both the ConQAT and gApprox algorithm per their
specification in [26, 39]. As the adaptation of the scope only results in multiple runs of the
clone detection algorithms on different subsets of the flattened model graph and does not
change the semantics of the actual detection procedure, we refer to the publications related
to these algorithms for further information about their inner workings. While Deissenböck
et al. already evaluated gSpan, a pattern-mining algorithm, and came to the conclusion

127

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

Simulink model

ConQAT

Layout-based copy
clone detector

gApprox

Clone detection

Clone consolidation

Configuration

Presentation

Clones Clone groups

Clone groups

Figure 6.1: Clone detection process

that it is not suited for the application in model clone detection on MATLAB/Simulink
models, gSpan was executed on a flattened graph of the MATLAB/Simulink model.
As we only try to detect clones within individual or between a pair of subsystems, we
evaluate the scalability limitations of the gApprox algorithm in this setting.

All clone detection algorithms try to detect one or multiple pairs of model fragments
that are similar with respect to the definition of similarity used by the respective
algorithm.

Definition 6.1 (Model Fragment).
A model fragment m of a MATLAB/Simulink modelM = (B, P, L, I, fp, h) is a connected
subgraph m = (V, E) such that holds:

• V ⊆ B

• E = {e = (p1, p2)|e ∈ L ∧ v1, v2 ∈ V ∧ succ(v1, v2) ∧ p1 ∈ portsout(v1) ∧ p2 ∈
portsout(v2)}

A clone is then defined as a pair of two similar non-overlapping model fragments.

Definition 6.2 (Clone).
A clone c = (m1, m2) is a tuple containing two model fragments m1 = (V1, E1) and
m2 = (V2, E2).

Furthermore it holds that V1, V2 ̸= ∅, V1 ∩ V2 ̸= ∅ and both m1 and m2 are similar with
respect to a given definition of similarity.

The actual definition of similarity varies between the used clone detection algorithm.
Both the ConQAT and the layout-based copy clone detector only detect clone pairs.

Therefore, the result set of these algorithms might contain multiple clones that are similar
to each other. Redundancies of this kind complicate the navigation and review of detected
clones. The gApprox algorithm sorts similar clones into clone groups that contain more
than two model fragments.

128

6.2 Clone Detection Process

Definition 6.3 (Clone Group).
A clone group g = (mb, O = {mo

1, ..., mo
n}) is a tuple containing a model fragment mb

called the base of the clone group and a set of model fragments O containing the clone
occurrences of g with respect to the clone base mb.

Additionally it holds that ∀ mo ∈ O : c = (mb, mo) is a valid clone.

During the clone consolidation step, we again analyze all found clones and clone groups
for structural overlap and merge all clones into a consolidated result set. This result set
then only contains non-overlapping clone groups that are presented to the user and can
be used for clone refactoring.

Process configuration The overall detection process can further be configured by a set
of options that alter the process and might lead to the exclusion of certain subsystems or
subsystem pairs from the overall scope of the analysis. All of these options are activated
by default.

• Search subsystems This option activates individual clone search within all sub-
systems

• Search subsystem pairs This option activates the aforementioned pair-wise clone
search between all subsystems

• Ignore library blocks By activating this option, all subsystems that are either
library blocks or contained in a library block are skipped during the individual
and pair-wise subsystem clone search. As library blocks already represent reused
model fragments, searching them for possible reusable model fragments may not
be desirable in every application scenario

• Ignore library blocks with same origin A relaxation of the previous option
is to only ignore Subsystem blocks within the same library during clone search.
Clones between library blocks with different origin are still detected. This option is
overridden by the previous option

• Ignore ports As ports are a prevalent block within each subsystem, a lot of low
size clones consists of ports and commonly used blocks. This option prohibits
detection algorithms from adding ports during clone search

In the following sections, we will present additional information about the layout-based
copy clone detector and the clone consolidation phase.

6.2.1 Layout-Based Clone Detection
Due to the graphical user interface of MATLAB/Simulink, copy clones can be easily
created through use of the copy & paste action available in the graphical editor.

Copy clones are reported to appear frequently in traditional programming for a
number of reasons. Kim et al. lists language limitations as a reason for code duplication,

129

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

1

Constant

A

Data Store Write

Figure 6.2: Visualization of the relative layout expressed by v1 and v2

if a developer cannot easily reuse code, they are more likely to use it verbatim [78].
Time constraints, insufficient knowledge, ignorance or carelessness with regard to the
consequences of cloning on code maintenance and the absence of a standardized reuse
process, are further reasons for the creation of copy clones given by Koschke [85]. As these
reasons are rooted within the development process and the ideology of each individual
developer rather than the language used, it can be expected that copy clones also are an
issue in model-based development.

One property of copy clones in MATLAB/Simulink is that they typically inherit the
relative layout of the initially copied model fragment. This property can be leveraged in
a layout-based copy clone detector.

The relative layout of a block b can be calculated based on its position in relation to each
of its adjacent blocks. The position of a block can be retrieved from the parameter Position
stored for each block. This parameter saves four values, representing the coordinates
of the upper left and lower right corner of the bounding box of b on the canvas of the
hierarchy level b resides in. Based on these two points, the relative position of a block b
to one of its adjacent blocks ba can be expressed by two vectors v1 and v2 connecting the
upper left and lower right corners of b and ba.

Figure 6.2 shows a visualization for the vectors v1 and v2 expressing the relative layout
between a Constant and DataStoreWrite block. The vectors v1, v2 not only capture the
relative distance between these two blocks but also the dimensions of the respective
blocks.

Definition 6.4 (Relative Layout of two Simulink Blocks).
Let b1 be a block with position (xb1 , yb1) and width wb1 and height hb2 and b2 be another
block b2 with position (xb2 , yb2) and width wb2 and height hb2. The relative layout of b1
and b2 is defined as a set of vectors lrel(b1, b2) = {v1, v2} with:

• v1 = ⟨xb2 − xb1 , yb2 − yb1⟩

• v2 = ⟨(xb2 + wb2)− (xb1 + wb1), (yb2 + hb2)− (yb1 + hb1)⟩

The relative layout can then be used to search for block pairs (b1, b2) within the input
model.

Definition 6.5 (Relative Layout Clone Candidate Pair).
Let T be the distance threshold between the x- and y-values of the vectors of two relative

130

6.2 Clone Detection Process

Algorithm 3: Pairwise breadth-first search based on block pairs
Input: Clone candidate pair start, Set of all clone candidate pairs pairs
Output: Clone as set of connected block pairs

1 clone = ∅;
2 queue = {start};
3 while queue has remaining pairs do
4 dequeue element from queue as cur = (cur1, cur2);
5 if cur1 ∧ cur2 marked then
6 continue;
7 end
8 mark cur1;
9 mark cur2;

10 clone = clone ∪ {cur};
11 b = {p = (b1, b2) ∈ pairs | succ(b1, cur1) ∧ succ(b2, cur2) ∧ b1, b2 unmarked};
12 f = {p = (b1, b2) ∈ pairs | succ(cur1, b1) ∧ succ(cur2, b2) ∧ b1, b2 unmarked};
13 foreach p = (b1, b2) ∈ (b ∪ f) do
14 if fcand(cur1, b1) ∧ fcand(cur2, b2) then
15 enqueue p in queue;
16 end
17 end
18 end
19 return clone

layouts. A block pair p=(b1, b2) is a clone candidate with respect to the relative layout if
both b1 and b2 share the same type and have at least one successor node b′

1 and b′
2 with

{v1
1, v1

2} = lrel(b1, b′
1) and {v2

1, v2
2} = lrel(b2, b′

2) so that holds:

• v1
1 − v2

1 <= ⟨T, T ⟩

• v1
2 − v2

2 <= ⟨T, T ⟩

Further we define the candidate function fcand : B × B → B that returns true if the
condition specified above holds for a pair of blocks (b1, b2) and false otherwise.

This definition can be used to identify all relative layout candidate pairs pairs within
a given input set of blocks Binput. The set of identified clone candidate pairs is then used
as a starting point for the identification of connected copy clones in the input set Binput.

Algorithm 3 shows the copy clone detection procedure in pseudo code. The approach is
similar to the extended pairwise breadth-first search used by the ConQAT algorithm [39].
Starting from a candidate clone pair start, further candidate clone pairs are explored
within the set of identified clone pairs pairs that can extend the relative layout clone
containing the blocks of start. Blocks residing within a clone pair extending a found

131

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

clone are marked, so that they are not considered to be part of another clone. Further
clone pairs are identified based on the successor function (see Section 2.2.4) which helps
to identify possible clone candidates connected via incoming or outgoing lines of the
blocks of the current candidate pair cur.

The algorithm is repeated for each identified clone candidate pair derived from the
input set Binput that was not part of a previous run of the algorithm. As described at
the beginning of this section, due to the constraints of the refactoring procedure, we
only consider clones on a subsystem level, e.g. cross clones between two subsystems or
within a single subsystem. Therefore, the input set Binput is either the union of all blocks
contained within two subsystems s1 and s2 — cssysdir(s1) ∪ cssysdir(s2) — to detect
cross subsystem clones or only the set of blocks contained within a single subsystem
s — cssysdir(s). The algorithm is executed for each possible input set Binput derived
for each subsystem s and subsystem combination s1, s2 ∈ P2(B) = {S ⊆ B| |S| =
2∧ S only contains Subsystem blocks} of a MATLAB/Simulink modelM. The result of
all runs of the algorithm is an unsorted set of copy clones that still need to be consolidated
into clone groups.

6.2.2 Clone Consolidation
As the same clone might be reported by multiple runs of a single clone detection algorithm
or different clone algorithms, reported clones need to be consolidated into a uniform
result set. This result set shall no longer contain duplicate clones and classify reported
clone pairs into clone groups. These clone groups shall contain all clone occurrences
for a given clone base and shall contain subsumed clones, i.e. sub-clones that represent
substructures of the clone base of the clone group. Both ConQAT and the layout-based
copy clone detector only return clone pairs by construction and do not determine all
occurrences of a given clone.

Clone consolidation has been realized as a two-phase process. First, we merge reported
clones into clone groups to subsequently merge or remove incomplete or redundant clone
groups.

Clone grouping To group clones into clone groups, we first sort all clones in ascending
order based on the number of blocks they contain. After that, we compare all clones with
the same size against each other. As a clone c consists of two block sets representing two
similar model fragments, we check if a model fragment contained within one clone is also
contained within another clone c′. If we find such a pair of clones, we create a new clone
group g, set one of the found model fragments as the clone base of this group and add
the remainder of the block sets as occurrences of the respective clone base. If further
matches for one of the block sets contained within g are found, these are also added to
the clone group. All unmatched clones are converted into simple clone groups with one
clone base and one clone occurrence. Clone grouping is executed individually for each
clone detector. The created groups of all detectors are consolidated during the last phase
of the consolidation process.

132

6.2 Clone Detection Process

Merge/removal of incomplete/redundant clone groups After all clones have been
converted into clone groups, we again check all created clone groups for overlapping
bases or occurrences analogous to the clone grouping step. If such an overlap is found, we
merge the two clone groups. Furthermore, during this step we can also identify subsumed
clone groups and assign them to the clone group subsuming them. A subsumed clone
group is a clone group that contains subsets of model fragments of another bigger clone
group, the subsuming group. As such groups may contain more occurrences than the
subsuming group, we store all subsumed group within their subsuming clone group. The
subsuming functionality can be deactivated as part of the configuration of the overall
clone detection process.

Note that two clone groups representing the same clone structure that do not share
an occurrence nor a base cannot be matched by this approach. To solve this problem,
we apply a graph isomorphism check based on an implementation1 of the VF2 graph
isomorphism checker introduced by Cordella et al. [31]. By activating an option within
the configuration of the overall clone detection algorithm, a graph isomorphism check
is performed in addition to the overlap checks mentioned above. This might cause two
clone groups with differing layout but equal structure to be merged during a run only
including the layout-based copy clone detector.

Further configuration options The clone detection process can be further configured
to filter certain kind of elements or clones from the result set. These options are activated
by default.

• Filter low weight clones This option filters clones of the result set with respect to
a weighting function. Currently we use the weighting function used by Deissenböck
et al. in [39, Section 5.3] that weights clones based on their block type, with
nonvirtual blocks having a higher weight than virtual ones

• Check subsystem equality When activating this option, all Subsystem blocks
that are part of a clone are checked if the subsystems contained within the two
model fragments are structurally the same. If this is not the case, the subsystem is
not considered to be part of the clone

• Minimum clone size By activating this option and specifying a minimum clone
size TS, all clones with a size smaller than TS are automatically discarded. By
default, TS is set to five as proposed by Deissenböck et al. [39]

6.2.3 Presentation
After the clone detection and consolidation phase, found clones are shown within the GUI
of artshop. Figure 6.3 shows the result view of the clone detection process containing
one clone group with one occurrence. The displayed clone has been detected using the

1http://jgrapht.org/

133

http://jgrapht.org/

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

Figure 6.3: Visualization of clone groups in artshop

layout-based copy clone detector. On the left-hand side of the figure, the clone browser
displays all clone groups found within the analyzed models. By selecting the base or an
occurrence of the clone group, the model view automatically switches to the location of
the occurrence and highlights it, as if it was selected within the view itself. In addition,
the blocks of the clone occurrence are listed in the list view under the model view. Each
clone occurrence can also be shown in MATLAB/Simulink itself via a context menu
option within the clone browser.

Moreover, the occurrences of a clone group with clone type DF0-DF2 can be refactored
by creating a generic library block for the base of the clone and replacing all clone
occurrences with respective instances of this library block.

6.3 Clone Refactoring
Clones found during the clone detection process usually decrease the overall maintain-
ability and quality of a model. Thus, it is desirable to reuse cloned functionality in a
controlled manner to trace and document intra- and inter-model reuse of model fragments.

MATLAB/Simulink offers a mechanism called library blocks that can be defined by
the user and inserted into arbitrary models (see Section 2.2.1). The functionality of the

134

6.3 Clone Refactoring

2

5

p InportOutport

Generic library block

Library block
p=2

Library block
p=5

Refactor

Figure 6.4: Example of the clone refactoring procedure

library block is then present within the model without the need to re-declare its content.
Another advantage of library blocks is that all changes made to the actual definition of
the library block are automatically inherited from the respective instances of the library
block. The block is available within the library repository of MATLAB/Simulink and
can be enriched with additional information, which improves the overall reuse process.

Doerr et al. [45] discuss a semi-automatic process for library block creation with
subsystem granularity that only supports partial resolution of clone variations that may
appear in DF0-DF2 clones. The procedure introduced in this section does not share
these restrictions and can convert clones of type DF0-DF2 into generic library blocks and
replace clone occurrences by correctly parametrized instances of the previously created
library block.

6.3.1 Refactoring Procedure
Figure 6.4 shows a sketch of the application of the clone refactoring procedure. First,
a masked library block is created based on the clone base of a selected clone group
and saved within the library repository of MATLAB/Simulink. Block parameters that
differ between the base and at least one occurrence of the clone group are identified
and promoted. Promoted parameters can then be configured via the mask of the library
block. After that, the library repository is refreshed to make the block available within
the modeling environment. In the last phase, the clone base and all its occurrences are
replaced by a parametrized instantiated version of the created library block. Note that
only clone occurrences need to be parametrized, as the default configuration is derived
from the clone base.

Creation of the library block The first step during the clone refactoring procedure is to
create a library block that will contain the duplicated model fragment. After the creation
of the library block, all blocks and lines contained within the clone base are recreated
within the library block. For each line connecting the blocks of the clone base with

135

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

the rest of the model, a corresponding in-/outport is created, representing the interface
of the clone base. A port mapping mp is saved that maps the in- and outports of the
library blocks to the in- and outports of the respective blocks within the library block. In
addition, the Subsystem block representing the library block is masked and user-defined
descriptions and documentation may be added to the mask dialog. A documentation
block placed within the library may contain further documentation or change logs of
the library block. The created library block can then be placed within an existing block
library or a new block library can be created and integrated into MATLAB/Simulink.

Determine parameter differences For DF1 and DF2 clone groups, the parameter
differences between the clone base and the clone occurrences need to be determined.
First, we determine all block types of the clone group and the parameters that can be
configured by the user to change the behavior of a block with a given type. To calculate
the differences between a block bo in a clone occurrence against its corresponding block
bb within the clone base we use an injective mapping function mi. This mapping function
maps the blocks of the clone base to their respective counterpart in the i-th clone
occurrence and is created during the clone detection procedure. Determined differences
between the clone occurrences are stored and for each detected differing block parameter
of a given block bb in the clone base, a mask parameter is created in the mask of the
library block. The block parameter of the block bl corresponding to a differing parameter
of block bb within the clone base is promoted into the mask of the created library block.
This enables the configuration of this block parameter within the mask of the created
library block. By default, this parameter is set to the value used in the clone base, but
may be configured differently during clone instantiation.

Refresh library repository Before an instance of the new library block can be created,
the library repository of MATLAB/Simulink is refreshed to make the library block
available within the modeling environment.

Instantiate library block The library block created in the previous phases can now be
used to replace the model fragments of the clone base and the individual clone occurrences
within the model. First, a mapping of the environment me of each model fragment is
created that stores how blocks of the clone occurrence are connected to blocks of their
environment including individual blocks and their connected ports. After that, all lines are
deleted that start/end at least one block contained in the model fragment. Furthermore,
all blocks within the model fragment are replaced by an instance of the created library
block. The library block is connected to its environment based on the previously stored
mapping me that is again applied to the in- and outports of the library block using
functions mi and mp.

After the library block is created and connected for all model fragments of the clone
group, the individual mask parameters are set to the values identified in the second
phase.

136

6.3 Clone Refactoring

Synchronous

S‘

SA

A

S‘A‘

Apply command c

Modifications of S cause the
creation of tool specific Δ

Apply command c‘

Synchronous

MATLAB/Simulinkartshop

SA

Use Δ to create command
c’ mimicking all actions
performed by c Extract Δ

Issue command c

S‘A

S‘A‘

Apply command c

Modifications of S cause the
creation of tool specific Δ

Apply command c‘

Synchronous

MATLAB/Simulinkartshop

SA

Use Δ to create command
c’ mimicking all actions
performed by c Extract Δ

Issue command c

Figure 6.5: Synchronous model transformation in artshop and MATLAB/Simulink

6.3.2 Modification Commands
The previous section described the general process of refactoring a clone group by
using parameterized library blocks. As already proposed by Tran et al. [153, 154],
atomic model transformation operations can be composed to realize complex refactoring
operations. While the techniques discussed by Tran et al. are directly applicable in
MATLAB/Simulink, we actually need to transform two models during the refactoring
procedure: the MATLAB/Simulink model and its corresponding representation loaded
in the artshop framework. A naive method would only refactor the MATLAB/Simulink
model then synchronize it to apply the changes to the artshop representation using the
procedure described in Section 3.5. As this requires a complete reimport of the model
that, depending on its complexity, could take a large amount of time, we instead opted
to refactor the artshop model representation simultaneously.

To realize this synchronous transformation, we first implemented atomic modification
commands that are able to transform the actual MATLAB/Simulink model according to
the refactoring procedure outlined in the previous section. Examples for modification
commands are: SetParameter, AddLine, AddBlock, AddLibrarySection, SetDocumentation,
DeleteLine, DeleteBlock, PromoteMaskParameter and CreateBlockMask. We emulated
the command architecture of the EMF [145] to implement these commands and used
utility functions implemented as part of the MATLAB/Simulink tool adapter to realize
the transformation in MATLAB/Simulink.

To apply the specified refactoring commands in a synchronous fashion, we mimic
the transformation performed by the commands transforming the MATLAB/Simulink

137

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

model by an equivalent command changing the artshop model representation as shown
in Figure 6.5. As some commands like the AddBlock command introduce a tool specific
∆ of information within a created element, like block parameters or the SID, we need
to extract this ∆ from MATLAB/Simulink to represent a created element in artshop
correctly. The ∆ is subsequently used to create a block and add all extracted parameters
contained within the ∆ to the block, so that they are again available in the graphical
viewer and the analyses of the framework.

Another case that needs to be considered during the deletion of blocks and lines, is
the prevention of dangling references within the artshop model representation. As other
elements not considered during the refactoring procedure may reference a deleted block
or line in the artshop model, a cross reference analysis is performed to remove dangling
references to deleted elements. During this analysis, all references to the deleted element
are also removed as part of the deletion command, considering all elements within the
repository as well as all elements not yet committed.

This implementation of the refactoring process ensures that both the MATLAB/Simu-
link model and the artshop model representation are synchronized to each other once
the refactoring procedure is finished.

6.3.3 Limitations
While the refactoring procedure is able to handle clones of type DF0-DF2 there still exist
certain limitations in its application. Unlike the refactoring procedure described by Doerr
et al. [45] the refactoring procedure presented in this thesis can also be used to refactor
only a subset of blocks within a subsystem. We derive the interface of the created library
block from the clone base based on the lines that connect the blocks of the clone base
with its environment. Here, it might be the case that additional outgoing connections
exists within one or multiple clone occurrences that are currently not accounted for.
Extending the interface to include all outports required by all clone occurrences would
unnecessarily bloat the interface of the library block and result in multiple, possibly
redundant ports, which are only used by a subset of clone occurrences. Further work
needs to be invested to correctly handle these cases or disable the refactoring procedure
altogether for clone occurrences with more connections to the corresponding environment
than the clone base.

6.4 Evaluation
We now present the evaluation results of the techniques related to the layout-based clone
detector and the clone group consolidation procedure. The evaluation has been performed
on the same system presented in Section 3.5 and with the models introduced in Section
3.5.1. While we also implemented the ConQAT and gApprox algorithm, the evaluation of
these techniques here is accessory, as no contributions have been made towards improving
them besides the restrictions applied as part of the overall clone detection process (see
beginning of Section 6.2).

138

6.4 Evaluation

Table 6.1: Performance and results of the clone detection algorithms

Model
LCCD ConQAT gApprox

t Groups Clones t G. C. t G. C.
(ms) (ms) (ms)

MAV 184.71 3 53 186.70 9 67 1807.19 11 72
DAS 323.22 4 9 146.78 10 21 4615.54 13 29
EL 426.60 9 31 233.77 19 53 17006.75 30 73
PI 11032.07 14 358 14758.92 13 151 n/a n/a n/a

ECLA 432.91 4 9 481.94 22 46 4591.99 70 178

We first evaluate the performance of the implemented copy clone detector and the clone
consolidation procedure. After that, we examine the overall quality of clones detected
with the copy clone detector in comparison to the other approaches.

6.4.1 Performance
To evaluate the performance of the layout-based copy clone detector (LCCD), we executed
each clone detector individually on each evaluation model and measured the computation
time, obtained clone groups and the absolute amount of clones within all groups. During
the evaluation, we used the default configuration of the clone detection procedure.
Moreover, the gApprox algorithm was configured to skip the detection of DF3 clones, to
highlight the effect of the clone consolidation procedure.

Table 6.1 shows the empirical evaluation results of the performance evaluation. The
amount of reported clone groups and contained clone occurrences correspond to the
top-level clone groups and their clone occurrences. Subsumed clone groups are not part
of this statistics. Unfortunately, our implementation of the gApprox algorithm did not
terminate on the PI model, as it found a huge clone between two subsystem both
containing around 100 blocks, leading to the algorithm running out of memory during
its resolution. This partially confirms the results observed by Deissenböck et al. with
regard to the application of pattern mining techniques even in our restricted application
scenario, as mentioned at the beginning of Section 6.2 [38].

Comparing the LCCD against the other approaches, it becomes apparent that it
has a similar run-time as the ConQAT algorithm while detecting substantially fewer
clone groups. Nevertheless, copy clones could be found in every model, highlighting the
importance of the algorithm. In comparison to the gApprox algorithm, only a minor
subset of the overall clones detected are copy clones. Many clones detected by gApprox
are clones resulting from the use of structural blocks, i.e. virtual blocks.

It is noticeable that the time to compute the clone groups on the PI model is significantly
higher than for the other evaluated models, particularly in comparison to the structurally
similar ECLA model. In contrast to the PI model, the ECLA model consists mostly
of library blocks, which are ignored by the clone detection algorithm. Therefore, all
algorithms perform much faster on this model than the PI model. In addition, the PI

139

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

Table 6.2: Performance and results of the clone consolidation procedure

Model Before merge tmerge After merge
Groups Clones (ms) Groups Clones Sub. groups Sub. clones

MAV 23 192 55.57 11 73 10 63
DAS 27 59 23.30 16 35 3 11
EL 58 157 80.80 30 76 43 228
PI* 27 509 164.56 16 167 36 727

ECLA 96 234 90.02 70 192 54 230
* Results for the PI model do not contain the results of the gApprox algorithm.

model has the highest amount of subsystems of all evaluated model (1038), some of which
contain up to 98 blocks with only few library blocks. Each of the clone detection runs
shown in Table 6.1 were executed with only one active clone detection algorithm. Thus,
the removal and merging of redundant clones was only performed on the result set of one
algorithm.

Table 6.2 shows how the clone consolidation procedure reduces the amount clone groups
if multiple clone detectors are active during the clone detection procedure. The first two
columns show the accumulated amount of clone groups obtained from the individual runs
of the clone detectors shown in Table 6.1. Applying the clone consolidation procedure
on the individual results of the used clone detectors significantly reduces the amount of
clone groups and clones within the result set, as shown in the third and fourth column
of the table. Redundant clones are merged and subsuming clones across the results of
the individual detectors are detected and stored accordingly. The number of subsumed
clone groups and their contained clone occurrences are listed in columns five and six.
On average, the clone consolidation procedure reduces the amount of clone groups by
41.80 % and the amount of clone occurrences by 47.87 % within a maximal processing
time of around 200 ms. Therefore, the consolidation procedure is a useful tool during the
manual assessment of clone groups after the analysis is finished.

Consider Figure 6.6 that displays the overlap between the individual results of all three
algorithms for the EL model. It shows that the results of the LCCD were also found
by all other algorithms. Both the ConQAT and the gApprox algorithm provide distinct
clone groups alongside groups that are unique to these two. We further note that the
amount of clone occurrences of the gApprox algorithm does not add up to the value
shown in Table 6.1. The four missing clone groups were merged with one of the results of
the ConQAT algorithm that provided an occurrence that overlaps with the occurrences
of the gApprox algorithm.

6.4.2 Quality
In the previous section, we already discussed the amount of occurrences found by the
LCCD in comparison to the ConQAT and gApprox detectors. To further reason about
the overall quality of the results sets of each individual algorithms, we use a weighting

140

6.4 Evaluation

LCCD

0

ConQAT

4

gApprox

11

0 0

6

9

Figure 6.6: Overlap detected between the clone groups detected by the clone detection
algorithms applied on the EL model

scheme introduced by Deissenböck et al. [39, p. 6, last paragraph]. This scheme assigns
a weight to each block contained within the base of a clone group and sums up all
weights of the blocks of a given clone base. Nonvirtual blocks have a rating of 1 or higher
while virtual blocks are typically rated with 0, which favors clone groups impacting the
semantic behavior of a model.

Table 6.3 shows the amount of clone groups, their containing clones, the average size
of the base of a clone and the weight calculated using the mentioned weighting scheme
for each algorithm on the set of evaluation models. Clones detected by the LCCD on
average have the highest weight across all detectors, highlighting the quality of detected
clone groups. The high weight is related to the low amount of detected clone groups in

Table 6.3: Quality of detected clones
Algorithm Groups (Clones) �Size �Weight

LCCD 34 (460) 9.03 14.40
ConQAT 73 (339) 10.94 12.27
gApprox* 124 (352) 7.33 8.88
Merged 143 (543) 9.32 10.44

* Results of the gApprox algorithm do not contain the
results of the PI model.

141

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

Table 6.4: Performance evaluation of the refactoring procedure for the clone group shown
in Figure 6.3

Phase t (ms) Executed commands
Create library block 1308 29

Refresh library browser 5294 1
Instantiate clone base 6626 6

Instantiate clone occurrence 4303 7
Total 17531 43

comparison to the other algorithms that do not rely on hints, i.e. layout information,
to compute their result sets. Furthermore, the results of the LCCD are often directly
found or even subsumed by the result of other detectors. Nevertheless, the LCCD can be
applied to identify copy clones within a MATLAB/Simulink model and might even be
used as a clone group classifier, to assign clone groups containing copy clones a higher
relevance, similar to the weighting scheme of Deissenböck et al. Merging the clone groups
of all detectors does not significantly decrease the overall quality even if lower quality
clones detected by the gApprox algorithm are also included within the result set.

6.4.3 Refactoring Procedure
To give an impression of the overall performance of the refactoring procedure, we
analyzed the refactoring of the example clone displayed in Figure 6.3. Table 6.4 shows
the time needed for the phases of the refactoring procedure as well as the amount of
commands executed during each phase. The most expensive phase, with respect to the
time needed to execute it, is the refresh library phase, as MATLAB/Simulink needs to
reload all registered library blocks. The instantiation of the clone base is slightly more
computationally expensive as it also includes the loading time of the model containing
the model fragments that need to be refactored. An additional command is needed to
instantiate the clone occurrence, as the mask parameters of its library block instance
need to be set to preserve the semantic behavior of the replaced model fragment. In
comparison to the creation of the library block, instantiating it takes much more time as
within these phases the artshop model representation also has to be altered. For each
deleted model element, a cross reference analysis has to be performed to prevent dangling
references from other objects to the deleted blocks and lines.

Overall, the clone refactoring procedure takes significantly less time than manually
replacing the affected model fragments, while simultaneously synchronizing the artshop
model representation with the changes made outside of the framework.

142

6.5 Repository Guided Cross-Clone Detection

Figure 6.7: Generated query for the clone group shown in Figure 6.3

6.5 Repository Guided Cross-Clone Detection
Clones identified within one model may also appear in other models that were not part of
the scope of an initial clone detection run. Depending on the size of these models, running
the complete clone detection procedure again might be inefficient and possibly not even
result in the same clones, if it only contains a single occurrence of a previously identified
clone group. Therefore, it would be desirable to search for occurrences of already detected
clones in other models to replace these occurrences with the same generic library block.

We have implemented a proof-of-concept cross-clone detector that can identify clones
found in an arbitrary modelM in another modelM′ stored within the artshop repository.
Clones fromM withinM′ can be identified based on their structural composition, i.e. for
a given cloned model fragment m fromM we search for an isomorph model fragment m′

in M′ with the mapping fi expressing the isomorphism between m and m′. The model
fragment m′ is an occurrence of m within M′ if holds:

• ∀ v ∈ V : fi(v) has the same block type as v

• ∀ e ∈ E : fi(e) starts and ends at an in- and outport with the same numbers as
the ports connected by e

To identify occurrences of an identified clone group we utilize the querying capabilities of
the artshop model repository. Given a model fragment m = (V, E) from a clone group, we
create an OCL query that queries an arbitrary functionmodel f for a block bo matching
the type of a block bm from m. The query enforces that for each block b ∈ V that is
connected to bm via a line l ∈ E, there exists a block b′ connected to bo via a line l′

with the same characteristics (starts/ends at an in- and outport with same number) as l.
These properties are checked for each block contained in m.

Figure 6.7 shows the query generated for the clone group shown in Figure 6.3. Each query
receives a context as a parameter; within the example this is the imported functionmodel

143

6 Detection and Refactoring of Clones in MATLAB/Simulink Models

refactorDemo that is referred to by the self expression. The query starts by selecting all
blocks registered in the repository in line 1 that are contained within the functionmodel
selected as the context of the query. Starting from an arbitrary block contained within
the clone base of the selected clone group, we encode a depth-first search within the
query. The query searches for a connected component within the set of selected blocks
that matches the block types and lines of the selected clone group, as described in the
previous paragraph.

We performed a short benchmark on the overall performance of the proposed approach
against a Java based pattern detection algorithm with the example query shown in
Figure 6.7 on the ECLA model introduced in Table 3.4. The server on average took 91
ms to evaluate the query against the ECLA model without finding any occurrences of
the specified model clone. While searching the same occurrence within a locally loaded
instance of the ECLA model with the Java based pattern detector only took around 12
ms, it took around 10 seconds to lazily load the complete model from the repository
to perform the local analysis. Therefore, the repository-based analysis is well-suited to
check one or multiple models stored within the repository for the occurrence of locally
detected cloned model fragments without loading them into the memory of the client
machine. Further work is needed to integrate this method into the framework and allow
the storage of found/refactored clones to search for occurrences in other models at a later
point in time. Directly loading a library block into the query engine to automatically
search for matching candidates for this block in other models might also enhance the
workflow during the reuse of model fragments.

6.6 Conclusion and Future Work
In this chapter, we proposed a clone detection process that integrates the results of
multiple individual clone detection algorithms and exploits their different capabilities to
yield a uniform and consolidated result set refined for inspection by a modeling expert.
This result set consists of clone groups, containing one clone base and a set of clone
occurrences representing clones of the respective clone base. Besides two algorithms
from the literature, ConQAT and gApprox, we further introduce a novel layout-based
copy clone detector. This algorithm detects copy clones based on the relative position
of their elements within the model in addition to structural properties, e.g. block type
or connectivity, used by gApprox and ConQAT. The consolidation procedure merges
the individual result of all algorithms by combining duplicate or redundant clone groups
detected by multiple algorithms and hierarchically subordinate subsumed clone groups
into their containing clone groups, leading to a significant reduction of around 40 % of
top-level clones, while being computationally inexpensive. Computed clone groups can be
browsed and are visualized using the graphical viewer provided by the MATLAB/Simulink
tool adapter. We additionally propose a refactoring process for detected clones of clone
type DF0-DF2 by replacing all clone occurrences with a generic library block matching
the structure of the clone. This library block can be further parameterized to match the
behavior of the respective clone occurrence.

144

6.6 Conclusion and Future Work

The evaluation showed that the results of the layout-based copy clone detector had
the overall highest quality across all clone detectors, but also detected far less clone
groups than the other approaches. In addition, most results of the layout-based copy
clone detector were also found by the other detectors. Nevertheless, copy clones were
found in every model within the set of evaluation models. To exploit the relative layout
property used by this detector further, the relative layout could be incorporated into a
weighting scheme similar to the ConQAT weighting scheme described in Section 6.4.2.
As a typical problem during clone detection is the sheer amount of clones detected by
the detectors [38], it is reasonable to prioritize copy clones over other clones as part of
clone prioritization.

In future work, the views displaying the results of the detection could be extended.
Currently, clones can be navigated via the tree spanned by the hierarchical composition
of clone groups and their subsumed groups. The order of the top-level clone groups is
currently based on the order of detection and does not incorporate weighting schemes to
order clone groups by relevance. Multiple weights as proposed by Deissenböck et al. in
[38, 39] or a weighting function based on the relative layout of contained model fragments
could be used to order clone groups by relevance. Furthermore, certain use-cases might
require a flat-view of detected clone groups instead of the tree of subsumed clones.

As part of future work, the limitations of the refactoring procedure that have been
discussed in Section 6.3.3 concerning the clone interface to its environment need to
be addressed. This can be achieved by either extending the procedure to compute the
maximal interface over all clone occurrences including the clone base or by prohibiting
the refactoring procedure on clone groups inheriting the discussed property.

145

7 Model Smell Detection in
MATLAB/Simulink Models

In the previous chapter, we have described a design flaw of model-based software
namely the presence of multiple occurrences of the same model structure within a
MATLAB/Simulink model. This quality deficit can also be present in traditional software
development artifacts in the form of duplicate code within a given code base. Duplicate
code is one of the quality deficits described as code smells introduced by Fowler [54] as a
way to identify program locations that could benefit from being refactored or restructured.
Code smells can be seen as symptoms for the violation of fundamental design principles,
which negatively affect the quality of the software containing them [149]. Typically,
such locations are also said to contain technical debt, which describes the debt that
accrues when a developer knowingly or unknowingly makes a wrong or non-optimal
design decision [149]. This term was first discussed in an article by Cunningham in [32] as
a metaphor for poor technical realization of software. Refactoring code smells is a way to
decrease the technical debt and at the same time increase the quality of the software. As
we have already introduced the detection and refactoring of clones in MATLAB/Simulink
models in the previous chapter, investigating further mappings from traditional code
smell detection into the domain of model-based software development seems promising.

7.1 Overview and Outline
In this chapter, we apply the concept of code smells from traditional software development
to MATLAB/Simulink models in model-based software development by introducing a
catalog of model smells. These smells are partially derived from the set of code smells
defined by Fowler [54] but further include smells that are unique with regard to certain
characteristics of MATLAB/Simulink models. A smell might be introduced by changing
a feature with insufficient knowledge of a model, or by realizing features/bug fixes under
tight deadlines and introducing technical depth. In contrast to invalidated model guidelines
or conformity rules, a model smell does not necessarily indicate a syntactic/semantic
problem or error, but rather a weakness in the design of the system, which negatively
influences the quality of the model. If a smell is detected in a model, the developer has
to decide individually if the smell represents an actual problem or not.

In the following, we will first discuss related work in the area of quality assessment
for MATLAB/Simulink models and describe the contributions of this chapter. After the
introduction of the model smell catalog in Section 7.2, we will describe the detection
strategies of these model smells in Section 7.3 including their realization in the artshop

147

7 Model Smell Detection in MATLAB/Simulink Models

framework. We show the relevance of the defined model smells and evaluate the perfor-
mance of our detector on models from academic and industrial case studies in Section
7.4 and conclude our findings in Section 7.5.

7.1.1 Related Work
The term model smell also appears in the work of Arendt et al. [6], where the smells
introduced by Fowler [54] are applied to models from the Eclipse Modeling Framework
[145].

In the work of Stephan et al. [146], the clone detection tool Simone [3] is used
as the foundation for a tool called SIMAID, which is able to detect anti-pattern in
MATLAB/Simulink models. The authors use the clone detection framework to find
occurrences and approximations of pre-defined anti-pattern via cross-clone detection.
One of the pattern defined by the authors is called primitive obsession, which occurs
when a subsystem only contributes very simple or primitive operations. Another pattern
is the feature envy pattern that occurs if the functionality of a subsystem is focused on
another subsystem it contains. Patterns are modeled in MATLAB/Simulink and handed
to SIMAID for cross-clone detection. While the approach has the advantage that each
Simulink modeler has the tools to model an anti-pattern, the expressiveness is limited to
unwanted structural attributes of a model, such as functional decomposition and block
sequences. In particular, architectural smells regarding the signal structure of a model
cannot be expressed with these templates.

The work of Hu et al. [71] focuses on the definition of a quality model for MAT-
LAB/Simulink models based on the ISO/IEC 9126 [74]. The authors focus on the quality
metrics targeting the internal quality of a model and introduce metrics to measure quality
characteristics of their defined quality model. These metrics include simple metrics that
represent the amount of certain types of model elements as well as metrics that require
static analyses, e.g. model slicing.

Scheible et al. [138, 139, 140, 141], follow a similar approach as Hu et al. The authors
also define a quality model based on the model proposed by Cavano & McCall [25] and
relate different metrics to quality criteria and characteristics to measure the quality of a
model. A metric measuring the maintainability of a model would be the ’Average signal
length’ metric that is categorized by Scheible as a metric of medium influence on the
quality of a model. The metrics cover syntactic, structural and visual aspects of the
analyzed Simulink model. Unlike in the work of Hu et al., metrics are calculated and
normed to a range between 0 % and 100%. The resulting values have to be above a
defined minimal/maximal value or in a specified interval to satisfy a defined quality
criterion. These thresholds can be calculated based on a high quality reference model.
The normed results of all calculated metrics are then aggregated in a single quality rating
of a MATLAB/Simulink model.

Dajsuren et al. and Olszewska et al. present complexity and modularity metrics that
aim to provide information about the overall quality of a MATLAB/Simulink model in
[36, 104, 105]. They are defined on a structural level and include metrics derived from
common code metrics such as the Halsted metric [65], Cyclomatic complexity by McCabe

148

7.1 Overview and Outline

[93], the Fan-In/Fan-Out metric by Henry and Kafura [69] or structural and data flow
complexity metrics inspired by Card and Glass [24]. In contrast to the complexity metrics
presented in Section 5.7.1, these metrics do not include semantic dependencies of elements
within the model in their calculation.

Farkas et al. [49, 50, 51], present a framework for the evaluation of user-defined
conformity rules specified with the Query-Based Rule Description Language (QRDL) on
MATLAB/Simulink models. The framework has been created during the MESA project
[51] and is able to check these rules on models imported from MATLAB/Simulink and
IBM Rational DOORS. The functionality is now included in the tool Assessment Studio.

Other approaches featuring the validation of conformity rules are the MATE project
[148], the Matlab Model Advisor (MMA) [128] and the commercial tool MXAM [123].
These approaches can validate pre- and user-defined conformity rules, with MATE also
supporting semi-automatic repair actions that can be applied on model parts invalidating
certain rules. An example for a set of rules realized by the MMA are the modeling
guidelines created by the MathWorks Automotive Advisory Board [131], which were
created by industrial partners in cooperation with MathWorks. All approaches are directly
integrated into MATLAB/Simulink.

Kemman et al. present the INProVE framework (Indicator-based Non-functional
Property-oriented eValuation and Evolution of software design models) that is able to
check user-defined quality characteristics on different kinds of data-flow models such as
MATLAB/Simulink, Ascet, Modelica or Labview [77]. Checked characteristics can be
created based on pre-defined quality indicators and refined by the user by combining and
aggregating different quality indicators with each other.

A general-purpose tool used to specify invariants on instances of an UML or MOF
model is the Object Constraint Language (OCL) [158]. With the OCL, invariants, rules
and constraints can be defined using a textual language that cannot be expressed by
diagrammatic notations. An OCL statement is composed of four parts: a context defining
the class the statement should be applied to, a property of the context, an operation that
further qualifies this property and a conditional expression that checks if the specified
statement holds in the given context. The OCL contains a rich-set of operations on
various kinds of collections, which eases the querying of qualified properties. Applying
an OCL statement to a valid model instance is side effect free, meaning that checking
a statement will not result in changes on the model. As the OCL can be applied on
arbitrary models specified based on the UML, MOF or EMOF metamodel, it can be
used in any environment that uses models based on these respective metamodels for the
specification of user-defined conformance rules.

To resolve detected violations of modeling guidelines, conformity rules, anti-pattern
or model smells, refactoring operations can be used to transform malformed model
structures automatically. Tran et al. [153, 154] describe refactoring operations for MAT-
LAB/Simulink models that can be used to restructure a model by creating/resolving
subsystems, altering/resolving bus signals or even resolving indirect signal flows by
directly routing signals through the model without the need of Goto/From blocks. The
approach automates complex and repetitive workflows that frequently occur when altering

149

7 Model Smell Detection in MATLAB/Simulink Models

complex Simulink models and therefore reduces the amount of time needed to perform
changes as well as the amount of errors during manual model restructuring.

Klauske et al. [79, 80] propose a method to automatically layout the content of
subsystems within a Simulink model by a specifically tailored layout algorithm. In
combination with other refactoring operations such as the ones presented by [148, 153, 154]
it can be used to clean up the visual representation of a subsystem after model elements
have been created, moved or altered.

Mengi et al. [94] propose to use refactoring operations to restructure a model to
create different variants by the definition of an underlying software product line. The
authors extract a commonality and difference model from existing variants. These are
subsequently used to derive variation points. Variants can be created by combining
the commonality and difference model via the application of the respective refactoring
operations.

7.1.2 Contributions and Bibliographic Notes
The model smells presented in this chapter have been developed in cooperation with
Quang Minh-Tran (DCAITI) and Christian Dziobek (Daimler) and have been published
in [60]. The first version of the model smell detector has been created as part of the
bachelor’s thesis of Dennis Weir [159] and was later extended by Mirko Kugelmeier and
the author of this thesis. We have implemented the actual detection rules presented in
Section 7.3 in the artshop framework, while the resolution operations have been developed
by Quang Minh-Tran and are described in [153, 154].

7.2 Model Smells for MATLAB/Simulink Models
During the development of MATLAB/Simulink models, certain model properties need to
be designed with care to achieve high quality models, as it is the case in traditional soft-
ware development. The naming scheme of elements plays an important role as part of the
documentation of a model. Architectural properties are altered by the overall structure
of the model with respect to the decomposition of functions via Subsystem blocks. More-
over, the interfaces of Subsystem blocks provide hints regarding the implementation of
functionality encapsulated in subsumed hierarchy layers. Further architectural properties
are related to the signal flow of a model, i.e. how signals are exchanged in a model, and
the structure of bus signals.

We define a set of quality anti-patterns, called model smells that have been gathered
in cooperation with developers from Daimler and target the aforementioned properties.
These smells are partially inspired by the code smells presented by Fowler in [54] and
requirements stated by certain norms and standards as the ISO 26262 [73]. A model smell
contains a set of prerequisites a particular set of model elements has to fulfill in order
to become an instance of the model smell. These prerequisites may target properties
of individual elements or their environment but may also target dependence relations

150

7.2 Model Smells for MATLAB/Simulink Models

among these elements. Only if all prerequisites are satisfied, a model smell is instantiated
for a set of model elements.

In the following sections, the individual model properties and their accompanying
model smells are explained in more detail. We will use the model formalization introduced
in Section 2.2.4 and the formalization of signal flow from Section 5.3 for the definition of
the various model smells.

7.2.1 Naming Conventions
Naming model elements is an important factor influencing the overall maintainability,
readability and understandability of a model. The terminology used when naming el-
ements should come from the domain the model is used in, as the same terminology
might have different meanings in two distinct domains. The name of a model element
provides additional information about the use of an element, i.e. the name of a Subsys-
tem block might provide meaningful data regarding its contained functionality. When
correctly chosen, the name of an element can provide useful information regarding model
documentation, re-usability and understandability of the element within its context.

Therefore, choosing a vague name for a model element is detrimental to the overall
model quality, as further inspections are needed to understand the role of the model
element.

Definition 7.1 (Vague Name).
A model element is said to be vaguely named, if its name does not relate to the functionality
it represents.

As stated in the ISO 26262 [73, Part 6 - p. 14 Table 1 - Item 1h], all model elements
need to be named reasonably to increase the understandability of a model.

Another smell related to naming elements is connected to the representation of the
interface of a subsystem block by the In-/Outport blocks in the subsystem.

Definition 7.2 (Inconsistent Port Block Name).
The name of an In-/Outport block is said to be inconsistent, if it differs from the name
of the signal that is propagated over it.

By semantically connecting the name of a port block to the signal that should be
propagated over it, the interface of its containing subsystem or even functionmodel
becomes more explicit and easier to use, as the interface describes the signals it expects
to receive.

7.2.2 Partitioning
The concept of decomposition of functionality and the introduction of abstraction levels
is a common principle in model-based development. Not abiding or excessively using this
concept can again have a negative impact on the understandability and extendability of
a MATLAB/Simulink model. Typically, a subsystem should realize a single well-defined

151

7 Model Smell Detection in MATLAB/Simulink Models

function corresponding to the abstraction level it is placed at or contain subsystems that
further decompose a given functionality. One example of excessively applying the concept
of functional decomposition are reflected in the model smell Superfluous Subsystem

Definition 7.3 (Superfluous Subsystem).
A subsystem is called a superfluous subsystem if the functionality it encapsulates is to
simple and reduces the readability of its containing subsystem.

In the context of a subsystem, superfluousness can be defined by the type of blocks
a subsystem contains, e.g. only virtual blocks, by a threshold representing the minimal
amount of blocks a subsystem has to contain or even by a complexity metric such as the
Halstead [65] or Cyclomatic complexity metric [93].

The opposite of a superfluous subsystem is a subsystem that realizes more than one
function without further decomposition of these functions into separate subsystems.

Definition 7.4 (Subsystem with Multiple Functions).
A subsystem realizing more than one function without the decomposition of these functions
into further subsystems, is said to possess the Subsystem with Multiple Functions model
smell.

This smell is similar to the code smell Long method introduced by Fowler [54], which
describes an overly long method that should be refactored into smaller subroutines.
Decomposing a subsystem possessing this smell into further subsystems named according
to their realizing functionality, increases the readability of a subsystem, as the naming
scheme might make further inspection of an appropriately named subsystem unnecessary.

Another example of excessively introducing abstraction layers in a model are reflected
by a model containing to many hierarchy levels in the form of nested subsystem blocks.

Definition 7.5 (Deeply Nested Subsystem Hierarchy).
A subsystem that is nested in more than TLevel subsystems is considered to be nested
to deeply within the models hierarchy, with TLevel ∈ N being the maximum amount of
acceptable hierarchy levels.

Introducing to many hierarchy levels in a model degrades the readability, as relevant
model parts might be spread across many hierarchy levels. Depending on the value of
TLevel, eliminating occurrences of this smell might increase the number of occurrences
of the Subsystem with Multiple Functions smell. As the occurrence of these smells
simply are hints for potential weak design, the value of TLevel can be tweaked to remove
these contradicting occurrences or their occurrence could be documented with a proper
reasoning.

As we have seen, functional decomposition has to be handled with care during the
design of a MATLAB/Simulink model as the readability of the model suffers. A similar
problem is encountered when handling similar functionality at different locations in a
model.

152

7.2 Model Smells for MATLAB/Simulink Models

Figure 7.1: Example for the model smell Subsystem Interface Incongruence (see Def. 7.7)

Definition 7.6 (Duplicate Model Part).
A set of model elements from a model M is called a duplicate model part, if there exist
another set of model elements from M that represent the same structural and syntactical
properties.

The creation and maintenance of duplicate model parts already has been identified as
a potential problem in Chapter 6 and is further mentioned by Fowler as a smell occurring
in traditional software development in the form of duplicate code [54].

7.2.3 Interface Definition
The readability and understandability of a Subsystem block not only stems from its name,
but also from the interface it exposes, which is composed of the ports of the Subsystem
block and their respective names. The interface of a Subsystem block should only receive
signals that are actually used by the blocks it contains, especially if bus signals are part
of the interface to abide to the principle of information hiding [114]. If this is not the
case, the parameters of the function realized by the Subsystem block are not explicit and
the interface of the subsystem is incongruent to its effectively used interface.

Definition 7.7 (Subsystem Interface Incongruence).
Let Bnonvirtual be the set of nonvirtual blocks in a MATLAB/Simulink model M. The
interface of a Subsystem block b is said to be incongruent, if b receives more signals than
it actually uses.

Cin = ⋃
p∈ports(b)

segsP (p)

∃ c ∈ Cin : ∀ pdest ∈ destS(signalc(c)) : fp(pdest) /∈ cssysrec(b)∨
(fp(pdest) ∈ cssysrec(b) ∧ fp(pdest) /∈ Bnonvirtual)

Consider Figure 7.1 for an example of the aforementioned model smell. The signals
A, B and C enter the displayed Subsystem block as part of the bus signal Bus but only

153

7 Model Smell Detection in MATLAB/Simulink Models

the signals A and B are used, while signal C is terminated at the BusSelector block.
Therefore, signal C is not used and the interface of the Subsystem block is incongruent to
its definition. Enforcing subsystem interfaces to only contain the signals it effectively uses
further increases the reusability of the subsystem, as the interface does not reflect the
model environment the subsystem was initially developed in, for example by including a
context specific bus as part of its interface.

One of the design decisions regarding Subsystem interface definitions is the application
of a consistent definition pattern across all Subsystem interfaces of a model.

Definition 7.8 (Inconsistent Interface Definition).
The interface definition of a Subsystem is inconsistent, if a subsystem of similar size
exists, whose interface definition differs in overall usage of bus and atomic signals.

In particular, the input interface of subsystems of similar size and complexity might
consist of bus signals in one location and of atomic signals in another location.

An interface definition further orders received and emitted signals. It is advisable,
that closely related signals, e.g. a subsystem receiving two signals representing x and
y coordinates within a coordinate system, should be placed in proximity to each other
to highlight the semantic coherence of these signals. The actual order of signals in the
interface of a Subsystem is defined by the order of its containing In-/Outport blocks.

Definition 7.9 (Non-optimal Port Order).
The order of ports is said to be non-optimal, if semantically coherent signals are not
located next to each other.

The size of an interface definition is another concern affecting the readability of a
model. If the interface definition exceeds a certain threshold, it becomes harder for a
developer to grasp an overview of the interface.

Definition 7.10 (Long Port List).
A subsystem containing more than TP orts In/Outport blocks is considered to possess
the Long Port List model smell, with TP orts being the maximum amount of acceptable
In-/Outport blocks.

This smell is similar to the code smell Long Parameter List introduced by Fowler [54].

7.2.4 Signal Flow
The signal flow within a MATLAB/Simulink model defines data dependency relationships
between the blocks in the model, as introduced in Chapter 5. Therefore, the routing of
the signal flow should follow basic principles to be comprehensible and not be overly
complicated. Typically, data flow is modeled from left to right on each hierarchy level,
except when data is feedback, e.g. by the use of Delay blocks. This results in connected
blocks to be positioned from left to right with regard to the data flow of these blocks.

One example of an overly complicate signal flow is captured by the Redundant Signal
Paths smell, which describes the case of a subsystem receiving the same signal more than
once: Either via a distinct port or encapsulated in a bus signal.

154

7.2 Model Smells for MATLAB/Simulink Models

Figure 7.2: Example for the model smell Redundant Signal Paths (see Def. 7.11)

Definition 7.11 (Redundant Signal Paths).
A Subsystem block b is said to contain the Redundant Signal Paths smell if it holds that

∃ p1, p2 ∈ portsin(b) :
(⋃

c1∈segsP (p1)
signal(c1)

)
∩

(⋃
c2∈segsP (p2)

signal(c2)
)
̸= ∅

If the same signal enters a subsystem twice, possibly even with different signal name
aliases, the redundant signal flow increases the visual complexity of the model and may
obfuscate the source of a signal. Consider Figure 7.2 for an example of the Redundant
Signal Path model smell. Signal B enters the displayed Subsystem block twice, once
contained in the bus signal Bus and through a distinct inport. The signal instance
routed through the bus signal terminates at the BusSelector contained in the Subsystem
block, while the atomic signal B routed through the second inport is used as part of the
computation. This overly complicates the visual complexity of the model and may hinder
model maintenance in the future.

Another desired property of signal flow is that signals should only be routed into
subsystems that require these signals to compute further values. If, for instance, a signal
is emitted by a Subsystem block b and is again only consumed by b without any changes,
the subsystem emits a Cyclic Signal Path.
Definition 7.12 (Cyclic Signal Path).
If a signal is emitted by a Subsystem block b that is again only consumed by b without
being changed, b is said to be possessed by the Cyclic Signal Path smell. A signal is
considered unchanged, even if it is propagated over a bus-capable block.

A cyclic signal path again contributes to the visual complexity of the model and could
be resolved by moving the feedback loop into its emitting subsystem.

A special case of the Cyclic Signal Path smell occurs if a signal is feedback into its
emitting subsystem and used in the same step to calculate further output signals. This
breaks the principle of visually modeling the signal flow of a model from left to right.

155

7 Model Smell Detection in MATLAB/Simulink Models

1
Out1

1
In1

-K-

Gain

2
Out2

2
In2

In1 Out1

Controller

Figure 7.3: Example for the model smell Independent Local Signal Paths (see Def. 7.14)

Definition 7.13 (Mismatch Between Visual and Effective Flow).
A mismatch between visual and effective flow occurs if a signal emitted by a Subsystem
block b is feedback into b and used to compute further output signals of b in the same
time step.

While the described smell could potentially occur on the same hierarchy level, we do
not consider this case, as the signal flow between elements of the same hierarchy level
can be visually traced, which is difficult for a signal propagated between one or multiple
hierarchy levels.

As a Subsystem block is typically perceived as a unit realizing a particular function,
it is expected that the input signals are used in a cohesive manner to calculate the
outputs of a Subsystem block. If this is not the case, a subsystem might be affected by
the Independent Local Signal Paths smell.

Definition 7.14 (Independent Local Signal Paths).
A Subsystem block b is affected by the Independent Local Signal Paths smell, if the
directed graph G formed by the blocks and lines of b is not connected and there exist at
least 2 connected components c1, c2 which contain at least one vertex representing an
Outport block.

Following this definition, the independent local signal paths smell represent a minimum
of two independent signal flows within a Subsystem block b that do not influence each
other and are both emitted via an outport of b as shown in the example model in Figure
7.3.

As signals in MATLAB/Simulink are similar to variables within a program, they should
be used somewhere in the model to be relevant towards the models behavior. We consider
a signal to be used if it terminates at a nonvirtual block. If this is not the case, the lines
and virtual blocks associated with the signal do not contribute to the semantics of the
model.

Definition 7.15 (Unused Signal).
Let Bvirtual be the set of virtual blocks of a MATLAB/Simulink model M. A signal s

156

7.2 Model Smells for MATLAB/Simulink Models

emitted from a nonvirtual block b within a Simulink model is said to be unused in the
model, if it holds that

∀ p ∈ dests(s) : parent(p) ∈ Bvirtual

Unused signals are also relevant in the context of bus signals, i.e. if a signal is not used
after it enters a bus signal via a BusCreator block, it unnecessarily bloats its containing
bus signal and reduces the readability of the bus signal specification. As such a signal
might still be used before it entered the bus signal, the Unused Signal smell does not
cover this case.

Definition 7.16 (Unused Signal in Bus Signal).
A signal s that enters a bus signal sBus at a block b and an outport poutB

is said to be
unused within sBus, if it holds that

∀ p = (Ls, (bdst, pdst), C) ∈ Ps′ : bdst is a virtual block
with Ps′ = {p = (Ls, Ld, C)|∃ c ∈ C : c = cBus}

and cBus = (Ls = (b, poutb
), LD, l): First signal segment of s in sBus

The definition captures the case that all signal paths that contain the signal segment
cBus terminate at a virtual block. As the segment cBus is the first segment of s that is
contained in sBus, the rule determines if all signal paths containing cBus end at a virtual
block. This explicitly excludes all signal paths that do not enter the bus signal sBus at
location LS = (b, poutb

) and therefore all signal paths that branch before reaching block b.
Another smell similar to the Subsystem Interface Incongruence smell occurs in a

subsystem if a signal is routed through a subsystem without actually being used.

Definition 7.17 (Pass-through Signal).
A signal s that enters a Subsystem block b via a signal segment cs is said to be a
pass-through signal if it holds that

∀ p = (Ls, (bdst, pdst), C)inPS′ : bdst /∈ cssysrec(b)
with Ps′ = {p = (Ls, Ld, C)|∃ c ∈ C : c = cs}

The definition checks if all signal paths p ∈ Ps′ containing the signal segment cs

used to enter a subsystem b terminate at a block that is not contained in subsystem b.
Consequently, signal s entering b through cs is not used in b and can be classified as a
pass-through signal. This definition does not cover multiple distinct paths of s entering
b, where one is being used and one passing-through, as using such a construct is also
considered to be a smell according to Definition 7.11.

Signals do not necessarily need to enter a subsystem through its ports, but can also be
injected/emitted into/from a subsystem by the use of Goto/From blocks via hidden signal
flow. As the use of the hidden signal flow is not reflected in the interface definition of a
Subsystem block, the overall readability and reusability in another context is negatively
influenced.

157

7 Model Smell Detection in MATLAB/Simulink Models

Definition 7.18 (Hidden Signal Flow).
Let BGoto and BF rom be the sets of Goto and From blocks of a MATLAB/Simulink model
M and C be the set of signal segments in M. A subsystem bs is affected by the Hidden
Signal Flow smell if either of the following conditions holds:

• ∃ b ∈ cssysdir(bS) : b ∈ BGoto ∧ ¬∃ c = (LS = (b, psrc), LD = (bdest, pdest), l) ∈ C :
(bdest ∈ BF rom ∧ ¬parent(bdest) = bs)

• ∃ b ∈ cssysdir(bS) : b ∈ BF rom ∧ ¬∃ c = (LS = (bsrc, psrc), LD = (b, pdest), l) ∈ C :
(bsrc ∈ BGoto ∧ ¬parent(bsrc) = bs)

The definitions distinguishes between the cases of a hidden signal flow being either
received or emitted by a subsystem. Both cases allow the usage of Goto/From blocks
in the same subsystem, so that Goto/From blocks still can be used to reduce visual
complexity on one hierarchy level of the model.

7.2.5 Signal Structure
The last category targets the structure of bus signals of a MATLAB/Simulink model.
As the internal structure of bus signals is hidden within the visual representation of a
model, adverse design decisions can only be detected if the structure of a bus signal is
explicitly examined. To help a modeler finding potential adverse design decisions in the
structure of bus signals, this section introduces four smells for this purpose.

Bus signals should be used to reduce the visual complexity of a model by composing
multiple lines into one line, while at the same time preserving the information transported
over the composed lines. The complexity of the model is increased, if a bus contains only
a single signal.

Definition 7.19 (Superfluous Bus Signal).
Let CBus be the set of signal segments contained in a bus signal sBus and C be the set of
all signal segments of a MATLAB/Simulink model M. The bus signal sBus is said to be
superfluous if it holds that:

∀ c ∈ segs(sBus) : ¬∃ c1, c2 : c1 ̸= c2 ∧ c1 ⊂c c ∧ c2 ⊂c c

The definition ensures that the bus signal sBus never contains more than one instance
of a signal at any time, by checking if each signal segment of the bus signal at most
contains one signal segment. Bus signals that do not contain any signals cannot be
constructed using the Simulink UI.

As the order of ports matter in Definition 7.9: Non-optimal Port Order, the order of
signals in a bus signals might also depends on the semantic coherence of these signals.

Definition 7.20 (Non-optimal Signal Grouping).
The signals contained in a bus signal sBus are said to be in a non-optimal order, if
semantic coherent signals are not located near each other.

158

7.2 Model Smells for MATLAB/Simulink Models

An example for an occurrence of this smell would be if the longitude and latitude
signals are bundled into a bus signal with the name GPS, while the altitude signal that
is also emitted by the GPS sensor, is contained in a bus signal related to the signals of
an inertial measurement unit (IMU) with both bus signals being composed into another
bus signal.

The only way to locally identify a signal once it has entered a bus, is by its name. If
no name has been assigned to a signal entering a bus, Simulink generates a generic name
for the signal, in the form Signal X with X being the port number of the port where the
signal entered the bus signal at the corresponding BusCreator block.

Definition 7.21 (Unnamed Signal Entering Bus).
A bus creator block b is said to possess the Unnamed Signal Entering Bus smell, if the
FQSN of one or multiple signal segments ending at the inports of b is empty.

Potentially, a signal may be renamed on every of its signal segments. Therefore, it
might happen that the same signal enters a bus twice, as a modeler could not distinguish
the different instances of the signal by its name. Duplicate signals in a bus artificially
bloat the complexity of the signal flow, as signals are redundantly transported through
the model.

Definition 7.22 (Duplicate Signal in Bus).
A bus signal sBus contains duplicates of a signal if it holds that:

∃ c ∈ segsS(sBus) : |segsBus(c)| ≠ |
⋃

c′∈segsBus(c)
signal(c′)|

Besides the duplicate occurrences of the same signal in a bus, multiple signals might
have different fully qualified signal names, but may have equal individual signal names
(the last string within the sequence of the fully qualified signal name).

Definition 7.23 (Multiple Signals with same Signal Name in Bus).
A bus signal sBus contains multiple signals with the same name if it holds that:

∃ c ∈ segsS(sBus) : ∃ c′ ∈ segsS(sBus) ∧ c′ ̸= c : ln = l′
n

with
c = (Ls, Ld; ⟨l1, ...ln⟩)
c′ = (L′

s, L′
d, ⟨l′

1, ...l′
n⟩)

While signals can still be identified via their fully qualified signal name when selecting
signals with the same individual name at a BusSelector block, it might be confusing
for a developer, as only the individual signal names are shown in the graphical editor
of MATLAB/Simulink. Consider the example model shown in Figure 7.4. Here, three
bus signals are contained in bus signal MainBus that all contain signals with identical
individual signal names. A developer trying to understand how signals were selected from
the Bus, always has to check the properties of the BusSelector, as blended into the figure,
as all signals have the same name and no information are available which combination of
signals and in which order they were selected.

159

7 Model Smell Detection in MATLAB/Simulink Models

Figure 7.4: Example for the model smell Multiple Signals with same Signal Name in Bus
(see Def. 7.23)

7.3 Detection of Model Smells
The detection of the model smells presented in the previous Section requires different
analysis techniques and full access to the data of the model under review. Table 7.1 shows
an overview of the techniques that can be used to detect the various model smells. Due
to the definition of certain smells, these may only be manually detected using expert
knowledge, such as the Vague Name (see Definition 7.1) smell, as the semantic meaning
of the name has to be evaluated in the context of the respective model element. While
the Mismatch Between Effective & Visual Signal Flow could potentially be found by an
automatic analysis that targets signal and layout information of the model, we decided
to place it in the manual inspection category, as many corner cases are involved in the
visual tracing of a signal. Furthermore, depending on the layout of the model elements on
a given hierarchy level, the visual flow might be arranged differently from the proposed
left to right approach, e.g. top-down, top-right or even a combination of multiple possible
directions meeting at certain points in the diagram. This makes it hard to design a
generic algorithm for the detection of this smell.

Besides the smells that require manual inspection to be detected within a model, the
rest of the smells can be automatically detected by the application of simple metrics,
i.e. counting occurrences of specific elements, clone detection as introduced in Chapter 6
and signal tracing as introduced in Chapter 5. In particular, the signal graph used to
capture data dependency relationships among blocks of a MATLAB/Simulink model in
Chapter 5 could be leveraged to implement smell detectors for smells requiring signal

160

7.3 Detection of Model Smells

Table 7.1: Overview of analysis techniques needed for model smell detection
Method Handled smells

Manual inspection

Vague Name
Subsystem with Multiple Functions
Non-Optimal Port Order
Non-Optimal Signal Grouping
Mismatch Between Effective & Visual Signal Flow

Metrics

Superfluous Subsystem
Deeply Nested Subsystem Hierarchy
Long Port List
Superfluous Bus Signal

Clone detect. Duplicate Model Part

Signal tracing

Inconsistent Interface Definition
Subsystem Interface Incongruence
Inconsistent Interface Definition
All Signal Flow smells (see Section 7.2.4)
Unnamed Signal Entering Bus
Duplicate Signal in Bus
Multiple Signals with same Signal Name in Bus

tracing. The definition of the smells of these categories already cover all details necessary
to implement smell detectors capable of detecting these smells.

7.3.1 Implementation
While it would be possible to implement the detectors as part of the artshop.extentions
component, we decided that, due to smells not necessarily being treated as errors, the
user should be able to change how smells are detected and categorized (warning/error) in
the framework by being able to tweak the actual detector itself. Hence, we implemented a
mechanism that allows the specification of analysis rules directly in the artshop framework
using the Epsilon framework [84]. The Epsilon framework provides, among others, a
family of languages that can be used to validate and analyze EMF models. It defines a
general-purpose language called Epsilon Object Language (EOL) that is an imperative
programming language that can be used to create, query and modify EMF models. The
feature set of the EOL includes aspects of Javascript, e.g. statement sequencing, variables,
loops, import statements and if branches, and the Object Constraint Language (OCL)
[158], e.g. collection querying functions. Properties and methods defined by classes of
the EMF model can directly be accessed from the EOL. Moreover, native Java code can
be called from EOL, which enables the reuse of already implemented framework code
directly from an EOL script. User interactions are also possible via a set of pre-defined
dialogs as well as the definition of user-defined functions. All further languages of the

161

7 Model Smell Detection in MATLAB/Simulink Models

framework are derived from the basic definition of the EOL. One of these languages is the
Epsilon Validation Language (EVL) that can be used to specify validation constraints on
specific classes defined in the metamodel of an EMF model instance.

Epsilon Validation Language

The EVL is a validation language that allows the definition of invariants, similar to the
concepts used in the OCL, i.e. invariants are evaluated on instances of classes of a given
metamodel. Additionally, EVL supports the definition of guards within invariants that
can prevent the evaluation of the invariant based on properties of the current instance
element. An invariant can also be dependent on the result of another invariant, i.e. an
invariant i2 should only be evaluated if another invariant i1 is satisfied, which removes the
need of recurrently checking needed pre-conditions. Finally, EVL introduces the concept
of constraints and critiques as refinement for an invariant. An unsatisfied constraint
is interpreted as a critical error invalidating the model, while a critique indicates a
non-critical situation, which should be addressed by the user. Kolovos et al. further
distinguish the EVL from the OCL in Section 4.1 of the Epsilon reference document [82].

In the EVL, validation specifications are grouped in Modules. A validation specification
can contain all constructs allowed in the EOL, i.e. user-defined operations or import
statements of other Modules. In addition, a Module contains a set of contexts, which
further contain sets of invariants. A Module is typically saved as a text file and can be
loaded to be evaluated on an EMF model saved on the file system.

Listing 7.5 contains a validation specification for the model smell Unnamed Signal
Entering introduced in Definition 7.21. The specification starts with the definition of a
context that encloses a critique that is only applied to instances of the class specified
by the context, i.e. the AbstractBlock class introduced in Section 3.3.1. The critique has a
name and defines an optional guard that can be used to determine if the invariant applies
to the current element instance (self) within a given context. In this case, the guard
ensures that the critique is only evaluated on block instances representing BusCreator
blocks. After the check label, the actual invariant of the critique is placed that must
result in a boolean value. In the example, the invariant is computed by the operation
computeUnnamedSignals that returns a set of default names for signals that were not
explicitly named by the modeler and enter the BusCreator block through one of its
inports. Note that an operation again has a context (second word after the operation
keyword) and can directly be called on element instances with the type defined in the
context of the operation. These names are generated as part of the signal reconstruction
algorithm presented in Chapter 5. The last part of the critique defines a message that is
returned if the specified invariant is not satisfied by an element.

For smells requiring a user-defined threshold, custom dialogs can be added to a module,
which can be used to query these thresholds prior to the evaluation of a validation
specification. As integrating these dialogs into the invariant itself would result in the
dialog being shown for every evaluated element, we place a pre statement within a
module, which is executed once before the evaluation of the specification is started.
The queried value is then stored in a global variable of the scope. The post statement

162

7.3 Detection of Model Smells

✞ ☎
1 /* This specification checks if a bus creator exists at which an unnamed

signal enters a bus.
2 * @author gerlitz*/
3 context AbstractBlock {
4 constraint ms21_unnamed_signal_entering_bus {
5 guard: self.type.replaceAll("\n", "") = "BusCreator"
6

7 check : self.computeUnnamedSignals().isEmpty()
8

9 message : "The bus creator " + self.name + "(SID: " + self.modelID + ")
receives unnamed signals: " + self.computeUnnamedSignals().concat(", ")

10 }
11 }
12

13 /* This operation computes the current name of a signal segment by
considering the alias of the segment and the name of the signal.

14 * @return The current name of the signal.*/
15 operation SignalSegment getSignalName() : String {
16 var name:String;
17 if(self.signalNameAlias.isDefined())
18 name = self.signalNameAlias;
19 else
20 name = self.signal.getName();
21

22 return name;
23 }
24

25 /* This operation computes the names of all signals that enter a given
BusCreator that have no explicit name.

26 * @return A set of names of unnamed signals entering the bus emited by the
given block. */

27 operation AbstractBlock computeUnnamedSignals() : Set {
28 var unnamedSignals : Set;
29 for(port: Inport in self.inports){
30 var seg:SignalSegment;
31 if(not(port.virtualLines.isEmpty())){
32 seg = port.virtualLines.get(0).signalSegment;
33 if(seg.isDefined() and
34 seg.signal.generatedName and not(seg.signalNameAlias.isDefined()))
35 unnamedSignals.add(seg.getSignalName());
36 }
37 }
38 return unnamedSignals;
39 }✝ ✆

Figure 7.5: EVL specification of the Unnamed Signal Entering Bus smell (see Def. 7.21)

163

7 Model Smell Detection in MATLAB/Simulink Models

Figure 7.6: The EVL rule editor in artshop

can be used to execute EVL code after the evaluation is finished, but was not utilized
during the specification of the presented model smells. Finally, each invariant can also
be enhanced with a fix statement. This statement can be used to provide a quick fix
operation specified in the EVL, to fix a problem detected by an invariant automatically.
Refactoring detected model smells is not part of the scope of this chapter but a description
of the general approach of fixing detected model smells is part of our joint work with
Quang Minh-Tran described in [61]. The synchronous refactoring commands introduced
in Section 6.3.2 could potentially also be used to realize these quick fix operations.

To evaluate a specification, both the specification and an EMF model are loaded by
the framework and for each context of the validation specification, the corresponding
element instances are retrieved from the EMF model and the respective invariants are
evaluated on them. Unsatisfied invariants are returned by the framework for further
processing. Further information about the syntax of the EVL and its internal evaluation
workflow can be found in the Epsilon reference documentation [82].

7.3.2 Integration in artshop
To integrate the Epsilon framework into artshop, the framework needed to be adapted
to work with models and validation specifications saved in the model repository. As the
actual validation specifications are saved as plain text on the file system, a lightweight
EMF model was created based on the artshop metamodel that saves the code of the EVL
specification. Instances of this EMF model can then be saved alongside the models of
the tool adapters in the model repository. The Epsilon framework was then extended
to accept in-memory EMF model and EVL validation specification instances instead of

164

7.4 Evaluation

loading them from the file system. These changes enabled evaluation of EVL validation
specifications directly from the model data stored in the model repository.

A textual editor also was added to enable the specification of EVL rules in artshop.
Figure 7.6 shows the EVL editor in the main view of the tool with the outline of contexts,
constraints, critiques and operations being shown on the right hand side of the editor. The
editor supports syntax highlighting of EVL keywords as well as comments, documentation
tags (@author, @context, ...) and strings. Furthermore, a code completion feature
was added, to support users not familiar with EVL and the actual artshop metamodels.
The code completion gives hints about available EVL keywords or properties/operations
available on a given model element for statement sequencing. Parser errors are directly
shown within this editor.

Errors/Warnings detected by specified constraints/critiques are propagated to the
artshop problem manager and shown in the problem views and all other views that
support the annotation of problem tags. The messages specified in the validation specifi-
cation are also included in the description of the generated tags to provide additional
information about the detected problems. One example is the viewer provided by the
MATLAB/Simulink tool adapter, which decorates shown blocks with tags including a
tooltip containing the problem description.

7.4 Evaluation
In this section, we present the empirical evaluation results of the model smell detector
presented in this chapter. The evaluation has been performed on the same system as
the evaluation presented in Section 3.5. During the evaluation, we again use the models
introduced in Section 3.5.1 shown in Table 3.4. To highlight the relevance of the model
smells introduced in Section 7.2, we first show the amount of model smell occurrences
found in the set of evaluation models. After that, we evaluate the performance of the
implemented rule-based model smell detector that is used to gather these occurrences.

7.4.1 Relevance
To show the relevance of the model smells introduced in Section 7.2, we calculate the
occurrences of a subset of these model smells on our set of evaluation models. During this
evaluation, we exclude all model smells that require manual inspection of a model, e.g.
Vague Name (see Def. 7.1) or the Subsystem with Multiple Functions smell (see Def. 7.4),
as well as the Duplicate Model Part smell as the evaluation of the detector for this smell
is already covered in Chapter 6. Table 7.2 shows the amount of detected occurrences for
each considered model smell. During the evaluation of model smells that depend on a
user input as the Deeply Nested Subsystem Hierarchy or Long Port List smell, we use the
value 10 as the threshold referenced within the definition of the smell. It can be observed
that certain smells occur very frequently as the Unused Signal smell, while other smells
such as the Superfluous Bus Signal occur at a much lower rate. This is related to the fact,
that certain occurrences of the Unused Signal smell result from the use of library blocks,

165

7 Model Smell Detection in MATLAB/Simulink Models

Model smell DAS EL MAV PI ECLA
Inconsistent Port Block Name 16 14 195 591 1075
Deeply Nested Subsystem 42 0 0 0 5Hierarchy (TLevel=10)
Subsystem Interface Incongruence 0 1 8 39 85
Long Port List (TP orts=10) 4 12 0 1 7
Redundant Signal Path 1 5 2 0 27
Cyclic Signal Path 0 0 0 0 2
Independent Local Signal Paths 7 7 2 26 17
Unused Signal 13 39 8 94 162
Unused Signal in Bus Signal 0 0 7 16 77
Pass-through Signal 3 3 9 5 17
Hidden Signal Flow 0 1 1 2 2
Superfluous Bus Signal 2 0 0 1 3
Unnamed Signal Entering Bus 0 1 1 9 3
Duplicate Signal in Bus 0 0 1 0 9
Multiple Signals with same 0 0 0 4 12Signal Name in Bus

Table 7.2: Detected model smells

which might include a superset of the actually needed functionality at a certain location
within the model. Signals not used at a certain location are therefore discarded, resulting
in an unused signal that does not represent a particular flaw in the model. Occurrences
of the smell Inconsistent Port Block Name, were sometimes related to slight spelling
differences between the name of the port and the signal that is propagated over it, e.g.
the signal ’RindicatorLight’ is propagated over a port with the name ’RIndicatorlight’.
These occurrences could easily be fixed to increase the overall quality of the model. In
general, it can be noted that the amount of smells found in a model, increases in relation
to its size, which can be expected to a certain degree.

While inspecting individual occurrences of model smells found in the evaluation models,
we also identified occurrences representing false positives resulting from the application of
design patterns within the model. If for example the INMAP design pattern, which was
proposed by Rau [114], is used in a model, a Subsystem block bp is created that precedes
another Subsystem block b that receives a bus signal as part of its input signals and only
propagates the signal values that are actually needed by the preceded subsystem. This
shifts an occurrence of the Subsystem Interface Incongruence smell from b to bp although
bp was created with exactly this purpose in mind. Another example for a false positive is
the occurrence of the Redundant Signal Path smell for a subsystem receiving a signal
multiple times because it was split right before the subsystem. Due to different sources
of false positives, the detector itself should be extended by a preprocessor that is able
to filter occurrences due to the use of design patterns or design rationales annotated to
individual elements.

166

7.4 Evaluation

Model smell DAS EL MAV PI ECLA
Inconsistent Port Block Name 229.6 346.2 264.6 3527.4 4452.4
Deeply Nested Subsystem Hierarchy 210 184.2 99.6 900.2 1073
Subsystem Interface Incongruence 199.6 218.2 351.6 1207.6 6070
Long Port List 83.6 105.6 78.8 407.8 941
Redundant signal path 114.4 147.6 147 821 4114.6
Cyclic Signal Path 90.2 123.2 87.8 477 864
Independent Local Signal Paths 267.2 453.2 263.8 2112.8 3375.8
Unused Signal 221.4 329 274 3162.2 5440.2
Unused Signal in Bus Signal 142.2 239.8 233.6 1568.2 4681.2
Pass-through Signal 186.8 220.4 310.8 810.4 5859.4
Hidden Signal Flow 99.4 129 88.4 485.2 926.8
Superfluous Bus Signal 103.2 158 100.8 1754 2492.4
Unnamed Signal Entering Bus 108.4 185.2 117.4 2005.4 2273.2
Duplicate Signal in Bus 109.6 168.2 117.8 1776.6 2906
Multiple Signals with same Signal 129.6 256 187 1674.6 11009Name in Bus
Total 2294.6 3266.8 2723 22690.4 58701.4

Table 7.3: Average computation time (in ms) for the findings shown in Table 7.2

As an occurrence for each model smell has been found, the evaluated model smells not
only represent academic assumptions but are actually instantiated in real-world models.
While we retrospectively analyzed the evaluation models after they have been created,
model smells should at best be detected in an incremental fashion during the development
process, so that minor flaws of the design can be fixed when they are created and are not
propagated through the model.

7.4.2 Performance
We also evaluated the performance of the detector based on the Epsilon framework
introduced in Section 7.3. Table 7.3 shows the results of the performance evaluation.
Each cell within this table shows the average computation time needed to determine
the occurrences of each model smell shown in Table 7.2. These times do not include the
time it takes to load the models from the model repository as they were already locally
available during the evaluation. As for the occurrences of the individual smells, it is not
surprising that with increasing model size, the average computation time of the model
smells also increases. Again, not only the amount of blocks is influencing the performance
of the detector, but also the amount of signals present in the model, as already discussed
during the evaluation of the flow-based slicing algorithm in Section 5.5.1.

The resulting times indicate that model smell detection can be conducted in reasonable
amount of time even for bigger models when using the Epsilon framework that first has

167

7 Model Smell Detection in MATLAB/Simulink ModelsConformity Audit
Reports on the Model Pedal_Interpretation

Constraints

Constraint ms8_maximal_inport_count
This specification checks if any subsystem within the checked models has more inports as specified by the user. Default value is 10.

Path: Pedal_Interpretation/Validation
Functions/Arbitration
SID: 475
Violation: The inport count of the subsystem Arbitration(SID: 475)
exceeds the maximaly permitted value (10) by 1 ports

Figure 7.7: Example report for the single occurrence of the Superfluous Bus Signal smell
in the PI model

to interpret the model smell detection rules specified with the EVL. Even for the ECLA
model, all model smell occurrences could be found within a minute while detection for
the PI model took 22 seconds and less than 4 seconds for the other models. To test the
scalability of the approach for large-scale models, we also applied the detection rules on
the version of the MAV model that has been duplicated a hundred times used for the
evaluation of the MATLAB/Simulink tool adapter in Section 3.5.1. The detector took
approximately 5 times longer than the hundredfold increase of the total computation
value for the MAV model, resulting in a computation time of around 23 minutes. While
the performance of the detector did not scale proportional to the increase in model
size, the performance of rules including a lot of string manipulations and comparisons
degraded, with 6/14 rules being responsible for 86 % of the computation time. This
provides a starting point for future optimizations of the actual EVL rules.

7.5 Conclusion and Future Work
In this chapter, we introduced the concept of model smells for MATLAB/Simulink models
inspired by the notion of code smells by Fowler [54]. While not representing syntactic or
semantic errors, model smells can be related to design flaws that reduce the overall quality,
understandability and maintainability of a model. In total, we provided a definition for
23 different model smell of which 15 have been implemented as part of a model smell
detector based on the Epsilon framework, which has been integrated into the artshop
framework. Detected results can be exported as a report as an *.pdf document as shown
in Figure 7.7.

Further, we also implemented an editor for the EOL scripting language that can in
the future be used for the creation of user-defined analyses. In future work, we plan to
extend this editor with extensive visualization capabilities to offer potential developers
the opportunity to visualize their analysis results in an appropriate way. Currently only
a simple table viewer is implemented.

168

7.5 Conclusion and Future Work

During this chapter, we focused on the aspects related to the detection of the smells,
with a number of signal related smells being based on the definitions provided in Chapter
5. In [60] we also discussed how refactoring operations can be used to automatically resolve
detected model smells and proposed the use of the SLRefactor framework developed by
Quang-Minh Tran. However, in the future, it would be possible to integrate automatic
refactoring operations, based on the commands presented in Section 6.3.2, within EVL
rules using the fix statement.

During the inspection of the model smell occurrences, we detected a few false positives
among the occurrences of certain model smells. These resulted from specific design
decisions in the model, e.g. application of design pattern or integration of library blocks.
In future work, the detector should be extended to support the detection of annotations
to certain model elements that provide insights to the design rationale of specific model
fragments. Annotations can then be either manually created by a developer or deduced
in a pre-processing step of the smell detector. It needs to be evaluated if the trade-off of
maintaining another set of annotations and traceability links is worth the reduction of
false positives during the model smell detection or similar analyses.

As mentioned during the performance evaluation in Section 7.4.2, the evaluation of
the prototypical model smell detection rules suffer from performance degradation when
applied on large-scale models. In the future, these rules can be further optimized to
increase the overall performance of the approach. Moreover, a server-side evaluation of
the specified rules would save the effort of loading a local copy of the model from the
repository and further increase the applicability of the approach.

169

8 Conclusion
In this thesis, we presented an approach for the incremental integration and subsequent
static analysis of model-based automotive software artifacts as part of the artshop
framework. Our approach enables the extraction and integration of model data into a
repository using tool adapters that convert proprietary model data into a portable model
representation derived from a well-defined metamodel. Artifacts stored in the repository
can be queried and checked by the implemented static model analysis techniques utilizing
the data structures provided by the respective tool adapters. The analyses can directly
work on the artifacts extracted by the tool adapters and may be applied during arbitrary
development stages.

8.1 Summary
A prerequisite for the application of static model analyses is the thorough extraction
of model data from their respective development tools and the creation of well-defined
interfaces and data structures to ease the access of model data during analysis. We
approached these challenges by defining a metamodel able to represent common prop-
erties of model-based software artifacts as well as specializations of this metamodel for
three specific development artifacts: functionmodels from MATLAB/Simulink, formal
modules from IBM Rational DOORS and feature models, family models and variability
configuration descriptions from pure::systems pure::variants. For each specialization of
the metamodel, a tool adapter was created that allows the import and instantiation of
these models from real-world artifacts. These artifacts can subsequently be stored within
a model repository offering version control and querying capabilities. The metamodel
further includes concepts to express traceability links between imported model elements
as well as to artifacts outside of the repository. Moreover, a synchronization mechanism
has been developed to synchronize models stored in the repository to outside changes
made to their source artifacts. This allows the incremental application of changes, while
preserving existing traceability links.

Based on the model repository and the data structures provided by the tool adapters,
analyses can be defined in a structured manner by querying data from the repository and
processing the returned data. In this thesis, we have implemented four static model anal-
ysis techniques designed for different activities of the model-based development process,
targeting the primary artifact type used in automotive model-based software development:
MATLAB/Simulink models. We presented a slicing approach that performs a dependency
analysis based on reconstructed signal information from a MATLAB/Simulink model and
is particularly useful during debugging, testing or change-impact analysis. The clone and

171

8 Conclusion

model smell detection techniques assess a model with respect to industry-standard quality
criteria and may be used to both eliminate smaller quality defects as well as preventing
the accumulation of technical debt. They can potentially be integrated into a continuous
integration process to assess the quality of models stored within a version control system
automatically. During the development of the model smell detector, we further reused
information created by other analyses, exposing synergies between different analyses as
another advantage offered by a uniform analysis platform. The feature derivation and
consistency checker proved to be an efficient tool during the extraction of inter-artifact
traceability links and their subsequent validation.

The proposed techniques have been integrated within a software tool that guides a
user through the artifact integration, synchronization and model analysis techniques
using a graphical user interface. This allows domain experts unfamiliar with software
engineering or the use of command-line tools to apply the methods and approaches
introduced throughout this thesis. Specialists can define own analyses within the client
application by using the EOL and EVL scripting languages to access and manipulate the
model data stored in the repository.

Furthermore, we have evaluated the performance and functionality of all techniques on
a set of real-world models taken from academic and industrial case studies and show the
general applicability and suitability of the approach. We further performed stress tests of
all approaches and showed that they scale adequately for the application in real-world
scenarios. While not explicitly demonstrated, all approaches are suitable for use on
incomplete models, i.e. models missing certain parts, with dangling lines or unconnected
blocks, and can therefore be applied in early development stages.

To summarize, we believe that the integration approach in combination with the static
model analysis techniques are ready to be deployed in practice. Initial feedback during
presentations and demonstrations to engineers from OEMs in the automotive domain
are uniformly positive showing that our approach successfully addresses real problems in
day-to-day model development. The model repository and provided data structure form
a solid foundation for the further development of static or dynamic analysis techniques
for model-based software artifacts. One example is the analysis realized by Dernehl et al.
that utilizes the model data extracted by the artshop framework to implement a static
value range analysis for MATLAB/Simulink models [40, 41, 42, 43, 44]. We hope that
further research on model-based software artifact analysis can benefit from our work,
as we plan to publish parts of the software created during this thesis as open-source
software.

8.2 Future Work
We already discussed multiple possible extensions in the individual chapters dedicated to
the presented analysis techniques. Within this section, we also want to give an outlook
on future work for the framework as a whole.

Currently, analyses in the artshop framework run client-side, i.e. they are locally
executed on a model that was fetched from the model repository. To improve the overall

172

8.2 Future Work

workflow of the tool, the server-side execution of analyses seems promising. Besides
the management of the model repository and the execution of queries, the server-side
of artshop is mostly inactive. By prematurely executing analyses on available model
data, analysis results can be cached and instantly made available to clients without
any downtime removing the need for multiple client machines to execute the same
model analyses redundantly. Nevertheless, analyzing locally available data should remain
possible.

Propagating model data into the repository of the artshop framework is currently a
manual process. By coupling the artshop server to a version control system, it could
automatically fetch model data as it becomes available. Additionally, the integration
of the complete framework in a continuous integration process with automatic report
generation for stakeholders of an artifact could bring the overall model-based software
development process in line with techniques used in traditional software development.

While we briefly discussed an analysis using different revisions of a model to create trend
analyses (see Section 5.7.1), trend analyses are also desirable for the other algorithms
presented in this thesis to monitor potential quality deterioration during the evolution
of a model-based software artifact. Using the slicing algorithm presented in Chapter
5, change-impact analyses can be realized using existing algorithms and visualization
techniques. Such an analysis could potentially be used to increase the performance of
complex algorithms by performing them in an incremental fashion.

Finally, the long-term evaluation of the tool within an industrial model-based devel-
opment process could provide an interesting step to further evaluate the accessibility,
scalability and adaptability of the tool on real-world artifacts and simultaneously assess
the acceptance of developers and quality engineers with regard to an analysis platform
such as the artshop framework.

173

Bibliography
[1] K. Ahsan. Trend Analysis of Car Recalls: Evidence from the US market. Interna-

tional Journal of Managing Value and Supply Chains, 4(4):1, 2013.

[2] B. Al-Batran, B. Schätz, and B. Hummel. Semantic clone detection for model-
based development of embedded systems. In Proceedings of the 14th International
Conference on Model Driven Engineering Languages and Systems, MODELS’11,
pages 258–272, Berlin, Heidelberg, 2011. Springer-Verlag.

[3] M. Alalfi, J. Cordy, T. Dean, M. Stephan, and A. Stevenson. Models are Code
too: Near-miss Clone Detection for Simulink Models. In 28th IEEE International
Conference on Software Maintenance (ICSM), September 2012.

[4] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations, pages 361–375.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[5] K. Androutsopoulos, D. Clark, M. Harman, J. Krinke, and L. Tratt. State-Based
Model Slicing: A Survey. ACM Comput. Surv., Aug. 2013.

[6] T. Arendt, M. Burhenne, and G. Taentzer. Defining and Checking Model Smells:
A Quality Assurance Task for Models based on the Eclipse Modeling Framework.
In 9th edition of the BENEVOL workshop, 2010.

[7] H. A. Basit and Y. Dajsuren. Handling Clone Mutations in Simulink Models with
VCL. ECEASST, 63, 2014.

[8] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and
Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineering,
33(9):577–591, 2007.

[9] M. Bender, K. Laurin, M. Lawford, V. Pantelic, A. Korobkine, J. Ong, B. Mackenzie,
M. Bialy, and S. Postma. Signature Required: Making Simulink Data Flow and
Interfaces Explicit. Science of Computer Programming, 113, Part 1:29 – 50, 2015.

[10] K. Berg, J. Bishop, and D. Muthig. Tracing Software Product Line Variability:
From Problem to Solution Space. In Proceedings of the 2005 Annual Research
Conference of the South African Institute of Computer Scientists and Information
Technologists on IT Research in Developing Countries, SAICSIT ’05, pages 182–191,
Republic of South Africa, 2005. South African Institute for Computer Scientists
and Information Technologists.

175

Bibliography

[11] O. Berger, S. Labbene, M. Dhar, and C. Bac. Introducing OSLC, an Open Standard
for Interoperability of Open Source Development Tools. In ICSSEA 2011, 2011.

[12] K. Berns, B. Schürmann, and M. Trapp. Eingebettete Systeme - Systemgrundlagen
und Entwicklung eingebetteter Software. Vieweg + Teubner, 2010.

[13] D. Beuche, H. Papajewski, and W. Schröder-Preikschat. Variability Management
with Feature Models. Sci. Comput. Program., 53(3):333–352, Dec. 2004.

[14] D. W. Binkley and K. B. Gallagher. Program Slicing. Advances in Computers,
43:1–50, 1996.

[15] O. Blasius. Konsistenzsicherung von artefaktübergreifenden Variabilitätsinforma-
tionen. Bachelor’s thesis, RWTH Aachen, 2015.

[16] G. Böckle, P. Knauber, K. Pohl, and K. Schmid. Software-Produktlinien. Methoden,
Einführung und Praxis. dpunkt-Verlag, Heidelberg, 2004.

[17] C. Brendle, K.-F. Hackmack, J. Kühn, M. N. Wardeh, R. Kopp, R. Rossaint,
A. Stollenwerk, S. Kowalewski, B. Misgeld, S. Leonhardt, and M. Walter. In
Silico Evaluation of Gas Transfer Estimation during Extracorporeal Membrane
Oxygenation . In 9th IFAC Symposium on Biological and Medical Systems, pages
499–504. IFAC-PapersOnLine, 2015.

[18] M. Broy. Automotive Software Engineering. In Proceedings of the 25th international
conference on Software engineering, pages 719–720. IEEE Computer Society, 2003.

[19] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu. Seamless
Model-Based Development: From Isolated Tools to Integrated Model Engineering
Environments. Proceedings of the IEEE, April 2010.

[20] M. Broy, S. Kirstan, H. Krcmar, and B. Schätz. What is the Benefit of a Model-
Based Design of Embedded Software Systems in the Car Industry? Software Design
and Development: Concepts, Methodologies, Tools, and Applications: Concepts,
Methodologies, Tools, and Applications, page 310, 2013.

[21] C. Brun and A. Pierantonio. Model Differences in the Eclipse Modeling Framework.
UPGRADE, The European Journal for the Informatics Professional, 9(2):29–34,
2008.

[22] S. Bunzel. AUTOSAR – the Standardized Software Architecture. Informatik-
Spektrum, 34(1):79–83, 2011.

[23] S. Burmester, H. Giese, J. Niere, M. Tichy, J. P. Wadsack, R. Wagner, L. Wendehals,
and A. Zündorf. Tool Integration at the Meta-model Level: The Fujaba Approach.
Int. J. Softw. Tools Technol. Transf., 6(3):203–218, Aug. 2004.

176

Bibliography

[24] D. N. Card and R. L. Glass. Measuring Software Design Quality. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1990.

[25] J. P. Cavano and J. A. McCall. A Framework for the Measurement of Software
Quality. In Proceedings of the Software Quality Assurance Workshop on Functional
and Performance Issues, pages 133–139, New York, NY, USA, 1978. ACM.

[26] C. Chen, X. Yan, F. Zhu, and J. Han. gApprox: Mining Frequent Approximate
Patterns from a Massive Network. In Data Mining, 2007. ICDM 2007. Seventh
IEEE International Conference on, pages 445–450. IEEE, 2007.

[27] J. Choi, A. Trögel, and I. Stürmer. TUDOOR - Ein Java Adapter für Telelogic
DOORS. In Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebet-
teter Systeme V, Schloss Dagstuhl, Germany, 2009, Tagungsband Modellbasierte
Entwicklung eingebetteter Systeme, pages 189–194, 2009.

[28] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, 2001.

[29] A. Cmyrev, R. Noerenberg, D. Hopp, and R. Reissing. Consistency Checking of
Feature Mapping Between Requirements and Test Artefacts. In Concurrent Engi-
neering Approaches for Sustainable Product Development in a Multi-Disciplinary
Environment, pages 121–132. Springer London, 2013.

[30] M. Conrad, I. Fey, M. Grochtmann, and T. Klein. Modellbasierte Entwicklung
eingebetteter Fahrzeugsoftware bei DaimlerChrysler. Informatik-Forschung und
Entwicklung, 20(1-2):3–10, 2005.

[31] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An Improved Algorithm for
Matching Large Graphs. In 3rd IAPR-TC15 workshop on graph-based representa-
tions in pattern recognition, pages 149–159, 2001.

[32] W. Cunningham. The WyCash Portfolio Management System. In Addendum to the
Proceedings on Object-oriented Programming Systems, Languages, and Applications
(Addendum), OOPSLA ’92, pages 29–30, New York, NY, USA, 1992. ACM.

[33] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker. Generative Programming
for Embedded Software: An Industrial Experience Report, pages 156–172. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002.

[34] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

[35] Y. Dajsuren. On the Design of an Architecture Framework and Quality Evaluation
for Automotive Software Systems. PhD thesis , Technische Universiteit Eindhoven
, 2015.

177

Bibliography

[36] Y. Dajsuren, M. G. van den Brand, A. Serebrenik, and S. Roubtsov. Simulink
Models Are Also Software: Modularity Assessment. In Proceedings of the 9th
International ACM Sigsoft Conference on Quality of Software Architectures, QoSA
’13, pages 99–106, 2013.

[37] M. Dalgarno, D. Beuche, et al. Variant Management. In 3rd British Computer
Society Configuration Management Specialist Group Conference, volume 1, 2007.

[38] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, and B. Schaetz. Model
Clone Detection in Practice. In Proceedings of the 4th International Workshop on
Software Clones, IWSC ’10, pages 57–64, New York, NY, USA, 2010. ACM.

[39] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J.-F. Girard,
and S. Teuchert. Clone Detection in Automotive Model-based Development. In
Proceedings of the 30th International Conference on Software Engineering, ICSE
’08, pages 603–612, New York, NY, USA, 2008. ACM.

[40] C. Dernehl. Automatic Invariant Checking for Discrete Block Diagrams using Lya-
punov Functions with Sat Modulo Theory Solvers. In European Control Conference
2016, pages 441–446. IEEE, 2016.

[41] C. Dernehl, N. Hansen, T. Gerlitz, and S. Kowalewski. Static Value Range Analysis
for Matlab/Simulink-Models . In INFORMATIK 2015, pages 1649–1660. Douglas
W. Cunningham, Petra Hofstedt, Klaus Meer, Ingo Schmitt, 2015.

[42] C. Dernehl, N. Hansen, and S. Kowalewski. Abstract Interpretation of MATLAB
Code with Interval Sets . In M. H. ter Beek, S. Gnesi, and A. Knapp, editors, "Crit-
ical Systems: Formal Methods and Automated Verification: Joint 21st International
Workshop on Formal Methods for Industrial Critical Systems and 16th International
Workshop on Automated Verification of Critical Systems, FMICS-AVoCS 2016,
Pisa, Italy, September 26-28, 2016, Proceedings, pages 25–38. Springer International
Publishing, 2016.

[43] C. Dernehl, N. Hansen, and S. Kowalewski. Combining Abstract Interpretation
with Symbolic Execution for a Static Value Range Analysis of Block Diagrams . In
R. De Nicola and E. Kühn, editors, Software Engineering and Formal Methods: 14th
International Conference, SEFM 2016, Held as Part of STAF 2016, Vienna, Austria,
July 4-8, 2016, Proceedings, pages 137–152. Springer International Publishing, 2016.

[44] C. Dernehl, J. Kühn, and S. Kowalewski. Abstract Interpretation for Block
Diagrams - Two Case Studies . In 13th Workshop on Model Design, Verification
and Validation, pages 20–29. CEUR, 2016.

[45] H. Dörr and I. Stürmer. JUST SIMPLIFY Heuristische Duplikaterkennung auf
Modellen. In Informatik 2013 - Informatik angepasst an Mensch, Organisation und
Umwelt, pages 2430–2442, 2013.

178

Bibliography

[46] C. Dziobek, J. Loew, W. Przystas, and J. Weiland. Functional Variants Handling
in Simulink Models. In Proc. MathWorks Virtual Automot. Conf., pages 1–6, 2008.

[47] C. Dziobek, T. Ringler, and F. Wohlgemuth. Herausforderungen bei der modell-
basierten Entwicklung verteilter Fahrzeugfunktionen in einer verteilten Entwick-
lungsorganisation. In Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung
eingebetteter Systeme VIII, Schloss Dagstuhl, Germany, 2012, Tagungsband Mod-
ellbasierte Entwicklung eingebetteter Systeme, pages 1–10, 2012.

[48] A. Egyed. Instant Consistency Checking for the UML. In Proceedings of the 28th
International Conference on Software Engineering, ICSE ’06, pages 381–390, New
York, NY, USA, 2006. ACM.

[49] T. Farkas. Regelbasierte Konformitätsprüfung kollaborativer Artefakte. PhD thesis,
Berlin Institute of Technology, 2011.

[50] T. Farkas and H. Röbig. Automatisierte, werkzeugübergreifende Richtlinienprüfung
zur Unterstützung des Automotive-Entwicklungsprozesses. In Dagstuhl-Workshop
MBEES: Modellbasierte Entwicklung eingebetteter Systeme III, Schloss Dagstuhl,
Germany, 15.-18. Januar 2007, Tagungsband Modellbasierte Entwicklung eingebet-
teter Systeme, pages 61–73, 2007.

[51] T. Farkas, Tibor, T. Farkas, C. Hein, and T. Ritter. Automatic Evaluation of
Modelling Rules and Design Guidelines. Second Workshop From code centric to
model centric software engineering: Practices, Implications and ROI, 2006.

[52] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Dependence Graph
and Its Use in Optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, July
1987.

[53] F. Fieber, M. Huhn, and B. Rumpe. Modellqualität als Indikator für Softwarequal-
ität: Eine Taxonomie. Informatik-Spektrum, 31(5):408–424, 2008.

[54] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[55] R. B. France, J. M. Bieman, S. P. Mandalaparty, B. H. C. Cheng, and A. C. Jensen.
Repository for Model Driven Development (ReMoDD). In Proceedings of the 34th
International Conference on Software Engineering, ICSE ’12, pages 1471–1472,
2012.

[56] T. Gerlitz. EC5.AP1.D6.2: Finale Methodik zur Konsistenzsicherung von Entwick-
lungsartefakten in der Funktionsentwicklung , 2015. Project deliverable: SPES_XT
(unpublished).

[57] T. Gerlitz, N. Hansen, C. Dernehl, and S. Kowalewski. artshop: A Continuous
Integration and Quality Assessment Framework for Model-Based Software Artifacts

179

Bibliography

. In 12. Dagstuhl-Workshop Modelbasierte Entwicklung eingebetteter Systeme
(MBEES) , pages 13–22. fortiss Technical Report, 2016.

[58] T. Gerlitz and S. Kowalewski. Architectural Analysis of MATLAB/Simulink Models
with artshop. In 13th Working IEEE/IFIP Conference on Software Architecture
(WICSA), pages 307–310. IEEE, 2016.

[59] T. Gerlitz and S. Kowalewski. Flow Sensitive Slicing for MATLAB/Simulink Models.
In 13th Working IEEE/IFIP Conference on Software Architecture (WICSA) , pages
81–90. IEEE, 2016.

[60] T. Gerlitz, Q. Minh Tran, and C. Dziobek. Detection and Handling of Model Smells
for MATLAB/Simulink Models. In Proceedings of the 1st International Workshop
on Modelling in Automotive Software Engineering. CEUR, 2015.

[61] T. Gerlitz, S. Schake, and S. Kowalweski. Duplikatserkennung und Refactoring in
Matlab/Simulink-Modellen. In 11. Dagstuhl-Workshop Modelbasierte Entwicklung
eingebetteter Systeme (MBEES) , 2015.

[62] H. Giese, M. Meyer, and R. Wagner. A Prototype for Guideline Checking and
Model Transformation in Matlab/Simulink. Proc. 4th Int. Fujaba Days 2006, pages
56–60, 2006.

[63] M. Gleirscher, D. Ratiu, and B. Schatz. Incremental Integration of Heterogeneous
Systems Views. In ICSEM ’07. International Conference on Systems Engineering
and Modeling, March 2007.

[64] N. Gold, J. Krinke, M. Harman, and D. Binkley. Issues in Clone Classification for
Dataflow Languages. Proceedings of the 4th International Workshop on Software
Clones, 2010.

[65] M. H. Halstead. Elements of Software Science (Operating and Programming Systems
Series). Elsevier Science Inc., New York, NY, USA, 1977.

[66] N. Hansen. Statische Analyse von Matlab-Simulink-Modellen mittels Intervallen.
Master’s thesis, RWTH Aachen, 2014.

[67] M. Harman, M. Okunlawon, B. Sivagurunathan, and S. Danicic. Slice-Based
Measurement of Coupling. In R. Harrison, editor, 19th ICSE, Workshop on Process
Modelling and Empirical Studies of Software Evolution, Boston, Massachusetts,
USA, May 1997.

[68] C. Hein, T. Ritter, and M. Wagner. Model-driven Tool Integration with ModelBus.
In 11th International Conference on Enterprise Information Systems (ICEIS), May
2009.

[69] S. Henry and D. Kafura. Software Structure Metrics Based on Information Flow.
IEEE Transactions on Software Engineering, SE-7(5):510–518, Sept 1981.

180

Bibliography

[70] A. Horváth, I. Ráth, and R. Rizzi Starr. Massif - The love child of Mat-
lab Simulink and Eclipse. https://www.eclipsecon.org/na2015/session/
massif-love-child-matlab-simulink-and-eclipse. Accessed: 2016-01-05.

[71] W. Hu, T. Loeffler, and J. Wegener. Quality Model based on ISO/IEC 9126 for
Internal Quality of MATLAB/Simulink/Stateflow Models. In Industrial Technology
(ICIT), 2012 IEEE International Conference on, pages 325–330, March 2012.

[72] B. Hummel, E. Juergens, and D. Steidl. Index-based Model Clone Detection. In
Proceedings of the 5th International Workshop on Software Clones, IWSC ’11, pages
21–27, New York, NY, USA, 2011. ACM.

[73] ISO. 26262-6 - Road vehicles - Functional safety - Part 6 Product Development
Software Level, 2011.

[74] ISO/IEC. ISO/IEC 9126 - Software Engineering - Product Quality, 2001.

[75] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do Code Clones Matter?
In Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, pages 485–495, Washington, DC, USA, 2009. IEEE Computer Society.

[76] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report, DTIC
Document, 1990.

[77] S. Kemmann, T. Kuhn, and M. Trapp. Extensible and Automated Model-
Evaluations with INProVE. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6598
LNCS, 2011.

[78] M. Kim, L. Bergman, T. Lau, and D. Notkin. An Ethnographic Study of Copy
and Paste Programming Practices in OOPL. In Proceedings of the 2004 Inter-
national Symposium on Empirical Software Engineering, ISESE ’04, pages 83–92,
Washington, DC, USA, 2004. IEEE Computer Society.

[79] L. K. Klauske. Effizientes Bearbeiten von Simulink Modellen mit Hilfe eines
spezifisch angepassten Layoutalgorithmus. PhD thesis, Fakultät IV - Elektrotechnik
und Informatik der Technischen Universität Berlin, October 2012.

[80] L. K. Klauske, C. D. Schulze, M. Spönemann, and R. von Hanxleden. Improved
Layout for Data Flow Diagrams with Port Constraints. In Proceedings of the
7th International Conference on Diagrammatic Representation and Inference, Dia-
grams’12, pages 65–79, Berlin, Heidelberg, 2012. Springer-Verlag.

[81] C. Kolassa, D. Dieckow, M. Hirsch, U. Creutzburg, C. Siemers, and B. Rumpe.
Objektorientierte Graphendarstellung von Simulink-Modellen zur einfachen Analyse
und Transformation. Tagungsband AALE 2013, 10:277–286, 2013.

181

https://www.eclipsecon.org/na2015/session/massif-love-child-matlab-simulink-and-eclipse
https://www.eclipsecon.org/na2015/session/massif-love-child-matlab-simulink-and-eclipse

Bibliography

[82] D. Kolovos, L. Rose, A. García-Domínguez, and R. Paige. The Epsilon Book. online,
2016.

[83] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige. Different Models for
Model Matching: An Analysis of Approaches to Support Model Differencing. In
Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software
Models, CVSM ’09, pages 1–6, Washington, DC, USA, 2009. IEEE Computer
Society.

[84] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Rigorous Methods for Software
Construction and Analysis, chapter On the Evolution of OCL for Capturing Struc-
tural Constraints in Modelling Languages. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[85] R. Koschke. Survey of Research on Software Clones. In Dagstuhl Seminar Proceed-
ings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[86] M. Kowal and I. Schaefer. Incremental Consistency Checking in Delta-oriented
UML-Models for Automation Systems. In Proceedings 7th International Work-
shop on Formal Methods and Analysis in Software Product Line Engineering,
FMSPLE@ETAPS 2016, Eindhoven, The Netherlands, April 3, 2016., pages 32–45,
2016.

[87] M. Kugelmeier. Integration von IBM Rational DOORS in das artshop Modellrepos-
itory. Bachelor’s thesis, RWTH Aachen, 2014.

[88] J. T. Lallchandani and R. Mall. Slicing UML Architectural Models. SIGSOFT
Softw. Eng. Notes, 33(3):4:1–4:9, May 2008.

[89] K. Lano and S. Kolahdouz-Rahimi. Model Driven Engineering Languages and
Systems: 13th International Conference, MODELS 2010, Oslo, Norway, October
3-8, 2010, Proceedings, Part II, chapter Slicing of UML Models Using Model
Transformations, pages 228–242. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[90] C. Legat, J. Folmer, and B. Vogel-Heuser. Evolution in Industrial Plant Automation:
A Case Study. IECON Proc. (Industrial Electron. Conf., pages 4386–4391, 2013.

[91] E. Legros, W. Schäfer, A. Schürr, and I. Stürmer. MATE: A Model Analysis
and Transformation Environment for MATLAB Simulink. Model. Eng. Embed.
Real-Time Syst., 6100:323–328, 2010.

[92] A. Leitner, B. Herbst, and R. Mathijssen. Lessons Learned from Tool Integration
with OSLC, pages 242–254. Springer International Publishing, 2016.

[93] T. J. McCabe. A Complexity Measure. IEEE Trans. Softw. Eng., 2(4):308–320,
July 1976.

182

Bibliography

[94] C. Mengi and M. Nagl. Refactoring of Automotive Models to Handle the Variant
Problem. Softwaretechnik-Trends, 32(2), 2012.

[95] D. Merschen. Integration und Analyse von Artefakten in der modellbasierten
Entwicklung eingebetteter Software . PhD thesis , Fakultät für Mathematik,
Informatik und Naturwissenschaften der RWTH Aachen University , March 2014.

[96] D. Merschen, Y. Duhr, T. Ringler, B. Hedenetz, and S. Kowalewski. Model-
Based Analysis of Design Artefacts Applying an Annotation Concept . In Software
Engineering 2012 (SE 2012). Gesellschaft für Informatik e.V. (GI), March 2012.

[97] D. Merschen, R. Gleis, J. Pott, and S. Kowalewski. Analysis of Simulink Models
Using Databases and Model Transformations. In R. Machado, R. Maciel, J. Rubin,
and G. Botterweck, editors, Model-Based Methodologies for Pervasive and Embedded
Software, volume 7706 of Lecture Notes in Computer Science, pages 69–84. Springer
Berlin Heidelberg, 2013.

[98] C. Meyer, P. Hartmann, and D. Moormann. Wind Tunnel Investigation of Stationary
Straight-Lined Flight of Tiltwings Considering Vertical Airspeeds. In IMAV2015:
International Micro Air Vehicle Conference and Competition 2015, 2015.

[99] T. M. Meyers and D. Binkley. An Empirical Study of Slice-based Cohesion and
Coupling Metrics. ACM Trans. Softw. Eng. Methodol., 17(1):2:1–2:27, Dec. 2007.

[100] A. Michailidis, U. Spieth, T. Ringler, B. Hedenetz, and S. Kowalewski. Test Front
Loading in Early Stages of Automotive Software Development based on AUTOSAR.
In Design, Automation Test in Europe Conference Exhibition (DATE 2010), pages
435–440, March 2010.

[101] Microsoft Corporation. MS-OAUTH: OLE Automation Protocol.

[102] J. Nehring-Wirxel. Rekonstruktion von Matlab/Simulink Modellen aus dem artshop-
Modellrepository. Bachelor’s thesis, RWTH Aachen, 2015.

[103] S. Nejati, M. Sabetzadeh, D. Falessi, L. Briand, and T. Coq. A SysML-based
Approach to Traceability Management and Design Slicing in Support of Safety
Certification: Framework, Tool Support, and Case Studies. Inf. Softw. Technol.,
54(6), June 2012.

[104] M. Olszewska. Simulink-Specific Design Quality Metrics. Technical Report 1002,
Turku Centre for Computer Science, 2011.

[105] M. Olszewska, Y. Dajsuren, H. Altinger, A. Serebrenik, M. Waldén, and M. G. J.
van den Brand. Tailoring Complexity Metrics for Simulink Models. In Proccedings
of the 10th European Conference on Software Architecture Workshops, ECSAW ’16,
pages 5:1–5:7, New York, NY, USA, 2016. ACM.

183

Bibliography

[106] L. M. Ott and J. J. Thuss. Slice Based Metrics for Estimating Cohesion. In [1993]
Proceedings First International Software Metrics Symposium, pages 71–81, May
1993.

[107] K. J. Ottenstein and L. M. Ottenstein. The Program Dependence Graph in a
Software Development Environment. SIGPLAN Not., 19(5):177–184, Apr. 1984.

[108] V. Pantelic, S. Postma, M. Lawford, A. Korobkine, B. Mackenzie, J. Ong, and
M. Bender. A Toolset for Simulink - Improving Software Engineering Practices in
Development with Simulink. In Proceedings of the 3rd International Conference on
Model-Driven Engineering and Software Development, pages 50–61, 2015.

[109] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen.
Complete and Accurate Clone Detection in Graph-based Models. In Proceedings
of the 31st International Conference on Software Engineering, ICSE ’09, pages
276–286, Washington, DC, USA, 2009. IEEE Computer Society.

[110] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2005.

[111] K. Pohl, M. Broy, H. Daembkes, and H. Hönninger. Advanced Model-Based Engi-
neering of Embedded Systems: Extensions of the SPES 2020 Methodology. Springer,
2016.

[112] V. Preoteasa, I. Dragomir, and S. Tripakis. Type Inference of Simulink Hierarchical
Block Diagrams in Isabelle. arXiv preprint arXiv:1612.05494, 2016.

[113] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner. Software Engineering for
Automotive Systems: A Roadmap. In 2007 Future of Software Engineering, FOSE
’07, pages 55–71, Washington, DC, USA, 2007. IEEE Computer Society.

[114] A. Rau. On Model-Based Development: A Pattern for Strong Interfaces in
SIMULINK. Gesellschaft für Informatik, FG, 2(1):12, 2002.

[115] R. Reicherdt. A Framework for the Automatic Verification of Discrete-Time
MATLAB Simulink Models using Boogie. PhD thesis , Technische Universität
Berlin, July 2015.

[116] R. Reicherdt and S. Glesner. Slicing MATLAB Simulink Models. In Software
Engineering (ICSE), 2012 34th International Conference on, pages 551–561, June
2012.

[117] R. Reicherdt and S. Glesner. Formal Verification of Discrete-Time MAT-
LAB/Simulink Models Using Boogie. In Software Engineering and Formal Methods:
12th International Conference, SEFM 2014, Grenoble, France, September 1-5, 2014.
Proceedings, Cham, 2014. Springer International Publishing.

184

Bibliography

[118] CQSE GmbH. Simulink Library for Java. https://www.cqse.eu/en/products/
simulink-library-for-java/overview/. Accessed: 2016-03-11.

[119] Eclipse Foundation. Connected Data Objects. http://www.eclipse.org/cdo/
documentation/. Accessed: 2016-01-26.

[120] Esterel Technologies. SCADE. http://www.esterel-technologies.com/
products/scade-suite/. Accessed: 2016-08-30.

[121] ETAS GmbH. ASCET. http://www.etas.com/de/products/ascet_soft
ware_products.php. Accessed: 2016-08-30.

[122] IBM. IBM Rational DOORS - The DXL Reference Manual, 2016.

[123] Model Engineering Solutions GmbH. MES Model Examiner (MXAM). http:
//www.model-engineers.com/de/model-examiner.html. Accessed: 2016-03-
18.

[124] Modelica Association. Modelica. https://www.modelica.org/. Accessed: 2016-
08-30.

[125] National Instruments. LabView. http://www.ni.com/labview/. Accessed:
2016-08-30.

[126] OMG. OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, June
2013.

[127] The MathWorks Inc. MATLAB. http://mathworks.com/products/matlab/.
Accessed: 2016-08-30.

[128] The Mathworks Inc. Matlab Model Advisor. https://de.mathworks.com/help/
simulink/ug/consult-the-model-advisor.html. Accessed: 2017-02-16.

[129] The MathWorks Inc. MATLAB/Simulink. http://mathworks.com/products/
simulink/. Accessed: 2016-08-30.

[130] The MathWorks Inc. MATLAB/Stateflow. http://mathworks.com/products/
stateflow/. Accessed: 2016-08-30.

[131] The MathWorks Inc. The MathWorks Automotive Advisory Board (MAAB: Control
Algorithm Modeling Guidelines Using MATLAB, 2012.

[132] The MathWorks Inc. MATLAB/Stateflow - User Guide, 2016.

[133] R. Rousseau. Visualisierungskonzepte für Matlab/Simulink Modelle. Bachelor’s
thesis, RWTH Aachen, 2015.

185

https://www.cqse.eu/en/products/simulink-library-for-java/overview/
https://www.cqse.eu/en/products/simulink-library-for-java/overview/
http://www.eclipse.org/cdo/documentation/
http://www.eclipse.org/cdo/documentation/
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
http://www.etas.com/de/products/ascet_software_products.php
http://www.etas.com/de/products/ascet_software_products.php
http://www.model-engineers.com/de/model-examiner.html
http://www.model-engineers.com/de/model-examiner.html
https://www.modelica.org/
http://www.ni.com/labview/
http://mathworks.com/products/matlab/
https://de.mathworks.com/help/simulink/ug/consult-the-model-advisor.html
https://de.mathworks.com/help/simulink/ug/consult-the-model-advisor.html
http://mathworks.com/products/simulink/
http://mathworks.com/products/simulink/
http://mathworks.com/products/stateflow/
http://mathworks.com/products/stateflow/

Bibliography

[134] C. K. Roy and J. R. Cordy. NICAD: Accurate Detection of Near-Miss Intentional
Clones Using Flexible Pretty-Printing and Code Normalization. In Program Com-
prehension, 2008. ICPC 2008. The 16th IEEE International Conference on, pages
172–181. IEEE, 2008.

[135] I. Schäfer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-Oriented
Programming of Software Product Lines, pages 77–91. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[136] S. Schake. Duplikatserkennung und Refactoring für Matlab-Simulink Modelle.
Bachelor’s thesis, RWTH Aachen, 2014.

[137] B. Schätz, M. Broy, F. Huber, J. Philipps, W. Prenninger, A. Pretschner, and
B. Rumpe. Model-Based Software and Systems Development. White paper,
Department of Computer Science, Technical University Munich, 2004.

[138] J. Scheible. Ein Framework zur automatisierten Ermittlung der Modellqualität
bei eingebetteten Systemen. 6. Dagstuhl-Workshop MBEES 2010: Modellbasierte
Entwicklung eingebetteter Systeme. In 6. Dagstuhl-Workshop Modelbasierte En-
twicklung eingebetteter Systeme (MBEES) , 2010.

[139] J. Scheible. Ein Qualitätsmodell zur automatisierten Ermittlung der Modellqualität
bei eingebetteten Systemen. . In INFORMATIK 2010: Service Science: Neue
Perspektiven für die Informatik, volume P-176 of Lecture Notes in Informatics
(LNI), pages 509–514. Köllen Druck+Verlag GmbH, Bonn, 2010.

[140] J. Scheible. Automatisierte Qualitätsbewertung am Beispiel von MATLAB
Simulink-Modellen in der Automobil-Domäne . PhD thesis , Mathematisch-
Naturwissenschaftliche Fakultät der Universität Tübingen, July 2012.

[141] J. Scheible and H. Pohlheim. Automated Model Quality Rating of Embedded
Systems. In 4. Workshop zur Software-Qualitätsmodellierung und-bewertung (SQMB
2011), 2011.

[142] M. Schulze, J. Mauersberger, and D. Beuche. Functional Safety and Variability:
Can It Be Brought Together? In Proceedings of the 17th International Software
Product Line Conference, SPLC ’13, pages 236–243, New York, NY, USA, 2013.
ACM.

[143] B. Selic. The Pragmatics of Model-Driven Development. IEEE software, 20(5):19,
2003.

[144] J. Silva. A Vocabulary of Program Slicing-Based Techniques. ACM computing
surveys (CSUR), 44(3):12, 2012.

[145] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

186

Bibliography

[146] M. Stephan and J. R. Cordy. Identification of Simulink Model Antipattern Instances
Using Model Clone Detection. In ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS), 2015, pages 276–
285, Sept 2015.

[147] P. Struss and C. Price. Model-Based Systems in the Automotive Industry. AI
magazine, 24(4):17, 2003.

[148] I. Stürmer, H. Dörr, H. Giese, U. Kelter, A.Schürr, and A. Zündorf. Das MATE
Projekt - visuelle Spezifikation von MATLAB Simulink/Stateflow Analysen und
Transformationen. Dagstuhl Seminar Modellbasierte Entwicklung eingebetteter
Systeme, 2007.

[149] G. Suryanarayana, G. Samarthyam, and T. Sharma. Refactoring for Software
Design Smells: Managing Technical Debt. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 2014.

[150] J. L. Szwarcfiter and P. E. Lauer. Finding the Elementary Cycles of a Directed
Graph in O (n+ m) per Cycle. Technical report, University of Newcastle upon
Tyne, 1974.

[151] F. Tip. A Survey of Program Slicing Techniques. Journal of Programming Languages,
3(3):121–189, 1995.

[152] A. Toulmé. Presentation of EMF Compare Utility. Eclipse Modeling Symposium,
2006.

[153] Q. M. Tran and C. Dziobek. Ansatz zur Erstellung und Wartung von Simulink-
Modellen durch den Einsatz von Transformationen/Refactorings und Generierung-
soperationen. In 09. Dagstuhl-Workshop MBEES 2013 , pages 1–11, 2013.

[154] Q. M. Tran, B. Wilmes, and C. Dziobek. Refactoring of Simulink Diagrams via
Composition of Transformation Steps. In ICSEA 2013, The Eighth International
Conference on Software Engineering Advances, 2013.

[155] G. A. Venkatesh. The Semantic Approach to Program Slicing. In Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation, PLDI ’91, pages 107–119, New York, NY, USA, 1991. ACM.

[156] M. Vierhauser, D. Dhungana, W. Heider, R. Rabiser, and A. Egyed. Tool Support
for Incremental Consistency Checking on Variability Models. Fourth International
Workshop on Variability Modelling of Software-Intensive Systems, Linz, Austria,
January 27-29, 2010. Proceedings, pages 171–174, 2010.

[157] M. Vierhauser, P. Grünbacher, A. Egyed, R. Rabiser, and W. Heider. Flexible
and Scalable Consistency Checking on Product Line Variability Models. Proc.
IEEE/ACM Int. Conf. Autom. Softw. Eng. - ASE ’10, page 63, 2010.

187

Bibliography

[158] J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2 edition, 2003.

[159] D. Weir. Konformitätsanalyse und Auditing im artshop Modellrepository. Bachelor’s
thesis, RWTH Aachen, 2015.

[160] M. Weiser. Program Slicing. In Proceedings of the 5th International Conference on
Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE
Press.

[161] S. Weißleder, D. Sokenou, and B.-H. Schlingloff. Reusing State Machines for
Automatic Test Generation in Product Lines. In 1st workshop on model-based
testing in practice (MoTiP), page 19. Citeseer, 2008.

[162] N. Wiechowski, T. Gerlitz, D. Merschen, and S. Kowalewski. Ein Ansatz zum
merkmalsbasierten Konsistenzmanagement in der Produktlinienentwicklung . In
M. Horbach, editor, INFORMATIK 2013 - Informatik angepasst an Mensch, Or-
ganisation und Umwelt, volume P-220 of Lecture Notes in Informatics (LNI), pages
2502–2516. Köllen Druck+Verlag GmbH, Bonn, 2013.

[163] B. Wilmes. Hybrides Testverfahren für Simulink/TargetLink-Modelle. PhD thesis
, Fakultät IV - Elektrotechnik und Informatik der Technischen Universität Berlin,
November 2014.

[164] X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. In
Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM
’02, Washington, DC, USA, 2002. IEEE Computer Society.

[165] J. Zander-Nowicka. Model-based Testing of Real-Time Embedded Systems in the
Automotive Domain. PhD thesis , Technische Universität Berlin, 2009.

188

Aachener Informatik-Berichte
This list contains all technical reports published during the past three years.
A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblio@informatik.rwth-aachen.de

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014
2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der modell-

basierten Entwicklung eingebetteter Software
2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User Guide
2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-

chronous Automata
2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-
mination Analysis for Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Martín García, Simone Frintrop, and Bastian
Leibe: Sequence Level Salient Object Proposals for Generic Object De-
tection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-
ferentiation of Numerical Methods: Second-Order Tangent and Adjoint
Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generating Inductive
Predicates for Symbolic Execution of Pointer-Manipulating Programs

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the In-
ternational Joint Workshop on Implementation of Constraint and Logic
Programming Systems and Logic-based Methods in Programming Envi-
ronments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:
HotBox: Testing Temperature Effects in Sensor Networks

2014-15 Dominique Gückel: Synthesis of State Space Generators for Model Check-
ing Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and Com-
plexity Results

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015
2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile Appli-

cations
2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity
2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the

Young Researchers’ Conference “Frontiers of Formal Methods”

189

http://aib.informatik.rwth-aachen.de/

2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis of Co-
operative Vehicles in a Platoon

2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle
(Editors): Proceedings of the 1st KuVS Expert Talk on Localization

2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using
Taylor Models

2015-11 Stefan Wüller, Marián Kühnel, and Ulrike Meyer: Information Hiding in
the Public RSA Modulus

2015-12 Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like Gram-
mars and Separation Logic

2015-13 Andreas Polzer: Ansatz zur variantenreichen und modellbasierten En-
twicklung von eingebetteten Systemen unter Berücksichtigung regelungs-
und softwaretechnischer Anforderungen

2015-14 Niloofar Safiran and Uwe Naumann: Symbolic vs. Algorithmic Differenti-
ation of GSL Integration Routines

2016-01 ∗ Fachgruppe Informatik: Annual Report 2016
2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement of

Computational Approaches to Reachability Analysis of Linear Hybrid
Systems

2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and
JÃ1

4rgen Giesl: Lower Runtime Bounds for Integer Programs
2016-04 Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder: Prov-

ing Termination of Programs with Bitvector Arithmetic by Symbolic
Execution

2016-05 Mathias Pelka, Grigori Goronzy, Jó Agila Bitsch, Horst Hellbrück, and
Klaus Wehrle (Editors): Proceedings of the 2nd KuVS Expert Talk on
Localization

2016-06 Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle: The
SensorCloud Protocol: Securely Outsourcing Sensor Data to the Cloud

2016-07 Sebastian Biallas : Verification of Programmable Logic Controller Code
using Model Checking and Static Analysis

2016-08 Klaus Leppkes, Johannes Lotz, and Uwe Naumann: Derivative Code by
Overloading in C++ (dco/c++): Introduction and Summary of Features

2016-09 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius As-
chermann: Automatically Proving Termination and Memory Safety for
Programs with Pointer Arithmetic

2016-10 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel: Towards Privacy-
Preserving Multi-Party Bartering

2017-01 ∗ Fachgruppe Informatik: Annual Report 2017
2017-02 Florian Frohn and Jürgen Giesl: Analyzing Runtime Complexity via

Innermost Runtime Complexity
2017-04 Florian Frohn and Jürgen Giesl: Complexity Analysis for Java with

AProVE

190

2017-05 Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs, and
Jürgen Giesl: Complexity Analysis for Term Rewriting by Integer Tran-
sition Systems

2017-06 Oliver Kautz, Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe:
CD2Alloy: A Translation of Class Diagrams to Alloy

2017-07 Klaus Leppkes, Johannes Lotz, Uwe Naumann, and Jacques du Toit:
Meta Adjoint Programming in C++

∗ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

191

	1 Motivation
	1.1 Problem and Objectives
	1.2 Solution Approach
	1.3 Contributions
	1.4 Bibliographic Notes
	1.5 Outline

	2 Foundations
	2.1 Model-Based Development of Automotive Embedded Software
	2.1.1 Model-Based Software Development
	2.1.2 Model-Based Software Development in the Automotive Industry

	2.2 MATLAB/Simulink
	2.2.1 Blocks and Signals in MATLAB/Simulink
	2.2.2 Model Simulation
	2.2.3 MATLAB/Stateflow
	2.2.4 Formalization

	2.3 Software Product Lines
	2.3.1 Software Product Line Development
	2.3.2 Modeling Variability

	2.4 Industrial Application and Tools
	2.4.1 Development Process
	2.4.2 Tools

	3 Incremental Integration of Model-Based Software Artifacts
	3.1 Overview and Outline
	3.1.1 The artshop Framework
	3.1.2 Related Work
	3.1.3 Bibliographic Notes

	3.2 Metamodel
	3.2.1 Entity Structure
	3.2.2 Artifact Attributes
	3.2.3 Annotations and Associations

	3.3 Tool Adapter
	3.3.1 MATLAB Simulink/Stateflow
	3.3.2 IBM Rational DOORS
	3.3.3 pure::variants
	3.3.4 Tool Adapter Integration in artshop

	3.4 Repository and Synchronization
	3.4.1 Repository
	3.4.2 Synchronization

	3.5 Evaluation
	3.5.1 Evaluation of the MATLAB/Simulink Tool Adapter
	3.5.2 Evaluation of the IBM Rational DOORS Tool Adapter
	3.5.3 Evaluation of the Model Synchronization Mechanism

	3.6 Conclusion and Future Work
	3.6.1 Future Work

	4 Consistency Checking in Software Product Lines
	4.1 Approach
	4.1.1 Related Work
	4.1.2 Bibliographic Notes

	4.2 Preliminaries
	4.3 Automatic Feature Derivation
	4.4 Consistency of Connected Feature Mappings
	4.4.1 Categorization of Inconsistencies Between Related Family Models
	4.4.2 Inconsistency Resolution
	4.4.3 Construction of Feature Mappings

	4.5 Evaluation
	4.5.1 Execution of the Derivation Procedure
	4.5.2 Execution of the Consistency Check

	4.6 Conclusion and Future Work

	5 Dependency Analysis and Slicing of MATLAB/Simulink Models
	5.1 Overview
	5.1.1 Related Work
	5.1.2 Contributions and Bibliographic Notes

	5.2 Foundations
	5.2.1 Dependency Analysis
	5.2.2 Slicing

	5.3 Signal-Flow in MATLAB/Simulink
	5.3.1 Signals in MATLAB/Simulink
	5.3.2 Data Dependence in MATLAB/Simulink
	5.3.3 Control Dependence in MATLAB/Simulink

	5.4 Slicing Simulink Models
	5.4.1 Building the Dependence Graph
	5.4.2 Slice Computation
	5.4.3 Presentation

	5.5 Evaluation
	5.5.1 Evaluation of the Flow-Based Slicing Algorithm
	5.5.2 Impact of Flow Sensitive Slicing

	5.6 Extension for MATLAB/Stateflow
	5.7 Conclusion and Future Work
	5.7.1 Further Applications
	5.7.2 Future Work

	6 Detection and Refactoring of Clones in MATLAB/Simulink Models
	6.1 Overview and Outline
	6.1.1 Related Work
	6.1.2 Contributions and Bibliographic Notes

	6.2 Clone Detection Process
	6.2.1 Layout-Based Clone Detection
	6.2.2 Clone Consolidation
	6.2.3 Presentation

	6.3 Clone Refactoring
	6.3.1 Refactoring Procedure
	6.3.2 Modification Commands
	6.3.3 Limitations

	6.4 Evaluation
	6.4.1 Performance
	6.4.2 Quality
	6.4.3 Refactoring Procedure

	6.5 Repository Guided Cross-Clone Detection
	6.6 Conclusion and Future Work

	7 Model Smell Detection in MATLAB/Simulink Models
	7.1 Overview and Outline
	7.1.1 Related Work
	7.1.2 Contributions and Bibliographic Notes

	7.2 Model Smells for MATLAB/Simulink Models
	7.2.1 Naming Conventions
	7.2.2 Partitioning
	7.2.3 Interface Definition
	7.2.4 Signal Flow
	7.2.5 Signal Structure

	7.3 Detection of Model Smells
	7.3.1 Implementation
	7.3.2 Integration in artshop

	7.4 Evaluation
	7.4.1 Relevance
	7.4.2 Performance

	7.5 Conclusion and Future Work

	8 Conclusion
	8.1 Summary
	8.2 Future Work

