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Abstract. Adjoint code development for many-core architectures like
GPUs is a major challenge. To address issues arising from the paral-
lelization, currently hand-writing the adjoint code is the most promising
approach. Unfortunatly, hand-writing has the fundamental drawback of
maintainability, i.e. diverging primal and adjoint codes. To overcome
this, supporting tools can and should be used. In this report, we present
a new approach for generating adjoint C++ codes by algorithmic differ-
entiation. The approach is called meta adjoint programming and based
on the template metaprogramming mechanism. We show that with new
developments in the C++ language standard, operator and function over-
loading techniques can be used to achieve efficient and maintainable ad-
joint codes. Results are shown for a GPU parallel CVA code. An imple-
mentation of meta adjoint programming called dco/map is presented and
comparisons with hand-written adjoint code are carried out.

1 Overview

This report introduces a new approach to compute adjoints of C++ code
using algorithmic differentiation (AD): Meta adjoint programming (MAP).
AD [GW08,Nau12] is a semantic program transformation technique that
generates for a given code (an implemented mathematical function; the
primal) a corresponding adjoint code. The adjoint code computes the al-
gorithmic adjoint projection of the primal, i.e. for a primal that computes

y = F (x), where F : IRn → IRm (1)

with inputs x ∈ IRn and outputs y ∈ IRm, its adjoint computes

x̄ = [∇xF ]T · ȳ (2)



with output adjoints ȳ ∈ IRm, inputs adjoints x̄ ∈ IRn, and ∇xF the
Jacobian matrix. When using AD, above given projection is calculated
implicitly, i.e. without accumulating the full Jacobian, transposing and
multiplying it. This would result in high computational costs. Instead,
when using AD, the cost of one adjoint projection is a constant multiple
of the cost of the primal, i.e.

cost(adjoint) = R · cost(primal) . (3)

This property is especially helpful in case of many inputs (n� 1) and very
few outputs (e.g. m = 1), e.g. in an optimization context where gradients
of a cost function are required. Adjoints are used in a wide range of differ-
ent applications like, e.g. computational fluid dynamics [GPGP97,GB02],
optimal control [HT12], or computational finance [GG06]. In this report
we are targeting an application from computational finance, a basic credit
value adjustment (CVA) computation which has production code scale.

Many of those applications already are computationally very expen-
sive and therefore not uncommonly run on massively parallel architec-
tures. To achieve a reasonable adjoint run time, it is therefore highly
desirable to minimize the overhead of an adjoint, i.e. the run time factor
R. AD tools try to achieve that for quite a while for sequential codes. But
codes using multi-core CPUs and in particular many-core architectures
like GPUs introduce additional synchronization problems in the adjoint
code [För14]. Multi-core architectures (shared or distributed memory sys-
tems, i.e. OpenMP 1 or MPI 2) are also targeted by a some tools more re-
cently, e.g. [UHH+09], but many-core architectures are usually even more
challenging [GPGK08,GHR+16]. In addition, for large codes, a clean soft-
ware development process is crucial. How MAP resolves those issues is
shown in this report.

In Section 2 we first want to present state-of-the-art AD tool handling
of parallel architectures followed by a brief introduction to AD by operator
overloading on the level of computational graphs. After a description of
the application we are targeting in Section 3, MAP is introduced in the
form of a short userguide of dco/map in Section 4. In Section 5 we show
run time and applicability results.

1 www.openmp.org
2 e.g. www.open-mpi.org
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2 Adjoint AD Tools and Parallelism

AD tools are usually categorized by two main approaches, AD by over-
loading and AD by source transformation. Whatever approach is taken, an
adjoint code requires a data flow reversal of the primal. This is done in two
phases, the forward run and the reverse run. During the forward run, data
is stored that is used for the reversal realized in the reverse run. Source
transformation tools usually generate forward code that stores data on a
stack which is used by a generated reverse code. Overloading tools on the
other hand usually store the full data flow at run time on a so-called tape.
The tape is a data structure representing the computational graph. Once
recorded, the tape can be used for the reversal (called interpretation) in-
dependently of the original code. Main advantage of operator overloading
tools is a straightforward applicability especially in C++ as well as the
property of always having the up-to-date adjoint for a given primal (i.e.
primal and adjoint are not running out-of-sync). Unfortunately, paral-
lelism does not fit well into the record-interpret-strategy since the tape
is by default a sequential data structure. In addition, the tape consumes
a huge amount of memory, which is a scarce resource on many-core ar-
chitectures. Source transformed adjoint codes are expected to generate
more efficient adjoint code, run time-wise as well as memory-wise. This
is achieved by the reverse run being baked into the code segment, where
compiler-based optimization can better be applied. Recapturing the pri-
mal parallelism is usually easier in source-transformed code by hand in a
post-processing step. The following approaches can be used for getting a
parallel adjoint code:

1. Using finite differences (bumping) instead of adjoints.
A practical approach is to just not use adjoints and avoid the sequen-
tial nature of it by calculating the gradient with finite differences.
Finite differences, of course, do have major shortcoming (e.g. accu-
racy), but also important advantages. Computing individual gradient
entries is embarrassingly parallel, i.e. parallelization is trivial. In ad-
dition, discontinuities are smoothed implicitly. Nonetheless, the com-
putational complexity grows with the number of input parameters,
which results in high financial costs for hardware or compute-time.

2. Hand-writing adjoints.
Writing an adjoint by hand is a time consuming and thus expensive
task. The code can of course exploit all possible bits and pieces to
get an efficient, parallel adjoint. In addition to the high personnel
expenses, from a software development perspective, hand-writing the
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adjoint is tedious, since it needs to be adapted to every change in
the primal. Otherwise primal and adjoint diverge resulting in wrong
values.

3. Parallel taping with overloading.
Tape-based AD by overloading tools can be used to compute adjoints
in parallel with various approaches. The potentially most promis-
ing one is based on parallel taping, i.e. in case of shared memory
(OpenMP) per-thread, and in case of distributed memory (MPI) per-
process. This way the recording step inherits the parallelism from the
primal. Interpretation still requires manual effort to tackle the data
races. In addition, the amount of memory required for the tape is
expected to be still a major problem.

4. Source transformation.
Source transformation tools can be used to support the hand-writing
of parallel adjoint codes. Since no tool exists that automatically gen-
erates parallel adjoint code, the synchronization needs to be done
by hand. As already mentioned, source transformation tools generate
more efficient adjoint code; on the other hand are diverging primal
and adjoint codes again problematic from the software development
standpoint.

MAP differs from the above given approaches in the following essential
points. MAP works with overloading, but

1. it doesn’t record a tape
we follow the source transformation approach of recomputation instead

2. it creates adjoint code at compile time
using template metaprogramming, the adjoint code is generated by the
C++ compiler

3. it supports data types that implicitly handle synchronization
since overloading is used, such functionality can be hidden from the
user

In the next section, we introduce the showcase application.

3 Application: CVA Computation

The sub-prime crisis of 2007/2008 and subsequent liquidity crisis revealed
that financial practitioners had at best a somewhat naive notion of credit
exposure. It was difficult to say how an institution’s balance sheet would
change if one of its counterparties defaulted.

6



One of the ways regulators have sought to address this problem is
by requiring banks to calculate and report new exposure figures. One of
these is the Credit Value Adjustment (CVA). Roughly speaking, this is the
expected amount that an institution will lose due to potential defaults of
a given counterparty. If we ignore discounting, then the formula for CVA
is

CVA = (1−R)

∫ T

0
E[E(τ) | τ = t ]Pdt (4)

where τ is the (random) default time of the counterparty, Pt is the
probability that the counterparty defaults before time t, E(t) is the ex-
posure to the counterparty at time t, E is conditional expectation under
the so-called risk neutral measure, and R is the recovery rate.

Computing CVA is a time-consuming and compute-intensive task. For
two large institutions, the exposure E(t) may depend on hundreds of
thousands or millions of individual contracts, the so-called netting set,
each of which have to be valued separately so that the final exposure
can be computed. In addition, many of these contracts will be for deriva-
tive instruments, the valuation of which requires simulation or numerical
solution of PDEs.

The simplest case which is often considered in the literature is that
of a portfolio of interest rate swaps. These are simple derivatives where
payments are made depending on the value of an observed market rate
such as LIBOR or EURIBOR. In this case computing CVA (by Monte
Carlo) requires choosing a model for the joint evolution of LIBOR and
Pt (so that one can capture so-called wrong way risk), generating many
independent evolutions of the LIBOR rate and Pt over [0, T ], then at each
time t valuing the portfolio of swaps to compute the exposure E(t), and
finally computing the integral above and averaging over all evolutions. For
a large swap portfolio this calculation can become expensive, especially
since swaps can be very long dated, meaning that T is on the order of 30
to 40 years.

A key regulatory requirement is that banks hedge their CVA expo-
sure. Hedging CVA requires computing at least the gradient of the CVA
with respect to the inputs of the model. For a swap portfolio the inputs
will typically be various interest and credit curves observed in the market.
Since these curves are quite long dated and are made up of many discrete
instruments, the number of inputs to the CVA model can be large. Hedg-
ing CVA in theory requires knowing the full gradient. This makes adjoint
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AD an attractive option, and banks have started to adopt it into their
production CVA systems.

In order to test our new approach in this setting we created a ”proto-
type” CVA code. The code is based on [Pfa15]. The netting set consists of
a single swap and the interest rate market is described by the two factor
G2++ model [HW94]. A third factor is added for the default process,
and the correlation between the three factors gives rise to wrong way
risk. In the finance literature such a three factor model would be one of
the more sophisticated approaches to CVA. For the sake of simplicity the
code does not actually compute the full CVA, but it comes very close
(adding two loops and some book keeping is all that is needed). From
a code point of view the key features of this model are the lengthy and
expensive closed form formulae for computing E(t). The formulae contain
lots of exponentials and some double exponentials, combined into various
rational expressions. There are 10 ”read only” input arrays which form 5
linear interpolating splines. These splines are evaluated several times on
each call to E(t).

4 Meta Adjoint Programming

As already mentioned earlier, meta adjoint programming (MAP) resolves
a couple of hard problems faced by a progammer when implementing an
adjoint GPU code in C++. After a description of the main benefits of
MAP, this section shows the interface of our implementation (dco/map)
and a couple of examples.

The following problems can be tackled by using MAP:

1. Primal and adjoint code diverge.
When hand-writing adjoint code or generating it with source transfor-
mation tools, the underlying problem of primal and adjoint code do
not naturally coincide. The primal development cycle may be faster
and the adjoint code lags behind – either because of missing manpower
(hand-writing) or because of missing features in the source transfor-
mation tool. MAP resolves this issue since it uses operator overloading
techniques. The same code is instantiated (in terms of C++ templates)
with passive data type (e.g. double) and active data type. When in-
stantiated with active data type, adjoints can be computed. MAP
should of course feature perfect decay, i.e. when instantiating the code
with passive data types, the code should be as efficient as an unaltered
original code. This is the case with dco/map.
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2. AD by overloading requires too much memory.
Classical overloading approaches write a so-called tape, which stores
the full computational graph of the executed code. The tape therefore
grows as fast as floating point operations are executed. This usu-
ally fills the available memory withit seconds of program execution,
because of which various techniques need to be applied to resolve
this (e.g. checkpointing or external adjoints). Instead of such a store-
all strategy, MAP follows a recompute-all strategy (similar to source
transformation). The memory footprint is therefore much smaller. In
addition, the adjoint memory is directly linked in a one-to-one rela-
tionship to primal memory. This decreases the required memory for
the overall adjoint computation roughly to twice the original primal
memory.

3. Hand-written adjoints are hard to write but more efficient.
When hand-writing adjoint code, a well-versed programmer can op-
timize the code in many ways, e.g. the data layout, exploit common
subexpressions in primal and adjoint or use the implicit function the-
orem to avoid backward iterative processes. Through the use of mod-
ern C++ and expression template mechanism, at least for straight-
line code MAP can approach similar performance as hand-writing or
source transformation (see results in Section 5). In addition, inter-
faces are possible to support the user in incorporating more efficient
computations in the default MAP behavior. This can be done under
conservation of the prefect decay property.

4. Parallelism is problematic with AD by overloading.
A general problem with adjoint code is the property that primal par-
allel reads become adjoint parallel writes, i.e. additional data races
are introduced. In addition memory access is a big issue. To get effi-
cient code, coalesced memory access is crucial, since otherwise waiting
on data is unnecessarily wasting clock cycles. This is especially true
when using GPUs, where thousands of cores access memory simulta-
neously. Storing and restoring the tape under consideration of those
two issues is hard, if not impossible to achieve. Since MAP is in many
respects more similar to source transformation than to overloading
(i.e. no tape, adjoint memory next to primal memory), those issues
can be addressed with different synchronization and data layout con-
figurations.

4.1 Parallelism

The two main problems that need to be addressed are:
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1. Shared-memory parallelism reduces the available amount of memory
per thread. A memory efficient adjoint is therefore crucial. In addi-
tion, especially on GPUs, the memory hierarchy and associated access
times make custom memory management potentially very slow. Best is
therefore to keep as much data in registers (very fast non-addressable
memory) as possible. This can be achieved by giving the compiler as
many hints as possible at compile time.

2. The adjoint computation introduces additional data races in case of
parallelism. Wherever the primal computation has non-exclusive read
access (i.e. multiple threads read shared data), the adjoint will have
parallel write access. Different synchronization strategies using differ-
ent data layouts are possible.

The first problem is addressed by the data layout of the base data type as
well as the template expression mechanism. As long as the primal code is
written in such a way that the compiler can efficiently place the variables
in registers, that should be possible for the adjoint as well. Reasons are,
first, that adjoint memory is located directly next to its primal memory,
and second, that the adjoint code is fully known at compile time due
to template expression use. This is underpinned by the measurements in
Section 5.

The second problem requires additional data types that take care of
those data races in the background. In particular, those data types need to
decay to usual passive data (e.g. double) in case of a passive computation.
This is obvious, since additional synchronization is only required in ac-
tive computations. The remaining section describes solution approaches
to the second problem. After discussing scalar variables and their syn-
chronization, different approaches to vector-valued variables (arrays) are
addressed.

Let’s assume the following code is executed in parallel with different
threads. The input x is shared among all threads, while each thread gets
a separate memory location for yi.

template <typename T>

void f(const T& x, T& yi) {

yi = sin(x); // if T=double

// passive computation only

// if T=type <double >

// in addition adjoint propagation at assignment ,

// i.e. x.adjoint += cos(x.value)*yi.adjoint

}

For primal computation only (e.g. instantiated with T=double), the code
is free of data races. The active computation on the other hand has
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shared write access to the adjoint of x. To get correct results, synchro-
nization is required. For synchronization we introduce the connector type
(connector_t). This type holds local adjoint memory as well as a reference
to the original data. At destruction, it performs the increment on the orig-
inal data in a thread safe way, i.e. an atomic increment (e.g. in OpenMP
using the #pragma omp atomic statement). The resulting code then looks like:

template <typename T>

void f(const T& x, T& yi) {

connector_t <T> x_loc(x); // if T=double => connector_t <T>= double

// if T=type <double >: save reference

// to x in x_loc

yi = sin(x_loc ); // perform adjoint propagation

// x_loc.adjoint += cos(x_loc.value)*yi.adjoint

} // ~x_loc:

// atomic increment: x.adjoint += x_loc.adjoint

This approach works correctly but is not the most efficient way, since
atomic increments may occur very frequently. An alternative would be
to first accumulate in per-thread memory followed by a reduction at the
very end. This is especially required for GPU computations, since atomic
operations are slow compared to reductions.

To show the approach using reductions we need to introduce arrays.
Though it is possible to use std::vector<type<double> >, it is not well suited
for reductions, since value and adjoint are interleaved in memory. A data
layout is required where value and adjoint memory is separated from each
other. In addition, the adjoint memory is to be extended to hold separate
memory for each thread, see Fig. 1 for a graphical representation of those
three layouts:

– std::vector<type<double> >

Value and adjoint component are interleaved. Meta data is defined by
the standard, e.g. the array length. When accessing an element with
the bracket operator (e.g. x[i]), a reference to type<double> is returned.
Synchronization when updating adjoints need to be done by wrapping
the returned type into a connector type.

– array_t<type<double>, atomic_push>

In this array value and adjoint memory is separated. Meta data is the
array length. When accessing an element with the bracket operator, a
connector type is returned. On destruction the corresponding adjoint
is incremented atomically.

– array_t<type<double>, reduction_push>

This array can be created from the previous one. Therefore value
and adjoint memory is not only separated (it holds pointer to the
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remote value and adjoint memory). The adjoint memory is also ex-
tended to have additionally one memory location for each element and
each thread. When accessing an element with the bracket operator,
a different connector type is returned with references to thread-local
memory. Here no atomic update is required. In the array’s destruc-
tor, a reduction takes place and it atomically increments the remote
memory. Under the assumption that enough memory is available, this
is the most efficient approach (see Section 5). The meta data section
in addition holds the number of threads.
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Fig. 1. Different data layouts for the array data structure called x. Meta
data is e.g. the number of threads or the length of the array.

4.2 Implementation: dco/map

dco/map is an implementation of meta adjoint programming. In addition
to the basic data type and its functionality required for computing ad-
joints of straight-line code, dco/map supports a set of control flow structs,
as well as a user interface as simple as possible; though a fundamental
code refactoring is still required for incorporating dco/map into an exist-
ing code base. The interface for accessing internal data (i.e. set value or
derivative component) as well as data type names are as close as possible
to dco/c++ [LLN16]. The interplay of both packages is also possible but
not covered in this report. In the following, we show small examples to
see the use of dco/map. The control flow functionality is wrapped in C
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macros, thus hidden. As you will see, all macros take the currently used
floating point data type as first argument.

All examples in the following do include dco_map.hpp and can use the
typedef using type = dco_map::ga1s<double>::type.

– Straight-line code
The following example shows use of the basic data type

dco_map ::ga1s <double >:: type

The template parameter (here: double) is the type of value and adjoint
component. A temporary variable t is declared as const auto and has
an expression type.

type x(2.0), y; // active data

dco_map :: derivative(y) = 1.0; // set output adjoint to 1.0

{

const auto t = x*x;

y = sin(t);

}

printf("adjoint of x = %f\n", dco_map :: derivative(x));

Output is “adjoint of x = -2.614574”.
– Branches

If/else-branches can be implemented using macro definitions MAP_IF,
MAP_ELSE, and MAP_IF_END as follows.

type x(2.0), y;

dco_map :: derivative(y) = 1.0;

{

type t;

MAP_IF(type , x <= 2.0) { // MAP_IF takes in addition

// the condition

t = x*x;

} MAP_ELSE {

t = sin(x);

} MAP_IF_END;

y = sin(t);

}

printf("adjoint of x = %f\n", dco_map :: derivative(x));

Output is again (since the condition evaluates to true)

adjoint of x = -2.614574

– Loops
Loops can be implemented using the macro definitions MAP_FOR and
MAP_FOR_END. The following example computes a sum over a simple func-
tion of the input and the loop index. In dco/map, overwriting vari-
ables needs special attention, because values potentially need to be
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restored or recomputed in later use. Since in the following example,
sum is not used nonlinearly before overwriting it, no special treatment
is required.

int n = 2;

type x(2.0), y;

dco_map :: derivative(y) = 1.0;

{

type sum = 0.0;

MAP_FOR(type , i, 0, n-1, 1) { // MAP_FOR takes in addition

// the loop index variable

// name , the start index , the

// end index , and the increment

const auto t = x*x;

sum += sin((i+1)*t);

} MAP_FOR_END;

y = sin(sum);

}

printf("adjoint of x = %f\n", dco_map :: derivative(x));

Output is “adjoint of x = -3.676858”.

– Function Calls
Function calls can be implemented using the macro definition MAP_CALL.
Given a function definition

template <typename T> void f(const T& x, T& y) { y = x*x; }

The caller can be implemented as follows.

type x(2.0), y;

dco_map :: derivative(y) = 1.0;

{

type t;

MAP_CALL(type , f(x, t)); // MAP_CALL just takes the

// function call

y = sin(t);

}

printf("adjoint of x = %f\n", dco_map :: derivative(x));

Output is again “adjoint of x = -2.614574”.

5 Results

As results, we want to show first that the meta adjoint programming
technique and its corresponding implementation we propose is efficient.
This is done by measuring and comparing run times required for com-
puting algorithmic adjoints of a test code using different approaches. But
second, potentially even more important, we want to show applicability
of MAP to the application described in Section 3 under conservation of
the efficiency. This is in particular important for the GPU.
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Since the programming techniques used for dco/map are part of C++11
and still quite recent, run times may vary even more over compiler manu-
facturer, its version, and hardware architecture (CPU/GPU) as usual.
We show a couple of measurements for different combinations of the
mentioned parameters on a Linux system to present our findings. In the
benchmarks, for comparisons, we use dco/c++ as plain overloading tool
and TAPENADE as source transformation tool.

5.1 Benchmarking Straight-Line Code

The test code we use as benchmark was kindly provided by D. Bommes
from a test case of the software package CoMISo3 [BZK12]. It is released
as a benchmark package, which can be downloaded via github4. The code
is coming from a method for constructing a 3D cross-frame field, a 3D
extension of the 2D cross-frame field as applied to surfaces in applications
such as quadrangulation and texture synthesis [HTWB11]. The code itself
is a straight-line code with approximately 80 lines. It is generated by
MapleTM [MGH+05] with common subexpression optimization switched
on. A special characteristic is that the expressions on the right-hand side
of assignments are quite long, on average ∼ 20 operations.

The following hardware / software configuration is used to perform
the measurements. As CPU, we use the Intel i7-6700K @ 4.00GHz and
as GPU the NVIDIA Quadro M4000. For the compilation of GPU device
code, we use CUDA 8.0 with g++ as host compiler. To have similar primal
run times, the problem sizes are chosen to be 4 · 106 on the CPU and
7.5·103 on the GPU (runs are single threaded in this benchmark). Results
are given in Fig. 2.

The chart shows run times for one primal evaluation and for one
adjoint evaluation using different approaches (dco/c++, dco/map, and
TAPENADE). Apart from the outlier g++4.7, all compiler manufacturer,
its versions, as well as the architecture seems to have a quite constant be-
haviour for the various versions of the code. We want to emphasize, that
this is an hard-earned achievement of performance testing with different
compilers. This effort has to continue to retrieve similar performance on
Windows as well, where we currently see worse run times. Unfortunately,
under Windows, the compilation time is a problem for this test code (es-
pecially with Visual Studio and Intel compilers we see ∼ 25 minutes;
clang for Windows seems to perform better, i.e. ∼ 30 seconds).

3 https://www.graphics.rwth-aachen.de/software/comiso
4 https://gitlab.stce.rwth-aachen.de/stce/MAP_benchmark.git
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Fig. 2. Run times in milliseconds for the benchmark for a single primal
evaluation as well as one adjoint evaluation using different approaches.
dco/c++ refers to a plain overloading approach using dco/c++, dco/map
implements meta adjoint programming, and TAPENADE is a source
transformation tool. Run times are shown for different compilers, ver-
sions, as well for the GPU (nvcc).

To be more specific, Fig. 2 shows the run times given in the following
table.

primal dco/c++ dco/map TAPENADE

CPU
run times ∼ 95ms 693 ∼ 1552ms ∼ 266ms ∼ 199ms
factor 1.0 7.3 ∼ 16.3 2.8 2.1

GPU
run times 117ms — 232ms 288ms
factor 1.0 — 2.0 2.5

The factor is the run time ratio of one adjoint evaluation to one primal
evaluation, i.e. R from Eq. 3. A factor of 2.8 on the CPU for an overload-
ing tool can be considered very good. But especially with the agressive
compiler omptimizations on the GPU a factor of 2.0 can be achieved.

5.2 Application to CVA Code

In this section, we want to demonstrate applicability and performance
when applying dco/map to a larger code base, which could appear as pro-
duction code. Timings for parallel execution on the GPU are shown. The
following five versions are evaluated, each using different data structures
and synchronization techniques from Section 4.1.

1. primal
The basic primal evaluation on the GPU running 32 threads with 200
thread blocks. The computation is carried out for 1000000 paths and
35 euler steps per path. The number of parameters (interest and credit
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curves observed in the market) is 62. This is identical to the size of
the calculated gradient.

2. dco/map (a): atomic increments.
dco/map is used for the adjoint computation. Whenever shared inputs
are read, the adjoint performs atomic increments.

3. dco/map (b): reductions.
dco/map is used for the adjoint computation. Shared input arrays are
enlarged as described in Section 4.1. Increments are first performed on
thread local memory followed by a reduction and atomic increments
at the end.

4. dco/map (c): reductions and passive recomputations.
dco/map is used for the adjoint computation. Shared input arrays are
handled with reductions. In addition, some parts of the code are omit-
ted in the active forward run. The values that are required for the
subsequent adjoint computation are computed passively. I.e. active
forward computation is exchanged with passive forward recomputa-
tion.

5. dco/map (d): reductions and checkpointing. dco/map is used for the
adjoint computation. Shared input arrays are handled with reductions.
In addition, the passive recomputations are also omitted and required
values are checkpointed.

Run time results in milliseconds are given in the following table.

primal dco/map (a) dco/map (b) dco/map (c) dco/map (d)

run times 14.7 290 85 83 52
factor 1.0 19.7 5.8 5.6 3.7

As shown, plain application of dco/map with atomic increments results
in a factor of 19.7. With some effort it is possible to achieve a factor of
3.7 for this code.

6 Summary and Outlook

As presented in this article, meta adjoint programming (MAP) is a promis-
ing approach to achieve usability as well as efficiency for adjoint code de-
velopment on many-core architectures. The overloading approach ensures
usability and template metaprogramming is the basis for efficiency. We’ve
presented the interface as well as run time results for an implementation
called dco/map demonstrating applicability to a real-world C++ code.

Using this approach in conjunction with other tools (e.g. dco/c++) as
well as developing additional features (especially handling more control
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flow structs) is future work. Efficiency-wise, a profiling and thorough ana-
lyis on Windows (incl. respective compilers as Visual C++ or Intel) has
to take place.
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