RWTH Aachen

Department of Computer Science
Technical Report

The SensorCloud Protocol: Securely
Outsourcing Sensor Data to the Cloud

Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle

ISSN 0935-3232 . Aachener Informatik-Berichte . AlB-2016-06

RWTH Aachen . Department of Computer Science . July 2016

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

The SensorCloud Protocol: Securely
Outsourcing Sensor Data to the Cloud

Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle

Communication and Distributed Systems
RWTH Aachen University, Germany
Email: {henze, hummen, matzutt, wehrle}@comsys.rwth-aachen.de

Abstract. The increasing deployment of sensor networks, ranging from home
networks to industrial automation, leads to a similarly growing demand for stor-
ing and processing the collected sensor data. To satisfy this demand, the most
promising approach to date is the utilization of the dynamically scalable, on-
demand resources made available via the cloud computing paradigm. However,
prevalent security and privacy concerns are a huge obstacle for the outsourcing of
sensor data to the cloud. Hence, sensor data needs to be secured properly before
it can be outsourced to the cloud.

When securing the outsourcing of sensor data to the cloud, one important chal-
lenge lies in the representation of sensor data and the choice of security measures
applied to it. In this paper, we present the SensorCloud protocol, which enables
the representation of sensor data and actuator commands using JSON as well as
the encoding of the object security mechanisms applied to a given sensor data
item. Notably, we solely utilize mechanisms that have been or currently are in
the process of being standardized at the IETF to aid the wide applicability of
our approach.

1 Introduction

Recent advances in ubiquitous computing and wireless sensor networks continue
to obliterate the boundaries between the physical and the digital world [1,7,10,
14]. Sensor networks can be utilized in a large variety of deployments, ranging
from personal homes over offices and cars to industrial facilities and public ar-
eas [4,12]. To cope with the resulting increase in demands for storing and process-
ing sensor data, cloud computing elastically provides the necessary computation
and storage resources [12]. Cloud computing allows the collection, processing, and
storage of sensor data at large scales and as well enables the world-wide sharing
of said data [5,11]. In the context of the SensorCloud project [4], we consider a
scenario in which operators of sensor networks (i.e., private users, companies, or
public institutions) connect their sensor networks to the cloud [12], where col-
lected sensor data is processed by cloud services selected by the sensor network
operator [4,11,12,14]. Besides the remarkable advantages of cloud computing,
it is important to note that sensor data often contains sensitive information.
Hence, when transferring this sensitive data to entities outside of trusted sensor
networks, it might, e.g., be unintentionally forwarded to third parties or used for
non-authorized purposes [6,8,13,20]. Furthermore, data stored and processed in
the cloud might be subject to access by the cloud provider or governmental agen-
cies [9]. Thus, one major challenge when interconnecting sensor networks with
the cloud is to account for the aforementioned security and privacy concerns.
As part of the efforts of the SensorCloud project, we developed a trust point-
based security architecture for outsourcing sensor data to the cloud and the

Gateway '

Figure 1. In the SensorCloud scenario, data flows from sensor networks through a dedicated
gateway to the cloud. There, the data is stored securely and can only be accessed by authorized
services.

SensorCloud security library [4,5,11,12,14]. One important challenge in securely
outsourcing sensor data to the cloud lies in the representation of sensor data and
the corresponding security measures taken to protect the sensor data. In this
paper, we report on the SensorCloud protocol, which has jointly been developed
within the SensorCloud project to represent sensor data and actuator commands
using JSON and subsequently secure this data using object security mechanisms.
To this end, we rely on mechanisms that have been or currently are in the process
of being standardized at the IETF and provide a best practice on how to utilize
and combine them in an actual system.

The remainder of this document is structured as follows. In Section 2, we
present the SensorCloud scenario in more detail and provide references to more
detailed descriptions of the overall security architecture. Section 3 defines the
JSON-based representation of sensor data and actuator commands in Sensor-
Cloud. In Section 4, we describe the security extensions to this representation
to realize the secure outsourcing of sensor data to the cloud. We conclude this
paper in Section 5.

2 SensorCloud Scenario

In SensorCloud, we consider a scenario where each sensor network (with an arbi-
trary number of sensor nodes) is connected to the cloud via a dedicated gateway
as depicted in Figure 1. Our goal is to store data securely in the cloud such that
it can only be processed by authorized cloud services. To this end, the gateway
encrypts sensitive sensor readings using a symmetric cipher before uploading it
to the cloud. The encryption process is influenced by a user-configurable access
control list containing services that are authorized to (partially) obtain and pro-
cess the user’s sensor data. Now, only entities in possession of the symmetric key
used for encrypting a piece of sensor data (referred to as a data item) have access
to this specific data item. Hence, to grant a cloud service access to a given data
item the gateway has to provide this cloud service with the corresponding key.
To this end, the gateway asymmetrically encrypts the corresponding symmetric
key with the public key of the cloud service that should gain access to the sensor
data and forwards the resulting encrypted key to the respective cloud service.
More details, especially with respect to the design and implementation of the un-

derlying security architecture as well as our choice of cryptographic primitives,
can be found in the corresponding publications [11,12,14].

Notably, sensor data originating from a single (possibly virtual) sensor node
can contain multiple sensor readings from different sensors. For example, one
data item measured by a meteorological sensor might consist of multiple single
sensor readings such as humidity and temperature. Hence, SensorCloud supports
the transmission of multiple sensor readings of one sensor node in a single mes-
sage [5,12]. As a cloud service might only be granted access to parts of the sensor
readings, SensorCloud supports the encryption of individual parts of sensor data,
thus realizing fine-grained access control.

The processing of sensor data by a cloud service requires the verification of
the integrity of received data, the decryption of the symmetric key, and finally the
decryption of the actual sensor data. These operations have been implemented
in the SensorCloud security library, which allows the transparent decryption of
sensor data and the verification of its integrity by a cloud service [5]. It is available

as open source software under the MIT license!.

3 SensorCloud JSON Representation

The remainder of this document defines the JSON-based messages used by the
SensorCloud protocol to encode data items as well as additional configuration
messages. More precisely, the JSON-based message layout defined by this doc-
ument is used for both internal communication within the gateway and cloud,
respectively, and for communication between those entities.

3.1 Message Definition

The JSON message header MUST be included for transmissions between the
gateway and the cloud. It MAY be omitted for internal data exchanges between
components.

{
"ver":"<number>", /* specification version */
"seq":"<number>", /* for message acknowledgments */
"pl":"[<messages>]" /* actual message payload */

}

The field ver contains the version number of the protocol, which defines
the structure of the remainder of the message. Hence, whenever the message
structure or encapsulated payloads are subject to changes, the version number
MUST be increased. The receiving peer MUST support the indicated version
number. Otherwise, it SHOULD notify the sending peer that the message was
dropped. The version number is a positive integer and is currently defined as 1.

The sequence number seq is currently unused and MUST therefore be set to
0. However, it enables end-to-end acknowledgments at the application layer. The
corresponding retransmission mechanism will need to be developed in the future.
If used, seq is a positive integer that MUST be increased by one for each JSON

! https://code.comsys.rwth-aachen.de/redmine/projects/scslib

message header sent. A potential wrap-around of the sequence number is to be
expected and implementations MUST interpret this case as an incrementation
of the sequence number.

The messages to be transmitted using one header are stored within an array in
the field pl. Section 3.2 defines a list of message types supported by SensorCloud.
Additional message types can be defined as necessary. Messages MUST contain
the field typ to indicate their message type for message processing purposes.
Moreover, they MUST include the gw field to indicate the gateway device that
participates in the communication. Among other aspects, this information is
required for applying object security measures. Note that multiple messages of
different types can be batched using one message header in order to reduce the
overall communication overhead.

3.2 Defined Message Types

Each message indicates its message type via the field typ, which MUST be
included in any message. The message type is a positive integer value and can
currently take one of the values described in Table 1.

Value Semantics
1 Sensor Data Message
2 Sensor Data Request
3 Configuration Message
4 Actuator Command
5 Actuator Response
400 Data Key Upload
401 Data Key Download
402 Public Key Download
403 Public Key Response

Table 1. Message types defined for the SensorCloud protocol.

The remainder of this section defines the structure of messages of the respec-
tive types in detail. Section 3.3 describes messages carrying sensor data while
Section 3.4 defines sensor data queries to be sent by cloud services. Section 3.5
defines configuration messages sent to describe the layout of sensor data origi-
nating from single sensor nodes. Afterwards, Section 3.6 and Section 3.7 describe
commands to be sent to sensor nodes with actuation capabilities and the format
of responses to such commands, respectively. We finally describe messages related
to the management of cryptographic keys as a part of the security extensions in
Section 4.3.

3.3 Transmitting Sensor Data

For sensor data, the JSON representation is strongly based on the JSON defi-
nitions of the Media Types for Sensor Markup Language (SenML) [15]. SenML
is currently being standardized at the IETF. Only a short example is discussed
here to show how SenML integrates into the sensor data representation of Sensor-
Cloud. For specifics about the SenML representation, reading Section 6 of the
corresponding SenML draft [15] is strongly encouraged.

"typ":"1", /* type of the message payload */
"gw":"<string>", /* unique gateway ID */
"bn":"<string>", /* sensor device ID */
"bt":"<number>", /* base time of sensor readings */
"e": [{

"n":"<string>", /* sensor ID */

"t":"<number>", /* optional time value */

"sv":"<string>" /* sensed value as string */

]

Each message encodes one data item, i.e., one piece of sensor data as described
in Section 2. Each data item starts with the field typ, which is always set to 1,
indicating that the message contains sensor data to be uploaded. The fields src
and bn contain the unique identifier of the processing gateway and the identifier of
the originating sensor device, respectively. The sensor device identifier bn thereby
MUST be unique on a per-gateway basis. Data items also carry a timestamp bt,
a positive integer denoting the time (in milliseconds since UNIX epoch) at which
the oldest sensor reading within the data item was measured.

Sensor data from a single (virtual) sensor device can consist of readings from
multiple sensors of the same device (e.g., humidity and temperature), a series of
sensor readings from the same sensor, or a combination of the two. Each sensor
reading is encoded as a JSON object in the array e. The name field n thereby
allows to identify the specific sensor, whereas t allows to identify the time offset
(in milliseconds) of a sensor reading relative to the base time bt. Objects in the
array e MUST be ordered according to an ascending alphanumeric order with
respect to the field n. If n is equal for multiple sensor readings, these elements
MUST be ordered in ascending order of the time value t. The array e MUST
NOT contain two or more elements with the same combination of n and t values.
Hence, the granularity of t MUST be sufficient to guarantee this property. In
SensorCloud, the granularity of t is milliseconds. Moreover, the individual JSON
identifiers MUST appear in the order shown above. This order is required to
preserve the payload structure to enable cryptographically verifying the data
item’s integrity later on.

The actual sensed data is stored in the field sv (string value). SenML already
defines a number of primitive data types and sv is only one of them. Other data
types such as bv (boolean value) may be used as well, but are currently not
supported by SensorCloud. However, using different data types can aid casting
of the sensed value in typed programming languages.

3.4 Requesting Sensor Data

Third-party services can query the cloud for sets of data items to process them.
The cloud, holding a replica of the data owner’s access control list (cf. Section 2),
then returns the data items that are specified in the query and accessible by the
service (to unburden the service from attempting to decrypt unaccessible data
items). Data item queries have the following structure, which is based on the
structure of data items:

"typ":"2", /* payload is a sensor data request */
"gw":"<string>", /* unique gateway ID */
"srv":"<string>", /* unique service ID */
"1lim":"<number>", /* response length limit */
"off":"<number>", /* offset in specified sensor data stream */
"bt": ["<number>"], /* base time of sensor readings */
"bn": ["<string>"], /* sensor device IDs */
"e": [{

"n":"<string>", /* sensor IDs */

3]

Sensor data requests always have a message type typ of 2. The fields srv and
gw specify the service requesting sensor data and the gateway responsible for the
queried sensor data, respectively. The fields 1im (limit) and off (offset) MAY be
used by the requesting service to further control the query. If 1im is specified, the
cloud MUST NOT return more than the specified number of data items in the
response. If 1im is not given, the cloud SHOULD return the whole response, i.e.,
all currently available data items matching the query. Furthermore, the cloud
MUST ignore the first off-many data items it would include in the response. If
off is not given, its default value is 0.

The remaining fields define the query itself. The base time array bt specifies
a time range for the creation times of data items (as given by the field bt,
c.f. Section 3.3) to be included in the response. The maximum length of bt is
two; in this case, the first element specifies the lower time bound and the second
element specifies the upper time bound in milliseconds elapsed since UNIX epoch,
respectively. Note that both bounds are including, i.e., data items to be included
in the response have a value of bt that is larger than or equal to the lower bound
and smaller than or equal to the upper bound, respectively. If only one element is
given, it is treated as the lower time bound for the data item creation time. If bt
is empty or not given, all data items matching by other criteria are to be returned.
The array bn specifies a set of identifiers of sensor nodes whose sensor readings
shall be processed by the querying cloud service. For instance, the affected sensor
nodes can be derived from the cloud’s copy of the data owner’s access control list.
However, the exact specification of how services obtain the required sensor node
identifiers is out of the scope of the SensorCloud protocol. The array e contains
JSON objects each containing a sensor identifier. The cloud MUST return only
those data items that have been sensed by the sensors specified in the array e.
In summary, when receiving a query the cloud MUST return exactly those data
items that (a) have been created within the timespan given by bt, (b) originate
from a sensor node given in bn, and (c) contain measurements by sensors of a
type specified in the array e.

3.5 Configuration Definition

SensorCloud uses dedicated configuration messages to define the layout of sensor
data readings emitted by a specific sensor device. This way, sensor networks

consisting of devices with heterogeneous capabilities can be accounted for. The
structure of configuration messages is as follows:

{
"typ":"3", /* payload is a configuration message */
"gw":"<string>", /* unique gateway ID */
"bn":"<string>", /* sensor device ID */
"js":"<string>", /* JSON schema */

}

Configuration messages always use the message type 3 in the field typ. The
fields gw and bn contain the unique identifier of the processing gateway and the
identifier of the addressed sensor device, respectively. The field js contains the
JSON schema specifying the structure of sensor data read by the sensor device
that is uniquely identified by the combination of gw and bn.

3.6 Actuator Command Definition

Sensor network devices can also be equipped with actuators, allowing authorized
entities, e.g., cloud services authorized by the sensor network owner, to externally
trigger certain actions based on current sensor measurements. In SensorCloud,
actuator messages are used to forward actuator commands. Their structure is
based on the structure of sensor data payloads and looks as follows:

{
"typ":"4", /* type of the message payload */
"gw":"<string>", /* unique gateway ID */
"srv":"<string>", /* unique service ID */
"bn":"<string>", /* actuator device ID */
"seq":"<number>", /* Sequence number (optional) */
"fn":"<string>", /* Function name (optional) */
"e": [{
"n":"<string>", /* Parameter key */
"sv'":"<string>" /* Parameter value */
1]
}

Actuator command messages use a message type typ of 4. The field gw speci-
fies the destination gateway for the actuator command. The destination gateway
decides whether or not to forward an actuator command based on internal ac-
cess control lists containing those cloud services that have been authorized by
the data owner to access fractions of her sensor data. The field srv contains a
unique identifier of the triggering cloud service to allow the gateway to match
the actuator command to an entry in the access control list. The actuator device
to execute the command can be uniquely identified by the destination gateway
by considering the field bn. Optionally, an actuator command can also carry a
sequence number seq, which is used by cloud services if a response to the com-
mand is expected, e.g., an acknowledgment. In this case, the cloud service MUST
ensure that seq is chosen in a way that the mapping between actuator commands
sent and responses received is unambiguous. The optional field fn MAY be used

to specify the name or identifier of a function to be called at the gateway for
RPC-like interactions [3]. The array e contains a set of parameters in the form of
key-value pairs (n as key, sv as value) that shall be passed to the called function.
If £n is not included, the default behavior is to set the parameters given by the
fields n in e at the actuator bn to the respective values sv.

Each actuator command message may only contain a single actuator com-
mand. If multiple actuator commands are to be initiated, multiple messages of
type 4 can be batched using a single message header, which was defined in Sec-
tion 3.1.

3.7 Actuator Response Definition

Actuator commands in SensorCloud can trigger actuator responses, e.g., acknowl-
edging a successful execution of the triggered action. In such a case, an actuator
response is sent to the originating cloud service, thereby enabling RPC-like inter-
actions [3]. Note that the sequence number seq MUST be set in the corresponding
actuator command in order to enable the receiving service to match the response
to the corresponding request. The structure of an actuator response message is
as follows, in analogy to the structure of an actuator command message:

{
"typ":"5", /* type of the message payload */
"gw":"<string>", /* unique gateway ID */
"srv":"<string>", /* unique service ID */
"bn":"<string>", /* actuator device ID */
"seq":"<string>", /* Sequence number */
"fn":"<string>", /* Function name (optional) */
"e": [{
"n":"<string>", /* name */
"sv":"<string>" /* value as string */
1]
}

To denote an actuator response message, its message type typ has the fixed
value of 5. The fields gw and srv denote the unique identifiers of the gateway
and cloud service involved in the actuator command, respectively. These fields
are copied from the corresponding actuator command message. Additionally, the
fields bn, seq, and fn are copied from the actuator command message to enable
the cloud service receiving the response to map it to any pending state it holds for
the actuator command. If fn is not included in the original actuator command
message, it is also not included in the response and the service assumes that the
actuator responds to only setting the parameter values specified in the actuator
command message. The array e contains a (possibly empty) set of return values
from the previously called function. For instance, this array can contain an error
message (e.g., n is set to "err" and sv contains an error code or error message).

Each actuator command response may only refer to a single actuator com-
mand. Analogously to actuator command messages, multiple actuator command
responses can be batched using a single message header as defined in Section 3.1.

4 Security Extensions

SensorCloud bases the protection of sensitive sensor readings on specifications of
the JOSE WG at the IETF. More precisely, JSON Web Encryption (JWE) [17]
is employed to encrypt sensitive sensor information, whereas integrity protection
and authentication for the complete data item is provided via JSON Web Sig-
nature (JWS) [16]. For specifics, reading the respective specifications [16,17] is
strongly encouraged. In the following, we first describe the integration of JWE
into the SensorCloud protocol in Section 4.1, then Section 4.2 documents how
JWS is used in this protocol, and finally Section 4.3 describes the key manage-
ment in SensorCloud.

4.1 Encryption

If values are to be encrypted, JWE extends the data item with information about
the ciphersuite used as specified by the JWE JSON Serialization. Furthermore,
any binary data occurring (e.g., ciphertexts or initialization vectors) are encoded
using the base64url encoding. Four values are represented in a JWE: the header,
initialization vector, ciphertext, and authentication tag. In SensorCloud, JWE-
encrypted JSON structures are encapsulated in a JSON array ev (encrypted
value), replacing the field sv of an unencrypted value:

"ev": [{
"unprotected":{
"alg":"dir",
"enc" :"AESGCM256",
"kid":"<string>",
"typ":"<string>"
s

"jy":"<initialization vector (base64url-encoded)>",
"ciphertext":"<ciphertext (base64url-encoded)>",
"tag":"<authentication tag (base64url-encoded)>"

]

The JWE header, stored in the field unprotected, contains the fields alg,
enc, kid, and typ. This field is not covered by the authentication tag and there-
fore it does not need to be base64url-encoded. For SensorCloud, we fix the value
of the alg (algorithm) field to dir (direct), indicating that the symmetric key
used to decrypt the ciphertext is not encrypted asymmetrically itself, i.e., the
given keying material is passed directly to the ciphersuite given by the field enc.
The ciphersuite is fixed as AESGCM256, i.e., AES with keys of length 256 bit using
the Galois Counter Mode (GCM). The field kid (key identifier) is used to store
the identifier of the key used for encryption, i.e., its SHA-1 hash value. The field
typ encodes the data type of the encrypted value, e.g., sv in SensorCloud. The
initialization vector used during the symmetric encryption is stored in the field
iv, whereas tag holds the authentication tag, which is optionally used depend-
ing on the AES mode of operation, e.g., GCM. Finally, ciphertext contains the
encrypted value itself. For example, if one sensor reading is to be encrypted and
one is not, this gives the following representation:

lltypll . n 1 n

Ilgwll . "<StI’iIlg>" s
llbnll : ||<string>ll ,
"bt":"<number>",

"e": [
{
"n":"<string>",
"ev'": [
{
"unprotected":
{
"alg":"dir",
"enc":"AESGCM256",
"kid":"<string>",
"typ":"sv"
3,

"iv":"<string (base64url-encoded)>",
"ciphertext":"<string (base64url-encoded)>",
"tag":"<string (base64url-encoded)>"

3]
¥,
{
"n":"<string>",
"sv":"<string>"
3]

After decryption, the field identifier ev is replaced with the typ given in the
unprotected header, i.e., sv in SensorCloud and the field’s content is replaced
with the decrypted value. Then, the data item can be processed normally.

Advanced Encryption Schemes. SensorCloud allows for two more advanced
schemes for the encryption of sensor data: encrypting the whole measurement
array of one data item and packing the encryptions of multiple values into one
JWE object.

The definition of ev also allows to encrypt the array e in the sensor data
payload in its entirety instead of on a per-sensor-reading basis. In this case,
the plaintext is composed of a canonical serialization of the array e and the
JWE object ev replaces the array e. This reduces the encryption overhead in
comparison to the case where each sensor value is encrypted separately. However,
the trade-off is that information about the individual sensor readings, e.g., the
sensor identifier n, is encrypted as well, hence selectively processing only subsets
of the sensed data is not possible anymore without decrypting the whole array.
Thus, the encryption of the entire e array is discouraged.

Additionally, the use of ev is not restricted to only encrypting single sensor
readings. Instead, the definition also allows for multiple fields to be encrypted and
encapsulated in a single ev array if they are at the same JSON hierarchy level.

In SensorCloud, the encryption of non-sensor-value fields (e.g. gw, bt) within a
data item is discouraged because they contain important information necessary
for indexing of sensor data in the cloud. However, configuration messages may
contain fields more suited for encryption. To further clarify the use of ev with
multiple sensitive fields at the same hierarchy level, assume that a configuration
message is extended with an additional field ref:

{
"typ":"3",
"gw":"<string>",
"bn":"<string>",
"ref":"<string>", /* reference ID */
"js":"<string>", /* JSON schema */
}

Further assume that both fields ref and js contain sensitive data and must
therefore be encrypted. This yields the following encrypted representation, where
both encrypted values are packed into the same array ev:

{
"typ":"3",
"gW" . “<String>" s
"bn":"<string>",

"eV": [
{
"unprotected":
{
llalgll . lldirll s
"enc":"AESGCM256",
"kid":"<string>",
Iltypﬂ . llrefll
1,

"iv":"<string (base64url-encoded)>",
"ciphertext":"<string (base64url-encoded)>",
"tag":"<string (base64url-encoded)>"

3,
{
"unprotected":
{
"alg":"dir",
"enc":"AESGCM256",
"kid":"<string>",
"typ":"js"
3,
"iv":"<string (base64url-encoded)>",
"ciphertext":"<string (base64url-encoded)>",
"tag":"<string (base64url-encoded)>"
]

In addition to the case mentioned above, a message can also contain multiple
ev arrays as long as they do not fall into the same scope, e.g., they are not on the
same hierarchy level or a certain value in multiple objects in an array shall be
encrypted. Each ev array thereby contains all encrypted fields within the same
scope. To illustrate this, assume that sensor data messages are extended with
two new fields bp and bg, both of which shall be encrypted:

{
"typ":"1",
"gw":"<string>",
"bn":"<string>",
"bt":"<number>",
"bp":"<string>",
"bq":"<string>",
"e': [
{
"n":"<string>",
"sv":"<string>"
¥,
{
"n":"<string>",
"sv'":"<string>"
3]
b

In this case, the corresponding encrypted message looks as follows (each value
sv is encrypted as well):

{
"typ":"1",
"gw":"<string>",
"bn":"<string>",
"bt":"<number>",
"ev":[{... /* encryption of bp */},{... /* encr. of bq */}],
"e": [
{
"n":"<string>"
"ev":[{... /* encr. of sv */}]
1},
{
"n":"<string>"
"ev":[{... /* encr. of sv */}]
]
}

Note that this representation contains three ev fields: one at the first hierarchy
level that contains the encrypted values of bp and bq as well as another two that
encrypt the individual sensor readings, respectively.

4.2 Signing

In order to protect message integrity, messages can be signed digitally by their
respective senders. How to digitally sign JSON objects such as SensorCloud
messages is specified by JSON Web Signatures (JWS) [16], using the base64url
encoding for any binary values that shall be integrity-protected and the signature
itself. By signing a message, the message is extended with a field sig containing
a JWS header and the signature:

Ilsigll :{
"signatures": [{
"header":{"alg":"ES256"},
"signature":"<signature contents (base64url-encoded)>"

]

To provide a sufficient security level until at least the year 2030 [2], Sensor-
Cloud signs messages using ECDSA over the elliptic curve P-256 and SHA-256
as the corresponding hash function. This is indicated by the header parameter
alg, which is set to "ES256". Due to the SensorCloud limitation to a single sig-
nature per message, we limit the length of the signatures array to one element.
The key used for signing can be derived from the gateway identifier gw given in
the message to be signed. If no gw field exists, the header MUST additionally
include a field kid containing the gateway identifier.

By signing each message individually, the receiver of a message is able to
verify each message individually after transmission. Furthermore, messages are
always signed as a whole. To ensure consistency for signing a message, an empty
object sig is appended to the message prior to signing. Additionally, the message
is canonicalized following the recommendations of Canonical JSON [19]. Hence,
a message may look as follows before the signature algorithm is applied:

{
lltypll . n 1 n
"gW" : |I<string>ll ,
"bn":"<string>",
llbtll : |I<number>ll ,

"e": [
{
"n":"<string>",
"ev'": [
{
"unprotected":
{
"alg":"dir",
"enc":"AESGCM256" ,
"kid":"<string>",
"typ":"<string>"
3,

"iv":"<string (base64url-encoded)>",
"ciphertext":"<string (base64url-encoded)>",

"tag":"<string (base64url-encoded)>"
1]
H,
"Sig“ {}

Then, the signature is computed over the base64url-encoded SHA-256 hash
value of the message. Finally, the field sig is filled by including the JWS header
and the signature value as the single element of the signatures array

{
"typ":"1",
"gw":"<string>",
"bn":"<string>",
"bt":"<number>",
"e": [
{

"n":"<string>",

"ev'": [

{

"unprotected":
{
"alg":"dir",
"enc":"AESGCM256" ,
"kid":"<string>",
"typ":"<string>"
3,
"iv":"<string (base64url-encoded)>",
"ciphertext":"<string (base64url-encoded)>",
"tag":"<string (base64url-encoded)>"
]
1,
"sig":{

"signatures": [{
"header":{"alg":"ES256"},
"signature":"<string (base64url-encoded)>"

Bl

b
b

As a result of this approach, multiple sensor readings SHOULD be split into
several messages if they are not to be used or stored together. Otherwise, all
sensor readings that previously have been retrieved from the same message have
to be collected again to verify a message.

4.3 Key Management

In this section, we describe the key management within SensorCloud. First, we
define the messages sent for uploading and downloading data keys, respectively.

In SensorCloud, a data key refers to a symmetric cryptographic key used to
encrypt a series of data items. Then, we argue why the SensorCloud protocol does
not define a dedicated message to upload public keys of participating entities,
i.e., gateways and cloud services. Finally, we define the message to be sent when
a participating entity has to download the public key of another entity.

Data Key Upload. Data keys are symmetric keys used to encrypt and decrypt
data items. In SensorCloud, gateways periodically exchange the data keys used
for different streams of sensor data. In order to enable cloud services to process
the uploaded sensor data, gateways need to share data keys with those cloud
services that are authorized to access this sensor data. Therefore, for each service
authorized to read some sensor data a gateway uploads copies of the needed
data keys, encrypted with the respective service’s public key, to the cloud. The
structure of messages for the upload of a data key is as follows:

{
"typ":"400", /* message type */
"gw":"<string>", /* gateway ID */
"srv":"<string>", /* service ID */

"bt": ["<number>", "<number>"], /* key validity timerange */
"bn":"<string>", /* sensor node ID */
gt . [{

"n":"<string>", /* sensor ID */
"kid":"<string>", /* key ID */
"k":"<string (base64url-encoded)>" /* key material */

1}

Upload messages of data keys always have a message type typ of 400. The
fields gw and srv hold the unique identifiers of the gateway uploading the en-
crypted data key and the cloud service that is able to obtain the key, respec-
tively. The array bt specifies a validity timespan for the data key and MUST be
of length two, where the first element is the lower bound of the key’s validity
and the second element is the upper bound, respectively. Both times are given as
milliseconds since UNIX epoch and the timespan includes the upper and lower
bounds. The gateway SHOULD NOT encrypt data items using a data key that
is already expired. The field bn contains the identifier of a sensor node for which
new data keys are to be uploaded. In the array e, a new data key for each sen-
sor n on the sensor node referred to by bn can be given by specifying the key’s
identifier, i.e., its SHA-1 hash value, in the field kid and the keying material (in
base64url-encoded form) in the field k. Single sensors of a sensor node MAY be
omitted from the array e, e.g., if the readings of different sensors are subject to
different security requirements and therefore use data keys of differing validity
periods.

Data Key Download. In order to be able to decrypt and then process data
items, cloud services must first obtain the respective data keys. To this extend,
cloud services send messages of the following structure to the cloud:

"typ":"401", /* message type */
"gw":"<string>", /* gateway ID */
"srv":"<string>", /* service ID */
"kid":"<string>", /* key ID */

The message type typ of 401 indicates a data key download message. In
this message, the service identified by srv requests to download the data key
identified by kid and managed by the gateway identified by gw from the cloud.
The service includes its own identifier into the message in order to enable the
cloud to respond with the data key specifically encrypted for the requesting
service. Furthermore, the cloud responds with a message of type 400 as specified
in the previous section.

Public Key Upload. SensorCloud does not feature a designated upload mes-
sage for public keys in the SensorCloud protocol. Instead, asymmetric key pairs,
which determine an entity’s identity, are expected to be issued by the cloud. For
instance, the cloud MAY require gateways and services to be registered by other
means, e.g., via a web front-end, and issue a client certificate upon successful
registration. During this process, the respective data owner or service provider
locally creates a key pair and in return obtain the client certificate, which is
bound to the data owner or service provider’s real identity.

Public Key Download. In contrast to the creation of public keys, their re-
trieval from the cloud must be an automated process. The corresponding message
of the SensorCloud protocol has the following structure:

{
"typ":"402", /* message type */
"id":"<string>" /* entity ID */

The message type typ of 402 indicates that a public key is about to be
downloaded. The requesting entity specifies the identifier of the entity of which
the public key shall be retrieved in the field id. On the one hand, gateways
need to request services’ public keys in order to provide them with the data keys
needed to process sensor data. On the other hand, services need to request a
gateway’s public key in order to verify the integrity of sensor data downloaded
from the cloud.

The cloud then responds with the respective public key, using a message of
the following structure:

{
"typ":"403", /* message type */

"key":"<string (PEM-encoded)>" /* public key */

The message type typ of 403 indicates a message that contains a public
key that is being obtained from the cloud. Furthermore, the field key holds the
respective entity’s public key encoded using the PEM encoding [18].

5 Conclusion

When securely outsourcing sensor data to the cloud, it is important to standard-
ize the representation of sensor data as well as the encoding of the necessary se-
curity mechanisms. In this paper, we presented the SensorCloud protocol, which
has been developed as a joint effort in the SensorCloud project as a common
representation for sensor data and actuator commands as well as the necessary
security mechanisms using JSON. The SensorCloud protocol is one important
building block of our trust point-based security architecture for sensor data in
the cloud and the SensorCloud security library which realize the secure outsourc-
ing of sensor data to the cloud [4,5,11,12,14]. In our design of the SensorCloud
protocol, we intentionally relied on approaches that have been or currently are
in the process of being standardized at the IETF. This does not only ease the
wide applicability of our approach but also provides a best practice on how to
utilize and combine these standardized building blocks in an actual system.

5.1 Additional Reading

This paper deliberately focuses on the documentation of the SensorCloud pro-
tocol. Further information on the underlying security architecture has been pre-
sented in a number of scientific publications as follows.

First conceptual and prototypical considerations of the SensorCloud security
architecture have been presented at IEEE CloudCom 2012 [14]. This publica-
tion outlines the designed security architecture and shows its feasibility through
initial measurements. Subsequently, we published an extension of our Sensor-
Cloud security architecture in the International Journal of Grid and High Per-
formance Computing [11]. In this work, we present the integration of the Sensor-
Cloud protocol into the design of our security architecture and discuss extended
measurements of our prototypical implementation. The scientific concept of our
SensorCloud Security Library has been presented at AASNET 2014 [5]. Finally,
we contributed a chapter to the edited book Trusted Cloud Computing, where
we provide a complete overview over the developed trust point-based security
architecture [12].

In addition, we describe the interdisciplinary approach of the SensorCloud
project [4] and discuss potential extensions to also provide privacy of outsourced
sensor data [7,8].

Acknowledgments

The authors would like to thank everyone who contributed to this document
(see attached list of contributors). The SensorCloud project was funded by the
German Federal Ministry of Economic Affairs and Energy (BMWi) under project
funding reference number 01MD11049. The responsibility for the content of this
publication lies with the authors.

List of Contributors

The following individuals contributed to this specification of the SensorCloud
protocol:

Anupam Ashish, QSC AG

Benjamin Assadsolimani, RWTH Aachen University
Daniel Catrein, QSC AG

Dominik Chmiel, RWTH Aachen University

Martin Henze, RWTH Aachen University

Lars Hermerschmidt, RWTH Aachen University

René Hummen, RWTH Aachen University

Roman Matzutt, RWTH Aachen University

Antonio Navarro Pérez, RWTH Aachen University
Thomas Partsch, Cologne University of Applied Sciences
Christian Roller, QSC AG

Daniel Scholz, Cologne University of Applied Sciences
Andre Skusa, symmedia GmbH

References

1.

10.

11.

12.

13.

14.

Akyildiz, 1., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Survey on Sensor Networks.
IEEE Communications Magazine 40(8) (2002)

. Barker, E.: Recommendation for Key Management Part 1: General. Tech. rep. (jan 2016),

http://dx.doi.org/10.6028 /nist.sp.800-57pt1r4
Birrell, A.D., Nelson, B.J.: Implementing Remote Procedure Calls. ACM Transactions on
Computer Systems 2(1) (1984)

. Eggert, M., Hauflling, R., Henze, M., Hermerschmidt, L., Hummen, R., Kerpen, D.,

Navarro Pérez, A., Rumpe, B., Thiflen, D., Wehrle, K.: SensorCloud: Towards the Inter-
disciplinary Development of a Trustworthy Platform for Globally Interconnected Sensors
and Actuators. In: Kremar, H., Reussner, R., Rumpe, B. (eds.) Trusted Cloud Computing.
Springer (2014)

Henze, M., Bereda, S., Hummen, R., Wehrle, K.: SCSlib: Transparently Accessing Protected
Sensor Data in the Cloud. In: The 6th International Symposium on Applications of Ad hoc
and Sensor Networks (AASNET). Procedia Computer Science, vol. 37. Elsevier (2014)
Henze, M., Grofifengels, M., Koprowski, M., Wehrle, K.: Towards Data Handling
Requirements-aware Cloud Computing. In: 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science. IEEE (2013)

Henze, M., Hermerschmidt, L., Kerpen, D., HauBlling, R., Rumpe, B., Wehrle, K.: User-
driven Privacy Enforcement for Cloud-based Services in the Internet of Things. In: 2014
International Conference on Future Internet of Things and Cloud (FiCloud). IEEE (2014)
Henze, M., Hermerschmidt, L., Kerpen, D., Hauflling, R., Rumpe, B., Wehrle, K.: A Com-
prehensive Approach to Privacy in the Cloud-based Internet of Things. Future Generation
Computer Systems 56 (2016)

Henze, M., Hiller, J., Hohlfeld, O., Wehrle, K.: Moving Privacy-Sensitive Services from
Public Clouds to Decentralized Private Clouds. In: 2016 IEEE International Conference on
Cloud Engineering Workshops. IEEE (2016)

Henze, M., Hiller, J., Hummen, R., Matzutt, R., Wehrle, K., Ziegeldorf, J.H.: Network
Security and Privacy for Cyber-Physical Systems. In: Song, H., Fink, G.A., Jeschke, S.,
Rosner, G.L. (eds.) Security and Privacy in Cyber-Physical Systems: Foundations and
Applications. Wiley (2016), to be published

Henze, M., Hummen, R., Matzutt, R., Catrein, D., Wehrle, K.: Maintaining User Control
While Storing and Processing Sensor Data in the Cloud. International Journal of Grid and
High Performance Computing (IJGHPC) 5(4) (2013)

Henze, M., Hummen, R., Matzutt, R., Wehrle, K.: A Trust Point-based Security Architec-
ture for Sensor Data in the Cloud. In: Krecmar, H., Reussner, R., Rumpe, B. (eds.) Trusted
Cloud Computing. Springer (2014)

Henze, M., Hummen, R., Wehrle, K.: The Cloud Needs Cross-Layer Data Handling Anno-
tations. In: 2013 IEEE Security and Privacy Workshops (SPW). IEEE (2013)

Hummen, R., Henze, M., Catrein, D., Wehrle, K.: A Cloud Design for User-controlled
Storage and Processing of Sensor Data. In: 2012 IEEE 4th International Conference on
Cloud Computing Technology and Science (CloudCom). IEEE (2012)

15.

16.

17.

18.

19.
20.

Jennings, C., Shelby, Z., Arkko, J., Keranen, A..: Media Types for Sensor
Markup Language (SenML). IETF Internet-Draft draft-ietf-core-senml-00 (2016),
https://tools.ietf.org/html/draft-ietf-core-senml-00

Jones, M., Bradley, J., Sakimura, N.: JSON Web Signature (JWS). IETF RFC 7515 (Pro-
posed Standard) (2015), https://www.ietf.org/rfc/rfc7515.txt

Jones, M., Hildebrand, J.: JSON Web Encryption (JWE). IETF RFC 7516 (Proposed
Standard) (2015), https://www.ietf.org/rfc/rfc7516.txt

Josefsson, S., Leonard, S.: Textual Encodings of PKIX, PKCS, and CMS Structures. IETF
RFC 7468 (Proposed Standard) (2015), http://www.ietf.org/rfc/rfc7468.txt

One Laptop per Child: Canonical JSON, http://wiki.laptop.org/go/Canonical . JSON
Pearson, S., Benameur, A.: Privacy, security and trust issues arising from cloud comput-
ing. In: 2010 IEEE Second International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE (2010)

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.
A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/
To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblio@informatik.rwth-aachen.de

2013-01 * Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-
teme in Klein- und mittelstdndischen Unternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-
FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and
Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code
with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering Es-
sentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination
proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept fir die ex-
trakorporale Lungenunterstiitzung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Abrahdm: On
Grobner Bases in the Context of Satisfiability-Modulo-Theories Solving
over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and
Hao Wu: Performance Analysis of Computing Servers using Stochastic
Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and
Jiirgen Giesl: Alternating Runtime and Size Complexity Analysis of In-
teger Programs

2013-13 Michael Eggert, Roger Hauflling, Martin Henze, Lars Hermerschmidt,
René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard
Rumpe, Dirk Thiflen, and Klaus Wehrle: SensorCloud: Towards the In-
terdisciplinary Development of a Trustworthy Platform for Globally In-
terconnected Sensors and Actuators

2013-14 Jorg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-
cedures

2013-16 Carsten Otto: Java Program Analysis by Symbolic Execution

2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error tol-
erance in the Real-Time Transport Protocol

2013-20 Jacob Palczynski: Time-Continuous Behaviour Comparison Based on
Abstract Models

2014-01 * Fachgruppe Informatik: Annual Report 2014

2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-
ellbasierten Entwicklung eingebetteter Software

2014-03
2014-04

2014-05

2014-06

2014-07

2014-08

2014-09

2014-14

2014-15

2014-16

2015-01
2015-02

2015-05

2015-06

2015-07

2015-08

2015-09

2015-11

2015-12

2015-13

2015-14

*

Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User Guide
Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-
chronous Automata

Thomas Stroder, Jiirgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-
mination Analysis for Programs with Pointer Arithmetic

Esther Horbert, German Martin Garcia, Simone Frintrop, and Bastian
Leibe: Sequence Level Salient Object Proposals for Generic Object De-
tection in Video

Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-
ferentiation of Numerical Methods: Second-Order Tangent and Adjoint
Solvers for Systems of Parametrized Nonlinear Equations

Christina Jansen, Florian Gobe, and Thomas Noll: Generating Inductive
Predicates for Symbolic Execution of Pointer-Manipulating Programs
Thomas Stroder and Terrance Swift (Editors): Proceedings of the In-
ternational Joint Workshop on Implementation of Constraint and Logic
Programming Systems and Logic-based Methods in Programming Envi-
ronments 2014

Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:
HotBox: Testing Temperature Effects in Sensor Networks

Dominique Giickel: Synthesis of State Space Generators for Model
Checking Microcontroller Code

Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and Com-
plexity Results

Fachgruppe Informatik: Annual Report 2015

Dominik Franke: Testing Life Cycle-related Properties of Mobile Appli-
cations

Florian Frohn, Jiirgen Giesl, Jera Hensel, Cornelius Aschermann, and
Thomas Stroder: Inferring Lower Bounds for Runtime Complexity
Thomas Stroder and Wolfgang Thomas (Editors): Proceedings of the
Young Researchers’ Conference “Frontiers of Formal Methods”

Hilal Diab: Experimental Validation and Mathematical Analysis of Co-
operative Vehicles in a Platoon

Mathias Pelka, J6 Agila Bitsch, Horst Hellbriick, and Klaus Wehrle (Ed-
itors): Proceedings of the 1st KuVS Expert Talk on Localization

Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using
Taylor Models

Stefan Wiiller, Marian Kiihnel, and Ulrike Meyer: Information Hiding in
the Public RSA Modulus

Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like Gram-
mars and Separation Logic

Andreas Polzer: Ansatz zur variantenreichen und modellbasierten En-
twicklung von eingebetteten Systemen unter Beriicksichtigung regelungs-
und softwaretechnischer Anforderungen

Niloofar Safiran and Uwe Naumann: Symbolic vs. Algorithmic Differen-
tiation of GSL Integration Routines

2016-01 * Fachgruppe Informatik: Annual Report 2016

2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement of
Computational Approaches to Reachability Analysis of Linear Hybrid
Systems

2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and
Jiirgen Giesl: Lower Runtime Bounds for Integer Programs

2016-04 Jera Hensel, Jiirgen Giesl, Florian Frohn, and Thomas Stréder: Proving
Termination of Programs with Bitvector Arithmetic by Symbolic Exe-
cution

* These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

