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Abstract
We present the first approach to deduce lower bounds for innermost runtime complexity of term
rewrite systems (TRSs) automatically. Inferring lower runtime bounds is useful to detect bugs
and to complement existing techniques that compute upper complexity bounds. The key idea of
our approach is to generate suitable families of rewrite sequences of a TRS and to find a relation
between the length of such a rewrite sequence and the size of the first term in the sequence. We
implemented our approach in the tool AProVE and evaluated it by extensive experiments.
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Keywords and phrases Term Rewriting, Runtime Complexity, Lower Bounds, Induction

1 Introduction

There exist numerous methods to infer upper bounds for the runtime complexity of TRSs
[3, 11, 13, 16, 20]. We present the first automatic technique to infer lower bounds for the
innermost1 runtime complexity of TRSs. Runtime complexity [11] refers to the “worst” cases in
terms of evaluation length and our goal is to find lower bounds for these cases. While upper
complexity bounds help to prove the absence of bugs that worsen the performance of programs,
lower bounds can be used to find such bugs. Moreover, in combination with methods to
deduce upper bounds, our approach can prove tight complexity results. In addition to
asymptotic lower bounds, in many cases our technique can even compute concrete bounds.

As an example, consider the following TRS Rqs for quicksort. The auxiliary function
low(x, xs) returns those elements from the list xs that are smaller than x (and high works
analogously). To ease readability, we use infix notation for the function symbols ≤ and ++.

I Example 1 (TRS Rqs for Quicksort).

qs(nil) → nil (1)
qs(cons(x, xs)) → qs(low(x, xs)) ++ cons(x, qs(high(x, xs))) (2)

low(x, nil) → nil
low(x, cons(y, ys)) → ifLow(x ≤ y, x, cons(y, ys))

ifLow(true, x, cons(y, ys)) → low(x, ys) zero ≤ x → true
ifLow(false, x, cons(y, ys)) → cons(y, low(x, ys)) succ(x) ≤ zero → false

high(x, nil) → nil succ(x) ≤ succ(y) → x ≤ y
high(x, cons(y, ys)) → ifHigh(x ≤ y, x, cons(y, ys)) nil ++ ys → ys (3)

ifHigh(true, x, cons(y, ys)) → cons(y, high(x, ys)) cons(x, xs) ++ ys → cons(x, xs ++ ys)
ifHigh(false, x, cons(y, ys)) → high(x, ys)

∗ Supported by the DFG grant GI 274/6-1.
1 We consider innermost rewriting, since TRSs resulting from the translation of programs usually have to

be evaluated with an innermost strategy (e.g., [9, 17]). Obviously, lower bounds for innermost reductions
are also lower bounds for full reductions (i.e., our approach can also be used for full rewriting).
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For any n ∈ N, let γList(n) be the term
n times︷ ︸︸ ︷

cons(zero, . . . , cons(zero, nil) . . . ), i.e., the list of
length n where all elements have the value zero (we also use the notation “consn(zero, nil)”). To
find lower bounds, we automatically generate rewrite lemmas that describe families of rewrite
sequences. For example, our technique infers the following rewrite lemma automatically.

qs(γList(n)) i→3n2+2n+1
γList(n) (4)

This rewrite lemma means that for each n ∈ N, there is an innermost rewrite sequence of
length 3n2 + 2n + 1 that reduces qs(consn(zero, nil)) to consn(zero, nil). From this rewrite
lemma, our technique then concludes that the innermost runtime of Rqs is at least quadratic.

While most methods to infer upper bounds are adaptions of termination techniques, the
approach in this paper is related to our technique to prove non-termination of TRSs [7].
Both techniques generate “meta-rules” representing infinitely many rewrite sequences. How-
ever, the rewrite lemmas in the current paper are more general than the meta-rules in [7], as
they can be parameterized by several variables n1, . . . , nm of type N.

In Sect. 2 we show how to automatically speculate conjectures that may result in
suitable rewrite lemmas. Sect. 3 explains how these conjectures can be verified automatically
by induction. From these induction proofs, one can deduce information on the lengths
of the rewrite sequences represented by a rewrite lemma, cf. Sect. 4. Thus, the use of
induction to infer lower runtime bounds represents a novel application for automated inductive
theorem proving. This complements our earlier work on using inductive theorem proving
for termination analysis [8]. Finally, Sect. 5 shows how rewrite lemmas can be used to infer
lower bounds for the innermost runtime complexity of a TRS.

Sect. 6 discusses an improvement of our approach by pre-processing the TRS before the
analysis and Sect. 7 extends our approach to handle rewrite lemmas with arbitrary unknown
right-hand sides. We implemented our technique in the tool AProVE [10] and demonstrate
its power by an extensive experimental evaluation in Sect. 8. All proofs can be found in the
appendix.

2 Speculating Conjectures

We now show how to speculate conjectures (whose validity must be proved afterwards in Sect.
3). See, e.g., [5] for the basics of rewriting, where we only consider finite TRSs. T (Σ,V) is the
set of all terms over a (finite) signature Σ and a set of variables V and T (Σ) = T (Σ,∅) is the
set of ground terms. The arity of a symbol f ∈ Σ is denoted by arΣ(f). As usual, the defined
symbols of a TRS R are Σdef (R) = { root(`) | `→ r ∈ R} and the constructors Σcon(R) are
all other function symbols in R. Thus, Σdef (Rqs) = {qs, low, ifLow, high, ifHigh, ++,≤} and
Σcon(Rqs) = {nil, cons, zero, succ, true, false}.

Our approach is based on rewrite lemmas containing generator functions such as γList
for types like List. Hence, in the first step of our approach we compute suitable types for
the TRS R to be analyzed. While ordinary TRSs are defined over untyped signatures Σ,
Def. 2 shows how to extend such signatures by (monomorphic) types (see, e.g., [8, 13, 21]).

I Definition 2 (Typing). Let Σ be an (untyped) signature. A many-sorted signature Σ′ is a
typed variant of Σ if it contains the same function symbols as Σ, with the same arities. So
f ∈ Σ with arΣ(f) = k iff f ∈ Σ′ where f ’s type has the form τ1 × . . .× τk → τ . Similarly, a
typed variant V ′ of the set of variables V contains the same variables as V, but now every
variable has a type τ . We always assume that for every type τ , V ′ contains infinitely many
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variables of type τ . Given Σ′ and V ′, t ∈ T (Σ,V) is a well-typed term of type τ iff
t ∈ V ′ is a variable of type τ or
t = f(t1, . . . , tk) with k ≥ 0, where each ti is a well-typed term of type τi, and where
f ∈ Σ′ has the type τ1 × . . .× τk → τ .

We only permit typed variants Σ′ where there exist well-typed ground terms of types τ1, . . . , τk
over Σ′, whenever some f ∈ Σ′ has type τ1 × . . .× τk → τ .2

A TRS R over Σ and V is well typed w.r.t. Σ′ and V ′ iff for all `→ r ∈ R, we have that
` and r are well typed and that they have the same type.3

For any TRS R, one can use a standard type inference algorithm to compute a typed
variant Σ′ such that R is well typed. Of course, a trivial solution is to use a many-sorted
signature with just one sort (then every term and every TRS are trivially well typed). But to
make our approach more powerful, it is advantageous to use the most general typed variant
where R is well typed. Here, the set of terms is decomposed into as many types as possible.
Then fewer terms are well typed and more useful rewrite lemmas can be generated.

To make Rqs from Ex. 1 well typed, we obtain a typed variant of its signature with the
types Nats, Bool, and List. Here, the function symbols have the following types:

nil : List qs : List→ List
cons : Nats× List→ List ++ : List× List→ List
zero : Nats ≤ : Nats×Nats→ Bool
succ : Nats→ Nats low, high : Nats× List→ List

true, false : Bool ifLow, ifHigh : Bool×Nats× List→ List

A type τ depends on a type τ ′ (denoted τ wdep τ ′) iff τ = τ ′ or if there is a c ∈ Σ′con(R) of
type τ1 × . . .× τk → τ where τi wdep τ ′ for some 1 ≤ i ≤ k. To ease the presentation, we do
not allow mutually recursive types (i.e., if τ wdep τ ′ and τ ′ wdep τ , then τ ′ = τ). To speculate
conjectures, we now introduce generator functions γτ . For any n ∈ N, γτ (n) is a term from
T (Σ′con(R)) where a recursive constructor of type τ is nested n times. A constructor c : τ1×
. . .× τk → τ is recursive iff τi = τ for some 1 ≤ i ≤ k. So for the type Nats above, we have
γNats(0) = zero and γNats(n+1) = succ(γNats(n)). If a constructor has a non-recursive argu-
ment of type τ ′, then γτ instantiates this argument by γτ ′(0). So for List, we get γList(0) =
nil and γList(n+ 1) = cons(zero, γList(n)). If a constructor has several recursive arguments,
then several generator functions are possible. So for a type Tree with the constructors
leaf : Tree and node : Tree×Tree→ Tree, we have γTree(0) = leaf, but either γTree(n+1) =
node(γTree(n), leaf) or γTree(n + 1) = node(leaf, γTree(n)). Similarly, if a type has several
non-recursive or recursive constructors, then several different generator functions can be
constructed by considering all combinations of non-recursive and recursive constructors.

To ease the presentation, we only consider generator functions for simply structured types
τ . Such types have exactly two constructors c, d ∈ Σ′con(R), where c is not recursive, d has
exactly one argument of type τ , and each argument type τ ′ 6= τ of c or d is simply structured,
too. The presented approach can easily be extended to more complex types by applying
suitable heuristics to choose one of the possible generator functions.

I Definition 3 (Generator Functions and Equations). Let R be a TRS that is well typed w.r.t.
Σ′ and V ′. We extend the set of types by a fresh type N. For every type τ 6= N, let γτ be a
fresh generator function symbol of type N→ τ . The set GR consists of the following generator

2 This is not a restriction, as one can simply add new constants to Σ and Σ′.
3 W.l.o.g., here one may rename the variables in every rule. Then it is not a problem if the variable x is

used with type τ1 in one rule and with type τ2 in another rule.
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equations for every simply structured type τ with the constructors c : τ1 × . . .× τk → τ and
d : ρ1× . . .× ρb → τ , where ρj = τ . We write G instead of GR if R is clear from the context.

γτ (0) = c(γτ1(0), . . . , γτk(0))
γτ (n+ 1) = d(γρ1(0), . . . , γρj−1(0), γτ (n), γρj+1(0), . . . , γρb(0))

We extend wdep to Σdef (R) by defining f wdep h iff f = h or if there is a rule f(. . .)→ r

and a symbol g in t with g wdep h. When speculating conjectures, we take the dependencies
between defined symbols into account. If f wdep g and g 6wdep f , then we first generate a
rewrite lemma for g. This lemma can be used when generating a lemma for f afterwards.

For f ∈ Σ′def (R) of type τ1× . . .×τk → τ with simply structured types τ1, . . . , τk, our goal
is to speculate a conjecture of the form f(γτ1(s1), . . . , γτk(sk)) i→∗ t, where the s1, . . . , sk
are polynomials over variables n1, . . . , nm of type N. Moreover, t is a term built from Σ,
arithmetic expressions, generator functions, and n1, . . . , nm. As usual, a rewrite step is
innermost (denoted s i→R t where we omit the index R if it is clear from the context) if
the reduced subterm of s does not have redexes as proper subterms. From the speculated
conjecture, we afterwards infer a rewrite lemma f(γτ1(s1), . . . , γτk(sk)) i→rt(n1,...,nm)

t,
where rt : Nm → N describes the runtime of the lemma. To speculate a conjecture, we first
generate sample conjectures that describe the effect of applying f to specific arguments.
To this end, we narrow f(γτ1(n1), . . . , γτk(nk)) where n1, . . . , nk ∈ V using the rules of the
TRS and the lemmas we have proven so far, taking also the generator equations and integer
arithmetic into account.

For any proven rewrite lemma s i→rt(... )
t, let the set L contain the rule s→ t. Moreover,

letA be the infinite set of all valid equalities in the theory of N with addition and multiplication.
Then s narrows to t (“s (R∪L)/(G∪A)t” or just “s t” ifR, L, G are clear from the context) iff
there exist a term s′, a substitution σ that maps variables of type N to arithmetic expressions,
a position π, and a variable-renamed rule `→ r ∈ R∪ L such that sσ ≡G∪A s′σ, s′|πσ = `σ,
and s′[r]πσ = t. Although checking sσ ≡G∪A s′σ (i.e., G ∪ A |= sσ = s′σ) is undecidable in
general, the required narrowing can usually be performed automatically using SMT solvers.

I Example 4 (Narrowing). In Ex. 1 we have qs wdep low and qs wdep high. If the lemmas

low(γNats(0), γList(n)) i→
3n+1

γList(0) (5) high(γNats(0), γList(n)) i→
3n+1

γList(n) (6)

were already proved, then the following narrowing tree can be generated to find sample
conjectures for qs. The arrows are annotated with the rules and the substitutions used for
variables of type N. To save space, some arrows correspond to several narrowing steps.

qs(γList(n))

nil

Rule (1)
[n/0]

cons(zero, qs(γList(n′)))

cons(zero, nil)

Rule (1)
[n′/0]

cons(zero, cons(zero, qs(γList(n′′))))

cons(zero, cons(zero, nil))

Rule (1)
[n′′/0]

. . .

Rule (2), Lemmas (5) and (6), Rules (1) and (3)
[n′/n′′ + 1]

Rule (2), Rewrite Lemmas (5) and (6), Rules (1) and (3)
[n/n′ + 1]
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The goal is to get representative rewrite sequences, but not to cover all reductions. So we
stop constructing the tree after some steps and choose suitable narrowings heuristically.

After constructing a narrowing tree for f , we collect sample points (t, σ, d). Here, t
results from a  -normal form q reached in a path of the tree by normalizing q w.r.t. the
generator equations G applied from right to left. So terms from T (Σ,V) are rewritten to
generator symbols with arithmetic expressions as arguments. Moreover, σ is the substitution
for variables of type N, and d is the number of applications of recursive f -rules on the path
(the recursion depth). A rule f(. . .)→ r is recursive iff r contains a symbol g with g wdep f .

I Example 5 (Sample Points). In Ex. 4, we obtain the following set of sample points:4

S = { (γList(0), [n/0], 0), (γList(1), [n/1], 1), (γList(2), [n/2], 2) } (7)

The sequence from qs(γList(n)) to nil does not use recursive qs-rules. So its recursion depth
is 0 and the  -normal form nil rewrites to γList(0) when applying G from right to left.
The sequence from qs(γList(n)) to cons(zero, nil) (resp. cons(zero, cons(zero, nil))) uses the
recursive qs-rule (2) once (resp. twice), i.e., it has recursion depth 1 (resp. 2). Moreover,
these  -normal forms rewrite to γList(1) (resp. γList(2)) when using G from right to left.

A sample point (t, σ, d) for a narrowing tree with the root s = f(. . .) represents the sample
conjecture sσ i→∗ t, which stands for a reduction with d applications of recursive f -rules. So
for s = qs(γList(n)), the sample points in (7) represent the sample conjectures qs(γList(0)) i→∗

γList(0), qs(γList(1)) i→∗ γList(1), qs(γList(2)) i→∗ γList(2). Now the goal is to speculate a
general conjecture from these sample conjectures (whose validity must be proved afterwards).

In general, we search for a maximal subset of sample conjectures that are suitable
for generalization. More precisely, if s is the root of the narrowing tree, then we take
a maximal subset Smax of sample points such that for all (t, σ, d), (t′, σ′, d′) ∈ Smax, the
sample conjectures sσ i→∗ t and sσ′ i→∗ t′ are identical up to the occurring natural numbers
and the variable names. For instance, qs(γList(0)) i→∗ γList(0), qs(γList(1)) i→∗ γList(1),
and qs(γList(2)) i→∗ γList(2) are indeed identical up to the numbers in these sample con-
jectures. To obtain a general conjecture, we replace all numbers in the sample conjec-
tures by polynomials. So in our example, we want to speculate a conjecture of the form
qs(γList(pol left)) i→∗ γList(polright). Here, pol left and polright are polynomials in one vari-
able n (the induction variable of the conjecture) that stands for the recursion depth. This
facilitates a proof of the resulting conjecture by induction on n.

So in general, in any sample conjecture sσ i→∗ t that correspond to a sample point
(t, σ, d) ∈ Smax, we replace the natural numbers in sσ and t by polynomials. For any term q,
let pos(q) be the set of its positions and Πq

N = {π ∈ pos(q) | q|π ∈ N}. Then for each π ∈ Πsσ
N

(resp. π ∈ Πt
N) with (t, σ, d) ∈ Smax, we search for a polynomial pol left

π (resp. polright
π ). To

this end, for every sample point (t, σ, d) ∈ Smax, we generate the constraints

“pol left
π (d) = sσ|π” for every π ∈ Πsσ

N and “polright
π (d) = t|π” for every π ∈ Πt

N. (8)

Here, pol left
π and polright

π are polynomials with abstract coefficients. So if one searches for
polynomials of degree e, then the polynomials have the form c0 + c1 ·n+ c2 ·n2 + . . .+ ce ·ne
and the constraints in (8) are linear diophantine equations over the unknown coefficients
ci ∈ N.5 These equations can easily be solved automatically. Finally, the desired generalized

4 We always simplify arithmetic expressions in terms and substitutions, e.g., the substitution [n/0 + 1] in
the second sample point is simplified to [n/1].

5 Note that in the constraints (8), n is instantiated by an actual number d. Thus, if pol left
π = c0 + c1 · n+

c2 · n2 + . . .+ ce · ne, then pol left
π (d) is a linear polynomial over the unknowns c0, . . . , ce.



6 Inferring Lower Bounds for Runtime Complexity

speculated conjecture is obtained from sσ i→∗ t by replacing sσ|π with pol left
π for every

π ∈ Πsσ
N and by replacing t|π with polright

π for every π ∈ Πt
N.

I Example 6 (Speculating Conjectures). In Ex. 4, we narrowed s=qs(γList(n)) and Smax is
the set S in (7). For each (t, σ, d) ∈ Smax, we have Πsσ

N ={1.1} and Πt
N={1}. So from the

sample conjecture qs(γList(0)) i→∗γList(0), where the recursion depth is d=0, we obtain the
constraints pol left

1.1 (d)=pol left
1.1 (0)=qs(γList(0))|1.1 =0 and polright

1 (d)=polright
1 (0)=γList(0)|1 =

0. Similarly, from the two other sample conjectures we get pol left
1.1 (1) = polright

1 (1) = 1 and
pol left

1.1 (2)=polright
1 (2)=2. When using pol left

1.1 =c0+c1·n+c2·n2 and polright
1 =d0+d1·n+d2·n2

with the abstract coefficients c0, . . . , c2, d0, . . . , d2, the solution c0 =c2 =d0 =d2 =0, c1 =d1 =1
(i.e., pol left

1.1 =n and polright
1 =n) is easily found automatically. So the resulting conjecture is

qs(γList(pol left
1.1 )) i→∗ γList(polright

1 ), i.e., qs(γList(n)) i→∗ γList(n).

If Smax contains sample points with e different recursion depths, then we generate
polynomials of at most degree e − 1 satisfying the constraints (8) (these polynomials are
determined uniquely). Ex. 7 shows how to speculate conjectures with several variables.

I Example 7 (Conjecture With Several Variables). The following TRS combines half and plus.

hp(zero, y) → y hp(succ(succ(x)), y) → succ(hp(x, y))

Narrowing s = hp(γNats(n1), γNats(n2)) yields the sample points (γNats(n2), [n1/0], 0),
(γNats(n2 + 1), [n1/2], 1), (γNats(n2 + 2), [n1/4], 2), and (γNats(n2 + 3), [n1/6], 3). For the
last three sample points (t, σ, d), the only number in sσ is at position 1.1 and the polynomial
pol left

1.1 = 2 · n satisfies the constraint pol left
1.1 (d) = sσ|1.1. Moreover, the only number in t is at

position 1.2 and the polynomial polright
1.2 = n satisfies polright

1.2 = t|1.2. Thus, we speculate the
conjecture hp(γNats(2 · n), γNats(n2)) i→∗ γNats(n2 + n) with the induction variable n.

3 Proving Rewrite Lemmas

If the proof of a speculated conjecture succeeds, then we have found a rewrite lemma.

I Definition 8 (Rewrite Lemmas). Let R be a TRS that is well typed w.r.t. Σ′ and V ′. For
any term q, let q↓G/A be q’s normal form w.r.t. GR, where the generator equations are applied
from left to right and A-equivalent (sub)terms are considered to be equal. Moreover, let
s i→∗ t be a conjecture with V(s) = {n1, . . . , nm} 6= ∅, where n = (n1, . . . , nm) are pairwise
different variables of type N, s is well typed, root(s) ∈ Σdef (R), and s has no defined symbol
from Σdef (R) below the root. Let rt : Nm → N. Then s→rt(n)

R t is a rewrite lemma for R iff
sσ↓G/A i→rt(nσ)

R tσ↓G/A for all σ : V(s)→ N, i.e., sσ↓G/A can be reduced to tσ↓G/A in exact-
ly rt(n1σ, . . . , nmσ) innermost R-steps. We omit the index R if it is clear from the context.

So the conjecture qs(γList(n)) i→∗ γList(n) gives rise to a rewrite lemma, since σ(n) = b ∈
N implies qs(γList(b))↓G/A= qs(consb(zero, nil)) i→3b2+2b+1 consb(zero, nil) = γList(b)↓G/A.

To prove rewrite lemmas, essentially we use rewriting with i→(R∪L)/(G∪A).6 However, this
would allow us to prove lemmas that do not correspond to innermost rewriting with R, if R
contains rules with overlapping left-hand sides. Consider R = {g(zero) → zero, f(g(x)) →
zero}. We have f(g(γNats(n))) i→(R∪L)/(G∪A) zero, but for the instantiation [n/0], this
would not be an innermost reduction. To avoid this, we use the following relation i⇀R ⊆

i→(R∪L)/(G∪A): We have s i⇀R t iff there exist a term s′, a substitution σ, a position π, and a

6 Here, we define i→(R∪L)/(G∪A) to be the relation ≡G∪A ◦ ( i→R ∪ →L) ◦ ≡G∪A. An adaption of our
approach to runtime complexity of full rewriting is obtained by considering →(R∪L)/(G∪A) instead.
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rule `→ r ∈ R∪L such that s ≡G∪A s′, s′|π = `σ and s′[rσ]π ≡G∪A t. Moreover, if `→ r ∈
R, then there must not be any proper non-variable subterm q of `σ, a (variable-renamed) rule
`′ → r′ ∈ R, and a substitution σ′ such that `′σ′ ≡G∪A qσ′. Now f(g(γNats(n))) 6 i⇀R zero,
because the subterm g(γNats(n)) unifies with the left-hand side g(zero) modulo G ∪ A.

When proving a conjecture s i→∗ t by induction, in the step case we try to reduce
s[n/n+ 1] to t[n/n+ 1], where one may use the rule IH: s→ t as induction hypothesis. Here,
the variables in IH may not be instantiated. The reason for not allowing instantiations of
the non-induction variables from V(s) \ {n} is that such induction proofs are particularly
suitable for inferring runtimes of rewrite lemmas, cf. Sect. 4.

Thus, for any rule IH: `→ r, let s 7→IH t iff there exist a term s′ and a position π such
that s ≡G∪A s′, s′|π = ` and s′[r]π ≡G∪A t. Let i⇀(R,IH) = i⇀R ∪ 7→IH. Moreover, i⇀

∗
R (resp.

i⇀
∗
(R,IH)) denotes the transitive-reflexive closure of i⇀R (resp. i⇀

∗
(R,IH)), where in addition

s i⇀
∗
R s′ and s i⇀

∗
(R,IH) s

′ also hold if s ≡G∪A s′. Thm. 9 shows which rewrite sequences are
needed to prove a conjecture s i→∗ t by induction on its induction variable n.

I Theorem 9 (Proving Rewrite Lemmas). Let R, s, t be as in Def. 8, n ∈ V(s) = {n1, . . . , nm},
and n = (n1, . . . , nm). If s[n/0] i⇀

∗
R t[n/0] and s[n/n+ 1] i⇀

∗
(R,IH) t[n/n+ 1], where IH is

the rule s→ t, then there is an rt : Nm → N such that s i→rt(n)
t is a rewrite lemma for R.

I Example 10 (Proof of Rewrite Lemma). Assume that we have already proved the rewrite
lemmas (5) and (6). To prove the conjecture qs(γList(n)) i→∗ γList(n), in the induction base
we show qs(γList(0)) i⇀R γList(0) and in the induction step, we obtain qs(γList(n+ 1)) i⇀

∗
R

nil ++ cons(zero, qs(γList(n))) 7→IH nil ++ cons(zero, γList(n)) i⇀R γList(n+ 1). Thus, there is
a rewrite lemma qs(γList(n)) i→rt(n)

γList(n). Sect. 4 will clarify how to find the function rt .

4 Inferring Bounds for Rewrite Lemmas

Now we show how to infer the function rt for a rewrite lemma s i→rt(n)
t from its proof. If n ∈ n

was the induction variable and the induction hypothesis was applied ih times in the induction
step, then we get the following recurrence equations for rt where ñ is n without the variable n:

rt(n[n/0]) = ib(ñ) and rt(n[n/n+ 1]) = ih · rt(n) + is(n) (9)

Here, ib(ñ) is the length of the reduction s[n/0]↓G/A i→∗R t[n/0]↓G/A, which must exist due
to the induction base. The addend is(n) is the length of s[n/n+ 1]↓G/A i→∗R t[n/n+ 1]↓G/A,
but without those subsequences that are covered by the induction hypothesis IH. Since the
non-induction variables were not instantiated in IH, rt(n) is the runtime for each application
of IH. To compute ib and is , for each previous rewrite lemma s′ i→rt ′(n′)

t′ that was used in the
proof of s i→rt(n)

t, we assume that rt ′ is known. Thus, rt ′ can be used to infer the number
of rewrite steps represented by that previous lemma. To avoid treating rules and rewrite
lemmas separately, in Def. 11 we regard each rule s→ t ∈ R as a rewrite lemma s i→1

t.

I Definition 11 (ih , ib, is). Let s i→rt(n)
t be a rewrite lemma with an induction proof as

in Thm. 9. More precisely, let u1
i⇀R . . . i⇀R ub+1 be the rewrite sequence s[n/0] i⇀

∗
R

t[n/0] for the induction base and let v1
i⇀(R,IH) . . .

i⇀(R,IH) vk+1 be the rewrite sequence
s[n/n+ 1] i⇀

∗
(R,IH) t[n/n+ 1] for the induction step, where IH: s→ t is applied ih times.

For j ∈ {1, . . . , b}, let `j i→rtj(yj) rj and σj be the rewrite lemma and substitution used to
reduce uj to uj+1. Similarly for j ∈ {1, . . . , k}, let pj →rt ′j(zj) qj and θj be the lemma and
substitution used to reduce vj to vj+1. Then we define:
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ib(ñ) =
∑

j∈{1,...,b}
rt j(yjσj) and is(n) =

∑
j∈{1,...,k}, pj→qj 6=IH

rt ′j(zjθj)

By solving the recurrence equations (9), we can now compute rt explicitly.

I Theorem 12 (Explicit Runtime of Rewrite Lemmas). Let s i→rt(n)
t be a rewrite lemma, where

ih, ib, and is are as in Def. 11. Then we obtain rt(n) = ihn · ib(ñ) +
∑n−1
i=0 ihn−1−i · is(n[n/i]).

I Example 13 (Computing rt). Reconsider qs(γList(n)) i→rt(n)
γList(n) from Ex. 10. The

proof of the induction base is qs(γList(0)) ≡G qs(nil) i→Rqs nil ≡G γList(0). Hence, ib = rt1 = 1.
The proof of the induction step is as follows. Here, we use that the runtime of both previously
proved lemmas (5) and (6) is 3n+ 1. Note that the non-overlap condition required by the
relation i⇀Rqs is clearly satisfied in all steps with i→Rqs in the proof.

qs(γList(n+ 1)) ≡G qs(cons(γNats(0), γList(n))) i→Rqs rt ′1 = 1
qs(low(γNats(0), γList(n))) ++ cons(γNats(0), qs(high(. . .))) →L rt ′2(n) = 3n+ 1
qs(γList(0)) ++ cons(γNats(0), qs(high(γNats(0), γList(n)))) →L rt ′3(n) = 3n+ 1

qs(γList(0)) ++ cons(γNats(0), qs(γList(n))) ≡G
qs(nil) ++ cons(zero, qs(γList(n))) i→Rqs rt ′4 = 1

nil ++ cons(zero, qs(γList(n))) 7→IH rt ′5(n) = rt(n)
nil ++ cons(zero, γList(n)) i→Rqs rt ′6 = 1

cons(zero, γList(n)) ≡G γList(n+ 1)

Hence, is(n) =
∑
j∈{1,...,6}, pj→qj 6=IH rt ′j(zjθj) = rt ′1 + rt ′2(n) + rt ′3(n) + rt ′4 + rt ′6

= 1 + (3n+ 1) + (3n+ 1) + 1 + 1 = 6n+ 5.

In our example, we have ih = 1. So Thm. 12 implies rt(n) = ib +
∑n−1
i=0 is(i) = 1+

∑n−1
i=0 (6i+5)

= 3n2 + 2n+ 1. Thus, we get the rewrite lemma (4): qs(γList(n)) i→3n2+2n+1
γList(n).

To compute asymptotic bounds for the complexity of a TRS afterwards, we have to infer
asymptotic bounds for the runtime of rewrite lemmas. Based on Thm. 12, such bounds can
be automatically obtained from the induction proofs of the lemmas. To ease the formulation
of bounds for rt : Nm → N, we define the unary function rtN : N→ N as rtN(n) = rt(n, . . . , n).

If the induction hypothesis was not used in the proof of a rewrite lemma (i.e., ih = 0),
then we have rt(n[n/0]) = ib(ñ) and rt(n[n/n+ 1]) = is(n). Thus, if ib and is are polynomials
of degree dib and dis , respectively, then we obtain rtN(n) ∈ Ω(nmax{dib ,dis}).

If ih = 1, then Thm. 12 implies rt(n) = ib(ñ) +
∑n−1
i=0 is(n[n/i]). Again, let ib and is be

polynomials of degree dib and dis , respectively. Then is(n) = t0+t1n+t2n2+. . .+tdisn
dis , where

the tj are polynomials of degree at most dis − j containing variables from ñ. Hence, rt(n) =

ib(ñ) +
n−1∑
i=0

(t0 + t1i+ t2i
2+ . . .+ tdis i

dis ) = ib(ñ) + t0 ·
n−1∑
i=0

i0+ t1 ·
n−1∑
i=0

i1+ t2 ·
n−1∑
i=0

i2+ . . .+ tdis ·
n−1∑
i=0

idis .

By Faulhaber’s formula [14], for any e ∈ N,
∑n−1
i=0 i

e is a polynomial over the variable n of de-
gree e+ 1. For example if e = 1, then

∑n−1
i=0 i

1 = n·(n−1)
2 has degree 2. By taking also the de-

gree dib of ib into account, rt has degree max{dib , dis + 1}, i.e., rtN(n) ∈ Ω(nmax{dib ,dis +1}).
Finally we consider the case where the induction hypothesis was used several times, i.e.,

ih > 1. By construction we always have is(n) ≥ 1 (since the induction step cannot only
consist of applying the induction hypothesis). Thus, Thm. 12 implies rt(n) ≥

∑n−1
i=0 ihn−1−i =∑n−1

j=0 ihj = ihn−1
ih−1 . So rtN(n) ∈ Ω(ihn), i.e., the runtime of the rewrite lemma is exponential.

I Theorem 14 (Asymptotic Runtime of Rewrite Lemmas). Let s i→rt(n)
t be a rewrite lemma

with ih, ib, and is as in Def. 11. Moreover, let ib and is be polynomials of degree dib and dis .
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If ih = 0, then rtN(n) ∈ Ω(nmax{dib ,dis}).
If ih = 1, then rtN(n) ∈ Ω(nmax{dib ,dis +1}).
If ih > 1, then rtN(n) ∈ Ω(ihn).

I Example 15 (Exponential Runtime).Consider the TRSRexpwith the rules f(succ(x), succ(x))
→ f(f(x, x), f(x, x)) and f(zero, zero)→ zero. Our approach speculates and proves the rewrite
lemma f(γNats(n), γNats(n)) i→rt(n) zero. For the induction base, we have f(γNats(0), γNats(0))
≡G f(zero, zero) i→Rexp zero and thus ib = 1. The induction step is proved as follows:

f(γNats(n+ 1), γNats(n+ 1)) ≡G f(succ(γNats(n)), succ(γNats(n))) i→Rexp rt ′1 = 1
f(f(γNats(n), γNats(n)), f(γNats(n), γNats(n))) 7→2

IH
f(zero, zero) i→Rexp rt ′4 = 1

zero

Thus, ih = 2 and is(n) is the constant 2 for all n ∈ N. Hence, by Thm. 14 we have
rt(n) ∈ Ω(2n). Indeed, Thm. 12 implies rt(n) = 2n +

∑n−1
i=0 2n−1−i · 2 = 2n+1 + 2n − 2.

5 Inferring Bounds for TRSs

We now use rewrite lemmas to infer lower bounds for the innermost runtime complexity ircR
of a TRS R. To define ircR, the derivation height of a term t w.r.t. a relation→ is the length
of the longest →-sequence starting with t, i.e., dh(t,→) = sup{m | ∃t′ ∈ T (Σ,V), t→m t′ },
cf. [12]. Here, for any M ⊆ N ∪ {ω}, supM is the least upper bound of M and sup∅ = 0.
Since we only regard finite TRSs, dh(t, i→R) = ω iff t starts an infinite sequence of i→R-steps.
So as in [16], dh treats terminating and non-terminating terms in a uniform way.

When analyzing the complexity of programs, one is interested in evaluations of basic
terms f(t1, . . . , tk) where a defined symbol f ∈ Σdef (R) is applied to data objects t1, . . . , tk ∈
T (Σcon(R),V). The innermost runtime complexity function ircR corresponds to the usual
notion of “complexity” for programs. It maps any n ∈ N to the length of the longest sequence
of i→R-steps starting with a basic term t with |t| ≤ n. Here, the size of a term is |x| = 1 for
x ∈ V and |f(t1, . . . , tk)| = 1 + |t1|+ . . .+ |tk|, and TB is the set of all basic terms.

I Definition 16 (Innermost Runtime Complexity ircR [11]). For a TRS R, its innermost
runtime complexity function ircR :N→N∪{ω} is ircR(n) = sup{ dh(t, i→R) | t ∈ TB , |t| ≤ n }.

In Sect. 4 we computed the length rt(n) of the rewrite sequences represented by a rewrite
lemma s i→rt(n)

t, where V(s) = n. However, ircR is defined w.r.t. the size of the start
term of a rewrite sequence. Thus, to obtain a lower bound for ircR from rt(n), for any
σ : V(s)→ N one has to take the relation between nσ and the size of the start term sσ↓G/A
into account. Note that our approach in Sect. 2 only speculates lemmas where s has the
form f(γτ1(s1), . . . , γτk(sk)). Here, f ∈ Σdef (R), s1, . . . , sk are polynomials over n, and
τ1, . . . , τk are simply structured types. For any τi, let dτi : ρ1 × · · · × ρb → τ be τi’s recursive
constructor. Then for any n ∈ N, Def. 3 implies |γτi(n)↓G/A | = szτi(n) for szτi :N→ N with

szτi(n) = |γτi(0)↓G/A |+ n ·
(
1 + |γρ1(0)↓G/A |+ · · ·+ |γρb(0)↓G/A | − |γτi(0)↓G/A |

)
.

The reason is that γτi(n) ↓G/A contains n occurrences of dτi and of each γρ1(0) ↓G/A, . . . ,
γρb(0) ↓G/A except γτi(0) ↓G/A, and just one occurrence of γτi(0) ↓G/A. For instance,
|γNats(n)↓G/A| is szNats(n) = |γNats(0)↓G/A|+ n · (1 + |γNats(0)↓G/A| − |γNats(0)↓G/A|) =
|zero|+n = 1+n and |γList(n)↓G/A| is szList(n) = |γList(0)↓G/A|+n · (1+ |γNats(0)↓G/A|) =
|nil|+n · (1+ |zero|) = 1+n ·2. Consequently, the size of s↓G/A= f(γτ1(s1), . . . , γτk(sk))↓G/A
with V(s) = n is given by the following function sz : Nm → N:
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sz(n) = 1 + szτ1(s1) + · · ·+ szτk(sk)

For instance, the term qs(γList(n)) ↓G/A= qs(consn(zero, nil)) has the size sz(n) = 1 +
szList(n) = 2n+ 2. Since |γτ (0)↓G/A | is a constant for each type τ , sz is a polynomial whose
degree is given by the maximal degree of the polynomials s1, . . . , sk.

So the rewrite lemma (4) for qs states that there are terms of size sz(n) = 2n+ 2 with
reductions of length rt(n) = 3n2 +2n+1. To determine a lower bound for ircRqs , we construct
an inverse function sz−1 with (sz◦sz−1)(n) = n. In our example where sz(n) = 2n+2, we have
sz−1(n) = n−2

2 if n is even. So there are terms of size sz(sz−1(n)) = n with reductions of length
rt(sz−1(n)) = rt(n−2

2 ) = 3
4n

2 − 2n+ 2. Since multivariate polynomials sz(n1, . . . , nm) cannot
be inverted, we invert the unary function szN : N→ N with szN(n) = sz(n, . . . , n) instead.

Of course, inverting szN fails if szN is not injective. However, the conjectures speculated in
Sect. 2 only contain polynomials with natural coefficients. Then, szN is always strictly monoto-
nically increasing. So we only proceed if there is a sz−1

N : img(szN)→ N where (szN◦sz−1
N )(n) =

n holds for all n ∈ img(szN) = {n ∈ N | ∃v ∈ N. szN(v) = n}. To extend sz−1
N to a function

on N, for any (total) function h : M → N with M ⊆ N, we define bhc(n) : N→ N by:

bhc(n) = h( max{n′ | n′ ∈M,n′ ≤ n} ), if n ≥ min(M) and bhc(n) = 0, otherwise

Using this notation, the following theorem states how we can derive lower bounds for ircR.

I Theorem 17 (Explicit Lower Bounds for ircR). Let s i→rt(n1,...,nm)
t be a rewrite lemma for R,

let sz : Nm → N be a function such that sz(b1, . . . , bm) is the size of s[n1/b1, . . . , nm/bm]↓G/A
for all b1, . . . , bm ∈ N, and let szN’s inverse function sz−1

N exist. Then rtN ◦ bsz−1
N c is a lower

bound for ircR, i.e., (rtN ◦ bsz−1
N c)(n) ≤ ircR(n) holds for all n ∈ N with n ≥ min(img(szN)).

So for the rewrite lemma (4) for qs where szN(n) = 2n+ 2, we have bsz−1
N c(n) = bn−2

2 c ≥
n−3

2 and ircRqs(n) ≥ rt(bsz−1
N c(n)) ≥ rt(n−3

2 ) = 3
4n

2 − 7
2n+ 19

4 for all n ≥ 2.
However, even if sz−1

N exists, finding resp. approximating sz−1
N automatically can be

non-trivial in general. Therefore, we now show how to obtain an asymptotic lower bound
for ircR directly from a rewrite lemma f(γτ1(s1), . . . , γτk(sk)) i→rt(n)

t without constructing
sz−1

N . As mentioned, if e is the maximal degree of the polynomials s1, . . . , sk, then sz is also
a polynomial of degree e and thus, szN(n) ∈ O(ne). Moreover, from the induction proof of
the rewrite lemma we obtain an asymptotic lower bound for rtN, cf. Thm. 14. Using these
bounds, Lemma 18 can be used to infer an asymptotic lower bound for ircR directly.

I Lemma 18 (Asymptotic Bounds for Function Composition). Let rtN, szN : N → N where
szN ∈ O(ne) for some e ≥ 1 and where szN is strictly monotonically increasing.

If rtN(n) ∈ Ω(nd) with d ≥ 0, then (rtN ◦ bsz−1
N c)(n) ∈ Ω(n de ).

If rtN(n) ∈ Ω(bn) with b ≥ 1, then (rtN ◦ bsz−1
N c)(n) ∈ Ω(b e

√
n).

So for the rewrite lemma qs(γList(n)) i→rt(n)
γList(n) where rtN = rt and szN = sz, we

only need the asymptotic bounds sz(n) ∈ O(n) and rt(n) ∈ Ω(n2), to conclude ircRqs(n) ∈
Ω(n 2

1 ) = Ω(n2), i.e., to prove that the quicksort TRS has at least quadratic complexity.
So while Thm. 17 explains how to find concrete lower bounds for ircR (if szN can be inver-

ted), the following theorem summarizes our results on asymptotic lower bounds for ircR. To
this end, we combine Thm. 14 on the inference of asymptotic bounds for rt with Lemma 18.

I Theorem 19 (Asymptotic Lower Bounds for ircR). Let s i→rt(n)
t be a rewrite lemma for

R and let sz : Nm → N be a function such that sz(b1, . . . , bm) is the size of s[n1/b1, . . . ,

nm/bm]↓G/A for all b1, . . . , bm ∈ N, where szN(n) ∈ O(ne) for some e ≥ 1 and szN is strictly
monotonically increasing. Furthermore, let ih, ib, and is be defined as in Def. 11.
1. If ih = 0 and ib and is are polynomials of degree dib and dis , then ircR(n) ∈ Ω(n

max{dib ,dis}
e ).
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2. If ih = 1 and ib and is are polynomials of degree dib and dis , then ircR(n) ∈ Ω(n
max{dib ,dis +1}

e ).
3. If ih > 1, then ircR(n) ∈ Ω(ih

e
√
n).

6 Preprocessing TRSs by Argument Filtering

A drawback of our approach is that generator functions only represent homogeneous data
objects (e.g., lists or trees where all elements have the same value zero). To prove lower
complexity bounds also in cases where one needs other forms of rewrite lemmas, we use
argument filtering [2] to remove certain argument positions of function symbols.
I Example 20 (Argument Filtering). Consider the following TRS Rintlist:

intlist(zero) → nil intlist(succ(x)) → cons(x, intlist(x))

We have intlist(succn(zero)) i→n+1 cons(succn−1(zero), . . . cons(succ(zero), cons(zero, nil))) for
all n ∈ N. However, the inhomogeneous list on the right-hand side cannot be expressed in a
rewrite lemma. Filtering away the first argument of cons yields the TRS (Rintlist)\(cons,1):

intlist(zero) → nil intlist(succ(x)) → cons(intlist(x))

For this TRS, our approach can speculate and prove the rewrite lemma intlist(γNats(n)) i→n+1

γList(n), i.e., intlist(succn(zero)) i→n+1 consn(nil). From this rewrite lemma, one can infer
n− 1 ≤ irc(Rintlist)\(cons,1)(n) for all n ≥ 2 resp. irc(Rintlist)\(cons,1)(n) ∈ Ω(n).
Def. 21 introduces the concept of argument filtering for terms and TRSs formally.
I Definition 21 (Argument Filtering). Let Σ be a signature with f ∈ Σ, arΣ(f) = k, and let
i ∈ {1, . . . , k}. Let Σ\(f,i) be like Σ, but with arΣ\(f,i)(f) = k − 1. For any term t ∈ T (Σ,V),
we define the term t\(f,i) ∈ T (Σ\(f,i),V) resulting from filtering away the i-th argument of f :

t\(f,i) =

 t, if t is a variable
f( (t1)\(f,i), . . . , (ti−1)\(f,i), (ti+1)\(f,i), . . . , (tk)\(f,i) ), if t = f(t1, . . . , tk)
g( (t1)\(f,i), . . . , (tb)\(f,i) ), if t = g(t1, . . . , tb) for g 6= f

Let R be a TRS over Σ. Then we define R\(f,i) = {`\(f,i) → r\(f,i) | `→ r ∈ R}.
However, a lower bound for the runtime of R\(f,i) does not imply a lower bound for R if

the argument that is filtered away influences the control flow of the evaluation. Thus, several
conditions have to be imposed to ensure that argument filtering is sound for lower bounds:

(a) Argument filtering must not remove function symbols on left-hand sides of rules.
An argument may not be filtered away if it is used for non-trivial pattern matching (i.e.,
if there is a left-hand side of a rule where the i-th argument of f is not a variable). As an
example, consider R = {f(cons(true, xs))→ f(cons(false, xs))} where ircR(n) ≤ 1 for all n.
But if one filters away the first argument of cons, then one obtains the non-terminating
rule f(cons(xs))→ f(cons(xs)), i.e., ircR\(cons,1)(n) = ω for n ≥ 3.

(b) The TRS must be left-linear.
To illustrate this, consider R = {f(xs, xs)→ f(cons(true, xs), cons(false, xs))}, where again
ircR(n) ≤ 1. But filtering away the first argument of cons yields the non-terminating rule
f(xs, xs)→ f(cons(xs), cons(xs)), i.e., ircR\(cons,1)(n) = ω for n ≥ 3.

(c) Argument filtering must not result in free variables on right-hand sides of rules.
The reason is that otherwise, argument filtering might again turn terminating TRSs
into non-terminating ones. For instance, consider R = {f(cons(x, xs)) → f(xs)} where
ircR(n) = bn2 c− 1. But if one filters away the second argument of cons, then one gets the
rule f(cons(x))→ f(xs) whose runtime is unbounded, i.e., ircR\(cons,2)(n) = ω for n ≥ 3.
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Thm. 22 states that (a) - (c) are indeed sufficient for the soundness of argument filtering.
To infer a lower bound for ircR from a bound for ircR\(f,i) , we have to take into account that
filtering changes the size of terms. As an example, consider R = {f(x)→ a}. Here, we have
ircR\(f,1)(1) = 1 due to the rewrite sequence f i→R\(f,1) a. The corresponding rewrite sequence
in the original TRS R is f(x) i→R a. Thus, ircR(2) = 1, but all terms of size 1 are normal
forms of R, i.e., ircR(1) = 0. So ircR\(f,i)(n) ≤ ircR(n) does not hold in general. Nevertheless,
for any rewrite sequence of R\(f,i) starting with a term t, there is a corresponding rewrite
sequence of R starting with a term7 s where |s| ≤ 2 · |t|. Thus, if we have derived a lower
bound p(n) for ircR\(f,i)(n), we can use p(n2 ) as a lower bound for ircR(n). Hence, in Ex. 20,
we obtain n

2 − 1 ≤ ircRintlist(n) for all n ≥ 4 resp. ircRintlist(n) ∈ Ω(n).

I Theorem 22 (Soundness of Argument Filtering). Let f ∈ Σ, arΣ(f) = k, and i ∈ {1, . . . , k}.
Moreover, let R be a TRS over Σ where the following conditions hold for all rules `→ r ∈ R:
(a) If f(t1, . . . , tk) is a subterm of `, then ti ∈ V.
(b) For any x ∈ V, there is at most one position π ∈ pos(`) such that `|π = x.
(c) V(r\(f,i)) ⊆ V(`\(f,i)).
Then for all n ∈ N, we have ircR\(f,i)(n2 ) ≤ ircR(n).

In our implementation, as a heuristic we always perform argument filtering if it is permitted
by Thm. 22, except for cases where filtering removes defined function symbols on right-hand
sides of rules. As an example, consider R = {a→ f(a, b)} where ircR(n) = ω for n ≥ 1. If
one filters away f’s first argument, then one obtains a→ f(b) and thus, ircR\(f,1)(n) = 1 for
n ≥ 1. So here, argument filtering is sound, but it results in significantly worse lower bounds.

7 Indefinite Rewrite Lemmas

Our technique often fails if the analyzed TRS is not completely defined, i.e., if there are
normal forms containing defined symbols. As an example, the runtime complexity of
Rin = {f(succ(x)) → succ(f(x))} is linear due to the rewrite sequences f(succn(zero)) i→n

succn(f(zero)). However, the term succn(f(zero)) on the right-hand side contains f and
thus, it cannot be represented in a rewrite lemma. Therefore, we now also allow indefinite
conjectures and rewrite lemmas with unknown right-hand sides. Then for our example, we
could speculate the indefinite conjecture f(γN(n)) i→∗ ?, which gives rise to the indefinite
rewrite lemma f(γN(n)) i→n

?, where ? represents an arbitrary unknown term. To distinguish
indefinite conjectures and rewrite lemmas from ordinary ones, we call the latter definite.

Recall that when speculating conjectures in Sect. 2, we built a narrowing tree for a term
s = f(. . .) and obtained a sample point (t, σ, d) whenever we reached a normal form t. When
speculating indefinite conjectures, we do not narrow in order to reach normal forms, but we
create a sample point (σ, d) after each application of a recursive f -rule. Here, σ is again the
substitution and d is the recursion depth of the path. Note that while previously proven
lemmas L may be used during narrowing, we do not use previous indefinite rewrite lemmas,
since they do not yield any information on the terms resulting from rewriting.

I Example 23 (Speculating Indefinite Conjectures). For Rin, we narrow the term s =
f(γNats(x)). We get f(γNats(x)) succ(f(γNats(x′))) with the substitution σ1 = [x/x′ + 1].
Since we applied a recursive f-rule once, we construct the sample point (σ1, 1). We continue
narrowing and get succ(f(γNats(x′))) succ(succ(f(γNats(x′′)))) with the substitution σ2 =

7 The term s can be obtained from t by adding a variable as the i-th argument for any f occurring in t.
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[x′/x′′+1] and recursion depth 2. Since σ2◦σ1 corresponds to [x/x′′+2], this yields the sample
point ([x/x′′ + 2], 2). Another narrowing step results in the sample point ([x/x′′′ + 3], 3).

These sample points represent the sample conjectures f(γNats(x′+ 1)) i→∗ ?, f(γNats(x′′+
2)) i→∗ ?, f(γNats(x′′′ + 3)) i→∗ ? that are identical up to the occurring numbers and variable
names. Thus, they are suitable for generalization. As in Sect. 2, we replace the numbers in the
sample conjectures by a polynomial pol in one variable n that stands for the recursion depth.
This leads to f(γNats(x+ pol)) i→∗ ? and the constraints pol(1) = 1, pol(2) = 2, pol(3) = 3.
A solution is pol = n and thus, we speculate the indefinite conjecture f(γNats(x+ n)) i→∗ ?.

Every indefinite conjecture gives rise to an indefinite rewrite lemma.

I Definition 24 (Indefinite Rewrite Lemmas). LetR, s, rt be as in Def. 8. Then s i→rt(n)
? is an

indefinite rewrite lemma for R iff for all σ : V(s)→ N there is a term t such that sσ ↓G/A
i→rt(nσ)
R t, i.e., sσ↓G/A starts an innermost R-reduction of at least rt(n1σ, . . . , nmσ) steps.

In principle, proving indefinite conjectures s i→∗ ? is not necessary, since s i→0
? is always

a valid indefinite rewrite lemma. However, to derive useful lower complexity bounds, we need
rewrite lemmas s i→rt(n)

? for non-trivial functions rt . Thm. 25 shows that the approaches
for proving lemmas from Sect. 3 and for deriving bounds from these proofs in Sect. 4 can
also be used for indefinite rewrite lemmas. The only adaption needed is that the relation

i⇀R may not reduce redexes that contain the symbol ?. This restriction is needed due to the
innermost evaluation strategy, because ? represents arbitrary terms that are not necessarily
in normal form. In this way, all previously proven (definite or indefinite) rewrite lemmas L
can be used in the proof of new (definite or indefinite) rewrite lemmas.

I Theorem 25 (Bounds for Indefinite Rewrite Lemmas). Let i⇀R and i⇀(R,IH) be restricted
such that redexes may not contain the symbol ? and let ih, ib, and is be defined as in Def.
11. Here, for an indefinite rewrite lemma s i→rt(n)

? with n ∈ V(s), we say that any rewrite
sequence s[n/0] = u1

i⇀R u2
i⇀R . . . i⇀R ub+1 “proves” the induction base and any rewrite

sequence s[n/n+ 1] = v1
i⇀(R,IH) v2

i⇀(R,IH) . . .
i⇀(R,IH) vk+1 “proves” the induction step,

where IH is the rule s→ ?. Then Thm. 12 and Thm. 14 on explicit and asymptotic runtimes
hold for any definite or indefinite rewrite lemma.

I Example 26 (Complexity of Indefinite Rewrite Lemmas). To continue with Ex. 23, we now
infer the runtime for the rewrite lemma f(γNats(x+n)) i→rt(x,n)

?. Since f(γNats(x+ 0)) is al-
ready in normal form w.r.t. i⇀R, the length of the rewrite sequence in the induction base is
ib(x) = 0. In the induction step, we obtain f(γNats(x+n+1)) i⇀R succ(f(γNats(x+n))) 7→IH
succ(?). Thus, the induction hypothesis is applied ih = 1 time and the number of remaining
rewrite steps is is(x, n) = 1. According to Thm. 12, we have rt(x, n) = ihn · ib(x) +∑n−1
i=0 ihn−1−i ·is(x, i) = 1n ·0+

∑n−1
i=0 1n−1−i ·1 = n. Similarly, since ih = 1 and both ib(x) = 0

and is(x, n) = 1 are polynomials of degree 0, Thm. 14 implies rtN(n) ∈ Ω(nmax{0,0+1}) = Ω(n).

8 Experiments and Conclusion

We presented the first approach to infer lower bounds for the innermost runtime complexity
of TRSs automatically. It is based on speculating rewrite lemmas by narrowing, proving
them by induction, and determining the length of the corresponding rewrite sequences from
this proof. By taking the size of the start term of the rewrite lemma into account, this yields
a lower bound for ircR. Our approach can be improved by argument filtering and by allowing
rewrite lemmas with unknown right-hand sides. In this way the rewrite lemmas do not have
to represent rewrite sequences of the original TRS precisely. Future work will be concerned
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with considering more general forms of induction proofs and rewrite lemmas.
We implemented our approach in AProVE [10], which uses Z3 [6] to solve arithmetic con-

straints. While our technique can also infer concrete bounds, currently AProVE only computes
asymptotic bounds and provides the lemma that leads to the reported runtime as a witness.

There exist a few results on lower bounds for derivational complexity (e.g., [15, 19]) and
in the Termination Competitions8 2009 - 2011, Matchbox [18] proved lower bounds for full
derivational complexity where arbitrary rewrite sequences are considered.9 However, there are
no other tools that infer lower bounds for innermost runtime complexity. Hence, we compared
our results with the asymptotic upper bounds computed by AProVE and TcT [4], the winners
in the category “Runtime Complexity – Innermost Rewriting” at the Termination Competition
2014. We tested with 808 TRSs from this category of the Termination Problem Data Base
(TPDB 9.0.2) which was used for the Termination Competition 2014. We omitted 118 non-
standard TRSs with extra variables on right-hand sides or relative rules. We also disregarded
51 TRSs where AProVE or TcT proved ircR(n) ∈ O(1) and 87 examples with ircR(n) ∈ Ω(ω)
(gray cells in the table below). To identify the latter, we adapted existing innermost non-
termination techniques to only consider sequences starting with basic terms. Each tool had
a time limit of 300 s for each example. The following table compares the lower bound found
by our implementation with the minimum upper bound computed by AProVE or TcT.

ircR(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n>3) Ω(2n) Ω(3n) Ω(ω)
O(1) (51) – – – – – – –
O(n) 65 201 – – – – – –
O(n2) 5 57 17 – – – – –
O(n3) – 10 3 8 – – – –
O(n>3) 3 3 1 – – – – –
O(2n) – – – – – – – –
O(3n) – – – – – – – –
O(ω) 78 293 47 6 – 10 1 (87) 0 200 400 600 8000

100

200

300

Finished Examples

T
im

e
in

Se
co
nd

s

The average runtime of our implementation was 22.5 s, but according to the chart above, it
was usually much faster. In 694 cases, the analysis finished in 5 seconds. AProVE inferred
lower bounds for 657 (81%) of the 808 TRSs. Upper bounds were only obtained for 373 (46%)
TRSs, although such bounds exist for at least all 670 TRSs where AProVE shows innermost
termination. So although this is the first technique for lower ircR-bounds, its applicability
exceeds the applicability of the techniques for upper bounds which were developed for years.
Tight bounds (where the lower and upper bounds are equal) were proven for the 226 TRSs
on the diagonal of the table. There are just 74 TRSs where different non-trivial lower and
upper bounds were inferred and for 60 of these cases, they just differ by the factor n.

Our approach is particularly powerful for TRSs that implement realistic algorithms,
e.g., it shows ircR(n) ∈ Ω(n2) for many implementations of classical sorting algorithms
like quicksort, maxsort, minsort, and selection-sort from the TPDB where neither AProVE
nor TcT prove ircR(n) ∈ O(n2). Detailed experimental results and a web interface for our
implementation are available at [1].

Acknowledgments We thank Fabian Emmes for important initial ideas for this paper.

8 See http://termination-portal.org/wiki/Termination_Competition.
9 For derivational complexity, every non-empty TRS has a trivial linear lower bound. In contrast, proving

linear lower bounds for runtime complexity is not trivial. Thus, lower bounds for derivational complexity
are in general unsound for runtime complexity. Therefore, an experimental comparison with tools for
derivational complexity is not meaningful.

http://termination-portal.org/wiki/Termination_Competition
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A Proofs

To prove Thm. 9, we need some auxiliary lemmas. Lemma 27 implies that i⇀R is closed
under instantiations of variables with natural numbers. Note that this only holds due the
non-overlap condition in the definition of i⇀R.

I Lemma 27 (Stability of i⇀R and i⇀(R,`→r)). Let R be a TRS, let `, r, s, t be terms where
s only contains variables of type N, and let µ : V(s) → N be a substitution with natural
numbers. Then we have the following:

s i⇀R t implies sµ i⇀R tµ

s i⇀(R,`→r) t implies sµ i⇀(R,`µ→rµ) tµ

Proof. We first consider the case where s i⇀R t holds. By the definition of i⇀R, s i⇀R t

implies that there is a term s′, a substitution σ, a π ∈ pos(s′), and a rule ` → r ∈ R ∪ L
such that s ≡G∪A s′, s′|π = `σ, and s′[rσ]π ≡G∪A t. Moreover if ` → r ∈ R, then there is
no proper non-variable subterm q of `σ that unifies modulo G ∪ A with a variable-renamed
left-hand side of a rule from R.

We clearly have sµ ≡G∪A s′µ, s′µ|π = `σµ, and s′µ[rσµ]π = (s′[rσ]π)µ ≡G∪A tµ. If
`→ r ∈ L, then this implies sµ i⇀R tµ, as desired.

Otherwise, we have `→ r ∈ R. Assume that there exists a proper non-variable subterm
q′ of `σµ that unifies modulo G ∪ A with a variable-renamed left-hand side of a rule from R.
Since the root symbol of q′ must be from Σdef (R) and the range of µ does not include any
defined symbols, we must have q′ = qµ for some term q that is a proper non-variable subterm
of `σ. But then q would already unify modulo G ∪ A with a variable-renamed left-hand side
of a rule from R, which is a contradiction to s i⇀R t above. Thus, in this case we can also
conclude sµ i⇀R tµ.

Now we consider the case where s i⇀(R,`→r) t holds. If we also have s i⇀R t, then the
claim follows from the observation above. Otherwise, we have s 7→`→r t. Now sµ 7→`µ→rµ tµ

is an immediate consequence of the definition of 7→. J

The next lemma shows how to infer information on innermost rewrite sequences with
i→R from the relation i⇀R. Here, � is like 7→, but without using the underlying equations
G ∪ A. So we define s�`→r t iff there exists a π ∈ pos(s) such that s|π = ` and t = s[r]π.

I Lemma 28 (From i⇀R to i→R). Let R be a TRS, let `, r be terms with root(`) ∈ Σdef (R),
and let s, t be ground terms. Moreover, let R, {`→ r}, and s be well typed w.r.t. Σ′ and V ′,
where s does not have the type N.
(a) If s i⇀R t and this reduction is done using a rule `→ r ∈ R, then we have s↓G/A i→R

t↓G/A.
(b) If s i⇀R t and this reduction is done using the rewrite lemma ` i→rt(n)

r and the
substitution σ, then we have s↓G/A i→rt(nσ)

R t↓G/A.
(c) If s 7→`→r t, then we have s↓G/A �( ↓̀G/A→ r↓G/A) t↓G/A.

Proof. In cases (a) and (b), we have s i⇀R t. By the definition of i⇀R, s i⇀R t implies
that there is a term s′, a substitution σ, a π ∈ pos(s′), and a rule `→ r ∈ R ∪ L such that
s ≡G∪A s′, s′|π = `σ, and s′[rσ]π ≡G∪A t. Moreover if ` → r ∈ R, then there is no proper
non-variable subterm q of `σ that unifies modulo G ∪ A with a variable-renamed left-hand
side of a rule from R.

Note that s ≡G∪A s′ implies s ↓G/A ≡A s′ ↓G/A as →G/A is terminating and confluent
modulo A. Here, →G/A denotes the relation resulting from regarding G as rewrite rules
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oriented from left to right where rewriting is performed modulo A (i.e., modulo arithmetic).
Since s is a ground term that does not have the type N, s↓G/A does not contain subterms of
type N and therefore, s↓G/A ≡A s′ ↓G/A implies s↓G/A = s′ ↓G/A.

Since ` matches s′|π, s′ has a defined symbol from Σdef (R) at position π. Hence, there are
no generator symbols and no subterms of type N in s′ on or above the position π. Therefore,
G and A cannot be applied on or above the position π. This implies s ↓G/A = s′ ↓G/A =
(s′[s′|π]π)↓G/A = s′ ↓G/A [(s′|π)↓G/A]π = s′ ↓G/A [`σ↓G/A]π.

Let us first regard case (b) where `→ r ∈ L. Thus, `→ r corresponds to a rewrite lemma
` i→rt(n)

r and we have `σ↓G/A i→rt(nσ)
R rσ↓G/A. Thus, we obtain s↓G/A = s′ ↓G/A [`σ↓G/A]π

i→rt(nσ)
R s′ ↓G/A [rσ↓G/A]π = (s′[rσ]π)↓G/A ≡A t↓G/A. As t↓G/A does not contain subterms

of type N, we have (s′[rσ]π)↓G/A = t↓G/A, which finishes the proof of (b).
Now we regard the case where `→ r ∈ R. Since ` does not contain generator function

symbols or subterms of type N, we have s↓G/A = s′ ↓G/A [`σ↓G/A]π = s′ ↓G/A [`σ′]π for the
substitution where σ′(x) = σ(x) ↓G/A for all x ∈ V. Let t′ = s′ ↓G/A [rσ′]π. To prove (a),
now it suffices to show that s′ ↓G/A [`σ′]π i→R t′. The reason is that then we have s↓G/A =
s′ ↓G/A [`σ′]π i→R t′ = s′ ↓G/A [rσ′]π = s′ ↓G/A [rσ↓G/A]π = (s′[rσ]π)↓G/A = t↓G/A.

To prove that s′ ↓G/A [`σ′]π i→R t′ = s′ ↓G/A [rσ′]π holds, one has to show that this
rewrite step respects the innermost evaluation strategy. Assume that there is a proper
subterm q′ of `σ′ = `σ↓G/A and a left-hand side of a rule from R that matches q′. Since the
root of q′ must be a defined symbol, there exists a non-variable proper subterm q of `σ such
that q′ = q↓G/A. But then q unifies modulo G ∪ A with a variable-renamed left-hand side of
a rule from R, which is a contradiction. Thus, (a) is proved.

Finally, we have to prove (c). By definition, s 7→`→r t implies that there is a term s′

and a π ∈ pos(s′) such that s ≡G∪A s′, s′|π = `, and s′[r]π ≡G∪A t. As in case (a) and (b),
since s is a ground term that does not have the type N, we can conclude s↓G/A = s′ ↓G/A.
Moreover, s′ again has a defined symbol at position π, since root(`) ∈ Σdef (R). As in
case (a) and (b), this implies s ↓G/A = s′ ↓G/A = s′ ↓G/A [` ↓G/A]π. Thus, we obtain
s↓G/A = s′ ↓G/A [`↓G/A]π �( ↓̀G/A→ r↓G/A) s

′ ↓G/A [r ↓G/A]π = s′[r]π ↓G/A ≡A t↓G/A. Since
`→ r is well typed and ` does not have type N, t↓G/A does not contain subterms of type N.
Hence, we have s′[r]π ↓G/A = t↓G/A, which proves (c). J

Now we prove Thm. 9 and Thm. 12 together.

I Theorem 9 (Proving Rewrite Lemmas). Let R, s, t be as in Def. 8, n ∈ V(s) = {n1, . . . , nm},
and n = (n1, . . . , nm). If s[n/0] i⇀

∗
R t[n/0] and s[n/n+ 1] i⇀

∗
(R,IH) t[n/n+ 1], where IH is

the rule s→ t, then there is an rt : Nm → N such that s i→rt(n)
t is a rewrite lemma for R.

I Theorem 12 (Explicit Runtime of Rewrite Lemmas). Let s i→rt(n)
t be a rewrite lemma, where

ih, ib, and is are as in Def. 11. Then we obtain rt(n) = ihn · ib(ñ) +
∑n−1
i=0 ihn−1−i · is(n[n/i]).

Proof. Let rt be defined by the recurrence equations (9). We show that s i→rt(n)
t is a rewrite

lemma. More precisely, for any µ : V(s)→ N which instantiates all variables of s by natural
numbers we show that sµ↓G/A i→rt(nµ)

R tµ↓G/A holds. To this end, we use induction on nµ.
In the induction base case, we have nµ = 0. We first regard the case where the reduction

s[n/0] i⇀
∗
R t[n/0] has length 0. Note that s[n/0] i⇀

0
R t[n/0] means s[n/0] ≡G/A t[n/0].

This implies sµ = s[n/0]µ ≡G/A t[n/0]µ = tµ. Since →G/A is terminating and confluent
modulo A, sµ ≡G/A tµ implies sµ ↓G/A ≡A tµ ↓G/A. Since sµ and tµ are ground terms
that do not have the type N, sµ↓G/A and tµ↓G/A do not contain any subterms of type N.
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Hence, sµ↓G/A ≡A tµ↓G/A implies sµ↓G/A = tµ↓G/A, which proves the desired claim, since
ib(ñµ) = 0 and thus also rt(nµ) = 0.

Now we regard the case s[n/0] = u1
i⇀R . . . i⇀R ub+1 = t[n/0] for b ≥ 1. By Lemma 27,

i⇀R is stable and thus, we obtain sµ = s[n/0]µ = u1µ
i⇀R . . . i⇀R ub+1µ = t[n/0]µ = tµ.

When regarding rewrite rules also as rewrite lemmas as in Def. 11, Lemma 28 (a) and (b)
imply sµ↓G/A = u1µ↓G/A i→rt(y1σ1µ)

R . . . i→rt(ybσbµ)
R ub+1µ↓G/A = tµ↓G/A. This means that

sµ↓G/A i→ib(ñµ)
R tµ↓G/A or in other words, sµ↓G/A i→rt(nµ)

R tµ↓G/A.
In the induction step case, we have nµ > 0. Let µ′ : V(s)→ N where µ′ is like µ for all

V(s) \ {n} and nµ′ = nµ − 1. In the case where the reduction s[n/n + 1] i⇀
∗
R t[n/n + 1]

has length 0, we have sµ ≡A s[n/n + 1]µ′ ≡G/A t[n/n + 1]µ′ ≡A tµ. Thus, we again have
sµ↓G/A ≡A tµ↓G/A which implies sµ↓G/A = tµ↓G/A. This again proves the desired claim,
since ih = 0 and is(nµ′) = 0 and thus also rt(nµ) = rt(n[n/n+ 1]µ′) = 0.

Now we regard the case s[n/n+ 1] = v1
i⇀(R,IH) . . .

i⇀(R,IH) vk+1 = t[n/n+ 1] for k ≥ 1.
By Lemma 27, i⇀R is stable and thus, we obtain s[n/n+ 1]µ′ = v1µ

′ i⇀(R,IHµ′) . . .
i⇀(R,IHµ′)

vk+1µ
′ = t[n/n+ 1]µ′.

If vjµ′ i⇀R vj+1µ
′, then Lemma 28 (a) and (b) imply vjµ′ ↓G/A i→rt ′j(zjθjµ

′)
R vj+1µ

′ ↓G/A.
Otherwise, if vjµ′ 7→IHµ′ vj+1µ

′, then by Lemma 28 (c) we have vjµ′ ↓G/A �(sµ′↓G/A→ tµ′↓G/A)

vj+1µ
′ ↓G/A. Note that the induction hypothesis implies sµ′ ↓G/A i→rt(nµ′)

R tµ′ ↓G/A. This
means that vjµ′ ↓G/A �(sµ′↓G/A→ tµ′↓G/A) vj+1µ

′ ↓G/A implies vjµ′ ↓G/A i→rt(nµ′)
R vj+1µ

′ ↓G/A.

Since there are ih many of these steps, we finally get s[n/n + 1]µ′ ↓G/A i→ih·rt(nµ′)+is(nµ′)
R

t[n/n+ 1]µ′ ↓G/A or in other words, s[n/n+ 1]µ′ ↓G/A i→rt(n[n/n+1]µ′)
R t[n/n+ 1]µ′ ↓G/A. This

proves the desired claim, since sµ ↓G/A = s[n/n + 1]µ′ ↓G/A, tµ ↓G/A = t[n/n + 1]µ′ ↓G/A,
and rt(nµ) = rt(n[n/n+ 1]µ′).

Finally we show by induction on n that the closed form for rt(n) given in Thm. 12
indeed satisfies the recurrence equations (9). We obtain rt(n[n/0]) = ih0 · ib(ñ) = ib(ñ), as
required in (9). Similarly, we have rt(n[n/n+ 1]) = ihn+1 · ib(ñ) +

∑n
i=0 ihn−i · is(n[n/i]) =

ih · ( ihn · ib(ñ) +
∑n−1
i=0 ihn−1−i · is(n[n/i]) ) + is(n) = ih · rt(n) + is(n), as in (9). J

I Theorem 14 (Asymptotic Runtime of Rewrite Lemmas). Let s i→rt(n)
t be a rewrite lemma

with ih, ib, and is as in Def. 11. Moreover, let ib and is be polynomials of degree dib and dis .
If ih = 0, then rtN(n) ∈ Ω(nmax{dib ,dis}).
If ih = 1, then rtN(n) ∈ Ω(nmax{dib ,dis +1}).
If ih > 1, then rtN(n) ∈ Ω(ihn).

Proof. If ih = 0, then the theorem immediately follows from the fact that rt(n[n/0]) = ib(ñ)
and rt(n[n/n+ 1]) = is(n), otherwise.

If ih = 1, then Thm. 12 implies rt(n) = ib(ñ) +
∑n−1
i=0 is(n[n/i]). Since is is a polynomial

of degree dis , we have is(n) = t0 + t1n+ t2n
2 + . . .+ tdisn

dis . Here, t1, . . . , tdis are polynomials
containing variables from ñ. Since degree(is) = max{degree(tknk) | 0 ≤ k ≤ dis} and
degree(tknk) = degree(tk) + k, there must be a j ∈ {0, . . . , dis} such that degree(tj) = dis − j
and for all k ∈ {0, . . . , dis} with k 6= j we have degree(tk) ≤ dis − k. Hence,

rt(n) = ib(ñ) +
n−1∑
i=0

(t0 + t1i+ t2i
2 + . . .+ tdis i

dis )

= ib(ñ) + t0 ·
n−1∑
i=0

i0 + t1 ·
n−1∑
i=0

i1 + t2 ·
n−1∑
i=0

i2 + . . .+ tdis ·
n−1∑
i=0

idis . (10)
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To prove rtN(n) ∈ Ω(nmax{dib ,dis +1}), we now show that rt is a polynomial of degree
max{dib , dis + 1}. To this end, note that by Faulhaber’s formula [14], for any e ∈ N,∑n−1
i=0 i

e is a polynomial over the variable n of degree e + 1. More precisely, for e = 0 we
have

∑n−1
i=0 i

e = n and for e ≥ 1 we have
∑n−1
i=0 i

e = 1
e+1

(∑e
j=0

(
e+1
j

)
·Bj · ne+1−j

)
. Here,

Bj is the j-th Bernoulli number, where we use the first Bernoulli numbers which are defined
as B0 = 1 and Bm = − 1

m+1 ·
∑m−1
k=0

(
m+1
k

)
Bk for m > 0. So B1 = − 1

2 . Hence, we obtain

degree(rt) = max{dib ,degree(tk ·
n−1∑
i=0

ik) | k ∈ {0, . . . , dis}} by (10)

= max{dib ,degree(tk) + k + 1 | k ∈ {0, . . . , dis}} by Faulhaber’s formula
= max{dib , dis + 1} as degree(tj) = dis − j and

degree(tk) ≤ dis − k for
all k 6= j

Finally we regard the case where ih > 1. Now Thm. 12 implies

rt(n) = ihn · ib(ñ) +
∑n−1
i=0 ihn−1−i · is(n[n/i])

≥
∑n−1
i=0 ihn−1−i as is(n) ≥ 1 for all n

=
∑n−1
j=0 ihj

= ihn−1
ih−1 .

Hence, we obtain rtN(n) ∈ Ω(ihn). J

I Theorem 17 (Explicit Lower Bounds for ircR). Let s i→rt(n1,...,nm)
t be a rewrite lemma for R,

let sz : Nm → N be a function such that sz(b1, . . . , bm) is the size of s[n1/b1, . . . , nm/bm]↓G/A
for all b1, . . . , bm ∈ N, and let szN’s inverse function sz−1

N exist. Then rtN ◦ bsz−1
N c is a lower

bound for ircR, i.e., (rtN ◦ bsz−1
N c)(n) ≤ ircR(n) holds for all n ∈ N with n ≥ min(img(szN)).

Proof. If n ≥ min(img(szN)), then there is a maximal n′ ≤ n such that n′ ∈ img(szN).
Thus, bsz−1

N c(n) = sz−1
N (n′). Note that due to the rewrite lemma s i→rt(n1,...,nm)

t, the term
s[n1/sz−1

N (n′), . . . , nm/sz−1
N (n′)]↓G/A has an innermost evaluation of length rt(sz−1

N (n′), . . . ,
sz−1

N (n′)) = rt(bsz−1
N c(n), . . . , bsz−1

N c(n)) = (rtN ◦ bsz−1
N c)(n). The size of the start term

s[n1/sz−1
N (n′), . . . , nm/sz−1

N (n′)] ↓G/A is sz(sz−1
N (n′), . . . , sz−1

N (n′)) = szN(sz−1
N (n′)) = n′.

Since root(s) ∈ Σdef (R) and s has no defined symbol below the root, s[n1/sz−1
N (n′), . . . ,

nm/sz−1
N (n′)]↓G/A is a basic term. As this basic term has the size n′ ≤ n and its evaluation

has the length (rtN ◦ bsz−1
N c)(n), this implies (rtN ◦ bsz−1

N c)(n) ≤ ircR(n). J

To prove Lemma 18, we need the following auxiliary lemma. Here, similar to bhc, for
any (total) function h : M → N where M is an infinite subset of N, let dhe(n) : N→ N, be
defined by dhe(n) = h(min{n′ | n′ ∈ M,n′ ≥ n}). We only define bhc if h’s domain M is
infinite, because this is needed to ensure that there is always an n′ ∈M with n′ ≥ n.

I Lemma 29 (Connection Between bhc and dhe). Let M be an infinite subset of N and let
h : M → N be strictly monotonically increasing and surjective. Then we have bhc(n) ∈
{dhe(n), dhe(n)− 1} for all n ∈ N.

Proof. Let n ∈ N. If n ∈M , then bhc(n) = dhe(n).
If n /∈M and n < min(M), then bhc(n) = 0. Moreover, since h is strictly monotonically

increasing and surjective, we also have dhe(n) = 0.
If n /∈ M and n > min(M), let n′ = max{n′ | n′ ∈ M,n′ < n} and let n′′ = min{n′′ |

n′′ ∈M,n′′ > n}. Thus, n′ < n < n′′. By strict monotonicity of h, we have h(n′) < h(n′′).
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Assume that h(n′′) − h(n′) > 1. Then, by surjectivity of h, there is an ñ ∈ M such
that h(ñ) = h(n′) + 1 and thus h(n′) < h(ñ) < h(n′′). By strict monotonicity of h, we
obtain n′ < ñ < n′′. Thus, we either have ñ < n which contradicts the definition of
n′ = max{n′ | n′ ∈M,n′ < n} or ñ > n which contradicts n′′ = min{n′′ | n′′ ∈M,n′′ > n}.
Hence, bhc(n) = h(n′) = h(n′′)− 1 = dhe(n)− 1. J

I Lemma 18 (Asymptotic Bounds for Function Composition). Let rtN, szN : N → N where
szN ∈ O(ne) for some e ≥ 1 and where szN is strictly monotonically increasing.

If rtN(n) ∈ Ω(nd) with d ≥ 0, then (rtN ◦ bsz−1
N c)(n) ∈ Ω(n de ).

If rtN(n) ∈ Ω(bn) with b ≥ 1, then (rtN ◦ bsz−1
N c)(n) ∈ Ω(b e

√
n).

Proof. We first consider the case where rtN(n) ∈ Ω(nd) . By definition of O, szN(n) ∈ O(ne)
implies

∃n0, c > 0. ∀n ∈ N, n > n0. c · ne ≥ szN(n).

By instantiating n with sz−1
N (n), we obtain

∃n0, c > 0. ∀n ∈ img(szN), sz−1
N (n) > n0. c · (sz−1

N (n))e ≥ szN(sz−1
N (n)).

Since szN is strictly monotonically increasing, sz−1
N is also strictly monotonically increasing.

Thus, there is an n1 such that for all n > n1 with n ∈ img(szN) we have sz−1
N (n) > n0. Hence,

we get

∃n1, c > 0. ∀n ∈ img(szN), n > n1. c · (sz−1
N (n))e ≥ szN(sz−1

N (n)).

This simplifies to

∃n1, c > 0. ∀n ∈ img(szN), n > n1. c · (sz−1
N (n))e ≥ n.

When dividing by c and building the e-th root on both sides, we get

∃n1, c > 0. ∀n ∈ img(szN), n > n1. sz−1
N (n) ≥ e

√
n

c
.

By the monotonicity of e
√

n
c , this implies

∃n1, c > 0. ∀n ∈ N, n > n1. dsz−1
N e(n) ≥ e

√
n

c
.

Note that szN is total and hence, sz−1
N is surjective. Moreover, img(szN) is infinite as szN is

strictly monotonically increasing. Hence, with Lemma 29 we get bsz−1
N c(n) + 1 ≥ dsz−1

N e(n)
for all n ∈ N and thus

∃n1, c > 0. ∀n ∈ N, n > n1. bsz−1
N c(n) + 1 ≥ e

√
n

c
.

Hence

∃n1, c > 0. ∀n ∈ N, n > n1. bsz−1
N c(n) ≥ e

√
n

c
− 1. (11)

By definition of Ω, rtN(n) ∈ Ω(nd) implies

∃n0, c
′ > 0. ∀n ∈ N, n > n0. c′ · nd ≤ rtN(n).
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By instantiating n with sz−1
N (n) again, we obtain

∃n0, c
′ > 0. ∀n ∈ N, bsz−1

N c(n) > n0. c′ · (bsz−1
N c(n))d ≤ rtN(bsz−1

N c(n)).

Since sz−1
N is strictly monotonically increasing, bsz−1

N c is weakly monotonically increasing
by construction. As bsz−1

N c is surjective, there is an n2 such that for all n > n2 we have
bsz−1

N c(n) > n0. Thus, we obtain

∃n2, c
′ > 0. ∀n ∈ N, n > n2. c′ · (bsz−1

N c(n))d ≤ rtN(bsz−1
N c(n)).

With (11) and weak monotonicity of c′ ·nd, we get the following by choosing n3 = max{n1, n2}.

∃n3, c, c
′ > 0. ∀n ∈ N, n > n3. c′ · ( e

√
n

c
− 1)d ≤ rtN(bsz−1

N c(n))

Thus, we have

∃c > 0. (rtN ◦ bsz−1
N c)(n) ∈ Ω

((
e

√
n

c
− 1
)d)

and, as a result, (rtN ◦ bsz−1
N c)(n) ∈ Ω

(
n
d
e

)
.

Now we consider the case where rtN(n) ∈ Ω(bn). As in the previous case, (11) holds. By
definition of Ω, rtN(n) ∈ Ω(bn) implies

∃n0, c
′ > 0. ∀n ∈ N, n > n0. c′ · bn ≤ rtN(n).

By instantiating n with sz−1
N (n), we obtain

∃n0, c
′ > 0. ∀n ∈ N, bsz−1

N c(n) > n0. c′ · bbsz
−1
N c(n) ≤ rtN(bsz−1

N c(n)).

Since sz−1
N is strictly monotonically increasing, bsz−1

N c is weakly monotonically increasing
by construction. As bsz−1

N c is surjective, there is an n2 such that for all n > n2 we have
bsz−1

N c(n) > n0. Thus, we obtain

∃n2, c
′ > 0. ∀n ∈ N, n > n2. c′ · bbsz

−1
N c(n) ≤ rtN(bsz−1

N c(n)).

With (11) and weak monotonicity of bn, we get the following by choosing n3 = max{n1, n2}.

∃n3, c, c
′ > 0. ∀n ∈ N, n > n3. c′ · b e

√
n
c−1 ≤ rtN(bsz−1

N c(n)).

Thus, we have

∃c > 0. (rtN ◦ bsz−1
N c)(n) ∈ Ω

(
b
e
√

n
c−1
)

and, as a result, (rtN ◦ bsz−1
N c)(n) ∈ Ω

(
b
e
√
n
)
. J

I Theorem 19 (Asymptotic Lower Bounds for ircR). Let s i→rt(n)
t be a rewrite lemma for

R and let sz : Nm → N be a function such that sz(b1, . . . , bm) is the size of s[n1/b1, . . . ,

nm/bm]↓G/A for all b1, . . . , bm ∈ N, where szN(n) ∈ O(ne) for some e ≥ 1 and szN is strictly
monotonically increasing. Furthermore, let ih, ib, and is be defined as in Def. 11.
1. If ih = 0 and ib and is are polynomials of degree dib and dis , then ircR(n) ∈ Ω(n

max{dib ,dis}
e ).
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2. If ih = 1 and ib and is are polynomials of degree dib and dis , then ircR(n) ∈ Ω(n
max{dib ,dis +1}

e ).
3. If ih > 1, then ircR(n) ∈ Ω(ih

e
√
n).

Proof.
1. In this case, Thm. 14 implies rtN(n) ∈ Ω(nmax{dib ,dis}). With Lemma 18, we get (rtN ◦
bsz−1

N c)(n) ∈ Ω(n
max{dib ,dis}

e ). Moreover, Thm. 17 states that (rtN ◦ bsz−1
N c)(n) ≤ ircR(n)

holds for all n ∈ N. Thus, we obtain ircR(n) ∈ Ω(n
max{dib ,dis}

e ).
2. Now Thm. 14 implies rtN(n) ∈ Ω(nmax{dib ,dis +1}). Thus, with Lemma 18, we result in

(rtN ◦ bsz−1
N c)(n) ∈ Ω(n

max{dib ,dis +1}
e ). Similar to the previous case, this implies ircR(n) ∈

Ω(n
max{dib ,dis +1}

e ).
3. In this case, Thm. 14 states rtN(n) ∈ Ω(ihn). With Lemma 18, we get (rtN ◦ bsz−1

N c)(n) ∈
Ω(ih

e
√
n). Similar to the previous cases, we obtain ircR(n) ∈ Ω(ih

e
√
n).

J

To prove Thm. 22, we need an auxiliary definition and some lemmas. In the following, let
R be a TRS over a signature Σ, let f ∈ Σ with arΣ(f) = k, and let i ∈ {1, . . . , k}. We now
introduce an operation which lifts a position of a filtered term to the corresponding term
where the filtered argument is still present. Similarly, we also introduce a converse operation
which transforms positions of the original term into positions of the filtered term.

I Definition 30 (π+
t and π−s ). Given a term t ∈ T (Σ\(f,i),V), we define π+

t as follows for
all positions π ∈ pos(t):

If π = ε, then π+
t = ε.

If π = j.π′ for a j ∈ N, then
if root(t) = f ′ and j ≥ i, then π+

t = (j + 1) . (π′)+
t|j ,

otherwise π+
t = j . (π′)+

t|j
Similarly, given a term s ∈ T (Σ,V), we define π−s as follows for all positions π ∈ pos(s) that
are not below the i-th argument of an occurrence of f in s:

If π = ε, then π−s = ε.
If π = j.π′ for a j ∈ N, then

if root(s) = f and j > i, then π−s = (j − 1) . (π′)−s|j ,
otherwise π−s = j . (π′)−s|j

As an example, consider the terms s = intlist(cons(x, nil)) and t = intlist(cons(nil)). We
have s\(cons,1) = t, i.e., here the symbol f is cons and the position that is filtered away is
i = 1. The purpose of the above definition is to transform a position of t to the corresponding
position in the term s and vice versa. So we have (1.1)+

t = 1.(1)+
cons(nil) = 1.2.(ε)+

nil = 1.2.
Similarly, we have (1.2)−s = 1.1.

The following lemma shows that any position π in a filtered term t corresponds to the
position π+

t in the original non-filtered term.

I Lemma 31 (Lifting of Positions From Filtered Terms). Let t ∈ T (Σ\(f,i),V) and s ∈ T (Σ,V)
with t = s\(f,i). Then for all π ∈ pos(t), we have t|π = (s|π+

t
)\(f,i) and (π+

t )−s = π.

Proof. We use induction on π. If π = ε, then the lemma trivially holds, since t|ε = t =
s\(f,i) = (s|ε+

t
)\(f,i) and (ε+

t )−s = ε.
Now let π = j.π′ and root(t) = f . Then we have s = f(s1, . . . , sk) for some terms

s1, . . . , sk and t = f(t1, . . . , tk−1), where tm = (sm)\(f,i) for 1 ≤ m < i and tm = (sm+1)\(f,i)
for i ≤ m ≤ k − 1. We obtain

t|π = f(t1, . . . , tk−1)|j.π′ = tj |π′ .
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If j ≥ i, then

(s|π+
t

)\(f,i) = (f(s1, . . . , sk)|(j+1) . (π′)+
tj

)\(f,i) = (sj+1|(π′)+
tj

)\(f,i)

and the lemma follows from the induction hypothesis which states tj |π′ = (sj+1|(π′)+
tj

)\(f,i).

In a similar way, we obtain (π+
t )−s = ((j.π′)+

t )−s = ((j + 1) . (π′)+
t )−s = j . ((π′)+

t )−s = j.π′ = π

by the induction hypothesis.
If j < i, then

(s|π+
t

)\(f,i) = (f(s1, . . . , sk)|j . (π′)+
tj

)\(f,i) = (sj |(π′)+
tj

)\(f,i)

and the lemma again follows from the induction hypothesis which states that tj |π′ =
(sj |(π′)+

tj

)\(f,i). In a similar way, we get (π+
t )−s = ((j.π′)+

t )−s = (j . (π′)+
t )−s = j . ((π′)+

t )−s =
j.π′ = π by the induction hypothesis.

Finally, we regard the case where π = j.π′ and root(t) = g 6= f . Then we have
s = g(s1, . . . , sb) for some terms s1, . . . , sb and t = g(t1, . . . , tb), where tm = (sm)\(f,i) for
1 ≤ m ≤ b. We have

t|π = g(t1, . . . , tb)|j.π′ = tj |π′

and

(s|π+
t

)\(f,i) = (g(s1, . . . , sb)|j . (π′)+
tj

)\(f,i) = (sj |(π′)+
tj

)\(f,i).

So the lemma follows from the induction hypothesis which states that tj |π′ = (sj |(π′)+
tj

)\(f,i).

In a similar way, we can also prove (π+
t )−s = π. J

The next lemma shows that π+
t and π−s are also inverse operations if π−s is applied first,

provided that t is s\(f,i) (up to the positions of variables in s\(f,i)).

I Lemma 32 (π+
t and π−s are Inverse Operations). Let t ∈ T (Σ\(f,i),V) and s ∈ T (Σ,V) such

that root(t|π) = root((s\(f,i))|π) for all π ∈ pos(s\(f,i)) where (s\(f,i))|π /∈ V. Then for all
positions π ∈ pos(s) that are not below the i-th argument of an occurrence of f in s, we have
(π−s )+

t = π.

Proof. Again, we use induction on π. For π = ε the lemma trivially holds.
Now let π = j.π′ and let q = s\(f,i). We first regard the case where root(s) = f and j > i.

Then we have root(q) = root(t) = f and obtain

(π−s )+
t = ((j − 1) . (π′)−s|j )

+
t = j . ((π′)−s|j )

+
t|j−1

.

By Lemma 31, we have q|j−1 = (s|(j−1)+
q

)\(f,i) = (s|j)\(f,i). Moreover, since root(t|π) =
root(q|π) for all π ∈ pos(q) where q|π /∈ V, we have root((t|j−1)|π) = root((q|j−1)|π) for all
π ∈ pos(q|j−1) where (q|j−1)|π /∈ V . Since π′ is not below the i-th argument of an occurrence
of f in s|j , j ((π′)−s|j )

+
t|j−1

= j π′ = π follows from the induction hypothesis.
Otherwise, we get

(π−s )+
t = (j . (π′)−s|j )

+
t = j . ((π′)−s|j )

+
t|j .

By Lemma 31, we have q|j = (s|j+
q

)\(f,i) = (s|j)\(f,i). Moreover, since root(t|π) = root(q|π)
for all π ∈ pos(q) where q|π /∈ V, we have root((t|j)|π) = root((q|j)|π) for all π ∈ pos(q|j)
where (q|j−1)|π /∈ V. So similar to the previous case, j . ((π′)−s|j )

+
t|j = j.π′ = π follows from

the induction hypothesis. J
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The last auxiliary lemma shows that variables in a filtered term correspond to the same
variables in the original non-filtered term.

I Lemma 33 (Variables in Filtered Terms). Let t ∈ T (Σ\(f,i),V) and s ∈ T (Σ,V) with
t = s\(f,i). For any π ∈ pos(t) where t|π ∈ V, we have t|π = s|π+

t
.

Proof. By Lemma 31, we have t|π = (s|π+
t

)\(f,i) ∈ V. Since the result of filtering can only
be a variable if the original term was also the same variable, we therefore have (s|π+

t
)\(f,i) =

s|π+
t
. J

Finally, we can prove Thm. 22.

I Theorem 22 (Soundness of Argument Filtering). Let f ∈ Σ, arΣ(f) = k, and i ∈ {1, . . . , k}.
Moreover, let R be a TRS over Σ where the following conditions hold for all rules `→ r ∈ R:
(a) If f(t1, . . . , tk) is a subterm of `, then ti ∈ V.
(b) For any x ∈ V, there is at most one position π ∈ pos(`) such that `|π = x.
(c) V(r\(f,i)) ⊆ V(`\(f,i)).
Then for all n ∈ N, we have ircR\(f,i)(n2 ) ≤ ircR(n).

Proof. To prove the theorem we show that whenever there is an innermost rewrite sequence
w.r.t. R\(f,i) that starts with a basic term of size at most n

2 , then there is also an innermost
rewrite sequence w.r.t. R of at least the same length that starts with a basic term of size at
most n. So let t1 ∈ T (Σ\(f,i),V) be a basic term w.r.t. R\(f,i) that starts a rewrite sequence

t1
i→R\(f,i) . . .

i→R\(f,i) tm.

Let s1 result from t1 by adding a fresh variable as i-th argument for each occurrence of f .
Note that we have |s1| ≤ 2 · |t1| since t1 contains at most |t1| occurrences of f and s1 contains
an additional variable for each occurrence of f .

Thus, to prove the theorem it suffices to show that s1 has an innermost rewrite sequence
w.r.t. R that has at least length m. If s1 starts an infinite innermost R-reduction, then the
claim obviously holds. Thus, we now regard the case where s1 is innermost terminating w.r.t.
R and inductively construct an innermost rewrite sequence

s1
i→+
R . . . i→+

R sm

such that for all j ∈ {1, . . . ,m}, we have sj ∈ T (Σ,V) and (sj)\(f,i) = tj . Moreover, sj does
not contain any redex below the i-th argument of any occurring f .

In the induction base, by the construction of s1 we clearly have (s1)\(f,i) = t1. Moreover,
s1 only has variables on the i-th arguments of f .

In the induction step, we assume that we have already constructed s1, . . . , sj and now our
goal is to construct sj+1. Let `→ r ∈ R\(f,i) be a rule that reduces tj to tj+1 at position π
by an innermost rewrite step, and let `→ r ∈ R be a rule such that `\(f,i) = ` and r\(f,i) = r.
Let π = π+

tj , i.e., this is the position where the rule `→ r should be applied to sj . We now
show the following observation:

For all τ ∈ pos(`) where `|τ /∈ V, we have π.τ ∈ pos(sj) and root(`|τ ) = root(sj |π.τ ). (12)

To show (12), we prove that

π.τ ∈ pos(sj) and root((`|τ )\(f,i)) = root((sj |π.τ )\(f,i)). (13)

Note that (13) indeed implies (12): If root(`|τ ) ∈ Σ \ {f}, then root(`|τ ) = root((`|τ )\(f,i)).
By (13), we have root((`|τ )\(f,i)) = root((sj |π.τ )\(f,i)) = root(sj |π.τ ). Otherwise if root(`|τ )
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is the symbol f of arity k, then root((`|τ )\(f,i)) is the symbol f of arity k − 1. By (13),
root((sj |π.τ )\(f,i)) is also the symbol f of arity k − 1, which implies that root(sj |π.τ ) is f
with arity k.

To prove (13), note that by Requirement (a), the position τ ∈ pos(`) with `|τ /∈ V cannot
be below the i-th argument of the symbol f in `. Moreover, we have ` = `\(f,i). Hence, we
can apply Lemma 32 and obtain

root((`|τ )\(f,i)) = root((`|(τ−
`

)+
`

)\(f,i)) by Lemma 32
= root(`|τ−

`

) by Lemma 31
= root(tj |π . τ−

`

) as ` matches tj |π
= root((sj |(π . τ−

`
)+
tj

)\(f,i)) by Lemma 31, as tj = (sj)\(f,i)
= root((sj |π . (τ−

`
)+
tj |π

)\(f,i))

= root((sj |π . τ )\(f,i)) by Lemma 32

In the last step, Lemma 32 can be applied since root(tj |π.δ) = root(`|δ) = root((`\(f,i))|δ)
holds for all δ ∈ pos(`) where `|δ /∈ V.

Note that (12) implies that for those τ ∈ pos(`) where `|τ ∈ V, we can also conclude
π.τ ∈ pos(sj), because we must have τ = τ ′.m for some position τ ′ and m ∈ N. By (12), the
function symbol at the position τ ′ in ` is the same as the function symbol at the position
π.τ ′ in sj . Hence, we can define the substitution

σ = [ (`|τ )/(sj |π.τ ) | τ ∈ pos(`), `|τ ∈ V ]. (14)

By Requirement (b), ` is linear and thus, σ is well defined. Now (12) implies

`σ = sj |π, (15)

i.e., the left-hand side of the rule `→ r matches the subterm of sj at position π using the
matcher σ.

After having shown (15), we now investigate the connection between σ and the substitution
θ that was used for the rewrite step tj i→R\(f,i) tj+1. Since this rewrite step was performed
with the rule `→ r at position π, we have `θ = tj |π and tj [rθ]π = tj+1. By Requirement (c),
we get

θ = [ (`|τ )/(tj |π.τ ) | τ ∈ pos(`), `|τ ∈ V ]. (16)

By Lemma 33, `|τ ∈ V implies `|τ+
`

= `|τ ∈ V. So if x ∈ dom(θ), we also have x ∈ dom(σ).
Moreover, then we have θ(x) = (σ(x))\(f,i). To see this, consider an x ∈ dom(θ). So we have
x = `|τ = `|τ+

`
for some τ ∈ pos(`). Then we obtain

(σ(x))\(f,i) = (σ(`|τ+
`

))\(f,i)
= (sj |π . τ+

`
)\(f,i)

= (sj |π . τ+
tj |π

)\(f,i) as τ ∈ pos(`) and ` matches tj |π
= (sj |(π.τ)+

tj

)\(f,i)
= tj |π.τ by Lemma 31 as tj = (sj)\(f,i)
= θ(`|τ )
= θ(x)

So we have

θ = [x/t\(f,i) | x ∈ V(`), x/t ∈ σ]. (17)
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Let sj+1 result from sj [rσ]π by innermost reducing all subterms on i-th arguments of
f to normal form. This is possible since s1 is innermost terminating. Then by (15) we
have sj = sj [`σ]π →R sj [rσ]π i→∗R sj+1 and sj+1 does not contain any redex below the i-th
argument of any occurring f . Moreover, we have

(sj+1)\(f,i) = (sj [rσ]π)\(f,i) as sj+1 only differs from sj [rσ]π on f ’s i-th arguments
= (sj)\(f,i)[(rσ)\(f,i)]π
= tj [(rσ)\(f,i)]π
= tj [r\(f,i)θ]π due to (17)
= tj [rθ]π
= tj+1.

It remains to show that sj = sj [`σ]π →R sj [rσ]π is an innermost rewrite step. To this
end, assume that there is a δ ∈ pos(sj) such that π is a proper prefix of δ and sj |δ is a redex.
Then we have

(sj |δ)\(f,i) = tj |δ−sj . (18)

To prove (18), note that sj does not contain any redex below the i-th argument of f . Hence,
δ is not below any i-th argument of f in sj and thus, Lemma 32 implies (δ−sj )

+
tj = δ. Hence,

we have

(sj |δ)\(f,i)
= (sj |(δ−sj )+

tj

)\(f,i) by Lemma 32
= tj |δ−sj by Lemma 31

which proves (18).
If sj |δ is a redex, then there exists a rule u → v ∈ R and a substitution µ such that

uµ = sj |δ. This implies (uµ)\(f,i) = (sj |δ)\(f,i). Note that (uµ)\(f,i) = u\(f,i)µ
′ for the

substitution µ′ with µ′(x) = (µ(x))\(f,i) for all x ∈ V. So the left-hand side u\(f,i) of a rule
from R\(f,i) matches (sj |δ)\(f,i). By (18), this means that tj contains a redex at the position
δ−sj .

As π is a proper prefix of δ, we have δ = π.δ′ for some δ′ 6= ε. This implies δ−sj =
(π.δ′)−sj = π−sj . (δ

′)−sj = π . (δ′)−sj by Lemma 31, where (δ′)−sj 6= ε. Thus, π is a proper prefix
of δ−sj and tj contains a redex at the position δ−sj . This is a contradiction to the fact that the
reduction from tj to tj+1 at position π was an innermost step. J

I Theorem 25 (Bounds for Indefinite Rewrite Lemmas). Let i⇀R and i⇀(R,IH) be restricted
such that redexes may not contain the symbol ? and let ih, ib, and is be defined as in Def.
11. Here, for an indefinite rewrite lemma s i→rt(n)

? with n ∈ V(s), we say that any rewrite
sequence s[n/0] = u1

i⇀R u2
i⇀R . . . i⇀R ub+1 “proves” the induction base and any rewrite

sequence s[n/n+ 1] = v1
i⇀(R,IH) v2

i⇀(R,IH) . . .
i⇀(R,IH) vk+1 “proves” the induction step,

where IH is the rule s→ ?. Then Thm. 12 and Thm. 14 on explicit and asymptotic runtimes
hold for any definite or indefinite rewrite lemma.

Proof. It is easy to show that Lemma 27 also holds for the modified variant of i⇀R, i.e.,
i⇀R is still closed under instantiations of variables with natural numbers. The reason is that
if `σ does not contain any occurrence of ?, then this also holds for `σµ if µ : V(s)→ N.

Lemma 28 has to be adapted to take the new symbol ? into account. Let R, `, r, s
and t be as in Lemma 28, where ` does not contain ?. Moreover, s and r may only contain
? at positions that do not have the type N. Moreover, let ŝ be a well-typed ground term
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from T (Σ′) which results from s↓G/A by replacing all occurrences of ? by arbitrary (possibly
different) terms. Then one can show the following claims:
(a) If s i⇀R t and this reduction is done using a rule ` → r ∈ R, then there exists a

well-typed ground term t̂ ∈ T (Σ′) that results from t↓G/A by replacing all occurrences of
? by suitable (possibly different) terms such that ŝ i→R t̂.

(b) If s i⇀R t and this reduction is done using the rewrite lemma ` i→rt(n)
r and the

substitution σ, then there exists a well-typed ground term t̂ ∈ T (Σ′) that results from
t↓G/A by replacing all occurrences of ? by suitable (possibly different) terms such that
ŝ i→rt(nσ)

R t̂.
(c) Let r̂ be a well-typed ground term from T (Σ′) which results from r↓G/A by replacing

all occurrences of ? by arbitrary (possibly different) terms. If s 7→`→r t, then there exists
a well-typed ground term t̂ ∈ T (Σ′) that results from t↓G/A by replacing all occurrences
of ? by suitable (possibly different) terms such that ŝ�( ↓̀G/A→ r̂) t̂.

These claims are proved similar to the proof of Lemma 28. Let us first regard Claim
(b). As in the proof of Lemma 28, we have s ↓G/A = s′ ↓G/A = (s′[s′|π]π) ↓G/A = s′ ↓G/A
[(s′|π)↓G/A]π = s′ ↓G/A [`σ ↓G/A]π. Since ? only occurs in s on positions whose type is not
N, G and A cannot be applied on or above these positions. As ŝ results from replacing the
occurrences of ? in s↓G/A by arbitrary terms, there is a term ŝ′ that results from s′ ↓G/A by
replacing ? by suitable terms such that ŝ = ŝ′[`σ↓G/A]π.

Since ` → r ∈ L, ` → r corresponds to a rewrite lemma ` i→rt(n)
r. Thus, there is a

term r̂ resulting from replacing ? in rσ↓G/A by suitable terms such that `σ↓G/A i→rt(nσ)
R r̂.

Hence, we obtain ŝ = ŝ′[`σ ↓G/A]π i→rt(nσ)
R ŝ′[r̂]π = ̂(s′[rσ]π) ↓G/A, where ̂(s′[rσ]π) results

from s′[rσ]π by replacing all occurrences of ? by suitable terms. Let t̂ = ̂(s′[rσ]π)↓G/A. Note
that this term can be obtained by replacing all occurrences of ? in (s′[rσ]π)↓G/A by suitable
terms. Since (s′[rσ]π)↓G/A = t↓G/A as in the proof of Lemma 28, this finishes the proof of
(b).

The adaption of the proof of (a) is analogous to the adaption of (b). Hence, it remains to
show the claim (c). As in the proof of Lemma 28, we have s↓G/A = s′ ↓G/A = s′ ↓G/A [`↓G/A]π.
So as in the adaption of (b), there is a term ŝ′ that results from s′ ↓G/A by replacing ? by
suitable terms such that ŝ = ŝ′[`↓G/A]π.

Thus, we obtain ŝ = ŝ′[`↓G/A]π �( ↓̀G/A→ r̂) ŝ
′[r̂]π = ̂(s′[r]π)↓G/A, where ̂(s′[r]π) results

from s′[rσ]π by replacing all occurrences of ? by suitable terms. Let t̂ = ̂(s′[r]π)↓G/A. Note
that this term can be obtained by replacing all occurrences of ? in (s′[r]π)↓G/A by suitable
terms. Since (s′[r]π)↓G/A = t↓G/A as in the proof of Lemma 28, this finishes the proof of (c).

Now one can now show that the recurrence equations (9) still hold. Let s i→rt(n)
t be a

(definite or indefinite) rewrite lemma. For any µ : V(s)→ N which instantiates all variables of
s by natural numbers one has to prove that there exists a well-typed ground term t̂ ∈ T (Σ′)
that results from tµ ↓G/A by replacing all occurrences of ? by suitable terms such that
sµ↓G/A i→rt(nµ)

R t̂ holds. This proof works analogously to the proof of Thm. 12. So we again
perform induction on nµ.

In the induction base case, we have nµ = 0. If the reduction s[n/0] i⇀
∗
R t[n/0] has

length 0, then we cannot have t = ? (since ? does not occur in the left-hand side of rewrite
lemmas). Thus, the proof does not have to be adapted in that case. If s[n/0] = u1

i⇀R
. . . i⇀R ub+1 = t[n/0] for b ≥ 1, then by Lemma 27, we again obtain sµ = s[n/0]µ =
u1µ

i⇀R . . . i⇀R ub+1µ = t[n/0]µ = tµ. The adapted variant of Lemma 28 (a) and (b)
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implies sµ↓G/A = u1µ↓G/A i→rt(y1σ1µ)
R

̂u2µ↓G/A i→rt(y2σ2µ)
R . . . i→rt(ybσbµ)

R
̂ub+1µ↓G/A, where

each ̂uj+1µ↓G/A results from uj+1µ↓G/A by replacing all occurrences of ? by suitable terms.
Let t̂ = ̂ub+1µ↓G/A. Since ub+1µ = tµ, t̂ results from tµ↓G/A by replacing all occurrences of

? by suitable terms. Thus, sµ↓G/A i→ib(ñµ)
R t̂ or in other words, sµ↓G/A i→rt(nµ)

R t̂.
In the induction step case, we have nµ > 0. In the case where the reduction s[n/n+1] i⇀

∗
R

t[n/n+ 1] has length 0, we again know that t 6= ? and thus, the proof does not have to be
adapted. Thus, we now regard the case s[n/n+1] = v1

i⇀(R,IH) . . .
i⇀(R,IH) vk+1 = t[n/n+1]

for k ≥ 1. Let µ′ be like µ for all V(s) \ {n} and nµ′ = nµ− 1. By Lemma 27, i⇀R is stable
and thus, we obtain s[n/n+ 1]µ′ = v1µ

′ i⇀(R,IHµ′) . . .
i⇀(R,IHµ′) vk+1µ

′ = t[n/n+ 1]µ′.
If vjµ′ i⇀R vj+1µ

′, then the adapted variant of Lemma 28 (a) and (b) implies the fol-
lowing: If ̂vjµ′ ↓G/A results from vjµ

′ ↓G/A by replacing all occurrences of ? by arbitrary
terms, then there exists a term ̂vj+1µ′ ↓G/A which results from vj+1µ

′ ↓G/A by replac-
ing all occurrences of ? by suitable terms, such that ̂vjµ′ ↓G/A i→rt ′j(zjθjµ

′)
R

̂vj+1µ′ ↓G/A.
Otherwise, if vjµ′ 7→IHµ′ vj+1µ

′, then by the adaption of Lemma 28 (c) we have the
following: If ̂vjµ′ ↓G/A results from vjµ

′ ↓G/A and ̂tµ′ ↓G/A results from tµ′ ↓G/A by re-
placing all occurrences of ? by arbitrary terms, then there exists a term ̂vj+1µ′ ↓G/A
which results from vj+1µ

′ ↓G/A by replacing all occurrences of ? by suitable terms, such
that ̂vjµ′ ↓G/A �(sµ′↓G/A→ ̂tµ′↓G/A)

̂vj+1µ′ ↓G/A. Note that the induction hypothesis im-

plies sµ′ ↓G/A i→rt(nµ′)
R

̂tµ′ ↓G/A, if ̂tµ′ ↓G/A results from tµ′ ↓G/A by replacing all occur-
rences of ? by suitable terms. This means that ̂vjµ′ ↓G/A �(sµ′↓G/A→ ̂tµ′↓G/A)

̂vj+1µ′ ↓G/A

implies ̂vjµ′ ↓G/A i→rt(nµ′)
R

̂vj+1µ′ ↓G/A. Since there are ih many of these steps, we fi-
nally get s[n/n + 1]µ′ ↓G/A i→ih·rt(nµ′)+is(nµ′)

R
̂vk+1µ′ ↓G/A. Let t̂ = ̂vk+1µ′ ↓G/A. Since

vk+1µ
′ = t[n/n+ 1]µ′, t′ results from tµ↓G/A= t[n/n+ 1]µ′ ↓G/A by replacing all occurrences

of ? by suitable terms. Hence, sµ↓G/A = s[n/n+ 1]µ′ ↓G/A i→rt(n[n/n+1]µ′)
R

̂vk+1µ′ ↓G/A = t̂.
This proves the desired claim, since rt(nµ) = rt(n[n/n+ 1]µ′).

So the recurrence equations (9) for rt(n) also hold when regarding indefinite rewrite
lemmas. Hence, the closed form for rt(n) given in Thm. 12 satisfies this recurrence equation
and the asymptotic bounds of Thm. 14 hold for rtN. J



Aachener Informatik-Berichte

This list contains all technical reports published during the past three
years. A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request
to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblio@informatik.rwth-aachen.de

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011
2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting
2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems
2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars
2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-

tive Code by Overloading in C++
2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV
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Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solving
over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and
Hao Wu: Performance Analysis of Computing Servers using Stochastic
Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and
Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of In-
teger Programs
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