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In the summer of 2014, Vienna hosted the largest scientific conference in the history of
logic. The Vienna Summer of Logic (VSL, http://vsl2014.at) consisted of twelve large
conferences and 82 workshops, attracting more than 2000 researchers from all over the
world. This unique event was organized by the Kurt Gödel Society at Vienna University
of Technology from July 9 to 24, 2014, under the auspices of the Federal President of
the Republic of Austria, Dr. Heinz Fischer.
The conferences and workshops dealt with the main theme, logic, from three important
angles: logic in computer science, mathematical logic, and logic in artificial intelli-
gence. They naturally gave rise to respective streams gathering the following meetings:

Logic in Computer Science / Federated Logic Conference (FLoC)

• 26th International Conference on Computer Aided Verification (CAV)
• 27th IEEE Computer Security Foundations Symposium (CSF)
• 30th International Conference on Logic Programming (ICLP)
• 7th International Joint Conference on Automated Reasoning (IJCAR)
• 5th Conference on Interactive Theorem Proving (ITP)
• Joint meeting of the 23rd EACSL Annual Conference on Computer Science Logic

(CSL) and the 29th ACM/IEEE Symposium on Logic in Computer Science (LICS)
• 25th International Conference on Rewriting Techniques and Applications (RTA)

joint with the 12th International Conference on Typed Lambda Calculi and Ap-
plications (TLCA)
• 17th International Conference on Theory and Applications of Satisfiability Test-

ing (SAT)
• 76 FLoC Workshops
• FLoC Olympic Games (System Competitions)

Mathematical Logic

• Logic Colloquium 2014 (LC)
• Logic, Algebra and Truth Degrees 2014 (LATD)
• Compositional Meaning in Logic (GeTFun 2.0)
• The Infinity Workshop (INFINITY)
• Workshop on Logic and Games (LG)
• Kurt Gödel Fellowship Competition

VSL Preface
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Logic in Artificial Intelligence
• 14th International Conference on Principles of Knowledge Representation and

Reasoning (KR)
• 27th International Workshop on Description Logics (DL)
• 15th International Workshop on Non-Monotonic Reasoning (NMR)
• 6th International Workshop on Knowledge Representation for Health Care 2014

(KR4HC)

The VSL keynote talks which were directed to all participants were given by Franz
Baader (Technische Universität Dresden), Edmund Clarke (Carnegie Mellon Univer-
sity), Christos Papadimitriou (University of California, Berkeley) and Alex Wilkie (Uni-
versity of Manchester); Dana Scott (Carnegie Mellon University) spoke in the opening
session. Since the Vienna Summer of Logic contained more than a hundred invited
talks, it is infeasible to list them here.
The program of the Vienna Summer of Logic was very rich, including not only scientific
talks, poster sessions and panels, but also two distinctive events. One was the award
ceremony of the Kurt Gödel Research Prize Fellowship Competition, in which the Kurt
Gödel Society awarded three research fellowship prizes endowed with 100.000 Euro
each to the winners. This was the third edition of the competition, themed Logical
Mind: Connecting Foundations and Technology this year.
The other distinctive event was the 1st FLoC Olympic Games hosted by the Federated
Logic Conference (FLoC) 2014. Intended as a new FLoC element, the Games brought
together 12 established logic solver competitions by different research communities. In
addition to the competitions, the Olympic Games facilitated the exchange of expertise
between communities, and increased the visibility and impact of state-of-the-art solver
technology. The winners in the competition categories were honored with Kurt Gödel
medals at the FLoC Olympic Games award ceremonies.
Organizing an event like the Vienna Summer of Logic has been a challenge. We are in-
debted to numerous people whose enormous efforts were essential in making this vision
become reality. With so many colleagues and friends working with us, we are unable
to list them individually here. Nevertheless, as representatives of the three streams of
VSL, we would like to particularly express our gratitude to all people who have helped
to make this event a success: the sponsors and the honorary committee; the organization
committee and the local organizers; the conference and workshop chairs and program
committee members; the reviewers and authors; and of course all speakers and partici-
pants of the many conferences, workshops and competitions.
The Vienna Summer of Logic continues a great legacy of scientific thought that started
in Ancient Greece and flourished in the city of Gödel, Wittgenstein and the Vienna
Circle. The heroes of our intellectual past shaped the scientific world-view and changed
our understanding of science. Owing to their achievements, logic has permeated a wide
range of disciplines, including computer science, mathematics, artificial intelligence,
philosophy, linguistics, and many more. Logic is everywhere – or in the language of
Aristotle, πάντα πλήρη λογικῆς τέχνης.

Vienna, July 2014

Matthias Baaz, Thomas Eiter, Helmut Veith
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CICLOPS-WLPE 2014:
PREFACE

Thomas Ströder Terrance Swift

July 17-18, 2014 · Vienna, Austria

http://vsl2014.at/ciclops-wlpe/

Software plays a crucial role in modern society. While the continuous advent of faster,
smaller and more powerful computing devices makes the development of new and in-
teresting applications feasible, it puts even more demands on the software developer.
Indeed, while software keeps on growing in size and complexity, it is more than ever
required to be delivered on time, free of error and to meet the most stringent efficiency
requirements. Consequently, it is widely recognized that there is a need for methods and
tools that support the programmer in every aspect of the software development process.

Having logic as the underlying formalism means that logic-based analysis techniques
are often successfully used for program verification and optimization. Emerging pro-
gramming paradigms and growing complexity of the properties to be verified pose new
challenges for the community, while emerging reasoning techniques can be exploited.

The International Colloquium on Implementation of Constraint and LOgic Program-
ming Systems (CICLOPS) provides a forum to discuss the design, implementation,
and optimization of logic, constraint (logic) programming systems, and other systems
based on logic as a means of expressing computations. Experience backed up by real
implementations and their evaluation is given preference, as well as descriptions of work
in progress in that direction.

The aim of the Workshop on Logic-based methods in Programming Environments
(WLPE) is to provide an informal meeting for researchers working on logic-based meth-
ods and tools that support program development and analysis. As in recent years,
these topics include not only environmental tools for logic programming, but increas-
ingly also logic-based environmental tools for programming in general and frameworks
and resources for sharing in the logic programming community.

The combination of these two areas of interest in this year’s joint workshop provides
a forum to discuss together the states of the art for using logic both in the evaluation of
programs and in meta-reasoning about programs.

Preface of the Editors
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Due to the strong overlap between the CICLOPS-WLPE community and several
FLoC communities (in particular logic (programming), verification, automated reason-
ing, rewriting techniques, and SAT solving), the workshop is affiliated to several confer-
ences:

• 30th International Conference on Logic Programming (ICLP)

• 26th International Conference on Computer Aided Verification (CAV)

• 7th International Joint Conference on Automated Reasoning (IJCAR)

• Joint meeting of the 23rd EACSL Annual Conference on Computer Science Logic
(CSL) and the 9th ACM/IEEE Symposium on Logic in Computer Science (LICS)

• 25th International Conference on Rewriting Techniques and Applications (RTA)
joined with the 12th International Conference on Typed Lambda Calculi and Ap-
plications (TLCA)

• 17th International Conference on Theory and Applications of Satisfiability Testing
(SAT)

In 2014, CICLOPS-WLPE also joins its program with the 11th International Work-
shop on Constraint Handling Rules (CHR) and has one joint session together with the
Workshop on Probabilistic Logic Programming (PLP).

The International Joint Workshop on Implementation of Constraint and Logic Pro-
gramming Systems and Logic-based Methods in Programming Environments 2014 con-
sists of nine regular submissions and two invited talks. These informal proceedings
contain the regular papers and the abstracts of the two invited talks.

We would like to thank all people involved in the preparation and execution of the
workshop, including the participants, the members of the program committee, and the
local organizers.

Thomas Ströder and Terrance Swift
CICLOPS-WLPE 2014 Program Co-Chairs

CICLOPS-WLPE 2014
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Symbolic Evaluation Graphs and Term
Rewriting — A General Methodology for

Analyzing Logic Programs?

Jürgen Giesl1, Thomas Ströder1, Peter Schneider-Kamp2, Fabian Emmes1, and
Carsten Fuhs3

1 LuFG Informatik 2, RWTH Aachen University, Germany
2 Dept. of Mathematics and Computer Science, University of Southern Denmark

3 Dept. of Computer Science, University College London, UK

There exist many powerful techniques to analyze termination and complexity
of term rewrite systems (TRSs). Our goal is to use these techniques for the anal-
ysis of other programming languages as well. For instance, approaches to prove
termination of definite logic programs by a transformation to TRSs have been
studied for decades. However, a challenge is to handle languages with more com-
plex evaluation strategies (such as Prolog, where predicates like the cut influence
the control flow).

We present a general methodology for the analysis of such programs. Here,
the logic program is first transformed into a symbolic evaluation graph which
represents all possible evaluations in a finite way. Afterwards, different analyses
can be performed on these graphs. In particular, one can generate TRSs from
such graphs and apply existing tools for termination or complexity analysis of
TRSs to infer information on the termination or complexity of the original logic
program.

More information can be found in [1].

References

1. J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic eval-
uation graphs and term rewriting — a general methodology for analyzing logic
programs. In Proc. PPDP ’12, pages 1–12. ACM Press, 2012.

? Supported by the DFG under grants GI 274/5-3 and GI 274/6-1, the DFG Research
Training Group 1298 (AlgoSyn), and the Danish Council for Independent Research,
Natural Sciences.
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Proofs for Optimality of Sorting Networks by
Logic Programming

Michael Codish1, Lúıs Cruz-Filipe2, Michael Frank1, and Peter
Schneider-Kamp2

1 Department of Computer Science, Ben-Gurion University of the Negev, Israel
{mcodish,frankm}@cs.bgu.ac.il

2 Department of Mathematics and Computer Science, University of Southern
Denmark, Denmark

{lcf,petersk}@imada.sdu.dk

Abstract. We present a computer-assisted non-existence proof of nine-
input sorting networks consisting of 24 comparators, hence showing that
the 25-comparator sorting network found by Floyd in 1964 is optimal. As
a corollary, we obtain that the 29-comparator network found by Waks-
man in 1969 is optimal when sorting ten inputs. This closes the two
smallest open instances of the optimal size sorting network problem,
which have been open since the results of Floyd and Knuth from 1966
proving optimality for sorting networks of up to eight inputs.
The entire implementation is written in SWI-Prolog and was run on a
cluster of 12 nodes with 12 cores each, able to run a total of 288 con-
current threads, making extensive use of SWI-Prolog’s built-in predicate
concurrency/3. The search space of 2.2×1037 comparator networks was
exhausted after just under 10 days of computation. This shows the abil-
ity of logic programming to provide a scalable parallel implementation
while at the same time instilling a high level of trust in the correctness
of the proof.

Proofs for Optimality of Sorting Networks by Logic Programming
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Re�ning de�nitions with unknown opens using

XSB for IDP3

Joachim Jansen, Gerda Janssens

Department of Computer Science, KU Leuven
joachim.jansen, gerda.janssens@cs.kuleuven.be

Abstract. FO(·)IDP is a declarative modeling language that extends
�rst-order logic with inductive de�nitions, partial functions, types and
aggregates. Its model generator IDP3 grounds the problem into a low-
level (propositional) representation and consequently use a generic solver
to search for a solution. Recent work introduced a technique that eval-
uates all de�nitions that depend on fully known information before the
grounding step. In this paper, we extend this technique, which allows
us to re�ne the interpretation of de�ned symbols when they depend on
information that is only partially given instead of completely given. We
use our existing transformation of FO(·)IDP de�nitions to Tabled Prolog
rules and extend it to support de�nitions that depend on information
that is possibly partially unknown. In this paper we present an algo-
rithm that uses XSB Prolog to evaluate these rules in such a way that
we achieve the most precise possible re�nement of the de�ned symbols.
Experimental results show that our technique derives extra information
for the de�ned symbols.

1 Introduction

Recent proposals for declarative modeling use �rst-order logic as their starting
point. Examples are Enfragmo [1] and FO(·)IDP, the instance of the FO(·) family
that is supported by IDP3, the current version of the IDP Knowledge Base
System [6]. FO(·)IDP extends �rst-order logic (FO) with inductive de�nitions,
partial functions, types and aggregates. IDP3 supports model generation and
model expansion [11, 4] as inference methods.

IDP3 supports these inference methods using the ground-and-solve approach.
First the problem is grounded into an Extended CNF (ECNF) theory. Next a
SAT-solver is used to calculate a model of the propositional theory. The tech-
nique that is presented in this paper is to improve the e�ciency and robustness
of the grounding step. One of the problems when grounding is the possible com-
binatorial blowup of the grounding. A predicate p(x1, x2 . . . xn) with s as the
size of the domain of its arguments has sn possible instances. A grounding that
has to represent all these possible instances is therefore possibly very large. Most
Answer Set Programming (ASP) systems solve this problem by using semi-naive
bottom-up evaluation [8, 9] with optimizations. On a high level IDP3 uses three

Refining Definitions with Unknown Opens using XSB for IDP3
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techniques to manage the complexity of the grounding process: de�nition eval-
uation [10], Lifted Unit Propagation (LUP) [15] and Grounding With Bounds
(GWB) [16].

Our previous work [10] is a pre-processing step that calculates in advance the
two-valued interpretations for de�ned predicates that depend on fully known in-
formation. We call such de�ned predicates input∗ predicates. The de�nitions
of these predicates and the information on which they depend are translated
into a XSB Prolog [12] program that tables the de�ned input∗ predicates, sup-
porting the well-founded semantics [14, 13]. This Tabled Prolog program is then
queried to retrieve the atoms for which the tabled predicates are true. The input
structure (the initially given partial structure) is extended with the calculated
information. The input∗ predicates become completely known: they are true for
the tabled atoms and false for all the other instances. As a result, de�nitions
of the input∗ predicates are no longer needed and they are repoved from the
problem speci�cation.

Lifted Unit Propagation (LUP) is another preprocessing step that further
re�nes the partial structure. LUP propagates knowledge about true and false

atoms in the formulas of the FO(·)IDP theory. For the de�nitions of the FO(·)IDP
theory LUP uses an approximation by propagating on the completion of the
de�nitions. The method of this paper is an alternative for using LUP on the
completion of the de�nitions. We extend our existing preprocessing step [10] to
be able to re�ne the interpretation of de�ned predicates in the partial structure
when the predicates depend on information that is only partially given. This
extension can then be used as an alternative to executing LUP on the completion
of de�nitions. Our method uses XSB to compute the atoms (instances of the
predicate) that are true and others that are unknown. The computed atoms
are used to re�ne the partial structure. Moreover, XSB's support for the well-
founded semantics makes atoms false when XSB detects unfoundedness. This
detection of unfoundedness is not present in the approach that uses LUP on the
completion of de�nitions to re�ne them.

Grounding With Bounds (GWB) uses symbolic reasoning when grounding
subformulas to derive bounds. Because GWB uses the input structure, it can
bene�t from the extra information that is inferred thanks to the re�nement done
by LUP. Using this extra information, possibly tighter bounds can be derived.
Therefor it is bene�cial to re�ne the input structure as much as possible before
grounding (using GWB). Because of this, we will measure the e�ectiveness of
the discussed methods by how much they are able to re�ne the input structure.
The actual grounding process that will bene�t from this re�ned structure is
considered out of scope for this paper.

Our contribution is a new way to perform lifted propagation for de�nitions.
Experimental results compare the new technique with the old one of performing
LUP for the completion of the de�nition.

In Section 2 we introduce IDP3 and FO(·). Section 3 explains our approach
using an example. In Section 4 we describe the extensions to the transformation
to Tabled Prolog rules and the work�ow of our interaction with XSB. Section 5

CICLOPS-WLPE 2014
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presents the high-level algorithm that is used to re�ne all de�ned symbols as
much as possible using the previously mentioned XSB interaction. In Section 6
we present experimental results. Section 7 contains future work and concludes.

2 Terminology and Motivation

2.1 The FO(·)IDP language

We focus on the aspects of FO(·)IDP that are relevant for this paper. More details
can be found in [6] and [2], where one can �nd several examples. An FO(·)IDP
model consists of a number of logical components, a.o. vocabularies, structures,
and theories.

A vocabulary declares the symbols to be used.
A structure is used to specify the domain and data; it provides an interpre-

tation of the symbols in the vocabulary. The interpretation of a symbol speci�es
for this symbol which atoms (instances) are true, unknown, and false. Inter-
pretations that contain elements that are unknown are also called a partial (or
three-valued) interpretation. Otherwise, the interpretation is said to be two-
valued.

A theory consists of FO(·)IDP formulas and de�nitions. An FO(·)IDP formula

di�ers from FO formulas in two ways. Firstly, FO(·)IDP is a many-sorted logic:
every variable has an associated type and every type an associated domain.
Moreover, it is order-sorted: types can be subtypes of others. Secondly, besides
the standard terms in FO, FO(·)IDP formulas can also have aggregate terms:
functions over a set of domain elements and associated numeric values which
map to the sum, product, cardinality, maximum or minimum value of the set.

An FO(·)IDPde�nition is a set of rules of the form ∀x̄ : p(x̄) ← φ[x̄]. where
φ[x̄] is an FO(·)IDP formula. We call p(x̄) the head of the rule and φ[x̄]. the body
of the rule. The de�ned symbols of a theory are the symbols that appear in a
head of any rule. The other symbols, which appear only in bodies of de�nitions
are the open symbols. We remind the reader that previous work [10] describes
a transformation of FO(·)IDP de�nitions into Tabled Prolog rules. This includes
a transformation of the interpretation of the open symbols to (Tabled) Prolog
facts.

2.2 The IDP3 system

IDP3 is a Knowledge Base System [6], meaning it supports a variety of problem-
solving inferences. One of these inferences is model expansion. The model expan-
sion of IDP3 extends a partial structure (an interpretation) into a two-valued
structure that satis�es all constraints speci�ed by the FO(·)IDP model. Formally,
the task of model expansion is, given a vocabulary V , a theory T over V and a
partial structure S over V (at least interpreting all types), to �nd a two-valued
structure M that satis�es T and extends S, i.e., M is a model of the theory and
the input structure S is a subset of M .

Refining Definitions with Unknown Opens using XSB for IDP3
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As mentioned before, IDP3 uses the ground-and-solve approach. It grounds
the problem and then uses the solver MiniSAT(ID) [3, 5], based on the solver
MiniSAT [7].

There are three techniques that IDP3 uses to optimise its grounding process:
de�nition evaluation [10], Lifted Unit Propagation (LUP) [15] and Grounding
With Bounds (GWB) [16].

Our previous work [10] introduces a pre-processing step that reduces the
IDP3 grounding by calculating some de�nitions in advance. We calculate the
two-valued interpretations for de�ned predicates that depend on completely
known information. We transform the relevant de�nition into Tabled Prolog
rules, we add the relevant fragment of the input structure as Prolog facts, and
we query XSB for the desired interpretation. We use the computed atoms to
complete the two-valued interpretation for the de�ned symbols. The de�nitions
are no longer needed and can be removed from the theory.

LUP can most easily be explained based on what SAT solvers do. Most
SAT solvers start by performing Unit Propagation (UP) on the input to derive
new information about the search problem. LUP is designed to re�ne the input
structure using unit propagation, but on the FO(·)IDP formulas instead of on
the ground representation, which is why it is called �lifted�. It is important
to note that LUP only re�nes the structure with respect to the formulas and
not w.r.t. the de�nitions. To resolve this, LUP is executed for the completion
of the de�nitions, but this is an approximation of what can be derived from
de�nitions. In this paper, we extend the technique used to evaluate de�nitions
to perform lifted propagation on de�nitions that have opens with a three-valued
interpretation. This extension can then be used as an alternative to executing
LUP on the completion of de�nitions.

GWB uses symbolic reasoning when grounding subformulas. Given the input
structure, it derives bounds for certainly true, certainly false and unknown for
quanti�ed variables over (sub)formulas. Consequentially, since GWB uses the
structure, it can bene�t from the extra information that is inferred thanks to the
re�nement done by LUP. Using this extra information, possibly tighter bounds
can be derived.

3 Example of re�ning structures

The example shown in Figure 1 expresses a reachability problem for colored
nodes using undirected edges. We use this example to illustrate some of the
concepts.

The theory T in the example contains one formula and two de�nitions: one
de�nition de�nes the symbol uedge/2 and the other de�nition de�nes reach/2.
We abuse notation and use �uedge/2 de�nition� to denote the de�nition de�ning
the uedge/2 symbol. The uedge/2 de�nition has only one open symbol: edge/2.
Because edge/2 has a two-valued interpretation, our original method [10] is ap-
plicable, so we perform de�nition evaluation for the uedge/2 de�nition. The
calculated interpretation for uedge/2 can be seen in S2, depicted in Figure 2.
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vocabulary V {
type node i sa int type c o l o r constructed from {RED, BLUE}
edge ( node , node ) uedge ( node , node )
c o l o r ( node , c o l o r ) reach ( node , c o l o r )
s t a r t ( node )

}
theory T : V {

{ uedge (x ,y ) ← edge (x ,y ) ∨ edge (y ,x) . }
{ reach (x ,c) ← s t a r t (x) .

reach (y ,c) ← reach (x ,c) ∧ uedge (x ,y ) ∧ c o l o r (y ,c) . }
∀x : c o l o r (x ,RED) ⇔ ¬ c o l o r (x ,BLUE) .

}
structure S : V {

node = {1 . . 6 } s t a r t = {1}
co lo r<ct> = {2 ,RED} co lo r<cf> = {3 ,RED}
edge = {1 ,2 ; 3 , 1 ; 3 , 5 ; 4 , 2 ; 4 , 3 ; 6 ,6}

}

Fig. 1. An IDP3 problem speci�cation example. The notation color<ct> and
color<cf> is used to specify which elements are certainly true, respectively certainly
false for the color(node,color) relation in structure S. Tuples that are in neither of these
speci�cations are unknown.

The reach/2 de�nition has three open symbols: start/1, uedge/2, and color/2.
Because color/2 has a three-valued interpretation, we cannot perform de�nition
evaluation for the reach/2 de�nition. This concludes what can be done with
regards to de�nition evaluation and we proceed with the theory T2 and S2 as
depicted in Figure 2. For compactness, S2 only shows symbols for which the
interpretation has changed with regards to S. The vocabulary remains the same
as in Figure 1.

Next, we can perform Lifted Unit Propagation for the formula in T2. This
formula expresses that when a node is RED, it cannot be BLUE and vice versa.
Since the structure S2 speci�es that node 3 cannot be RED, we derive that node
3 has to be BLUE. In the same manner we can derive that node 2 cannot be
BLUE. This results in structure S3 as depicted in Figure 2. The theory remains
the same as in Figure 2.

This leaves us with the reach/2 de�nition to further re�ne S3. There are
two approaches to performing lifted propagation on this de�nition: �rst we can
perform LUP on the completion of the reach/2 de�nition or alternatively, we
use the new method introduced in this paper. Structure S4 in Figure 4 shows
what can be derived using the existing LUP method on the completion of the
reach/2 de�nition, which is the following equivalence:

∀y c : reach(y, c)⇔ start(y) ∨ ∃x : (reach(x, c) ∧ uedge(x, y) ∧ color(y, c)).
Note that in S4 node 1 is reachable using BLUE as well as RED because the
�rst rule in the reach/2 de�nition says the starting node is always reachable

Refining Definitions with Unknown Opens using XSB for IDP3
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theory T2 : V {
{ reach (x ,c) ← s t a r t (x) .

reach (y ,c) ← reach (x ,c) ∧ uedge (x ,y ) ∧ c o l o r (y ,c) . }
∀x : c o l o r (x ,RED) ⇔ ¬ c o l o r (x ,BLUE) .

}
structure S2 : V {

uedge = { 1 , 2 ; 1 , 3 ; 2 , 1 ; 2 , 4 ; 3 , 1 ; 3 , 4 ; 3 , 5 ; 4 , 2 ;
4 , 3 ; 5 , 3 ; 6 ,6 }

}

Fig. 2. The theory and structure after performing de�nition evaluation on T and S.
The interpretation of node, start/1, color/2 and edge/2 remains the same as in S.

structure S3 : V {
co lo r<ct> = {2 ,RED; 3 ,BLUE} co lo r<cf> = {2 ,BLUE; 3 ,RED}

}

Fig. 3. The structure after performing LUP on the formula in T2 using S2. The inter-
pretation of node, start/1, edge/2 and uedge/2 remains the same as in S2.

with all colors. Also note that S4 speci�es that reach(5, RED) is false because
there is no edge from a RED reachable node to 5.

structure S4 : V {
reach<ct> = { 1 ,BLUE; 1 ,RED; 2 ,RED; 3 ,BLUE }
reach<cf> = { 2 ,BLUE; 3 ,RED; 5 ,RED }

}

Fig. 4. The structure after LUP on the completion of the reach/2 de�nition using S3.
The interpretation of all other symbols remains the same as in S3

Structure S5 in Figure 5 shows the result after executing de�nition re�ne-
ment. Structure S5 is more re�ned than structure S4, since it speci�es the atoms
(6,RED) and (6,BLUE) to be false, whereas these atoms are unknown in struc-
ture S4. These atoms can be derived to be false because they form an unfounded

set under the Well-Founded Semantics [14]. An unfounded set is a set of atoms
that only have a rule making them true that depends on themselves. The def-
inition, which is shown below for y = 6 and x = 6, illustrates that the above
derived atoms are an unfounded set. The �rst rule of the de�nition is not ap-
plicable since start(6) is false. The second rule shows that the truth value of
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structure S5 : V {
reach<ct> = { 1 ,BLUE; 1 ,RED; 2 ,RED; 3 ,BLUE }
reach<cf> = { 2 ,BLUE; 3 ,RED; 5 ,RED; 6 ,RED; 6 ,BLUE }

}

Fig. 5. The structure after de�nition re�nement on the reach/2 de�nition using S3.
The interpretation of all other symbols remains the same as in S3

reach(6, c) depends on reach(6, c) itself.

{
reach(6, c)← start(6).

reach(6, c)← reach(6, c) ∧ uedge(6, 6) ∧ color(6, c).

}

This concludes our example of the di�erent ways of performing lifted propaga-
tion to re�ne the input structure. Our next section presents the changes we had
to make to our original approach for evaluation de�nition to extend it for de�ni-
tion re�nement. Section 4.3 contains the complete interaction between the XSB
interface and IDP3 that is needed to perform the above de�nition re�nement
for the reach/2 de�nition.

4 Updating the XSB interface

Our new method di�ers only in a few ways from our original technique's usage of
XSB [10]. The transformation of the inductive de�nitions to an XSB program
does not need to change. Here we discuss the necessary extensions:

� Provide support for translating the interpretation of symbols that are not
completely two-valued to XSB.

� Update the interaction with XSB to also query the possible unknown an-
swers for the queried de�nition.

4.1 Translating unknown opens

Open symbols can now have an interpretation for which the union of the certainly
true and certainly false tables does not contain all elements. Therefore we need
to provide a translation for the unknown elements in the interpretation of an
open symbol. We illustrate this using the following example: q(x) is an open
symbol and the type of x ranges from 1 to 5. Say q(x) is known to be true for
{1, 2} and known to be false for {4, 5}. As a result, the truth value for q(3) is not
known. The open symbol q(x) for the above interpretation will be represented
in XSB as follows, given that xsb_q(X) is the corresponding symbol present in
the XSB program for q(x):

:- table xsb_q/1.

xsb_q(1).
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xsb_q(2).

xsb_q(3) :- undef

:- table undef/0.

undef :- tnot(undef).

Calling xsb_q(X) results in X = 1, X = 2, and X = 3, with X = 3 being
annotated as �unde�ned�. This is because XSB detects the loop over negation
for X = 3. Note the use of tnot/1 instead of the regular not/1 to express
negation. This is because tnot/1 expresses the negation under the Well-Founded
Semantics for tabled predicates, whereas not/1 expresses Prolog's negation by
failure.

4.2 Updating the interaction with XSB

We explain the change in interaction using an example. Say we are processing
a de�nition that de�nes symbol p(x). Let xsb_p(X) be the corresponding sym-
bol present in the XSB program. The original interaction between XSB and
IDP3 [10] queries XSB with

:- call_tv(xsb_p(X), true).

which computes all values of X for which xsb_p(X) is true and retrieves the
table of results, which we shall call tt. Next, we change the interpretation of p(x)
in the partial structure into a two-valued one in which the atoms in the table tt
are true and all the others are false.

The newXSB interface uses the same query as above and additionally queries
XSB with

:- call_tv(xsb_p(X), unde�ned).

which computes all values of X for which xsb_p(X) is annotated as unde�ned
and retrieves the table of results, which we shall call tu. Next, we change the
interpretation of p(x) in the partial structure into a three-valued one in which
the atoms in the table tt are true, the atoms in table tu are unknown and all
the others are false.

4.3 Example of a complete run

This section give a complete overview of all the actions for performing de�ni-
tion re�nement on the reach/2 de�nition from Section 3. First, the de�nition is
translated into an XSB program:

:- set_prolog_�ag(unknown, fail).

:- table xsb_reach/2.

xsb_reach(X,C) :- xsb_start(X), xsb_color_type(C).

xsb_reach(Y,C) :- xsb_reach(X,C), xsb_uedge(X,Y), xsb_color(Y,C).
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And the structure is also translated into a corresponding XSB program:

xsb_start(1).

xsb_color_type(xsb_RED).

xsb_color_type(xsb_BLUE).

xsb_uedge(1,2).

xsb_uedge(1,3).

xsb_uedge(2,1).

xsb_uedge(2,4).

xsb_uedge(3,1).

xsb_uedge(3,4).

xsb_uedge(3,5).

xsb_uedge(4,2).

xsb_uedge(4,3).

xsb_uedge(5,3).

xsb_uedge(6,6).

:- table xsb_color/2.

xsb_color(1,xsb_RED) :- undef.

xsb_color(1,xsb_BLUE) :- undef.

xsb_color(2,xsb_RED).

xsb_color(3,xsb_BLUE).

xsb_color(4,xsb_RED) :- undef.

xsb_color(4,xsb_BLUE) :- undef.

xsb_color(5,xsb_RED) :- undef.

xsb_color(5,xsb_BLUE) :- undef.

xsb_color(6,xsb_RED) :- undef.

xsb_color(6,xsb_BLUE) :- undef.

:- table undef/0.

undef :- tnot(undef).

These two programs are then loaded, along with some utility predicates.
Next, we query XSB with the following queries:

| ?- call_tv(xsb_reach(X,Y),true).

X = 3, Y = xsb_BLUE;

X = 2, Y = xsb_RED;

X = 1, Y = xsb_BLUE;

X = 1, Y = xsb_RED;

no

| ?- call_tv(xsb_reach(X,Y),unde�ned).

X = 5, Y = xsb_BLUE;

X = 4, Y = xsb_BLUE;

X = 4, Y = xsb_RED;
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no

As a �nal step, the interpretation for reach/2 is changed so that it is true

for {(3, BLUE) (2, RED) (1, BLUE) (1, RED)} and that it is unknown for
{(5, BLUE) (4, BLUE) (4, RED)}, and false for everything else. This is de-
picted in Figure 5.

5 Lifted Propagation

The previous section explains how we construct an interface to XSB to retrieve a
re�ned interpretation for the de�ned symbols in a single de�nition. Algorithm 1
shows an algorithm that uses this XSB interface to re�ne a structure as much
as possible when there are multiple de�nitions in a theory. For the scope of
this algorithm, the XSB interface is called as it if were a subroutine (called
XSB-interface). We maintain the set of de�nitions that need to be processed
as Set. Initially, Set contains all de�nitions and until Set is empty, we take
one de�nition from it and process it using the XSB interface. The most impor-
tant aspect of the presented algorithm is in line 12, where de�nitions that may
have been processed before, but have an open symbol that was �updated� by
processing another de�nition, are put back into Set to be processed again.

input : A structure S and a set ∆ of de�nitions in theory T
output: A new structure S′ that re�nes S as much as possible using ∆
Set ← ∆1

while Set is not empty do2

δ ← an element from Set3

XSB-interface (δ,S)4

if inconsistency is detected then5

return an inconsistent structure6

end7

Insert the new interpretation for the de�ned symbols in S8

Σ ← The symbols for which the interpretation has changed9

for δ′ in ∆ do10

if δ′ has one of Σ in its opens then11

add δ′ to Set12

end13

end14

remove δ from Set15

end16

Algorithm 1: Lifted Propagation for multiple de�nitions

On line 5 we need to detect when an inconsistency arises from processing
a de�nition. On line 9 we retrieve all symbols for which the interpretation has
changed by processing de�nition δ. Since these features were not mentioned in
the previous section we shortly explain here how these can be achieved. When
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the XSB interface processes a de�nition (say, XSB-interface (δ,S) is called),
it does not use the interpretation of the de�ned symbols in δ in S for any of
its calculations. We use Iσ to denote the interpretation of de�ned symbol σ in
structure S. XSB calculates a �new� interpretation for every de�ned symbol σ
in δ, which we will call I ′σ. If the number of true or the number of false atoms
in Iσ and I ′σ di�er, XSB has changed the interpretation of symbol σ and this
symbol will be present in Σ as displayed in line 9. If there is an atom that is
true in Iσ and and false in I ′σ, or vice versa, there is inconsistency and the check
on line 5 will succeed.

A possible point of improvement for this algorithm is the selection done in
line 3. One could perform a dependency analysis and stratify the de�nitions that
have to be re�ned. In this way, the amount of times each de�nition is �processed�
is minimized. This strati�cation is ongoing work.

A worst case performance for the proposed algorithm is achieved when there
are two de�nitions that depend on each other, as given in the following example:

{
P (0).

P (x)← Q(x− 1).

}

{
Q(x)← P (x− 1).

}

If we start with processing the P/1 de�nition, we derive P (0). Processing Q/1
then leads to deriving Q(1). Since the interpretation of Q/1 changed and it is
an open symbol of the P/1 de�nition, the P/1 de�nition has to be processed
again. This continues for as many iterations as there are elements in the type
of x. Since every call to the XSB interface for a de�nition incurs inter-process
overhead, this leads to a poor performance. This problem can be alleviated by
detecting that the de�nitions can safely be joined together into a single de�nition.
The detection of joining de�nition to improve the performance of the proposed
algorithm is part of future work.

6 Experimental evalutation

In this section we evaluate our new method of re�ning de�nitions by comparing
it to its alternative: performing Lifted Unit Propagation (LUP) on the comple-
tion of the de�nitions. We will refer to our new method for De�nition Re�nement
as �the DR approach�. In the IDP3 system, there are two ways of performing
LUP on a structure: using an Approximating De�nition (AD) [4] or using Binary
Decision Diagrams (BDD) [15]. We will refer to these methods as �the AD ap-
proach� for the former and �the BDD approach� for the latter. The AD approach
expresses the possible propagation on SAT level using an IDP3 de�nition. This
de�nition is evaluated to derive new true and false bounds for the structure.
Note that this approximating de�nition is entirely di�erent from any other pos-
sible de�nitions originally present in the theory. The BDD approach works by
creating Binary Decision Diagrams that represent the formulas (in this case the
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formulas for the completion of the de�nitions) in the theory. It works symboli-
cally and is approximative: it will not always derive the best possible re�nement
of the structure. The AD approach on the other hand is not approximative.

Table 1 shows our experiment results for 39 problems taken from past ASP
competitions. For each problem we evaluate our method on 10 or 13 instances.
The problem instances are evaluated with a timeout of 300 seconds. We present
the following information for each problem, for the DR approach:

� sDR The number of runs that succeeded
� tDRavg The average running time (in seconds)

� tDRmax The highest running time (in seconds)
� aDRavg The average number of derived atoms

The same information is also given for the BDD and the AD approach, with the
exception that aBDDavg and aADavg only take into account runs that also succeeded
for the DR approach. This allows us to compare the number of derived atoms,
since it can depend strongly on the instance of the problem that is run.

Comparing the DR approach with the AD approach, one can see that the
DR approach is clearly better. The AD approach fails to re�ne the structure for
even a single problem instance for 20 out of the 39 problems. When both the DR
and the AD approaches do succeed, AD derives as much information as the DR
approach. One can conclude from this that there is no bene�t to using the AD
approach over the DR approach. Moreover, the DR approach is faster in most
of the cases.

Comparing the DR approach with the BDD approach is less straightforward.
The BDD approach has a faster average and maximum running time for each
of the problems. Additionally, for 11 out of the 39 problems the BDD approach
had more problem instances that did not reach a timeout. These problems are
indicated in bold in the sBDD column. For some problems the di�erence is small,
as for example for the ChannelRouting problem where average running times are
respectively 7.16 and 5.67. For other problems however, the di�erence is very
large, as for example for the PackingProblem problem where average running
times are respectively 199.53 with 7 timeouts and 0.1 with 0 timeouts. Although
the BDD approach is clearly faster, there is an advantage to the DR approach:
for 8 problems, it derives extra information compared to the BDD approach.
These instances are indicated in bold in the aDRavg column. This di�erence is
sometimes small (80 vs. 8 for SokobanDecision) and sometimes large (25119
vs. 0 for Tangram). This shows that there is an advantage to using our newly
proposed DR approach.

There is one outlier, namely the NoMystery problem in which more informa-
tion is derived with the BDD approach than by the DR approach. This is because
DR does lifted propagation in the �direction� of the de�nition: for the known in-
formation of the body of a rule, try to derive more information about the de�ned
symbol. However, sometimes it is possible to derive information about elements
in the body rules using information that is known about the head of the rule.
Since LUP performs propagation along both directions and DR only along the
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�rst one, it is possible that LUP derives more information. As one can see in
the experiment results, it is only on very rare occasions (1 problem out of 39)
where this extra direction makes a di�erence. Integrating this other direction of
propagation into the DR approach is ongoing work.

De�nition Re�niement Binary Decision Diagrams Approximating De�nition

Problem Name sDR tDR
avg tDR

max aDR
avg sBDD tBDD

avg tBDD
max aBDD

avg sAD tAD
avg tAD

max aAD
avg

15Puzzle 10/10 5.3 6.24 482 10/10 0.07 0.08 256 0/10 - 0 -
BlockedNQueens 10/10 7.16 12.56 0 10/10 5.67 10.44 0 10/10 5.3 10.01 0
ChannelRouting 10/10 5.62 7.28 0 10/10 4.58 6.1 0 10/10 4.23 5.35 0
ConnectedDominatingSet 10/10 0.39 1.13 0 10/10 0.01 0.02 0 7/10 55.79 129.04 0
EdgeMatching 10/10 4.46 8.35 0 10/10 0.28 0.37 0 1/10 2.68 2.68 0
GraphPartitioning 13/13 0.27 0.48 0 13/13 0.02 0.02 0 13/13 14.34 48.73 0
HamiltonianPath 10/10 1.43 2.12 1 10/10 0.02 0.02 1 0/10 - 0 -
HierarchicalClustering 10/10 9.11 89.86 0 10/10 6 58.82 0 10/10 6.42 63.24 0
MazeGeneration 10/10 3.2 7.08 1 10/10 2.38 4.63 1 2/10 65.27 65.84 1
SchurNumbers 10/10 0.01 0.01 0 10/10 0 0.01 0 10/10 0.03 0.04 0
TravellingSalesperson 10/10 0.51 0.71 73 10/10 0.05 0.06 73 10/10 0.72 0.84 73
WeightBoundedDominatingSet 10/10 0.03 0.04 0 10/10 0.02 0.03 0 10/10 0.03 0.05 0
WireRouting 10/10 1.25 2.26 7 10/10 0.12 0.18 7 0/10 - 0 -
GeneralizedSlitherlink 0/10 - 0 - 10/10 0.13 0.28 - 0/10 - 0 -
FastfoodOptimalityCheck 1/10 18.43 18.43 36072 10/10 2.49 3.77 36072 0/10 - 0 -
SokobanDecision 10/10 58.61 114.92 80 10/10 0.11 0.14 8 0/10 - 0 -
KnightTour 6/10 9.03 31.9 0 10/10 1.14 4.07 0 8/10 53.06 293.07 0
DisjunctiveScheduling 10/10 4.49 10.67 0 10/10 2.69 5.74 0 10/10 3.52 9.67 0
PackingProblem 3/10 199.53 243.46 17 10/10 0.1 0.13 17 0/10 - 0 -
Labyrinth 2/10 103.77 192.16 105533 10/10 0.62 1.2 104668 0/10 - 0 -
Numberlink 9/10 8.91 30.4 0 10/10 0.28 1.34 0 0/10 - 0 -
ReverseFolding 1/10 49.84 49.84 978 10/10 1 2.11 16 0/10 - 0 -
HanoiTower 10/10 28.42 56.87 28020 10/10 0.2 0.25 25042 0/10 - 0 -
MagicSquareSets 10/10 0.44 1.01 1659 10/10 0.12 0.15 0 0/10 - 0 -
AirportPickup 10/10 40.09 100.78 1267 10/10 0.16 0.28 1267 0/10 - 0 -
PartnerUnits 10/10 13.43 14.87 100 10/10 0.02 0.03 100 0/10 - 0 -
Tangram 13/13 37.84 41.33 25119 13/13 0.33 0.4 0 0/13 - 0 -
Permutation-Pattern-Matching 10/10 33.53 115.63 0 10/10 0.01 0.01 0 7/10 85.6 258.84 0
Graceful-Graphs 10/10 0.01 0.02 0 10/10 0.01 0.02 0 10/10 0.03 0.04 0
Bottle-�lling-problem 10/10 1.43 5.09 0 10/10 0.96 3.57 0 10/10 0.81 2.68 0
NoMystery 4/10 64.82 137.36 207804 10/10 0.57 1.3 207821 0/10 - 0 -
Sokoban 6/10 86.79 196.84 18254 10/10 0.11 0.12 8 0/10 - 0 -
Ricochet-Robot 0/10 - 0 - 10/10 2.68 3.16 - 0/10 - 0 -
Weighted-Sequence-Problem 10/10 0.25 0.3 0 10/10 0.22 0.23 0 10/10 0.16 0.2 0
Incremental-Scheduling 0/10 - 0 - 8/10 54.34 229.59 - 0/10 - 0 -
Visit-all 3/10 3.49 3.97 15 10/10 0.03 0.04 15 0/10 - 0 -
Graph-Colouring 10/10 0.12 0.15 0 10/10 0.02 0.03 0 10/10 0.22 0.28 0
LatinSquares 10/10 0.02 0.02 0 10/10 0.01 0.02 0 10/10 0.03 0.04 0
Sudoku 10/10 0.2 0.3 0 10/10 0.16 0.26 0 10/10 0.14 0.23 0

Table 1. Experiment results comparing De�nition Re�nement (DR) with the Binary
Decision Diagram (BDD) and Approximating De�nition (AD) approach

Our experiments show the added value of our DR approach, but also indicate
that more e�ort should be put into this approach towards optimising runtime.

7 Conclusion

In this paper we described an extension to our existing preprocessing step [10] for
de�nition evaluation to be able to re�ne the interpretation of de�ned predicates
in the partial structure when the predicates depend on information that is only
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partially given. Our method uses XSB to compute the atoms (instances of the
predicate) that are true and others that are unknown. This method is an alter-
native for using LUP on the completion of the de�nitions. Because LUP for the
completion of the de�nition is an approximation of what can be derived for that
de�nition, our method is able to derive stricly more information for the de�ned
symbols than the LUP alternative. The extra information that can be derived
is the detection of unfounded sets for a de�nition. Because GWB uses the infor-
mation in the structure to derive bounds during grounding, this extra derived
information possibly leads to stricter bounds and an improved grounding.

Our experiments show the added value of our new method, but also indicate
that it is not as robust in performance as LUP (using BDDs). This paper in-
dicates two ways in which the performance of the proposed method might be
improved:

� Perform an analysis of the dependencies of de�nitions and query them ac-
cordingly to minimize the number of times a de�nition is re-queried

� Similar to the element above, try to detect when de�nitions can be joined
together to minimize XSB overhead

These improvements are future work. Another part of future work is combining
the new method for lifted propagation for de�nitions with the LUP for formulas
in the theory. Combining these two techniques might lead to even more derived
information, since the formulas might derive information that allows the de�ni-
tion the perform more propagation and vice versa.
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Abstract. The main idea of the logic programming approach to the in-
telligent video surveillance is in using a first order logic for describing
complex events and abstract concepts like anomalous human activity, i.e.
brawl, sudden attack, armed attack, leaving object, loitering, pick pock-
eting, personal theft, immobile person, etc. We consider main implemen-
tation issues of our approach to the intelligent video surveillance logic
programming: object-oriented logic programming of concurrent stages of
video processing, translating video surveillance logic programs to fast
Java code, embedding low-level means for video storage and processing
to the logic programming system.

Keywords: intelligent visual surveillance, object-oriented logic programming,
concurrent logic programming, abnormal behavior detection, anomalous human
activity, Actor Prolog, complex events recognition, computer vision, technical
vision, Prolog to Java translation

1 Introduction

Human activity recognition is a rapidly growing research area with important ap-
plication domains including security and anti-terrorist issues [1,11,12]. Recently
logic programming was recognized as a promising approach for dynamic visual
scenes analysis [7,24,23,14,22]. The idea of the logic programming approach is
in usage of logical rules for description and analysis of people activities. Knowl-
edge about object co-ordinates and properties, scene geometry, and human body
constraints is encoded in the form of certain rules in a logic programming lan-
guage and is applied to the output of low-level object / feature detectors. There
are several studies based on this idea. In [7] a system was designed for recogni-
tion of so-called long-term activities (such as fighting and meeting) as temporal
combinations of short-term activities (walking, running, inactive, etc.) using a
logic programming implementation of the Event Calculus. The ProbLog prob-
abilistic logic programming language was used to handle the uncertainty that
occurs in human activity recognition. In [24] an extension of predicate logic with
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the bilattice formalism that permits processing of uncertainty in the reason-
ing was proposed. The VidMAP visual surveillance system that combines real
time computer vision algorithms with the Prolog based logic programming had
been announced by the same team. In [23] the VERSA general-purpose frame-
work for defining and recognizing events in live or recorded surveillance video
streams is described. According to [23], VERSA ensures more advanced spatial
and temporal reasoning than VidMAP and is based on SWI-Prolog. In [14] a
real time complex audio-video event detection based on Answer Set Program-
ming approach is proposed. The results indicate that this solution is robust and
can easily be run on a chip.
The distinctive feature of our approach to the visual surveillance logic pro-

gramming is in application of general-purpose concurrent object-oriented logic
programming features to it, but not in the development of a new logical for-
malism. We use the Actor Prolog object-oriented logic language [15,16,17,19,18]
for implementation of concurrent stages of video processing. A state-of-the-art
Prolog-to-Java translator is used for efficient implementation of logical infer-
ence on video scenes. Special built-in classes of the Actor Prolog language were
developed and implemented for the low-level video storage and processing.
Basic principles of video surveillance logic programming are described in Sec-

tion 2. The concurrent logic programming issues linked with the video processing
are described in Section 3. The problems of efficient implementation of logical
inference on video scenes and translation of logic programs to fast Java code are
discussed in Section 4. The problems of video storage and low-level processing
are considered in Section 5.

2 Basic principles of video surveillance logic programming

A common approach to human activity recognition includes low-level and high-
level stages of the video processing. An implementation of the logic programming
approach requires consideration of different mathematical and engineering prob-
lems on each level of recognition:

1. Low-level processing stages usually include recognition of moving objects,
pedestrians, faces, heads, guns, etc. The output of the low-level procedures
is an input for the high-level (semantic) analyzing procedures. So, the low-
level procedures should be fast enough to be used for real time processing
and the high-level logical means should utilize effectively and completely the
output of the low-level procedures.

2. Adequate high-level logical means should be created / used to deal with
temporal and spatial relationships in the video scene, as well as uncertainty
in the results of low-level recognition procedures.

3. A proper hierarchy of the low-level and high-level video processing proce-
dures should be constructed. The procedures of different levels are usually
implemented on basis of different programming languages.

4. Selection of logic programming system for implementation of the logical in-
ference is of great importance, because it should provide high-level syntax

CICLOPS-WLPE 2014

32



Intelligent Visual Surveillance Logic Programming 3

means for implementation of required logical expressions as well as compu-
tation speed and efficiency in real time processing of big amount of data.

Let us consider an example of logical inference on video. The input of a
logic program written in Actor Prolog is the Fight OneManDown standard
sample provided by the CAVIAR team [8]. The program will use no additional
information about the content of the video scene, but only co-ordinates of 4
defining points in the ground plane (the points are provided by CAVIAR), that
are necessary for estimation of physical distances in the scene.

Fig. 1. An example of CAVIAR video with a case of a street offence: one person attacks
another.

The video (see Fig. 1) demonstrates a case of a street offence—a probable
conflict between two persons. These people meet in the scope of the video camera,
then one person attacks another one, the second person falls, and the first one
runs away. This incident could be easily recognized by a human; however an
attempt to recognize it automatically brings to light a set of interesting problems
in the area of pattern recognition and video analysis.
First of all, note that probably the main evidence of an anomalous human

activity in this video is so-called abrupt motion of the persons. Abrupt motions
can be easily recognized by a human as motions of a person’s body and / or arms
and legs with abnormally high speed / acceleration. So, a logic programmer has a
temptation to describe an anomalous human activity in terms of abrupt motions,
somehow like this: “Several persons have met sometime and somewhere. After
that they perform abrupt motions. This is probably a case of a street fighting.” It
is not a problem to implement this definition in Prolog using a set of logical rules,
however real experiments with video samples show that this naive approach is
an impractical one or simply does not work. The problem is that in the general
case computer low-level procedures recognize abrupt motions much worse than
a human and there are several serious reasons for this:

1. Generally speaking, it is very difficult to determine even the exact co-ordi-
nates of a person in a video scene. A common approach to the problem is
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usage of so-called ground plane assumption, that is, the computer determines
co-ordinates of body parts that are situated inside a pre-defined plane and
this pre-defined plane usually is a ground one. So, one can estimate properly
the co-ordinates of person’s shoes, but a complex surface of a ground and /
or presence of stairs and other objects, etc. make the problem much more
complex.

2. Even computing the first derivative of moving person’s co-ordinates is a
problem usually, because the silhouette of the person changes unpredictably
in different lighting conditions and can be partially overlapped by other
objects. As a consequence, the trajectory of a person contains a big amount
of false co-ordinates that makes numerical differentiation senseless.

3. One can make abrupt motions even standing still. This means that in the
general case the program should recognize separate parts of person’s body
to determine abrupt motions in a robust and accurate way.

All these issues relate to the low-level video processing and probably are
not to be implemented in a logic language. Nevertheless, they illustrate a close
connection between the principles to be used for logical description of anomalous
human activity and the output of low-level video processing procedures. We take
into account this connection in our research, when we address the problem of
the high-level semantic analysis of people activities.
In the example under consideration, we will solve the problem of anoma-

lous human activity recognition using automatic low-level algorithms that trace
persons in video scene and estimate average velocity in different segments of
the trajectories [22]. This low-level processing includes extraction of foreground
blobs, tracking of the blobs over time, detection of interactions between the
blobs, creation of connected graphs of linked tracks of blobs, and estimation
of average velocity of blobs in separate segments of tracks. This information
is received by the logic program in a form of Prolog terms describing the list
of connected graphs. We will use the following data structures for describing
connected graphs of tracks3:

DOMAINS:

ConnectedGraph = ConnectedGraphEdge*.

ConnectedGraphEdge = {

frame1: INTEGER,

x1: INTEGER, y1: INTEGER,

frame2: INTEGER,

x2: INTEGER, y2: INTEGER,

inputs: EdgeNumbers,

outputs: EdgeNumbers,

identifier: INTEGER,

coordinates: TrackOfBlob,

3 Note, that the DOMAINS, the PREDICATES, and the CLAUSES program sections
in Actor Prolog have traditional semantics developed in the Turbo / PDC Prolog
system.
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mean_velocity: REAL

}.

EdgeNumbers = EdgeNumber*.

EdgeNumber = INTEGER.

TrackOfBlob = BlobCoordinates*.

BlobCoordinates = {

frame: INTEGER,

x: INTEGER, y: INTEGER,

width: INTEGER, height: INTEGER,

velocity: REAL

}.

That is, connected graph of tracks is a list of underdetermined sets [15]
denoting separate edges of the graph. The nodes of the graph correspond to
points where tracks cross, and the edges are pieces of tracks between such points.
Every edge is directed and has the following attributes: numbers of first and last
frames (frame1, frame2), co-ordinates of first and last points (x1, y1, x2, y2),
a list of edge numbers that are direct predecessors of the edge (inputs), a list
of edge numbers that are direct followers of the edge (outputs), the identifier
of corresponding blob (an integer identifier), a list of sets describing the co-
ordinates and the velocity of the blob in different moments of time (coordinates),
and an average velocity of the blob in this edge of the graph (mean velocity).

The logic program will check the graph of tracks and look for the follow-
ing pattern of interaction among several persons: “If two or more persons met
somewhere in the scene and one of them has run after the end of the meeting,
the program should consider this scenario as a kind of a running away and a
probable case of a sudden attack or a theft.” So, the program will alarm if this
kind of sub-graph is detected in the total connected graph of tracks. In this case,
the program marks all persons in the inspected graph by yellow rectangles and
outputs the “Attention!” warning in the middle of the screen (see Fig. 2).

One can describe the concept of a running away formally using defined con-
nected graph data type:

PREDICATES:

is_a_kind_of_a_running_away(

ConnectedGraph,

ConnectedGraph,

ConnectedGraphEdge,

ConnectedGraphEdge,

ConnectedGraphEdge) - (i,i,o,o,o);

We will define the is a kind of a running away(G,G,P1, E, P2) predicate
with the following arguments: G—a graph to be analyzed (note that the same
data structure is used in the first and the second arguments), E—an edge of the
graph corresponding to a probable incident, P1—an edge of the graph that is a
predecessor of E, P2—an edge that is a follower of E. Note that G is an input
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Fig. 2. A logical inference has found a possible case of a sudden attack in the graph
of blob trajectories. All probable participants of the conflict are marked by yellow
rectangles. The tracks are depicted by lines.

argument of the predicate and P1, E, and P2 are output ones. Here is an Actor
Prolog program code with brief explanations:

CLAUSES:

is_a_kind_of_a_running_away([E2|_],G,E1,E2,E3):-

E2 == {inputs:O,outputs:B|_},

B == [_,_|_],

contains_a_running_person(B,G,E3),

is_a_meeting(O,G,E2,E1),!.

is_a_kind_of_a_running_away([_|R],G,E1,E2,E3):-

is_a_kind_of_a_running_away(R,G,E1,E2,E3).

contains_a_running_person([N|_],G,P):-

get_edge(N,G,E),

is_a_running_person(E,G,P),!.

contains_a_running_person([_|R],G,P):-

contains_a_running_person(R,G,P).

is_a_meeting(O,_,E,E):-

O == [_,_|_],!.

is_a_meeting([N1|_],G,_,E2):-

get_edge(N1,G,E1),

E1 == {inputs:O|_},

is_a_meeting(O,G,E1,E2).

get_edge(1,[Edge|_],Edge):-!.

get_edge(N,[_|Rest],Edge):-

N > 0,

get_edge(N-1,Rest,Edge).

In other words, the graph contains a case of a running away if there is an
edge E2 in the graph that has a follower E3 corresponding to a running person
and predecessor E1 that corresponds to a meeting of two or more persons. It is
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requested also that E2 has two or more direct followers (it is a case of branch-
ing in the graph). Note, that in the Actor Prolog language, the == operator
corresponds to the = ordinary equality of the standard Prolog.
A fuzzy definition of the running person concept is as follows:

is_a_running_person(E,_,E):-

E == {mean_velocity:V,frame1:T1,frame2:T2|_},

M1== ?fuzzy_metrics(V,1.0,0.5),

D== (T2 - T1) / sampling_rate,

M2== ?fuzzy_metrics(D,0.75,0.5),

M1 * M2 >= 0.5,!.

is_a_running_person(E,G,P):-

E == {outputs:B|_},

contains_a_running_person(B,G,P).

The graph edge corresponds to a running person if the average velocity and
the length of the track segment correspond to the fuzzy definition. Note that
Actor Prolog implements a non-standard functional notation, namely, the ? pre-
fix informs the compiler that the fuzzy metrics term is a call of a function, but
not a data structure.
An auxiliary function that calculates the value of the fuzzy metrics is repre-

sented below. The first argument of the function is a value to be checked, the
second argument is a value of a fuzzy threshold, and the third one is the width of
the threshold ambiguity area. The = delimiter defines an extra output argument
that is a result to be returned by the function:

fuzzy_metrics(X,T,H) = 1.0 :-

X >= T + H,!.

fuzzy_metrics(X,T,H) = 0.0 :-

X <= T - H,!.

fuzzy_metrics(X,T,H) = V :-

V== (X-T+H) * (1 / (2*H)).

Note that 37 lines of the Actor Prolog code considered above correspond to
301 lines of the optimized Java source code implementing graph search opera-
tions and this is perhaps the best demonstration of the reasons why the Prolog
language is a good choice for this application.
This example illustrates the basic principles of logical description of anoma-

lous human activity and logical inference on video data. However, even a simplest
scheme of video surveillance logic program should contain much more elements,
including video information gathering, low-level image analysis, high-level logical
inference control, and reporting the results of intelligent visual surveillance.

3 Concurrent video processing

It is a good idea to divide a visual surveillance logic program to concurrent sub-
processes implementing different stages of video processing, because the working
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intensity of different sub-processes is various. For instance, video data gathering
and low-level analysis require a big amount of computational resources and other
sub-processes that implement high-level analysis and visualizing results of video
surveillance could wait for the output of the former sub-process.
In the example under consideration, we will create two concurrent processes

with different priorities4. The first process has higher priority and implements
video data gathering. This process reads JPEG files and sends them to the in-
stance of the ′ImageSubtractor′ predefined class that implements all low-level
processing of video frames. The sampling rate of the video is 25 frames per
second, so the process loads a new JPEG file every 40 milliseconds. The sec-
ond concurrent process implements logical analysis of collected information and
outputs results of the analysis. The analysis of video frames requires more com-
putational resources, but it does not suspend the low-level analysis, because
the second process has less priority. The analysis includes creation of connected
graphs of linked tracks of blobs and estimation of average velocity of blobs in
separate segments of tracks. This information is received by the logic program
in a form of connected graphs described in the previous section.
The total text of the logic program is not given here for brevity; we will

discuss only the structure of the main class of the program.

class ’Main’ (specialized ’Alpha’):

constant:

data_directory = "data";

target_directory = "Fight_OneManDown";

sampling_rate = 25.0;

stage_one = ((’ImagePreprocessor’,

data_directory,

target_directory,

sampling_rate,

low_level_analyzer,

stage_two));

stage_two = ((’ImageAnalyzer’,

low_level_analyzer,

sampling_rate));

internal:

low_level_analyzer = (’ImageSubtractor’,

extract_blobs= ’yes’,

track_blobs= ’yes’,

...);

The ′Main′ class has the stage one and the stage two slots5 containing
two above mentioned processes. The low level analyzer slot contains an in-
stance of the ′ImageSubtractor′ built-in class implementing low-level video anal-
ysis procedures (see Fig. 3). The data directory, the target directory, and the

4 See [17] for details of Actor Prolog model of asynchronous concurrent computations.
5 The slot is a synonym for the instance variable in the Actor Prolog language.
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sampling rate auxiliary slots contain information about source data files loca-
tion and the sampling rate of the video clip.

The idea of the schema is the following: the instance of the ′ImageSubtractor′

built-in class is used as a container for storing video data and intermediate results
of the low-level processing. The instances of the ′ImagePreprocessor′ and the
′ImageAnalyzer′ classes accept the low level analyzer slot as an argument and
use it for the inter-process data exchange. So, the object-oriented features give
us an essential solution of the problem of big data storage in the logic language;
all low-level video data is encapsulated in the special class and the logic program
handles medium-size terms describing the results of the low-level analysis only.

The low level analyzer
argument

The low level analyzer argument

Root process (Main)

ImageSubtractor

Process 2
(ImagePreprocessor)

Synchronized
ImageSubtractor

Process 3
(ImageAnalyzer)

Synchronized
ImageSubtractor

Fig. 3. The ′SynchronizedImageSubtractor′ class implements synchronization of
three concurrent processes and ensures a safe access to the internal data arrays of
the ′ImageSubtractor′ class instance.

The ′ImagePreprocessor′ class implements video data gathering and all low-
level processing of video frames. The ′ImageAnalyzer′ class contains the rules
considered in the previous section, implements high-level stage of video analysis,
and outputs the results of intelligent video surveillance.

Note, that Actor Prolog prohibits a process from invoking a predicate from a
class instance belonging to another process. This means that the sharing of the
′ImageSubtractor′ class instance mentioned above requires an additional care.
In detail, the ′ImageAnalyzer′ class uses the ′SynchronizedImageSubtractor′

built-in class as an envelope for the ′ImageSubtractor′ class instance.

class ’ImageAnalyzer’ (specialized ’Alpha’):

constant:

sampling_rate;

low_level_analyzer;

internal:

subtractor = (’SynchronizedImageSubtractor’,

image_subtractor= low_level_analyzer);

...
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The ′SynchronizedImageSubtractor′ built-in class implements the same
methods of low-level video processing as the ′ImageSubtractor′ class. The only
difference is that the instance of the ′SynchronizedImageSubtractor′ class is
created inside the ′ImageAnalyzer′ process and there are no restrictions on the
usage of its methods inside this process (see Fig. 3).
Thus, the ′SynchronizedImageSubtractor′ class ensures a safe access to the

internal data arrays of the ′ImageSubtractor′ class from concurrent processes
and implements all necessary operations on video data. The data access synchro-
nization is implemented inside the built-in classes, but not at the level of the
programming language; Actor Prolog is asynchronous concurrent language, it
has no syntactical means for concurrent processes synchronization and supports
syntactically only the asynchronous inter-process communications.

4 Prolog to Java translation

A high CPU / memory consumption is a characteristic of the video processing.
So, the visual surveillance application is a good way to test whether the logic
programming system is mature enough to be used in the industry. One could
enumerate the following requirements for a logic programming system / language
selected as a basis for the visual surveillance application:

1. Firstly, the logic programming system should generate a fast executable code.
A deep code optimization is absolutely necessary even for the logic programs
that use 2D graphic intensively for reporting intelligent visual surveillance
results.

2. The executable code should be robust; absence of any memory leak should
be guaranteed. An incorrect memory handling and / or incorrect concurrent
access to data structures produce an unavoidable crash of the program.

3. The logic programming system should be an open one; the extension of the
system by specialized classes / procedures implementing low-level processing
should be easy and transparent for application programmers.

These requirements are contradictory because considerable code optimization
implies usage of complex compilation algorithms and low-level code generation
that are potential reasons for difficult-to-locate errors, memory leaks, and un-
stable operation of executable code. Even if the compiler is well-debugged the
permanent development of built-in classes and libraries is a constant potential
source of such errors. There is a fundamental contradiction between the openness
and the optimization of the programming system.
In particular, application of a compilation schema based on C / C++ inter-

mediate code generation (Mercury [10], KLIC [9], wamcc [3]) was recognized as
an appropriate way to obtain maximal speed of the executable code. On the other
hand, generation of Java intermediate code (Actor Prolog [20], PrologCafe [2],
KLIJava [13], SAE-Prolog [6], jProlog [5]) ensures platform independence of the
application software and guarantees absence of difficult-to-locate errors caused
by memory leaks and out-of-range array operations. We use a compilation from
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the Actor Prolog language to Java, because, from our point of view, modern
processors are fast enough to give up the speed of the executable code for the
sake of robustness, readability, and openness of the logic program. Moreover,
using an industrial Java virtual machine as a basis for the logic programming
system ensures its flexibility and quick adaptation to new operational systems
and processor architectures.
In contrast to conventional approaches, we use neither WAM (PrologCafe,

wamcc) nor binarization of the logic program (jProlog, BinProlog [25]). The
Actor Prolog compiler generates a kind of an idiomatic (i.e., well-readable) source
code (SAE-Prolog, P# [4]), but in contrast to the SAE-Prolog project [6] we use
domains / predicates declarations to process non-deterministic, deterministic,
and imperative predicates in different ways. In contrast to the P# project [4]
we implement non-idiomatic predicate calls from idiomatic predicates and vice
versa.
The Actor Prolog logic language differs from the Clocksin&Mellish Prolog

a lot. Turbo-Prolog style Domain and Predicate declarations of Actor Prolog
are very important for the industrial application programming and help in ex-
ecutable code optimization. On the other hand, object-oriented features and
supporting concurrent programming make translation of an Actor Prolog code
to be a non-trivial problem.
The state-of-the-art compilation schema of the Actor Prolog system includes

the following steps:

1. Source text scanning and parsing.Methods of thinking translation preventing
unnecessary processing of already translated source files are implemented.
That is, after the update of source codes, the compiler tries to use infor-
mation collected / computed during its previous run. This feature is very
important for the industrial programming.

2. Inter-class links analysis. On this stage of global analysis, the translator
collects information about usage of separate classes in the program, including
data types of arguments of all class instance constructors. This information
is necessary for the global flow analysis and the global optimization of the
program (unused predicates are eliminated from the program).

3. Type check. The translator checks data types of all predicate arguments and
arguments of all class instance constructors.

4. Determinism check. The translator checks whether predicates are determin-
istic or non-deterministic. A special kind of so-called imperative predicates
is supported, that is, the compiler can check whether a predicate is deter-
ministic and never fails.

5. A global flow analysis. The compiler tracks flow patterns of all predicates in
all classes of the program.

6. Generation of an intermediate Java code.
7. Translation of this Java code by a standard Java compiler.

The determinism check ensures a possibility to use different optimization
methods for different kinds of predicates:
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1. The imperative predicates check is the most complex stage in the translation
schema, because it requires a check of all separate clauses as well as mutual
influence of the clauses / predicates. Nevertheless, this check is of critical
importance, because the imperative predicates usually constitute the main
part of the program and the check gives information for very high level
optimization of these predicates—the logic language clauses are translated
to Java procedures directly.

2. Deterministic predicates are translated to Java procedures too (all clauses
of one predicate correspond to one Java procedure). Backtracking is imple-
mented using a special kind of light-weight Java exceptions.

3. Non-deterministic predicates are implemented using a standard method of
continuation passing. Clauses of one predicate correspond to one or several
automatically generated Java classes.

Tail recursion optimization is implemented for recursive predicates; that is
critically important for the video processing applications. Recursive predicates
are implemented using the while Java command. Moreover, the Actor Prolog
language supports explicit definition of ground / non-ground domains and the
translator uses this information for deep optimization of ground term unification.

Table 1. Prolog benchmark testing (Intel Core i5-2410M, 2.30 GHz, Win7, 64-bit)

Test Iter. No. Actor Prolog to Java SWI-Prolog v. 7.1.10

NREV 3,000,000 109,090,909 lips 15,873,523 lips
CRYPT 100,000 1.758510 ms 2.03347 ms
DERIV 10,000,000 0.055747 ms 0.0104318 ms
POLY 10 10,000 3.756900 ms 4.3681 ms
PRIMES 100,000 0.042540 ms 0.13478 ms
QSORT 1,000,000 0.042924 ms 0.059561 ms
QUEENS(9) 10,000 17.495200 ms 31.729 ms
QUERY 10,000 3.141500 ms 0.3713 ms
TAK 10,000 4.010800 ms 10.2836 ms

The described compilation schema ensures an acceptable performance of the
executable code (see Table. 1). Deterministic and imperative predicates with
ground arguments are optimized quite well (the NREV test demonstrates more
than 100 millions lips). At the same time, non-deterministic predicates work
slowly (CRYPT, QUEENS, QUERY); this is a fundamental disadvantage of
the approach based on continuation passing and translation to the high-level
intermediate language, because it cannot handle possible run-time optimiza-
tion of Prolog stacks. Arithmetical predicates work fast enough in Actor Prolog
(PRIMES, QSORT, TAK), but there is a possibility for better optimization of
symbolic computations (DERIV, POLY 10).
Note that development of standard benchmark set relevant to the visual

surveillance application domain is still a challenge, because different stages of
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video processing (low-level and high-level) demand different performance require-
ments. At present, we can demonstrate only that the Actor Prolog system is fast
enough for real-time analyzing clips of the standard data set [8].
The translator creates Java classes corresponding to the classes of an object-

oriented Actor Prolog program. Given external Java classes can be declared as
ancestors of these automatically created classes and this is the basic principle
of the implementation of built-in classes [21] and integration of Actor Prolog
programs with external libraries. The possibility of easy extension of the Actor
Prolog programming system by new built-in classes is a benefit of the selected
implementation strategy. For instance, the Java2D and the Java3D libraries are
connected with the Actor Prolog system in this way.

5 Low-level video processing

A typical intelligent video surveillance system includes high-level procedures
(that is, anomalous human activity recognition) and low-level video processing
procedures (for instance, background subtraction, discrimination of foreground
blobs, tracking blobs over time, detection of interactions between the blobs,
etc.). We have developed and implemented in Java the ′ImageSubtractor′ built-
in Actor Prolog class supporting all necessary low-level procedures. This class
implements the following means:

1. Video frames pre-processing including 2D-gaussian filtering, 2D-rank filter-
ing, and background subtraction.

2. Recognition of moving blobs and creation of Prolog data structures describ-
ing the co-ordinates of the blobs in each moment.

3. Recognition of tracks of blob motions and creation of Prolog data structures
describing the co-ordinates and the velocity of the blobs. The tracks are
divided into separate segments; there are points of interaction between the
blobs at the ends of a segment.

4. Recognition and ejection of immovable and slowly moving objects. This fea-
ture is based on a simple fuzzy inference on the attributes of the tracks
(the co-ordinates of the tracks and the average velocities of the blobs are
considered).

5. Recognition of connected graphs of linked tracks of blob motions and creation
of Prolog data structures describing co-ordinates and velocities of blobs. We
consider two tracks as linked if there are interactions between the blobs of
these tracks. In some applications, it is useful to eject tracks of immovable
and slowly moving objects from the graphs before further processing of the
video scenes.

We have started our experiments with low-level procedures implemented in
pure Java; however, it is clear that further development of video surveillance
methods requires usage of advanced computer vision libraries. A promising ap-
proach for implementation of the low-level recognition procedures in a logic lan-
guage is usage of the OpenCV computer vision library and we are planning to
link Actor Prolog with the JavaCV library that is a Java interface to OpenCV.
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6 Conclusion

We have created a research software platform based on the Actor Prolog concur-
rent object-oriented logic language and a state-of-the-art Prolog-to-Java trans-
lator for experimenting with the intelligent visual surveillance. The platform
includes the Actor Prolog logic programming system and an open source Java
library of Actor Prolog built-in classes [21]. It is supposed to be complete for
facilitation of research in the field of intelligent monitoring of anomalous people
activity and studying logical description and analysis of people behavior.
Our study has demonstrated that translation from a concurrent object-orien-

ted logic language to Java is a promising approach for application of the logic
programming to the problem of intelligent monitoring of people activity; the
Actor Prolog logic programming system is suitable for this purpose and ensures
essential separation of the recognition process into concurrent sub-processes im-
plementing different stages of high-level analysis.
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4 Universidade de Évora and CENTRIA, Portugal

spa@di.uevora.pt

Abstract. This paper describes three significant extensions for the Fi-
nite Domain solver of GNU Prolog. First, the solver now supports neg-
ative integers. Second, the solver detects and prevents integer overflows
from occurring. Third, the internal representation of sparse domains has
been redesigned to overcome its current limitations. The preliminary per-
formance evaluation shows a limited slowdown factor with respect to the
initial solver. This factor is widely counterbalanced by the new possi-
bilities and the robustness of the solver. Furthermore these results are
preliminary and we propose some directions to limit this overhead.

1 Introduction

Constraint Programming [1,7,16] emerged, in the late 1980s, as a successful
paradigm with which to tackle complex combinatorial problems in a declarative
manner [11]. However, the internals of constraint solvers, particularly those over
Finite Domains (FD) were wrapped in secrecy, only accessible to only a few
highly specialized engineers. From the user point of view, a constraint solver
was an opaque “black-box” providing a fixed set of (hopefully) highly optimized
constraints for which it ensures the consistency.

One major advancement in the development of constraint solvers over FD
is, without any doubt, the article from Van Hentenryck et al. [12]. This paper
proposed a “glass-box” approach based on a single primitive constraint whose
understanding is immediate. This was a real breakthrough with respect to the
previous way of thinking about solvers. This primitive takes the form X in r,
where X is an FD variable and r denotes a range (i.e. a set of values). An X in r
constraint enforces X to belong to the range denoted by r which can involve
other FD variables. An X in r constraint which depends on another variable
Y becomes store sensitive and must be (re)activated each time Y is updated, to
ensure the consistency. The X in r constraint can be seen as embedding the
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core propagation mechanism. Indeed, it is possible to define different propagation
schemes for a given constraint, corresponding to different degrees of consistency.

It possible to define high-level constraints, such as equations or inequations,
in terms of X in r primitive constraints. It is worth noticing that these con-
straints are therefore not built into the theory. From the theoretical point of view,
it is only necessary to work at the primitive level as there is no need to give special
treatment to high-level constraints. This approach yielded significant advances in
solvers. From the implementation point of view, an important article is [5] which
proposed a complete machinery (data structures, compiler, instruction set) to
efficiently implement an FD solver based on X in r primitives. It also shows
how some optimizations at the primitive level can, in turn, be of great benefit
to all high-level constraints. The resulting system, called clp(FD), proved the
efficiency of the approach: the system was faster than CHIP, a highly optimized
black-box solver which was a reference at the time. This work has clearly inspired
most modern FD solvers (SICStus Prolog, bProlog, SWI Prolog’s clpfd, Choco,
Gecode, ...) but also solvers over other domains like booleans [4], intervals [10]
or sets [9,2]. Returning to FD constraints, a key point is the ability to reason
on the outcome of a constraint (success or failure). Again, the “RISC” approach
restricted the theoretical work about entailment at the primitive level [3]. This
allowed a new kind of constraints: reified constraints, in which a constraint be-
comes concretized. The “RISC” approach was also very convenient for constraint
retraction [6].

When GNU Prolog was developed, it reused the FD solver from clp(FD).
The X in r constraint was generalized to allow the definition of new high-level
constraints, e.g. other arithmetic, symbolic, reified and global constraints. Nev-
ertheless, the internals of the solver were kept largely unchanged. The outcome
is a fast FD solver, but also one with some limitations:

– First, the domain of FD variables is restricted to positive values (following
the original paper [12]). This is not restrictive from a theoretical point of
view: a problem can always be “translated” to natural numbers but, from a
practical point of view, there are several drawbacks: the translation is error-
prone, the resulting programs are difficult to read and can exhibit significant
performance degradation.

– Second, the domain representation uses a fixed-size bit-vector to encode
sparse domains. Even if this size can be controlled by the user, it is eas-
ily and frequently misused. In some cases, the user selects a very large value
for simplicity, without being aware of the waste of memory nor the loss of
efficiency this induces.

– Lastly, for efficiency reasons the GNU Prolog solver does not check for integer
overflows. This is generally not a problem when the domains of FD variables
are correctly specified, as all subsequent computation will not produce any
overflow. However, if one forgets to declare all domains, or does not declare
them at the beginning, an overflow can occur. This is the case of:

|?- X * Y #= Z.

No

2
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Indeed, without any domain definition for X and Y the non-linear con-
straint X * Y #= Z will compute the upper bound of Z as 228 × 228 which
overflows 32 bits resulting in a negative value for the max, thus the fail-
ure (max < min). This behaviour is hard to understand and requires an
explanation. We admit this is not the Way of Prolog and does not help to
promote constraint programming to new users. We could raise an exception
(e.g. instantiation error or representation error) but this would still
be of little help to most users.

In this article we describe and report on initial results for the extension and
modification of the GNU Prolog FD solver to overcome these three limitations.
This is a preliminary work: special attention has been put on ensuring correct-
ness and the implementation is not yet optimized. Nevertheless the results are
encouraging, as we shall see, and there is ample room and directions to research
on performance improvements.

The remainder of this article is organized as follows: Section 2 introduces
some important aspects of the original FD solver required to understand the
modifications. Section 3 is devoted to the inclusion of negative values in FD
domains. Section 4 explains how integer overflow is handled in the new solver,
while Section 5 explains the new representation for sparse domains. A perfor-
mance evaluation may be found in Section 6. Section 7 provides some interesting
directions to optimize the overall performance. A short conclusion ends the pa-
per.

2 The GNU Prolog FD Solver

The GNU Prolog solver follows the “glass-box” approach introduced by Van
Hentenryck et al. in [12], in which the authors propose the use of a single prim-
itive constraint of the form X in r, where X is an FD variable and r denotes
a range (ie. a set of values). An X in r constraint enforces X to belong to the
range denoted by r which can be constant (e.g. the interval 1..10) but can also
use the following indexicals:

– dom(Y ) representing the whole current domain of Y .
– min(Y ) representing the minimum value of the current domain of Y .
– max(Y ) representing the maximum value of the current domain of Y .
– val(Y ) representing the final value of the variable of Y (when its domain is

reduced to a singleton). A constraint using this indexical is postponed until
Y is instantiated.

An X in r constraint which uses an indexical on another variable Y becomes
store sensitive and must be (re)activated each time Y is updated to ensure
the consistency. Thanks to X in r primitive constraints it is possible to define
high-level constraints such as equations or inequations. Obviously all solvers
offer a wide variety of predefined (high-level) constraints to the programmer.
Nevertheless, the experienced user can define his own constraints if needed.

3

Extending the Finite Domain Solver of GNU Prolog

49



The original FD solver of GNU Prolog is also based on indexicals. Its im-
plementation is widely based on its predecessor, clp(FD) [5]. In the rest of this
section we only describe some aspects of the original implementation which are
important later on. The interested reader can refer to [8] for missing details.

2.1 The FD definition language

The original X in r is not expressive enough to define all needed constraints
in practice. We thus defined the FD language: a specific language to define
the constraints of the GNU Prolog solver. Figure 1 shows the definition of the
constraint A×X = Y in the FD language:

ax_eq_y(int A, fdv X, fdv Y) /* here A != 0 */

{

start X in min(Y) /> A .. max(Y) /< A /* X = Y / A */

start Y in min(X) * A .. max(X) * A /* Y = X * A */

}

Fig. 1. Definition of the constraint A×X = Y in the FD language

The first line defines the constraint name (ax eq y) and its arguments to-
gether with their types (A is expected to be an integer, X and Y FD variables).
The start instruction installs and activates an X in r primitive. The first
primitive computes X from Y in the following way: each time a bound of Y is
modified the primitive is triggered to reduce the domain of X accordingly. The
operator /> (resp. /<) denote division rounded upwards (resp. downwards). Sim-
ilarly, the second primitive updates (the bounds) of Y with repect to X. This
is called bound consistency [1] : if a hole appears inside the domain of X (i.e. a
value V different from both the min and the max of X has beed removed from
the domain of X), the corresponding value A× V will not be removed from the
domain of Y . If wanted, such a propagation (called domain consistency) could
be specified using the dom indexical.

A compiler (called fd2c) translates an FD file to a C source file. The use
of the C language as target is motivated by the fact that all the GNU Prolog
system is written in C (so the integration is simple) but mainly by the fact that
modern C compilers produce very optimized code (this is of prime importance if
we consider that a primitive constraint can be awoken several thousand times in
a resolution). When compiled such a definition gives rise to different C functions:

– the main function: a public function (ax eq y) which mainly creates an envi-
ronment composed of the 3 arguments (A,X, Y ) and invokes the installation
functions for the involved X in r primitives.

– the installation function: a private function for each X in r primitive which
is responsible for the installation of the primitive. This consists of installing

4
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the dependencies (e.g. add a new dependency to Y , so that each time Y
is modified the primitive is re executed to update X) and the execution
function is invoked (this is the very first execution of the primitive).

– the execution function: a private function for each X in r primitive which
computes the actual value of r and enforces X ∈ r. This function will be
(re)executed each time an FD variable appearing in the definition of r is
updated.

2.2 Internal domain representations

There are 2 main representations of a domain (range):

– MinMax: only the min and the max are stored. This representation is used
for intervals (including 0..fd max integer).

– Sparse: this representation is used as soon as a hole appears in the domain of
the variable. In that case, in addition to the min and the max, a bit-vector
is used to record each value of the range.

01011011011010101

        :

10100101101010010

10010011101001101

     sparse range
(bit−vector allocated)

bit−vector

Ptr to bit−vector

       Max

       Min

Extra constrained?

empty range
(min > max)

  interval range
(bit−vector unused)

Ptr to bit−vector

       Max

       Min

Extra constrained?

Ptr to bit−vector

       Max

       Min

Extra constrained?

Fig. 2. Representations of a range

When an FD variable is created it uses a MinMax representation. As soon as
a “hole” appears it is transparently switched to a Sparse representation which
uses a bit-vector. For efficiency reasons all bit-vector have the same size inside
0..fd vector max. By default fd vector max equals 127 and can be redefined
via an environment variable or via a built-in predicate (this should be done
before any constraint is told). When a range becomes Sparse, some values are

5
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possibly lost if fd vector max is less than the current max of the variable.
To inform the user of this source of incompleteness, GNU Prolog maintains
a flag to indicate that a range has been extra constrained by the solver (via
an imaginary constraint X in 0..fd vector max). The flag extra cstr associ-
ated to each range is updated by all operations, e.g. the intersection of two
ranges is extra-constrained iff both ranges are extra constrained, thus the re-
sulting flag is the logical and between the two flags. When a failure occurs on
a variable whose domain is extra constrained a message is displayed to inform
the user that some solutions can be lost since bit-vectors are too small. Fi-
nally an empty range is represented with min > max. This makes it possible
to perform an intersection between R1 and R2 in MinMax mode simply with
Max(min(R1),min(R2))..Min(max(R1),max(R2)) which returns min > max
if either R1 or R2 is empty. Figure 2 shows the different representations of a
range.

3 Supporting Negative Values

In this section we describe how the inclusion of negative values in FD variables
is realized. First we show why the current implementation does not support
negative values. Then we show how to address the problems by mainly focusing
on the implementation. This section only describes bound consistency; negative
values are handled similarly in domain consistency due to the new sparse design,
described in Section 5.

3.1 Current limitations

The current implementation does not support negative values, FD variables
stay within the bounds 0..fd max integer. Adding support for negative val-
ues seems obvious at a first glance, however some attention has to be paid.
The modifications concern constraints whose current implementation implicitly
utilize the fact that values are always positive, which is no longer valid. Other
modifications concern constraints which are sign sensitive from the interval arith-
metical point of view. This is the case for multiplication: if X is in min..max
then −X is in −max.. −min. Let us consider again the case of the constraint
A×X = Y whose current definition is presented in Figure 1. Presuming that A
can be negative the current definition will not update the domains of X and Y

correctly: in that case X will be constrained to dmin(Y )
A e..bmax(Y )

A c which pro-
duces an empty interval since min(X) > max(X). To support negative values
in FD variables, this instance, as well as other arithmetical constraints require
updating to handle negative values properly.

3.2 Method and approach

One possible approach to deal with negative numbers is to construct a map-
ping for negative values to natural numbers so that the arithmetic constraints

6
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can continue to operate strictly on the positive domain. Another approach is
to update the constraints to be fully functional for both positive and negative
domains. The former is undesirable since the translation quickly becomes cum-
bersome and would carry a considerable performance impact. Aside from that,
several operations such as taking the power or root are affected by the variable
sign. As the latter approach is less error-prone and more robust, we chose to
implement it and thus need to reformulate several arithmetic constraints.

First, the initial domain bounds of FD variables are updated to range in
fd min integer..fd max integer. To remain backwards compatible, an envi-
ronment variable is created that, if set, will use the original bounds for FD
variables.

On updating the arithmetic constraints, all possible cases for each FD vari-
able need to be considered, that is < 0, = 0 and > 0 for both the min and max
of the variable. For instance, the A×X = Y constraint from Figure 1 is updated
as follows:

ax_eq_y(int A, fdv X, fdv Y) /* A != 0 */

{

start X in ite(A>0, min(Y), max(Y)) /> A /* X = Y / A */

.. ite(A>0, max(Y), min(Y)) /< A

start Y in ite(A>0, min(X), max(X)) * A /* Y = X * A */

.. ite(A>0, max(X), min(X)) * A

}

where ite represents an if-then-else expression (corresponding to the C opera-
tor ?:). This modification ensures that for all interpretations of A, X and Y the
domains are updated correctly.

A more complex example is the constraint XA = Y , where X and Y are FD
variables and A is an integer > 2. In the current version, this constraint is given
as follows:

x_power_a_eq_y(fdv X, int A, fdv Y) /* A > 2 */

{

start Y in Power(min(X), A)..Power(max(X), A)

start X in Nth_Root_Up(min(Y), A)..Nth_Root_Dn(max(Y), A)

}

With the introduction of negative values, the constraint is specified as:

x_power_a_eq_y(fdv X, int A, fdv Y) /* A > 2 */

{

start X in ite(is_even(A),

min_root(min(X), min(Y), max(Y), A),

ite(min(Y) < 0,

-Nth_Root_Dn(-min(Y), A),

Nth_Root_Up(min(Y), A)))

.. ite(is_even(A),

max_root(max(X), min(Y), max(Y), A),

7
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ite(max(Y) < 0,

-Nth_Root_Up(-max(Y), A),

Nth_Root_Dn(max(Y), A)))

start Y in ite(min(X) < 0 && is_odd(A),

Power(min(X), A),

Power(closest_to_zero(min(X), max(X)), A))

.. ite(min(X) < 0 && is_even(A),

Power(Max(abs(min(X)), max(X)), A),

Power(max(X), A))

}

here, a couple of C functions and macros are introduced:

– Min and Max are used to compute the minimum resp. maximum of two values.
– is even and is odd return wether the variable is even or odd.
– min root and max root calculate the minimum and maximum value of± A

√
Y

that lie in the bounds of min(X)..max(X).
– Power and Nth Root refer to C functions that calculate the nth power and

nth root of a variable.
– closest to zero(A,B) returns the closest value to 0 in the interval A..B.

In this specification, Y can only include negative values if X contains negative
values and A is an odd number (e.g.−23 = −8). Similarly, if Y is strictly positive,
X can only take negative values if A is an even number (e.g. −24 = 16). In
short, the above constraint needs to distinguish between even and odd powers
of X, which was originally unnecessary. With this definition, the following query
correctly reduces the domains of X and Y :

|?- fd_domain([X,Y],-50,150), X ** 3 #= Y.

X = _#0(-3..5)

Y = _#17(-27..125)

The support for negative values in FD variables is achieved by carefully re-
designing the arithmetic constraints. An obvious side-effect of the modifications
is that some overhead is introduced, even when considering strictly positive FD
variables. The benchmark tests, see Section 6, will show the impact of the mod-
ifications compared to the original solver.

4 Handling Integer Overflows

4.1 Current limitations

The current implementation of GNU Prolog does not check for overflows. This
means that without preliminary domain definitions for X, Y and Z, the non-
linear constraint X × Y = Z will fail due to an overflow when computing the
upper bound of the domain of Z : 228 × 228. In 32-bit arithmetic, this overflow

8
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causes a negative result for the upper bound and the constraint then fails since
min(X) > max(X).

At present, the user needs to adapt the variable bounds beforehand to prevent
this constraint from failing. To reduce the burden to the user and improve the
robustness of the solver, we propose a better way of handling overflows.

4.2 Method and approach

There are two approaches to handle overflows. One is to report the problem via
an ISO exception (e.g. evaluation error), thereby informing the user that the
domain definitions for the FD variables are too mild and should be made more
restrictive. The other approach is to instrument the solver to detect overflows
and cap the result. As placing less restrictions on the user and more robustness
for the solver is desirable, the second approach is chosen.

The key idea behind preventing overflows is to detect when one would occur
and provide means to restrict this from happening. For the solver this means
that when a multiplication or power operation is applied in a constraint, an
overflow prevention check should be considered. This can also be the case for
other arithmetic operations.

Consider again the constraint X × Y = Z. Because both 1 × 228 = 228 and
228×1 = 228, the maximum value that both X and Y can take is 228. Therefore
the following (and current implementation) for finding the domain for Z causes
an overflow:

start Z in min(X) * min(Y) .. max(X) * max(Y)

For this case and similar instances, the following function is designed to cap
results of arithmetic, thereby preventing overflows:

static int inline mult(int a, int b)

{

int64_t res = ((int64_t) a) * ((int64_t) b);

if (res > max_integer)

res = max_integer;

else if (res < min_integer)

res = min_integer;

return (int) res;

}

Since integers only need 29-bits, the 64-bit result is enough to check if an overflow
occurs and cap the result if needed. In the constraint definitions, the standard
multiplication gets replaced with a mult call when it could cause an overflow.
For the X × Y = Z constraint, this is as follows:5

start Z in mult(min(X), min(Y)) .. mult(max(X), max(Y))

5 The constraint is further modified for negative values, along the same lines.

9
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As a consequence, the X × Y = Z constraint now gives the following result:

| ?- X * Y #= Z.

X = _#3(-268435456..268435455)

Y = _#20(-268435456..268435455)

Z = _#37(-268435456..268435455)

where -268435456 = fd min integer and 268435455 = fd max integer.
At first, we used mult for every applied multiplication in the constraint def-

initions. However, in some cases it is not necessary to check for overflows. For
instance, consider the implementations for ax eq y and x power a eq y of Sec-
tion 3.2. By first restricting the domain of X (in both cases), no overflow can
occur when the domain of Y is calculated. Note that if the domain of Y is com-
puted first, an overflow could happen. Note however, that such an optimization
is not possible for some constraints, for instance X × Y = Z, since the domains
of X and Y do not necessarily get reduced.

In conclusion, even if several overflow problems could be resolved by re-
arranging the order of execution, in general it is necessary to take preventive
measures.

5 New Domain Representation

5.1 Current limitations

In the current implementation, when a domain gets a hole, its representation
is switched to the Sparse form, which stores domains using a static-sized bit-
vector. The problem with this approach is that values which lie outside the
range 0..fd vector max are lost. An internal flag extra cstr is set when this
occurs to inform the user of lost values. Even though the user is able to globally
set fd vector max, there are several problems with this representation:

– The user has to know the variable bounds in advance; an over-estimate of
the domain size results in a waste of memory (and loss of efficiency).

– There is an upper-limit for fd vector max which is directly related to the
available memory space in bits. Also note that doing operations on a large
bit-vector can severely impact the performance.

– The current Sparse representation is unable to store negative values.

5.2 Method and approach

To deal with the limitations, a redesign is needed for the Sparse representation.
Some research has been done in representing sparse domains [13,14]. Consid-
ering the requirements – remain efficient while taking away the limitations –
there are several options for the redesign, while also considering alternatives and
variations:
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1. Use a list of MinMax chunks: Store only the minimum and maximum of
consecutively set values. The values between two chunks are defined to be
all unset. This is especially effective if the number of holes is small or large
gaps exist in the domain.

2. Use a list of bit-vector chunks: Use a bit-vector together with an offset to
store all (un)set actual values. The values between two chunks can either be
defined as all set or all unset (possibly defined per chunk with a variable).
This is in particular effective on small domains with many holes.

3. A combination of (1) and (2): Determine per chunk whether it should be a
MinMax chunk or bit-vector chunk, so that the number of total chunks is
minimal. This takes the advantages of both individual options but it does
introduce extra overhead for determining which representation to choose and
operations between two different chunk representations can become difficult.

Note that all suggested model takes away the limitations of the current design.
Le Clément et al. [13] provide a more in-depth analysis on the different repre-
sentations with respect to their time complexities. Note that differences arise
for specific operations on domains: for instance, a value removal is done more
efficiently in a bit-vector while iteration is more efficient on MinMax chunks.

We initially opted for the combination of the MinMax and bit-vector chunks
because the extra overhead is presumed to not be a significant factor. For the
moment, however, we implemented a list of MinMax chunks. Its performance
compared to the original Sparse implementation shows a limited slowdown fac-
tor, as discussed in Section 6. Because of these results (a slowdown is expected
anyway, due to the new possibilities), the addition of a bit-vector representation
was postponed. We now discuss the new implementation using a list of MinMax
chunks.

Range

Chunk #1 Chunk #2
[6..9] [11..60]

[6..100]

Chunk #3
[80..100]

Range
min
max
first
last

Chunk
min
max
prev
next

Fig. 3. Left: UML diagram of the new Sparse range, right: example for repre-
senting the set of values {6..9,11..60,80..100}.

The domain initially uses a MinMax representation (just a Range instance)
which only stores min and max, with first and last being null pointers. When
a hole appears, the domain switches to the Sparse representation by adding
Chunk instances. The range keeps track of the first and last chunk of the list
and continues to maintain the min and max of the whole domain (range.min
= range.first.min). The list is a doubly-linked list for efficient insertion and
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removal of chunks, each chunk maintains its minimum and maximum values.
This representation is depicted in Figure 3.

For every two consecutive chunks c1 and c2, we have c1.max + 1 < c2.min ;
chunks are sorted and always have at least one unset value between them. Fur-
thermore, ci.min ≤ ci.max.

Operations on Sparse ranges (e.g. intersection, union, ...) are efficiently done
by iterating over the chunks and updating these in place whenever possible. An
example of this is provided in Table 1 for intersecting two Sparse ranges. The
implementation only considers one chunk of each range at a time and the cases
are considered from top to bottom.

Case: Action (in pseudo code):

chunk 1.max < chunk 2.min - Remove chunk 1

- chunk 1 = chunk 1.next // advance chunk 1
chunk 1.max ≤ chunk 2.max - Create new chunk and set before chunk 1

with min = Max(chunk 1.min, chunk 2.min)
and max = Min(chunk 1.max, chunk 2.max)
- chunk 1 = chunk 1.next // advance chunk 1

chunk 1.min > chunk 2.max - chunk 2 = chunk 2.next // advance chunk 2

chunk 1.max > chunk 2.max - Create new chunk and set before chunk 1

with min = Max(chunk 1.min, chunk 2.min)
and max = Min(chunk 1.max, chunk 2.max)
- chunk 2 = chunk 2.next // advance chunk 2

Table 1. Implementation of the range intersection operation.

Because the solver may need to backtrack, domains need to be trailed. Mod-
ifications on domains can cause its chunks to disperse in memory, therefore all
chunks of the domain are saved on the trail, upon modification. A classical
timestamp technique is used to avoid trailing more than once per choice-point.

With this new implementation for the Sparse domain, it is now possible to
store negative values and the domain bounds are no longer limited to a static
arbitrary value, thereby rendering the extra cstr flag useless.

6 Performance Analysis

In this section we compare the original FD constraint solver to a version that
includes the new extensions. Table 2 presents the total execution times (in mil-
liseconds) for runs of several benchmarks. Neg + Ovfl consists of the negative
values extension and the overflow prevention (the Ovfl extension is implemented
simultaneously with Neg). Neg + Ovfl + Dom includes all three extensions pre-
sented in this article. Times are measured on a 64-bit i7 Processor, 2.40GHz×8
with 8GB memory running Linux (Ubuntu 13.10).6

6 The results can be reproduced with version 1.4.4 of GNU Prolog for the current
version and the git branch negative-domain for the new version.
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Program Original Neg + Ovfl Neg + Ovfl + Dom
Time Time Speedup Time Speedup

queens 29 429 414 1.04 644 0.66
digit8 ff (×100) 787 1197 0.66 1082 0.73
qg5 11 (×10) 610 593 1.03 813 0.75
queens ff 100 156 153 1.02 201 0.77
partit 600 200 266 0.75 254 0.79
eq20 (×100) 189 249 0.76 228 0.83
crypta (×1000) 888 1016 0.87 1075 0.83
langford 32 551 549 1.00 646 0.85
magsq 11 810 802 1.01 923 0.88
multipl (×10) 567 577 0.98 604 0.94
magic 200 180 178 1.02 180 1.00
donald (×10) 167 158 1.06 166 1.00
alpha (×10) 409 407 1.00 396 1.03
interval 256 (×10) 217 205 1.06 140 1.55

Geometric mean 364 389 0.94 413 0.88

Table 2. Performance Impact of Extensions (times in ms.)

The original implementation and the benchmark tests are solely designed
for the positive domain. Therefore the domain bounds are restricted to positive
values (using the environment variable discussed in Section 3.2), while making
use of the updated constraint definitions. Multiple test runs show an estimated
standard deviation of 3 milliseconds. The annotation (×10) indicates that the
test time is formed from 10 consecutive executions (to reduce the effect of the
deviation).

On average, the introduction of negative domains + overflow detection pe-
nalizes the benchmarks by 6%. This slowdown is an expected consequence of
the increased complexity, and we are quite pleased that it turns out small. The
worst case is for digit8 ff with a 34% performance loss (see [15] for a definition
of “performance gain”). The reason for this is because the square root is often
calculated, which is slower as both the positive and negative solutions are con-
sidered in the predicates. The best case scenario is for donald, which exhibits
a 6% performance gain over the base version: the redesign for the predicates
actually improved the solver’s performance in several cases.

With the inclusion of the new Sparse domain alongside the other extensions,
on average the benchmarks suffer a performance loss of 12%. The worst case test
is queens 29 with 34% and the best case, interval 256, has a 55% performance
gain over the base version. The queens 29 test creates a lot of holes on a small
domain which is more efficient with a bit-vector than MinMax chunks. The
interval 256 test often iterates on domains: this is more efficient in the new
Sparse domain because finding the nth element is achieved in O(nr. of holes)
time. The base version has to iterate over the bit-vector until the nth element is
found, making the time complexity O(size of bit-vector).
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Note that these benchmark tests do not utilize the enhanced capabilities of
the new solver. For instance, test programs that use the negative domain cannot
be tested in the original solver. It is therefore difficult to make a fair comparison.

7 Future Work

While the results show that the extensions only cause a limited slowdown factor,
there is much room for improvements.

The measures taken to prevent overflows can be optimized further. In the
new implementation, several unnecessary preventive checks are still being done:
for instance, for the constraint X + Y = Z no overflow detection is needed
when computing Z, since adding two 29-bit values cannot cause overflow in
32-bit arithmetic, yet it’s being checked for. Furthermore, when the run-time
domain bounds imply that no overflows can occur; for instance if X and Y are
in 0..10 there is no need to check for overflow in the constraint X×Y = Z, since
domains are reduced monotonically. As seen in section 3.2, supporting negative
numbers for XA = Y implies testing the parity of A. At present this is done
every time the constraint is reactivated, however, with a slightly more complex
compilation scheme, there will be two versions of the execution function (see 2.1):
one specialized for even As and another for odd. The installation function would
be responsible to select the adequate execution function, depending on the actual
value of A at run-time. This will entail enriching the FD language to be able to
express user-specified installation procedures.

It will definitely be interesting to combine our new Sparse domain represen-
tation with bit-vectors, whenever applicable. We will experiment in this direc-
tion. Similarly, instead of using a (doubly-linked) list for maintaining chunks,
a tree-structure is likely to be more efficient. Ohnishi et al. [14] describe how
a balanced tree structure is realized on interval chunks. Incorporation of this
structure should improve the time complexity on insertion and deletion from
O(n) to O(log n) (for n as the number of chunks) in worst case scenarios.

The added expressiveness allows us to tackle more complex problems, which
were previously hard or impossible to model. These will also have to be bench-
marked against other systems.

8 Conclusion

We presented a set of extensions to the GNU Prolog FD solver which allow
it to more gracefully handle real-world problems. Central to these is a domain
representation that, in order to gain generality, forgoes the compactness found
in the existing solver: we moved from static vectors to dynamic data structures.
The solver is now also capable of handling negative values and measures were
taken to improve its robustness and correctness. The result is a system which
can more easily model complex problems.
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The performance evaluation of the initial, suboptimal, implementation shows
encouraging results: the slowdown is quite acceptable, in the order of 12%. Fur-
thermore, we have proposed ways to further reduce the impact of these design
options, and thus hope to reclaim the lost performance.
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A λProlog Based Animation
of Twelf Specifications
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Abstract. Specifications in the Twelf system are based on a logic pro-
gramming interpretation of the Edinburgh Logical Framework or LF. We
consider an approach to animating such specifications using a λProlog
implementation. This approach is based on a lossy translation of the de-
pendently typed LF expressions into the simply typed lambda calculus
(STLC) terms of λProlog and a subsequent encoding of lost dependency
information in predicates that are defined by suitable clauses. To use
this idea in an implementation of logic programming a la Twelf, it is
also necessary to translate the results found for λProlog queries back
into LF expressions. We describe such an inverse translation and show
that it has the necessary properties to facilitate an emulation of Twelf
behavior through our translation of LF specifications into λProlog pro-
grams. A characteristic of Twelf is that it permits queries to consist
of types which have unspecified parts represented by meta-variables for
which values are to be found through computation. We show that this
capability can be supported within our translation based approach to
animating Twelf specifications.

1 Introduction

The Edinburgh Logical Framework or LF [4] is a dependently typed lambda
calculus that has proven useful in specifying formal systems such as logics and
programming languages (see, e.g., [5]). The key to its successful application in
this setting is twofold. First, the abstraction operator that is part of the syntax
of LF provides a means for succinctly encoding formal objects whose structures
embody binding notions. Second, LF types can be indexed by terms and, as
such, they can be used to represent relations between objects that are encoded
by terms. More precisely, types can be viewed as formulas and type checking as
a means for determining if a given term represents a proof of that formula. Proof
search can be introduced into this context by interpreting a type as a request
to determine if there is a term of that type. Further, parts of a type can be
left unspecified, thinking of it then as a request to fill in these parts in such a
way that the resulting type is inhabited. Interpreting types in this way amounts
to giving LF a logic programming interpretation. The Twelf system [9, 10] is a
realization of LF that is based on such an interpretation.

An alternative approach to specifying formal systems is to use a predicate
logic. Objects treated by the formal systems can be represented by the terms of
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this logic and relations between them can be expressed through predicates over
these terms. If the terms include a notion of abstraction, e.g., if they encompass
simply typed lambda terms, then they provide a convenient means for represent-
ing binding notions. By restricting the formulas that are used to model relations
suitably, it is possible to constrain proof search behavior so that the formulas can
be given a rule-based interpretation. The logic of higher-order hereditary Harrop
formulas (hohh) has been designed with these ideas in mind and many exper-
iments have shown this logic to be a useful specification device (see, e.g., [7]).
This logic has also been given a computational interpretation in the language
λProlog [8], for which efficient implementations such as the Prolog/Mali [1] and
the Teyjus [11] systems have been developed.

The two different approaches to specification that are described above have
a relationship that has been explored formally. In early work, Felty and Miller
showed that LF derivations could be encoded in hohh derivations by describing
a translation from the former to the latter [3]. This translation demonstrated the
expressive power of hohh, but did not show the correspondence in proof search
behavior. To rectify this situation, Snow et. al. described a transformation of LF
specifications into hohh formulas that allowed the construction of derivations
to be related [12]. This work also showed how to make the translation more
efficient by utilizing information available from a static checking of LF types,
and it refined the resulting hohh specifications towards making their structure
more closely resemble that of the LF specifications they originated from.

The primary motivation for the work of Snow et. al. was a desire to use
Teyjus as a backend for an alternative implementation of logic programming in
Twelf. However, it falls short of achieving this goal in two ways that we address
in this paper. First, although it relates derivations from LF specifications to ones
from their translations, it does not make explicit the process of extracting an LF
“result” term from a successful hohh derivation; such an extraction is necessary if
Teyjus is to serve as a genuine, invisible backend. To close this gap, we describe
an inverse translation and show that it has the necessary properties to allow
Twelf behavior to be emulated through computations from λProlog programs.
Second, Snow et. al. dealt only with closed types, i.e., they did not treat the idea
of filling in missing parts of types in the course of looking for an inhabitant. To
overcome this deficiency, we include meta-variables in specifications and treat
them in the back-and-forth translations as well as in derivations; the last aspect,
that is also the most critical one in our analysis, requires us to build substitutions
and unification explicitly into our formalization of derivations.

The remainder of this paper is structured as follows. Sections 2 and 3 re-
spectively present LF and the hohh logic together with their computational
interpretations. Section 4 describes a translation from LF specifications into
hohh ones together with an inverse translation for extracting solution terms
from hohh derivations. We then propose an approach for developing a proof of
correctness for this translation. Section 5 improves the basic translation and Sec-
tion 6 uses it to illustrate our proposed approach to realizing logic programming
in Twelf. Section 7 concludes the paper.
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X : A ∈ ∆
meta-var

Γ `Σ X : A

Σ sig c : A ∈ Σ
const-obj

Γ `Σ c : Aβ
Γ `Σ A : Type Γ, x : A `Σ M : B

abs-obj
Γ `Σ (λx:A.M) : (Πx:Aβ .B)

`Σ Γ ctx x : A ∈ Γ
var-obj

Γ `Σ x : Aβ
Γ `Σ M : Πx:A.B Γ `Σ N : A

app-obj
Γ `Σ (M N) : (B[N/x])β

Fig. 1. Rules for typing LF objects

2 Logic programming in LF

Three categories of expressions constitute LF: kinds, type families or types which
are classified by kinds, and objects which are classified by types. Below, x denotes
an object variable, X an object meta-variable, c an object constant, and a a type
constant. Letting K range over kinds, A and B over types, and M and N over
objects, the syntax of these expressions is given as follows:

K ::= Type | Πx:A.K
A,B ::= a | Πx:A.B | A M
M,N ::= c | x | X | λx:A.M | M N

Both Π and λ are binders which also assign types to the (object) variables
they bind over expressions. Notice the dependency present in LF expressions: a
bound object variable may appear in a type family or kind. In the remainder of
this paper we use U and V ambiguously for types and objects and P similarly
for types and kinds. The shorthand A → P is used for Πx:A.P if P is a type
family or kind that is not dependent on the bound variable, i.e. if x does not
appear free in P . Terms differing only in bound variable names are identified.
We write U [M1/x1, . . . ,Mn/xn] to denote the capture avoiding substitution of
M1, . . . ,Mn for the free occurrences of x1, ..., xn respectively in U .

LF kinds, types and objects are formed relative to a signature Σ that identi-
fies constants together with their kinds or types. In determining if an expression
is well-formed, we additionally need to consider contexts, denoted by Γ , that
assign types to variables. The syntax for signatures and contexts is as follows:

Σ ::= · | Σ, a : K | Σ, c : A Γ ::= · | Γ, x : A

In contrast to usual LF presentations, we have allowed expressions to contain ob-
ject meta-variables. We assume an infinite supply of such variables for each type
and that an implicit meta-variable context ∆ assigns types to these variables.
These meta-variables act as placeholders, representing the part of an expression
one wishes to leave unspecified.

Complementing the syntax rules, LF has typing rules that limit the set of
acceptable or well-formed expressions. These rules define the following mutually
recursive judgments with the associated declarative content:

Σ sig Σ is a valid signature
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`Σ Γ ctx Γ is a valid context relative to the (valid) signature Σ
Γ `Σ K kind K is a valid kind in signature Σ and context Γ
Γ `Σ A : K A is a type of kind K in a signature Σ and context Γ
Γ `Σ M : A M is an object of type A in signature Σ and context Γ

In our discussion of logic programming, we rely on a specific knowledge of the
rules for only the last of these judgments which we present in Figure 1; an
intuition for the other rules should follow from the ones presented and their
explicit presentation can be found, e.g., in [4]. By these rules we can see that if a
well-formed expression contains a meta- variable X of type A, then replacing the
occurrences of X with a well- formed object of type A will produce an expression
which is also well-formed.

The rules in Figure 1 make use of an equality notion for LF expressions that
is based on β-conversion, i.e., the reflexive and transitive closure of a relation
equating two expressions which differ only in that a subexpression of the form
((λx:A.M) N) in one is replaced by M [N/x] in the other. We shall write Uβ

for the β-normal form of an expression, i.e., for an expression that is equal to U
and that does not contain any subexpressions of the form ((λx:A.M) N). Such
forms are not guaranteed to exist for all LF expressions. However, they do exist
for well-formed LF expressions [4], a property that is ensured to hold for each
relevant LF expression by the premises of every rule whose conclusion requires
the β-normal form of that expression.

Equality for LF expressions also includes η-conversion, i.e., the congruence
generated by the relation that equates λx:A.(M x) and M if x does not appear
free in M . The β-normal forms for the different categories of expressions have
the following structure

Kind Πx1:A1. . . . Πxn:An.T ype
Type Πy1:B1. . . . Πyn:Bm.a M1 . . . Mn

Object λx1:A1. . . . λxn:An.u M1 . . . Mn

where u is an object constant or variable and where the subterms and subtypes
appearing in the expression recursively have the same form. We refer to the part
corresponding to a M1 . . . Mn in a type in this form as its target type and to
B1, . . . , Bm as its argument types. Let w be a variable or constant which appears
in the well-formed term U and let the number of Πs that appear in the prefix
of its type or kind in beta normal form be n. We say w is fully applied if every
occurrence of w in U has the form w M1 . . .Mn. A type of the form a M1 . . .Mn

where a is fully applied is a base type. We also say that U is canonical if it
is in normal form and every occurrence of a variable or constant in it is fully
applied. It is a known fact that every well-formed LF expression is equal to one
in canonical form by virtue of βη-conversion [4]. For the remainder of this paper
we will assume all terms are in β-normal form.

A specification in LF comprises a signature that, as we have seen, identifies
a collection of object and type constants. The Curry-Howard isomorphism [6]
allows types to be interpreted dually as formulas. The dependent nature of the

CICLOPS-WLPE 2014

66



nat : type. list : type.

z : nat. nil : list.

s : nat -> nat. cons : nat -> list -> list.

append : list -> list -> list -> type.

app-nil : append nil L L.

app-cons : append L1 L2 L3 -> append (cons X L1) L2 (cons X L3).

Fig. 2. A Twelf signature specifying lists and the append relation

LF type system allows type constants to take objects as arguments. Such con-
stants then correspond to the names of predicates over suitably typed objects.
Moreover, the same isomorphism allows object constants, which provide a means
for constructing expressions of particular types, to be viewed as the names of
parameterized rules for constructing proofs of the relations represented by the
types.

Figure 2 presents a concrete signature to illustrate these ideas. In showing
this and other similar signatures, we use the Twelf syntax for LF expressions. In
this syntax, Πx:A.U is written as {x : A} U and λx:A.M is written as [x : A] M .
Further, bindings and the corresponding type annotations on variables are made
implicit in situations where the types can be uniquely inferred; the variables
that are implicitly bound are denoted in Prolog style by tokens that begin with
uppercase letters. The initial part of the signature in Figure 2 defines type and
object constants that provide a representation of the natural numbers and lists
of natural numbers. The signature then identifies a type constant append that
takes three lists as arguments. Under the viewpoint just explained, this constant
can be interpreted as a predicate that relates three lists. Objects of this type
can be constructed by using the constants app-nil and app-cons that are also
presented in the signature. Viewed differently, these constants name rules that
can be used to construct a proof of the append relation between three lists.
Notice that app-cons requires as an argument an object of append type. This
object plays the role of a premise for the rule that app-cons identifies.

The logic programming use of LF that underlies Twelf consists of presenting
a type A in the setting of a signature Σ. Such a type corresponds to the request
to find an object M such that the judgment `Σ M : A is derivable. Alternately,
a query in Twelf can be seen as the desire to determine the derivability of a
formula, the inhabiting term that is found being its proof. The type that is
presented as a query may also contain meta-variables, denoted by tokens that
begin with uppercase letters. In this case, the request is to find substitutions for
these variables while simultaneously showing that the instance type is inhabited.

An example of a query relative to the signature in Figure 2 is the following.

append (cons z nil) nil L

An answer to this query is the substitution (cons z nil) for L, together with the
object (app-cons (cons z nil) nil (cons z nil) (app-nil nil)) that in-
habits that type. Another query in this setting is

{x:nat} append (cons x nil) (cons z (cons x nil)) (L x).
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>R
Ξ;Γ −→ >

Ξ;Γ ∪ {D} −→ G
⊃R

Ξ;Γ −→ D ⊃ G
c /∈ Ξ Ξ ∪ {c};Γ −→ G[c/x]

∀R
Ξ;Γ −→ ∀x.G

Ξ;Γ −→ G1[
−−−→
t1/x1] . . . Ξ;Γ −→ Gn[

−−−→
t1/x1, . . . ,

−−−→
tn/xn]

backchain
Ξ;Γ −→ A

where ∀−→x1.(G1 ⊃ . . . ⊃ ∀−→xn.(Gn ⊃ A′) . . .) ∈ Γ ,
−→
t1 , . . . ,

−→
tn are Ξ-terms and A′[

−−−→
t1/x1, . . . ,

−−−→
tn/xn] = A

Fig. 3. Derivation rules for the hohh logic

in which L is a “higher-order” meta-variable of type nat -> list. The substi-
tution that would be computed by Twelf for the variable L in this query is

[y:nat] (cons y (cons z (cons y nil))),

and the corresponding inhabitant or proof term is

[y:nat] app-cons nil (cons z (cons y nil))

(cons z (cons y nil)) y

(app-nil (cons z (cons y nil)))

Notice that the variable x that is explicitly bound in the query has a different
interpretation from the meta-variable L. In particular, it receives a “universal”
reading: the query represents a request to find a value for L that yields an
inhabited type regardless of what the value of x is.

Although neither of our example queries exhibited this behavior, the range
of an answer substitution may itself contain variables and there may be some
residual constraints on these variables presented in the form of a collection of
equations between object expressions called “disagreement pairs.” The interpre-
tation of such an answer is that a complete solution can be obtained from the
provided substitution by instantiating the remaining variables with closed object
expressions that render identical the two sides of each disagreement pair.

3 Logic programming based on hohh

An alternative approach to specifying formal systems is to use a logic in which
relationships between terms are encoded in predicates. The idea of animating a
specification then corresponds to constructing a proof for a given “goal” formula
in the chosen logic. To yield a sensible notion of computation, specifications
must also be able to convey information about how a search for a proof should
be conducted. Towards this end, we use here the logic of higher-order hereditary
Harrop formulas, referred to in short as the hohh logic. This logic underlies the
programming language λProlog [8].

The hohh logic is based on Church’s Simple Theory of Types [2]. The ex-
pressions of this logic are those of a simply typed λ-calculus (STLC). Types
are constructed from the atomic type o for propositions and a finite set of other
atomic types by using the function type constructor→. We assume we have been
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nat : type. list : type.

z : nat. nil : list.

s : nat -> nat. cons : nat -> list -> list.

append : list -> list -> list -> o.

∀L. append nil L L.

∀X∀L1∀L2∀L3. append L1 L2 L3 ⊃ append (cons X L1) L2 (cons X L3).

Fig. 4. An hohh specification of lists and the append relation

given a set of variables and a set of constants, each member of these sets being
identified together with a type. More complex terms are constructed from these
atomic symbols by using application and λ-abstraction in a way that respects
the constraints of typing. As in LF, terms differing only in bound variable names
are identified. The notion of equality between terms is further enriched by β- and
η-conversion. When we orient these rules and think of them as reductions, we
are assured in the simply typed setting of the existence of a unique normal form
for every well-formed term under these reductions. Thus, equality between two
terms becomes the same as the identity of their normal forms. For simplicity, in
the remainder of this paper we will assume that all terms have been converted
to normal form. We write t[s1/x1, . . . , sn/xn] to denote the capture avoiding
substitution of the terms s1, . . . , sn for free occurrences of x1, ..., xn in t.

Logic is introduced into this setting by identifying a sub-collection of the set
of constants as logical constants and giving them a special meaning. The logical
constants that we shall use here are the following:

> of type o
⊃ of type o→ o→ o
Π of type (τ → o)→ o for each type τ

We intend > to denote the always true proposition and ⊃, which we will write in
infix form, to denote implication. The symbol Π corresponds to the generalized
universal quantifier: the usual notation ∀x.F for universal quantification serves
as a shorthand for Π(λx.F ).

To construct a specification within the hohh logic, a user must identify a
collection of types and a further set of constants, called non-logical constants,
together with their types. A collection of such associations forms a signature.
There is a proviso on the types of non-logical constants: their argument types
must not contain o. Non-logical constants that have o as their target or result
type correspond to predicate symbols. If c is such a constant with the type
τ1 → . . .→ τn → o and t1, . . . , tn are terms of type τ1, . . . , τn, respectively, then
the term (c t1 . . . tn) of type o constitutes an atomic formula. We shall use the
syntax variable A to denote such formulas. More complex terms of type o are
constructed from atomic formulas by using the logical constants. Such terms are
also referred to as formulas.

The hohh logic is based on two special classes of formulas identified by the
following syntax rules:

G ::= > | A | D ⊃ G | ∀x.G D ::= A | G ⊃ D | ∀x.D
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φ(A) := lf-obj when A is a base type

φ(Πx:A.P ) := φ(A)→ φ(P )

φ(Type) := lf-type

〈u〉 := u

〈x〉 := x

〈X〉 := X

〈M1 M2〉 := 〈M1〉 〈M2〉
〈λx:A.M〉 := λφ(A)x.〈M〉

Fig. 5. Flattening of types and encoding of terms

We will refer to a D-formula also as a program clause. Notice that, in elaborated
form, such a formula has the structure ∀−→x1.(G1 ⊃ . . . ⊃ ∀−→xn.(Gn ⊃ A) . . .); we
write ∀−→xi here to denote a sequence of universal quantifications.

The computational interpretation of the hohh logic consists of thinking of a
collection of D-formulas as a program and a G-formula as a goal or query that
is to be solved against a given program P in the context of a given signature Ξ.
We represent the judgment that the query G has a solution in such a setting by
the “sequent” Ξ;P −→ G. The rules for deriving such a judgment are shown in
Figure 3. Using these rules to search for a derivation leads to a process in which
we first simplify a goal in a manner determined by the logical constants that
appear in it and then employ program clauses in a familiar backchaining mode
to solve the atomic goals that are produced. A property of the hohh logic that
should be noted is that both the program and the signature can change in the
course of a computation.

We illustrate the use of these ideas in practice by considering, once again,
the encoding of lists of natural numbers and the append relation on them. Fig-
ure 4 provides both the signature and the program clauses that are needed
for this purpose. This specification is similar to one that might be provided
in Prolog, except for the use of a curried notation for applications and the
fact that the language is now typed. We “execute” these specifications by pro-
viding a goal formula. As with Twelf, we will allow goal formulas to contain
free or meta-variables for which we intend instantiations to be found through
proof search. A concrete example of such a goal relative to the specification
in Figure 4 is (append (cons z nil) nil L). This goal is solvable with the
substitution (cons z nil) for L. Another example of a query in this setting is
∀x.(append (cons x nil) (cons z (cons x nil)) (L x)) and an answer to
this goal is the substitution λy.(cons y (cons z (cons y nil))) for L.

4 Translating Twelf specifications into predicate form

We now turn to the task of animating Twelf specifications using a λProlog
implementation. Towards this end, we describe a meaning preserving translation
from LF signatures into hohh specifications. Our translation extends the one in
[12] by allowing for meta-variables in LF expressions. We also present an inverse
translation for bringing solutions back from λProlog to the Twelf setting.
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{{Πx:A.B}} := λM. ∀x. ({{A}} x) ⊃ ({{B}} (M x))

{{A}} := λM. hastype M 〈A〉 where A is a base type

Fig. 6. Encoding of LF types using the hastype predicate

The first step in our translation is to map dependently typed lambda expres-
sions into simply typed ones. We shall represent both types and objects in LF by
STLC terms (which are also hohh terms), differentiating the two categories by
using the (simple) type lf-obj for the encodings of LF objects and lf-type for those
of LF types. To play this out in detail, we first associate an hohh type with each
LF type and kind that is given by the φ(·) mapping shown in Figure 5. Then,
corresponding to each object and type-level LF constant u : P , we identify an
hohh constant with the same name but with type φ(P ). Finally, we transform
LF objects and kinds into hohh terms using the 〈·〉 mapping in Figure 5.

We would like to consider an inverse to the transformation that we have
described above. We have some extra information available in constructing such
an inverse: the constants that appear in the hohh terms of interest have their
correlates which have been given specific types in the originating LF signature.
Even so, the lossy nature of the translation makes the inversion questionable.
There are two kinds of problems. First, because (the chosen) simple typing is
not sufficiently constraining, we may have well-formed STLC terms for which
there is no corresponding LF expression. As a concrete example, consider the
following LF signature:

i : type j : type a : i -> j c : i

In the encoding we will have the following two constants with associated types:

a : lf-obj -> lf-obj c : lf-obj

This means that we can construct the simply typed term (a (a c)) which
cannot be the image of any LF expression that is well-formed under the given
signature. The second problem is that when an hohh term involves an abstrac-
tion, the choice of LF type to use for for the abstracted variable is ambigu-
ous. As a concrete example, consider the hohh term λx.x that has the type
lf-obj -> lf-obj. This term could map to the LF objects [x:nat] x and
[x:list] x, amongst many other choices.

Our solution to these problems is twofold. First, we will assume that we
know the type of the LF object that the inversion is to produce; this information
will always be available when the hohh terms arise in the course of simulating
LF typing derivations using hohh derivations. Second, we will define inversion
as a partial function: when we use it to calculate an LF expression from an
answer substitution returned by an hohh computation, we will have an additional
obligation to show that the inverse must exist.

The rules in Figure 7 define the inverse transformation. The judgments
inv↓(t;A;Θ) = M and inv↑(t;A;Θ) = M are to be derivable when t is an
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X : A ∈ ∆
inv-var

inv↑(X;A;Θ) = X

inv↓(M ;B;Θ, x : A) = M ′
inv-abs

inv↓(λx.M ;Πx:A.B;Θ) = λx:A.M ′

inv↑(M1;Πx:B.A;Θ) = M ′1 inv↓(M2;B;Θ) = M ′2
inv-app

inv↑(M1 M2;A[M ′2/x];Θ) = M ′1 M
′
2

u : A ∈ Θ
inv-const

inv↑(u;A;Θ) = u

inv↑(M ;A;Θ) = M ′
inv-syn

inv↓(M ;A;Θ) = M ′

Fig. 7. An inverse encoding

hohh term in β-normal form that inverts to the LF object M that has type A
in a setting where variables and constants are typed according to Θ. The differ-
ence between the two judgments is that the first expects A as an input whereas
the second additionally synthesizes the type. The process starts with checking
against an LF type—this type will be available from the original LF query—and
it is easily shown that if inv↓(t;A;Σ ∪ Γ ) = M , then Γ `Σ M : A. Notice that
we will only ever check an abstraction term against an LF type, ensuring that
the type chosen for the bound variable will be unique. We say a substitution θ is
invertible in a given context and signature if each term in its range is invertible
in that setting, using the type associated with the domain variable by ∆.

The translation of LF expressions into hohh terms loses all relational informa-
tion encoded by dependencies in types. For example it transforms the constants
encoding the append relation in Figure 2 into the following hohh signature:

append : lf-obj -> lf-obj -> lf-obj -> lf-type.

app-nil : lf-obj -> lf-obj.

app-cons : lf-obj -> lf-obj ->

lf-obj -> lf-obj -> lf-obj -> lf-obj.

It is no longer possible to construe this as a specification of the append relation
between lists. To recover the lost information, we employ a second pass that uses
predicates to encode relational content. This pass employs the hohh predicate
hastype with type lf-obj→ lf-type→ o and generates clauses that are such that
hastype X T is derivable from them exactly when X is the encoding of an LF
term M of a base LF type whose encoding is T . More specifically, this pass
processes each item of the form U : P in the LF signature and produces from it
the clause {{P}} 〈U〉 using the rules in Figure 6 that define {{·}}.

To illustrate the second pass, when used with the signature in Figure 2, we
see that it will produce the following clauses:

hastype z nat.

∀x.hastype x nat ⊃ hastype (s x) nat.

hastype nil list.

∀x.(hastype x nat ⊃
∀l.(hastype l list ⊃ hastype (cons x l) list)).

∀l.hastype l list ⊃ hastype (app-nil l) list.
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∀x.(hastype x nat ⊃ ∀l1.(hastype l1 list ⊃
∀l2.(hastype l2 list ⊃ ∀l3.(hastype l3 list ⊃
∀a.(hastype a (append l1 l2 l3)⊃
hastype (app-cons x l1 l2 l3 a)

(append (cons x l1) l2 (cons x l3))))))).

Contrasting these clauses with the ones of the λProlog program in Figure 4, we
see that it is capable not only of producing answers to append queries but also
a “proof-term” that traces the derivation of such queries.

The correctness of our translation is captured by the following theorem
(whose proof is currently incomplete). We had said earlier that when looking
at terms that are produced by hohh derivations from LF translations, we would
have an assurance that these terms are invertible. This is a property that flows,
in fact, from the structure of the hastype clauses: as a hohh derivation is con-
structed, all the substitution terms that are generated are checked to be of the
right type using the hastype predicate, and so we will not be able to construct
a term which is not invertible.

Theorem 1. Let Σ be an LF signature and let A be an LF type that possibly
contains meta-variables.

1. If Twelf solves the query M : A with the ground answer substitution σ, then
there is an invertible answer substitution θ for the goal {{A}} 〈M〉 wrt {{Σ}}
such that the inverse θ′ of θ generalizes σ (i.e. there exists a σ′ such that
σ′ ◦ θ′ = σ).

2. If θ is an invertible answer substitution for {{A}} 〈M〉, then its inverse is an
answer substitution for M : A.

Our approach to proving this theorem is to consider the operational semantics
of the two systems and to show that derivations in each system can be factored
into sequences of steps that can be simulated by the other system. Moreover, this
simulation ensures the necessary relationships hold between the answer substitu-
tions that are gradually developed by the derivations in the respective systems.

5 Optimizing the translation

The translation presented in the preceding section does not lend itself well to
proof search because it generates a large amount of redundant typing checking.
There are many instances when this redundancy can be recognized by a direct
analysis of a given Twelf specification: in particular, we can use a structural
analysis of an LF expression to determine that a term being substituted for
a variable must be of the correct type and hence it is unnecessary to check
this explicitly. In this section we develop this idea and present an improved
translation. We also discuss another optimization that reflect the types in the
Twelf signature more directly into types in hohh. The combination of these
optimizations produce clauses that are more compact and that resemble those
that might be written in λProlog directly.
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dom(Γ ); ·;x @o Ai for some Ai in
−→
A

APPt

Γ ;x @t c
−→
A

Γ, y : A;x @t B
PIt

Γ ;x @t Πy:A.B

Γ1;x @t B Γ1, y : B,Γ2; y @t A
CTXt

Γ1, y : B,Γ2;x @t A
yi ∈ δ for each yi in −→y each variable in −→y is distinct

INITo

∆; δ;x @o x −→y
y /∈ ∆ and ∆; δ;x @o Mi for some Mi in

−→
M

APPo

∆; δ;x @o y
−→
M

∆; δ, y;x @o M
ABSo

∆; δ;x @o λy:A.M

Fig. 8. Strictly occurring variables in types and objects

We are interested in translating an LF type of the formΠx1:A1. . . . Πxn:An.B
into an hohh clause that can be used to determine if a type B′ can be viewed as
an instance B[M1/x1, . . . ,Mn/xn] of the target type B. This task also requires
us to show that M1, . . . ,Mn are inhabitants of the types A1, . . . , An; in the naive
translation, this job is done by the hastype formulas pertaining to xi and Ai that
appear in the body of the hohh clause produced for the overall type. However, a
particular xi may occur in B in a manner which already makes it clear that the
term Mi which replaces it in any instance of B must possess such a property.
What we want to do, then, is characterize such occurrences of xi such that we
can avoid having to include an inhabitation check in the hohh clause.

We define a strictness condition for variable occurrences and, hence, for vari-
ables that possesses this kind of property. By using this condition, we can simplify
the translation of a type into an hohh clause without losing accuracy. In addition
to efficiency, such a translation also produces a result that bears a much closer
resemblance to the LF type from which it originates.

The critical idea behind this criterion is that the path down to the occurrence
of x is rigid, i.e., it cannot be modified by substitution and x is not applied to
arguments in a way that could change the structure of the expression substituted
for it. We know that the structure will be unchanged by application of arguments
by requiring the occurrence of x to be applied only to distinct λ-bound variables.
Thus we know that any term substituted for x has the correct type without
needing to explicitly check it. Specifically, we say that the bound variable xi
occurs strictly in the type Πx1:A1. . . . Πxn:An.B if it is the case that

x1 : A1, . . . , xi−1 : Ai−1;xi @t Πxi+1:Ai+1. . . . Πxn:An.B

holds. We have been able to extend the strictness condition as described in [12]
recursively while preserving its utility in recognizing redundancy in type check-
ing. We consider occurrences of bound variables to be strict in the overall type
if they are strict in the types of other bound variables that occur strictly in the
target type. The relation defined in Figure 8 formalizes this idea.

When Γ ;x @t A is derivable it means that the variable x appears strictly in
the type A in the context Γ . As we work down through the structure of a type
we will eventually look at a specific term M and a derivation of ∆; δ;x @o M
means that x appears strictly in the term M . Here, ∆ and δ are both lists of
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φ(a M1 . . .Mn) := a-type

φ(Πx:A.P ) := φ(A)→ φ(P )

φ(Type) := lf-type

〈u〉 := u

〈x〉 := x

〈X〉 := X

〈M1 M2〉 := 〈M1〉 〈M2〉
〈λx:A.M〉 := λφ(A)x.〈M〉

JΠx:A.BK+Γ :=

{
λM. ∀x. > ⊃ JBK+Γ,x(M x) if Γ ;x @t B
λM. ∀x. JAK−(x) ⊃ JBK+Γ,x(M x) otherwise

Ju −→N K+Γ := λM. u
−−→〈N〉 M

JΠx:A.BK− := λM. ∀x. JAK+· (x) ⊃ JBK−(M x)

Ju −→N K− := λM. u
−−→〈N〉 M

Fig. 9. Optimized translation of Twelf signatures to λProlog programs

variables where δ contains the λ-bound variables currently in scope, while ∆
contains the Π-quantified variables collected while walking through the type A.

Another, more direct, optimization is to reflect the LF types into types in
the simply typed lambda calculus. Along with this optimization we can also use
specialized predicates, rather than just hastype. For each LF type u : K we will
create a new atomic type u-type in hohh, as well as a new predicate u which
has the type φ(K) -> u-type -> o. We then use these to encode the signature
in a more natural way. See Figure 9 for the new translation.

There are now two modes in which translation operates, the negative, J·K−,
which is essentially the same as before in that it does not check for strictness
of bound variables, and the positive, J·K+, which will only generate hastype
formulas for variables which do not appear strictly. We do this to insure that
the eliminations occur in situations in which it makes sense to think of the
implication encoding an inhabitation check. We will write ∀x.JBK+Γ,x(M x) for

∀x.> ⊃ JBK+Γ,x(M x) in future to simplify the generated signatures. These op-
timizations not only clean up the generated signature, but they also improve
performance as we have limited the number of clauses which match the head of
any given goal formula.

6 An illustration of the translation approach

We illustrate the use of the ideas described in the earlier sections by considering
the append relation specified in Twelf by the signature in Figure 2. The Twelf
query that we shall consider is the following that we previously saw in Section 2:

{x:nat} append (cons x nil) (cons z (cons x nil)) (L x).

This query asks for a substitution for L that yields an inhabited type and an
object that is a corresponding inhabitant.
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nat : nat-type -> o.

list : list-type -> o.

append : list-type -> list-type -> list-type -> append-type -> o.

nat z.

∀x. nat x ⊃ nat (s x).

list nil.

∀x.(nat x ⊃ ∀l. list l ⊃ list (cons x l)).

∀l. append nil l l (app-cons l).

∀x∀l1∀l2∀l3∀a. append l1 l2 l3 a ⊃
append (cons x l1) l2 (cons x l3) (app-cons x l1 l2 l3 a).

Fig. 10. The Twelf specification of append translated into λProlog

Applying the optimized translation to the signature in Figure 2 yields the
λProlog program shown in Figure 10. Further, the Twelf query of interest trans-
lates into the hohh goal formula

∀x. append (cons x nil) (cons z (cons x nil)) (L x) M.

The answer substitution for this goal in λProlog is

L = y\ cons y (cons z (cons y nil)),

M = y\ app-cons nil (cons z (cons y nil))

(cons z (cons y nil)) y

(app-nil (cons z (cons y nil)))

Applying the inverse translation described in Section 4 to this answer substitu-
tion yields the value for L and the proof term for the Twelf query that we saw
in Section 2.

7 Conclusion

We have considered here the possibility of implementing the logic programming
treatment of LF specifications that is embodied in Twelf by using the Teyjus
implementation of λProlog as a backend. Central to the approach we have ex-
amined is a meaning-preserving translation of Twelf specifications into λProlog
programs. The basic structure of such a translation has previously been described
by Snow et. al. [12]. However, to use our approach in an actual implementation
of Twelf, it is necessary to complement the translation with a method for turn-
ing solutions found in the λProlog setting into expressions in LF syntax that
constitute answers to the original queries. Towards this end, we have described
an inverse encoding that maps hohh terms back to LF objects that are well-
formed with respect to the starting signature. In their translation, Snow et. al.
only considered LF expressions that are closed. To capture the full scope of
logic programming in Twelf, we have allowed LF types that constitute queries
to contain meta-variables and we have provided a treatment for such variables
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in both the back-and-forth translations and in derivations. Finally, we have for-
mulated a correctness theorem for our approach to implementing Twelf and we
have outlined a method for proving this theorem that relates a unification based
operational semantics for Twelf and the hohh logic. Our ongoing work is directed
at completing the proof of the correctness theorem and at obtaining an empirical
assessment of our proposed approach by experimenting with an implementation
of Twelf that is based on it.
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Abstract. Indexing of terms and clauses is a well-known technique used
in Prolog implementations (as well as automated theorem provers) to
speed up search. In this paper we show how the same mechanism can be
used to implement efficient reversible mappings between different term
representations, which we call pre-indexings. Based on user-provided
term descriptions, these mappings allow us to use more efficient data
encodings internally, such as prefix trees. We show that for some classes
of programs, we can drastically improve the efficiency by applying such
mappings at selected program points.

1 Introduction

Terms are the most important data type for languages and systems based on
first-order logic, such as (constraint) logic programming or resolution-based au-
tomated theorem provers. Terms are inductively defined as variables, atoms,
numbers, and compound terms (or structures) comprised by a functor and a
sequence of terms.3 Two main representations for Prolog terms have been pro-
posed. Early Prolog systems, such as the Marseille and DEC-10 implementations,
used structure sharing [2], while the WAM [13,1] –and consequently most modern
Prolog implementations– uses structure copying. In structure sharing, terms are
represented as a pair of pointers, one for the structure skeleton, which is shared
among several instances, and another for the binding environment, which deter-
mines a particular instantiation. In contrast, structure copying makes a copy of
the structure for each newly created term. The encoding of terms in memory
resembles tree-like data structures.

In order to speed up resolution, sophisticated term indexing has been im-
plemented both in Prolog [1,8] and automated theorem provers [7]. By using
specialized data structures (such as, e.g., tries), indexing achieves sub-linear
complexity in clause selection. Similar techniques are used to efficiently store
predicate solutions in tabling [11]. This efficient machinery for indexing is often

? Research supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO
TIN2012-39391 StrongSoft and TIN2008-05624 DOVES, and Comunidad de Madrid
TIC/1465 PROMETIDOS-CM.

3 Additionally, many Prolog systems implement an extension mechanism for variable
domains using attributed variables.
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attractive for storing and manipulating program data, such as dynamic predi-
cates. Indexed dynamic predicates offer the benefits of efficient key-value data
structures while hiding the implementation details from the user program.

Modulo some issues like variable sharing, there is thus a duality in program-
ming style between explicitly encoding data as terms or encoding data implicitly
as tuples in dynamic predicates. However, although both alternatives have some
declarative flavor, it is also frequent to find code where, for performance rea-
sons, the data is represented in the end in a quite unnatural way. E.g., the set
{1, 2, 3, . . . ,n} can be represented naturally as the term [1,2,3,...,n] (equiv-
alent to a linked list). However, depending on the lifetime and operations to be
performed on the data, binary trees, some other map-like structure, or dynamic
predicates may be preferable. These changes in representation often propagate
through the whole program.

The goal of this paper is to study the merits of term indexing during term
creation rather than at clause selection time. We exploit the fact that data has
frequently a fixed skeleton structure, and introduce a mapping in order to index
and share that part. This mapping is derived from program declarations spec-
ifying term encoding (called rtypes, for representation types) and annotations
defining the program points where pre-indexing of terms is performed. This is
done on top of structure copying, so that no large changes are required in a
typical Prolog runtime system. Moreover, the approach does not require large
changes in program structure, which makes rtypes easily interchangeable.

We have implemented a prototype as a Ciao package that deals with rtype
declarations as well as with some additional syntactic sugar that we provide for
marking pre-indexing points. We leave as future work the automatic selection of
encoding decisions based on profiling and more detailed cost models.

2 Background

We follow the definitions and naming conventions for term indexing of [4,7].
Given a set of terms L (the indexed terms), a binary relation R over terms (the
retrieval condition), and a term t (the query term), we want to identify the
subsetM⊆ L consisting of all the terms l such that R(l, t) holds (i.e., such that
l is R-compatible with t). We are interested in the following retrieval conditions
R (where σ is a substitution):

– unif(l, t)⇔ ∃σ lσ = tσ (unification)
– inst(l, t)⇔ ∃σ l = tσ (instance check)
– gen(l, t)⇔ ∃σ lσ = t (generalization check)
– variant(l, t)⇔ ∃σ lσ = t and σ is a renaming substitution (variant check)

Example 1. Given L = {h(f(A)),h(f(B,C)),h(g(D))}, t = h(f(1)), and R =
unif, then M = {h(f(A))}.

The objective of term indexing is to implement fast retrieval of candidate
terms. This is done by processing the indexed set L into specialized data struc-
tures (index construction) and modifying this index when terms are inserted or
deleted from L (index maintenance).
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When the retrieval condition makes use of the function symbols in the query
and indexed terms, it is called function symbol based indexing.

In Prolog, indexing finds the set of program clauses such that their heads
unify with a given literal in the goal. In tabled logic programming, this is also
interesting for detecting if a new goal is a variant or subsumed by a previously
evaluated subgoal [6,10].

Limitations of indexing. Depending on the part of the terms that is indexed
and the supporting data structure, the worst case cost of indexing is proportional
to the size of the term. When computing hash keys, the whole term needs to be
traversed (e.g., computing the key for h(f(A)) requires walking over h and f).
This may be prohibitively costly, not only in the maintenance of the indices, but
also in the lookup. As a compromise many systems rely only on first argument,
first level indexing (with constant hash table lookup, relying on linear search
for the selected clauses). However, when the application needs stronger, multi-
level indexing, lookup costs are repeated many times for each clause selection
operation.

3 Pre-indexing

The goal of pre-indexing is to move lookup costs to term building time. The
idea that we propose herein is to use a bijective mapping between the standard
and the pre-indexed representations of terms, at selected program points. The
fact that terms can be partially instantiated brings in a practical problem, since
bounding a variable may affect many precomputed indices (e.g., precomputed
indices for H=h(X), G=g(X) may need a change after X=1). Our proposed solution
to this problem is to restrict the mapping to terms of a specific form, based on
(herein, user-provided) instantiation types.

Definition 1 (Instantiation type). We say that t is an instance of an in-
stantiation type τ (defined as a unary predicate), written as check(τ(t)), if there
exists a term l such that τ(l) is in the model of τ and gen(l, t) (or inst(t, l)).

For conciseness, we will describe the restricted form of instantiation types used
herein using a specialized syntax: 4

:- rtype lst ---> [] ; [any|lst]

In these rules any represents any term or variable while nv represents any nonvar

term. The rule above thus corresponds to the predicate:

lst([]).

lst([_|Xs]) :- lst(Xs).

4 Despite the syntax being similar to that described in [9], note that the semantics is
not equivalent.
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Example 2. According to the definition above for lst, the terms [1,2,3] and
[ ,2] belong to lst while [1| ] does not. If nv were used instead of any in the
definition above then [ ,2] would also not belong to lst.

Type-based pre-indexing. The idea behind pre-indexing is to maintain
specialized indexing structures for each rtype (which in this work is done based on
user annotations). Conceptually, the indexing structure will keep track of all the
rtype inhabitants dynamically, assigning a unique identifier (the pre-index key) to
each of them. E.g., for lst we could assign {[] 7→ k0, [ ] 7→ k1, [ , ] 7→ k2, . . .}.

Translation between pre-indexed and non-pre-indexed forms is defined in
terms of a pre-indexing casting. Given check(τ(t)), ∃ l ∈ |τ | (set of “weakest”
terms for which τ holds) such that gen(l, t).

Definition 2 (Pre-indexing cast). A pre-indexing cast of type τ is a bijective
mapping between terms, denoted by #τ , with the following properties:

– For every term x and substitution σ so that check(τ(x)), then #τ(xσ) =
#τ(x)σ (σ-commutative), and

– the first-level functor of #τ(x) encodes the structure of the arguments (so
that it uniquely identifies the rtype inhabitant).

Informally, the first property ensures that pre-indexing casts can be selec-
tively introduced in a program without altering the (substitution) semantics.
Moreover, the meaning of many built-ins is also preserved after pre-indexing, as
expressed in the following theorem.

Theorem 1 (Built-in homomorphism). Given check(τ(x)) and check(τ(y)),
then unif(x, y) ⇔ unif(#τ(x), #τ(y)) (equivalently for gen, inst, variant, and
other built-ins like ==/2, ground/1).

Proof. unif(x, y) ⇔ [def. of unif] ∃σ xσ = yσ. Since #τ is bijective, then
#τ(xσ) = #τ(yσ) ⇔ [σ-commutative] #τ(x)σ = #τ(y)σ. Given the def. of
unif, it follows that unif(#τ(x), #τ(y)). The proofs for other built-ins are simi-
lar.

In this work we do not require the semantics of built-ins like @< (i.e., term or-
dering) to be preserved, but if desired this can be achieved by selecting carefully
the order of keys in the pre-indexed term. Similarly, functor arity in principle
will not be preserved since ground arguments that are part of the rtype structure
are allowed to be removed.

3.1 Building pre-indexed terms

We are interested in building terms directly into their pre-indexed form. To
achieve this we take inspiration from WAM compilation. Complex terms in
variable-term unifications are decomposed into simple variable-structure uni-
fications X = f(A1, . . . ,An) where all the Ai are variables. In WAM bytecode,
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this is further decomposed into a put str f/n (or get str f/n) instruction
followed by a sequence of unify arg Ai. These instructions can be expressed as
follows:

put_str(X,F/N,S0,S1), % | F/N |

unify_arg(A1,S1,S2) % | F/N | A1 |

...

unify_arg(An,Sn,S) % | F/N | A1 | ... | An |

where the Si represent each intermediate heap state, which is illustrated in the
comments on the right.

Assume that each argument Ai can be split into its indexed part Aik and its
value part Aiv (which may omit information present in the key). Pre-indexing
builds terms that encode Aik into the main functor:

g_put_str(X,F/N,S0,S1), % | F/N |

g_unify_arg(A1,S1,S2) % | F/N<A1k> | A1v |

...

g_unify_arg(An,Sn,S) % | F/N<A1k,...,Ank> | A1v | ... | Anv |

The rtype constructor annotations (that we will see in Section 3.2) indicate
how the functor and arguments are indexed.

Cost analysis. Building and unifying pre-indexed terms have impact both on
performance and memory usage. First, regarding time, although pre-indexing
operations can be slower, clause selection becomes faster, as it avoids repetitive
lookups on the fixed structure of terms. In the best case, O(n) lookups (where
n is the size of the term) become O(1). Other operations like unification are
sped-up (e.g., earlier failure if keys are different). Second, pre-indexing has an
impact on memory usage. Exploiting the data structure allows more compact
representations, e.g., bitpair(bool,bool) can be assigned an integer as key
(without storage costs). In other cases, the supporting index structures may
effectively share the common part of terms (at the cost of maintaining those
structures).

3.2 Pre-indexing Methods

Pre-indexing is enabled in an rtype by annotating each constructor with mod-
ifiers that specify the indexing method. Currently we support compact trie-like
representations and packaged integer encodings.

Trie representation is specified with the index(Args) modifier, which indi-
cates the order in which arguments are walked in the decision-tree. The process
is similar to term creation in the heap, but instead of moving a heap pointer,
we combine it with walking through a trie of nodes. Keys are retrieved from the
term part that corresponds to the rtype structure.

For example, let us consider the input set of terms [a(x), c(z)], [a(x), d(w)],
[b(y), c(z)], [b(y), d(w)], where a, b, c, d are function symbols and x, y, z,w are
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./2

a/1

x

./2

c/1

z

[ ]

./2

a/1

x

./2

d/1

w

[ ]

./2

b/1

y

./2

c/1

z

[ ]

./2

b/1

y

./2

d/1

w

[ ]

Fig. 1. Example terms for pre-indexing

1

2

[ ]

3

4

5

(z)

#2

c(z)

6

7

(w)

#2

d(w)

8

9

(x, z)

#5(z)

10

(x,w)

#7(w)

a(x)
11

12

(y, z)

#5(z)

13

(y,w)

#7(w)

b(y)

./2

Fig. 2. Index for example terms (rtype lst ---> [] ; [nv|lst]:::index([0,1,2]))

variable symbols. The heap representation is shown in Fig. 1.5 We will compare
different rtype definitions for representing these terms.

As mentioned before, nv represents the rtype for any nonvar term (where its
first level functor is part of the type). The declaration:

:- rtype lst ---> [] ; [nv|lst]:::index([0,1,2]).

specifies that the lookup order for [ | ] is a) the constructor name (./2 ), b) the
first argument (not pre-indexed), and c) the second argument (pre-indexed). The
resulting trie is in Fig. 2. In the figure, each node number represents a position
in the trie. Singly circled nodes are temporary nodes, doubly circled nodes are
final nodes. Final nodes encode terms. The initial node (#1 ) is unique for each
rtype. Labels between nodes indicate the lookup input. They can be constructor
names (e.g., ./2 ), nv terms (e.g., b(y)), or other pre-indexed lst (e.g., #2 for
[], or #5(z) for [c(z)]). The arguments are placeholders for the non-indexed
information. That is, a term [a(g),c(h)] would be encoded as #9(g,h).

Trie indexing also supports anchoring on non-root nodes. Consider this dec-
laration:

5 Remember that [1,2] = .(1,.(2,[])).
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1

2

[ ]

2

3

4

(z)

c(z)

5

(w)

d(w)

<lst>./2

4

6

7

(x, z)

a(x)

8

(y, z)

b(y)

<lst>./2

5

9

10

(x,w)

a(x)

11

(y,w)

b(y)

<lst>./2

Fig. 3. Index for example terms (rtype lst ---> [] ; [nv|lst]:::index([2,0,1]))

:- rtype lst ---> [] ; [nv|lst]:::index([2,0,1]).

Figure 3 shows the resulting trie. The lookup now starts from the second ar-
gument, then the constructor name, and finally the first argument. The main
difference w.r.t. the previous indexing method is that the beginning node is an-
other pre-indexed term. This may lead to more optimal memory layouts and
need fewer lookup operations. Note that constructor names in the edges from
initial nodes need to be prefixed with the name of the rtype. This is necessary
to avoid ambiguities, since the initial node is no longer unique.

Garbage Collection and Indexing Methods. Indexing structures require
special treatment for garbage collection.6 In principle, it would not be necessary
to keep in a trie nodes for terms that are no longer reachable (e.g., from the
heap, WAM registers, or dynamic predicates), except for caching to speed-up
node creation. Node removal may make use of lookup order. That is, if a key at
a temporary level n corresponds to an atom that is no longer reachable, then all
nodes above n can be safely discarded.

Anchoring on non-root nodes allows the simulation of interesting memory
layouts. For example, a simple way to encode objects in Prolog is by introducing a
new object operation that creates new fresh atoms, and storing object attributes
with a dynamic objattr(ObjId, AttrName, AttrValue) predicate. Anchoring
on ObjId allows fast deletion (at the implementation level) of all attributes of a
specific object when it becomes unreachable.

4 Applications and Experimental Evaluation

To show the feasibility of the approach, we have implemented the pre-indexing
transformations as source-to-source transformations within the Ciao system.
This is done within a Ciao package which defines the syntax and processes the
rtype declarations as well as the marking of pre-indexing points.

6 Automatic garbage collection of indexing structures is not supported in the current
implementation.
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1 compress(Cs, Result) :- % Compress Cs

2 build_dict(256), % Build the dictionary
3 compress_(Cs, #lst([]), Result).

4
5 compress_([], W, [I]) :- % Empty, output code for W
6 dict(W,I).

7 compress_([C|Cs], W, Result) :- % Compress C

8 WC = #lst([C|^W]),

9 ( dict(WC,_) -> % WC is in dictionary
10 W2 = WC,

11 Result = Result0

12 ; dict(W,I), % WC not in dictionary
13 Result = [I|Result0], % Output the code for W

14 insert(WC), % Add WC to the dictionary
15 W2 = #lst([C])

16 ),

17 compress_(Cs, W2, Result0).

Fig. 4. LZW Compression: Main code.

As examples, we show algorithmically efficient implementations of the Lempel-
Ziv-Welch (LZW) lossless data compression algorithm and the Floyd-Warshall
algorithm for finding the shortest paths in a weighted graph, as well as some
considerations regarding supporting module system implementation. In the fol-
lowing code, forall/2 is defined as \+ (Cond, \+ Goal).

4.1 Lempel-Ziv-Welch compression

Lempel-Ziv-Welch (LZW) [14] is a lossless data compression algorithm. It en-
codes an input string by building an indexed dictionary D of words and writing
a list of dictionary indices, as follows:

1- D := {w | w has length 1} (all strings of length one).
2- Remove from input the longest prefix that matches some word W in D, and

emit its dictionary index.
3- Read new character C, D := D ∪ concat(W ,C), go to step 2;

otherwise, stop.

A simple Prolog implementation is shown in Fig. 4 and Fig. 5. Our imple-
mentation uses a dynamic predicate dict/2 to store words and corresponding
numeric indices (for output). Step 1 is implemented in the build dict/1 predi-
cate. Steps 2 and 3 are implemented in the compress /3 predicate. For encoding
words we use lists. We are only interested in adding new characters and word
matching. For that, list construction and unification are good enough. We keep
words in reverse order so that appending a character is done in constant time.
For constant-time matching, we use an rtype for pre-indexing lists. The imple-
mentation is straighforward. Note that we add a character to a word in WC =
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1 % Mapping between words and dictionary index
2 :- data dict/2.

3
4 % NOTE: #lst can be changed or removed, ˆ escapes cast
5 % Anchors to 2nd arg in constructor
6 :- rtype lst ---> [] ; [int|lst]:::index([2,0,1]).

7
8 build_dict(Size) :- % Initial dictionary
9 assertz(dictsize(Size)),

10 Size1 is Size - 1,

11 forall(between(0, Size1, I), % Single code entry for I

12 assertz(dict(#lst([I]), I))).

13
14 insert(W) :- % Add W to the dictionary
15 retract(dictsize(Size)), Size1 is Size + 1, assertz(dictsize(Size1)),

16 assertz(dict(W, Size)).

Fig. 5. LZW Compression: Auxiliary code and rtype definition for words.

data size indexing (time)
original result none clause term

data1 1326 732 0.074 0.025 0.015

data2 83101 20340 49.350 1.231 0.458

data3 149117 18859 93.178 2.566 0.524

Table 1. Performance of LZW compression (in seconds) by indexing method.

#lst([C|^W]) (Line 8). The annotation indicates that words are pre-indexed
using the lst rtype and that W is already pre-indexed (indicated by the escape
^ prefix). Thus we can effectively obtain optimal algorithmic complexity.

Performance evaluation. We have encoded three files of different format and
size (two HTML files and a Ciao bytecode object) and measured the performance
of alternative indexing and pre-indexing options. The experimental results for
the algorithm implementation are shown in Table 1.7 The columns under in-
dexing show the execution time in seconds for different indexing methods: none
indicates that no indexing is used (except for the default first argument, first
level indexing); clause performs multi-level indexing on dict/2; term uses pre-
indexed terms.

Clearly, disabling indexing performs badly as the number of entries in the
dictionary grows, since it requires one linear (w.r.t. the dictionary size) lookup
operation for each input code. Clause indexing reduces lookup complexity and
shows a much improved performance. Still, the cost has a linear factor w.r.t. the

7 Despite the simplicity of the implementation, we obtain compression rates similar
to gzip.
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word size. Term pre-indexing is the faster implementation, since the linear factor
has disappeared (each word is uniquely represented by a trie node).

4.2 Floyd-Warshall

1 floyd_warshall :-

2 % Initialize distance between all vertices to infinity
3 forall((vertex(I), vertex(J)), assertz(dist(I,J,1000000))),

4 % Set the distance from V to V to 0
5 forall(vertex(V), set_dist(V,V,0)),

6 forall(weight(U,V,W), set_dist(U,V,W)),

7 forall((vertex(K), vertex(I), vertex(J)),

8 (dist(I,K,D1),

9 dist(K,J,D2),

10 D12 is D1 + D2,

11 mindist(I,J,D12))).

12
13 mindist(I,J,D) :- dist(I,J,OldD), ( D < OldD -> set_dist(I,J,D) ; true ).

14
15 set_dist(U,V,W) :- retract(dist(U,V,_)), assertz(dist(U,V,W)).

Fig. 6. Floyd-Warshall Code

The Floyd-Warshall algorithm computes the shortest paths problem in a
weighted graph in O(n3) time, where n is the number of vertices. Let G = (V ,E)
be a weighted directed graph, V = v1, . . . , vn the set of vertices, E ⊆ V 2, and wi,j

the weight associated to edge (vi, vj) (where wi,j =∞ if (vi, vj) /∈ E and wi,i =
0). The algorithm is based on incrementally updating an estimate on the shortest
path between each pair of vertices until the result is optimal. Figure 6 shows a
simple Prolog implementation. The code uses a dynamic predicate dist/3 to
store the computed minimal distance between each pair of vertices. For each
vertex k, the distance between each (i, j) is updated with the minimum distance
calculated so far.

Performance evaluation. The performance of our Floyd-Warshall implemen-
tation for different sizes of graphs is shown in Fig. 7. We consider three indexing
methods for the dist/3 predicate: def uses the default first order argument
indexing, t12 computes the vertex pair key using two-level indices, p12 uses a
packed integer representation (obtaining a single integer representation for the
pair of vertices, which is used as key), and p12a combines p12 with a specialized
array to store the dist/3 clauses. The execution times are consistent with the
expected algoritmic complexity, except for def. The linear relative factor with the
rest of methods indicates that the complexity without proper indexing is O(n4).
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Fig. 7. Execution time for Floyd-Warshall

On the other hand, the plots also show that specialized computation of keys and
data storage (p12 and p12a) outperforms more generic encoding solutions (t12 ).

4.3 Module System Implementations

Module systems add the notion of modules (as separate namespaces) to predi-
cates or terms, together with visibility and encapsulation rules. This adds a sig-
nificantly complex layer on top of the program database (whether implemented
in C or in Prolog meta-logic as hidden tables, as in Ciao [5]). Nevertheless, almost
no changes are required in the underlying emulator machinery or program se-
mantics. Modular terms and goals can be perfectly represented as M:T terms and
a program transformation can systematically introduce M from the context. How-
ever, this would include a noticeable overhead. To solve this issue, Ciao reserves
special atom names for module-qualified terms (currently, only predicates).

We can see this optimization as a particular case of pre-indexing, where the
last step in module resolution (which maps to the internal representation) is a
pre-indexing cast for an mpred rtype:

:- rtype mpred ---> nv:nv ::: index([1,0,2]).

For example, given a module M = lists and goal G = append(X,Y,Z), the
pre-indexed term MG = #mpred(M:G) can be represented as
’lists:append’(X,Y,Z),8 where the first functor encodes both the module and
the predicate name. To enable meta-programming, when MG is provided, both M

and G can be recovered.
Internally, another rewrite step replaces predicate symbols by actual pointers

in the bytecode, which removes yet another indirection step. This indicates that

8 Note that the identifier does not need any symbolic description in practice.
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it would be simple to reuse pre-indexing machinery for module system imple-
mentations, e.g., to enhance modules with hierarchies or provide better tools
for meta-programming. In principle, pre-indexing would bring the advantages of
efficient low-level code with the flexibility of Prolog-level meta representation of
modules. Moreover, anchoring on M mimicks a memory layout where predicate
tables are stored as key-value tables inside module data structures.

5 Related Work

There has been much previous work on improving indexing for Prolog and
logic programming. Certain applications involving large data sets need any- and
multi-argument indexing. In [3] an alternative to static generation of multi-
argument indexing is presented. The approach presented uses dynamic schemes
for demand-driven indexing of Prolog clauses. In [12] a new extension to Prolog
indexing is proposed. User-defined indexing allows the programmer to index both
instantiated and constrained variables. It is used for range queries and spatial
queries, and allows orders of magnitude speedups on non-trivial datasets.

Also related is ground-hashing for tabling, studied in [15]. This technique
avoids storing the same ground term more than once in the table area, based on
computation of hash codes. The approach proposed adds an extra cell to every
compound term to memoize the hash code and avoid the extra linear time factor.

Our work relates indexing techniques (which deal with fast lookup of terms in
collections) with term representation and encoding (which clearly benefits from
specialization). Both problems are related with optimal data structure imple-
mentation. Prolog code is very often used for prototyping and then translated to
(low-level) imperative languages (such as C or C++) if scalability problems arise.
This is however a symptom that the emulator and runtime are using subopti-
mal data structures which add unnecessary complexity factors. Many specialized
data structures exist in the literature, with no clear winner in all cases. If they
can be directly implemented in Prolog, they are often less efficient than their
low-level counterparts (e.g., due to data immutability). Without proper abstrac-
tion they obscure the program to the point where a low-level implementation
may not be more complex. On the other hand, adding them to the underlying
Prolog machines is not trivial. Even supporting more than one term represen-
tation may have prohibitive costs (e.g., efficient implementations require a low
number of tags, small code that fits in the instruction cache, etc.). Our work
aims at reusing the indexing machinery when possible and specializing indexing
for particular programs.

6 Conclusions and Future Work

Traditionally, Prolog systems index terms during clause selection (in the best
case, reducing a linear search to constant time). Despite that, index lookup is
proportional to the size of the term. In this paper we have proposed a mixed
approach where indexing is precomputed during term creation. To do that, we
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define a notion of instantiation types and annotated constructors that specify
the indexing mode. The advantage of this approach is that lookups become
sub-linear. We have shown experimentally that this approach improves clause
indexing and that it has other applications, for example for module system im-
plementation.

These results suggest that it may be interesting to explore lower-level index-
ing primitives beyond clause indexing. This work is also connected with structure
sharing. In general, pre-indexing annotations allow the optimization of simple
Prolog programs with scalability problems due to data representation.

As future work, there are some open lines. First, we plan to polish the current
implementation, which is mostly based on program rewriting and lacks garbage
collection of indexing tables. We expect major performance gains by optimizing
some operations at the WAM or C level. Second, we want to extend our repertoire
of indexing methods and supporting data structures. Finally, rtype declarations
and annotations could be discovered and introduced automatically via program
analysis or profiling (with heuristics based on cost models).
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A System for Embedding Global Constraints
into SAT

Md Solimul Chowdhury and Jia-Huai You
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Abstract. Propositional satisfiability (SAT) and Constraint Program-
ming (CP) are two dominant tools for solving combinatoral search prob-
lems. Both of these has their own strengths and weaknesses. In this
report, we describe a tight integration of SAT with CP, called SAT(gc),
which embeds global constraints into SAT. A system named SATCP is
implemented by integrating the DPLL based SAT solver zchaff and the
generic constraint solver gecode. Experiments are carried out for bench-
marks from puzzle domains and planning domains to reveal insights in
compact representation, solving effectiveness, and novel usability of the
new framework. We highlight some issues with the current implementa-
tion of SATCP, with possible directions to resolve those issues.

Keywords: SAT, CSP, Global Constraints, Integration, Embedding.

1 Introduction

Constraint Programming (CP) [15] is a programming paradigm, developed for
studying and solving constraint problems. It has been applied to solving many
practical problems from domains of scheduling, planning, and verification [20].
For practical applications, languages for CP have been developed to facilitate
the definitions of constraints in terms of primitive constraints and built-in con-
straints. One kind of these built-in constraints are called global constraints [19].
The use of global constraints not only facilitate problem representation, but also
have very efficient implementation based on special data structures and dedi-
cated constraint propagation mechanisms (see, for example, [3]).

Another way of solving combinatorial search problems is Boolean Satisfiabil-
ity (SAT), in which a problem is represented by a collection of Boolean clauses,
called a formula. To solve a SAT formula, we need to determine whether there
is a truth value assignment that satisfies all the clauses.

In recent years, cross fertilization of these two areas has become a topic of
interest. It is argued that complex real world applications may require effec-
tive features of both [4]. A number of approaches have been pursued in this
direction. For example, in SAT Modulo Theory (SMT) [13], theory solvers of
various kinds are incorporated into a SAT solver, where part of the problem is
encoded in an embedded theory and solved by a dedicated theory solver. To
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deal with numeric constraints, the SAT community has moved to a different di-
rection - pseudo Boolean constraints, where constraints are expressed by linear
inequalities over sum of weighted Boolean functions (see, e.g., [5]). The paper
[14] presents a tight integration of SAT and CP, where CSP propagators are
emulated as learned SAT clauses. In [9], a framework for integrating CSP style
constraint solving in Answer Set Programming (ASP) has been developed, em-
ploying an evaluation strategy similar to the lazy SMT approach. In [8], the
authors propose a translational approach to constraint answer set programs and
show its effectiveness. The usefulness of combining ASP and CP to industrial
sized problems is demonstrated in [1].

We pursue a tight integration of SAT and CSP which implies tight interleaves
between SAT and CSP solver. Tight integration poses a number of challenging
issues like, how to represent a SAT problem in the presence of global constraints,
and how deductions, conflict analysis and backtracking with learning can be per-
formed in the presence of global constraints. In our work, we develop a framework
to incorporate CSP style constraint solving into SAT solving with the anticipa-
tion that this tight integration will enhance the usability of SAT solver and
increase its efficiency for some application domains. The report presented here
is an extended version of [7], providing more details on implementation, some
system level problems and possible solutions.

The rest of this report is organized as follows. The next section presents
an embedding of global constraints into SAT, called SAT(gc). We describe a
prototype system of SAT(gc), named SATCP, in Section 3. In Section 4, we
describe the experiments we carry out, along with details on the benchmarks
used, their encoding in SAT(gc), the experimental results and analysis. We then
discuss some implementation issues of SATCP in Section 5. Section 6 com-
pares SAT(gc) with related frameworks, with Section 7 providing conclusions
and pointing to future directions.

2 The SAT(gc) Framework

In this section, we describe the framework for tightly embedding global con-
straints in SAT solving, which we refer to as SAT(gc).

Here, first we will provide the language and notation specification of the
SAT(gc) framework. Then we will describe the algorithm for SAT(gc) solver,
which deals with the following two major issues of the integration - how to
perform deduction in the presence of global constraints in a SAT(gc) formula,
and how to perform conflict directed backtracking and learning in the presence
of global constraints.

2.1 Language and Notation

In SAT, a formula is a finite set of clauses in propositional logic, where a clause
is a disjunction of literals and a literal is either a proposition or its negation.
Propositions are also called variables. To distinguish, let us call these variables
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normal variables. In the language of SAT(gc), we have two additional types of
variables/literals. The first is called a global constraint literal, or just a gc-literal,
which represents a call to a global constraint. E.g., we can write a clause

allDiff(x0 : {v1, v2}, x1 : {v2, v3}) ∨ ¬p

where the first disjunct is a call to the global constraint allDifferent in which
x0 and x1 are CSP variables each of which is followed by its domain. In the
sequel, we will use a named variable in the place of a gc-variable, with the
correspondence between it and the (call to the) global constraint as part of a
SAT(gc) instance.

A gc-literal is true if and only if the corresponding global constraint is solv-
able. Then it means that there exists one or more solutions for that gc-literal.
Such a solution can be represented by a conjunction of propositional variables,
each of which is a proposition representing that a given CSP variable takes a
particular value from its domain. These new type of variables are called value
variables. For each CSP variable x and each value a in its domain, we write x=a
for the corresponding value variable. Semantically, x=a is true iff x is assigned
with value a. Since a value variable is just a proposition, it can appear in clauses
of a SAT(gc) instance.

As a CSP variable cannot be assigned to more than one value from its domain,
we impose the exclusive value axioms (EVAs): for each CSP variable x and
distinct domain values a and b, we have a clause ¬(x=a)∨¬(x=b). In the sequel,
we assume that EVAs are part of a SAT(gc) instance, so that unit propagation
enforces these axioms automatically.

With the language of SAT(gc) defined above, given a SAT(gc) instance, a
gc-variable in it is semantically equivalent to a disjunction of conjunctions of
value variables, augmented by the exclusive value axioms, with each conjunction
representing a solution of the corresponding global constraint (if such a disjunc-
tion is empty, it represents false). That is, a SAT(gc) instance is semantically
equivalent to a propositional formula. Given a SAT(gc) instance Π, let us de-
note by σ(Π) this propositional formula. We now can state precisely what the
satisfiability problem in the current context is: Given a formula Π in the lan-
guage of SAT(gc), determine whether there exists a variable assignment such
that σ(Π) evaluates to true.

2.2 Representation in SAT(gc)

Let us consider some examples. In the first, suppose given a 4 by 4 board where
each cell contains a number from a given domain D. We can express a disjunctive
constraint, “at least one row has the sum of its numbers equal to a given number,
say k”, as follows

sum(x11 : D, . . . , x14 : D,=, k) ∨ ... ∨ sum(x41 : D . . . , x44 : D,=, k)

In SAT(gc) this can be written by a clause of four gc-variables as

A System for Embedding Global Constraints into SAT

95



4 Md Solimul Chowdhury and Jia-Huai You

vg1 ∨ vg2 ∨ vg3 ∨ vg4
with the correspondence between the gc-variables and global constraints recorded
as part of input instance. If, in addition, we want to express that there should
be exactly one of sum constraints that holds, we can write

¬vgi ∨ ¬vgj 1 ≤ i, j ≤ 4, i 6= j

As another example, suppose we want to represent a conditional constraint:
given a graph and four colors, {r, b, y, p} (for red, blue, yellow, and purple), if
a node a is colored with red, denoted by variable ar, then the nodes with an
edge from node a, denoted by edgea,ni for node ni, must be colored with distinct
colors different from red. This can be modeled by

¬ar ∨ ¬edgea,n1
∨ ¬edgea,n2

∨ ... ∨ ¬edgea,nm
∨ vg

where vg denotes the global constraint, allDiff(xn1
: {b, y, p}, ..., xnm

: {b, y, p}).
Apparently, SAT(gc) allows some complex interactions of constraints, e.g.,

conditional disjunctive constraints. Note that unlike typical CSP implementa-
tions(see, e.g., [2]), SAT(gc) encoding is capable of expressing conditional con-
straints and disjunctive constraints.

2.3 SAT(gc) Solver

We formulate a SAT(gc) solver in Algorithm 1, which is an extension of the
iterative DPLL algorithm given in [23].

Given an instance Π in SAT(gc), the solver first performs preprocessing by
calling the function gc preprocess() (Line 1, Algorithm 1). It applies the stan-
dard preprocessing operations; however, it will not make any assignments on
gc-variables. If gc preprocess() does not solve the problem, then following a pre-
defined decision heuristic the solver proceeds to branch on an unassigned variable
(Line 5, Algorithm 1) to satisfy at least one clause in Π. Each decision variable
is associated with a decision level, which starts from 1 and gets incremented on
the subsequent decision level by 1. Then, the procedure gc deduce() is invoked
(Line 7, Algorithm 1), and any new assignment generated by the procedure gets
the same decision level of the current decision variable.

Procedure gc deduce() In standard Boolean Constraint Propagation (BCP),
there is only one inference rule, the unit clause rule (UCR). With the possibility
of value literals to be assigned, either as part of a solution to a global constraint
or as a result of decision or deduction, we need two additional propagation rules.

– Domain Propagation (DP): When a CSP variable x is committed to a
value a, all the occurrences of x in other global constraints must also commit
to the same value. Thus, for any global constraint g and any CSP variable
x in it, whenever x is committed to a, Dom(x) is reduced to {a}. Similarly,
when a value variable is assigned to false, the corresponding value is removed
from the domain of the CSP variable occurring in any global constraint.
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1 status = gc preprocess()
2 if status = KNOWN then
3 return status

4 while true do
5 gc decide next branch()
6 while true do
7 status = gc deduce()
8 if status == INCONSISTENT then
9 blevel = current decision level

10 gc backtrack(blevel)

11 else if status == CONFLICT then
12 blevel = gc analyze conflict()
13 if blevel == 0 then
14 return UNSATISFIABLE

15 else
16 gc backtrack(blevel)

17 else if status == SATISFIABLE then
18 return SATISFIABLE

19 else
20 break

Algorithm 1: An Iterative Algorithm for SAT(gc).

– Global Constraint Rule (GCR): If the domain of a CSP variable of a
global constraint vg is empty, vg is not solvable, which is therefore assigned
to false. If a global constraint vg is assigned to true, the constraint solver is
called. If a solution is returned, the value variables corresponding to the gen-
erated solution are assigned to true; if no solution is returned, vg is assigned
to false.

Now BCP consists of three rules, UCR, DP, and GCR, which are performed
repeatedly until no further assignment is possible. Note that, since all of these
rules are monotonic, the order of their applications is unimportant.

Since a global constraint vg in Π is semantically equivalent to the disjunction
of its solutions (in the form of value variables), when vg is assigned to false in
the current partial assignment, the negation of the disjunction should be im-
plied. Algorithm 1 does not do this explicitly. Instead, it checks the consistency
in order to prevent an incorrect assignment.1 In case of gc deduce() returning
INCONSISTENT , the search backtracks to the current decision level (Line
10, Algorithm 1). Otherwise, SAT(gc) checks if a conflict has occurred. If yes,
SAT(gc) invokes its conflict analyzer gc analyze conflict() (Line 12, Algorithm

1 The general process of this checking can be highly complex, as it may involve the gen-
eration of all solutions of a global constraint. However, in many practical situations,
e.g., for all the benchmarks we have experienced, this checking is not necessary.
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1), which performs conflict analysis, possibly learns a clause, and returns a back-
track level/point.2

Conflict Analysis in SAT(gc) Let us first review some terms of DPLL based
conflict analysis. The descriptions are based on the procedural process of per-
forming (standard) BCP that implements what is called FirstUIP [22].

– Antecedent clause (of a literal): the antecedent clause of a literal l is the
clause which has forced an implication on l.

– Conflicting clause: the first failed clause, i.e., the first clause during BCP in
which every literal evaluates to false under the current partial assignment.

– Conflicting variable: The variable which was assigned last in the conflicting
clause.

– Asserting clause: the clause that has all of its literals evaluate to false under
the current partial assignment and has exactly one literal with the current
decision level.

– Resolution: The goal is to discover an asserting clause. From the antecedent
clause ante of the conflicting variable and the conflicting clause cl, resolution
between the two combines cl and ante while dropping the resolved literals.
This has to be done repeatedly until cl becomes an asserting clause.

– Asserting level: the second highest decision level in an asserting clause. Note
that by definition, an asserting clause has at least two literals.

Below we describe the conflict analyzer gc analyze conflict() of SAT(gc) .
For details on gc analyze conflict() see [7].

Like the conflict analyzer of [23], gc analyze conflict() attempts to find the
asserting clause by using an iterative resolution process. In each iteration of the
resolution process,

- it begins with a conflicting clause cl and obtains the last failed literal lit
in cl. lit can be either a gc-literal, a value literal or a normal literal. The
following cases handles each of the possibilities:

(a) lit is a gc-literal: Last call to the constraint solver for that lit failed.
There are two subcases.
(1) lit is intrinsically unsolvable: No previous DP operation was per-

formed on the CSP variables in the scope of lit and no call to lit has
succeeded before; only the other literals in cl may satisfy the clause.
We drop lit from cl. There are three subcases.
(i) cl becomes empty: The given SAT(gc) instance is not satisfiable.
(ii) cl becomes unit: Then cl cannot be an asserting clause (by def-

inition an asserting clause has at least two literals in it). So, we
perform chronological backtracking.

2 A backtrack level leads to backtracking to the decision variable of that level, i.e.,
undoing all the assignments up to the decision variable of that level, while a backtrack
point is a point of an assignment, which may or may not be a point of decision.
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(iii) Otherwise: Continue with resolution.
(2) lit is not intrinsically unsolvable : We perform chronological back-

tracking. If lit is the decision variable of the current decision level,
the previous decision level is returned as the backtracking level; Oth-
erwise lit is forced in the current decision level, in which case the
current decision level is returned as the backtracking level.

(b) lit is a value literal: Value literal may or may not have an antecedent
clause, depending on how its truth value is generated.
(1) lit has no antecedent clause: lit is a value literal assigned by a DP,

SAT(gc) backtracks to the point where the corresponding global con-
straint (which triggered the DP operation) is invoked for trying to
generate an alternative solution for the same global constraint.

(2) lit has an antecedent clause : Continue with resolution.
(c) lit is a normal literal: Continue with resolution.

In gc analyze conflict(), after the cases (a) and (b), resolution is performed
over cl and ante which results in a new cl. Notice that, the resulting clause
cl also has all of its literals evaluated to false, and is thus a conflicting clause.
We then again check the last assigned literal lit in cl. If lit does not have
any antecedent clause and lit is not a decision variable, then it becomes the
case of (b). Otherwise, this resolution process is repeated until cl becomes an
asserting clause, or either one of the above two cases (a) or (b) occurs. If an
asserting clause is found, then the procedure gc analyze conflict() learns
the asserting clause cl and returns the asserting level as the backtracking
level.
After gc analyze conflict() returns the backtracking level, if it is 0 then
SAT(gc) returns UNSATISFIABLE (Line 14, Algorithm 1). Otherwise, it
calls gc backtrack(blevel).

Backtracking in SAT(gc) The procedure gc backtrack(blevel) distinguishes
different types of conflict cases, depending on how the backtracking level is ob-
tained:

(a) blevel obtained from an asserting clause: gc backtrack(blevel) backtracks
to blevel and unassigns all the assignments up to the decision variable of
blevel + 1. After backtracking the learned clause cl becomes a unit clause
and the execution proceeds from that point in a new search space within the
level blevel.

(b) Otherwise: we perform chronological backtracking. (b) has three sub cases.

(1) blevel is a backtrack point in the current decision level: We backtrack
and unassigns assignments up to that backtrack point in the current
decision level.

(2) Conflict due to a gc-literal failure: We backtrack to blevel and unassign
assignments up to the decision variable of blevel.

(3) Inconsistency is detected during deduction: We perform backtracking
similarly as in (b-(2)).
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Example 1. Suppose, as a part of a SAT(gc) instance Π, we have

(c1) ¬r ∨ d (c2) r ∨ vg (c3) t∨ s∨¬(x1 =a)∨ p (c4) t∨ s∨¬(x1 =a)∨¬p

where vg is a gc-variable for the global constraint, allDiff(x1 : {a}, x2 : {a, b}).
Let the current decision level be dl, and suppose at a previous decision level

dl′ ¬s and ¬t were assigned, and at level dl ¬r is decided to be true. Then,
vg is unit propagated from clause c2. The call for vg returns the CSP solution
{x1 =a, x2 =b}, hence the value variables x1 =a and x1 =b are assigned to true;
but then a conflict occurs on c4. So, gc analyze conflict() is called.

In the procedure gc analyze conflict() , c4 (conflicting clause) and c3 (an-
tecedent clause of the conflicting variable p) are resolved so that cl becomes
t∨ s∨¬(x1 =a). Then, it is found that the last assigned literal in cl is ¬(x1 =a),
which is generated by the solution of vg. So, it returns the assignment point
of vg as the backtrack point. The procedure gc backtrack(blevel) unassigns all
assignments up to vg. Then, the constraint solver is called again, but this time
vg generates no alternative solution. So, vg is assigned to false. As a result, a
conflict occurs on clause c2. The procedure gc analyze conflict() is again called.

It is found that the conflicting variable is a forced gc-variable vg and a solution
was previously generated for it. So, gc analyze conflict() returns the current
decision level as the backtracking level, and gc backtrack(blevel) backtracks to
the assignment ¬r, and flips it to r. This flipping immediately satisfies clause c2
and the literal d is unit propagated from c1. The search continues from there.

3 Implementation

We have implemented a prototype system of SAT(gc), which is called SATCP,
where a SAT solver named zchaff 3 is used as the DPLL engine and a constraint
solver named gecode 4 is used as the constraint solving engine.

3.1 Preprocessing, Deduction, Conflict Analysis and Backtracking

To comply with the SAT(gc) framework, in SATCP gc-varialbe are not assigned
during the preprocessing step. Existing preprocessing function of zchaff is mod-
ified accordingly. Intuitively, a solution of a gc-variable tends to make a good
amount of implications by DP operation. This intuition has lead us to imple-
ment a variable selection heuristic, which puts higher priority on gc-variables
of a SAT(gc) formula Π. The order in which gc-variables are considered for
decision is determined by the order of appearance of gc-variables in Π . We
have slightly modified the deduce function of zchaff to implement GCR and
DP. From the application perspective, a gc-variable occurs only in a unit clause
positively. So GCR is implemented only for positive phased gc-literals. Before
invoking gecode for solving a gc-literal, according to the partial assignment, DP

3 http://www.princeton.edu/ chaff/zchaff.html
4 http://www.gecode.org/
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operations are performed on the domain of its CSP variables. For conflict analy-
sis and backtracking, we relied on the existing conflict analysis and backtracking
function of zchaff, with slight modification. In SATCP, when a conflict occurs
because of gc-literal assignment, we raise a flag by assigning respective value to
a designated flag variable. The conflict analyzer uses this flag to identify types of
conflict that have occurred. As gc-literals are only assigned as decision literals,
gc-literals can not be forced. So, in case of any gc-literal conflict in SATCP ,
the conflict analyzer function returns blevel and the backtracking function unas-
signs all the assignments up to the decision variable of blevel. 5 For more details,
please see [6].

3.2 GC-Variable and Search Engine

CSP problems are modeled in gecode by creating a subclass of a built-in class
named Space and specifying the model inside that subclass.The solution for a
CSP model are searched by creating search engines [16].

From the CP perspective, every global constraint in a given SAT(gc) formula
is an independent CSP problem. So, before starting executing SATCP, for every
gc-variable vgi in that formula, we create a subclass of the class Space, which
models the global constraint vgi as an independent CSP model. At the very
beginning of the execution of SATCP, for each of the CSP models it creates a
search engine globally.

SATCP uses the Branch and Bound (BAB) search engine, which is a built-in
search engine of gecode [16]. BAB search engine has a public method, named
next(), which returns the next alternative solution for the CSP model to which
it is attached. When there is no more alternative solution exists for the attached
model, it returns null and expires. BAB engine also allows the implementation
of a virtual function namely - constraint(), which allows us to post additional
constraints before searching for the next alternative solution. This property of
BAB engines is particularly favorable for our implementation. Before calling
gecode to generate an alternative solution for a gc-variable vg, by using that
constraint() function, SATCP posts a constraint named dom, which sets the
domain of the CSP variables of vg according to the current partial assignment.
For more details on BAB search engine please see [16].

4 Experiments

In this section we present experiments performed with SATCP 6 using three
benchmark problems. We present these benchmarks, their SAT(gc) encodings,
experimental results.

5 For gc-failure-conflict, blevel is the previous decision level of current decision level
and for value-variable-conflict, blevel is the current decision level.

6 Source code of SATCP and benchmark instance generators can be found at
https://github.com/solimul/SATCP

A System for Embedding Global Constraints into SAT

101



10 Md Solimul Chowdhury and Jia-Huai You

4.1 The Latin Square Problem

The Latin Square (LS) can be described as follows: A Latin square of order n is
an n by n array of n numbers (symbols) in which every row and columns must
contain distinct numbers (symbols).

We encode the constraint “no two numbers are assigned to the same cell” by
negative binary clauses and constraint “every number must appear exactly once
in a row and in a column” is encoded by using n allDiff global constraints.

We have run the LS problem on zchaff (with SAT encoding) and on our pro-
totype implementation system, SATCP (with SAT(gc) encoding) for instances
of different sizes up to 10 by 10 LS. For the 10 by 10 instance of LS, zchaff
does not return any solution in 15 minutes, but SATCP returns it within 169.71
seconds7. For details, see [7].

To encode LS problem in SAT, total number of clauses required are O(n4)
[11]. The SAT(gc) instance has O(n3) clauses. Thus, by the use of global con-
straints, one can write more compact representations in SAT(gc) than in SAT.
This plus the efficient propagators for allDiff global constraint as implemented
in gecode seems to be the main reasons for the better performance of our
implementation of SATCP.

4.2 The Normal Magic Square Problem

A Normal Magic Square (NMS) can be defined as follows: A magic square of
order n is an arrangement of n2 numbers, usually distinct integers, in a square,
such that the sum of n numbers in rows, columns, and in both diagonals are
equal to a constant number.

The constant sum over rows, columns and diagonals is called the magic sum,
which is known to be n(n2 + 1)/2.

We present two different encoding for the NMS problem. We refer the first
one as monolithic encoding, where the whole NMS problem is encoded as a
single gc-variable. The monolithic gc-variable is composed of a allDiff global
constraint over n2 cells to model the distinct constraint of the square and 2n+ 2
sum global constraints, each over n different cells of the square. We refer the
second one as decomposed encoding, where the distinct constraint is encoded by
negative binary clauses and the sum constraints are encoded by 2n+2 sum global
constraints. In this encoding, each of the sum global constraints is encoded as
single gc-variable. For both of the cases, the sum constraints encodes the sum
constraints across the rows, columns and diagonals of the square.

Notice that in monolithic encoding all the variables and constraints are put
inside the same constraint store, while in decomposed encoding the sum con-
straints are put into separate constraint store.

7 Size of 10 by 10 SAT(gc) instance : 1000 variables, 1210 clauses (1200 CNF clauses
and 10 clauses containing 10 allDiff gc-variables)
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We have solved NMS problem with monolithic constraint up to the size 7
by 7 by SATCP in under 4 seconds8. For the decomposed encoding, SATCP
solved of order 3 9 in 3.17 sec. But for the instances of higher order, SATCP
failed to generate a solution within 15 minutes. For details, see [7]. In section
5.2. we present an analysis of the result with decomposed encoding of NMS.

The experimental results with the monolithic encoding of NMS running on
SATCP confirms the results of [21], as with this encoding SATCP runs much
faster than clasp, which uses aggregates to encode numerical constraints. For
example, clasp solves the NMS problem of order 7 in 450.58 seconds. It also
demonstrates that, the propagators of global constraints from CSP are more
efficient than the aggregates from the logic programming framework.

4.3 The Planning Problem of Block Stacking with Numerical
Constraints

The planning problem of block stacking with numerical constraints can be de-
scribed as follows:

In a table, there are n (n > 1) stacks of blocks, each having mi number
of blocks, where 1 ≤ i ≤ n. Let blockij be the jth (1 ≤ j ≤ mi) block of
ith (1 ≤ i ≤ n) stack. In the initial configuration in every stack i the first
block blocki1 is placed on the table. If mi > 1, then blockij is placed on
blocki(j−1). Every block blockij has a weight wij . We have to generate a
plan of actions for building a new stack of blocks by taking exactly one
block from each of the initial n stacks in such a way that
– The total weight of the selected blocks should be equal to a certain

total weight Wmax. That is, if block j1, j2 . . . jn are selected respec-
tively from stacks 1, 2 . . . n, then w1j1 +w2j2 +· · ·+wiji +· · ·+wnjn =
Wmax (Constraint1).

– Block selected from the ith stack must be placed over block selected
from the (i− 1)th stack (Constraint2).

Constraint1 is encoded by using a sum global constraint as follows:

sum(stack1, stack2, . . . , stackn,Wmax)

Where Dom(stacki) = {wi1, wi2, . . . wij , . . . wimi}. The assignment stacki = wij

asserts that the jth block form the ith stack is selected for building the goal
stack.

From a STRIPS specification, we generate a planning instance that mod-

els constraint2 10. We also introduce n ∗ m (where m =

n∧

i=1

mi) propositional

8 Size of 7 by 7 monolithic SAT(gc) instance of NMS instance: 2401 variables, 50
clauses (49 CNF clauses and a clause for the monolithic gc-variable)

9 Size of 3 by 3 decomposed SAT(gc) instance of NMS: 81 variables, 664 clauses (657
CNF clauses and 8 clauses for 8 linear gc-variables.

10 For our experiment, we have used action based CNF encoding, generated by an
automated SAT based planner named, SATPLAN.
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variables, which are the value variables corresponding to the domain values of
stacki. Then for every pair of blocks, blockij and blocki′j′ (where i′ = i + 1),
we add their corresponding value literals to their stacking action (goal action)
clauses (at goal layer).

We have solved five instances with different number of blocks and stacks for
the planning problem of block stacking with numerical constraint by SATCP.
We solve those problems under 131 seconds. For details, see [7].

5 Implementation Issues with SATCP

Here we briefly describe the implementation issues of SATCP.

5.1 Alternative Solution Generation for once failed gc-litarl

Whenever a gc-variable vgi
is assigned, SATCP executes the next() method of

the search engine attached to the model of vgi to get the next alternative solution
for that vgi . When the attached search engine does not find any alternative
solution for vgi , it returns null and expires. If that vgi is assigned again, SATCP
creates a new search engine at the local scope which searches for alternative
solutions for vgi . Here, one point is worth mentioning. Every time an alternative
solution needs to be generated for such a vgi (once failed), a local search engine
needs to be created. So, for getting the jth alternative solution for such vgi , j−1
solutions need to be generated. This is one reason, for which SATCP provides
no solution within a reasonable amount of time for the decomposed encoding of
NMS for the orders greater than 3.

This undesirable effect is caused by the inability of gecode to reinstantiate
the globally created search engine associated with a gc-literal (once failed), in
case that gc-literal gets re-assigned by the SAT component. Apparently, to tackle
this problem, gecode needs to be modified to make the initially created global
search engine reusable.

5.2 Inhibition of Constraint Propagation

In the decomposed encoding of NMS, we have used separate sum global con-
straints for modeling the sum constraints across each of the rows, columns and
diagonals. Thus, at the gecode end, we model each of these global constraints
as separate CSPs. When SATCP executes on a decomposed magic square in-
stance, these global constraints are put into separate constraint stores and are
treated as independent and unrelated constraints. But, notice that these sum
global constraints are related, as they are sharing CSP variables with each other.
Assigning a CSP variable x to a value by any of the global constraints effects
all CSP variables of the global constraints those have x on their scope. Though
we are performing DP operation, after an assignment on a CSP variable x is
made by a global constraint, the propagator for other related global constraint
(those have x on their scope) are not getting notified of that assignment, as the
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sum global constraints are put on different constraint store. Therefore, the result
of DP operation cannot be propagated to other related CSP variables. This is
another reason for which SATCP fails to provide any solution for decomposed
encoding of NMS for the orders greater than 3.

Once a CSP variable is assigned to a value, SATCP is inherently incapable of
propagating constraint on related global constraints, as each global constraints
are put into separate constraint stores. To prevent this inhibition of constraint
propagation, we need to put all the related global constraints in the same con-
straint store, with a call to a gc-literal returning solution only for itself. Modifying
gecode seems to be a way to tackle this problem.

6 Related Work

To compare SAT(gc) with SMT, both adopt a DPLL based SAT solver as the
overall solver. The SMT solver uses a theory solver to determine the satisfiabil-
ity of a portion of a T -formula. On the other hand, the SAT(gc) solver uses a
constraint solver to compute a solution of a global constraint for which the con-
straint solver is invoked. In SMT, whenever an inconsistent assignment is found
by the T -solver, it informs the DPLL solver about the inconsistency and the T -
solver sends information back to the DPLL solver as a theory lemma, so that the
DPLL solver can learn a clause and backtrack to a previous point. On the other
hand, in SAT(gc) no such conflicting information is sent back from the constraint
solver. The DPLL component of SAT(gc) identifies the conflicts/inconsistencies
related to the global constraint at hand and does the necessary domain setup for
the respective CSP variables, clause learning and backtracking. The constraint
solver is used as a black box, to solve the global constraints for which it is called.

In [9], following the lazy SMT approach, a framework called CDNL-ASPMCSP
has been developed for integrating CSP style constraint solving in Answer Set
Programming (ASP). The ASP solver passes the portion of its partial assign-
ment associated with constraints to a CP solver,which checks the satisfiability
of these constraint atoms. In case of conflicts, conflict analysis is performed as
follows: it constructs a non-trivial reason from the structural properties of the
underlying CSP problem in the ASP program at hand and use this reason to
find a learned clause and backtracking level.

SAT(gc) is monotonic, in contrast to CDNL-ASPMCSP, where the seman-
tic issue of allowing global constraints in non-monotonic rules is nontrivial.
SAT(gc) is more eager than CDNL-ASPMCSP, in that whenever a Boolean lit-
eral associated with a constraint is assigned, it calls the constraint solver immedi-
ately. If any solution is returned, the current partial assignment is also eagerly ex-
tended by adding relevant value literals. In contrast to CDNL-ASPMCSP, when-
ever a conflict involves a gc-literal or value literal, SAT(gc) performs chronolog-
ical backtracking. The more eager approach of SAT(gc) identifies immediate
occurrence of conflict due to a gc-literal or a value literal (if any exists) and en-
ables SAT(gc) to perform chronological backtracking, as the backtracking points
are obvious.
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In [14] a tight integration of SAT and CP is presented. In their work, upon
invocation, instead of returning reduced domains, the attached CSP solver re-
turns some propagation rules, which emulate the functionality of those propaga-
tors. These rules are then converted into SAT clauses. The converted clauses are
added one by one as learned clauses into the SAT clause database. This approach
requires heavy modification of the attached solvers. In our approach we can in-
corporate an off-the-shelf CSP solver more easily; when SAT is absent SAT(gc)
behaves like CSP. But for the solver described in [14], there is no guarantee.

An encoding scheme is presented in [17] to encode a finite linear CSP into
SAT. The idea is to first convert a linear comparison into a primitive linear
comparison by using the bounds of the comparison and then encode the primitive
linear comparison into a SAT formula. In contrast to SAT(gc), which integrates
SAT and CSP in a tight fashion, [17] presents a very specialized encoding scheme
to solve finite linear CSPs by using SAT solvers.

In [10], the authors present a translation scheme from FlatZinc [12] CSP
model into CNF, which is then solved by a SAT solver. [10] bundles MiniZinc
and a SAT solver into one tool, named FznTini. Unlike SAT(gc) , FznTini is not
an extension of SAT, but it is a very specialized tool for solving FlatZinc CSP
models by SAT solvers. Moreover, the translation scheme of FznTini does not
directly support any global constraints.

In [18] the authors present a compact order encoding of CSP instances to
SAT, which uses numeric systems of base ≥ 2 to represent an integer number,
and the compact sized encoding results in fewer number of propagations than
the previously proposed encoding in [17]. However, [18] does not address the
encoding of other types of constraints, including global constraints. Also, unlike
SAT(gc) , it is not a an extension of SAT.

7 Conclusion and Future Work

The current implementation of SATCP has two major weaknesses. Firstly,
SATCP needs to perform repeated invocations to the constraint solver to gen-
erate alternative solutions for once failed gc-literal. Secondly, the assignments
implied by the SAT solvers are not propagated into related global constraints as
separate but related global constraints are needed to be kept into separate con-
straint stores. For both of these cases, apparently, the constraint solver needs to
be modified. Note that these weaknesses, though present in the current version
of SATCP, are not intrinsic problems of SAT(gc). We fully expect to address
these problems in future versions of SATCP . Another interesting question is
potential applications. A possible direction is the problem domain where plan-
ning and scheduling are tightly dependent on each other. Our benchmark from
the planning domain shows a first step towards this direction.
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Abstract. SWI-Prolog version 7 extends the Prolog language as a general pur-
pose programming language that can be used as ‘glue’ between components writ-
ten in different languages. Taking this role rather than that of a domain specific
language (DSL) inside other IT components has always been the design objective
of SWI-Prolog as illustrated by XPCE (its object oriented communication to the
OS and graphics), the HTTP server library and the many interfaces to external
systems and file formats. In recent years, we started extending the language it-
self, notably to accommodate expressing syntactic constructs of other languages
such a HTML and JavaScript. This resulted in an extended notion of operators
and quasi quotations. SWI-Prolog version 7 takes this one step further by extend-
ing the primitive data types of Prolog. This article describes and motivates these
extensions.

1 Introduction

Prolog is often considered a DSL, a Domain Specific Language. This puts the language
in a position similar to e.g., SQL, acting as a component in a larger application which
takes care of most of the application and notably the interfaces to the outside world
(be it a graphical interface targeting at humans or a machine-to-machine interface).
This point of view is illustrated by vendors selling their system as e.g., Prolog + Logic
Server (Amzi!), the interest in Prolog-in-some-language implementations as well as by
the many questions about embedding interfaces that appear on mailing lists and forums
such as stackoverflow.1

SWI-Prolog always had the opposite viewpoint, proposing Prolog as a ‘glue’ (or
scripting language) suitable for the overall implementation of applications. As a conse-
quence, SWI-Prolog has always provided extensive libraries to communicate to other
IT infrastructure, such as graphics (XPCE), databases, networking, programming lan-
guages and document formats. We believe this is a productive approach for the follow-
ing reasons:

– Many external entities can easily be wrapped in a Prolog API that provides a neat
relational query interface.

– Given a uniform relational model to access the world makes reasoning about this
world simple. Unlike classical relational query languages such as SQL though, Pro-
log rules can be composed from more elementary rules.

1 http://stackoverflow.com/
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– Prolog is one of the few languages that can integrate application logic without suf-
fering from the Object-Relational impedance mismatch.2 [5]

– Prolog naturally blends with constraint systems, either written in Prolog or external
ones.

– Many applications have lots of little bits of logic that is way more concisely and
readably expressed in terms of Prolog rules than in imperative if-then-else rules.

– Prolog’s ability to write application-specific DSLs is highly valuable for developing
larger applications.

– Prolog’s reflective capabilities simplify many application specific rewriting, valida-
tion and optimisation requirements.

– Prolog’s dynamic compilation provides a productive development environment.
– Prolog’s simple execution order allows for writing simple sequences of actions.

For a long time, we have facilitated this architecture within the limitations of clas-
sical Prolog, although we lifted several limits that are common to Prolog implemen-
tations. For example, SWI-Prolog offers atoms that can hold arbitrary long Unicode
strings, including the code point ‘0’, which allows applications to represent text as well
as ‘binary blobs’ as atoms. Atom garbage collections ensures that such applications
can process unbounded amounts of data without running out of memory. It offers un-
bounded arity of compound terms to accommodate arrays and it offers multi-threading
to allow for operation in threaded server environments. SWI-Prolog’s support of data
types and syntax was considered satisfactory for application development. Over the past
(say) five years, our opinion started to shift for the following reasons:

– With the uptake of SWI-Prolog as a web-server platform, more languages came into
the picture, notably HTML, JavaScript and JSON. While HTML can be represented
relatively straightforward by Prolog terms, this is not feasible for JavaScript. Rep-
resenting JSON requires wrapping terms in compounds to achieve an unambiguous
representation. For example, JavaScript null is represented as @(null) to avoid
confusing it with the string "null". SWI-Prolog version 7 allows for an alter-
native JSON representation where Prolog strings are mapped to JSON strings and
atoms are used for the JSON constants null, true and false.

– The primary application domain at SWI-Prolog’s home base, the computer science
institute at the VU University Amsterdam, in particular the ‘web and media’ and
‘knowledge representation and reasoning’ groups, is RDF and web applications.
This domain fits naturally with Prolog and especially with SWI-Prolog. Neverthe-
less, we experienced great difficulty motivating our PhD students to try this plat-
form, often because it looked too ‘alien’ to them.

In [7] we proposed extensions to the Prolog syntax to accommodate languages such
as JavaScript and R using ‘extended operators’, which allows using {. . .} and [. . . ]
as operators. In [8] we brought the notion of quasi quotations to Prolog, providing an
elegant way for dealing with external languages such as HTML, JavaScript, SQL and
SPARQL as well as long strings. In this article we concentrate on extending Prolog’s
data types with two goals in mind:

2 http://en.wikipedia.org/wiki/Object-relational_impedance_
mismatch
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– Facilitate the interaction with other IT systems by incorporating their data types. In
particular, we wish to represent data from today’s dynamic data exchange languages
such as JSON naturally and unambiguously.

– Provide access to structured data elements using widely accepted (functional) syn-
tax.

This paper is organised as follows. In section 2 we identify the missing pieces. In
section 3 we describe how these are realised in SWI-Prolog version 7, followed by an
evaluation of the impact on compatibility, a preliminary evaluation of the new features,
and our conclusions.

2 The missing pieces of the puzzle

2.1 Representing text

ISO Prolog defines two solutions for representing text: atoms (e.g., ’ab’) and lists of
characters, where the characters are either represented as code points, i.e., integers,
such as [97,98] or atoms of one character ([a,b]). Representing text using atoms is often
considered inadequate for several reasons:

– It hides the conceptual difference between text and program symbols. Where con-
tent of text often matters because it is used in I/O, program symbols are merely
identifiers that match with the same symbol elsewhere in the program. Program
symbols can often be consistently replaced, for example to obfuscate or compact a
program.

– Atoms are globally unique identifiers. They are stored in a shared table. Volatile
strings represented as atoms come at a significant price due to the required cooper-
ation between threads for creating atoms. Reclaiming temporary atoms using Atom
garbage collection is a costly process that requires significant synchronisation.

– Many Prolog systems (not SWI-Prolog) put severe restrictions on the length of
atoms, the characters that can be used in atoms or the maximum number of atoms.

Representing text as a list of character codes or 1-character atoms also comes at a price:

– It is not possible to distinguish (at run time) a list of integers or atoms from a
string. Sometimes this information can be derived from (implicit) typing. In other
cases the list must be embedded in a compound term to distinguish the two types.
For example, s("hello world") could be used to indicate that we are dealing
with a string.
Lacking run time information, debuggers and the top level can only use heuristics to
decide whether to print a list of integers as such or as a string (see portray text/1).
While experienced Prolog programmers have learned to cope with this, we still
consider this an unfortunate situation.

– Lists are expensive structures, taking 2 cells per character (3 for SWI-Prolog, which
threads lists as arbitrary compound terms, represented as the ‘functor’ (./2) and an
array of arguments). This stresses memory consumption on the stacks while push-
ing them on the stack and dealing with them during garbage collection is unneces-
sarily expensive.
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2.2 Representing structured data

Structured data is represented in Prolog using compound terms, which identify the ar-
guments by position. While that is perfectly natural for e.g., point(X,Y), it becomes
cumbersome if there is no (low) natural number of arguments or if there is no com-
monly accepted order of the arguments. The Prolog community has invented many
workarounds for this problem:

– Use lists of Name=Value or Name(Value) terms. While readable, this representation
wastes space while accessing elements is inefficient.

– Use compound terms and some form of symbolic access. Alternatives
seen here are SWI-Prolog’s library(record), which generates access pred-
icates from a declaration, the Ciao solution [4], which provides ac-
cess using functional notation using Term$field, the ECLiPSe solution
mapping terms name{key1:value1,key2:value2,...} to a term
name(value2,_,value1,_,...) using expansion called by read term/3
based on a ‘struct’ declaration.3

– Using binary trees (e.g., the classical DEC10 library(assoc)). This provides fast
access, but uses a lot of space while the structures are hard to write and read.

2.3 Ambiguous data

We have already seen one example of ambiguous data: the list [97,98] can be the string
"ab" or a list with two integers. Using characters does not solve this. Defining a string
as a list of elements of a new type ‘character’ still does not help as it fails to distinguish
the empty list ([]) from the empty string (""). Normally, ambiguity is resolved in
one of two ways: the data is passed between predicates that interpret the ambiguous
terms in a predefined way (e.g., atom_codes(A,[]) interprets the [] as an empty
string) or the data is wrapped in a compound, e.g., s([97,98]). The first requires
an interpretation context, which may not be present. The latter (known as non-defaulty
representation) is well suited for internal processing, but hard to read and write and
requires removing and wrapping the data frequently.

3 SWI-Prolog 7

With SWI-Prolog version 7, we decided to solve the above problems, accepting that
version 7 would not be completely backward compatible with version 6 and the ISO
standard. As we will see in section 4 though, the compatibility of SWI-Prolog version 7
to its predecessors can be considered fair. Most of the changes are also available in
some other Prolog.

3 http://www.eclipseclp.org/doc/userman/umsroot022.html
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3.1 Double quoted strings

Strings, and their syntax have been under heavy debate in the Prolog community, but
did not make it into the ISO standard. It is out of the scope of this paper to provide
a historical overview of this debate. Richard O’Keefe changed his opinion on strings
during the debate on the SWI-Prolog mailinglist. His current opinion can be found in
“An Elementary Prolog Library”, section 104

SWI-Prolog 7 reads "..." as an object of type string. Strings are atomic objects
that are distinct from atoms. They can represent arbitrary long sequences of Unicode
text. Unlike atoms, they are not combined in a central table, live on the term-stack
(global stack or heap) and their life time is the same as for compound terms (i.e., they
are discarded on backtracking or garbage collection).

Strings as a distinct data type are present in various Prolog systems, e.g., SWI-
Prolog, Amzi! and YAP. ECLiPSe [6] and hProlog5 are the only system we are aware of
that uses the common double-quoted syntax for strings. The set of predicates operating
on strings has been synchronised with ECLiPSe.

3.2 Modified representation of lists

Representing lists the conventional way using ./2 as cons-cell and the atom ’[]’ as
list terminator both (independently) poses difficulties, while these difficulties can be
avoided easily. These difficulties are:

– Using ./2 prevents using this commonly used symbol as an operator because a.B
cannot be distinguished from [a|B]. Changing the functor used for lists has little
impact on compatibility because it is (almost) always written as [. . . ]. It does imply
that we can use this symbol to introduce widely used syntax to Prolog, as described
in section 3.3.

– Using ’[]’ as list terminator prevents dynamic distinction between atoms and
lists. As a result, we cannot use polymorphism that involve both atoms and lists.
For example, we cannot use multi lists (arbitrary deeply nested lists) of atoms.
Multi lists of atoms are in some situations a good representation of a flat list that
is assembled from sub sequences. The alternative, using difference lists or Definite
Clause Grammars (DCGs) is often less natural and sometimes demands for ‘open-
ing’ proper lists (i.e., copying the list while replacing the terminating empty list
with a variable) that have to be added to the sequence. The ambiguity of atom and
list is particularly painful when mapping external data representations that do not
suffer from this ambiguity.
At the same time, avoiding ’[]’ as a list terminator avoids the ambiguity of text
representations described in section 2.3, i.e., ’[]’ unambiguously represents two
characters and [] unambiguously represents the empty string.

4 http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm#strs
5 http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW366.abs.
html
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We changed the cons-cell functor name from ’.’ to ’[|]’, inspired by Mer-
cury.6 We turned the empty list ([]) into a new data type, i.e., [] has the properties
demonstrated by the queries below. This extension is also part of CxProlog using
--flags nil is special=true.7

?- atom([]). % [] is not an atom
false.
?- atomic([]). % [] is atomic
true.
?- is_list(’[]’). % ’[]’ is not a list
false.
?- [] == ’[]’. % our goal
false.
?- [] == []. % obviously
true.
?- [] == [/*empty list*/]. % also
true.
?- ’[]’ == ’[ ]’. % two different atoms
false.

3.3 Introducing dicts: named key-value associations

Dicts are a new data type in SWI-Prolog version 7, which represents a key-value asso-
ciation. The keys in a dict are unique and are either atoms or integers. Dictionaries are
represented by a canonical term, which implies that two dicts that represent the same
set of key-value associations compare equal using ==/2. Dicts are natively supported by
read/1 and write/1. The basic syntax of a dict is described below. Similar to compound
terms, there cannot be a space between the Tag and the {. . .} term. The Tag is either an
atom or a variable, notably {. . . } is used as ‘anonymous’ dict.

Tag{Key1:Value1, Key2:Value2, . . .}
Below are some examples, where the second example illustrates that the order is not

maintained and the third illustrates an anonymous dict.

?- A = point{x:1, y:2}.
A = point{x:1, y:2}.

?- A = point{y:2, x:1}.
A = point{x:1, y:2}.

?- A = _{first_name:"Mel", last_name:"Smith"}.
A = _G1476{first_name:"Mel", last_name:"Smith"}.

6 http://www.mercurylang.org/information/doc-latest/transition_
guide.pdf

7 http://ctp.di.fct.unl.pt/˜amd/cxprolog/MANUAL.txt
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Note that our dict notation looks similar, but is fundamentally different from ECLiPSe
structs. The ECLiPSe struct notation {. . . } is a sparse notation for a declared normal
compound term. The ECLiPSe notation can only be used for input, it is not possible
to dynamically add new keys and the resulting term can be used anywhere where a
compound term is allowed. For example, ECLiPSe allows us to write predicates with
named arguments like this:

person{last_name:"Smith"}.

In contrast, our dicts are dynamic, but can only appear as a data term, i.e., not as the
head of a predicate. This allows for using them to represent dynamic data from e.g.,
JSON objects or a set of XML attributes.

Dicts also differ from LIFE PSI-Terms [1], which are basically feature vectors that
can unify as long as there are no conflicting key-value pairs in both PSI terms. Dicts
are ground if all values are ground and it is thus impossible to add keys using uni-
fication. PSI terms can be simulated by associating a dict to an attributed variable.
The code to unify two dicts with non-conflicting key-value pairs is given below, where
>:</2 succeeds after all values associated with common keys are unified. For exam-
ple, T{a:1,b:B} >:< d{a:A,b:2,c:C} succeeds with T=d, B=2, leaving C un-
bound.

psi_unify(Dict1, Dict2, Dict) :-
Dict1 >:< Dict2,
put_dict(Dict1, Dict2, Dict).

Functional notation on dicts Dicts aim first of all at the representation of dy-
namic structured data. As they are similar to the traditional library(assoc), a predi-
cate get dict(+Key,+Dict,-Value) is obvious. However, code processing dicts will
become long sequences of get dict/3 and put dict/4 calls in which the actual logic
is buried. This at least is the response we get from users using library(record) and
library(assoc) and is also illustrated by the aforementioned solutions in Ciao and
ECLiPSe. We believe that a functional notation is the most natural way out of this.

The previously described replacement of ’.’8 with ’[|]’ as list cons-term provides
the ideal way out of this because (1), the a.b notation is widely used for this purpose and
(2) ./2 terms are extremely rare in Prolog. Therefore, SWI-Prolog transforms ./2 terms
appearing in goals into a sequence of calls to ./3,9 followed by the original goal. Below
are two examples, where the left code is the source and the right is the transformed
version.

8 Note that ’.’ and a plain . are the same, also in SWI-Prolog version 7. We use ’.’ in running text
to avoid confusion with the end of a sentence.

9 We called the helper predicate to evaluate ./2 terms ./3 to make the link immediate. It could
also have been named e.g., evaluate/3.
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.(D, last_name, LN),
writeln(D.last_name) writeln(LN)

last_name(D, D.last_name). last_name(D, LN) :-
.(D, last_name, LN).

Functions on dicts In the previous section we described the functional notation
used to access keys on dicts. In addition to that, we allow for user defined func-
tions on dicts. Such functions are invoked using the notation Dict.Compound, e.g.,
Point.offset(X,Y) may evaluate to a new Point dict at offset (X,Y) from the orig-
inal. User defined functions are realised by means of the dict tag, which associates the
dict with a Prolog module (inspired by attribute names of attributed variables). The
offset function is defined as:

:- module(point, []).

Pt.offset(OX,OY) := point{x:X,y:Y} :-
X is Pt.x + OX,
Y is Pt.y + OY.

The above function definition is rewritten using term expansion rules into
the code below. The predicate ./3, handling functional notation based on
./2, translates Dict.Compound into call(Compound, Dict, Result). For ex-
ample, the expression point{x:1,y:2}.offset(2,4) is translated into
call(offset(2,4),point{x:1,y:2},Result), which in term calls the
predicate below.

offset(OX, OY, Pt, point{x:X, y:Y}) :-
’.’(Pt, x, X0),
X is X0+OX,
’.’(Pt, y, Y0),
Y is Y0+OY.

As Dict.Atom accesses a key and Dict.Compound calls a user-defined function, we have
no way to express functions without arguments. In [7] we already concluded that name()
is a valuable syntactic building block for DSL construction and therefore we decided to
add support for zero-argument compound terms, such as name(). Zero-argument com-
pounds are supported by the following predicates:

compound name arity(Compound, Name, Arity)
compound name arguments(Compound, Name, Arguments)

These predicates operate on compounds with any number of arguments, including
zero.
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functor(Callable, Name, Arity)
Callable =.. List

These predicates operate on atoms or compounds. They raise an error if the first
argument is a zero-arity compound.

4 Compatibility

SWI-Prolog version 7 is not fully backward compatible with older versions and drifts
further away from the ISO standard. We believe that a programming language must
evolve over time to match changing demands and expectations. In other words, there
should be a balance between compatibility with older versions of the language and ful-
filling evolving demands and expectations. As far as we understand, the ISO standard-
isation process only allows for strict extensions of a language, guaranteeing full back-
ward compatibility with ISO standard. The ISO model allows for none of the described
changes because all of them have at least corner cases where they break compatibility.
Such a restrictive view does not allow for gradual language evolution and forces a rev-
olution, replacing the language with a new one. We believe that the evolutionary route
is more promising.

Nevertheless, SWI-Prolog version 7 introduces significant changes. We have evalu-
ated the practical consequences of these changes as soon as we had a prototype imple-
mentation by porting our locally developed software as well as large systems for which
we have the source code. A particularly interesting code base is Alpino [3], a parser for
the Dutch language. Alpino has been developed for over 15 years, counts approximately
500K lines of Prolog code and contains many double quoted strings. Porting took two
days, including implementing list strings/0 described below.

We received several evaluations from users about porting their program from ver-
sion 6 to version 7, two of which concern code basis between 500K and 1M lines. This
section summarise our key findings.

Double quoted strings This is the main source of incompatibilities. However, migrat-
ing programs proves to be fairly easy. First, note that string literals in DCGs can be
mapped to lists of character codes by the DCG compiler, which implies that code such
as det --> "the" remains valid. The double-quoted notation is commonly used to
represent e.g., the format argument for format/3. This is, also conceptually, correct us-
age of strings and does not require any modification. We developed a program analyzer
(list strings/0) which examines the compiled program for instances of the new string
objects. The analyzer has a user extensible list of predicates that accept string argu-
ments, which causes a goal format("Hello World˜n") to be considered safe. In
practise, this reveals compatibility issues accurately. There are three syntactic measures
to adapt your code:

– Rewrite the code. For example, change [X] = "a" into X = 0’a.
– If a particular module relies heavily on representing strings as lists of character

code, consider adding the following directive to the module. Note that this flag
only applies to the module in which it appears.
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:- set_prolog_flag(double_quotes, codes).

– Use a back quoted string (e.g., ‘text‘). Note that using ‘text‘ ties the code to
SWI-Prolog version 7. There is no portable syntax that produces a list of characters.
Such a list can be obtained using portable code using one of the constructs below.

• phrase("text", List)
• atom_codes("text", List)

Using the new [] as list terminator This change has very few consequences to Prolog
programs. We encountered four issues, caused by calls such as atom concat([], . . . ).
Typically, these result from using [] as ‘nil’ or ‘null’, i.e., no value, but using them as a
real value.

Using [|] as cons-cell We encountered a few cases where ./2 terms were handled
explicitly or where the functor-name of a term was requested and . was expected. We
also found lists written as e1.e2.e3.[] and [H|T] written as H.T. Such problems can
typically be found by examining the compiled code for ./2 terms.

Together with [], the only major problem encountered is JPL, the SWI-Prolog Java
interface. This interface represents Prolog terms as Java objects, assuming there are
variables, atoms, numbers and compound terms. I.e., lists are treated as ./2 terms end-
ing in the atom ’[]’. We think JPL should be extended with a list representation. This
will also cure the frequent stack overflows caused by long lists represented as deeply
nested ./2 terms that are traversed by a recursive Java method.

Dicts, functions and zero-arity compounds The dict syntax infrequently clashes with
a prefix operator followed by {. . .}. Cases we found include the use of @{null} to
represent ‘null’ values, ::{...} used (rarely) in Logtalk and \+{...} which can
appear in DCGs to express negation of a native Prolog goal. The ./2 functional no-
tation causes no issues after ./2-terms that should have used list notation were fixed.
The introduction of zero-arity compounds has no consequences for applications that
do not use these terms. The fact that such terms can exist exposed many issues in the
development tools.

5 Evaluation

The discussions on SWI-Prolog version 7 took place mostly in October to December
2013. The implementation of the above is now considered almost stable. Migrating
towards effective and consistent use of these new features is not easy because most ex-
isting code and libraries use atoms to represent text and one of the described alternatives
to represent key-value sets.

Our evaluation consists of two parts. First, we investigate uptake inside SWI-
Prolog’s libraries and by users. The second part is a performance analysis.
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Dicts Currently, dicts can be used in the following areas:

– As an alternative option representation. All built-in predicates as well as li-
brary(option) accept dicts as an alternative specification for options.

– The JSON support library provides alternative predicates to parse input into JSON
represented using dicts. The JSON write predicates accept both the old representa-
tion and the new dict representation.

We have been using dicts internally for new code. The mailing list had a brief
discussion on dicts.10 There two contributed SWI-Prolog add-ons11 that target lists:
dict schema and sort dict address type checking and sorting lists of dictionaries by key.
Other remarks:

– Michael Hendricks: “We’re using V7. Most of our new code uses dicts extensively.
I’ve found them especially compelling for working with JSON and for replacing
option lists.”

– Wouter Beek: Uses dictionaries for WebQR12 for dealing with JSON messages.
Claims that the code becomes more homogeneous, readable and shorter. Also uses
the real add-on, claiming that the dot-notation, functions without argument and
double quoted strings gives the mapping a more ‘native’ flavour and makes the
code more readable.

Strings Many applications would both conceptually and performance-wise benefit from
using strings. As long as most libraries return their textual data using atoms, we cannot
expect serious uptake. Strings (and zero-argument compounds) are currently used by
the R-interface package real [2].

5.1 Dict performance

The dict representation uses exactly twice the memory of a compound term, given the
current implementation which uses an array of consecutive (key,value) pairs sorted by
the key. Future implementation may share the key locations between dicts with the same
keys. We compared the performance using a tight loop. The full implementation using
functional notation is given in figure 1.

We give only the recursive clause for the other test cases in figure 2. Thus, t0/2
provides the base case without extracting data, t1/2 is the same as tf/2 in figure 1, but
without using functional notation and thus avoiding ./3. The predicate t2/2 uses arg/3
to extract a field from the structured data represented as a compound term, t3/2 uses a
plain list of Name=Value and t4/2 uses library(assoc), the SWI-Prolog implemented of
which uses an AVL tree. Table 1 shows the performance of the four loops for 1,000,000
iterations, averaged over 10 runs on an Intel i7-3770 running Ubuntu 13.10 and SWI-
Prolog 7.1.12.

10 http://swi-prolog.996271.n3.nabble.com/Some-thoughts-on-dicts-in-SWIPL-7-tt14327.
html

11 http://www.swi-prolog.org/pack/list
12 https://github.com/wouterbeek/WebQR
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tf(Size, N) :-
data(Size, D),
tf2(N, Size, D).

tf2(0, _, _) :- !.
tf2(N, Q, D) :-

Q1 is (N mod Q)+1,
a(D.Q1),
N2 is N - 1,
tf2(N2, Q, D).

data(Size, D) :-
numlist(1, Size, L),
maplist(pair, L, Pairs),
dict_pairs(D, _, Pairs).

pair(X, X-X).

Fig. 1. Benchmark program to evaluate dict lookup performance

Table 1 shows that the overhead of using dicts compared to compound terms is
low (t1 vs. t2). The overhead of the functional notation is caused by type checking and
checking for accessing a field vs. accessing a function on the dict in the predicate ./3.
This overhead could be removed if we had type inference. The last two predicates (t3,
t4) show the performance of two classical Prolog solutions.

t0(N,Q,D) :- Q1 is (N mod Q)+1, a(x), ...
t1(N,Q,D) :- Q1 is (N mod Q)+1, get_dict(b,D,A), a(A), ...
t2(N,Q,D) :- Q1 is (N mod Q)+1, arg(Q1,D,A), a(A), ...
t3(N,Q,D) :- Q1 is (N mod Q)+1, memberchk(Q1=A,D), a(A), ...
t4(N,Q,D) :- Q1 is (N mod Q)+1, get_assoc(Q1,D,A), a(A), ...

Fig. 2. Alternative body (second clause of tf2/3 in figure 1). The predicate a/1 is the dummy
consumer of the data, defines as a( ).

5.2 String performance

We evaluated the performance of text processing with the task to create the texts “test”N
for N in 1..1,000,000. The results of these tests are presented in table 2. The core of
the 4 loops is shown in figure 3. The predicate tl2/1 has been added on request by
one of the reviewers who claimed that tl1/1 is unfair because it requires pushing the
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GC
Test CPUTime Times AvgSize GCTime
t0(1000,1000000) 0.111 0 0 0.000
tf(1000,1000000) 0.271 259 18,229 0.014
t1(1000,1000000) 0.218 129 18,229 0.007
t2(1000,1000000) 0.165 129 10,221 0.006
t3(1000,1000000) 20.420 305 50,213 0.031
t4(1000,1000000) 3.968 1,299 50,213 0.149
t0(3,1000000) 0.113 0 0 0.000
tf(3,1000000) 0.232 259 2,277 0.011
t1(3,1000000) 0.181 129 2,277 0.005
t2(3,1000000) 0.166 129 2,245 0.005
t3(3,1000000) 0.277 189 2,357 0.009
t4(3,1000000) 0.859 346 2,397 0.014

Table 1. Performance test for accessing structured data using various representations. The first
argument is the number of key-value pairs in the data and the second is the number of iterations
in each test. CPUTime is the CPU time in seconds. The GC columns represent heap garbage
collection statistics, showing the number of garbage collections, the average size of the heap
after GC and the time spent on GC in seconds.

list ‘list‘ onto the stacks on each iteration and the SWI-Prolog implementation of
append/2 performs a type-check on the first argument, making it relatively slow. We
claim that tl1/1 is a more natural translation of the other tests. The test c(Threads,Goal)
runs Threads copies of Goal, each in their own threads, while the main thread waits for
the completion of all threads. The tests were executed on a (quad core) Intel i7-3770
machine running Ubuntu 13.10 and SWI-Prolog 7.1.15.

t0(N) :- dummy([test,N],_), N2 is N-1, t0(N2).
ta(N) :- atomic_list_concat([test,N],_), N2 is N-1, ta(N2).
ts(N) :- atomics_to_string(["test",N],_), N2 is N-1, ts(N2).
tl1(N) :- number_codes(N,S), append([‘test‘,S],_),

N2 is N-1, tl(N2).
tl2(N) :- tl2(N,‘test‘).
tl2(N,P) :- number_codes(N,S), append(P,S,_),

N2 is N-1, tl(N2).
dummy(_,_).

Fig. 3. Benchmarks for comparing concatenation of text in various formats.

We realise that the above performance analysis is artificial and limited. The tests only
analyse construction, not processing text in the various representations. Notably atoms
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Time GC Atom GC
Test Process Thread Wall Times AvgWorkSet GCTime Times Reclaimed AGCTime
t0(1000000) 0.058 0.058 0.058 786 2,186 0.009 0 0 0.000
ta(1000000) 0.316 0.316 0.316 785 2,146 0.013 99 10,884,136 0.042
ts(1000000) 0.214 0.214 0.214 1,703 2,190 0.023 0 0 0.000
tl1(1000000) 1.051 1.051 1.051 8,570 2,267 0.108 0 0 0.000
tl2(1000000) 0.437 0.437 0.437 3,893 2,231 0.077 0 0 0.000
c(4,t0(1000000)) 0.252 0.000 0.065 0 0 0.000 0 0 0.000
c(4,ta(1000000)) 6.300 0.000 1.924 0 0 0.000 332 36,442,981 0.227
c(4,ts(1000000)) 0.886 0.000 0.232 0 0 0.000 0 0 0.000
c(4,tl1(1000000)) 4.463 0.000 1.143 0 0 0.000 0 0 0.000
c(4,tl2(1000000)) 1.731 0.000 0.441 0 0 0.000 0 0 0.000

Table 2. Comparing atom and string handling performance. The Time columns represent the time
spent by the process, calling thread and the wall time in seconds. The GC columns are described
with table 1. The AtomGC columns represent the atom garbage collector, showing the number of
invocations, number of reclaimed atoms and the time spent in seconds. Note that the GC values
for the concurrent tests are all zero because GC is monitored in the main thread, which just waits
for the others to complete.

and strings are internally represented as arrays and thus provide O(1) access to the i-th
character, but lists allow splitting in head and tail cheaply and can exploit DCGs.

Table 2 makes us draw the following conclusions regarding construction of a short
text from short pieces:

– To our surprise, constructing text as atoms is faster than using lists of codes.
– Strings are constructed considerably faster than atoms.
– Atom handling significantly harms performance of multi-threaded application. Dis-

abling atom garbage collection and looking at the internal contention statistics in-
dicate that the slowdown is caused by contention on the mutex that guards the atom
table.

6 Conclusions

With SWI-Prolog version 7 we have decided to narrow the gap between Prolog and
other key components in the IT infrastructure by introducing commonly found data
types and harmonizing the syntax with modern languages. Besides more transparent
interfacing, these changes are also aimed at simplifying the transition from other lan-
guages. The most important changes are the introduction of dicts (key-value sets) as pri-
mary citizens with access to keys using functional notation, the introduction of strings,
including the common double-quoted notation and an unambiguous representation of
lists. Previous changes added [. . . ] and {. . .} as operators and introduced quasi quota-
tions. These extensions aim at smooth exchange of data with other IT infrastructure, a
natural syntax for accessing structured data and the ability to define syntax for DSLs
that is more natural to those not familiar with Prolog’s history.
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Abstract. Linear Meld is a concurrent forward-chaining linear logic
programming language where logical facts can be asserted and retracted
in a structured way. The database of facts is partitioned by the nodes
of a graph structure which leads to parallelism if nodes are executed si-
multaneously. Communication arises whenever nodes send facts to other
nodes by fact derivation. We present an overview of the virtual machine
that we implemented to run Linear Meld on multicores, including code
organization, thread management, rule execution and database organi-
zation for efficient fact insertion, lookup and deletion. Although our vir-
tual machine is a work-in-progress, our results already show that Linear
Meld is not only capable of scaling graph and machine learning programs
but it also exhibits some interesting performance results when compared
against other programming languages.

Keywords: linear logic programming, virtual machine, implementation

1 Introduction

Logic programming is a declarative programming paradigm that has been used
to advance the state of parallel programming. Since logic programs are declar-
ative, they are much easier to parallelize than imperative programs. First, logic
programs are easier to reason about since they are based on logical foundations.
Second, logic programmers do not need to use low level programming constructs
such as locks or semaphores to coordinate parallel execution, because logic sys-
tems hide such details from the programmer.

Logic programming languages split into two main fields: forward-chaining
and backwards-chaining programming languages. Backwards-chaining logic pro-
grams are composed of a set of rules that can be activated by inputing a query.
Given a query q(x̂), an interpreter will work backwards by matching q(x̂) against
the head of a rule. If found, the interpreter will then try to match the body of
the rule, recursively, until it finds the program axioms (rules without body). If
the search procedure succeeds, the interpreter finds a valid substitution for the
x̂ variables. A popular backwards-chaining programming language is Prolog [4],
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which has been a productive research language for executing logic programs in
parallel. Researchers took advantage of Prolog’s non-determinism to evaluate
subgoals in parallel with models such as or-parallelism and and-parallelism [8].

In a forward-chaining logic programming language, we start with a database
of facts (filled with the program’s axioms) and a set of logical rules. Then, we
use the facts of the database to fire the program’s rules and derive new facts
that are then added to the database. This process is repeated until the database
reaches quiescence and no more information can be derived from the program.
A popular forward-chaining programming language is Datalog [14].

In this paper, we present a new forward-chaining logic programming lan-
guage called Linear Meld (LM) that is specially suited for concurrent program-
ming over graphs. LM differs from Datalog-like languages because it integrates
both classical logic and linear logic [6] into the language, allowing some facts to
be retracted and asserted logically. Although most Datalog and Prolog-like pro-
gramming languages allow some kind of state manipulation [11], those features
are extra-logical, reducing the advantages brought forward by logic program-
ming. In LM, since mutable state remains within the logical framework, we can
reason logically about LM programs.

The roots of LM are the P2 system [12] and the original Meld [2,1]. P2 is
a Datalog-like language that maps a computer network to a graph, where each
computer node performs local computations and communicates with neighbors.
Meld is itself inspired by the P2 system but adapted to the concept of massively
distributed systems made of modular robots with a dynamic topology. LM also
follows the same graph model of computation, but, instead, applies it to par-
allelize graph-based problems such as graph algorithms, search algorithms and
machine learning algorithms. LM programs are naturally concurrent since the
graph of nodes can be partitioned to be executed by different workers.

To realize LM, we have implemented a compiler and a virtual machine that
executes LM programs on multicore machines3. We have implemented several
parallel algorithms, including: belief propagation [7], belief propagation with
residual splash [7], PageRank, graph coloring, N-Queens, shortest path, diameter
estimation, map reduce, quick-sort, neural network training, among others.

As a forward-chaining linear logic programming language, LM shares sim-
ilarities with Constraint Handling Rules (CHR) [3,10]. CHR is a concurrent
committed-choice constraint language used to write constraint solvers. A CHR
program is a set of rules and a set of constraints (which can be seen as facts).
Constraints can be consumed or generated during the application of rules. Some
optimization ideas used in LM such as join optimizations and using different
data structures for indexing facts are inspired by research done in CHR [9].

This paper describes the current implementation of our virtual machine and
is organized as follows. First, we briefly introduce the LM language. Then, we
present an overview of the virtual machine, including code organization, thread
management, rule execution and database organization. Finally, we present pre-
liminary results and outline some conclusions.

3 Source code is available at http://github.com/flavioc/meld.
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2 The LM Language

Linear Meld (LM) is a logic programming language that offers a declarative and
structured way to manage state. A program consists of a database of facts and
a set of derivation rules. The database includes persistent and linear facts. Per-
sistent facts cannot be deleted, while linear facts can be asserted and retracted.

The dynamic (or operational) semantics of LM are identical to Datalog. Ini-
tially, we populate the database with the program’s axioms (initial facts) and
then determine which derivation rules can be applied using the current database.
Once a rule is applied, we derive new facts, which are then added to the database.
If a rule uses linear facts, they are retracted from the database. The program
stops when quiescence is achieved, that is, when rules no longer apply.

Each fact is a predicate on a tuple of values, where the type of the predicate
prescribes the types of the arguments. LM rules are type-checked using the
predicate declarations in the header of the program. LM has a simple type system
that includes types such as node, int, float, string, bool. Recursive types such as
list X and pair X; Y are also allowed. Each rule in LM has a defined priority
that is inferred from its position in the source file. Rules at the beginning of the
file have higher priority. We consider all the new facts that have been not used
yet to create a set of candidate rules. The set of candidate rules is then applied
(by priority) and updated as new facts are derived.

2.1 Example

We now present an example LM program in Fig. 1 that implements the key
update operation for a binary tree represented as a key/value dictionary. We
first declare all the predicates (lines 1-4), which represent the kinds of facts we
are going to use. Predicate left/2 and right/2 are persistent while value/3

and replace/3 are linear. The value/3 predicate assigns a key/value pair to a
binary tree node and the replace/3 predicate represents an update operation
that updates the key in the second argument to the value in the third argument.

The algorithm uses three rules for the three cases of updating a key’s value:
the first rule performs the update (lines 6-7); the second rule recursively picks
the left branch for the update operation (lines 9-10); and the third rule picks
the right branch (lines 12-13). The axioms of this program are presented in lines
15-22 and they describe the initial binary tree configuration, including keys and
values. By having the update(@3, 6, 7) axiom instantiated at the root node
@3, we intend to change the value of key 6 to 7. Note that when writing rules
or axioms, persistent facts are preceded with a !.

Figure 2 represents the trace of the algorithm. Note that the program database
is partitioned by the tree nodes using the first argument of each fact. In Fig. 2a
we present the database filled with the program’s axioms. Next, we follow the
right branch using rule 3 since 6 > 3 (Fig. 2b). We then use the same rule again
in Fig. 2c where we finally reach the key 6. Here, we apply rule 1 and value(@6,

6, 6) is updated to value(@6, 6, 7).
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1 type left(node, node).
2 type right(node, node).
3 type linear value(node, int, int).
4 type linear replace(node, int, int).
5

6 replace(A, K, New), value(A, K, Old)
7 -o value(A, K, New). // we found our key
8

9 replace(A, RKey, RValue), value(A, Key, Value), !left(A, B), RKey < Key
10 -o value(A, Key, Value), replace(B, RKey, RValue). // go left
11

12 replace(A, RKey, RValue), value(A, Key, Value), !right(A, B), RKey > Key
13 -o value(A, Key, Value), replace(B, RKey, RValue). // go right
14

15 // binary tree configuration
16 value(@3, 3, 3). value(@1, 1, 1). value(@0, 0, 0).
17 value(@2, 2, 2). value(@5, 5, 5). value(@4, 4, 4).
18 value(@6, 6, 6).
19 !left(@1, @0). !left(@3, @1). !left(@5, @4).
20 !right(@1, @2). !right(@3, @5). !right(@5, @6).
21

22 replace(@3, 6, 7). // replace value of key 6 to 7

Fig. 1: Binary tree dictionary: replacing a key’s value.

2.2 Syntax

Table 1 shows the abstract syntax for rules in LM. An LM program Prog con-
sists of a set of derivation rules Σ and a database D. Each derivation rule R
can be written as BE ( HE where BE is the body of a rule and HE is the
head. Rules without bodies are allowed in LM and they are called axioms. Rules
without heads are specified using 1 as the rule head. The body of a rule, BE,
may contain linear (L) and persistent (P ) fact expressions and constraints (C).
Fact expressions are template facts that instantiate variables from facts in the
database. Such variables are declared using either ∀x.R or ∃x.BE. If using ∀x.R
variables can also be used in the head of the rule. Constraints are boolean ex-
pressions that must be true in order for the rule to be fired. Constraints use
variables from fact expressions and are built using a small functional language
that includes mathematical operations, boolean operations, external functions
and literal values. The head of a rule, HE, contains linear (L) and persistent
(P ) fact templates which are uninstantiated facts to derive new facts. The head
can also have comprehensions (CE) and aggregates (AE). Head expressions may
use the variables instantiated in the body.

Comprehensions Sometimes we need to consume a linear fact and then imme-
diately generate several facts depending on the contents of the database. To solve
this particular need, we created the concept of comprehensions, which are sub-
rules that are applied with all possible combinations of facts from the database.
In a comprehension { x̂; BE; SH }, x̂ is a list of variables, BE is the body of
the comprehension and SH is the head. The body BE is used to generate all
possible combinations for the head SH, according to the facts in the database.

The following example illustrates a simple program that uses comprehensions:

!edge(@1, @2).

!edge(@1, @3).
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!left(@3, @1)

!right(@3, @5)
value(@3, 3, 3)

replace(@3, 6, 7)

!left(@1, @0)
!right(@1, @2)
value(@1, 1, 1)

value(@0, 0, 0) value(@2, 2, 2)

!left(@5, @4)
!right(@5, @6)
value(@5, 5, 5)

value(@4, 4, 4) value(@6, 6, 6)

(a) Initial database. Replace axiom instan-
tiated at root node @3.

!left(@3, @1)
!right(@3, @5)
value(@3, 3, 3)

!left(@1, @0)
!right(@1, @2)
value(@1, 1, 1)

value(@0, 0, 0) value(@2, 2, 2)

!left(@5, @4)
!right(@5, @6)
value(@5, 5, 5)

replace(@3, 6, 7)

value(@4, 4, 4) value(@6, 6, 6)

(b) After applying rule 3 at node @3. Re-
place fact sent to node @5.

!left(@3, @1)
!right(@3, @5)
value(@3, 3, 3)

!left(@1, @0)
!right(@1, @2)
value(@1, 1, 1)

value(@0, 0, 0) value(@2, 2, 2)

!left(@5, @4)
!right(@5, @6)
value(@5, 5, 5)

value(@4, 4, 4) value(@6, 6, 6)
replace(@6, 6, 7)

(c) After applying rule 3 at node @5. Re-
place fact reaches node @6.

!left(@3, @1)
!right(@3, @5)
value(@3, 3, 3)

!left(@1, @0)
!right(@1, @2)
value(@1, 1, 1)

value(@0, 0, 0) value(@2, 2, 2)

!left(@5, @4)
!right(@5, @6)
value(@5, 5, 5)

value(@4, 4, 4) value(@6, 6, 7)

(d) After applying rule 1 at node @6. Value
of key 6 has changed to 7.

Fig. 2: An execution trace for the binary tree dictionary algorithm.

iterate(@1).

iterate(A) -o {B | !edge(A, B) | perform(B)}.

When the rule is fired, we consume iterate(@1) and then generate the com-
prehension. Here, we iterate through all the edge/2 facts that match !edge(@1,

B), which are: !edge(@1, @2) and !edge(@1, @3). For each fact, we derive
perform(B), namely: perform(@2) and perform(@3).

Aggregates Another useful feature in logic programs is the ability to reduce
several facts into a single fact. In LM we have aggregates (AE), a special kind
of sub-rule that works very similarly to comprehensions. In the abstract syntax
[ A ⇒ y; x̂; BE; SH1; SH2 ], A is the aggregate operation, x̂ is the list of
variables introduced in BE, SH1 and SH2 and y is the variable in the body
BE that represents the values to be aggregated using A. Like comprehensions,
we use x̂ to try all the combinations of BE, but, in addition to deriving SH1

for each combination, we aggregate the values represented by y and derive SH2

only once using y. As an example, consider the following program:

price(@1, 3).

price(@1, 4).

price(@1, 5).

count-prices(@1).

count-prices(A) -o [sum => P | . | price(A, P) | 1 | total(A, P)].
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Program Prog ::= Σ,D

Set Of Rules Σ ::= · | Σ,R
Database D ::= Γ ;∆

Rule R ::= BE ( HE | ∀x.R
Body Expression BE ::= L | P | C | BE,BE | ∃x.BE | 1
Head Expression HE ::= L | P | HE,HE | CE | AE | 1
Linear Fact L ::= l(x̂)

Persistent Fact P ::= !p(x̂)

Constraint C ::= c(x̂)

Comprehension CE ::= { x̂; BE; SH }
Aggregate AE ::= [ A ⇒ y; x̂; BE; SH1; SH2 ]

Aggregate Operation A ::= min | max | sum | count
Sub-Head SH ::= L | P | SH, SH | 1
Known Linear Facts ∆ ::= · | ∆, l(t̂)
Known Persistent Facts Γ ::= · | Γ, !p(t̂)

Table 1: Abstract syntax of LM.

By applying the rule, we consume count-prices(@1) and derive the ag-
gregate which consumes all the price(@1, P) facts. These are summed and
total(@1, 12) is derived. LM provides several aggregate operations, including
the minimum, maximum, sum, and count.

2.3 Concurrency

LM is at its core a concurrent programming language. The database of facts can
be seen as a graph data structure where each node contains a fraction of the
database. To accomplish this, we force the first argument of each predicate to be
typed as a node. We then restrict the derivation rules to only manipulate facts
belonging to a single node. However, the expressions in the head may refer to
other nodes, as long as those nodes are instantiated in the body of the rule.

Due to the restrictions on LM rules, nodes are able to run rules indepen-
dently without using other node’s facts. Node computation follows a don’t care
or committed choice non-determinism since any node can be picked to run as
long as it contains enough facts to fire a derivation rule. Facts coming from
other nodes will arrive in order of derivation but may be considered partially
and there is no particular order among the neighborhood. To improve concur-
rency, the programmer is encouraged to write rules that take advantage of the
non-deterministic nature of execution.

3 The Virtual Machine

We developed a compiler that compiles LM programs to byte-code and a multi-
threaded virtual machine (VM) using POSIX threads to run the byte-code. The
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goal of our system is to keep the threads as busy as possible and to reduce
inter-thread communication.

The load balancing aspect of the system is performed by our work scheduler
that is based on a simple work stealing algorithm. Initially, the system will parti-
tion the application graph of N nodes into P subgraphs (the number of threads)
and then each thread will work on their own subgraph. During execution, threads
can steal nodes of other threads to keep themselves busy.

Reduction of inter-thread communication is achieved by first ordering the
node addresses present in the code in such a way that closer nodes are clustered
together and then partitioning them to threads. During compilation, we take
note of predicates that are used in communication rules (arguments with type
node) and then build a graph of nodes from the program’s axioms. The nodes
of the graph are then ordered by using a breadth-first search algorithm that
changes the nodes of addresses to the domain [0, n[, where n is the number of
nodes. Once the VM starts, we simply partition the range [0, n[.

Multicore When the VM starts, it reads the byte-code file and starts all
threads. As a first step, all threads will grab their own nodes and assign the
owner property of each. Because only one thread is allowed to do computation
on a node at any given time, the owner property defines the thread with such
permission. Next, each thread fills up its work queue with the initial nodes. This
queue maintains the nodes that have new facts to be processed. When a node
sends a fact to another node, we need to check if the target node is owned by
the same thread. If that is not the case, then we have a point of synchronization
and we may need to make the target thread active.

The main thread loop is shown in Fig. 3, where the thread inspects its work
queue for active nodes. Procedure process node() takes a node with new can-
didate rules and executes them. If the work queue is empty, the thread attempts
to steal one node from another thread before becoming idle. Starting from a ran-
dom thread, it cycles through all the threads to find one active node. Eventually,
there will be no more work to do and the threads will go idle. There is a global
atomic counter, a global boolean flag and one boolean flag for each thread that
are used to detect termination. Once a thread goes idle, it decrements the global
counter and changes its flag to idle. If the counter reaches zero, the global flag is
set to idle. Since every thread will be busy-waiting and checking the global flag,
they will detect the change and exit the program.

Byte-Code A byte-code file contains meta-data about the program’s predi-
cates, initial nodes, partitioning information, and code for each rule. Each VM
thread has 32 registers that are used during rule execution. Registers can store
facts, integers, floats, node addresses and pointers to runtime data structures
(lists and structures). When registers store facts, we can reference fields in the
fact through the register.

Consider a rule !a(X,Y), b(X,Z), c(X,Y) -o d(Y) and a database with
!a(1,2), !a(2,3), b(1,3), b(5,3), c(1,2), c(1,3), c(5,3). Rule execution
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void work_loop(thread_id tid):

while (true):
current_node = NULL;
if(has_work(tid)):

current_node = pop_work(tid); // take node from the queue
else:

target_thread = random(NUM_THREADS);
for (i = 0; i < NUM_THREADS && current_node == NULL; ++i): // need to steal a node

target_thread = (target_thread + 1) % NUM_THREADS;
current_node = steal_node_from_thread(target_thread)

if(current_node == NULL):
become_idle(tid);
if(!synchronize_termination(tid)):

return;
become_active(tid);

else:
process_node(current_node, tid);

Fig. 3: Thread work loop.

proceeds in a series of recursive loops, as follows: the first loop retrieves an
iterator for the persistent facts of !a/2 and moves the first valid fact, !a(1,2),
to register 0; the inner loop retrieves linear facts that match b(1,Z) (from the
join constraint) and moves b(1,3) to register 1; in the final loop we move c(1,2)
to register 2 and the body of the rule is successfully matched. Next, we derive
d(2), where 2 comes from register 0. Fig. 4 shows the byte-code for this example.

PERSISTENT ITERATE a MATCHING TO reg 0
LINEAR ITERATE b MATCHING TO reg 1

(match).0=0.0
LINEAR ITERATE c MATCHING TO reg 2

(match).0=0.0
(match).1=0.1

ALLOC d TO reg 3
MVFIELDFIELD 0.1 TO 3.0
ADDLINEAR reg 3
REMOVE reg 2
REMOVE reg 1
TRY NEXT

NEXT
NEXT

RETURN

Fig. 4: Byte-code for rule !a(X,Y),

b(X,Z), c(X,Y) -o d(Y).

In case of failure, we jump to the pre-
vious outer loop in order to try the next
candidate fact. If a rule matches and the
head is derived, we backtrack to the inner
most valid loop, i.e., the first inner loop
that uses linear facts or, if there are no
linear facts involved, to the previous inner
loop. We need to jump to a valid loop be-
cause we may have loops with linear facts
that are now invalid. In our example, we
would jump to the loop of b(X,Z) and not
c(X,Y), since b(1,3) was consumed.

The compiler re-orders the fact expres-
sions used in the body in order to make

execution more efficient. For example, it forces the join constraints in rules to
appear at the beginning so that matching will fail sooner rather than later. It
also does the same for constraints. Note that for every loop, the compiler adds a
match object, which contains information about which arguments need to match,
so that runtime matching is efficient.

LINEAR ITERATE a MATCHING TO reg 0
MVFIELDREG 0.0 TO reg 1
MVINTREG INT 1 TO reg 2
reg 1 INT PLUS reg 2 TO reg 3
MVREGFIELD reg 3 TO 0.0
UPDATE reg 0
TRY NEXT

RETURN

Fig. 5: Byte-code for rule a(N) -o a(N+1).

Our compiler also detects cases
where we re-derive a linear fact
with new arguments. For example,
as shown in Fig. 5, the rule a(N)

-o a(N+1) will compile to code that
reuses the old a(N) fact. We use a
flags field to mark updated nodes
(presented next).
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Database Data Structures We said before that LM rules are constrained by
the first argument. Because nodes can be execute independently, our database is
indexed by the node address and each sub-database does not need to deal with
synchronization issues since at any given point, only one thread will be using
the database. Note that the first argument of each fact is not stored.

The database must be implemented efficiently because during matching of
rules we need to restrict the facts using a given match object, which fixes ar-
guments of the target predicate to instantiated values. Each sub-database is
implemented using three kinds of data structures:

– Tries are used exclusively to store persistent facts. Tries are trees where facts
are indexed by the common arguments.

– Doubly Linked Lists are used to store linear facts. We use a double linked
list because it is very efficient to add and remove facts.

– Hash Tables are used to improve lookup when linked lists are too long and
when we need to do search filtered by a fixed argument. The virtual machine
decides which arguments are best to be indexed (see ”Indexing”) and then
uses a hash table indexed by the appropriate argument. If we need to go
through all the facts, we just iterate through all the facts in the table. For
collisions, we use the above doubly linked list data structure.

prev
next

1
2

flags

prev
next

2
12

flags

prev
next

2
42

flags

0

1

3

2

Hash Table

...

9

Fig. 6: Hash table data structure for storing
predicate a(int,int).

Figure 6 shows an example for a
hash table data structure with 3 lin-
ear facts indexed by the second argu-
ment and stored as doubly linked list
in bucket 2. Each linear fact contains
the regular list pointers, a flags field
and the fact arguments. Those are all
stored continuously to improve data
locality. One use of the flags field
is to mark that a fact is already be-
ing used. For example, consider the
rule body a(A,B), a(C,D) -o ....
When we first pick a fact for a(A, B) from the hash table, we mark it as being
used in order to ensure that, when we retrieve facts for a(C, D), the first one
cannot be used since that would violate linearity.

Rule Engine The rule engine decides which rules may need to be executed
while taking into account rule priorities. There are 5 main data structures for
scheduling rule execution; Rule Queue is the bitmap representing the rules that
will be run; Active Bitmap contains the rules that can be fired since there are
enough facts to activate the rule’s body; Dropped Bitmap contains the rules
that must be dropped from Rule Queue; Predicates Bitmap marks the newly
derived facts; and Predicates Count counts the number of facts per predicate.
To understand how our engine works, consider the program in Fig. 7a.

A Parallel Virtual Machine for Executing Forward-Chaining Linear Logic Programs

133



10

a, e(1) -o b.

a -o c.

b -o d.

e(0) -o f.

c -o e(1).

(a) Program

0 0 0 0 1 0 1 0 Rule Queue

Active Bitmap0 0 0 0 1 0 1 1

Facts: a, e(0)

Dropped Bitmap0 0 0 0 0 0 0 0

Predicates Bitmap0 0 0 0 0 0 0 0
abcde

0 0 0 1 0 0 0 1 Predicates Count
abcdef

f

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

Facts: c, e(0)

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0
abcde

0 0 0 1 0 1 0 0
abcdef

f

(b) Before and after applying the 2nd rule.

Fig. 7: Program and rule engine data structures.

We take the least significant rule from the Rule Queue bitmap, which is the
candidate rule with the higher priority, and then run it. In our example, since
we have facts a and e(0), we will execute the second rule a -o c. Because the
derivation is successful, we will consume a and derive c. We thus mark the c

predicate in the Predicates Bitmap and the first and second rules in Dropped

Bitmap since such rules are no longer applicable (a is gone). To update the
Rule Queue, we remove the bits marked in Dropped Bitmap and add the active
rules marked in Active Bitmap that are affected by predicates in Predicates

Bitmap. The engine thus schedules the fourth and fifth rules to run (Fig. 7b).

Note that every node in the program has the same set of data structures
present in Fig. 7. We use 32 bits integers to implement bitmaps and an array of
16 bits integers to count facts, resulting in 32 + 2P bytes per node, where P is
the number of predicates.

We do a small optimization to reduce the number of derivations of persistent
facts. We divide the program rules into two sets: persistent rules and non per-
sistent rules. Persistent rules are rules where only persistent facts are involved.
We compile such rules incrementally, that is, we attempt to fire all rules where
a persistent fact is used. This is called the pipelined semi-naive evaluation and
it originated in the P2 system [12]. This evaluation method avoids excessing re-
derivations of the same fact. The order of derivation does not matter for those
rules, since only persistent facts are used.

Thread Interaction Whenever a new fact is derived through rule derivation, we
need to update the data structures for the corresponding node. This is trivial
if the thread that owns the node derived the fact also. However, if a thread
T1 derives a fact for a node owned by another thread T2, then we may have
problems because T2 may be also updating the same data structures. We added
a lock and a boolean flag to each node to protect the access to its data structures.
When a node starts to execute, we activate the flag and lock the node. When
another thread tries to use the data structures, if first checks the flag and if
not activated, it locks the node and performs the required updates. If the flag
is activated, it stores the new fact in a list to be processed before the node is
executed.
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Indexing To improve fact lookup, the VM employs a fully dynamic mechanism
to decide which argument may be optimal to index. The algorithm is performed
in the beginning of the execution and empirically tries to assess the argument of
each predicate that more equally spreads the database across the values of the
argument. A single thread performs the algorithm for all predicates.

The indexing algorithm is performed in three main steps. First, it gathers
statistics of lookup data by keeping a counter for each predicate’s argument.
Every time a fact search is performed where arguments are fixed to a value, the
counter of such arguments is incremented. This phase is performed during rule
execution for a small fraction of the nodes in the program.

The second step of the algorithm then decides the candidate arguments of
each predicate. If a predicate was not searched with any fixed arguments, then
it will be not indexed. If only one argument was fixed, then such argument is set
as the indexing argument. Otherwise, the top 2 arguments are selected for the
third phase, where entropy statistics are collected dynamically.

During the third phase, each candidate argument has an entropy score. Before
a node is executed, the facts of the target predicate are used in the following
formula applied for the two arguments:

Entropy(A,F ) = −
∑

v∈values(F,A)

count(F,A = v)

total(F )
log2

count(F,A = v)

total(F )

Where A is the target argument, F is the multi-set of linear facts for the
target predicate, values(F,A) is set of values of the argument A, count(F,A = v)
counts the number of linear facts where argument A is equal to v and total(F )
counts the number of linear facts in F . The entropy value is a good metric
because it tells us how much information is needed to describe an argument. If
more information is needed, then that must be the best argument to index.

For one of the arguments to score, Entropy(A,F ) multiplied by the number
of times it has been used for lookup must be larger than the other argument.

The argument with the best score is selected and then a global variable
called indexing epoch is updated. In order to convert the node’s linked lists
into hash tables, each node also has a local variable called indexing epoch that
is compared to the global variable in order to rebuild the node database according
to the new indexing information.

Our VM also dynamically resizes the hash table if necessary. When the hash
table becomes too dense, it is resized to the double. When it becomes too sparse,
it is reduced in half or simply transformed back into a doubly linked list. This
is done once in a while, before a node executes.

We have seen very good results with this scheme. For example, for the all-
pairs shortest paths program, we obtained a 2 to 5-fold improvement in sequential
execution time. The overhead of dynamic indexing is negligible since programs
run almost as fast as if the indices have been added from the start.
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4 Preliminary Results

This section presents preliminary results for our VM. First, we present scalability
results in order to show that LM programs can take advantage of multicore
architectures. Next, we present a comparison with similar programs written in
other programming languages in order to show evidence that our VM is viable.

For our experimental setup, we used a machine with two 16 (32) Core AMD
Opteron (tm) Processor 6274 @ 2.2 GHz with 32 GBytes of RAM memory
and running the Linux kernel 3.8.3-1.fc17.x86 64. We compiled our VM using
GCC 4.7.2 (g++) with the flags -O3 -std=c+0x -march=x86-64. We ran all
experiments 3 times and then averaged the execution time.

Scalability Results For this section, we run each program using 1, 2, 4, 6, 8,
10, 12, 14 and 16 threads and compared the runtime against the execution of
the sequential version of the VM. We used the following programs:

– Greedy Graph Coloring (GGC) colors nodes in a graph so that no two adja-
cent nodes have the same color. We start with a small number of colors and
then we expand the number of colors when we cannot color the graph.

– PageRank implements a PageRank algorithm without synchronization be-
tween iterations. Every time a node sends a new rank to its neighbors and
the change was significant, the neighbors are scheduled to recompute their
ranks.

– N-Queens, the classic puzzle for a 13x13 board.
– Belief Propagation, a machine learning algorithm to denoise images.

Figure 8 presents the speedup results for the GGC program using 2 different
datasets. In Fig. 8a we show the speedup for a search engine graph of 12,000
webpages4. Since this dataset follows the power law, that is, there is a small
number of pages with a lots of links (1% of the nodes have 75% of the edges),
the speedup is slightly worse than the benchmark shown in Fig. 8b, where we
use a random dataset of 2,000 nodes with an uniform distribution of edges.

The PageRank results are shown in Fig. 9. We used the same search engine
dataset as before and a new random dataset with 5,000 nodes and 500,000 edges.
Although the search engine graph (Fig. 9a) has half the edges (around 250,000),
it scales better than the random graph (Fig. 9b), meaning that the PageRank
program depends on the number of nodes to be more scalable.

The results for the N-Queens program are shown in Fig. 10a. The program is
not regular since computation starts at the top of the grid and then rolls down,
until only the last row be doing computation. Because the number of valid states
for the nodes in the upper rows is much less than the nodes in the lower rows,
this may potentially lead to load balancing problems. The results show that our
system is able to scale well due to work stealing.

4 Available from http://www.cs.toronto.edu/~tsap/experiments/download/

download.html
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Fig. 8: Experimental results for the GGC algorithm.
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Fig. 9: Experimental results for the asynchronous PageRank algorithm.

Finally, we shown the results for the Belief Propagation (BP) program in
Fig. 10b. BP is a regular and asynchronous program and benefits (as expected)
from having multiple threads executing since the belief values of each node will
converge faster. The super-linear results prove this assertion.

Absolute Execution Time As we have seen, our VM scales reasonably well,
but how does it compare in terms of absolute execution time with other com-
peting systems? We next present such comparison for the execution time using
one thread.

In Fig. 11a we compare the LM’s N-Queens version against 3 other versions:
a straightforward sequential program implemented in C using backtracking; a
sequential Python [15] implementation; and a Prolog implementation executed
in YAP Prolog [5], an efficient implementation of Prolog. Numbers less than 1
mean that LM is faster and larger than 1 mean that LM is slower. We see that
LM easily beats Python, but is 5 to 10 times slower than YAP and around 15
times slower than C. However, note that if we use at least 16 threads in LM, we
can beat the sequential implementation written in C.

In Fig. 11b we compare LM’s Belief Propagation program against a sequen-
tial C version, a Python version and a GraphLab version. GraphLab [13] is a
parallel C++ library used to solve graph-based problems in machine learning.
C and GraphLab perform about the same since both use C/C++. Python runs
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(a) N-Queens program (13x13 board).
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(b) BP (400x400 image).

Fig. 10: Experimental Results for N-Queens and Belief Propagation.

Size C Python YAP Prolog

10 16.92 0,62 5,42
11 21.59 0.64 6.47
12 10.32 0.73 7.61
13 14.35 0.88 10.38

(a) N-Queens problem.

Size C Python GraphLab

10 0.67 0,03 1.00
50 1.77 0.04 1.73
200 1.99 0.05 1.79
400 2.00 0.04 1.80

(b) Belief Propagation program.

Fig. 11: Comparing absolute execution times (System Time / LM Time).

very slowly since it is a dynamic programming language and BP has many math-
ematical computations. We should note, however, that the LM version uses some
external functions written in C++ in order to improve execution time, therefore
the comparison is not totally fair.

We also compared the PageRank program against a similar GraphLab version
and LM is around 4 to 6 times slower. Finally, our version of the all-pairs shortest
distance algorithm is 50 times slower than a C sequential implementation of the
Dijkstra algorithm, but it is almost twice as fast when compared to the same
implementation in Python.

5 Conclusions

We have presented a parallel virtual machine for executing forward-chaining
linear logic programs, with particular focus on parallel scheduling on multicores,
rule execution and database organization for fast insertion, lookup, and deletion
or linear facts. Our preliminary results show that the VM is able to scale the
execution of some programs when run with up to 16 threads. Although this is
still a work in progress, the VM fairs relatively well against other programming
languages. Moreover, since LM programs are concurrent by default, we can easily
get better performance from the start by executing them with multiple threads.

In the future, we want to improve our work stealing algorithm so that each
thread steals nodes that are a better fit to the set of nodes owned by the thread
(e.g. neighboring nodes). We also intend to take advantage of linear logic to
perform whole-program optimizations, including computing program invariants
and loop detection in rules.
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3. Betz, H., Frühwirth, T.: A linear-logic semantics for constraint handling rules. In:
Principles and Practice of Constraint Programming - CP 2005, Lecture Notes in
Computer Science, vol. 3709, pp. 137–151 (2005) 1

4. Colmerauer, A., Roussel, P.: The birth of prolog. In: The Second ACM SIGPLAN
Conference on History of Programming Languages. pp. 37–52. New York, NY, USA
(1993) 1

5. Costa, V.S., Damas, L., Rocha, R.: The yap prolog system. CoRR abs/1102.3896
(2011) 4

6. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987) 1
7. Gonzalez, J., Low, Y., Guestrin, C.: Residual splash for optimally parallelizing

belief propagation. In: Artificial Intelligence and Statistics (AISTATS) (2009) 1
8. Gupta, G., Pontelli, E., Ali, K.A.M., Carlsson, M., Hermenegildo, M.V.: Paral-

lel execution of prolog programs: A survey. ACM Transactions on Programming
Languages and Systems (TOPLAS) 23(4), 472–602 (2001) 1

9. Holzbaur, C., de la Banda, M.J.G., Stuckey, P.J., Duck, G.J.: Optimizing compi-
lation of constraint handling rules in hal. CoRR cs.PL/0408025 (2004) 1

10. Lam, E.S.L., Sulzmann, M.: Concurrent goal-based execution of constraint han-
dling rules. CoRR abs/1006.3039 (2010) 1

11. Liu, M.: Extending datalog with declarative updates. In: International Conference
on Database and Expert System Applications (DEXA). vol. 1873, pp. 752–763
(1998) 1

12. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M.: Declarative
networking: Language, execution and optimization. In: International Conference
on Management of Data (SIGMOD). pp. 97–108 (2006) 1, 3

13. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Graphlab: A new framework for parallel machine learning. In: Conference on Un-
certainty in Artificial Intelligence (UAI). pp. 340–349 (2010) 4

14. Ramakrishnan, R., Ullman, J.D.: A survey of research on deductive database sys-
tems. Journal of Logic Programming 23, 125–149 (1993) 1

15. van Rossum, G.: Python reference manual. Report CS-R9525, Centrum voor
Wiskunde en Informatica, Amsterdam, the Netherlands (Apr 1995), http://www.
python.org/doc/ref/ref-1.html 4

A Parallel Virtual Machine for Executing Forward-Chaining Linear Logic Programs

139



CICLOPS-WLPE 2014

140



A Portable Prolog Predicate
for Printing Rational Terms

Theofrastos Mantadelis and Ricardo Rocha

CRACS & INESC TEC, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{theo.mantadelis,ricroc}@dcc.fc.up.pt

Abstract. Rational terms or rational trees are terms with one or more
infinite sub-terms but with a finite representation. Rational terms ap-
peared as a side effect of omitting the occurs check in the unification
of terms, but their support across Prolog systems varies and often fails
to provide the expected functionality. A common problem is the lack of
support for printing query bindings with rational terms. In this paper, we
present a survey discussing the support of rational terms among differ-
ent Prolog systems and we propose the integration of a Prolog predicate,
that works in several existing Prolog systems, in order to overcome the
technical problem of printing rational terms. Our rational term printing
predicate could be easily adapted to work for the top query printouts,
for user printing and for debugging purposes.

Keywords: Rational Terms, Implementation, Portability.

1 Introduction

From as early as [3, 8], Prolog implementers have chosen to omit the occurs
check in unification. This has resulted in generating cyclic terms known as ratio-
nal terms or rational trees. Rational terms are infinite terms that can be finitely
represented, i.e., they can include any finite sub-term but have at least one infi-
nite sub-term. A simple example is L=[1|L], where the variable L is instantiated
to an infinite list of ones. Prolog implementers started omitting the occurs check
in order to reduce the unification complexity from O(SizeTerm1+SizeTerm2) to
O(min(SizeTerm1, SizeTerm2)).

While the introduction of cyclic terms in Prolog was a side effect of omitting
the occurs check, soon after applications for cyclic terms emerged in fields such
as definite clause grammars [3, 5], constraint programming [10, 2], coinduction [6,
1, 11, 12] or infinite automata [7]. But support for rational terms across Prolog
systems varies and often fails to provide the functionality required by most ap-
plications. A common problem is the lack of support for printing query bindings
with rational terms [11]. Furthermore, several Prolog features are not designed
for compatibility with rational terms and can make programming using rational
terms challenging and cumbersome.
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In this paper, we address the problem of printing rational terms for a large
number of Prolog systems. We thus propose a compliant with ISO Prolog predi-
cate that can be used in several Prolog systems in order to print rational terms.
The predicate functions properly in the Ciao, SICStus, SWI, XSB and YAP Pro-
log systems. The predicate was also tested with the BProlog, ECLiPSe, GNU
Prolog, Jekejeke and Strawberry Prolog systems but for different reasons it failed
to work (details about the Prolog versions tested are presented next).

The remainder of the paper is organized as follows. First, we discuss how
rational terms are supported across a set of well-known Prolog systems. Next,
we present our compliant with ISO Prolog predicate and discuss how it can be
used to improve the printing of rational terms in several Prolog systems. We end
by outlining some conclusions.

2 Rational Term Support in Prolog Systems

We tested several Prolog systems to figure out their available support for rational
terms. Table 1 presents in brief our results. Initially, we performed ten different
tests that we consider to be the very minimal required support for rational
terms. First, we tested the ability of Prolog systems to create rational terms via
the =/2 operator (unification without occurs check). Second, and most critical
test, was for the systems to be able to perform unification among two rational
terms. Third, we checked whether the Prolog systems can infer the equality of
two rational terms by using ==/2 operator. Our fourth test was to see whether
a Prolog system can de-construct/construct rational terms through the =../2

operator, we also investigated whether the Prolog system supports any form of
build-in printing predicates for rational terms. The results of the above five tests
are presented in Table 1(a).

Furthermore, we checked the support of the acyclic_term/1 ISO predicate [4],
we tested whether assertz/1 supports asserting rational terms, checked if the
copy_term/2 and ground/1 predicates work with rational terms and finally, we
checked recordz/3 and recorded/3 functions with rational terms as an alternative
for assert/1. The results of these tests appear in Table 1(b).

Finally, we performed a few more compatibility tests as we present in Ta-
ble 1(c). We want to point out that the results of this table are expected and are
sub covered by the test for ==/2 operator. We have the strong conviction that
the same reason that forbids the ==/2 operator to function with rational terms in
some Prolog systems is the same reason for the failure of the comparison support
tests.

Currently, only three Prolog systems appear to be suitable for programming
and handling rational terms, namely SICStus, SWI and YAP. The rest of the
systems do not provide enough support for rational terms, which makes pro-
gramming with rational terms in such systems challenging and cumbersome, if
1 At the time of the publication the current stable version of Yap presented a prob-
lem with recorded/3, but the development version (6.3.4) already had the problem
solved.
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Create Compare Compare De-compose/ Build-in
Prolog System =/2 =/2 ==/2 compose =../2 Printing
BProlog (8.1) 3 7 7 3 7

Ciao (1.14.2) 3 3 3 3 7

toplevel query 3 3 7 7 7

ECLiPSe (6.1) 3 7 7 3 3

GNU (1.4.4) 3 7 7 3 7

Jekejeke (1.0.1) 3 7 7 3 7

SICStus (4.2.3) 3 3 3 3 3

Strawberry (1.6) 7 7 7 7 7

SWI (6.4.1) 3 3 3 3 3

XSB (3.4.0) 3 3 7 3 7

YAP (6.2.3) 3 3 3 3 3

(a) Operator Support

Prolog System acyclic_term/1 assert/1 copy_term/2 ground/1 recordz/3

BProlog (8.1) 3 7 7 7 7

Ciao (1.14.12) 3 7 7 7 7

toplevel query 3 7 7 7 7

ECLiPSe (6.1) 3 3 7 7 3

GNU (1.4.4) 3 7 7 7 7

Jekejeke (1.0.1) 7 7 7 7 7

SICStus (4.2.3) 3 3 3 3 3

Strawberry (1.6) 7 7 7 7 7

SWI (6.4.1) 3 7 3 3 3

XSB (3.4.0) 3 7 7 7 7

YAP (6.2.3) 3 7 3 3 31

(b) Predicate Support

Compare Compare Compare Compare compare/3

Prolog System @>/2 @</2 @>=/2 @=</2

BProlog (8.1) 7 7 7 7 7

Ciao (1.14.2) 3 3 3 3 3

toplevel query 7 7 7 7 7

ECLiPSe (6.1) 7 7 7 7 7

GNU (1.4.4) 7 7 7 7 7

Jekejeke (1.0.1) 7 7 7 7 7

SICStus (4.2.3) 3 3 3 3 3

Strawberry (1.6) 7 7 7 7 7

SWI (6.4.1) 3 3 3 3 3

XSB (3.4.0) 7 7 7 7 7

YAP (6.2.3) 3 3 3 3 3

(c) Comparison Operator Support

Table 1. Rational term support by Prolog systems
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not impossible. All Prolog systems we tested appear to support the creation
through unification of rational terms. For Jekejeke and Strawberry Prolog, we
where not able to verify the correctness of the created rational term but the
system appeared to accept the‌ instruction. SICStus, SWI and YAP Prolog sys-
tems also provide built-in predicate implementations capable of handling rational
terms without falling into infinite computations making them the most suitable
systems to work with rational terms.

For printing purposes, Table 1 shows us that only a few Prolog systems are
able to print rational terms without problems. The best printing is offered by
SWI as illustrated on the following examples:

?- A = [1|A].
A = [1|A].

?- B = [2|B], A = [1|B].
B = [2|B],
A = [1|B].

?- A = [1|B], B = [2|B].
A = [1|_S1], % where

_S1 = [2|_S1],
B = [2|_S1].

YAP offers an alternative printing which is ambiguous:

?- A = [1|A].
A = [1|**].

?- B = [2|B], A = [1|B].
A = [1,2|**],
B = [2|**].

?- A = [1|B], B = [2|B].
A = [1,2|**],
B = [2|**].

ECLiPSe and SICStus print rational terms in the following way:

?- A = [1|A].
A = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...]

?- B = [2|B], A = [1|B].
B = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]
A = [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]

?- A = [1|B], B = [2|B].
A = [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]
B = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]

The printed . . . from ECLiPSe and SICStus is a result of printing a higher
depth term than what the system permits. Both ECLiPSe and SICStus have a
depth limit option for their printing which terminates printing resulting to the
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partially printed rational terms. Disabling the depth limit, traps those systems
in infinite cycles2.

SICStus and SWI also provides the option cycles(true) for write_term/2 in
order to print terms using the finite @/2 notation. This option returns similar
printing output with SWI as the following examples illustrate:

?- _A = [1|_A], write_term(_A, [cycles(true)]).
@(_906,[_906=[1|_906]])

?- _A = [1|_B], _B = [2|_B], write_term(_A, [cycles(true)]).
@([1|_1055],[_1055=[2|_1055]])

?- _B = [2|_B], _A = [1|_B], write_term(_A, [cycles(true)]).
@([1|_1055],[_1055=[2|_1055]])

One can use this option in SICStus toplevel query printing, by setting appropri-
atly the Prolog flag toplevel_print_options.

GNU Prolog, identifies the term as a rational term and instead prints a
message:

?- A = [1|A].
cannot display cyclic term for A

The rest of the systems get trapped in infinite calculation when printing
rational terms. Specifically in the case of Ciao Prolog, we want to point out
that the toplevel queries automatically print out unnamed variables making any
query we tried to fall in infinite calculation. For that reason the Ciao toplevel
is completely unsuitable for rational terms. On the other hand Ciao can run
programs with a rather good support of rational terms making it the fourth in
the row system to support rational terms.

3 Printing Rational Terms

The predicate canonical_term/3 presented next at Algorithm 1 was originally
designed to transform a rational term to its canonical form [9]. Here, we extended
it in order to be able to compute a suitable to print term as its third argument.
The predicate does not follow the optimal printing for rational terms but that
was not our goal. We present a solution that can with minimal effort be used by
several Prolog systems to print rational terms and for that we use the minimum
amount of needed facilities.

Before explaining the canonical_term/3 predicate, let’s see some examples by
using canonical_term/3 with the XSB system:

?- _A = [a|_A], canonical_term(_A, _, Print).
Print = [a|cycle_at_depth(0)]

2 We where unable to disable the depth limit for ECLiPSe toplevel query printing,
but we could do it for non toplevel queries.
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?- _A = [a|_B], _B = [b|_B], canonical_term(_A, _, Print).
Print = [a,b|cycle_at_depth(1)]

?- _A = [a|_B], _B = [b|_B], _F = f(foo, _A, _B, _F),
canonical_term(_F, _, Print).

Print = f(foo, [a,b|cycle_at_depth(2)], [b|cycle_at_depth(1)],
cycle_at_depth(0))

Notice that our rational term printing is similar with YAP’s printing but
instead of printing an ambiguous **, we print a special term cycle_at_depth/1

that indicates at which tree depth of the specific tree branch the cyclic sub-
term points at. Figure 1, illustrates the term f(foo, [a,b|cycle_at_depth(2)],

[b|cycle_at_depth(1)], cycle_at_depth(0)) using a tree notation. For illustra-
tive purposes, we replaced cycle_at_depth/1 with '**'/1 and we use numbered
superscripts to mark the respective tree node that each cyclic sub-term points
at.

f/4 3

foo/0 '.'/2 '.'/22

a b

4

'.'/21 '**'/1

'**'/1

12'**'/1b

03

21

0

1

2

3

Fig. 1. Rational term: f(foo, [a,b|cycle_at_depth(2)], [b|cycle_at_depth(1)],

cycle_at_depth(0)) in tree notation

While our algorithm is not ambiguous when printing a rational term, it can
become ambiguous if the term to be printed also contains cycle_at_depth/1 terms
and the reader of the printed term might falsely think that a cycle exists.

The idea behind the original algorithm as presented at Algorithm 1 is to first
fragment the term to its cyclic sub-terms, continue by reconstructing each cyclic
sub-term (now acyclic) and, finally, reintroduce the cycle to the reconstructed
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sub-terms. To reconstruct each cyclic sub-term as acyclic, the algorithm copies
the unique parts of the term and introduces an unbound variable instead of
the cyclic references. Then, the algorithm binds the unbound variable to the
reconstructed sub-term, recreating the cycle.

Take for example the rational term L=[1,2,1,2|L]. Term L is being frag-
mented in the following sub-terms: L0=[1|L1], L1=[2|L3] and L3=[1,2|L0]. We
do not need to fragment the term L3 as, at that point, our algorithm detects
a cycle and replaces term L3 with an unbound variable OpenEnd. Thus we get
the following sub-terms: L0=[1|L1] and L1=[2|OpenEnd]. Binding OpenEnd=L0 re-
sults to the canonical rational term L0=[1,2|L0]. One might notice that instead
of recreating the cycles, if we bind the OpenEnd variables with the special term
cycle_at_depth/1 we get the desirable printout. Furthermore, we keep a counter
for each decomposition we do in order to keep track of the tree depth of the
term.

The bulk of the algorithm is at the fourth clause of decompose_cyclic_term/7.
At that part we have detected a cyclic sub-term that we have to treat recur-
sively. In particular, lines 31–37 implement an important step. Returning to our
example when the cycle is detected, the algorithm returns the unbound variable
to each fragmented sub-term. First, the sub-term L1=[2|OpenEnd] appears and
the algorithm needs to resolve whether it must unify OpenEnd with L1 or whether
OpenEnd must be unified with a parent sub-term. In order to verify that, lines
31–37 of the algorithm unify the sub-term with the unbound variable and af-
ter attempt to unify the created rational term with the original rational term.
For our example the algorithm generates L1=[2|L1] and attempt to unify with
L=[1,2,1,2|L], as the unification fails the algorithm propagates the unbound
variable to be unified with the parent sub-term L0=[1|L1].

The fifth clause of decompose_cyclic_term/7 is the location where a cycle is
actually found. At that point we can drop the original cyclic sub-term and place
an unbound variable within the newly constructed term. The third clause of
decompose_cyclic_term/7 could be omitted; it operates as a shortcut for simpli-
fying rational terms of the form F=f(a,f(a,F,b),b). The rest of the algorithm is
pretty much straightforward, the first clause of decompose_cyclic_term/7 is the
termination condition and the second clause copies the non-rational parts of the
term to the new term.

Our algorithm ensures termination by reaching an empty list on the second
clause of decompose_cyclic_term/7. This happens as at each iteration of the algo-
rithm the second argument list will be reduced by one element. Cyclic elements
are detected and removed and while the list might contain cyclic elements it is
not cyclic as it is the decomposed list derived by the =../2 operator that con-
structs the originally cyclic term. Finally, the call of in_stack/2 at line 24 ensures
that a cyclic term is not been processed more than once.

Complexity wise, our algorithm behaves linearly to the size of the term in
all cases but one. Terms of the form L = [1,2,3,...|L] cause the algorithm to
have a quadratic complexity (O(N2)). The cause of the worst case complexity
is the fourth clause of decompose_cyclic_term/7. We are currently considering an
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Input: a rational term Term

Output: a rational term Canonical in canonical representation and Print an acyclic
term that can be used for printing.

1 canonical_term(Term, Canonical, Print) :-
2 Term =.. InList,
3 decompose_cyclic_term(Term, InList, OutList, OpenEnd, [Term],
4 PrintList-Cycle_mark, 0),
5 Canonical =.. OutList,
6 Canonical = OpenEnd,
7 Print =.. PrintList,
8 Cycle_mark = cycle_at_depth(0).
9

10 decompose_cyclic_term(_CyclicTerm, [], [], _OpenEnd, _Stack, []-_, _).
11 decompose_cyclic_term(CyclicTerm, [Term|Tail], [Term|NewTail], OpenEnd,
12 Stack, [Term|NewPrintTail]-Cycle_mark, DepthCount) :-
13 acyclic_term(Term), !,
14 decompose_cyclic_term(CyclicTerm, Tail, NewTail, OpenEnd, Stack,
15 NewPrintTail-Cycle_mark, DepthCount).
16 decompose_cyclic_term(CyclicTerm, [Term|Tail], [OpenEnd|NewTail], OpenEnd,
17 Stack, [Cycle_mark|NewPrintTail]-Cycle_mark, DepthCount) :-
18 CyclicTerm == Term, !,
19 decompose_cyclic_term(CyclicTerm, Tail, NewTail, OpenEnd, Stack,
20 NewPrintTail-Cycle_mark, DepthCount).
21

22 decompose_cyclic_term(CyclicTerm, [Term|Tail], [Canonical|NewTail],
23 OpenEnd, Stack, [Print|NewPrintTail]-Cycle_mark, DepthCount) :-
24 \+ instack(Term, Stack), !,
25 Term =.. InList,
26 NewDepthCount is DepthCount + 1,
27 decompose_cyclic_term(Term, InList, OutList, OpenEnd2, [Term|Stack],
28 PrintList-Cycle_mark_2, NewDepthCount),
29 Canonical =.. OutList,
30 Print =.. PrintList,
31 ( Canonical = OpenEnd2,
32 Canonical == Term,
33 Cycle_mark_2 = cycle_at_depth(NewDepthCount),
34 !
35 ; OpenEnd2 = OpenEnd,
36 Cycle_mark_2 = Cycle_mark
37 ),
38 decompose_cyclic_term(CyclicTerm, Tail, NewTail, OpenEnd, Stack,
39 NewPrintTail-Cycle_mark, DepthCount).
40

41 decompose_cyclic_term(CyclicTerm, [_Term|Tail], [OpenEnd|NewTail], OpenEnd,
42 Stack, [Cycle_mark|NewPrintTail]-Cycle_mark, DepthCount) :-
43 decompose_cyclic_term(CyclicTerm, Tail, NewTail, OpenEnd, Stack,
44 NewPrintTail-Cycle_mark, DepthCount).
45

46 instack(E, [H|_T]) :- E == H, !.
47 instack(E, [_H|T]) :- instack(E, T).

Alg. 1: Predicate canonical_term/3
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improvement for this, one improvement would be to use a sorted binary tree
instead of a list to store and recall the seen cyclic subterms. This improvement
would improve the complexity to (O(N ·log(N))) but would increase the required
build-in support from the Prolog System.

As our target is to print out rational terms at different systems, we had to do
a few modifications in order for the predicate to work in other systems. For SWI
and YAP, the predicate canonical_term/3 works as is. For Ciao and SICStus, we
only needed to import the appropriate library that contains acyclic_term/1 and,
for XSB, we needed to bypass the lack of support for rational terms of the ==/2

operator by introducing the compare_rational_terms/2 predicate and replacing
the ==/2 operator at lines 1, 21 and 35.

% Needed in Ciao to import acyclic_term/1
:- use_module(library(cyclic_terms)).

% Needed in SICStus to import acyclic_term/1
:- use_module(library(terms)).

% Needed in XSB in order to replace ==/2 operator
compare_rational_terms(A, B) :-

acyclic_term(A),
acyclic_term(B), !,
A == B.

compare_rational_terms(A, B) :-
\+ var(A), \+ var(B),
\+ acyclic_term(A),
\+ acyclic_term(B),
A = B.

We want to point out that compare_rational_terms/2 predicate is not the
same with ==/2 predicate and comparisons among terms like: A = [1,_,2|A],
B = [1,a,2|B] would give wrong results. But for our purpose, where the terms
being compared are sub-terms, this problem does not appear as it compares the
sub-terms after decomposing them to their smallest units.

4 Towards Optimal Printing of Rational Terms

4.1 SWI

As we earlier pointed out, SWI is the closest to the desirable printing system.
However, SWI printing of rational terms suffers from two problems. First, SWI
does not print the canonical form of rational terms, as the following example
illustrates:

?- A = [1,2|B], B = [1,2,1,2|B].
A = B, B = [1, 2, 1, 2|B].

This could be easily corrected by using our predicate to process the rational
term before printing it.
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The second problem is that SWI can insert auxiliary terms that are not
always necessary. For example:

?- A = [1|B], B = [2|B].
A = [1|_S1], % where

_S1 = [2|_S1],
B = [2|_S1].

This problem could be addressed with SWI’s built-in term_factorized/3 pred-
icate. Using the same example:

?- A = [1|B], B = [2|B], term_factorized((A, B), Y, S).
A = [1|_S1], % where

_S1 = [2|_S1],
B = [2|_S1],
Y = ([1|_G34], _G34),
S = [_G34=[2|_G34]].

Notice that Y and S contain the desirable printouts. We also want to point out
that term_factorized/3 appears to compute also the canonical form of rational
terms which would solve both printing issues. Using again the initial example:

?- A = [1,2|B], B = [1,2,1,2|B], term_factorized((A, B), Y, S).
A = B, B = [1, 2, 1, 2|B],
Y = (_G46, _G46),
S = [_G46=[1, 2|_G46]].

4.2 YAP

Similarly with SWI, YAP’s development version implements a term_factorized/3

predicate. Future printing of the Yap Prolog system should take advantage of
the predicate in order to printout rational terms better.

?- A = [1|B], B = [2|B], term_factorized((A, B), Y, S).
A = [1,2|**],
B = [2|**],
S = [_A=[2|_A]],
Y = ([1|_A],_A).

?- A = [1,2|B], B = [1,2,1,2|B], term_factorized((A, B), Y, S).
A = B = [1,2,1,2,1,2,1,2,1,2|**],
S = [_A=[1,2,1,2|_A]],
Y = ([1,2|_A],_A).

Notice that YAP’s current term_factorized/3 predicate does not work exactly
like SWI’s and, currently, it still does not ensure canonical form for rational
terms.
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4.3 SICStus

SICStus should use the build-in write_term/2 predicate in order to improve the
printing of rational terms. The write_term/2 predicate appears to both compute
the canonical form of the rational term and to generate the minimal needed
sub-terms for printing, as the following examples illustrate:

?- A = [1|B], B = [2|B], write_term((A, B), [cycles(true)]).
@(([1|_1092],_1092),[_1092=[2|_1092]])
A = [1,2,2,2,2,2,2,2,2,2|...],
B = [2,2,2,2,2,2,2,2,2,2|...] ?

?- A = [1,2|B], B = [1,2,1,2|B], write_term((A, B), [cycles(true)]).
@((_1171,_1171),[_1171=[1,2|_1171]])
A = [1,2,1,2,1,2,1,2,1,2|...],
B = [1,2,1,2,1,2,1,2,1,2|...] ?

4.4 Ciao

Ciao provides a rather good support of rational terms in comparison with other
Prolog systems. However, it has the most problematic toplevel query interface.
All queries that would contain rational terms are trapped on an infinite compu-
tation and using unnamed variables does not override the problem. The authors
believe that this problem is directly related with the printing of rational terms
and if Ciao would use a different printing strategy the problem would be solved.
Our proposed solution would be an easy way for Ciao to support printing for
rational terms. Similarly, printing should be improved also for debugging pur-
poses.

4.5 XSB

XSB imposes several challenges to the programmer to use rational terms. Fur-
ther than being trapped on infinite computations when trying to print rational
terms, it also does not support comparison operators like ==/2. Regardless of the
limitations of the system, we believe that XSB would significantly benefit by
using a better printing strategy for rational terms. Similarly, printing should be
improved also for debugging purposes.

4.6 Other Prolog Systems

The other Prolog systems that we tried are further away from achieving even the
basic rational term support. Even if we were able to print simple rational terms
in BProlog, ECLiPSe and GNU Prolog, the lack of support for unification among
two rational terms makes it impossible to work with. These systems still treat
rational terms as a known bug of unification rather than a usable feature. GNU
Prolog in that respect behaved rather well as it identifies rational terms and
gives warning messages both when compiling and at runtime. Also, ECLiPSe
is not caught in infinite computation and is able to print a representation of
rational terms even if the programmer is unable to work with them.
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4.7 About term_factorized/3

The predicate term_factorized(+Term, -Skeleton, -Substitution) is true when:
(i) Skeleton is the skeleton term of Term, this means that all subterms of Term that
appear multiple times are replaced by variables; and (ii) Substitution is a list of
terms in the form of VAR = SubTerm that provides the necessary substitutions to
recreate Term from Skeleton by unifying VAR = SubTerm.

The term_factorized/3 predicate in SWI Prolog is implemented using the
red-black tree Prolog library by Vítor Santos Costa. The red-black tree library
originally appears in Yap Prolog and is an easy to port in other Prolog systems
library. Using term_factorized/3 for printing rational terms would increase the
operators that require to support rational terms to at least: ==/2, @</2, @>/2,
compare/3. For these reasons migrating term_factorized/3 would be more work
than using our canonical_term/3 predicate.

5 Conclusions

Rational terms, while not being very popular, they have found applications in
fields such as definite clause grammars, constraint programming, coinduction
or infinite automata. With this paper, we try to motivate Prolog developers to
support rational terms better and to provide a minimal support for researchers
and programmers to work with. We have presented a short survey of the existing
support for rational terms in several well-know Prolog systems and we proposed
a printing predicate that Prolog systems could use in order to improve their
printing of rational terms.

In particular, Ciao and XSB Prolog systems would benefit the most from
our predicate. As we explained, Ciao and XSB fall on infinite computations
when they need to print a rational term. Our predicate gives them an easy to
integrate solution that will allow printing of rational terms and debugging of
code that contains rational terms. Our canonical_term/3 predicate could also
be used in YAP to improve the current ambiguous printing format of rational
terms and to present rational terms in their canonical form. SWI could also
use our predicate in order to benefit by printing rational terms in canonical
form. Still, we believe that both YAP and SWI should do an integration of
their term_factorized/3 predicate with their printing of rational terms. Finally,
SICStus can use our predicate to provide an alternative printing, but integrating
write_term/2 predicate on the default printing of terms would be more beneficial.
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2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering

Essentials 2013

156



Former AIB Technical Reports

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination

proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-

trakorporale Lungenunterstützung
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