
Aachen
Department of Computer Science

Technical Report

Algorithmic Differentiation of a

Complex C++ Code with Underlying

Libraries

Max Sagebaum and Nicolas R. Gauger and Uwe Naumann and

Johannes Lotz and Klaus Leppkes

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2013-04

RWTH Aachen · Department of Computer Science · February 2013

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

Max Sagebaum and Nicolas R. Gauger and Uwe Naumann and Johannes Lotz
and Klaus Leppkes

Email: sagebaum@mathcces.rwth-aachen.de

Abstract. Algorithmic differentiation (AD) is a mathematical concept which
evolved over the last decades to a very robust and well understood tool for com-
putation of derivatives. It can be applied to mathematical algorithms, codes for
numerical simulation, and whenever derivatives are needed. In this paper we re-
port on the algorithmic differentiation of the discontinuous Galerkin solver padge,
a large and complex code written in C++ with underlying external libraries. The
reports on successful application of AD to large scale codes are rare in literature
and up to now this is not state of the art. Most of the codes, which are differen-
tiated nowadays, are written in C or Fortran. The padge code was differentiated
with the operator overloading tool dco/c++ in forward as well as reverse mode.
The differentiated code is validated and runs in the expected time margins of AD.

1 Introduction

In this paper we report on the algorithmic differentiation of the discontinu-
ous Galerkin solver padge from German Aerospace Center (DLR), an extensive
code written in C++ with underlying external libraries. The padge code solves
the compressible Reynolds-averaged Navier-Stokes equations (RANS). The code
relies on seven different libraries, including the finite element package deal.II,
PETSc, a library for solving linear and nonlinear problems, MPI for parallel
computation, and the AD library Sacado.

We undertake the algorithmic differentiation of padge due to the need of
derivatives for optimization strategies like one-shot [1]. The derivatives with re-
spect to the state (e.g. the flow field) and the design parameters (e.g the wing
shape) can be calculated with the algorithmic differentiated version of padge.
The differentiated version of padge is created in a black box manner. The oper-
ator overloading tool dco/c++ is used to activate all the variables of padge and
the underlying libraries for the algorithmic differentiation. Then the activated
variables can be used to calculated the derivatives with padge.

It turned out that it makes no sense to differentiate all the underlying li-
braries. For instance the Newton solves, performed with PETSc, need not to
be differentiated in a black box manner. As the discrete adjoint of the Newton
solver turns out to be infeasible in terms of memory usage, we decided to embed
a continuous adjoint implementation in the algorithmic differentiation process.
The continuous adjoint is included such that the normal padge code is not af-
fected. Also the libraries for input and output operations such as NetCDF and
OpenCascade and the libraries for mesh operations like METIS do not need to
be differentiated as they are not involved in the computation of the solution.

The paper is organized as follows: First we give a short introduction to AD,
which contains the forward as well as the reverse mode. Then, the AD tool dco is

introduced. In a next chapter we describe how padge has been differentiated by
dco. Furthermore, we discuss the special treatments in the differentiation process
of the libraries, included in padge. In a last chapter we present the validation of
the differentiated code and give numbers for its performance.

2 Algorithmic Differentiation

Algorithmic differentiation bases on the theory for the differentiation of a call
sequence. A good foundation of algorithmic differentiation (AD) is given by the
books of Naumann et. al [2] and Griewank et. al [3]. The efforts to extend the
theory is ongoing, see e.g. [4], [5], [6]. There are two classes of AD tools, namely
source transformation and operator overloading.

With source transformation the source code is parsed and a new code is
generated, which is extended to calculate the derivatives alongside the normal
calculations. This process can be applied to the whole program or to a single
function. The functions in the generated code have the same layout as the cor-
responding functions in the original code. The difference is that for each input
and output variable a new input or output variable is added. The new variables
contain the information about the derivatives. An example for source transfor-
mation tools is Tapenade [7]. Tapenade was at first written as an AD tool for
Fortran and recently extended to handle C code [8].

Examples for operator overloading tools are ADOL-C [9] and dco [10]. With
operator overloading the calculation type in the application or in a function
is exchanged to an active type, which is provided by the AD tool. The type
overloads the arithmetic operators and the basic mathematical functions. During
the execution of the program the AD tool stores information about the structure
of the activated code or computes directly the derivative information. To apply
AD on a code fragment or to make the code fragment active, each AD tool has
its of own set functions and strategy.

For brevity we will just state the definitions for the Forward and Reverse
Mode of AD. For a more detailed introduction see the book of Naumann et
al.[2].

Definition 1. Forward AD Mode: For the function y = F (x), given by the call
sequence F (x) = (fN ◦ fN−1 ◦ ... ◦ f1 ◦ f0)(x), the tangent-linear projection

ẏ =
dF

dx
ẋ

is computed by evaluating in a forward loop for i = 0, . . . , (N − 1)

vi+1 = f(vi) and v̇i+1 =
df

dvi
(vi)v̇i

simultaneously, with fi : R
ni → R

ni+1 , vi 7→ vi+1. Furthermore, we identify x ≡

v0, ẋ ≡ v̇0 for the input variables and y ≡ vN+1, ẏ ≡ v̇N+1 for the output
variables.

We want to emphasize that the Jacobi vector product dF
dx

ẋ in Definition 1 is

not computed by building the jacobi dF
dx

and then multiplying it with ẋ. The
computation is matrix free and calculated alongside the normal evaluation.

4

Definition 2. Reverse AD Mode: For the function y = F (x) given by the call
sequence F (x) = (fN ◦ fN−1 ◦ ... ◦ f1 ◦ f0)(x), the adjoint projection

x̄ =
dF

dx

T

ȳ

is computed by evaluating

vi+1 = f(vi) in a forward loop from i = 0, . . . , N and then evaluating

v̄i =

[

df

dvi
(vi)

]T

v̄i+1 in a reverse loop from i = N, . . . , 0 ,

with fi : R
ni → R

ni+1 , vi 7→ vi+1. Furthermore, we identify x ≡ v0, ȳ ≡ v̄N+1 for
the input variables and y ≡ vN , x̄ ≡ v̄0 the output variables.

We want to emphasize again that the Jacobi vector product in Definition
2 is not computed by building the Jacobi dF

dx
, transpose the Jacobi and then

multiplying it with ȳ. The product is calculated in a matrix free way during the
reverse sweep of the reverse AD mode.

The fi in the Definitions 1 and 2 are normally identified with the elemental
functions +,−, ∗, /, pow, sqrt, sin, cos, . . . but fi can also be a more complex
function like linear or nonlinear solver. The identification is done in such a way
that each fi performs one elemental operation and sets the result to one inter-
mediate variable. The other intermediate variables are unchanged. An AD tool
for operator overloading will overload operators like + and ∗ and functions like
sin and pow to implement the results from Definitions 1 and 2. This enables the
program to calculate the derivatives.

In Table 1 a few selected elemental functions are shown. The first three func-
tions are not very difficult to derive but they illustrate the basic concept of AD
very well. The fourth function describes the solution of a linear system. It turns
out that the solver for the original system can be used to calculate the forward
and reverse results.

Table 1. Forward and Reverse AD Mode for some elemental operations

Operation u = w + v u = w ∗ v u = sin(v) u = W−1v

Forward AD Mode u̇ = ẇ + v̇ u̇ = v ∗ ẇ + w ∗ v̇ u̇ = cos(v) ∗ v̇ u̇ = W−1(v̇ − Ẇu)

Reverse AD Mode v̄ += ū v̄ += w ∗ ū v̄ += cos(v) ∗ ū s = W−1T ū

w̄ += ū w̄ += v ∗ ū ū = 0 W̄ += −u · sT

ū = 0 ū = 0 v̄ += s

ū = 0

3 The AD tool dco

dco/c++ (derivative code by overloading in c++) [10] is developed from the
STCE (Software and Tools for Computational Engineering) group at RWTH
Aachen. dco/c++ make use of template expressions and other c++ features

5

mainly to generate efficient derivative code, e.g. by statement-level pre accumu-
lation.

Another very helpful feature is the possibility to integrate external functions
easily. An external function is a code block, which is not to be differentiated by
dco. The derivative of the external function is provided by the user himself via an
interface, next to the code parts differentiated by dco. This interface can be used
to differentiate a routine or library, for which dco should not be applied (e.g.
linear system or iterative solvers), but where a derivative function is available or
the derivative could be easily implemented by hand.

In the reminder of the paper we will give examples on how dco is used
in the differentiation progress. The derivative types programmed with dco are
the dco::t1s::type for the tangent projection of the Forward AD Mode and the
dco::a1s::type for the adjoint projection of the Reverse AD Mode. For the eval-
uation of second order derivatives the type dco::t2s a1s::type is available. The
second order derivatives are computed by a tangent linear projection on the
adjoint projection.

4 The differentiation of Padge

The padge code [11], developed by DLR Braunschweig, is a discontinuous Galerkin
solver, which solves the compressible Reynolds-averaged Navier-Stokes equations
(RANS). The code is written in C++ with underlying external libraries. It solves
on structured grids, which can be hp-refined. The solvers for the flow solution
are multigrid or Newton type. The internal structure of padge separates different
areas of the solution process into different packages, which are then combined
to form the solution process. Some of the packages depend on special external
libraries, other external libraries are used throughout the padge code. There are
seven different libraries:

– NetCDF (Network Common Data Form) [12] is a library for loading and
storing data. The data is stored in a machine independent format, which is
stored such that each file describes its own structure.

– METIS [13] provides functions and algorithms for the decomposition of graphs
and finite element meshes.

– OpenCascade is a software package, which provides methods for the handling
of CAD files.

– Sacado [14] is a part of the Trilinos project. Sacado is another AD tool for
the algorithmic differentiation of C++ codes. The forward mode of Sacado
is only used at three locations inside padge.

– deal.II (Differential Equations Analysis Library) [15] is a library for the im-
plementation of finite element methods.

– PETSc (Portable, Extensible Toolkit for Scientific Computation) [16] is a
extensive library for solving linear and nonlinear problems. It defines its own
structures and solver routines.

– MPI (Message Parsing Interface) [17] is a standard for the parallelisation of
programs for multiple machines. MPI takes care of the communication of the
different processes and the distribution of the tasks.

6

4.1 Concept of Differentiation

With respect to AD the libraries, which are used by padge, can be classified into
two categories. The first category contains with NetCDF, METIS and OpenCas-
cade all packages, which are used for data handling and IO operations. In Figure
1 these packages are placed on the left hand side. All libraries in this category
can be seen as non dependent with respect to AD. The consequence is that the
libraries don’t need to be differentiated with AD. Only at the interface to padge
a data conversion to the active type is needed.

On the right hand side in Figure 1, the second category is placed. The libraries
Sacado, deal.II, PETSc and MPI contribute all to the calculation of the solution.
padge uses deal.II as the core for the computation. Therefore, deal.II has to
be differentiated. Furthermore, Sacado needs also to be differentiated by dco,
which yields consequently second order derivatives. Finally, PETSc is handled
by the external function interface of dco. We decided to disable MPI for the
differentiation of padge to reduce initial workload.

Consequently, the grey box in Figure 1 contains all parts of code and libraries
to be differentiated by AD. The strategy for the differentiation is to implement
a black box differentiation of deal.II, sacado and padge first. During this black
box differentiation critical parts of code are identified for the application of more
advanced AD techniques and special treatments. The differentiated code of each
library is to be verified after each black box differentiation. This ensures that
dependent libraries are not affected by errors during further differentiation.

Padge

NetCDF

METIS

OpenCascade

MPI

PETSc

deal.II

Sacado

dco (AD)

special treatment

disabled

Fig. 1. Dependencies for padge and AD approach overview.

4.2 Differentiation of deal.II and padge

The first challenge to differentiate deal.II and padge is the absence of defini-
tions for a general calculation type. Large parts of code in deal.II and padge
are not templated and typedefs aren’t used. Consequently, we introduce the
typedef BASE TYPE as calculation type. Each ’double’ is replaced by the type
BASE TYPE. BASE TYPE is now used to switch between the previous calcula-
tion type ’double’ and the active types from dco. The current code for switching
between the different types is displayed in Figure 2. Within deal.II there is the

7

//#de f i n e BT DOUBLE // normal c a l c u l a t i o n type
//#de f i n e BT DCO T1S // forward mode o f dco
//#de f i n e BT DCO A1S // rev e r s e mode o f dco
#define BT DCO T2S A1S // second order d e r i v a t i v e mode o f dco

#i f de f in ed (BT DOUBLE)
// noth ing here
#e l i f de f in ed (BT DCO T1S) | | de f in ed (BT DCO A1S) | |

de f in ed (BT DCO T2S A1S)
#define BT DCO
#else

#error Def ine one base type with BT ∗
#endif

// inc l ude dco header i f needed
#ifde f BT DCO
#include ” . . / . . / . . / dco/ inc lude /dco . hpp”
#endif

#i f de f in ed (BT DOUBLE)
typedef double BASE TYPE;

#e l i f de f in ed (BT DCO T1S)
typedef dco : : t 1 s : : type BASE TYPE;

#e l i f de f in ed (BT DCO A1S)
typedef dco : : a1s : : type BASE TYPE;

#e l i f de f in ed (BT DCO T2S A1S)
typedef dco : : t 2 s a 1 s : : type BASE TYPE;

#else

#error Miss ing typedef for a BT ∗
#endif

Fig. 2. The structure for switching between the different base types.

possibility to call the linear algebra package with mixed precision types. In the
following example the matrix is stored in double precision and multiplied by a
float vector:

template void FullMatrix<double> : : vmult<f loat>(Vector<f loat>&,
const Vector<f loat>&, bool) const ;

Inside these methods a conversion between the different precisions would be
needed. Therefore, the active types for the different precisions should be provided
by AD, but this is usually not available for none of the tools. The solution was
to disabled the methods for the mixed precisions and remove the usage of this
feature in padge.

deal.II and padge were developed with no templates in mind, and with the
assumption that the template type would always be a machine type like float or
double. Therefore, the programming rules for template code were not applied.
This leads to compiler errors for code lines with implicit conversion, and hard-
coded double or float values. The example illustrated in Figure 3 reports the
error ”ambiguous overload for ’operator=’”. The compiler has the options to use
the operator with the argument BASE TYPE or IdentityMatrix. The solution is
to use a proper template coding convention, which is the cast to template type.

8

SparseMatrix<BASE TYPE> system matr ix ;
. . .
system matr ix = 0 . 0 ; // error
system matr ix = BASE TYPE(0 . 0) ; // no error

Fig. 3. Example for hardcoded values that lead to compiler errors. For this example: ambiguous
overload for ’operator=’.

4.3 Sacado

In sacado the calculation type for the derivatives is a template. The implemen-
tation of sacado is done in a way that additional information about the template
type is needed. Consequently, we have to provide this information for the dco
type. This is done through an adapted macro from sacado. The new macro cre-
ates the information sacado needs to know about the dco types. With some other
minor changes to sacado, all complier errors could be prevented. The result is
the differentiation of an AD tool with another AD tool.

4.4 PETSc

Matrix and Vector classes The parallelisation in padge is implemented through
the vector and matrix classes of PETSc. Therefore, these classes are used through-
out the whole padge code, next to some MPI calls to start the parallelisation. As
we choose to disable MPI in the current project, the challenge is that the matrix
and vector classes of PETSc are not usable with a custom calculation type. The
solution is the exchange of the PETSc vectors and matrices with wrapper classes,
which provide the same functionality as the PETSc classes and are usable with
a custom type.

The wrapper classes are derived from the standard deal.II vector and matrix.
During the differentiation of deal.II these two classes were prepared for the usage
with the dco types and thus meet the requirement that the wrapper should work
with custom types. The interface of the standard deal.II classes and the PETSc
classes, which are used in padge, are nearly the same.

Linear system solver The next challenge in padge is the differentiation of the
linear and nonlinear system solvers. As they are implemented with the function-
ality provided by PETSc. As PETSc is not easily differentiable with AD tools
the linear and nonlinear system solvers have to be treated separately. The first
step for the derivation of these routines was a refactoring of these classes, to pro-
vided a more convenient way to use the external function interface of dco. The
solution of a linear system is now done in the method solve system. It is used
by the refactored nonlinear solver. For the differentiation of the linear system
solver, only solve system has to be overloaded and differentiated by hand.

The hand differentiated version of a linear system solver is presented in Table
1. The fourth row of the table contains the procedures for the forward and reverse
mode of the linear system solve for the system Wu = v.

For the forward dco type dco::t1s::type the implementation can be summa-
rized into three steps: Extract the normal and derivative value from the rhs
vector and the matrix, solve the linear systems for the calculation and combine

9

the results to the output vector. In Figure 4 the whole implementation of the
method for the forward type is shown. The lines 3 to 6 perform the initialization
of the PETSc matrices and vectors. They also initialize the PETSc structure
with the values from padge. The normal linear system Wu = v is solved with
the call in line 10. The calculation for the forward AD mode Wu̇ = (v̇ − Ẇu) is
performed in the lines 12 to 14. The third step is done in line 16, which writes
the results to the output vector.

1 stat ic inl ine void p e t s c s o l v e (KSP ksp , dco : : DcoPetscMatrix &W,
dco : : DcoPetscVector &v , dco : : DcoPetscVector &u) {

2 PETScWrappers : :MPI : : SparseMatrix SEQBAIJ W values , W dot ; // i n i t
p e t s c matrix

3 PETScWrappers : :MPI : : Vector v va lues , v dot , u va lue s , u dot ,
temp ; // i n i t p e t s c v e c t o r s

4
5 dcoMatrixToPetscMatrix (W, W values , W dot) ;
6 dcoVectorToPetscVector (v , v va lues , v dot) ;
7
8 // s e t and s o l v e the system
9 KSPSetOperators (ksp , W values ,W values ,SAMENONZEROPATTERN) ;

10 KSPSolve (ksp , v va lues , u va lue s) ; // s o l v e Wu=v
11
12 MatMult (W dot , u va lues , temp) ; // temp = W dot ∗ u
13 VecAXPY(v dot , −1.0 , temp) ; // v do t = v do t − temp ;
14 KSPSolve (ksp , v dot , u dot) ; // s o l v e Wu dot=v do t − W dot ∗ u
15
16 petscVectorToDCOVector (u va lues , u dot , u) ; // c r ea t e the

s o l u t i o n vec t o r
17 }

Fig. 4. Hand differentiation for the solution to a linear system for the dco forward mode.

The implementation of the reverse mode has to be split into two methods, one
for the normal evaluation and one for the reverse evaluation. petsc solve for the
reverse type of dco is shown in Figure 5. The middle part of the method solves the
normal linear system. In the lines 2 to 3 and 19 the information for the reverse
evaluation is generated. Line 20 registers the function petsc solve adjoint a1s for
the reverse call on the dco tape. The implementation of petsc solve adjoint a1s
is presented in Figure 6. In the method the values for the reverse evaluation are
read and then the linear system W T s = ū for the reverse mode is evaluated. The
update for the matrix W and the right hand side vector v conclude the adjoint
method.

5 Validation, Performance & Statistics

The validation of the gradients, which are calculated with the differentiated ver-
sion of Padge, is done against finite differences. It is known by theory [3], that the
gradients obtained by AD are of machine accuracy. With finite differences of first
order, the approximation is just of order O(h) accurate, but the step size cannot
be chosen arbitrarily small due to cancellation errors. On the other hand, if h is
chosen too large, the truncation error grows. Consequently, the validation plots

10

1 stat ic inl ine void p e t s c s o l v e (KSP ksp , dco : : DcoPetscMatrix &W,
dco : : DcoPetscVector &v , dco : : DcoPetscVector &u) {

2 dco : : a1s : : e x t e r n a l f u n c t i o n d a t a h e l p e r ∗cp=new
dco : : a1s : : e x t e r n a l f u n c t i o n d a t a h e l p e r () ;

3 cp−>wr i t e t o ch e ckpo i n t (W) ; cp−>wr i t e t o ch e ckpo i n t (v) ;
cp−>wr i t e t o ch e ckpo i n t (ksp) ;

4
5 PETScWrappers : :MPI : : SparseMatrix SEQBAIJ W values ; // i n i t p e t s c

matrix
6 PETScWrappers : :MPI : : Vector v va lues , u va lue s ; // i n i t p e t s c

v e c t o r s
7
8 dcoMatrixToPetscMatrix (W, W values) ;
9 dcoVectorToPetscVector (v , v va lue s) ;

10
11 // s e t and s o l v e the system
12 KSPSetOperators (ksp , W values ,W values ,SAMENONZEROPATTERN) ;
13 KSPSolve (ksp , v va lues , u va lue s) ; // s o l v e Wu=v
14
15 // c r ea t e the s o l u t i o n vec t o r and se tup e v e r y t h i n g f o r the

r e v e r s e sweep
16 petscVectorToDCOVector (u va lues , u) ;
17 makeActive (u) ;
18
19 cp−>wr i t e t o ch e ckpo i n t (u) ;
20 dco : : a1s : : g l oba l t ape−>r e g i s t e r e x t e r n a l f u n c t i o n (&p e t s c s o l v e a d j o i n t a 1 s ,

cp) ;
21 }

Fig. 5. Hand differentiation for the solution of a linear system for the dco reverse mode. Function
for the evaluation.

11

1 void p e t s c s o l v e a d j o i n t a 1 s (dco : : a1s : : tape &tape , const

dco : : a1s : : tape : : i n t e r p r e t a t i o n s e t t i n g s &s e t t i n g s DCOUNUSED,
dco : : a1s : : tape : : e x t e r n a l f un c t i o n da t a ∗ userdata)

2 {
3 dco : : a1s : : e x t e r n a l f u n c t i o n d a t a h e l p e r

∗cp=static cast<dco : : a1s : : e x t e r n a l f u n c t i o n d a t a h e l p e r ∗>(userdata) ;
4
5 dco : : DcoPetscMatrix W;
6 dco : : DcoPetscVector v , u ;
7
8 KSP ksp ; /∗ l i n e a r s o l v e r con t e x t ∗/
9

10 cp−>r ead f rom checkpo int (W) ; cp−>r ead f rom checkpo int (ksp) ;
11 cp−>r ead f rom checkpo int (u) ; cp−>r ead f rom checkpo int (v) ;
12
13
14 PETScWrappers : :MPI : : SparseMatrix SEQBAIJ W values ; // i n i t p e t s c

matrix
15 PETScWrappers : :MPI : : Vector s , u bar ; // i n i t p e t s c v ec t o r
16
17 dcoMatrixToPetscMatrixTranspose (W, W values) ; // W values

con ta ins the t ransposed matrix
18 dcoVectorToPetscVector (u , u bar) ;
19
20 // s o l v e the ad j o i n t system
21 KSPSetOperators (ksp , W values ,W values ,SAMENONZEROPATTERN) ;
22 KSPSolve (ksp , u bar , s) ; // s o l v e Ŵ T x=b
23
24 updateAdjointDcoVector (v , s) ;
25 updateAdjointDcoMatrix (W, u , s) ;
26 }

Fig. 6. Hand differentiation for the solution of a linear system for the dco reverse mode. Function
for the reverse sweep.

12

should show reductions in the approximation error for decrease in step size, until
cancelation occurs and the error increases again. This leads to a typical V-shaped
curve.

The problem setup for the validation is a NACA 0012 airfoil with the follow-
ing settings:
Ma = 0.5 α = 2◦ Re = 5000 DOF y = 25600 (1600 Cells) DOF u = 40

The discretized Navier Stokes Equations is solved with a Newton Solver or Back-
ward Euler Solver

yk+1 = yk − J(yk, u)
−1R(yk, u),

Cd(y∗, u) with

– yk ∈ R
n is the state vector of the k-th iterate

– y∗ converged solution from the update yk
– u ∈ R

m vector for the design parameters
– R(y, u) residual of the discretized Navier-Stokes equations

– J(y, u) ≈ ∂R(y,u)
∂y

approximation of the Jacobi of the residual, as it is coded
in padge as Newton or Backward Euler

– Cd(y, u) its the cost functional: drag coefficient of the airfoil

The symbol ∇dco(·) is used for the gradients produced by dco, and ∇FD(·)
for the gradients calculated by finite differences.

Figure 7 illustrates the differences between gradients obtained by AD (in
forward as well as reverse mode) and finite differences, for the residuals and
Jacobians, differentiated with respect to design as well as state variables (see

Def. of ∇f1,∇f2,∇f3 and ∇f4 in Figure 7). ∇f5 := dCd(y
∗(u),u)
du

defines the
differentiation of the drag cost functional Cd(y, u) with respect to the vector of
design variables u. The function Cd depends directly and indirectly on the design
u. The indirect dependency on u is introduced by the converged flow solution y∗,
which depends on the design u. The derivative of Cd with respect to u is

dCd(y
∗(u), u)

du
=

∂Cd

∂y
(y∗(u), u)

∂y∗

∂u
(u) +

∂Cd

∂u
(y∗(u), u) .

The flow solution y∗ is attained by the Newton solver in padge. Through the
differentiation of padge the newton solver is also differentiated. The term ∂y∗

∂u
(u)

can thus be calculated with the differentiated Newton solver. The evaluation of
∇f5 is therefore done in two step. First the solution y∗ is obtained through the
Newton solver and then the function Cd(y

∗, u) is evaluated. Through AD the the

derivative dCd(y
∗(u),u)
du

is calculated in the background.
For each of the gradients, Figure 7 shows the expected V-shaped curves.

The runtime measurements, shown in Table 2, are performed for R(y, u) and
J(y, u), with degrees of freedom n = 14400 for the state vector y, and m = 40
for the design vector u. The runtime factors with respect to the first line are
represented in brackets. The factors are very close to the optimal theoretical
values: 2 to 2.5 for the forward mode, and 3 to 4 for the reverse mode [3]. But
this is only true for the differentiation with respect to the design u. The higher
dimension of the state vector y introduces an additional factor of 2, which can be

13

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

1e-16 1e-14 1e-12 1e-10 1e-08 1e-06 0.0001 0.01

FD step size

∇f1 := ∂‖R(y,u)‖2

∂u
, ∇f2 := ∂‖R(y,u)‖2

∂y
, ∇f3 := ∂‖J(y,u)‖2

∂u
, ∇f4 := ∂‖J(y,u)‖2

∂y
, ∇f5 := dCd(y

∗(u),u)
du

	∇dcof1 −∇FDf1	
	∇dcof2 −∇FDf2	
	∇dcof3 −∇FDf3	
	∇dcof4 −∇FDf4	
	∇dcof5 −∇FDf5	

Fig. 7. Validation of dco gradients against finite differences approximation of the gradient.

Table 2. Runtimes(ms(factor)) for normal padge and differentiated padge

Configuration
∂ ‖R‖22
∂u

∂ ‖R‖22
∂y

∂ ‖J‖2F
∂u

∂ ‖J‖2F
∂y

normal 12.7(1.00) 12.7(1.00) 248.4(1.00) 248.4(1.00)

dco forward (one component) 23.7(1.87) 23.7(1.87) 493.7(1.99) 493.7(1.99)

dco reverse (full gradient) 44.7(3.50) 118.0(9.29) 823.0(3.31) 1869.6(7.53)

explained by the larger set of variables. The state y is used in more calculations
than the design u and such more information is stored on the tape.

The statistics for the changed code lines are counted for padge as well as
deal.II. The counting is done with the tool cloc, which is configured to ignore
spaces and empty lines, but to include comment lines. The results from cloc
are displayed in Table 3. The changes are relatively large because, we had to
introduce the typedef for the basic calculation type.

Table 3. Changed code lines for padge and deal.II.

deal.II Code lines + comments Padge Code lines + comments

Overall 219235 Overall 132586
Modified 8719 (4,0%) Modified 8874 (6,7%)

6 Conclusion & Outlook

The successful differentiation of a complex C++ code with underlying libraries,
supported by dco, has been demonstrated. The key AD techniques have been the
introduction of typedefs and the use of external functions after refactoring the
code.

As future projects we address the incorporation of MPI [18] as well as the
differentiation of matrix and vector classes from PETSc. This will enable us to
revert to the original vectors in padge and to remove our own wrapper classes.

14

References

1. N. Gauger, A. Griewank, A. Hamdi, C. Kratzenstein, E. Özkaya, T. Slawig, Automated
extension of fixed point pde solvers for optimal design with bounded retardation, Interna-
tional Series of Numerical Mathematics 160 (2012) 99–122.

2. U. Naumann, The Art of Differentiating Computer Programs. An Introduction to Algorith-
mic Differentiation., Software, Environments, and Tools, SIAM, Philadelphia, PA, 2012.

3. A. Griewank, A. Walther, Evaluating Derivatives, second edition, SIAM, 2008.
4. A. Lyons, I. Safro, J. Utke, Randomized heuristics for exploiting jaco-

bian scarcity, Optimization Methods and Software 27 (2) (2012) 311–
322. arXiv:http://www.tandfonline.com/doi/pdf/10.1080/10556788.2011.577774,
doi:10.1080/10556788.2011.577774.
URL http://www.tandfonline.com/doi/abs/10.1080/10556788.2011.577774

5. V. Mosenkis, U. Naumann, On optimality preserving eliminations for the minimum edge
count and optimal jacobian accumulation problems in linearized dags, Optimization Meth-
ods and Software 27 (2012) 337–358.

6. M. Wagner, B.-J. Schaefer, A. Walther, On the efficient computation of high-order deriva-
tives for implicitly defined functions, Computer Physics Communications 181 (2010) 756–
764.

7. L. Hascoët, V. Pascual, Tapenade 2.1 user’s guide, Technical Report 0300, INRIA (2004).
URL http://www.inria.fr/rrrt/rt-0300.html

8. V. Pascual, L. Hascoët, TAPENADE for C, in: Advances in Automatic Differentiation,
Lecture Notes in Computational Science and Engineering, Springer, 2008, pp. 199–210,
selected papers from AD2008 Bonn, August 2008.

9. A. Walther, Computing sparse hessians with automatic differentiation, ACM Trans. Math.
Softw. 34 (1) (2008) 3:1–3:15. doi:10.1145/1322436.1322439.
URL http://doi.acm.org/10.1145/1322436.1322439

10. J. Lotz, K. Leppkes, U. Naumann, dco/c++ – efficient derivative code by overloading in
c++, Tech. Rep. AIB-2011-05, RWTH Aachen (2011).
URL http://aib.informatik.rwth-aachen.de/2011/2011-05.pdf

11. R. Hartmann, J. Held, T. Leicht, F. Prill, Discontinuous Galerkin methods for computa-
tional aerodynamics – 3D adaptive flow simulation with the DLR PADGE code, Aerospace
Science and Technology 14 (2010) 512–519. doi:DOI: 10.1016/j.ast.2010.04.002.

12. R. K. Rew, G. P. Davis, S. Emmerson, H. Davies, NetCDF User’s Guide for C, An Interface
for Data Access, version 3 Edition (April 1997).

13. G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs., SIAM Journal on Scientific Computing 20 (1) (1999) 359 – 392.

14. E. T. Phipps, R. A. Bartlett, D. M. Gay, R. J. Hoekstra, Large-scale transient sensitivity
analysis of a radiation-damaged bipolar junction transistor via automatic differentiation,
in: Advances in Automatic Differentiation, Springer, 2008, pp. 351–362.

15. W. Bangerth, R. Hartmann, G. Kanschat, deal.II – a general purpose object oriented finite
element library, ACM Trans. Math. Softw. 33 (4) (2007) 24/1–24/27.

16. S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient management of parallelism in
object oriented numerical software libraries, in: E. Arge, A. M. Bruaset, H. P. Langtangen
(Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–
202.

17. MPI Forum, MPI: A Message-Passing Interface Standard. Version 2.2, available at: http:
//www.mpi-forum.org (Dec. 2009) (September 4th 2009).

18. U. Naumann, L. Hascoët, C. Hill, P. Hovland, J. Riehme, J. Utke, A framework for prov-
ing correctness of adjoint message-passing programs, in: Proceedings of the 15th Euro-
pean PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 316–321.
doi:http://dx.doi.org/10.1007/978-3-540-87475-1 44.

15

16

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

17

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-

tive Code by Overloading in C++

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-17 Carsten Fuhs: SAT Encodings: From Constraint-Based Termination

Analysis to Circuit Synthesis

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on

Probabilistic Automata

2012-01 Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

18

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Auto-

mated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:

Algorithmic Differentiation of Numerical Methods: Tangent-Linear and

Adjoint Solvers for Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for Se-

cure Multi-Party Computation on MultiSets

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

19

