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Abstract. In this paper we study the complexity of computing the game bisim-
ulation metric defined by de Alfaro et al. on Markov Decision Processes. It is
proved by de Alfaro et al. that the undiscounted version of the metric is charac-
terized by a quantitative game µ-calculus defined by de Alfaro and Majumdar,
which can express reachability and ω-regular specifications. And by Chatterjee et

al. that the discounted version of the metric is characterized by the discounted
quantitative game µ-calculus. In the discounted case, we show that the metric can
be computed exactly by extending the method for Labelled Markov Chains by
Chen et al. And in the undiscounted case, we prove that the problem whether the
metric between two states is under a given threshold can be decided in NP∩coNP,
which improves the previous PSPACE upperbound by Chatterjee et al.

1 Introduction

In recent years, probabilistic behavioral equivalences have been extensively stud-
ied. Many equivalence notions for probabilistic systems such as probabilistic
(bi)simulation [LS91,SL95,JL91] have been established. And many efficient algo-
rithms have been proposed for these notions [BEMC00,CS02]. Generally, prob-
abilistic (bi)simulation is a class of formal notions judging whether two prob-
abilistic systems are equivalent. In practical situations, they are often used to
compare if the implemented system is semantically equivalent to the specifi-
cation. One can also tackle the state explosion problem in model checking by
reducing a large probabilistic system into its (possibly much smaller) quotient
system w.r.t probabilistic (bi)simulation. This is because the quotient system is
equivalent to the original one in the sense that they satisfy the same set of logical
formulae [ASB95,SL95].

However, the definition of probabilistic bisimulation relies on exact proba-
bility values and a slight variation of probability values will differentiate two
originally equivalent systems. In this sense, probabilistic bisimulation is too re-
strictive and not robust, and a notion of approximate bisimulation or bisimilarity
metric is needed. In the context of approximate bisimulation, the difference of
two states is measured by a value in [0, 1], rather than by a boolean argument
stating they are either “equal” or “different”. This yields a smooth, quantita-
tive notion of probabilistic bisimulation. The smaller the value, the more alike
the behaviours of the two states are. In particular, the value is zero if they are
probabilistic bisimilar. In practical situations, the value for the difference would
suggest if one component can substitute another: if the value between them is
small enough, then one may choose the cheaper component.

The notion of approximate bisimulation is first considered by Giacalone
et al [GJS90]. They defined a notion of “ǫ-bisimilarity” to measure the dis-
tance between two probabilistic processes encoded in the PCCS calculus, which



extends Milner’s CCS [Mil89] with probabilities. Then various notions of ap-
proximate bisimulation are defined on discrete-time probabilistic systems such
as Labelled Markov Chains (LMC) [vBW01b,vBW01a,vBSW08], Markov De-
cision Processes (MDP) [FPP04,dAMRS07,DLT08,TDZ11,DJGP02] and Con-
current Games [dAMRS07], and continuous-time probabilistic systems such as
Labelled Markov Processes (LMP) [Pan09], Continuous-Time Markov Chains
(CTMC) [GJP04] and Stochastic Hybrid Systems [JGP06].

Here we focus on the bisimilarity metric on concurrent games by de Alfaro
et al. [dAMRS07], called game bisimulation metric. It is proved that this metric
is characterized by a quantitative game µ-calculus [dAM04], where various prop-
erties such as the maximum reachability (to reach some set) and the maximum
recurrent reachability (to reach some set infinitely often) can be expressed. This
means that this metric serves as the exact bound for the differences of these
properties across states. Furthermore, Chatterjee et al. [CdAMR10] proved that
this metric is a tight bound for the difference in long-run average and discounted
average behaviors. In this paper, we will also study a discounted version of this
game bisimulation metric [dAHM03,CdAMR10]. In the discounted version, fu-
ture difference is discounted by a factor and does not contribute fully to the
metric, which is in contrast to the case of the original undiscounted metric.
Analogous to the undiscounted version, the discounted metric is characterized
by a discounted quantitative µ-calculus [dAHM03,CdAMR10].

If one restricts the game bisimulation metric to MDPs (a turn-based degen-
erate class of concurrent games) and LMCs (MDPs without nondeterminism),
one can obtain a metric on MDPs and LMCs, respectively. In this paper we
consider the game bisimulation metric [dAMRS07] on MDPs. We briefly com-
pare this metric to another two metrics on Markov Decision Processes which are
related with strong probabilistic bisimulation, namely the metrics by Ferns et
al. [FPP04] and Desharnais et al. [DLT08,TDZ11]. The three metrics are differ-
ent. Both the game bisimulation metric and the metric by Ferns et al. are defined
as a least fixpoint on the lattice of pseudometrics, however the latter focuses on
the difference in accumulated rewards. The one by Desharnais is defined directly
as a binary relation and focuses on one-step difference. It is shown that the met-
ric by Desharnais et al. is PTIME-decidable [TDZ11]. However, this metric does
not serve as a bound for properties such as the reachability probability to some
state labelled with a. This can be observed in [DLT08, Example 7], where we
may label a on states sn and tn. In this example, d(s, t) ≤ 0.1. However the
difference between s, t in the probability to reach {sn, tn} is 1 − 0.95n, which
approaches 1 when n goes to infinity. On the other hand, the game bisimulation
metric serves as a bound for this property, since this property can be encoded
in the quantitative game µ-calculus [dAM04]. It is also worth noting that the
game bisimulation metric on LMCs coincides with the metric by van Breugel et
al. [vBW01b,vBW01a,vBSW08].

In this paper, we study the complexity of computing the discounted and
undiscounted game bisimulation metric [dAMRS07,dAHM03,CdAMR10] on Markov
Decision Processes. It is shown by Chatterjee et al. [CdAMR10] that the undis-
counted metric can be decided in PSPACE. In other words, one can decide in
PSPACE whether the undiscounted metric between two states in an MDP is
under a given threshold. And very recently, Chen et al. [CvBW12] proved that
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the undiscounted metric is PTIME-decidable on LMCs. Here we prove that the
undiscounted metric (on MDPs) can be decided in NP∩ coNP, which is one-step
closer to obtain the PTIME-decidability of the problem. We prove this result by
establishing a notion of “self-closed” sets, which in some sense characterizes this
metric. We remark that the method devised by Chen et al. [CvBW12] cannot
be (at least directly) extended to Markov Decision Processes. This is because
their method heavily relies on the fact that the metric is the unique fixpoint of
a bisimulation-minimal LMC, which generally is not the case on MDPs. For the
discounted case, we show that the discounted metric can be computed exactly in
polynomial time by simply extending the method by Chen et al. [CvBW12] for
LMCs.

The organization of this paper is as follows: Section 2 introduces Markov
Decision Processes. Section 3 introduces the discounted and undiscounted game
bisimulation metric on MDPs. In Section 4 we discuss approximations of the game
metrics, where we derive that the discounted metric on MDPs can be computed
exactly in polynomial time. Then in Section 5 we prove that the undiscounted
metric on MDPs can be decided in NP ∩ coNP. Section 6 concludes the paper.

2 Markov Decision Processes

We define Markov Decision Processes (MDP) in the context of game structures,
following the definitions in [dAMRS07].

Definition 1. Let S be a finite set. A function µ : S → [0, 1] ∩ Q is a prob-
ability distribution over S if

∑

s∈S µ(s) = 1. We denote the set of probability
distributions over S by Dist(S).

Definition 2. A Markov Decision Process is a tuple (S,V, [·],Moves, Γ, δ) which
consists of the following components:

– A finite set S = {s, t . . . } of states;
– A finite set V of observational variables;
– A variable interpretation [·] : V × S 7→ [0, 1] ∩ Q, which associates with each

variable v ∈ V a valuation [v];
– A finite set Moves = {a, b . . . } of moves;
– A move assignments Γ : S 7→ 2Moves\∅, which associates with each state

s ∈ S the nonempty set Γ (s) ⊆ Moves of moves available at state s.
– A probabilistic transition function δ : S ×Moves 7→ Dist(S), which gives the

probability δ(s, a)(t) of a transition from s to t through the move a ∈ Γ (s).

Intuitively, Γ is the set of moves available at each state which can be controlled
by a (sole) player that tries to maximize or minimize certain property.

Below we define mixed moves [dAMRS07] on a Markov Decision Process. In-
tuitively, a mixed move is a probabilistic combination of single moves. This no-
tion corresponds to randomized strategies on Markov Decision Processes, which
coincides with combined transitions defined in [SL95].

Definition 3. Let (S,V, [·],Moves, Γ, δ) be an MDP. A mixed move at state
s ∈ S is a probability distribution over Γ (s). We denote by D(s) = Dist(Γ (s))
the set of mixed moves at state s. We extend the probability transition function
δ to mixed moves as follows: for s ∈ S and x ∈ D(s), we define δ(s, x) by
δ(s, x)(t) :=

∑

a∈Γ (s) x(a) · δ(s, a)(t), for t ∈ S.
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3 Game Metrics on Markov Decision Processes

In this section we define discounted and undiscounted game bisimulation metrics
on MDPs [dAMRS07,CdAMR10]. Both of them are defined as a least fixpoint
on the complete lattice of pseudometrics w.r.t an MDP. For technical reasons we
also extend these definitions to premetrics, a wider class of pseudometrics.

Below we fix an MDP (S,V, [·],Moves, Γ, δ). The following definition illus-
trates the concepts of premetrics and pseudometrics.

Definition 4. A function d : S × S → [0, 1] is a premetric iff d(s, s) = 0
for all s ∈ S. A premetric d is further a pseudometric iff for all r, s, t ∈ S,
d(s, t) = d(t, s) (symmetry) and d(r, t) ≤ d(r, s) + d(s, t) (triangle inequality).
We denote the set of premetrics ( resp. pseudometrics) by Mr ( resp. Mp).

Given d1, d2 ∈ Mκ (where κ ∈ {r,p}), we define the partial order d1 ≤ d2 in the
pointwise fashion, i.e., d1 ≤ d2 iff d1(s, t) ≤ d2(s, t) for all s, t ∈ S. It is not hard
to prove the following lemma [Pan09,vBSW08,dAMRS07].

Lemma 1. For κ ∈ {r,p}, the structure (Mκ,≤) is a complete lattice.

We concern the least fixpoint of (Mp,≤) w.r.t a monotone function Hα, where
α ∈ [0, 1] is a discount factor. The function Hα is defined as follows.

Definition 5. Given µ, ν ∈ Dist(S), we define µ⊗ ν as the following set

{λ : S × S 7→ [0, 1] | (∀u ∈ S.
∑

v∈S

λ(u, v) = ν(u)) ∧ (∀v ∈ S.
∑

u∈S

λ(u, v) = µ(v))}

Further we lift d ∈ Mr to µ, ν ∈ Dist(S) as follows,

d(µ, ν) := inf
λ∈µ⊗ν





∑

u,v∈S

d(u, v) · λ(u, v)





Then the function Hα
κ : Mκ 7→ Mκ is defined as follows: given d ∈ Mκ,

Hα
κ (d)(s, t) = max{p(s, t), α ·H1(d)(s, t), α ·H2(d)(s, t)} for s, t ∈ S, for which:

– p(s, t) = maxv∈V |[v](s) − [v](t)|;
– H1(d)(s, t) = supa∈Γ (s) infy∈D(t) d(δ(s, a), δ(t, y));
– H2(d)(s, t) = H1(d)(t, s).

We denote by dακ the least fixpoint of Hα
κ , i.e., d

α
κ =

d
{d ∈ Mκ | Hα

κ (d) ≤ d}.

One can verify thatHα
κ is indeed a monotone function on (Mκ,≤) [CdAMR10,dAMRS07].

The pseudometric d1p corresponds to the undiscounted game bisimulation met-
ric [dAMRS07], and the pseudometric dαp with α ∈ [0, 1) corresponds to the
discounted metric with discount factor α [CdAMR10]. Note that the definitions
of Hα

κ and dακ take a different form from the original ones [dAMRS07,CdAMR10]
which cover concurrent games. However by [CdAMR10, Lemma 1 and Lemma
2], these two definitions are equivalent on Markov Decision Processes.

Note that the set µ⊗ν is a bounded polyhedron on the vector space S×S 7→ R.
Thus d(µ, ν) equals the optimal value of the linear programming (LP) problem
with feasible region µ⊗ ν and objective function min

∑

u,v∈S d(u, v) ·λ(u, v). We
denote by OP[d](µ, ν) the set of optimum solutions that reach the optimal value
d(µ, ν).
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Remark 1. It is proved in [CdAMR10] that for d ∈ Mr, s, t ∈ S and a ∈ Γ (s),
the value h[d](s, a, t) := infy∈D(t) d(δ(s, a), δ(t, y)) equals the optimal value of the
LP problem LP[d](s, a, t) whose variables are {λu,v}u,v∈S and {yb}b∈Γ (t), whose
objective function is min

∑

u,v∈S d(u, v) · λu,v, and whose feasible region is the
bounded polyhedron P (s, a, t) specified by:

∑

v∈S λu,v =
∑

b∈Γ (t) δ(t, b)(u) · yb
∑

u∈S λu,v = δ(s, a)(v)
∑

b∈Γ (t) yb = 1 λu,v ≥ 0 yb ≥ 0

Thus h[d](s, a, t) (and Hα
κ (d)) can be computed in polynomial time [CdAMR10,

Theorem 4.3]. Further there is y∗ ∈ D(t) such that h[d](s, a, t) = d(δ(s, a), δ(t, y∗)),
where y∗ can be {y∗b}b∈Γ (t) of some optimum solution {λ∗

u,v}u,v∈S , {y
∗
b}b∈Γ (t).

Below we give an example. Consider the MDP with states {s1, s2, t1, t2}, moves
{a, b} and variables {u1,u2, v}. The variable evaluation is specified by: ui(ti) = 1
and ui(s) = 0 for s 6= ti; v(s1) = v(s2) = 1 and v(s) = 0 for s ∈ S\{s1, s2}. The
probability transition function is depicted in Fig. 1. One can verify that the set

s1

t1 t2

s2

b : 1

a :
1

2
a :

1

2

b : 1

a :
1

2
+ ǫ

a :
1

2
− ǫ

a : 1 a : 1

Fig. 1.

of undiscounted fixpoints on this MDP is

{d ∈ Mp | d(s1, s2) ∈ [ǫ, 1], d(s, t) = 1 if s 6= t and {s, t} 6= {s1, s2}}.

Note that even in this simple example which is bisimulation minimal, there
exists no unique fixpoint. This is in contrast to the case on Labelled Markov
Chains [CvBW12].

4 Approximations of the Game Metrics

In this section we describe the approximation of discounted and undiscounted
game metric by Picard’s Iteration. Then we prove that the discounted metric
can be computed exactly in polynomial time by simply extending the method by
Chen et al. [CvBW12].

We fix an MDP (S,V, [·],Moves, Γ, δ). The size of the MDP, denoted by M ,
is the space needed to store the MDP, where all numerical values appearing in V
and δ are represented in binary. We denote by ‖α‖ the space needed to represent
the rational number α in binary. Below we define approximations of dακ .

Definition 6. The family {dκ,αi }i∈N0
of approximants of dακ is inductively defined

as follows: dκ,α0 := 0 (i.e., dκ,α0 (s, t) = 0 for all s, t ∈ S); dκ,αi+1 = Hα
κ (d

κ,α
i ). We
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denote by dκ,αω the limit of {dκ,αi }i∈N0
, i.e., dκ,αω (s, t) = lim

i→∞
dκ,αi (s, t) for all

s, t ∈ S. (By monotonicity of Hα
κ , one can prove inductively that dκ,αi ≤ dκ,αi+1 for

i ∈ N0. Thus dκ,αω exists.)

For α < 1, it is not hard to prove that dκ,αω = dακ since Hα
κ is a contraction

mapping. Below we define ‖d1 − d2‖ = maxs,t∈S |d1(s, t)− d2(s, t)|.

Lemma 2. dκ,αω = dακ for α ∈ [0, 1).

Proof. We prove inductively that ‖dκ,αi − dακ‖ ≤ αi. The situation when i = 0 is
clear. Suppose ‖dκ,αi − dακ‖ ≤ αi, we prove that ‖dκ,αi+1 − dακ‖ ≤ αi+1. This can be
observed as follows:

|dκ,αi+1(s, t)− dακ(s, t)|
= |Hα

κ (d
κ,α
i )(s, t)−Hα

κ (d
α
κ)(s, t)|

≤ α ·max{maxa∈Γ (s) |h[d
κ,α
i ](s, a, t)− h[dακ ](s, a, t)|,

maxb∈Γ (t) |h[d
κ,α
i ](t, b, s) − h[dακ ](t, b, s)|}

where h[d](s, a, t) is defined in Remark 1, which is the optimal value of the
objective function

∑

u,v d(u, v) · λu,v over the polyhedron P (s, a, t). Note that

|
∑

u,v

dκ,αi (u, v) · λu,v −
∑

u,v

dακ(u, v) · λu,v| ≤ ‖dκ,αi − dακ‖ ≤ αi

for all {λu,v}u,v∈S , {yb}b∈Γ (s) ∈ P (s, a, t). Thus |h[dκ,αi ](s, a, t) − h[dακ ](s, a, t)| ≤
αi and |h[dκ,αi ](t, b, s) − h[dακ ](t, b, s)| ≤ αi for all a ∈ Γ (s) and b ∈ Γ (t). So we
obtain ‖dκ,αi+1 − dακ‖ ≤ αi+1. ⊓⊔

The situation when α = 1 is not that direct, asH1
κ is not necessarily a contraction

mapping. This situation is handled in the following lemma.

Lemma 3. [dAMRS07] dκ,1ω = d1κ.

Proof. We prove that dκ,1ω ≤ d1κ and d1κ ≤ dκ,1ω . Below we abbreviate dκ,1i as dκi ,

dκ,1ω as dκω and d1κ as dκ. The case “dκω ≤ dκ” follows immediately from the fact
that (i) dκ0 ≤ dκ and (ii) H1

κ is monotone, and an inductive argument on the
construction of {dκi }i∈N0

. To prove “dκ ≤ dκω”, we prove that dκω is a pre-fixpoint
of H1

κ (i.e., H1
κ(d

κ
ω) ≤ dκω).

Consider arbitrary (s, t) ∈ S×S and a ∈ Γ (s). By the definition of {dκi }i∈N0
,

for all i ∈ N0, there exists y ∈ D(t) such that dκi (δ(s, a), δ(t, y)) ≤ dκi+1(s, t) ≤
dκω(s, t). Define Di := {y ∈ D(t) | dκi (δ(s, a), δ(t, y)) ≤ dκω(s, t)}. Then by the
analysis above Di is nonempty. Further by dκi ≤ dκi+1, dκi (δ(s, a), δ(t, y)) ≤
dκi+1(δ(s, a), δ(t, y)) for all y ∈ D(t). Thus {Di}i∈N0

is a decreasing sequence.
Further we prove that each Di is compact.

Suppose {yj}j∈N is a sequence in Di that converges to some y. Fix some
λj ∈ OP[dκi ](δ(s, a), δ(t, yj )). By the boundedness of {λj}j∈N, there is a subse-
quence {λjk}k∈N that converges to some vector λ. Since limk→∞ yjk = y and
limk→∞ λjk = λ, we have λ ∈ δ(s, a) ⊗ δ(t, y). Further by

dκi (δ(s, a), δ(t, y)) ≤
∑

u,v∈S dκi (u, v) · λ(u, v)

= lim
k→∞

∑

u,v∈S dκi (u, v) · λjk(u, v)

= lim
k→∞

dκi (δ(s, a), δ(t, yjk ))

≤ dκω(s, t)
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We have y ∈ Di. Thus {Di} is a decreasing sequence of nonempty compact sets,
which implies that

⋂

i∈N0
Di is non-empty. In other words, there is y∗ ∈ D(t)

such that for all i ∈ N0, d
κ
i (δ(s, a), δ(t, y

∗)) ≤ dκω(s, t).
The last step is to prove that lim

i→∞
dκi (δ(s, a), δ(t, y

∗)) = dκω(δ(s, a), δ(t, y
∗)),

from which we can deduce that dκω(δ(s, a), δ(t, y
∗)) ≤ dκω(s, t). To prove this, we

observe that for all d ∈ Mκ,

d(δ(s, a), δ(t, y∗)) = min{
∑

u,v∈S

λ(u, v) · d(u, v) | λ ∈ V (δ(s, a) ⊗ δ(t, y∗))}

where V (δ(s, a)⊗δ(t, y∗)) is the set of vertices of the polyhedron δ(s, a)⊗δ(t, y∗).
Since the number of vertices of a polyhedron is finite [Sch86], d(δ(s, a), δ(t, y∗))
(viewed as a function on vector d) is continuous on d. Then the result follows.

Then we obtain infy∈D(t) d
κ
ω(δ(s, a), δ(t, y)) ≤ dκω(s, t). Similarly, we can prove

that infx∈D(s) d
κ
ω(δ(t, b), δ(s, x)) ≤ dκω(s, t) for all s, t ∈ S and b ∈ Γ (t). Also note

that p(s, t) = dκ1 (s, t) ≤ dκω(s, t). Thus H
1
κ(d

κ
ω) ≤ dκω. ⊓⊔

Here we derive a corollary from Lemma 3 which states that d1r = d1p. This allows
us to reason about d1p on the lattice of premetrics.

Corollary 1. d1r = d1p =
d
{d ∈ Mr | H

1
r (d) ≤ d}.

Proof. This follows directly from Lemma 3 and the fact that dr,10 = dp,10 (which

implies dr,1ω = dp,1ω ). ⊓⊔

Below we follow Chen et al. [CvBW12] to prove that for a fixed α ∈ [0, 1), dακ
can be computed exactly in polynomial time. The method is divided into three
steps. The first step is to prove that dακ is a rational vector of polynomial size.

Lemma 4. For α ∈ [0, 1] ∩ Q, dακ is a rational vector of size polynomial in M
and ‖α‖.

Proof. We prove that dακ (deemed as a vector) is a vertex of a LP problem of
size polynomial in M and ‖α‖, which implies the desired result [Sch86, Theorem
10.2]. We construct the LP problem as follows:

1. For each s, t ∈ S and a ∈ Γ (s), we can choose a vertex {λ(s, a, t)u,v}u,v∈S ,
{y(s, a, t)b}b∈Γ (t) of P (s, a, t) that is an optimum solution of LP[dακ ](s, a, t)
(cf. Remark 1) [Sch86, Section 8]. By [Sch86, Theorem 10.2], these vertices
are of size polynomial in M .

2. The LP problem to be constructed is as follows: the variables are {ds,t}s,t∈S ,
the objective function is min

∑

s,t∈S ds,t, and the feasible region is specified
by:

(a) ds,s = 0, dr,t ≤ dr,s + ds,t and 0 ≤ ds,t ≤ 1 for r, s, t ∈ S;
(b) ds,t ≥ p(s, t) for s, t ∈ S;
(c) ds,t ≥ α ·

∑

u,v∈S λ(s, a, t)u,v · du,v for (s, t) ∈ S × S and a ∈ Γ (s);

(d) ds,t ≥ α ·
∑

u,v∈S λ(t, b, s)u,v · du,v for (s, t) ∈ S × S and b ∈ Γ (t).

We prove that {dακ(s, t)}s,t∈S is the unique optimum solution of this LP prob-
lem. First note that dακ is a feasible solution of this LP problem since dακ is a
fixpoint of Hα

κ . Then suppose that {d(s, t)}s,t∈S is a feasible solution of this LP.
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Since {{λ(s, a, t)u,v}u,v∈S , {y(s, a, t)b}b∈Γ (t)} is a vertex of P (s, a, t), we obtain
∑

u,v∈S λ(s, a, t)u,v ·d(u, v) ≥ h[d](s, a, t). This implies that d(s, t) ≥ α·h[d](s, a, t)
and d(s, t) ≥ α · h[d](t, b, s) for all a ∈ Γ (s) and b ∈ Γ (t). So by Definition 5,
Hα

κ (d) ≤ d. Thus dακ ≤ d and consequently
∑

s,t∈S dακ(s, t) ≤
∑

s,t∈S d(s, t). So
dακ is the unique optimum solution of this LP problem, which is also a vertex of
this LP. Thus dακ is a rational vector of size polynomial in M and ‖α‖. ⊓⊔

The second step is to prove that dακ can be approximated to polynomially many
bits of precision in polynomial time.

Lemma 5. For a fixed α ∈ [0, 1) ∩ Q and any ǫ > 0, we can compute, in poly-
nomial time in M and ‖ǫ‖, a d ∈ Mp such that ‖d− dακ‖ ≤ ǫ.

Proof. From the proof of Lemma 2, we see that ‖dκ,α⌈log ǫ/ logα⌉ − dακ‖ ≤ ǫ. We

show that dκ,α⌈log ǫ/ logα⌉ can be computed in polynomial time in M and ‖ǫ‖. Since

dκ,α
⌈log ǫ/ logα⌉

can be computed by iterating Hα
κ ⌈log ǫ/ log α⌉ times, we only need

to prove that each step in the iteration can be done in polynomial time. We prove
this by showing that the number of bits needed to represent dκ,αi in each iteration
is polynomial. More specifically, we prove by induction that the least common
multiplier of the denominators of entries in dκ,αk , denoted by T (k), is bounded

by mk · 2O(kM8) where m is the denominator of α. The base step k = 0 is clear
since T (0) = 1. We prove the inductive step by clarifying the recursive relation
between T (k + 1) and T (k). Let (s, t) ∈ S × S. By dκ,αk+1(s, t) = Hα

κ (d
κ,α
k )(s, t),

Definition 5 and Remark 1, there are three cases:

1. dκ,αk+1(s, t) = p(s, t). Then the denominator of dκ,αk+1(s, t) is bounded by 2O(M).
2. dκ,αk+1(s, t) = α · h[dκ,αk ](s, a, t) for some a ∈ Γ (s). Let {λu,v}u,v∈S , {yb}b∈Γ (t)

be a vertex of P (s, a, t) that reaches the optimal value h[dκ,αk ](s, a, t). By
[Sch86, Theorem 10.2], {λu,v}u,v∈S , {yb}b∈Γ (t) is of size O(M4). Thus the

denominator of dκ,αk+1(s, t) is a factor of T (k) ·m ·2O(M6) since h[dκ,αk ](s, a, t) =
∑

u,v∈S dκ,αk (u, v) ·λu,v. Then we can deduce that T (k+1) ≤ T (k) ·m ·2O(M8).
3. dκ,αk+1(s, t) = α · h[dκ,αk ](t, b, s) for some b ∈ Γ (t). This case is symmetrical to

the previous one.

Thus T (k + 1) ≤ T (k) · m · 2O(M8) and consequently T (k) ≤ mk · 2O(kM8). It
follows that the number of bits to represent dκ,αk is O(kM10 + kM2 logm) . ⊓⊔

Finally, the last step is to combine the previous two steps.

Theorem 1. For a fixed α ∈ [0, 1)∩Q, dακ can be computed exactly in polynomial
time in M .

Proof. By Lemma 5, we can find in polynomial time in M and ‖ǫ‖ a vector that
is ǫ-close to dακ . And by Lemma 4, dακ is a rational vector of size polynomial in M .
So we can use the continued fraction algorithm [Sch86, Section 6] to compute dακ
in polynomial time, as is illustrated in [CvBW12] and [EY10, Page 2540]. ⊓⊔

5 Complexity for the Undiscounted Metric

In this section we prove that the undiscounted metric d1p can be decided in
NP ∩ coNP. More formally, we prove that the problem MDPMetric:

10



– Input: a MDP (S,V, [·],Moves, Γ, δ), sin, tin ∈ S and a number ǫ ∈ Q≥0

– Output: whether d1p(sin, tin) ≤ ǫ or not

lies in NP and coNP, where numerical values in V, δ and ǫ are represented in
binary. Recall that d1p = d1r (Corollary 1), so we can work on the lattice (Mr,≤)
instead of (Mp,≤). For convenience we shall abbreviate d1r as dr.

Our proof method is divided into three steps: First we establish a charac-
terization of the least fixpoint dr called “self-closed” sets; Then we show that
whether a given d ∈ Mr equals dr is polynomial-time decidable; Finally, we com-
plete the proof by showing how we can guess a premetric d ∈ Mr which is also
a fixpoint of H1

r .

Below we fix an MDP (S,V, [·],Moves, Γ, δ). First we introduce the charac-
terization of dr, called “self-closed” sets, as follows:

Definition 7. Let d ∈ Mr satisfying d = H1
r (d). A subset X ⊆ S × S is self-

closed w.r.t d iff for all (s, t) ∈ X, the following conditions hold:

1. d(s, t) > p(s, t) (i.e., d(s, t) 6= p(s, t) from Definition 5);

2. for all a ∈ Γ (s) such that d(s, t) = infy∈D(t) d(δ(s, a), δ(t, y)), there is y∗ ∈
D(t) and λ∗ ∈ OP[d](δ(s, a), δ(t, y∗)) such that d(s, t) = d(δ(s, a), δ(t, y∗))
and ⌊λ∗⌋ ⊆ X.

3. for all b ∈ Γ (t) such that d(s, t) = infx∈D(s) d(δ(t, b), δ(s, x)), there is x∗ ∈
D(s) and λ∗ ∈ OP[d](δ(t, b), δ(s, x∗)) such that d(s, t) = d(δ(t, b), δ(s, x∗))
and ⌊λ∗⌋ ⊆ X.

where ⌊λ⌋ := {(u, v) ∈ S × S | λ(u, v) > 0} for a given λ.

Intuitively, a self-closed set X w.r.t d is a set such that for all (s, t) ∈ X, the
value d(s, t) can be reached by some λ with ⌊λ⌋ ⊆ X. This allows us to reduce all
{d(u, v)}(u,v)∈X simultaneously by a small amount so that d still is a pre-fixpoint
of H1

r . Thus if d has a nonempty self-closed set, then d is not the least fixpoint
dr. Below we show that nonempty self-closed sets in some sense characterize dr.

Theorem 2. Let d ∈ Mr satisfying d = H1
r (d). If d 6= dr, then there exists a

nonempty self-closed set X w.r.t d.

Proof. Suppose d 6= dr, we construct a nonempty self-closed set X as described
below. Define θ(s, t) = d(s, t)−dr(s, t). Then θ(s, t) ≥ 0 for all s, t ∈ S, and there
is (s, t) such that θ(s, t) > 0. Define X to be the following set:

X := {(s, t) ∈ S × S | θ(s, t) = max{θ(u, v) | (u, v) ∈ S × S}}

We prove that X is a nonempty self-closed set. The non-emptiness of X is clear.
We further prove that all (s, t) ∈ X satisfy the conditions specified in Definition 7.
Note that θ(s, t) > 0 for all (s, t) ∈ X. Consider an arbitrary (s, t) ∈ X:

1. It is clear that d(s, t) > p(s, t), otherwise d(s, t) = dr(s, t) = p(s, t) by Defi-
nition 5 and θ(s, t) = 0. So (s, t) satisfies the first condition in Definition 7.

2. Let a ∈ Γ (s) be a move such that d(s, t) = infy∈D(t) d(δ(s, a), δ(t, y)). Since dr
is a fixpoint of H1

r , dr(s, t) ≥ infy∈D(t) dr(δ(s, a), δ(t, y)). Choose a y∗ ∈ D(t)
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that reaches the value infy∈D(t) dr(δ(s, a), δ(t, y)). By the definition of X,
θ(u, v) ≤ θ(s, t) for all (u, v) ∈ S × S. Thus for all λ ∈ δ(s, a)⊗ δ(t, y∗),

∑

u,v∈S dr(u, v) · λ(u, v) ≥
∑

u,v∈S(d(u, v) − θ(s, t)) · λ(u, v)

= (
∑

u,v∈S d(u, v) · λ(u, v)) − θ(s, t)

The last equality is obtained by
∑

u,v∈S λ(u, v) = 1. By taking the infimum
at the both sides, we obtain d(δ(s, a), δ(t, y∗)) ≤ dr(δ(s, a), δ(t, y

∗)) + θ(s, t).
Thus, we have:

d(s, t) ≤ d(δ(s, a), δ(t, y∗)) ≤ dr(δ(s, a), δ(t, y
∗)) + θ(s, t) ≤ dr(s, t) + θ(s, t)

where the last one equals d(s, t). This means that d(s, t) = d(δ(s, a), δ(t, y∗))
and dr(s, t) = dr(δ(s, a), δ(t, y

∗)). Let λ∗ ∈ OP[dr](δ(s, a), δ(t, y
∗)) be an op-

timum solution. We prove that λ∗ ∈ OP[d](δ(s, a), δ(t, y∗)) and ⌊λ∗⌋ ⊆ X.
This can be observed as follows:

∑

u,v∈S d(u, v) · λ∗(u, v)

≥ d(s, t) (by d(s, t) = d(δ(s, a), δ(t, y∗)))
= dr(s, t) + θ(s, t)
=

∑

u,v∈S dr(u, v) · λ
∗(u, v) + θ(s, t) (by dr(s, t) = dr(δ(s, a), δ(t, y

∗)))

=
∑

u,v∈S(dr(u, v) + θ(s, t)) · λ∗(u, v)

≥
∑

u,v∈S d(u, v) · λ∗(u, v)

Then it must be the case that λ∗ ∈ OP[d](δ(s, a), δ(t, y∗)) and θ(u, v) = θ(s, t)
whenever λ∗(u, v) > 0. The latter implies ⌊λ∗⌋ ⊆ X. So (s, t) satisfies the
second condition in Definition 7.

3. It can be argued symmetrically to the second condition that the third condi-
tion is also satisfied.

Hence in conclusion, X is a nonempty self-closed set. ⊓⊔

Theorem 3. Let d ∈ Mr such that d = H1
r (d). If there exists a nonempty self-

closed set X ⊆ S × S w.r.t d, then d 6= dr.

Proof. SupposeX is a nonempty self-closed set w.r.t d. We construct a premetric
d′ � d such that H1

r (d
′) ≤ d′. For each s, t ∈ S, a ∈ Γ (s) and b ∈ Γ (t), define

– θ[s, a, t] := d(s, t)− infy∈D(t) d(δ(s, a), δ(t, y)).
– θ[s, t, b] := d(s, t)− infx∈D(s) d(δ(t, b), δ(s, x)).

Note that θ[s, a, t] and θ[s, t, b] are always non-negative since d is a fixpoint of
H1

r . Further we define

– θ1 := min{θ[s, a, t] | (s, t) ∈ X, a ∈ Γ (s) and θ[s, a, t] > 0};
– θ2 := min{θ[s, t, b] | (s, t) ∈ X, b ∈ Γ (t) and θ[s, t, b] > 0}.
– θ3 := min{d(s, t) − p(s, t) | (s, t) ∈ X}

where min ∅ := 0. Finally we define θ := min{θ′ | θ′ ∈ {θ1, θ2, θ3} and θ′ > 0}.
Note that θ > 0 since θ3 > 0. Then we construct d′ ∈ Mr by:

d′(s, t) :=

{

d(s, t)− 1
2θ if (s, t) ∈ X

d(s, t) if (s, t) 6∈ X
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It is clear that d′ � d since X is non-empty and θ > 0. We prove that H1
r (d

′) ≤ d′.
Let (s, t) ∈ S × S. Suppose first that (s, t) 6∈ X. Then by d′ ≤ d we have

H1
r (d

′) ≤ H1
r (d). Thus H1

r (d
′)(s, t) ≤ d′(s, t) by d′(s, t) = d(s, t) and d(s, t) =

H1
r (d)(s, t). Suppose now that (s, t) ∈ X. Consider an arbitrary move a ∈ Γ (s).

We clarify two cases below:
(i) θ[s, a, t] > 0. Then θ1 > 0 and θ ≤ θ1 ≤ θ[s, a, t]. So we have

d′(s, t) > d(s, t)− θ[s, a, t] = inf
y∈D(t)

d(δ(s, a), δ(t, y)) ≥ inf
y∈D(t)

d′(δ(s, a), δ(t, y))

(ii) θ[s, a, t] = 0. Since X is self-closed, there is y∗ ∈ D(t) such that d(s, t) =
d(δ(s, a), δ(t, y∗)) and λ∗ ∈ OP[d](δ(s, a), δ(t, y∗)) such that ⌊λ∗⌋ ⊆ X. By ⌊λ∗⌋ ⊆
X we obtain
∑

u,v∈S

d′(u, v) · λ∗(u, v) =
∑

u,v∈S

d(u, v) · λ∗(u, v) −
1

2
θ = d(δ(s, a), δ(t, y∗))−

1

2
θ

Then:

d′(δ(s, a), δ(t, y∗)) ≤
∑

u,v∈S

d′(u, v) · λ∗(u, v) = d(δ(s, a), δ(t, y∗))−
1

2
θ = d′(s, t)

Thus we have infy∈D(t) d
′(δ(s, a), δ(t, y)) ≤ d′(δ(s, a), δ(t, y∗)) ≤ d′(s, t). Sym-

metrically, we can prove that infx∈D(s) d
′(δ(t, b), δ(s, x)) ≤ d′(s, t) for all b ∈

Γ (t). Also by the definition of θ, we have d′(s, t) > p(s, t). So we also obtain
H1

r (d
′)(s, t) ≤ d′(s, t). Thus H1

r (d
′) ≤ d′ and hence dr ≤ d′ � d by Corollary 1.

⊓⊔

Note that in the proof d′ may not be a pseudometric, especially the triangle
inequality may not hold. This is the reason why we need Corollary 1.

Thus for each fixpoint d, d 6= dr iff there exists a nonempty self-closed set w.r.t
d. This characterization means that to check whether d 6= dr, we can equivalently
check whether there exists a nonempty self-closed set. The intuition to check the
latter is that for self-closed sets X,Y , X ∪ Y is still a self-closed set. Thus there
exists a largest self-closed set Z. This gives rise to a refinement algorithm that
computes Z.

Theorem 4. Denote by FP := {d ∈ Mr | d = H1
r (d) and ∀s, t ∈ S.d(s, t) ∈ Q}

the set of rational fixpoints of H1
r . The problem whether a given d ∈ FP equals

dr is decidable in polynomial time.

Proof. By Theorem 2 and Theorem 3, we can solve the problem by checking
whether there exists a nonempty self-closed set w.r.t the given d ∈ FP . Note
that for self-closed sets X,Y w.r.t d, X ∪ Y is still a self-closed set w.r.t d. So
there exists a largest self-closed set w.r.t d, which is denoted by Z. Then d 6= dr
iff Z is nonempty. Below we develop a refinement algorithm to compute Z.

First we define a refining function ref : E 7→ E , where the set E is given by:

E := {X ⊆ S × S | d(s, t) > p(s, t) for all (s, t) ∈ X}

Note that E is nonempty since ∅ ∈ E . Given X ∈ E , we define θX := min{d(s, t)−
p(s, t) | (s, t) ∈ X} (where min ∅ := 0), and the premetric dX ∈ Mr as follows:

dX(s, t) =

{

d(s, t)− θX if (s, t) ∈ X

d(s, t) if (s, t) 6∈ X
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Then ref(X) ∈ E is defined as the set of all (s, t) which satisfies the following
conditions:

1. (s, t) ∈ X;
2. for all a ∈ Γ (s), if d(s, t) = infy∈D(t) d(δ(s, a), δ(t, y)) then

dX(s, t) ≥ infy∈D(t) dX(δ(s, a), δ(t, y)).
3. for all b ∈ Γ (t), if d(s, t) = infx∈D(s) d(δ(t, b), δ(s, x)) then

dX(s, t) ≥ infx∈D(s) dX(δ(t, b), δ(s, x)).

Now we construct a sequence {Zi}i∈N0
by: Z0 = {(s, t) ∈ S×S | d(s, t) > p(s, t)};

Zi+1 = ref(Zi). By Zi+1 ⊆ Zi, there exists n ≤ |Z0| ≤ |S|2 such that Zn+1 =
ref(Zn) = Zn. We show that Zn = Z.

“Z ⊆ Zn”: We prove by induction that Z ⊆ Zi for all i ∈ N0. The base step
Z ⊆ Z0 is clear from the definition. For inductive step, suppose that Z ⊆ Zi. We
show that Z ⊆ ref(Zi). Consider (s, t) ∈ Z. Suppose a ∈ Γ (s) is a move such that
d(s, t) = infy∈D(t) d(δ(s, a), δ(t, y)). Since Z is self-closed, there is y∗ ∈ D(t) and
λ∗ ∈ OP[d](δ(s, a), δ(t, y∗)) such that d(s, t) = d(δ(s, a), δ(t, y∗)) and ⌊λ∗⌋ ⊆ Z.
Since Z ⊆ Zi, we have dZi

(s, t) = d(s, t) − θZi
and dZi

(u, v) = d(u, v) − θZi
for

all (u, v) ∈ ⌊λ∗⌋. Thus we obtain

∑

u,v∈S

dZi
(u, v) · λ∗(u, v) =

∑

u,v∈S

(d(u, v) − θZi
) · λ∗(u, v) = d(s, t)− θZi

= dZi
(s, t)

Hence dZi
(s, t) ≥ infy∈D(t) dZi

(δ(s, a), δ(t, y)). By a similar reasoning we can
prove the opposite direction for all b ∈ Γ (t). So (s, t) ∈ Zi+1. Thus Z ⊆ Zi+1.

“Zn ⊆ Z”: We prove that Zn is a self-closed set w.r.t d, i.e., Zn satisfies the
conditions specified in Definition 7. W.l.o.g we can assume that Zn 6= ∅. The
first condition is directly satisfied since Zn ⊆ Z0. As for the second condition,
consider (s, t) ∈ Zn and a ∈ Γ (s) such that d(s, t) = infy∈D(t) d(δ(s, a), δ(t, y)).
By Zn = ref(Zn), dZn

(s, t) ≥ infy∈D(t) dZn
(δ(s, a), δ(t, y)). Choose y∗ ∈ D(t)

such that dZn
(δ(s, a), δ(t, y∗)) = infy∈D(t) dZn

(δ(s, a), δ(t, y)) and an arbitrary
λ∗ ∈ OP[dZn

](δ(s, a), δ(t, y∗)). Then since dZn
(s, t) = d(s, t)− θZn

, we have

d(s, t) ≥ dZn
(δ(s, a), δ(t, y∗)) + θZn

=
∑

u,v∈S(dZn
(u, v) + θZn

) · λ∗(u, v)

≥
∑

u,v∈S d(u, v) · λ∗(u, v)

≥ d(δ(s, a), δ(t, y∗))
≥ d(s, t) (by d(s, t) = infy∈D(t) d(δ(s, a), δ(t, y)))

Thus d(s, t) = d(δ(s, a), δ(t, y∗)), λ∗ ∈ OP[d](δ(s, a), δ(t, y∗)) and dZn
(u, v) =

d(u, v) − θZn
for all (u, v) ∈ ⌊λ∗⌋. The latter implies ⌊λ∗⌋ ⊆ Zn since θZn

> 0.
The justification for the third condition can be carried out in the symmetric way
as for the second one.

Thus to compute Z, we need only to apply ref to Z0 at most |Z0| times. The
computation of ref can be carried out in polynomial time by applying [CdAMR10,
Theorem 4.3]. Hence Z is polynomial-time computable. Then we obtain that
whether a given d ∈ FP equals dr is decidable in polynomial time. ⊓⊔

By Theorem 4, we can decide if a given element in FP is dr in polynomial time.
Below we present the last step to complete the proof for the membership in
NP ∩ coNP, where we illustrate how we can guess an element from FP .
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Theorem 5. The problem MDPMetric can be decided in NP ∩ coNP.

Proof. We only prove the membership of coNP, since the membership of NP is
similar. Let (S,V, [·],Moves, Γ, δ), (sin, tin) and ǫ be the input. Our strategy to
obtain an NP algorithm to decide whether dr(sin, tin) > ǫ is as follows:

1. We guess a d ∈ FP by guessing vertices of some polyhedra.

2. We check whether d = dr by Theorem 4. If d = dr then we compare d(s, t)
and ǫ and return the result, otherwise we abort.

Below we show that how we can guess a d ∈ FP using polynomial bits. The
guessing procedure is illustrated step by step as follows.

1. For each s, t ∈ S and a ∈ Γ (s), we guess a vertex of P (s, a, t) (cf. Remark 1)
as follows:

– We guess |S|2 + |Γ (t)| constraints (denoted by Con(s, a, t)) specified in
each polyhedron P (s, a, t).

– We check (by Gaussian Elimination) whether for all s, a, t, the linear
equality system obtained by modifying all comparison operators (e.g.,
≥,≤) in Con(s, a, t) to equality (i.e. =) has a unique solution. If not, we
abort the guessing.

– We compute the unique solutions. We denote these unique solutions by
{λ(s, a, t)u,v}u,v∈S , {y(s, a, t)b}b∈Γ (t) for s, a, t.

– We check if {{λ(s, a, t)u,v}u,v∈S , {y(s, a, t)b}b∈Γ (t)} ∈ P (s, a, t) for all s, a, t.
If not, then we abort the guessing.

2. We find in polynomial time [Sch86] a premetric d ∈ Mr where {d(s, t)}s,t∈S is
an (arbitrary) optimum solution of the LP problem with variables {ds,t}s,t∈S ,
objective function min

∑

s,t∈S ds,t, and the feasible region specified by:

(a) ds,s = 0 and 0 ≤ ds,t ≤ 1 for s, t ∈ S

(b) ds,t ≥ p(s, t) for s, t ∈ S

(c) ds,t ≥
∑

u,v∈S λ(s, a, t)u,v · du,v for (s, t) ∈ S × S and a ∈ Γ (s).

(d) ds,t ≥
∑

u,v∈S λ(t, b, s)u,v · du,v for (s, t) ∈ S × S and b ∈ Γ (t).

If the linear programming system above has no feasible solution, we abort
the guessing. Otherwise we proceed to the next step.

3. We check whether d ∈ FP , which can be done in polynomial time. We abort
if the checking is unsuccessful. Otherwise we have guessed a d ∈ FP.

Then we check whether d = dr and (if yes) return the comparison result of
d(s, t) > ǫ. It is clear that if we can guess a d ∈ FP and check successfully that
d = dr, then the returned result is correct. Below we prove that dr can be guessed
through the guessing procedure.

Consider Step 1. For all s, t ∈ S and a ∈ Γ (s), we can guess Con(s, a, t) whose
unique solution {{λ(s, a, t)u,v}u,v∈S , {y(s, a, t)b}b∈Γ (t)} is a vertex of P (s, a, t)
that reaches the optimal value h[dr](s, a, t) of LP[dr](s, a, t) (cf. Remark 1) [Sch86,
Section 8]. Then in Step 2, we can follow the proof of Lemma 4 to prove that
{dr(s, t)}s,t∈S is the unique optimum solution of the LP problem specified in Step
2. Thus dr can be computed polynomially in Step 2. ⊓⊔
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6 Conclusion and Related Work

We have shown that for Markov Decision Processes, the discounted game bisim-
ulation metric [dAHM03,CdAMR10] can be computed exactly in polynomial
time, and the undiscounted game bisimulation metric [dAMRS07] can be de-
cided in NP∩ coNP. Our results extend the one for the discounted metric on La-
belled Markov Chains [CvBW12], and improves the PSPACE upperbound for the
undiscounted metric on Markov Decision Processes [CdAMR10]. It is proved by
Chen et al. [CvBW12] that the undiscounted metric on Labelled Markov Chains
can be decided in polynomial time, however their result cannot be directly ap-
plied to Markov Decision Processes. The exact complexity for the undiscounted
metric could be of theoretical interest. It is also worth noting that deciding the
undiscounted metric on concurrent games is at least as hard as the square-root
sum problem [CdAMR10], which is in PSPACE but whose inclusion in NP is a
long-standing open problem [EY10].
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2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten
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2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

20



2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations
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2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on

Probabilistic Automata

2012-01 ∗ Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity
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