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Abstract. Following up the development of the currently fastest independent
set algorithm [13] we present a practical evaluation, both on real-world data
taken from common biological problems and on synthetic data. In order to get
a clearer picture we measure different aspects of our implementation, especially
the different polynomial-time reduction rules. The main purpose of this report is
to show that algorithms with provable upper bounds can indeed be used to solve
practical instances, though some care must be taken in the transfer of algorithm
to code.

1 Introduction

The Maximum Independent Set problem has, regardless of its purely theoret-
ical heritage, found real-world applications in various fields. A common usage is
the cleaning of (noisy) data: if pairwise conflicts between measurements are mod-
eled as edges in a graph, an independent set constitutes a feasible subset of those.
This approach is widely used in Biology, where protein sequences of related or-
ganisms are compared to establish a hierarchy of ancestry. It is therefore not only
desirable to find new ways of lowering the worst-cast time bound of algorithms
solving it—for which an impressive series of results exists, lowering the trivial
bound of O (2n) to now O (1.2132npoly (n)) [13]—but also to find algorithms
which work in practice. In the general context of NP-hard problems several lines
of research have been conducted to this end: Gramm, Guo, Hüffner and Nieder-
meier [11] tackled the Clique Cover problem from the angle of parameterized
complexity; Alber, Dorn and Nierdermeier experimented with dynamic program-
ming on tree decompositions for Vertex Cover on planar graphs [3]. Dehne,
Langston, Luo, Shaw and Zhang studied Cluster Editing [7], which is a dif-
ferent approach to clean up data by dismissing relations between measurements;
Langston also worked with Abu-Khzam, Shanbhag and Symons on the paral-
lelization of Vertex Cover [2]. A similar, but earlier, approach can be found
in [5] by Cheetham, Dehne, Rau-Chaplin, Stege and Taillon.
The area of fixed parameter tractablity has received attention: problems admit-
ting a parameterization, like Vertex Cover, allow an algorithm with com-
plexity O (f(k)poly (n)) which looks promising for small enough values of k. For
example, the above mentioned Vertex Cover admits an algorithms with run-
ning time bounded by O

(

1.2738kpoly (n)
)

[6] where k is the size of the minimum
vertex cover. Furthermore, the toolkit of parameterized complexity offers many
interesting angles from which problems can be attacked. The technique of kernel-
ization, to name one, produces instances with sizes bounded by some function of
the parameter in polynomial time—for Vertex Cover the best known kernel-
ization yields instances of size at most 2k. However, the premise of the parameter



k being small might not always be realistic for real-world data or the problem at
hand—like the considered Maximum Independent Set—has been shown not
to be fixed parameter tractable at all with respect to the solution size (assuming
some complexity theoretical conjectures).

The scope of this paper is to probe the practical boundaries of a Maximum In-

dependent Set algorithm and to provide a baseline for further comparisons. As
time measurements are influenced by a lot of factors, we also provide the number
of recursive calls made by the algorithm. The important polynomial operations,
reduction rules, are counted separately to complete the picture.

The implemented algorithm has been shown to have a worst-case running time of
O (1.2132npoly (n)) [13]. Modern methods [9] for the analysis of that algorithm
allowed the algorithm itself to make only a minimum number of case distinc-
tions, in contrast to, for example, the Vertex Cover-algorithm employed in
[5], which differentiates more than ten cases [4]. What follows is a brief descrip-
tion of the algorithm and the employed data reductions, some notes on the actual
implementation—which differs in some parts from the theoretical algorithm—and
finally the experimental results.

2 Search tree algorithm

We present a short excerpt taken from [13] to outline the basic algorithm. The
description of the reduction rules is deferred to the next section.

A special notation used in this section is N [v] := N(v) ∪ {v}, the closed neigh-
bourhood of v. Furthermore, α(G) denotes the size of the maximum independent
set of G.

Most central is a basic branch on a vertex v with maximum degree: we either
include v into the independent set and remove N [v] from the graph or we exclude
v. This branching is augmented by the following two rules:

Definition 1. Let G be a graph v ∈ V . u ∈ N(N(v)) is called mirror of v if

N(v) \ N(u) is a clique. M(v) := {u ∈ N(N(v)) | u is a mirror of v}.

As shown by Fomin, Grandoni and Kratsch [8], the mirrors of a vertex v can be
excluded from an independent set alongside v. For the positive case, i.e. including
v into the independent set, the set of so-called satellites is helpful:

Definition 2. Let G be a graph v ∈ V . u ∈ N(N(v)) is called satellite of v,
if there is u′ ∈ N(v) such that N(u′) \ N(v) = {u}. S(v) := {u ∈ N(N(v)) |
u is a satelite of v}.

As shown in [12], the satellites of a vertex v can be included into the indepen-
dent set alongside v. This implies the assumption that the satellites are pairwise
non-adjacent which follows from a reduction rule presented below.

It is important to note that one cannot use both satellites and mirrors at the
same time, therefore the algorithms decides before each branch which rule has
the greater gain.
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Algorithm 1 A fast algorithm for Independent Set.
Input: a graph G = (V, E)
Output: α(G)

01: apply reduction rules to G;
02: if G is not connected then compute α for each component independently;
03: if G is cubic then apply algorithm for cubic graphs;
04: select v ∈ V of maximum degree that yields the best branching number;
05: if the mirror branch on v is more efficient than the satellite branch then

06: return max(α(G \ M [v]), 1 + α(G \ N [v]));
07: else return max(α(G \ {v}), 1 + |S(v)| + α(G \ N [S[v]]));

3 Data reduction

Polynomial-time preprocessing or data reduction reduces the input size of a given
instance at ’no cost’ from a theoretical standpoint. Reduction rules are usually
invoked to rule out certain structures in the graph, thus enabling a finer analysis
of the remaining cases. The following rules were used in the analysis of the
Maximum Independent Set-algorithm and are therefore presented here briefly.
Note that some of them are not included in the actual implementation, these
cases are discussed in the following section.

3.1 Vertice of degree less than 2

Vertices of degree one or zero can always be included in an independent set. For
the degree-one vertex v with neighbour u this follows from a simple exchange
argument: assume we find an independent set which contains u. Then surely, the
same set with u exchanged for v is independent, too. On the other hand, if a
independent set does not contain neither u nor v, it cannot be of maximal size:
we can add v without conflict.

Therefore, for a vertex v of degree one or zero the following holds:

α(G) = α(G − N [v]) + 1

3.2 Domination

Definition 3. Let G = (V,E) be a graph and u, v ∈ V . If N [u] ⊆ N [v], we say

v dominates u. We call v a dominating node.

A dominating vertex can only be a worse choice (note that the definition implies
that u and v are connected): if it would be included in a independent set we
could swap it for the dominated one without any conflict—this is, in essence, a
generalized version of the degree-one rule outlined above. It follows that we can
remove all dominating vertices from the input graph.

Assume v dominates u, then

α(G) = α(G − v)

holds.
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3.3 Vertices of degree 2

Definition 4. Let G = (V,E) be a graph and v ∈ V and N(v) = {u1, u2}.
Adding a new node u, connecting u to each node in N({u1, u2}) and removing

N [v] is called folding.

A vertex v of degree two can present itself in two different ways, namely with
either connected or disconnected neighbours. In the former case both neighbours
dominate v and the above domination rule works. The latter case can be resolved
by folding v: this works because we can restrict ourselves to independent sets
which either contain v or u1, u2 which is ’modeled’ in the reduced instance by
either taking u (including u1 and u2 in the original graph) or not (taking v in
the original graph).
Assume G∗ is obtained from G by folding such a vertex v, then the reduction
looks as follows:

α(G) = α(G∗) + 1

3.4 Connected satellites

As mentioned above, the branching with satellites assumes that the satellites are
pairwise non-adjacent. The following lemma helps in case they are not:

Lemma 1 ([13]). Let G = (V,E) be a graph, and v, u,w ∈ V , such that u,w ∈
S(v) and {u,w} ∈ E. Then

α(G) = α(G \ {v})

3.5 Multiple components and Fürers reduction

An independent set can be computed for each component of a graph separately,
therefore if the graph G has components G1, . . . , Gl the recursion

α(G) =

l
∑

i=0

α(Gi)

immediately follows. Fürers reduction provides a way of dealing with graphs
which almost break down into multiple components, i.e. graphs with a separator
of size at most two. It has a good number of subcases, we therefore refer to [10]
for the details.

4 Implementation

In practice the described algorithm faces some restrictions: polynomial-time re-
ductions are not feasible if the complexity is more than linear in the input size and
we cannot evaluate the gain of every single possible branch beforehand. On the
other hand, the algorithm can be enhanced by a bounding method which greatly
reduces the size of the considered solution space—something which cannot be
accounted for in the theoretical analysis. Such Branch&Bound methods are suc-
cesfully used in practice, even with apparantly bad theoretical bounds. We imple-
mented a first draft of the algorithm in Java using our in-house graph library and
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refined the running time by tailoring the general-purpose classes to our needs. For
example, the reduction procedure heavily queries the degree of the vertices, which
are therefore cached in an array. We feel confident that this course of action—
developing in a high-level language with memory management—reduces the de-
velopment time significantly and eased experimentation with different methods
as well as concentrating on a correct implementation rather than correct memory
management. Of course, a mature, usable program should finally be written in
C++, but a migration is easily made.

4.1 Branch and Bound

We obtain a simple bound by using the well-known 2-approximation of Vertex

Cover. Assume the result of this approximation is a vertex cover of size k, then
the smallest possible cover has at least the size k/2. Accordingly, the largest
independent set we can hope for has a size of n− k/2. If the largest found inde-
pendent set so far is of size max, and we have c vertices included so far in the
candidate set, we can cut off the next branching step if

c + (n − k/2) < max

where n denotes the size of the remaining graph. We initialize max by using the
same method beforehand, obtaining a vertex cover approximation and using it
to calculate an upper bound for the independent set.

4.2 Reduction

In the process of implementing the algorithm we quickly noticed that the domina-
tion reduction as well as the satellite reduction described above are too expensive
in their most general form: both require consideration of the second neighbour-
hood of a vertex, which can easily encompass a large portion of the graph. We
therefore restrict both methods to vertices with a degree of at most seven which
worked well in our experiments.
Both Fürers reduction as well as the branching on components are not imple-
mented: the test for connectivity costs O (|E|) time, which is infeasible to do in
every recursive call. We experimented on how often subgraphs in the lower parts
of the search tree (i.e. subgraphs of a constant size) broke down and found that
the number was too small to account for the additional polynomial overhead.
Additionally to the above we implemented the following well-known reductions:

Buss reduction Taken from the Buss kernelization algorithms for Vertex

Cover this method allows us to get rid of vertices with very high degree. The
observation is as follows: if a vertex v has a degree of n − (max − c) or more,
where max again denotes the largest currently known solution and c the size of
the candidate set, it cannot be contained in an independent set that is larger than
max. Thus we can safely remove v from the graph (assuming that c < max).

Folding larger degree vertices The operation of folding has been extended by
Fomin, Grandoni and Kratsch to higher degree vertices whose neighbourhoods
contain no anti-triangle [8]. A drawback of this method is that, in the general
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case, we first have to check whether the neighbourhood of the considered vertex
has no anti-triangles and then introduce new vertices for each anti-edge. As this
might actually increase the number of vertices we only considered one special
case: if the neighbourhood of a vertex v consists has the form N(v) = {C, u}
where G[C] forms a clique and N(u) ∩ C = {v}, i.e. u is not connected to C,
then v is foldable by the following operation:

1. For each c ∈ C, connect c to each vertex in N(u).
2. Remove v and u from the graph

It can be easily verified that this operation is just a special case of the fold-
ing operation described in [8]. As this special structure in the neighbourhood
of a vertex is increasingly less likely to occur (if one assumes that the different
neighbourhoods have are more or less equal frequency in real-world examples) we
restrict the search for it to vertices with degree at most ten—the verification of
a clique (after exactly one vertex not connected to the rest has been found) oth-
erwise would again cost quadratic time in the number of vertices. Note that this
operation is in a sense compatible with the domination reduction: if C contained
vertices dominated by others, the additional edges do not destroy this relation
as the neighbourhoods of all vertices of C are extended by the same vertices.

Connected satellites It should be noted that the connected satellites reduction
rule hardly ever occurs. Yet because the satellite branching is employed regularly,
we cannot dismiss it. As we limited the satellite rule to vertices with degree seven,
the satellite-augmented branching is used only on vertices with that degree.

4.3 Avoiding copy operations

If one would implement a branching algorithm naively, each branching step would
copy the graph and work on it recursively. Such a copy operation takes time
O (|V | + |E|) and is far to expensive to carry out. It is also rather wasteful, as
the graph is only modified locally. A reasonable approach is to store the changes
made to the graph in a list and reverse these when the recursive call returns.
At the same time we restrict the memory usage to O (|V | + |E|): we store the
graph, the modifications (in a depth-first recursion these are a constant times
the graph size) and we need space for the calling stack itself. This opens up the
possibility of using the additional space to cache results of small graphs, similar
to memoization [14]1, a topic which should be explored in the future.

4.4 Randomized branching

Finally, we randomized the order in which the search tree is traversed in order
to avoid worst-case behaviors on graphs with special structures. One important
question is with which probability the two cases, including a vertex vs. exluding
it, should be weighted: including a vertex probably decreases the size of the graph
more as excluding it, thus a leaf in the search tree should be reached earlier. On
the other hand, the solution size in such a leaf might be quite small (as we

1 Memoization as presented there is not usable in combination with operations like folding,
but in a practical setting caching of small graphs is of course possible by hashing
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pretty much ’greedily’ included vertices on that branch of the search tree) and
in consequence the resulting bound not of much use.

Both to get an idea of how strong the impact of the chosen probability could be as
well as to test whether there is a single value suited for all instance we conducted
a separate experiment on a subset of the test cases. For all other experiments we
used the neutral probability of 50% for both cases.

5 Experimental results

We tested our algorithm on several different data sets in order to establish what
constitutes an ’easy’ and what a ’difficult’ instance. The first data set contains
biological data similar to that presented in [5] obtained from the NCBI database
(http://www.ncbi.nlm.nih.gov/) and processed with ClustalW [15]. The graphs
are constructed as follows: a set of protein sequences is chosen from the NCBI
database which then is fed to the ClustalW toolkit, which outputs a scoring
for each pair of sequences (between 0 and 100, a high value denotes a high
similiarity). From this data we want to obtain a graph of conflicts, i.e. with edges
only between sequences where the scoring fell below a chosen threshold. As this
threshold is somewhat arbitrary, we tested all values between 0 and 12 and chose
the instance that had the worst running time (and did not break into small
components). We would have liked to include larger instances, as the running
times are very good on the tested ones, but the preprocessing with ClustalW
was not feasible for such. The second set was obtained from the second DIMACS
implementation challenge (http://dimacs.rutgers.edu/Challenges/). The graphs
contained in that challenge were created in order to test CLIQUE-heuristics, we
therefore used the complement graphs of the supplied instances.

Finally, we also tested our algorithms on randomly generated graphs and grids
(grids of course could be solved in polynomial time, but the algorithm is agnostic
to the fact that it works on a bipartite graph).

5.1 Running time

The resulting running times of the algorithms are depicted in Table 1, a com-
parison with random graphs and grids is displayed in Figure 1. We chose square
grids as the number of branches depends solely on the smaller dimension, albeit
the number of reductions increases accordingly. The algorithm apparently only
uses the clean and folding reduction rules on grids.

The creation of the biological data outlined above entails the choice of the conflict
threshold (below which the scoring is considered to low and the protein sequence
as conflicting). To illustrate the impact of that threshold on the running time we
supply an example in Figure 2.

5.2 Impact of reduction rules

We have inspected the number of times a reduction rule is applied by the al-
gorithm. In order to have a reasonable comparison, these numbers are divided
by the size of the search tree, thus they display the average number of times a
specific reduction rule has been applied. The operation of removing degree one
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Data set Instance |V | |E| MIS size Calls Time (seconds)

DIMACS p hat300-1 300 33917 8 12122 6
p hat300-2 300 22922 25 52358 29
p hat300-3 300 11460 36 4613114 772
p hat500-1 500 93181 9 67999 44
p hat500-2 500 61804 36 1948830 540
p hat500-3 500 30950 50 520307757 >1 day
p hat700-1 700 183651 11 275696 182
p hat700-2 700 122922 44 15311001 6041
MANN a9 45 72 16 19 1
MANN a27 378 702 126 54158 20
MANN a45 1035 1980 345 98974466 13450
brock200 1 200 5066 21 2779061 764
brock200 2 200 10024 12 38828 11
brock200 3 200 7852 15 211349 40
brock200 4 200 6811 17 464914 108
brock400 1 400 20077 27 9921590417 >1 day
brock400 2 400 20014 29 4068393481 >1 day
brock400 3 400 20119 31 2425541535 >1 day
san200 0.7 1 200 5970 30 21080 15
san200 0.7 2 200 5970 18 261183450 >1 day
san200 0.9 1 200 1990 70 49902 97
san200 0.9 2 200 1990 60 1204567 671
san200 0.9 3 200 1990 44 17986522 9386
san400 0.5 1 400 39900 13 1767204195 >1 day
sanr200 0.7 200 6032 18 986085 97
sanr200 0.9 200 2037 42 36089932 7054
sanr400 0.5 400 39816 13 2274301 279
sanr400 0.7 400 23931 21 581220736 >1 day
c-fat200-1 200 18366 12 59 1
c-fat200-2 200 16665 24 28 1
c-fat200-5 200 11427 58 13 1
c-fat500-1 500 120291 14 128 2
c-fat500-2 500 115611 26 69 1
c-fat500-5 500 101559 64 22 1
c-fat500-10 500 78123 126 15 1
hamming6-2 64 192 32 107 1
hamming6-4 64 1312 4 280 1
hamming8-2 256 1024 128 25824 76
hamming8-4 256 11776 16 1161211 366
keller4 171 5100 11 63483 15

NCBI sh2 nematodes 794 30331 324 469986 1524
somatostatin vertebrates 747 28496 369 3088 26
ww landplants 582 38888 225 1542 9
thrombin rodents 715 43547 398 1989 8
ded mixed 498 21760 168 4302 23

Table 1. Running times marked with “> 1day” have finished, but not in an acceptable time.
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Fig. 3. Application of reduction rules per data set, normalized by the respective number of
recursive calls (i.e. average number of times a certain rule has been applied per call).

and degree zero vertices are grouped together into the category Cleaning, the
folding for vertices of degree larger than two is called Folding large.

Figure 3 shows the relative frequency of the different reduction rules. As men-
tioned before, the satellites rule is hardly ever applied. Cleaning is, as could
be expected, applied regularly. Surprisingly, the Buss rule—which, as should be
stressed, has no theoretical gain—is applied even more frequently (it should be
noted that vertices of degree zero, one or two are always removed by the other
reductions in our implementation). This happens mainly in the lower parts of
the search tree, where already a good portion of the vertices have been selected
for the independent set and a good bound on the solutions size is known.

5.3 Impact of branching probability

Biasing the branching decision, i.e. which subcase should be explored first, has a
quite interesting impact on the observed running time of the algorithm. In order
to explore this issue further, we sampled the running time with respect to the
branching probability in increments of 1/8, where a probability of 0.0 results
in always exploring the inclusion case and 1.0 the exclusion case first. Figure 4
shows the results for a selected set of instances, displaying the different trends
observed. Note the huge difference in running time for the sh2 dataset: the worst
and best case exhibit a gap of 80%! As we feared that these discrepancies might
be due to the vertex ordering—although the branching is randomized, the overall
search tree look identical safe for branches which might be cut off differently—
we repeated the experiment again for the sh2 dataset but shuffled the vertices
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beforehand. The result is displayed in Figure 4 on the right hand side: the overall
trend is still clearly visible, the vertex order seems no to be the culprit.

Other instances, like the hamming dataset, feature hardly any variation at all.
We found that this is also true for the johnson dataset (both where obtained
from problems relevant to coding theory), which suggests that highly symmet-
ric graphs—a well-known worst case for independent set algorithms—cannot be
solved faster by chosing a certain branching probability.
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Fig. 4. Selected measurements on the impact of a branching bias. The sh2 measurement, being
the most extreme example, was tested again with permutations applied to the input graph in
order to rule out the possibility that the vertex order might be responsible for the observed
discrepancies. Averages over ten measurements where taken in both measurements.

Nevertheless, knowing the right probability could, at least for some instances,
greatly reduce the running time. The problem, of course, is to determine it be-
forehand without too much effort. One practical approach we tested works by
checking the bias on small samples of the graph; the sampling method employed
is displayed in algorithm 2: we start out by putting a random vertex in the sam-
ple set S. While S is smaller than the desired sample size, we choose a random
vertex from N(S)—the vertices connected to any vertex already contained in the
sample—but weight the respective probabilities by the vertex degree restricted
to S. For example, assume S has neighbouring vertices u, v,w and u has 1, v has
3 and w has 4 neighbours in S. Then u is chosen with probability 1/8, v with 3/8
and w with 4/8. The reasoning behind this approach is that the overall structure
of graph is better reflected by the sample than by simply choosing a random
connected set of vertices (which might, for example, induce a sparse graph even
if the original graph is dense).

This sampling should preserve some structural details of the graph, as only neigh-
bours to already selected vertices may in turn be added to the sample. The results
for instances used before are plotted in Figure 5. One immediately notices a glob-
ally skewed tendency favoring the exclusion branch. While the instances favoring
the exclusion case show a similar trend in sampling (ww and sh2), the instance
selected because of its reversed trend (san200 0.7 1) is poorly reflected by it.
This might be due to the overall small size of the instance: the larger sampling
of 50% shows the general trend of san200 0.7 1, albeit quite weakly. The most
rigid instance (hamming8-4) shows a trend in the sampling tests not found in
the original measurement. This false positive does not pose a problem for the
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Algorithm 2 The sampling algorithm.
Input: a graph G = (V, E) and an integer 0 < k ≤ |V |
Output: a subgraph G′ of G with |G′| = k

01: Choose random v ∈ V
02: S := {v}
03: while |S| < k
04: C := N [S] = {c1, . . . , ck}
05: for i in 1 . . . k
06: pi := | {(ci, v)|v ∈ S} |/| {(u, v)|u or v ∈ S} |
07: Choose one cj with probability pj

07: S := S ∪ {cj}
08: return G[S]
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Fig. 5. Probing the resulting running time for different branching probabilities. The left diagram
shows the result for a sample size of 25%, the right for 50%. In both plots averages over ten
repetitions where used. In comparison to Figure 4 the overall trends are visible.

method, as choosing a certain probability for these cases has no big influence on
the running time, anyway.

6 Conclusion

We have implemented a variant of the, from a theoretical point of view, currently
fastest independent set-solver. The different aspects of the algorithm have been
critically examined with respect to their practical usefulness and the resulting
algorithm has been tested on various instances. First and foremost, we conclude
that this algorithm works very satisfying for the chosen practical scenario. In fact,
the generation of the data through string alignment poses the greater bottleneck
in the workflow: it was impossible for us to obtain instances of size 1000 or more2.
Another important conclusion concerns the Buss reduction rule: its surprisingly
high impact coupled with the low effort needed to apply it (simply checking the
degree) makes it a very valuable addition to any independent set algorithm. This
begs the question: could other kernelization algorithms be used in this manner?
After all, the guaranteed bounds of the respective Vertex Cover-kernels are
far better—but the question is whether this additional gain can compensate for
the additional overhead: compared to the simple degree-lookup of the Buss rule,
those kernelizations are quite complicated.

2 There are online services which compute sequence alignments on clusters, but the input size
is restricted to about 500 proteins. ClustalW crashes for large inputs on our local machines.
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The branching bias—a very simple and easy to implement addition—can in some
cases reduce the running time dramatically, notably in all our real-world in-
stances. The sampling method yields a good bias to start with, but more com-
plicated “branching strategies” are imaginable: techniques employed in AI to
traverse large search spaces might be usable to that end. Observing the large
gain in some instances this seems like an interesting and fruitful area for further
research; especially if complemented by an approach to solve independent set on
very symmetric graphs. Whether the observed impact of a branch bias on some
instances is only an artifact visible in small instances or whether it is rooted in
structural properties of graphs of arbitrary size is up for debate. We would like
to note, however, that even if the effect vanishes asymptotically, it is nonetheless
important for the instance sizes currently feasible.
We have shown that solving independent set is feasible for certain real-world
instances and that the approach of polynomial-time reduction is a great addition
for the practical toolkit. The measurements suggest that optimizing the imple-
mentation towards fast recognition and execution of reductions and not neces-
sarily towards a quick branching could lead to faster solvers. In concordance with
results obtained with regard to kernelization methods [1, 7], preprocessing—not
only data reduction but also probing how the instance reacts to the algorithm—
seems of grave importance for fast, real-world algorithms.
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gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
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