
Aachen
Department of Computer Science

Technical Report

Time-optimal Winning Strategies

for Poset Games

Martin Zimmermann

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-13

RWTH Aachen · Department of Computer Science · May 2009

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Time-optimal Winning Strategies

for Poset Games⋆

Martin Zimmermann⋆⋆

Lehrstuhl Informatik 7, RWTH Aachen University, Germany
zimmermann@automata.rwth-aachen.de

Abstract. We introduce a novel winning condition for infinite two-player games
on graphs which extends the request-response condition and better matches con-
crete applications in scheduling or project planning. In a poset game, a request
has to be responded by multiple events in an ordering over time that is compatible
with a given partial ordering of the events. Poset games are zero-sum, but there
are plays that are more desirable than others, i.e., those in which the requests are
served quickly. We show that optimal strategies (with respect to long term av-
erage accumulated waiting times) exist. These strategies are implementable with
finite memory and are effectively computable.

1 Introduction

The use of two-player games of infinite duration has a long history in the synthesis
of controllers for reactive systems (see [3] for an overview). Classically, the quality
of a winning strategy is measured in the size of the memory needed to implement
it. But often there are other natural quality measures: in many games (even if
they are zero-sum) there are winning plays for Player 0 that are more desirable
than others, often given by notions of waiting that reflect periods of waiting in
the modeled system. In reachability games, this can be the number of steps before
the play reaches one of the designated vertices, in Büchi games the number of
steps between visits of the designated vertices, and in parity games the number
of steps between visits of the minimal even color seen infinitely often.

Another winning condition with a natural notion of waiting is the request-
response condition [6]. It is given by pairs (Qj , Pj) of subsets of the graph’s
vertices. Player 0 wins a play if every visit of Qj is eventually responded by a
visit of Pj . The waiting time is given by the number of steps between a request
and the next response. As there might be several request-response pairs, there
is a trade-off between the pairs: it can be favorable to delay the response of a
pair to answer another request more quickly. Wallmeier [5] defined the value of
a play to be the long-term average accumulated waiting time and the value of
a strategy to be the worst-case outcome. He then proved that optimal winning
strategies exist and are effectively computable (see also [4, 7]).

However, request-response winning conditions are often too weak to express
real-life requirements concisely, because a request is responded by a single event.
Imagine an intersection with a level crossing: if a train approaches the crossing
(a request), then all traffic lights have to be switched to red, then the boom
barriers are lowered, the train gets an all-clear signal and crosses the intersec-
tion. Afterwards, the barriers are raised and the lights are switched to green. It

⋆ This report is an extended version of [8].
⋆⋆ The author’s work was supported by the ESF project Games for Analysis and Synthesis of

Interactive Computational Systems (GASICS).

would be rather cumbersome to model this requirement using request-response
conditions with a single event as response. Another example is motivated by
project planning: a project consists of several subtasks (and their durations) and
a partial ordering of the subtasks, e.g., specifying that the roof of a house cannot
be constructed before the walls are built. A plan is then a linearization of this
partial ordering.

These examples motivate to replace a response by a partially ordered set of
events and require Player 0 to answer every request by an embedding of these
events in time. This generalization of request-response games retains the natural
definition of waiting times. Hence, the framework for request-response games can
be adapted to the new type of games, called poset games.

We prove that optimal winning strategies for poset games exist, which are
again finite-state and effectively computable. To this end, we adapt the proof pre-
sented in [4] for request-response games. However, the increased expressiveness
of poset games requires substantial changes. As a request is no longer responded
by a single event, there can be different requests that are answered to a different
degree at a given position, i.e., the embeddings can overlap. This requires addi-
tional bookkeeping of the events that still have to be embedded and changes to
the definition of waiting times. Informally, in request-response games, there is a
single clock for every pair (Qj , Pj) that is started when Qj is visited and stopped
as soon as Pj is visited afterwards; requests that are encountered, while the clock
is already active, are ignored. This is no longer possible in poset games: here, we
need a clock for every request, due to the overlapping of embeddings. Hence, we
do not only have to bound the waiting times to obtain our result, but also the
number of open requests, i.e., the number of active clocks.

This paper is structured as follows: Section 2 fixes our notation. Poset games
are introduced in Section 3 and solved by a reduction to Büchi games in Section 4.
Finally, in Section 5 the existence of optimal strategies is proven. Section 6 gives
some open problems and pointers to further research.

2 Definitions

Throughout this paper let P be a set of events. The power set of a set S is
denoted by 2S , N is the set of non-negative integers, and let [n] :={1, . . . , n}.
The prefix-ordering on words is denoted by ⊑, its strict version by ⊏. Given
a sequence (wn)n∈N of finite words such that wn ⊏ wn+1 for all n, limn→∞ wn

denotes the unique ω-word induced by the wn. Let (fn)n∈N be a sequence of
functions fn : A → B and f : A → B. We say that (fn)n∈N converges to f ,
limn→∞ fn = f , if ∀a ∈ A∃na ∈ N ∀n ≥ na : fn(a) = f(a).

Infinite Games. An (initialized and labeled) arena G = (V, V0, V1, E, s0, lG)
consists of a finite directed graph (V,E), a partition {V0, V1} of V denoting the
positions of Player 0 and Player 1, an initial vertex s0 ∈ V , and a labeling
function lG : V → 2P . It is assumed that every vertex has at least one outgoing
edge. A play ρ = ρ0ρ1ρ2 . . . is an infinite path starting in s0. A strategy for
Player i is a (partial) mapping σ : V ∗Vi → V such that (s, σ(ws)) ∈ E for all
w ∈ V ∗ and all s ∈ Vi. A play ρ is consistent with σ if ρn+1 = σ(ρ0, . . . ρn) for all

4

ρn ∈ Vi. The unique play consistent with the strategies σ for Player 0 and τ for
Player 1 is denoted by ρ(σ, τ).

A game G = (G,ϕ) consists of an arena G and a winning condition ϕ speci-
fying the set of winning plays for Player 0. All other plays are won by Player 1.
A strategy σ is a winning strategy for Player i if every play consistent with σ is
won by Player i. Player i wins G (and Player 1 − i loses G) if she has a winning
strategy for G. A game is determined if one of the Players has a winning strategy.

Game Reductions. A memory structure M = (M,m0,update) for G consists
of a set M of memory states, an initial memory state m0 ∈ M , and an update
function update : M × V → M . The update function can be extended to a
function update∗ : V ∗ → M by defining update∗(s0) = m0 and update∗(ws) =
update(update∗(w), s). A next-move function for Player i next : Vi×M → V has
to satisfy (s,next(s,m)) ∈ E for all s ∈ Vi and all m ∈ M . It induces a strategy
σ with memory M via σ(ws) = next(s,update∗(ws)). A strategy is called finite-
state if it can be implemented with finite memory, and positional if it can be
implemented with a single memory state.

An arena G and a memory structure M for G induce the expanded arena
G×M = (V ×M,V0×M,V1×M,E′, (s0,m0), lG×M) where ((s,m), (s′,m′)) ∈ E′

iff (s, s′) ∈ E and update(m, s′) = m′, and lG×M(s,m) = lG(s). Every play ρ′ =
(ρ0,m0)(ρ1,m1)(ρ2,m2) . . . in G× M has a unique projected play ρ = ρ0ρ1ρ2 . . .
in G. Conversely, every play ρ = ρ0ρ1ρ2 . . . in G has a unique expanded play
ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) . . . in G×M defined by mn+1 = update(mn, ρn+1).
A game G = (G,ϕ) is reducible to G′ = (G′, ϕ′) via M, written G ≤M G′, if
G′ = G × M and every play in G′ is won by the player who wins the projected
play in G.

Remark 1. If G ≤M G′ and Player i has a positional winning strategy for G′, then
she also has a finite-state winning strategy with memory M for G.

Partially Ordered Sets. A (labeled) partially ordered set (poset for short)
P = (D,�, lP) consists of a domain D, a reflexive, antisymmetric and transitive
relation � over D, and a labeling function lP : D → P . The set of non-empty
upwards-closed subsets of P is denoted by Up(P); its size can be bounded by
|D| ≤ |Up(P)| ≤ 2|D| − 1.

If D is finite, we define the transitive reduction �red of � by d �red d′ iff
d 6= d′ and there is no d′′ such that d′′ 6= d, d′′ 6= d′, and d � d′′ � d′. The
reduction �red contains all the essential information of �, i.e., the reflexive and
transitive closure of �red is �.

Let ρ be an infinite path in an arena G with labeling function lG. An embed-
ding in time, embedding for short, of P in ρ is a function f : D → N such that
lP(d) ∈ lG(ρf(d)) and d � d′ implies f(d) ≤ f(d′). An embedding of P in a finite
path w is defined analogously.

The length of an embedding f is maxd∈D f(d), and an embedding is mini-
mal, if its length is minimal in the set of all embeddings, i.e., maxd∈D f(d) ≤
maxd∈D f ′(d) for all embeddings f ′.

Example 1. A diagram of P = (2{a,b},⊆) is given in the upper part of Figure 1.
The solid edges represent the ordering relation. The lower part shows an embed-

5

ding f of P (where l(S) = S for every S ⊆ {a, b}). The labeling of ρ is given
by the subsets below the positions. The length of f is 7, but it is not a minimal
embedding.

∅

{a} {b}

{a, b}

ρ

{{a, b}} {∅, {a}} {∅} {{a}, {b}} {{b}} {{a, b}} {{b}} {{a, b}} {∅, {a}}

Fig. 1. A poset P and an embedding f of P in ρ

3 Poset Games

In this section, we introduce poset games and the framework for defining wait-
ing times and time-optimal winning strategies. We close this section by stating
some simple properties about poset games and the framework for time-optimal
strategies.

A poset game G = (G, (qj ,Pj)j∈[k]) consists of an arena G as above and a
finite collection of (request-poset) conditions (qj,Pj) where qj ∈ P is a request
(of condition j) and Pj = (Dj ,�j , lj) is a finite labeled poset. Player 0 wins a
play ρ iff qj ∈ lG(ρn) implies that Pj can be embedded in ρnρn+1ρn+2 . . . for all
j ∈ [k] and all n ∈ N.

For the remainder of this paper, let (G, (qj ,Pj)j∈[k]) be a poset game, where

Pj = (Dj ,�j , lj). Furthermore, let cj := |Up(Pj)| and c :=
∑k

j=1 cj .

A vertex s such that qj ∈ lG(s) is called request of condition j, too. A response of
that request is a finite play w starting in s that allows an embedding of Pj . If w
does not allow an embedding, then the request is still open after w. This notion
can be refined, since a request is responded by a chain of vertices: we say that
D ⊆ Dj is open after the finite play ρ0 . . . ρn, if there was a request of condition j
at position k ≤ n such that the elements in Dj\D can be embedded in ρk . . . ρn,
but no superset of Dj\D can be embedded in this suffix. This means Player 0
was able to embed the elements of Dj\D (which form a downwards-closed subset
by the requirements on an embedding) and the elements of D (which form an
upwards-closed subset) have to be embedded yet.

Example 2. Let Dj = {d1, d2, d3}, �j be specified by d1 �red
j d2 �red

j d3, and
lj(d) = d for all d ∈ Dj. Finally, let (qj, (Dj ,�j, lj)) be a condition and ρ as in
Figure 2. The positions of ρ are denoted above and the sets below are the labels
of each position. The vertices ρ0, ρ3, ρ6, and ρ7 are requests, Dj is open after
the finite play ρ0ρ1, and there are three open requests after ρ0 . . . ρ6: The set

6

Dj from the request at ρ6, {d2, d3} from the request at ρ3, and {d3} from the
request at ρ0. All requests are responded completely after ρ9.

ρ

{qj} ∅ {d1} {qj} {d2} {d1} {qj} {qj , d1} ∅ {d2, d3} ∅

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10

Fig. 2. A play with (open) requests

To define the waiting times we need to keep track of the open requests. For
j ∈ [k], D ⊆ Dj and s ∈ V let

Newj(s) =

{

Dj if qj ∈ lG(s)

∅ otherwise

and

Embj(D, s) = {d ∈ D | ∃d′ ∈ D : d′ �j d and lj(d
′) /∈ lG(s)} .

The set Embj(D, s) contains the elements of D that cannot be embedded into s
since a smaller element’s labeling is not compatible with the labeling of s. The
set of open requests of condition j after the finite play w is defined inductively
by Openj(ε) = ∅ and

Openj(ws) = {(Embj(D, s), t+1) | (D, t) ∈ Openj(w)∪{(Newj(s), 0)}}\{∅}×N.

That is, Openj deletes all those elements from the open requests D in Openj(w)
that can be embedded into s, adds a tick to the clock t of every request, checks
for new requests, and deletes responded requests. If (D, t+1) ∈ Openj(ρ0 . . . ρn),
then there was a request of condition j at position n − t, the elements of Dj\D
can be embedded into ρn−t . . . ρn, and Player 0 has to embed all elements of D
in the future to respond to this request.

Example 3. Consider the play ρ in Figure 2 with condition (qj, (Dj ,�j , lj)) as in
Example 2. We have Openj(ρ0 . . . ρ3) = {({d2, d3}, 4), (Dj , 1)}, Openj(ρ0 . . . ρ6) =
{({d3}, 7), ({d2 , d3}, 4), (Dj , 1,)} and Openj(ρ0 . . . ρ9) = ∅.

Note that Openj(w) contains only upwards-closed subsets of Pj . The number of
open requests D ∈ Up(Pj) of condition j after w is

sj,D(w) = |{t | (D, t) ∈ Openj(w)}| .

A set D ∈ Up(Pj) is open indefinitely in ρ0ρ1ρ2 . . ., if there exists a position n
such that (D, t) ∈ Openj(ρ0 . . . ρn+t) for all t > 1.

Lemma 1. Let ρ = ρ0ρ1ρ2 . . . be a play. For all j ∈ [k]:

(i) If Player 0 wins ρ, then (Openj(ρ0 . . . ρn))n∈N induces a minimal embedding
fm of Pj in ρmρm+1ρm+2 . . . for every position m such that qj ∈ lG(ρm).

7

(ii) ρ is won by Player 0 iff there is no D ∈ Up(Pj) that is open indefinitely.

Proof. We begin by defining the sequence (Dm,t)t∈N for every request of condition
j at position m by Dm,0 = Embj(Dj , ρm) and Dm,t+1 = Embj(Dm,t, ρm+t+1).
We have Dm,t ⊇ Dm,t+1 and

Openj(ρ0 . . . ρn) = {(Dm,t, t + 1) | m + t = n, qj ∈ lG(ρm), and Dm,t 6= ∅} ,

which can be verified by an easy induction.

(i) Let qj ∈ lG(ρm) and let f be a minimal embedding of Pj in the suffix
ρmρm+1ρm+2 . . ., whose existence is guaranteed, since ρ is won by Player 0. We
define the embedding fm by fm(d) = min{t | d /∈ Dm,t}. We show that fm is
well-defined and minimal by proving d /∈ Dm,f(d) by Noetherian induction (on

�red
j) over d. Let d ∈ Dj . Towards a contradiction, assume d ∈ Dm,f(d).

If f(d) = 0, then d ∈ Dm,0 = Embj(Dj , ρm), i.e., there exists a d′ ∈ Dj such
that d′ �j d and lj(d

′) /∈ lG(ρm). Since d′ �j d implies f(d′) = 0, we conclude
lj(d

′) ∈ lG(ρm+f(d′)), which yields the desired contradiction.

If f(d) = t + 1, then d ∈ Dm,t+1 = Embj(Dm,t, ρm+t+1), i.e., there exists a
d′ ∈ Dm,t such that d′ �j d and lj(d

′) /∈ lG(ρm+t+1). Since f is an embedding,
lj(d) ∈ lG(ρm+f(d)), which rules out d′ = d. Thus, we can assume d′ �red

j d
without loss of generality, which allows us to apply the induction hypothesis to
obtain d′ /∈ Dm,f(d′). If f(d′) < t + 1, then d′ /∈ Dm,t, since Dm,f(d′) ⊇ Dm,t. On
the other hand, f(d′) = t + 1 implies lj(d

′) ∈ lG(ρm+t+1). So, both cases yield
the desired contradiction.

(ii) In (i) we have seen that (Dm,t)t∈N converges to the empty set for every m,
if Player 0 wins ρ. Thus, there cannot be a D ∈ Up(Pj) that is open indefinitely.

On the other hand, if there is no D ∈ Up(Pj) that is open indefinitely, then
(Dm,t)t∈N converges to the empty set for every m. We define an embedding fm

for every m such that q ∈ lG(ρm) by fm(d) = min{t | d /∈ Dm,t}. It remains to
show that fm is an embedding: the element d leaves (Dm,t)t∈N at fm(d) iff the
labeling requirement is fulfilled, by definition of Embj . Also,

min{t | d′ /∈ Dm,t} = fm(d′) > fm(d) = min{t | d /∈ Dm,t}

for d′ �j d contradicts the definition of Embj. ⊓⊔

Waiting times for poset games are defined employing the information given by
the open requests in Openj(w). Define the

– totalized waiting time for D ∈ Up(Pj) after w: tj,D(w) =
∑

(D,t)∈Openj(w) t,

– penalty after w: p(w) =
∑k

j=1

∑

D∈Up(Pj)
tj,D(w),

– value of a play ρ: v(ρ) = lim supn→∞
1
n

∑n−1
i=0 p(ρ0 . . . ρi),

– value of a strategy σ: v(σ) = sup{v(ρ(σ, τ)) | τ strategy for Player 1}.

Hence, the influence of an open request on the value of a play grows quadrati-
cally in the waiting time, which penalizes longer waiting times more severely. A
strategy σ for Player 0 is optimal if v(σ) ≤ v(σ′) for all strategies σ′ for Player 0.

A simple calculation proves the following fact about the evolution of the
waiting times and the number of open requests.

8

Lemma 2. Let x, y ∈ V ∗ and s ∈ V such that tj,D(x) ≤ tj,D(y) and sj,D(x) ≤
sj,D(y) for all j ∈ [k] and all D ∈ Up(Pj). Then, tj,D(xs) ≤ tj,D(ys) and
sj,D(xs) ≤ sj,D(ys) for all j ∈ [k] and all D ∈ Up(Pj).

Let σ be a strategy for Player 0 and D ∈ Up(Pj) for some condition j. We say
that σ uniformly bounds the waiting time for D to b, if for all finite plays w
consistent with σ it holds that t ≤ b for all (D, t) ∈ Openj(w). Analogously, σ
uniformly bounds the totalized waiting time for D to b, if tj,D(w) ≤ b for all finite
plays w consistent with σ. If the (totalized) waiting time for all D ∈ Up(Pj)
is bounded, then the length of the embeddings that respond to a request of
condition j is also bounded.

Remark 2. Let σ be a strategy for Player 0. If σ uniformly bounds the waiting
time for D to b, then σ also uniformly bounds the totalized waiting time for D
to 1

2b(b + 1).

The following lemma is a simple consequence of Lemma 1 (ii).

Lemma 3. Let ρ be a play and σ a strategy for Player 0.

(i) If v(ρ) < ∞, then Player 0 wins ρ.
(ii) If v(σ) < ∞, then σ is a winning strategy for Player 0.

Note that the other directions of the statements are false: there are plays of
infinite value that are won by Player 0.

4 Solving Poset Games

In this section, poset games are reduced to Büchi games. The memory stores
the elements of the posets Pj that still have to be embedded. A cyclic counter
ensures that all requests are responded by an embedding eventually.

Theorem 1. Poset games are reducible to Büchi games and therefore deter-
mined with finite-state strategies.

Proof. Let h =
∑k

j=1 |Dj | and fix an enumeration e : [h] →
⋃k

j=1{j} × Dj . We
assume h > 1 (without loss of generality) to obtain a nontrivial counter. The
memory structure M = (M,m0,update) consists of M =

∏k
j=1 Up(Pj) × [h] ×

{0, 1}, m0 = (Emb1(New1(s0), s0), . . . ,Embk(Newk(s0), s0), 1, 0), and we define
update((O1, . . . , Ok,m, f), s) = (O′

1, . . . , O
′
k,m′, f ′) with

– O′
j =

{

Embj(Dj , s) if qj ∈ lG(s)

Embj(Oj , s) if qj /∈ lG(s)
,

– m′ =

{

(m mod h) + 1 if e(m) = (j, d) and d /∈ O′
j or lj(d) ∈ lG(s)

m if e(m) = (j, d) and d ∈ O′
j and lj(d) /∈ lG(s)

,

– f ′ =

{

1 if m 6= m′

0 otherwise
.

Finally, let F = V ×
∏k

j=1 Up(Pj)× [h]×{1} and let G′ = (G×M, F) be a Büchi
game in the expanded arena. It remains to verify G ≤M G′. Then, positional
determinacy of Büchi games [3] and Remark 1 finish the proof.

9

Let ρ = ρ0ρ1ρ2 . . . be a play of G and ρ′ = ρ′0ρ
′
1ρ

′
2 . . . the unique expanded

play in G′ where ρ′n = (ρn, (On
1 , . . . , On

k ,mn, fn)).

Let ρ be winning for Player 0 and assume towards a contradiction that ρ′

is winning for Player 1. Then, the counter stops at some position n′ with some
value c and does not change anymore. This means d ∈ On

j and lj(d) /∈ lG(ρn) for
all n ≥ n′, where e(c) = (j, d). If condition j is requested infinitely often in ρ,
then Pj is embedded infinitely often in ρ. Thus, there are infinitely many n such
that lj(d) ∈ lG(ρn), which yields the desired contradiction. On the other hand, if
there is a final request at position n, then there is also an embedding f of Pj in
ρnρn+1ρn+2 It holds On+t

j = {d ∈ Dj | f(d) > t}. Thus, the Oj-component
is empty from some position onwards, which again is a contradiction.

Now, let ρ′ be winning for Player 0. For every n such that qj ∈ lG(ρn), we have
to construct an embedding fn of Pj in ρnρn+1ρn+2 Since ρ′ is won by Player 0,
there are infinitely many positions n′ such that d /∈ On′

j or lj(d) ∈ lG(ρn′).

Let qj ∈ lG(ρn). We define the sequence (Dn,t)t∈N by Dn,0 = Embj(Dj , ρn)
and Dn,t+1 = Embj(Dn,t, ρn+t+1). We have Dn,t ⊆ On+t

j for all t, which can be
verified by an easy induction. Also, Dn,t ⊇ Dn,t+1 for all t. Now, if Dn,t = ∅ for
some t, then the sequence induces fn by fn(d) = min{t | d /∈ Dn,t} as we have
shown in the proof of Lemma 1 (ii). Hence, it remains to be shown that for every
d ∈ Dj there is a t such that d /∈ Dn,t.

Towards a contradiction, assume there exists t such that ∅ 6= Dn,t = Dn,t′ for
all t′ ≥ t, and let d be minimal in Dn,t, i.e., there is no d′ 6= d such that d′ �j d

and d′ ∈ Dn,t. Thus, d ∈ On+t′

j for all t′ ≥ t. Since ρ′ is winning for Player 0,
there is some t′ > t such that lj(d) ∈ lG(ρn+t′), which implies that d can be
embedded in ρn+t′ , i.e., we have d /∈ Embj(Dn,t′−1, ρn+t′) = Dn,t′ , which yields
the desired contradiction. ⊓⊔

If e is defined such that the elements of each domain Dj are enumerated con-
secutively and such that d �j d′ implies e−1(j, d) ≤ e−1(j, d′), then it takes at
most h + |Dj | visits to vertices in F after a request of condition j to complete
an embedding of Pj in the projected play.

The size of M can be bounded by |M | ≤ h · 2h+1, which is asymptotically
optimal. This can be shown by transforming the family of request-response games
presented in Theorem 2 of [6] into poset games.

Theorem 1 implies an upper bound on the value of an optimal strategy.

Corollary 1. Let h =
∑k

j=1 |Dj |. If Player 0 wins G, then she also has a winning
strategy σ with

v(σ) ≤
k

∑

j=1

(

cj ·
|G| · (h + |Dj |) · (|G| · (h + |Dj |) + 1)

2

)

= : bG .

Proof. Let σ′ be the positional winning strategy for G′ from Theorem 1 and let σ
be the induced finite-state strategy for G. There is no infix of length |G| of a play
ρ′ played according to σ′ that does not visit F at least once. If there is such an
infix, then there is a loop in that infix in which no vertex of F is visited. Moving
through that loop indefinitely is consistent with σ′. Thus, it is not a winning
strategy for Player 0, contrary to our assumptions. Therefore, the counter m

10

changes its value after at most |G| steps. We remarked that the counter can be
constructed such that it takes at most h+ |Dj | visits to a state in F to complete
an embedding after a request in the projected play. Hence, the length of every
embedding of Pj in a play consistent with σ is bounded by |G| · (h+ |Dj |), which
gives

tj,D(w) ≤
|G| · (h + |Dj |) · (|G| · (h + |Dj |) + 1)

2

for every finite play w consistent with σ, by Remark 2. We obtain

1

n

n−1
∑

i=0

p(ρ0 . . . ρi) =
1

n

n−1
∑

i=1

k
∑

j=1

∑

D∈Up(Pj)

tj,D(ρ0 . . . ρi)

≤
1

n

n−1
∑

i=0

k
∑

j=1

∑

D∈Up(Pj)

|G| · (h + |Dj |) · (|G| · (h + |Dj |) + 1)

2

=

k
∑

j=1

(

cj ·
|G| · (h + |Dj |) · (|G| · (h + |Dj |) + 1)

2

)

= bG

for every play ρ = ρ0ρ1ρ2 . . . that is played according to σ. Hence,

v(ρ) = lim
n→∞

1

n

n−1
∑

i=0

p(ρ0 . . . ρi) ≤ bG

for every play ρ consistent with σ, which gives v(σ) ≤ bG . ⊓⊔

5 Time-optimal Strategies for Poset Games

We are now able to state the main theorem of this paper, which will be proved
in the remainder of this section.

Theorem 2. If Player 0 wins a poset game G, then she also has an optimal
winning strategy which is finite-state and effectively computable. The value of an
optimal strategy is effectively computable as well.

5.1 Strategy Improvement for Poset Games

We begin by defining a strategy improvement operator Ij,D for every D ∈ Up(Pj).
It deletes loops of plays, consistent with the given strategy, that are spent waiting
for a position into which an element from D has been embedded. Consider the
embedding f in Figure 3: loops in the interval between the request q and the
position f(d1) and the intervals between f(d1) and f(d2) respectively between
f(d2) and f(d3) can be deleted to shorten the waiting times.

Hence, the intervals in which D is an open request will be shorter if Player 0
plays according to the improved strategy. Doing this repeatedly will uniformly
bound the waiting time tj,D. However, the improved strategy has to ensure that
no other responses get incomplete by deleting loops, i.e., the improved strategy is
still winning for Player 0. Also, we do not want the value of the improved strategy

11

ρ

q f(d1) f(d2) f(d3)

Fig. 3. An request q and the corresponding embedding. The intervals in which Player 0 can
improve her strategy are dashed

to be greater than the value of the original strategy. We begin by defining the
operator and then prove that it has the desired properties. Afterwards we show
how to obtain uniform bounds on the waiting time by applying each Ij,D infinitely
often.

Let σ be a winning strategy (not necessarily finite-state) for Player 0 such
that v(σ) ≤ bG . The strategy Ij,D(σ) is implemented with memory structure
M = (M,m0,update) where M is a subset of the finite plays consistent with σ
and defined implicitly. The initial memory state is m0 = s0 and update(w, s) is
defined by a case distinction:

Player 0 only skips loops if the totalized waiting time for D is guaranteed
to be higher than the value of the strategy, i.e., at least bG . Then, the value of
the play does not increase from taking a shortcut. Thus, if tj,D(ws) ≤ bG , let
update(w, s) = ws. Hence, if the totalized waiting time is small, then she copies
the original play according to σ.

Otherwise, if tj,D(ws) > bG consider the tree Tσ
ws containing all finite contin-

uations of ws that are consistent with σ restricted to those paths wsx such that
Openj(wsx′)∩ ({D} × N) 6= ∅ for all x′ ⊑ x. This tree contains all continuations
of ws up to the point where the first element of the open request D can be
embedded into. This tree is finite since σ is a winning strategy. The set of finite
plays zs of Tσ

ws such that tj′,D′(zs) ≥ tj′,D′(ws) and sj′,D′(zs) ≥ sj′,D′(ws) for
all j′ ∈ [k] and all D′ ∈ Up(Pj′) is non-empty as it contains ws. Let x be a play
of maximal length in that set. Then, update(ws) = x. So, if the totalized waiting
time for D is sufficiently high, then Player 0 looks ahead whether ws is the start
of a loop such that the totalized waiting times and the number of open requests
for all j′ ∈ [k] and all D′ ∈ Up(Pj′) are higher at the end of the loop than they
were at the beginning. Then, she jumps ahead (by updating the memory to x)
and continues to play as if she had finished the loop already.

The condition on tj′,D′ ensures that she does not miss a vertex that she has to
visit in order to embed an element of the posets. This ensures that the improved
strategy is still winning for Player 0. The condition on sj′,D′ guarantees that the
value of the play does not increase from taking a shortcut by jumping ahead to
a position where more requests will be open than before.

Finally, define next(s,ws) = σ(ws). Thus, Player 0’s choice of the next move
assumes that she has already finished the loops which were skipped by the mem-
ory update. The improved strategy Ij,D(σ) is now given by M and next.

Lemma 4. Let σ be a winning strategy for Player 0 such that v(σ) ≤ bG, j ∈ [k],
and D ∈ Up(Pj).

(i) update∗(w) is consistent with σ for all w consistent with Ij,D(σ).

12

(ii) tj′,D′(w) ≤ tj′,D′(update∗(w)) and sj′,D′(w) ≤ sj′,D′(update∗(w)) for all w
consistent with Ij,D(σ), for all j′ ∈ [k] and all D′ ∈ Up(Pj′).

(iii) If σ bounds the totalized waiting time for some D′ ∈ Up(Pj′) to b, then so
does Ij,D(σ).

(iv) v(Ij,D(σ)) ≤ v(σ).
(v) Ij,D(σ) is a winning strategy for Player 0.

Proof. (i) By induction over w: every play starts in s0, so the induction base is
trivial, as update∗(s0) = s0 holds. For the induction step, let w = ρ0 . . . ρn be
played according to Ij,D(σ). Applying the induction hypothesis, we can assume
that update∗(ρ0 . . . ρn−1) is consistent with σ. By definition of update∗ we have

update∗(ρ0 . . . ρn) = update(update∗(ρ0 . . . ρn−1), ρn) .

Furthermore, the last vertex of update∗(ρ0 . . . ρn−1) is ρn−1. Finally, if ρn−1 ∈ V0,
then

ρn = Ij,D(σ)(ρ0 . . . ρn−1) (1)

= next(ρn−1,update∗(ρ0 . . . ρn−1))

= σ(update∗(ρ0 . . . ρn−1)).

Analogously to the definition, we consider two cases: either, we have

update(update∗(ρ0 . . . ρn−1), ρn) = update∗(ρ0 . . . ρn−1)ρn .

Then, by induction hypothesis and (1), update∗(ρ0 . . . ρn) is consistent with σj−1.
Otherwise, in the second case of the definition, we have

update(update∗(ρ0 . . . ρn−1), ρn) = update∗(ρ0 . . . ρn−1)ρnz′ ,

where z′ is a path in Tσ
update∗(ρ0...ρn−1)ρn

. Together with the induction hypothesis

and (1), this shows that update∗(ρ0 . . . ρn) is consistent with σ.
(ii) The induction base is clear as every play starts in s0 and we have s0 =

m0 = update∗(s0). By the induction hypothesis, we can assume

tj′,D′(w) ≤ tj′,D′(update∗(w)) and sj′,D′(w) ≤ sj′,D′(update∗(w))

for all j′ ∈ [k] and all D′ ∈ Up(Pj′). Furthermore, we have

tj′,D′(ws) ≤ tj′,D′(update∗(w)s) and sj′,D′(ws) ≤ sj′,D′(update∗(w)s)

by Remark 2. There are two possibilities for update∗(ws). If tj,D(update∗(w)s) ≤
bG , then

update∗(ws) = update(update∗(w), s) = update∗(w)s .

Thus,

tj′,D′(ws) ≤ tj′,D′(update∗(w)s) = tj′,D′(update∗(ws))

and

sj′,D′(ws) ≤ sj′,D′(update∗(w)s) = sj′,D′(update∗(ws)) .

13

If tj,D(update∗(w)s) > bG , then

update∗(ws) = update(update∗(w), s) = zs

where tj′,D′(zs) ≥ tj′,D′(update∗(w)s) and sj′,D′(zs) ≥ sj′,D′(update∗(w)s) by
definition of Ij,D. Hence,

tj′,D′(ws) ≤ tj′,D′(update∗(w)s) ≤ tj′,D′(zs) = tj′,D′(update∗(ws))

and

sj′,D′(ws) ≤ sj′,D′(update∗(w)s) ≤ sj′,D′(zs) = sj′,D′(update∗(ws))

for all j′ ∈ [k] and all D′ ∈ Up(Pj′).
(iii) There is a bound b such that tj′,D′(w′) ≤ b for all finite plays w′ consistent

with σ. Now, let w be a play consistent with Ij,D(σ). Then, update(w) is a prefix
of a play according to σ. Hence, tj′,D′(w) ≤ tj′,D′(update(w)) ≤ b. Thus, Ij,D(σ)
uniformly bounds the totalized waiting time for D′ to b.

(iv) For a play ρ = ρ0ρ1ρ2 . . ., let update∗(ρ) = limn→∞ update∗(ρ0 . . . ρn).
The limit is consistent with σ for every play ρ consistent with Ij,D(σ). We show
v(ρ) ≤ v(update∗(ρ)) for all ρ consistent with Ij,D(σ), which implies the claim.
To this end, we define

S = {w′ ⊑ update∗(ρ) | ¬∃w ⊑ ρ : update∗(w) = w′} .

S contains exactly the vertices of the loops skipped by Player 0. Let w′ ∈ S. Then,
tj,D(w′) > bG holds, as every improvement step only deletes loops of update∗(ρ)
if the totalized waiting time is higher than bG . Thus, p(w′) > bG ≥ v(σ) and

lim sup
n→∞

1

n

n−1
∑

i=0

p(update∗(ρ0 . . . ρi)) ≤ v(update∗(ρ)) , (2)

since the average decreases if the summation omits the summands for the prefixes
in S. Now, let w ⊑ ρ: We have tj′,D′(w) ≤ tj′,D′(update∗(w)) for all j′ ∈ [k] and
all D′ ∈ Up(Pj′), and therefore p(w) ≤ p(update∗(w)). Thus,

1

n

n−1
∑

i=0

p(ρ0 . . . ρi) ≤
1

n

n−1
∑

i=0

p(update∗(ρ0 . . . ρi)) .

The latter term converges to a value less than or equal to v(update∗(ρ)), by (2).
Thus, we conclude v(ρ) ≤ v(update∗(ρ)).

(v) We have v(Ij,D(σ)) ≤ v(σ) ≤ bG . Now apply Lemma 3. ⊓⊔

In order to obtain small bounds on the waiting times, each improvement operator
Ij,D is now applied infinitely often to a given initial winning strategy. The limit
of the strategies improved with Ij,D uniformly bounds the totalized waiting time
for D. Furthermore, all properties stated in Lemma 4 can be lifted to the limit
strategy as well.

The order of improvement is given by enumerations ej : [cj] → Up(Pj) such
that |D| > |D′| implies e−1

j (D) < e−1
j (D′). Thus, the subsets are enumerated in

order of decreasing size.

14

Example 4. Consider the play ρ, depicted in Figure 4, of a game with a single
condition (qj , (Dj ,�j)) where D = {d1, d2, d3} and d1 �red

j d2 �red
j d3 (again,

we ignore the labeling functions). The improvement scheme to be defined starts
with the improvement with respect to D, then with respect to {d2, d3} and finally
with respect to {d3}.

ρ

q f(d1) f(d2) f(d3)

Ij,{d1,d2,d3
}

z }| {

Ij,{d2,d3
}

z }| {

Ij,{d3
}

z }| {

Fig. 4. The order of improvement with Ij,D for D ⊆ {d1, d2, d3}

Given a winning strategy σ0 for Player 0 such that v(σ0) ≤ bG (whose existence
is guaranteed by Corollary 1), define

– σj,l,0 =

{

σj−1 if l = 1

σj,l−1 otherwise
for j ∈ [k] and l ∈ [cj],

– σj,l,n+1 = Ij,ej(l)(σj,l,n) for j ∈ [k], l ∈ [cj], and n ∈ N,

– σj,l = limn→∞ σj,l,n for j ∈ [k] and l ∈ [cj], and

– σj = σj,cj
for j ∈ [k].

For notational convenience, let σj,0 = σj−1 for j ∈ [k]. Also, let updatej,l,n be
the update function and nextj,l,n be the next-move function used to define σj,l,n.

Before we discuss the properties of the strategies defined above, we need to
introduce some additional notation that is used to bound the waiting times.

The strategy improvement operator Ij,D skips a loop if the vertices at the be-
ginning and at the end coincide and the values sj′,D′ and tj′,D′ at the end
are greater than or equal to the values at the beginning. Hence, we say that
two finite plays y1 ⊏ y2 form a Dickson pair [1] if their last vertices coincide
and sj′,D′(y1) ≤ sj′,D′(y2) and tj′,D′(y1) ≤ tj′,D′(y2) for all j′ ∈ [k] and all
D′ ∈ Up(Pj′). Dickson pairs are candidates for deletion by Ij,D.

The set D is in Openj throughout a loop skipped by Ij,D. Accordingly, an
infix ρm . . . ρm+n of a play ρ is called non-Dickson save D if tj,D increases strictly
monotonic throughout the infix and if there are no m ≤ g < h ≤ m + n such
that ρ0 . . . ρg and ρ0 . . . ρh are a Dickson pair. The length of such an infix can be

bounded inductively by a function b in the size n of G and in c =
∑k

j=1 |Up(Pj)|.

If c = 1, then the single set is D ∈
⋃

j∈[k] Up(Pj), whose values increase mono-
tonically. Hence, there is a vertex repetition after at most |G| steps. Therefore,
b(n, 1) = n.

If c + 1 > 1, then tj′,D′ (and thereby also sj′,D′) has to be reset to 0 after at
most b(n, c) steps for every D′ ∈

⋃

j∈[k] Up(Pj)\{D}. If not, then the initial prefix
of length b(n, c) contains a Dickson pair by induction hypothesis. For the same
reason, for every c′ ∈ [c] there are c′ sets D′ such that tj′,D′ (and also sj′,D′) was
reset to 0 in the last b(n, c′) steps. If not, then this infix would again contain a

15

Dickson pair by induction hypothesis. Accounting for all possible combinations,
we obtain

b(n, c + 1) = b(n, c) + nc!
c

∏

j=1

1

2
(b(n, j))2(b(n, j) + 1) ,

as we have tj′,D′(xy) ≤ 1
2 |y|(|y| + 1) and sj′,D′(xy) ≤ |y| if tj′,D′(x) = 0.

Note that the same idea can be applied to request-response games, which
lowers the bounds given in [4, 5].

Now, we are able to lift the properties of the strategy improvement operator to
the limit of the improved strategies and to bound the waiting times.

Lemma 5. Let j ∈ [k], l ∈ [cj], and ej(l) = D. Then:

(i) limn→∞ σj,l,n exists.

(ii) If σj,l−1 uniformly bounds the totalized waiting time for some D′ ∈ Up(Pj′),
then so does σj,l.

(iii) v(σj,l) ≤ v(σj,l−1), and therefore v(σj) ≤ v(σj−1).

(iv) σj,l uniformly bounds the waiting time for D to

bj,D := bG + (|Dj\D| + 1) · b (|G|, c)

Proof. (i) We begin by proving that (update∗j,l,n)n∈N converges to the identity
function, proceeding by induction over w: we have update∗j,l,n(s0) = s0 for all
n. Now, assume update∗j,l,n(w) = w for all n ≥ nw. If tj,D(ws) ≤ bG , then
updatej,l,n(w, s) = ws and therefore also update∗j,l,n(ws) = ws for all n ≥ nw.

Thus, let tj(ws) > bG and let Tn be T
σj,l,n−1
ws restricted to the maximal

paths that continuously contain D in their set of open requests. By definition,
update∗j,l,n(ws) is a vertex of Tn. Since every path in Tn is a path in Tn−1

from which some loops might be deleted, the size of the Tn is decreasing. Fi-
nally, if Tn = Tn+1, then Tn′ = Tn for all n′ ≥ n. Thus, there is an index
nws ≥ nw such that the Tn are equal for all n ≥ nws. From that index on we
have updatej,l,n(w, s) = ws and thus update∗j,l,n(ws) = ws.

Hence,

σj,l,n(ρ0 . . . ρi) = nextj,l,n(ρi,update∗j,l,n(ρ0 . . . ρi))

=nextj,l,n(ρi, ρ0 . . . ρi) = σj,l,n−1(ρ0 . . . ρi)

for all finite plays ρ0 . . . ρi and all sufficiently large n. Thus, (σj,l,n)n∈N converges.

For the next two claims we need to introduce some additional notation. We
have to determine the original play according to σj,l−1 for every play according
to σj,l. To this end, we apply the functions updatej,l,n successively in reverse
order, thereby reconstructing the original play. Then, we can copy the proofs of
Lemma 4.

For 1 ≤ m ≤ n define update∗j,l,[m,n] by

update∗j,l,[m,m](w) = update∗j,l,m(w)

16

and

update∗j,l,[m,n+1](w) = update∗j,l,[m,n](update∗j,l,n+1(w)).

Applying Lemma 4 (i) inductively, we can show that update∗j,l,[m,n](w) is a finite
play consistent with σj,l,m−1 for every play w consistent with σj,l,n. Analogously,
applying Lemma (ii) inductively, we get tj,D(w) ≤ tj,D(update∗j,l,[m,n](w)) for all
w consistent with σj,l,n, for all j ∈ [k], and all D ∈ Up(Pj).

Example 5. This construction is illustrated in Figure 5, where a request D = ej(l)
of condition j is open in the dashed intervals. Assume x is consistent with σj,l,3.
Then, we have x2 = update∗j,l,3(x) = update∗j,l,[3,3](x), which is consistent with
σj,l,2. Applying update∗j,l,2, we obtain x1 = update∗j,l,2(x2) = update∗j,l,[2,3](x),
which is consistent with σj,l,1. Finally, we apply update∗j,l,1, and obtain x0 =
update∗j,l,1(x1) = update∗j,l,[1,3](x), which is consistent with σj,l,0 = σj,l−1.

x

x2 = updatej,l,3(x)

x1 = updatej,l,2(x2)

x0 = updatej,l,1(x1)
| {z }

skipped

| {z }

skipped

| {z }

skipped

Fig. 5. Reconstruction of a play with update∗j,l,[m,n]

We have shown in the proof of Lemma 5 (i) that for every finite play x
according to σj,l there is an nx such that update∗j,l,n(x) = x for all n ≥ nx. We
define update∗j,l,ω by

updatej,l,ω(x) = update∗j,l,[1,nx](x) .

By the remarks above, we know that update∗j,l,ω(x) is consistent with σj,l,0 =
σj,l−1 and tj,D(x) ≤ tj,D(update∗j,l,ω(x)) for every play x consistent with σj,l, for
all j ∈ [k], and all D ∈ Up(Pj).

Example 6. Going back to Figure 5, assume nx ≤ 3, i.e., x is consistent with
σj,l,n for all n ≥ 3 and especially σj,l,. Then, we have update∗j,l,ω(x) = x0, which
is a play consistent with σj−1.

17

(ii) We have tj′,D′(x) ≤ b for all finite plays x consistent with σj,l−1. Now, let
x be a play consistent with σj,l. Then, update∗j,l,ω(x) is a prefix of a play accord-
ing to σj,l−1. Hence, tj′,D′(x) ≤ tj′,D′(update∗j,l,ω(x)) ≤ b. Thus, σj,l uniformly
bounds the totalized waiting time for D′ to b.

(iii) Given ρ = ρ0ρ1ρ2 . . ., let update∗j,l,ω(ρ) = limn→∞ update∗j,l,ω(ρ0 . . . ρn).
The limit update∗j,l,ω(ρ) is a play consistent with σj,l−1 for every play ρ consistent
with σj,l. We show v(ρ) ≤ v(update∗j,l,ω(ρ)) for all ρ consistent with σj,l, which
implies the claim. To this end, we define

S = {x′ ⊑ update∗j,l,ω(ρ) | ¬∃x ⊑ ρ : update∗j,l,ω(x) = x′} .

S contains exactly the vertices of the loops skipped by Player 0 throughout the
improvement steps. Let x′ ∈ S. Then, tj,D(x′) > bG holds, as every improvement
step only deletes loops of update∗j,l,ω(ρ) if the totalized waiting time is greater
than bG . Thus, p(x′) > bG ≥ v(σ) and

lim sup
n→∞

1

n

n−1
∑

i=0

p(update∗j,l,ω(ρ0 . . . ρi)) ≤ v(update∗j,l,ω(ρ)) , (3)

since the average decreases if the summation omits the summands for the prefixes
in S. Now, let x ⊑ ρ: We have tj′,D′(x) ≤ tj′,D′(update∗j,l,ω(x)), for all j′ ∈ [k],
and all D′ ∈ Up(Pj′), and therefore p(x) ≤ p(update∗j,l,ω(x)). Thus,

1

n

n−1
∑

i=0

p(ρ0 . . . ρi) ≤
1

n

n−1
∑

i=0

p(update∗j,l,ω(ρ0 . . . ρi)) .

The latter term converges to a value less than or equal to v(update∗j,l,ω(ρ)),
by (3). Thus, we conclude v(ρ) ≤ v(update∗j,l,ω(ρ)).

(iv) The last claim is proven by induction over l. There are at most |Dj\D|
intervals in between the elements of Dj that were embedded already (and the
earliest request that was not yet responded). By induction hypothesis, we can
assume that the claim holds for all those intervals, i.e., for all D′ ∈ Up(Pj)
such that |D′| > |D|, since e−1

j (D′) < e−1
j (D). Now, assume there is a play

w consistent with σj,l such that (D, t) ∈ Openj(w) for some t > bj,D and let
w = xy such that |y| = b(|G|, c). From the induction hypothesis and the fact
that the waiting times for all D′ that could precede D are already bounded, we
can conclude that

(D, bG + (|D\Dj |) · b(|G|, c) + 1 + |y′|) ∈ Openj(xy′)

for all y′ ⊑ y. Also, we have sj,D(y′) ≤ sj,D(y′′) for all y′ ⊑ y′′ ⊑ y, since no
d ∈ D can be embedded in a vertex of y. Thus, if the waiting time is longer than
bj,D, then the last interval is longer than b(|G|, c). The situation is depicted in
Figure 6.

Finally, there exists n such that update∗j,l,n(xy′) = xy′ for all y′ ⊑ y. Thus, y
is non-Dickson save D, which contradicts the definition of the function b. ⊓⊔

The results of Lemma 5 can be combined by an induction over j to show that
the waiting times can be bounded without increasing the value of a strategy.

18

ρ

q d1 d2 d3

I
z }| {

I
z }| {

I′

z }| {

Fig. 6. The inductive step for Lemma 5 (iv): the intervals I are short by induction hypothesis.
Thus, I ′ is long and contains a Dickson pair

Lemma 6. For every winning strategy σ0 for Player 0 with v(σ0) ≤ bG, there is
a winning strategy σk for Player 0 that uniformly bounds sj,D to bj,D and tj,D
to tbj,D := 1

2 (bj,D(bj,D + 1)) for all j ∈ [k] and all D ∈ Up(Pj). Furthermore,
v(σk) ≤ v(σ0).

5.2 Reducing Poset Games to Mean-Payoff Games

In this subsection, we reduce the poset game to a mean-payoff game [2], which
we will introduce in the following. An optimal strategy for the mean-payoff game
will induce an optimal strategy for the poset game. Lemma 6 is crucial to obtain
a finite arena.

A mean-payoff game G = (G, d, l) consists of an arena G = (V, V0, V1, E, s0),
d ∈ N and a labeling function l : E → {−d, . . . , d} (note that l labels the
edges in this case). Let ρ be a play in G. The gain v0(ρ) for Player 0 is de-
fined as v0(ρ) = lim infn→∞

1
n

∑n−1
i=0 l(ρi, ρi+1) and the loss v1(ρ) for Player 1

is v1(ρ) = lim supn→∞
1
n

∑n−1
i=0 l(ρi, ρi+1). Player 0’s goal is to maximize v0(ρ)

whereas Player 1 aims to minimize v1(ρ). A strategy σ for Player 0 guarantees
a gain of v if v0(ρ) ≥ v for every play ρ consistent with σ. Analogously, τ for
Player 1 guarantees a loss of v if v1(ρ) ≤ v for every play ρ consistent with τ .

Theorem 3 ([2, 9]). Let G be a mean-payoff game. There exists a value νG
and positional strategies σ and τ that guarantee νG for Player 0 and Player 1,
respectively. These strategies are optimal, i.e., there is no strategy for Player i
that guarantees a better value for her. Furthermore, σ, τ and νG are computable
in pseudo-polynomial time.

Now, we explain the reduction. The memory keeps track of the totalized waiting
time tj,D(w) for every j ∈ [k] and every D ∈ Up(Pj). To be able to compute
tj,D(ws) from tj,D(w) in every update of the memory state, sj,D(w) has to be
stored as well. Due to Lemma 6, we can bound tj,D(w) by tbj,D and sj,D(w)
by bj,D. If these bounds are exceeded, then the memory is updated to a sink
state m↑. Hence, we obtain a finite memory structure M. An edge is labeled by
the sum of the totalized waiting times at the source of the edge. The value d is
defined appropriately and is also the weight of all edges leading to a vertex with
memory state m↑. As it is Player 1’s goal to minimize the limit superior of the
average edge labels, we have to exchange the positions of the players.

Let Tj and Sj be the set of functions t, s : Up(Pj) → N such that t(D) ≤ tbj,D

respectively s(D) ≤ bj,D for all D ∈ Up(Pj). Every Tj and Sj is obviously finite.
Define the memory structure M = (M,m0,update) where

– M =
∏k

j=1(Tj × Sj) ∪ {m↑} with sink state m↑,

19

– m0 = (t1, s1, . . . , tk, sk) where tj(D) = sj(D) = |Embj(Newj(s0), s0) ∩ {D}|
for all D ∈ Up(Pj), and

– The update function is given by update(m↑, s) = m↑ for all vertices s; other-
wise, if m = (t1, s1, . . . , tk, sk) define t′j and s′j by

t′j(D) = |Embj(Newj(s), s) ∩ {D}| +
∑

D′∈Up(Pj):
Embj(D

′,s)=D

(tj(D
′) + sj(D

′))

and

s′j(D) = |Embj(Newj(s), s) ∩ {D}| +
∑

D′∈Up(Pj):
Embj(D′,s)=D

sj(D
′)

for all D ∈ Up(Pj). If t′j /∈ Tj or s′j /∈ Sj for some j, then update(m, s) = m↑,
otherwise update(m, s) = (t′1, s

′
1, . . . , t

′
k, s

′
k).

Since it is Player 1’s goal to minimize the limit superior of the average edge
weights in a mean-payoff game, we have to swap the player’s positions, i.e.,
V ′

0 = V1 × M and V ′
1 = V0 × M . Let s′0 = (s0,m0) and ((s,m), (s′,m′)) ∈ E′

iff (s, s′) ∈ E and update(m, s) = m′. Furthermore, let d =
∑k

j=1 tbj,D + 1. To
complete the definition of the mean-payoff game define l((s,m), (s′,m↑)) = d for
all (s,m) ∈ V × M and

l((s, (t1, s1, . . . , tk, sk)), (s
′, (t′1, s

′
1, . . . , t

′
k, s

′
k))) =

k
∑

j=1

∑

D∈Up(Pj)

tj(D) .

Now, let G′ = (G′, d, l) with arena G′ = (V × M,V ′
0 , V ′

1 , E′, s′0).

The following remark shows that the construction is correct: the values of the
plays in the two arenas coincide. Its proof is a simple, but tedious induction
showing that update∗(w) stores the waiting times tj,D(w) and the number of
open requests sj,D(w).

Remark 3. (i) Let ρ be a play in G such that the totalized waiting times for all
j ∈ [k] and all D ∈ Up(Pj) are uniformly bounded by tbj,D, and let ρ′ be the
expanded play in G′. Then, v(ρ) = v1(ρ

′).
(ii) Let ρ′ be a play in G′ that does not visit a vertex with memory state m↑,

and let ρ be the projected play in G. Then, v1(ρ
′) = v(ρ).

Now, we are able to prove Theorem 2.

Proof. Let Player 0 win G. We begin by relating strategies and values for Player 0
for G and Player 1 in G′.

Let σ be a strategy for Player 0 for G that uniformly bounds the totalized
waiting times for all conditions D ∈ Up(Pj) to tbj,D. We define the strategy τ ′ for
Player 1 in G′ by τ ′((ρ0,m0) . . . (ρn,mn)) = σ(ρ0 . . . ρn). We claim τ ′ guarantees
v(σ) for Player 1 in G′. Assume it does not. Then, Player 0 has a strategy σ′ for G′

such that v1(ρ(σ′, τ ′)) > v(σ). The projected play ρ of ρ(σ′, τ ′) is consistent with
σ by construction of τ ′. Thus, v(σ) ≥ v(ρ) = v1(ρ(σ′, τ ′)) > v(σ) by Remark 3 (i),
which yields the desired contradiction.

20

Conversely, let τ ′ be a strategy for Player 1 in G′ that guarantees a loss d′ < d.
Thus, no play consistent with τ ′ visits a vertex with memory state m↑. Let σ be
the strategy for Player 0 for G induced by τ ′ via G ≤M G′. We claim v(σ) ≤ d′.
Assume Player 1 has a strategy τ for G such that v(ρ(σ, τ)) > d′. The expanded
play ρ′ of ρ(σ, τ) is consistent with τ ′. Thus, d′ ≥ v1(ρ

′) = v(ρ(σ, τ)) > d′ by
Remark 3 (ii), which again amounts to a contradiction.

Now, we can begin with the actual proof: since Player 0 wins G, Corollary 1
and Lemma 6 guarantee that she also has a winning strategy σ that uniformly
bounds the totalized waiting times for all D ∈ Up(Pj) to tbj,D. Let τ ′ be the
induced strategy for Player 1 in G′. Every play consistent with τ ′ does not reach
a vertex with memory state m↑. Thus, this strategy guarantees a loss less than
d. Hence, νG′ < d.

Let τopt be a positional strategy guaranteeing νG′ for Player 1 in G′. We
show that the strategy σopt induced by G ≤M G′ and τopt is an optimal winning
strategy for Player 0 for G. This suffices since σopt is finite-state with memory M

and effectively computable by Theorem 3.

By the remarks above, we have v(σopt) = νG′ . To conclude the proof we
assume that σopt is not optimal, i.e., Player 0 has a strategy σ for G such that
v(σ) < v(σopt). By Lemma 6, we can assume without loss of generality that σ
uniformly bounds the totalized waiting times for all D ∈ Up(Pj) to tbj,D. Then,
the strategy τ ′ for Player 1 in G′ induced by σ guarantees v(σ) < v(σopt) = νG′ .
This amounts to a contradiction, since τopt is optimal for G′.

Furthermore, the values of both optimal strategies coincide. ⊓⊔

6 Conclusion

We have introduced a novel winning condition for infinite two-player games that
extends the request-response condition while retaining a natural definition of
waiting times. These games are well-suited to add aspects of planning to the
synthesis of finite-state controllers for reactive systems. We proved that optimal
strategies (with respect to long-term average accumulated waiting times) exist
and are effectively computable. The memory size of the optimal strategy com-
puted here is super-exponential. However, this holds already for request-response
games. Thus, the increased expressiveness of the poset condition does not add
too much additional complexity.

In future research, the memory size should be analyzed: determining the com-
putational complexity of finding optimal strategies and proving tight upper and
lower bounds on the memory size of an optimal strategy. The size of the mean-
payoff game (and thus the memory) can be reduced by finding better bounds
on the length of non-Dickson infixes. Also, one should investigate, whether the
(costly, in terms of time and space) reduction to mean-payoff games is necessary:
can an optimal strategy be computed without a reduction?

Another direction of further research is to consider discounted waiting times
and to establish a reduction to discounted payoff games [9]. Furthermore, the
reduction to Büchi games induces a uniform upper bound on the waiting times
in poset games, but the (efficient) computation of optimal bounds should be
addressed as well.

21

Acknowledgments. This work presents results of the author’s diploma the-
sis [7] prepared under the supervision of Wolfgang Thomas. I want to thank him
for his advice and suggestions. Also, I want to thank the anonymous referees
of [8] for their helpful remarks.

References

1. Leonard E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n

distinct prime factors. Amer. J. Math., 35(4):413–422, 1913.
2. Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Inter-

national Journal of Game Theory, 8(2):109–113, 1979.
3. Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite

Games, volume 2500 of LNCS. Springer, 2002.
4. Florian Horn, Wolfgang Thomas, and Nico Wallmeier. Optimal strategy synthesis in request-

response games. In Sung Deok Cha, Jin-Young Choi, Moonzoo Kim, Insup Lee, and Mahesh
Viswanathan, editors, ATVA, volume 5311 of LNCS, pages 361–373. Springer, 2008.

5. Nico Wallmeier. Strategien in unendlichen Spielen mit Liveness-Gewinnbedingungen: Syn-
theseverfahren, Optimierung und Implementierung. PhD thesis, RWTH Aachen University,
2008.

6. Nico Wallmeier, Patrick Hütten, and Wolfgang Thomas. Symbolic synthesis of finite-state
controllers for request-response specifications. In Oscar H. Ibarra and Zhe Dang, editors,
CIAA, volume 2759 of Lecture Notes in Computer Science, pages 11–22. Springer, 2003.

7. Martin Zimmermann. Time-optimal Winning Strategies in Infinite Games. Diploma Thesis,
RWTH Aachen University, 2009. automata.rwth-aachen.de/~zimmermann.

8. Martin Zimmermann. Time-optimal winning strategies for poset games. In Sebastian
Maneth, editor, CIAA, volume 5642 of Lecture Notes in Computer Science, pages 217–226.
Springer, 2009.

9. Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158(1&2):343–359, 1996.

22

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years.

A complete list of reports dating back to 1987 is available from http://aib.

informatik.rwth-aachen.de/. To obtain copies consult the above URL or

send your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55,

52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

23

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

24

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

25

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

26

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

27

