
Aachen
Department of Computer Science

Technical Report

RULE’04
Fifth International Workshop
on Rule-Based Programming

Proceedings

Slim Abdennadher and Christophe Ringeissen (eds.)

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2004- 04

RWTH Aachen · Department of Computer Science · June 2004



The publications of the Department of Computer Science of RWTH Aachen (Aachen Uni-
versity of Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/



Preface

This volume contains the proceedings of the 5th International Workshop on Rule-Based
Programming (RULE 2004), part of the Federated Conference on Rewriting, Deduction
and Programming (RDP 2004), held during May 31 – June 5, 2004, in Aachen, Germany.

Rule-based programming is currently experiencing a renewed period of growth with
the emergence of new concepts and systems that allow a better understanding and better
usability. On the theoretical side, after the in-depth study of rewriting concepts during the
eighties, the nineties saw the emergence of the general concepts of rewriting logic and of the
rewriting calculus. On the practical side, new languages and systems such as ASF+SDF,
BURG, CHRS, Claire, ELAN, Maude, and Stratego have shown that rules are a useful
programming tool.

The practical application of rule-based programming prompts research into the algorith-
mic complexity and optimization of rule-based programs as well as into the expressivity,
semantics and implementation of rule-based languages.

The purpose of this workshop is to bring together researchers from the various communi-
ties working on rule-based programming to foster fertilisation between theory and practice,
as well as to favour the growth of this programming paradigm.

The previous editions of the RULE workshop were held at Valencia (2003) during the
RDP conference ”Rewriting, Deduction and Programming”, and Pittsburg (2002), Firenze
(2001), Montreal (2000) during the PLI Conferences ”Principles, Logics, and Implementa-
tions of high-level programming languages”.

There were 14 submissions of overall high quality, authored by researchers from countries
including Austria, France, Germany, Italy, Japan, Spain, Thailand, UK, and USA. All
submissions were thoroughly evaluated and an electronic program committee meeting was
held through the Internet. The program committee selected 9 papers, which can be found
in this volume.

We would like to thank the program committee members and all the referees for their
care and time in evaluating and selecting the submitted papers, Juergen Giesl and the RDP
organizing committee for taking care of the local organization. Post-workshop proceedings
will be published in the Electronic Notes in Theoretical Computer Science (ENTCS). We
would like to thank Professor Michael Mislove and Elsevier for providing us this opportunity.

Slim Abdennadher,
Christophe Ringeissen.



Workshop Organizers

Slim Abdennadher German U. in Cairo, Egypt
Christophe Ringeissen LORIA-INRIA, France

Program Committee

Slim Abdennadher German U. in Cairo, Egypt
Mark van den Brand CWI, The Netherlands
Steven Eker SRI International, USA
Thom Fruehwirth U. Ulm, Germany
Michael Hanus U. Kiel, Germany
Jan Maluszynski U. Linkoping, Sweden
Narciso Mart́ı-Oliet UCM, Spain
Olivier Michel U. Evry, France
Christophe Ringeissen LORIA-INRIA, France

External Reviewers

Horatiu Cirstea
Grit Denker
Wlodzimierz Drabent
Christine Eisenbeis
Olivier Fissore
Christophe Gaston
Florent Jacquemard
Pierre-Etienne Moreau
Ulf Nilsson
Miguel Palomino
Alberto Verdejo
Laurent Vigneron

2



Contents

Playing with Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Miguel Palomino, Narciso Mart́ı-Oliet, Alberto Verdejo

On-demand evaluation for Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Francisco Durán, Santiago Escobar and Salvador Lucas

A Rewriting-based Framework for Web Sites Verification . . . . . . . . . . . . . . . . . 31
M. Alpuente, D. Ballis, M. Falaschi

A Compiler for Mapping a Rule-Based Event-Triggered Program to a
Hardware Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Carsten Albrecht and Andreas C. Döring
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Playing with Maude

Miguel Palomino, Narciso Mart́ı-Oliet, and Alberto Verdejo

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid
{miguelpt,narciso,alberto}@sip.ucm.es

Abstract This paper is an introduction to rule-based programming in Maude. We illustrate in particular
the use of operator attributes to structure the state of a system, and the difference between equations and
rules. We use mathematical games and puzzles for our examples illustrating the expressive power of Maude.
Keywords: Rule-based programming, Maude, puzzles.

1 Presentation

Though not a formal branch of Mathematics, mathematical games and puzzles of all sorts
constitute an important subclass in the realm of mathematical problems, with a long tra-
dition and extensive literature [1,4,11,12]. Most of them have in common the fact that they
are easy to state and understand, which does not mean that a precise solution is always
trivial to find.

Here we make use of a collection of these problems to introduce Maude, a specification
language that efficiently implements rewriting logic [10], which includes equational logic as
a sublogic. We are not concerned with finding neat and concise mathematical solutions, but
rather we would like to find out how easy is to express those problems in the rewriting logic
formalism underlying Maude, and how far we can go in their resolution by the use of just
brute force and as less ingenuity as possible. In this regard, a clear conclusion is that many
of these problems can be represented/specified in Maude in a much simpler way than it
would be possible in other more conventional languages. Among the main reasons why the
rule-based programming paradigm supported by Maude allows so natural a representation
of many problems, we would like to mention:

• The syntax is user-definable to a great extent, which allows to choose the more ap-
propriate one for each problem. In particular, operators declared by the user can have
attributes like associativity and commutativity, which makes multiset rewriting trivial.
All the specifications in this paper make essential use of this feature.

• An expressive version of equational logic allows a (first-order) version of functional pro-
gramming to describe the static aspects of a system.

• The dynamic aspects are described by means of rules that represent the possible transi-
tions or changes in a system. Those rules need only specify the part of the system that
actually changes, which makes them quite simple. This corresponds to the fact that
rewriting logic is a logic very suitable for expressing concurrent action and change [7] in
which the frame problem [6] has been avoided.

• The transitive closure of the relation defined by the rules is automatically computed
by the Maude system. This, combined with the flexible search command, lets the user
explore all computations starting at a given state.

On the other hand, it is also true that some of these examples suffer from the state explosion
problem which makes it difficult to solve them just by checking all possible combinations.
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Most of the problems introduced here are well-known and can be found (in some form
or another) in a number of sources: see [11] for a classic reference on the subject, [4] for
a delightful exposition on how to tackle these problems, [1] for an on-line presentation, or
even [12] for more algebraic ones. In many cases, a clear mathematical solution exists, but
not always, and anyway our goal is to show the ease with which Maude lends itself to the
specification of these problems, and to try to solve them without much thinking.

This paper is thus an introduction to rule-based programming in Maude by means of a
collection of puzzles showing the language’s expressive power. Even though current Maude
users no doubt will find the examples here to be very simple, those new to it may still find
them attractive and be encouraged to use Maude for more “serious” applications. Anyway,
even that would be too ambitious a goal: the main reason why this was written down was,
plain and simple, to have some fun. And we hope that you will have some fun while reading
it, too. All the examples can be downloaded from http://maude.sip.ucm.es/games.

2 A Brief Overview on Rewriting Logic and Maude

The motivation for this section is not to provide a crash course on rewriting logic and
Maude. On the contrary, we only intend to give the flavor of the underlying theory and
provide enough information so that the specifications of the examples in the next sections
can be understood. For a thorough treatment we refer the interested reader to the paper in
which rewriting logic was first presented [10], to the Maude manual [3], and to [9], where
many more papers on rewriting logic are referenced.

Rewriting logic was proposed by Meseguer as a unified model for concurrency in the
early nineties. Since then, it has proved its value as a logic of change as well as a logical
and semantic framework [8]. As a consequence of that success some implementations were
developed; the one we use is called Maude and can be obtained at http://maude.cs.uiuc.
edu free of charge.

The states (or configurations) of a system, its static part, are specified in rewriting logic
by means of an equational theory. The transitions, the dynamic part, are specified by means
of rules that rewrite some terms (representing parts of a system) into others.

To illustrate both these ideas and Maude syntax consider the following example. We have
some natural numbers written on a blackboard and we are allowed, at any given time, to
replace any two of them by their arithmetic mean. In this case the static part corresponds
to the representation of the blackboard and the numbers themselves. To represent the
numbers we have first to declare their sort (or type) and then write the well-known Peano
constructors.

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

Since we will also need to add numbers we declare an operator

op _+_ : Nat Nat -> Nat .

Note the use of Maude’s mixfix syntax, with indicating where the arguments are to be
written. Its behavior is defined inductively by means of the following two equations.

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .
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Division div would be defined analogously. As for the blackboard, it can be represented
as a (nonempty) multiset, or bag, of numbers.

sort Blackboard .

subsort Nat < Blackboard .

op __ : Blackboard Blackboard -> Blackboard [assoc comm] .

The subsort declaration tells Maude that a single number constitutes a valid represen-
tation for the blackboard. Multiset union is represented with empty syntax . Note that
this operator has two attributes, assoc and comm, so that terms of sort Blackboard are
considered modulo associativity and commutativity (e.g., s(0) 0 and 0 s(0) become in-
distinguishable).

Finally, the system’s dynamics is specified by the single rule

rl [replace] : N M => (N + M) div s(s(0)) .

The word in brackets after the keyword rl is the rule’s name and is optional. Note that it
is enough to specify the behavior of the two numbers that are going to be erased, without
considering the rest of the numbers in the blackboard.

The rewrite command can be used to execute the system, by means of an interpreter
which applies the rules (using a default internal strategy) and stops when no rule can be
applied.

Maude> rewrite s(s(s(s(s(s(0)))))) s(s(s(0))) s(s(0)) .

result NzNat: s(s(s(s(0))))

But the numbers chosen to be replaced by their mean can be selected arbitrarily, that
is, in a nondeterministic way, and this affects the final result. The search command can be
used to explore the computation tree. It receives the term to be rewritten, the relation used
to obtain final states (=>* for zero or more rewrites), and the final state (a new variable
N:Nat of sort Nat in this case). The computation tree is traversed in a breadth-first way.

Maude> search s(s(s(s(s(s(0)))))) s(s(s(0))) s(s(0)) =>* N:Nat .

Solution 1 (state 4)

N --> s(s(s(s(0))))

Solution 2 (state 5)

N --> s(s(s(0)))

No more solutions.

3 The Hopping Rabbits

Two teams of n rabbits each, wearing T-shirts marked with a cross and a circle respectively,
are placed facing each other on a row with 2n+ 1 positions. The x-team occupies the first
n positions and the o-team the last n; the middle one is left empty. The goal is to swap
the positions of the teams (the players of each team are indistinguishable), with the rabbits
moving according to the rules of the game:

1. Rabbits from the x-team can only move rightward, and rabbits from the o-team can
only move leftward.

2. A rabbit is allowed to advance one position if that position is empty.
3. A rabbit can jump over a rival if the position behind it is free.
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This puzzle is also known as the toads and frogs puzzle or traffic jam. It is possible to
generalize the puzzle so that the number of elements in each team is different [11].

We represent the state of the game as a nonempty list of rabbits, specified by means
of an associative append operator written with empty syntax __; note that associativity
is built into the list constructor __ using the attribute assoc. Each rabbit is represented
as a constant x or o, according to its team, and the constant free represents the empty
position.

The initial state of the game depends on the number n of rabbits in each team. This
is specified by means of an operator initial that builds the appropriate initial state, as
indicated in the equations below to define this operator. Notice how equations are used to
define the initial state, while rules are used to represent the transitions corresponding to
the legal moves in the game. As pointed out in the introduction, we use two logics, each for
a different purpose: equational logic for the static aspects of a system, and rewriting logic
for the dynamic aspects.

Since the rules need only specify the parts of the system that change, in this game we
only need to consider the positions adjacent to the free position. Thus there are four possible
legal moves, and each one is represented by a rule whose label identifies the corresponding
move.

The complete specification is then as follows; the second line imports the predefined
module NAT that specifies the natural numbers with the usual notation and arithmetic
operations [3, Section 7.2].

mod RABBIT-HOP is

protecting NAT .

sorts Rabbit RabbitList .

subsort Rabbit < RabbitList .

ops x o free : -> Rabbit .

op __ : RabbitList RabbitList -> RabbitList [assoc] .

op initial : Nat -> RabbitList .

var N : Nat .

vars L R : RabbitList .

var B : Rabbit .

eq initial(0) = free .

eq initial(s(N)) = x initial(N) o .

rl [xAdvances] : x free => free x .

rl [xJumps] : x o free => free o x .

rl [oAdvances] : free o => o free .

rl [oJumps] : free x o => o x free .

endm

Since we are interested in knowing how to reach the final position, and in general there
are several possible rules that can be applied in a given state, we use the search command.
The example below is with n = 3.

Maude> search initial(3) =>* o o o free x x x .

Solution 1 (state 71)

empty substitution

No more solutions.
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The sequence of 15 steps leading to the final position can be obtained as follows, where
we only show the beginning of the output.

Maude> show path 71 .

state 0, RabbitList: x x x free o o o

===[ rl x free => free x [label xAdvances] . ]===>

state 1, RabbitList: x x free x o o o

===[ rl free x o => o x free [label oJumps] . ]===>

state 4, RabbitList: x x o x free o o

===[ rl free o => o free [label oAdvances] . ]===>

state 9, RabbitList: x x o x o free o

...

4 The Josephus Problem

As related in [11], Flavius Josephus was a famous Jewish historian who, during the Jewish-
Roman war in the first century, was trapped in a cave with a group of 40 Jewish soldiers
surrounded by Romans. Legend has it that, preferring death to being captured, the Jews
decided to gather in a circle and rotate a dagger around it so that every third remaining
person would commit suicide. Apparently, Josephus was too keen to live and quickly found
out the safe position.

The problem of finding that safe position can be modeled very easily in Maude. The
circle representation becomes a (circular) list once the beginning position is chosen. The
operator is used to build nonempty lists of (nonzero) natural numbers (sort NzNat in
Maude’s predefined module NAT) representing the original positions of the soldiers in the
circle; its associativity is specified with the attribute assoc. Though it is not explicitly
represented, we assume that the dagger is initially at position 1.

The idea then consists in continually taking the first two elements in the list and moving
them to the end of it while “killing” the third one; when only two are left, the one who
initially has the dagger has to commit suicide. Note that in this way the dagger remains
always implicitly located at the beginning of the list. Since we need to keep track of both the
actual start and end of the list, we enclose it using the operator {_}. In this way, rewriting
takes place only at the top of the term that represents the state.

As in the previous example, the operator initial and the corresponding equations are
used to build the initial state. Then the rules correspond to the system transitions; we have
got three rules for the cases when there are two, three, or more soldiers in the circle. Notice
that there is no rule corresponding to a single soldier list, because this is the situation in
which the last remaining soldier decides not to follow the rules of the game. In Maude
modules, several rules can have the same label, and comments are introduced with ---.

mod JOSEPHUS is

protecting NAT .

sorts Moriturem Circle .

subsort NzNat < Moriturem .

op __ : Moriturem Moriturem -> Moriturem [assoc] .

op {_} : Moriturem -> Circle .

op initial : NzNat -> Moriturem .

var M : Moriturem .

vars I1 I2 I3 N : NzNat .

8



eq initial(1) = 1 .

eq initial(s(N)) = initial(N) s(N) .

rl [kill] : { I1 I2 I3 M } => { M I1 I2 } .

rl [kill] : { I1 I2 I3 } => { I1 I2 } . --- This rule is necessary

--- because M cannot be empty

rl [kill] : { I1 I2 } => { I2 } .

endm

Had we been in the same position as Josephus (and had we had a laptop to run Maude
on it), we could have found out the safe spot by executing the command:

Maude> rewrite { initial(41) } .

result Circle: {31}

Note that at any moment until the end only one of the three rules can be applied, thus the
final state is reached deterministically.

It is also easy to modify the program so that every i-th person commits suicide, where
i is a parameter. The idea is the same, but because of the parameter now it is necessary to
explicitly represent the dagger. For that, we use the constructor dagger : NzNat NzNat

-> Moriturem, whose second argument stores the value of i while the first one acts as a
counter: each time an element is moved from the beginning of the list to the end, the first
argument is decreased by one; once it reaches 1, the element that is currently the head of
the list is “killed” (removed from the list).

mod JOSEPHUS-GENERALIZED is

protecting NAT .

sorts Moriturem Circle .

subsort NzNat < Moriturem .

op dagger : NzNat NzNat -> Moriturem .

op __ : Moriturem Moriturem -> Moriturem [assoc] .

op {_} : Moriturem -> Circle .

op initial : NzNat NzNat -> Moriturem .

var M : Moriturem .

vars I I1 I2 N : NzNat .

eq initial(1, I) = dagger(I, I) 1 .

eq initial(s(N), I) = initial(N, I) s(N) .

rl [kill] : { dagger(1, I) I1 M } => { dagger(I, I) M } .

rl [kill] : { dagger(s(N), I) I1 M } => { dagger(N, I) M I1 } .

rl [kill] : { dagger(N, I) I1 } => { I1 } . --- The last one throws the dagger away!

endm

Maude> rewrite { initial(41, 3) } .

result Circle: {31}

5 The Three Basins Puzzle

The following is a classic puzzle with a recent cameo in the 1995 Hollywood hit Die Hard:
With a Vengeance. In the movie, McClane and Zeus have to deactivate a bomb by placing
4 gallons of water on a balance. The supply of water is unlimited, but they only have three
basins with capacities of 3, 5, and 8 gallons, respectively.
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The problem can be specified in Maude as follows. A basin is represented by means of the
constructor basin with two natural numbers as arguments: the first one is the basin capacity
and the second one is how much it is filled. We can think of a basin as an object with two
attributes. This way of thinking leads to an object-based style of programming, where objects
change their attributes as result of interacting with other objects; these interactions are
represented as rules on configurations that are nonempty multisets of objects [3, Chapter 8].
The multiset constructor is written with empty syntax and declared with attributes assoc
and comm. The constant initial defines the initial configuration.

At any given time we can either empty one of the basins, or fill it completely; the rules
empty and fill below take care of this. When there is enough space in one of the basins to
hold the current content of another, we can transfer all the water from this second one by
using rule transfer1. Note that this is a conditional rule (introduced with keyword crl),
with the condition at the end, after keyword if. The case when, after pouring one basin
over another, there is still some water left is dealt with by the conditional rule transfer2

(where the operator sd denotes the subtraction operation over natural numbers). These
last two rules could be combined into a single one, but the result would not be so clear.

mod DIE-HARD is

protecting NAT .

sorts Basin BasinSet .

subsort Basin < BasinSet .

op basin : Nat Nat -> Basin . --- Capacity / Content

op __ : BasinSet BasinSet -> BasinSet [assoc comm] .

op initial : -> BasinSet .

vars M1 N1 M2 N2 : Nat .

eq initial = basin(3, 0) basin(5, 0) basin(8,0) .

rl [empty] : basin(M1, N1) => basin(M1, 0) .

rl [fill] : basin(M1, N1) => basin(M1, M1) .

crl [transfer1] : basin(M1, N1) basin(M2, N2) =>

basin(M1, 0) basin(M2, N1 + N2) if N1 + N2 <= M2 .

crl [transfer2] : basin(M1, N1) basin(M2, N2) =>

basin(M1, sd(N1 + N2, M2)) basin(M2, M2) if N1 + N2 > M2 .

endm

We can now find out the shortest solution with the help of the search command, due
to the breadth-first way of searching (the argument [1] tells Maude to look only for one
solution). Notice that the pattern used after the arrow =>* represents any set of basins with
one of them having 4 gallons.

Maude> search [1] initial =>* basin(N:Nat, 4) B:BasinSet .

Solution 1 (state 75)

B:BasinSet --> basin(3, 3) basin(8, 3)

N:Nat --> 5

The sequence of actions that leads to the solution can be seen with show path 75, where
we omit part of the information about the rules used.

Maude> show path 75 .

state 0, BasinPack: basin(3, 0) basin(5, 0) basin(8, 0)
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===[ rl ... fill ]===>

state 2, BasinPack: basin(3, 0) basin(5, 5) basin(8, 0)

===[ crl ... transfer2 ]===>

state 9, BasinPack: basin(3, 3) basin(5, 2) basin(8, 0)

===[ crl ... transfer1 ]===>

state 20, BasinPack: basin(3, 0) basin(5, 2) basin(8, 3)

===[ crl ... transfer1 ]===>

state 37, BasinPack: basin(3, 2) basin(5, 0) basin(8, 3)

===[ rl ... fill ]===>

state 55, BasinPack: basin(3, 2) basin(5, 5) basin(8, 3)

===[ crl ... transfer2 ]===>

state 75, BasinPack: basin(3, 3) basin(5, 4) basin(8, 3)

6 Crossing the Bridge

The four components of U2, the famous band of rock music, are in a tight situation. The
concert starts in 17 minutes and in order to get to the stage they must first cross an old
bridge through which only a maximum of two persons can walk over at the same time.
It is already dark and, because of the bad condition of the bridge, to avoid falling into
the darkness it is necessary to cross it with the help of a flashlight. Unfortunately, they
only have one. Knowing that Bono, Edge, Adam, and Larry take 1, 2, 5, and 10 minutes,
respectively, to cross the bridge, is there a way that they can make it to the concert on
time?

The current state of the group can be represented in Maude by a multiset consisting
of singers, the flashlight, and a watch to keep record of the time. The flashlight and the
singers have a Place associated to them, indicating whether their current position is to the
left or to the right of the bridge; each singer, in addition, also carries the time it takes him
to cross the bridge. As in the previous example, this specification follows an object-based
style of programming. We have an auxiliary operation changePos that is defined by means
of two equations.

The traversing of the bridge is modeled by two rewrite rules: the first one for the case in
which a single person crosses it, and the second one for when there are two. Note that for
somebody to be allowed to cross, their position relative to the bridge must be the same as
for the flashlight, which is represented by having the same variable P twice on the lefthand
side of the rules. Also, since __ is commutative, the condition in the second rule amounts
to no loss of generality.

mod U2 is

protecting NAT .

sorts Singer Object Group Place .

subsorts Singer Object < Group .

ops left right : -> Place .

op changePos : Place -> Place .

op flashlight : Place -> Object .

op watch : Nat -> Object .

op singer : Nat Place -> Singer .

op __ : Group Group -> Group [assoc comm] .

op initial : -> Group .

var P : Place .

vars M N N1 N2 : Nat .
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eq initial = watch(0) flashlight(left)

singer(1, left) singer(2, left) singer(5, left) singer(10, left) .

eq changePos(left) = right .

eq changePos(right) = left .

rl [one-crosses] : watch(M) flashlight(P) singer(N, P) =>

watch(M + N) flashlight(changePos(P)) singer(N, changePos(P)) .

crl [two-cross] : watch(M) flashlight(P) singer(N1, P) singer(N2, P) =>

watch(M + N1) flashlight(changePos(P)) singer(N1, changePos(P))

singer(N2, changePos(P))

if N1 > N2 .

endm

A solution can now be found quickly by looking for a state in which all singers (and the
flashlight) are to the right of the bridge. Notice how the search command is invoked with
a such that clause that allows to introduce a condition that solutions have to fulfill.

Maude> search [1] initial =>* flashlight(right) watch(N:Nat) singer(1, right)

singer(2, right) singer(5, right) singer(10, right)

such that N:Nat <= 17 .

Solution 1 (state 402)

N --> 17

The solution takes exactly 17 minutes (a happy ending after all!) and the complete trace
can be shown as follows:

Maude> show path 402 .

state 0, Group: flashlight(left) watch(0) singer(1, left) singer(2, left)

singer(5, left) singer(10, left)

===[ crl ... two-cross ]===>

state 5, Group: flashlight(right) watch(2) singer(1, right) singer(2, right)

singer(5, left) singer(10, left)

===[ rl ... one-crosses ]===>

state 15, Group: flashlight(left) watch(3) singer(1, left) singer(2, right)

singer(5, left) singer(10, left)

===[ crl ... two-cross ]===>

state 71, Group: flashlight(right) watch(13) singer(1, left) singer(2, right)

singer(5, right) singer(10, right)

===[ rl ... one-crosses ]===>

state 158, Group: flashlight(left) watch(15) singer(1, left) singer(2, left)

singer(5, right) singer(10, right)

===[ crl ... two-cross ]===>

state 402, Group: flashlight(right) watch(17) singer(1, right) singer(2, right)

singer(5, right) singer(10, right)

After sorting out the information, it becomes clear that Bono and Edge have to be the first
to cross. Then Bono returns with the flashlight, which gives to Adam and Larry. Finally,
Edge takes the flashlight back to Bono and they cross the bridge together for the last time.

Note that, in order for the search command to stop, we need to tell Maude to look only
for one solution. Otherwise, it will continue exploring all possible combinations, increasingly
taking a larger amount of time, and it will never end.
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7 The Looping Chips

In the next game, taken from [1], four chips of different colors have been placed in consecu-
tive places on a 12×1 board whose ends have been glued together. Each chip can be moved
5 places from its current location, either clockwise or counterclockwise, assuming the final
position is empty. The goal is to arrange the chips in reverse order, over the original four
squares.

The state is again represented by a multiset of Places, with each Place determined
by its position in the board and the color of the chip on it or e if empty1. As in previous
examples, places can be understood as objects and the state of the game at each moment is
given by a configuration of objects. The constants initial and final represent the initial
and final configurations.

There are two possible legal moves in the game, but taking advantage of the circularity
of the board, it is possible to represent both together in one rule, as shown below; notice
how the condition of the rule considers the two possible directions of the move.

mod CHIPS is

protecting NAT .

sorts Place Board Chip .

subsort Place < Board .

ops r b g y e : -> Chip .

op place : Nat Chip -> Place .

op __ : Board Board -> Board [assoc comm] .

ops initial final : -> Board .

eq initial = place(0,r) place(1,b) place(2,g) place(3,y)

place(4,e) place(5,e) place(6,e) place(7,e)

place(8,e) place(9,e) place(10,e) place(11,e) .

eq final = place(0,y) place(1,g) place(2,b) place(3,r)

place(4,e) place(5,e) place(6,e) place(7,e)

place(8,e) place(9,e) place(10,e) place(11,e) .

vars I J : Nat .

var C : Chip .

crl [move] : place(I,C) place(J,e) => place(I,e) place(J,C)

if ((I + 5) rem 12 == J) or ((J + 5) rem 12 == I).

endm

Then, we can use the command

Maude> search initial =>* B:Board such that B:Board == final .

No solution.

to prove that it is not possible, by using the allowed moves, to reverse the original order of
the chips. Notice that the constant final is not a pattern (because it can be reduced), and
therefore cannot be used after the arrow in the search command; the clause at the end
allows us to say the same.

1 In this example, we could also use a list representation for the state; this would simplify the representation
of places, but instead the corresponding rules would be more complex.
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8 The Khun Phan Puzzle

The Khun Phan puzzle is one of those typical puzzles consisting of a rectangular board
over which some pieces can be slid. The goal is to move the pieces so as to reach a certain
configuration in which sometimes a picture becomes clear or other times a piece understood
as some character is freed from his guards. Figure 1 shows the initial configuration that we
will consider. The board is a 4× 5 rectangle, there is one 2× 2 piece, five rectangular pieces
of size 2×1, and four smaller squares with dimension 1×1; there are only two empty spaces
that must be used to slide the pieces. The goal we consider is to move the pieces so as to
put the big square in the position where the small ones are initially. An additional twist
would be to reach a completely symmetric position with respect to the original.

Figure 1. Khun Phan puzzle

The state of the board is also represented as a multiset of pieces with the operator __.
There is a different constructor for each piece, bigsq, hrect, vrect, and smallsq, and
another one, empty, to indicate an empty space (that is considered to be just a special kind
of piece). These constructors take two natural numbers as arguments that correspond to
the coordinates of the upper left corner of the piece; the origin (1, 1) is located at the upper
left corner of the board.

The representation of the moves as rewrite rules is then immediate: each involves a piece
and at least one empty space. For each kind of piece there are four rules, corresponding to
the four possible directions. For example, moving the big square one position to the right is
captured by the rule Sqr below. Again we think of pieces as objects and rules as interactions
among them. The complete specification is as follows.

mod KHUN-PHAN is

protecting NAT .

sorts Piece Board .

subsort Piece < Board .

op __ : Board Board -> Board [assoc comm] .

ops empty bigsq smallsq hrect vrect : Nat Nat -> Piece .

op init : -> Board .

vars X Y : Nat .

eq initial = vrect(1,1) bigsq(2,1) vrect(4,1)

empty(1,3) hrect(2,3) empty(4,3)

vrect(1,4) smallsq(2,4) smallsq(3,4) vrect(4,4)

smallsq(2,5) smallsq(3,5) .
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rl [sqr] : smallsq(X,Y) empty(s(X),Y) => empty(X,Y) smallsq(s(X),Y) .

rl [sql] : smallsq(s(X),Y) empty(X,Y) => empty(s(X),Y) smallsq(X,Y) .

rl [squ] : smallsq(X,s(Y)) empty(X,Y) => empty(X,s(Y)) smallsq(X,Y) .

rl [sqd] : smallsq(X,Y) empty(X,s(Y)) => empty(X,Y) smallsq(X,s(Y)) .

rl [Sqr] : bigsq(X,Y) empty(s(s(X)),Y) empty(s(s(X)),s(Y)) =>

empty(X,Y) empty(X,s(Y)) bigsq(s(X),Y) .

rl [Sql] : bigsq(s(X),Y) empty(X,Y) empty(X,s(Y)) =>

empty(s(s(X)),Y) empty(s(s(X)),s(Y)) bigsq(X,Y) .

rl [Squ] : bigsq(X,s(Y)) empty(X,Y) empty(s(X),Y) =>

empty(X,s(s(Y))) empty(s(X),s(s(Y))) bigsq(X,Y) .

rl [Sqd] : bigsq(X,Y) empty(X,s(s(Y))) empty(s(X),s(s(Y))) =>

empty(X,Y) empty(s(X),Y) bigsq(X,s(Y)) .

rl [hrectr] : hrect(X,Y) empty(s(s(X)),Y) => empty(X,Y) hrect(s(X),Y) .

rl [hrectl] : hrect(s(X),Y) empty(X,Y) => empty(s(s(X)),Y) hrect(X,Y) .

rl [hrectu] : hrect(X,s(Y)) empty(X,Y) empty(s(X),Y) =>

empty(X,s(Y)) empty(s(X),s(Y)) hrect(X,Y) .

rl [hrectd] : hrect(X,Y) empty(X,s(Y)) empty(s(X),s(Y)) =>

empty(X,Y) empty(s(X),Y) hrect(X,s(Y)) .

rl [vrectr] : vrect(X,Y) empty(s(X),Y) empty(s(X),s(Y)) =>

empty(X,Y) empty(X,s(Y)) vrect(s(X),Y) .

rl [vrectl] : vrect(s(X),Y) empty(X,Y) empty(X,s(Y)) =>

empty(s(X),Y) empty(s(X),s(Y)) vrect(X,Y) .

rl [vrectu] : vrect(X,s(Y)) empty(X,Y) => empty(X,s(s(Y))) vrect(X,Y) .

rl [vrectd] : vrect(X,Y) empty(X,s(s(Y))) => empty(X,Y) vrect(X,s(Y)) .

endm

Then we can use the command

Maude> search initial =>* B:Board bigsq(2,4) .

to get all possible 964 solutions to the game. The final state used, B:Board bigsq(2,4),
represents any final situation such that the upper left corner of the big square is at coor-
dinates (2, 4). No wonder it takes some time to find a solution: close examination of the
first one, corresponding to the shortest path leading to the final configuration due to the
breadth-first search, reveals that it consists of 112 moves!

Similarly, the command

Maude> search initial =>* vrect(1,1) smallsq(2,1) smallsq(3,1) vrect(4,1)

smallsq(2,2) smallsq(3,2)

empty(1,3) hrect(2,3) empty(4,3)

vrect(1,4) bigsq(2,4) vrect(4,4) .

No solution.

shows that it is not possible to reach a position symmetric to the initial one.

9 Crossing the River

A shepherd needs to transport to the other side of a river a wolf, a goat, and a cabbage.
He has only a boat with room for the shepherd himself and another item. The problem is
that in the absence of the shepherd the wolf would eat the goat, and the goat would eat
the cabbage.
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We represent with constants left and right the two sides of the river. The shepherd
and his belongings are represented as objects with an attribute indicating the side of the
river in which each is located; the constant initial denotes the initial situation in which
we assume that all the objects are located in the left riverbank. The rules represent the ways
of crossing the river that are allowed by the capacity of the boat; an auxiliary operation
change is used to modify the corresponding attributes.

The interesting decision we have made in our specification is to use equations to represent
the facts that the wolf eats the goat when they are alone, or that the goat eats the cabbage.
Note that the statement of the problem is underspecified; it is not clear what exactly should
happen were the wolf, the goat, and the cabbage left alone. In the specification below we
have decided that the goat is not fast enough and gets eaten by the wolf before it can take a
bite of the cabbage. Note that we use conditional equations, introduced with keyword ceq.

mod RIVER-CROSSING is

sorts Side Group .

ops left right : -> Side .

op change : Side -> Side .

ops s w g c : Side -> Group .

op __ : Group Group -> Group [assoc comm] .

op initial : -> Group .

vars S S’ : Side .

eq change(left) = right .

eq change(right) = left .

ceq w(S) g(S) s(S’) = w(S) s(S’) if S =/= S’ .

ceq c(S) g(S) w(S’) s(S’) = g(S) w(S’) s(S’) if S =/= S’ .

eq initial = s(left) w(left) g(left) c(left) .

rl [shepherd-alone] : s(S) => s(change(S)) .

rl [wolf] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [goat] : s(S) g(S) => s(change(S)) g(change(S)) .

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

endm

By using the command search we can confirm that there is only one way the shepherd
can safely take his belongings to the other side.

Maude> search initial =>* w(right) s(right) g(right) c(right) .

One might think about using rules instead of equations to represent the “eating transi-
tions,” but this would not be correct because it would allow paths in which the shepherd
leaves for example the goat and the cabbage alone and later comes back to find that the
cabbage is still there.

10 Dominoes on the Chessboard

We are given an 8× 8 board and 31 dominoes, each of which can be used to cover exactly
two squares of the board. Is it possible to arrange the dominoes on the board so as to leave
uncovered the upper left and the lower right corners?
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The answer is no, and a neat solution is given in [4, Chapter 1] among other places.
It is enough to imagine the board painted like a chessboard and realize that each domino
necessarily covers both a black and a white square: since the corners to be left uncovered
are of the same color, such a covering is not possible. This solution, however, requires
some ingenuity and, given our present lazy approach, that is not a desirable characteristic.
Therefore, we are going to model the problem in Maude and try to solve it by sheer force.

Again, the state of the board is represented as a multiset of squares. Each square has
three arguments: the first two are its coordinates (column/row) and the last one indicates
whether it is already covered or still empty. Since the position of the squares in the board
is fixed, the attribute comm for could be thought to be unnecessary. This, however, allows
a more homogeneous and simple presentation of the rules taking care of positioning the
dominoes both horizontally and vertically, by focusing only on those two squares involved
in placing the domino. Having the board represented as a list by removing the attribute
comm would force us to represent all the squares in between them in one of the rules.

mod CHESS-COVER is

protecting NAT .

sorts Status Pos Board State .

subsort Pos < Board .

ops e c : -> Status .

op sq : Nat Nat Status -> Pos .

op __ : Board Board -> Board [assoc comm] .

ops initial final : -> Board .

vars I J I1 J1 : Nat .

var B : Board .

eq initial = sq(1,1,e) sq(2,1,e) sq(3,1,e) sq(4,1,e) sq(5,1,e) ...

... sq(4,8,e) sq(5,8,e) sq(6,8,e) sq(7,8,e) sq(8,8,e) .

eq final = sq(1,1,e) sq(2,1,c) sq(3,1,c) sq(4,1,c) sq(5,1,c) ...

... sq(4,8,c) sq(5,8,c) sq(6,8,c) sq(7,8,c) sq(8,8,e) .

rl [hor] : sq(I,J,e) sq(s(I),J,e) => sq(I,J,c) sq(s(I),J,c) .

rl [ver] : sq(I,J,e) sq(I,s(J),e) => sq(I,J,c) sq(I,s(J),c) .

endm

Now, the command

Maude> search initial =>* B:Board such that B:Board == final .

should return the answer. This time, however, a state explosion problem occurs and in our
computer the program runs out of memory before producing any result. To solve it, we
are forced to use some ingenuity after all. Note that instead of placing the dominoes in an
arbitrary order we could do it starting either from the top of the board towards the bottom,
or from the left towards the right, or even in a diagonal manner beginning at the upper
left corner. The first two approaches still do not return an answer, but the third does. To
implement it, we need an auxiliary operator cDiag that checks whether all positions in the
board that come before a given square according to the diagonal order have been already
covered. Also, as we did in Section 4, we need to have full control of all the elements in the
board and for that we enclose it inside the constructor {_}.
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ceq cDiag(I,J,sq(I1,J1,e) B) = false if (I1 + J1 < I + J) /\ (I1 + J1 >= 3) .

eq cDiag(I,J,B) = true [owise] .

crl [hor] : { B sq(I,J,e) sq(s(I),J,e) } => { B sq(I,J,c) sq(s(I),J,c) }

if cDiag(I,J,B) .

crl [ver] : { B sq(I,J,e) sq(I,s(J),e) } => { B sq(I,J,c) sq(I,s(J),c) }

if cDiag(I,J,B) .

The “otherwise” attribute, owise, is just a convenient way of specifying the behavior
of cDiag in all remaining cases without having to write equations for them. The result is
still an equational theory since the owise attribute is just a shorthand for a conditional
equation [3, Section 4.5.4].

Finally, the result of the command

Maude> search { initial } =>* { B:Board } such that B:Board == final .

No solution.

proves that such a covering is not possible.

11 By Way of Conclusion

We have specified several other games and puzzles, but we think that by now the pattern by
which these problems are modeled and solved in Maude should be clear. There are however
several advanced features available in Maude that can be useful in some examples, and that
we have not considered here with the idea of keeping an introductory level.

The first one is the possibility of using membership axioms [3, Chapter 4] to refine
the representation of the state. For example, the multiset constructor allows repetition of
elements, but this should be forbidden in some situations; as another example, in the Khun
Phan puzzle a piece cannot be stacked on top of another. In the puzzles above we have
not made use of this, but memberships are the right tool to make sure all the elements are
different.

Another important feature is the availability of a model checker for linear temporal logic
[3, Chapter 9]. For example, we have modeled the river crossing puzzle without the “eating
equations” by using the model checker instead of the search command to represent a safe
path by means of a temporal formula.

To gain some perspective we have also carried out a small comparison with other rule-
based programming languages, namely, ELAN [2], CHR [5], and ASF+SDF [13]. We ac-
knowledge beforehand that none of us is an expert in any of them, so our conclusions should
be taken with a grain of salt. ELAN, which is also based on rewriting logic, is the most sim-
ilar to Maude, offering a clear distinction between the statics and the dynamics of a system,
by means of two different kinds of rules. Like Maude, ELAN also supports rewriting mod-
ulo associativity and commutativity, though not modulo associativity only, so the examples
involving lists are more cumbersome to describe. The examples involving multiset rewriting
can be easily specified; however, since in most cases the rules are nonterminating and the
predefined search strategy in ELAN is depth-first, it cannot be used to find a solution (a
breadth-first strategy could be specified but by no means in a straightforward manner).
Regarding efficiency, for the only problem we were able to translate almost verbatim from
Maude, the Josephus problem in Section 4, the performance of the Maude interpreter was
much better than even the compiled ELAN version (in some of our experiments, Maude
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finished within seconds while ELAN took several hours). On the other hand, after trying to
specify some of the games in CHR and ASF+SDF, as far as we know there is no distinction
between equations and rules and no support for equational attributes, both of which have
been essential in our examples. All this suggests to us that the representation of transition
systems in these two formalisms is not as natural and straightforward as in Maude. In
addition, breadth-first search in CHR seems to present the same problems as in ELAN.

As we mentioned in the introduction, the main goal of this paper was to have some fun
while introducing rule-based programming in Maude; we hope that our games have whetted
the appetite of the reader for more Maude applications.
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2. P. Borovanský, C. Kirchner, H. Kirchner and P.-E. Moreau. ELAN from the rewriting logic point of view
Theoretical Computer Science, 285(2):155–185, 2002.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude manual
(version 2.1). http://maude.cs.uiuc.edu/manual/, 2004.

4. D. Fomin, S. Genkin, and I. Itenberg. Mathematical Circles: The Russian Experience, volume 7 of
Mathematical World. American Mathematical Association, 1996.
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Abstract Strategy annotations provide a simple mechanism for introducing some laziness in the evaluation
of expressions. As an eager programming language, Maude can take advantage of them and, in fact, they are
part of the language. Maude strategy annotations are lists of non-negative integers associated to function
symbols which specify the ordering in which the arguments are (eventually) evaluated in function calls. A
positive index enables the evaluation of an argument whereas ‘zero’ means that the function call has to
be attempted. The use of negative indices has been proposed to express evaluation on-demand, where the
demand is an attempt to match an argument term with the left-hand side of a rewrite rule. In this paper
we show how to furnish Maude with the ability of dealing with on-demand strategy annotations.

1 Introduction

Handling infinite objects is a typical feature of lazy (functional) languages. Although reduc-
tions in Maude [4,5] are basically innermost (or eager), Maude is able to exhibit a similar
behavior by using strategy annotations [17]. Maude strategy annotations are lists of non-
negative integers associated to function symbols which specify the ordering in which the
arguments are (eventually) evaluated in function calls: when considering a function call
f(t1, . . . , tk), only the arguments whose indices are present as positive integers in the local
strategy (i1 · · · in) for f are evaluated (following the specified ordering). If 0 is found, a
reduction step on the whole term f(t1, . . . , tk) is attempted. In fact, Maude gives a strategy
annotation (1 2 · · · k 0) to each symbol f without an explicit strategy annotation.

Example 1. Consider the following modules LAZY-NAT and LIST-NAT defining sorts Nat and
LNat, and symbols 0 and s for defining natural numbers, and symbols nil (the empty list)
and _._ for the construction of lists.

fmod LAZY-NAT is
sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat [strat (0)] .

op _+_ : Nat Nat -> Nat .
vars M N : Nat .

eq 0 + N = N .

eq s(M) + N = s(M + N) .

endfm

fmod LIST-NAT is

pr LAZY-NAT .
sorts LNat .

subsort Nat < LNat .

op _._ : Nat LNat -> LNat [strat (1 0)] .

op nil : -> LNat .
op nats : -> LNat .

op incr : LNat -> LNat .

op length : LNat -> Nat .

? Work partially supported by CICYT TIC2001-2705-C03-01 and TIC2001-2705-C03-02, MCyT Acción
Integrada HU 2003-0003 and Agencia Valenciana de Ciencia y Tecnoloǵıa GR03/025.
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vars X Y : Nat . vars XS YS : LNat .
eq incr(X . XS) = s(X) . incr(XS) .

eq nats = 0 . incr(nats) .

eq length(nil) = 0 .

eq length(X . XS) = s(length(XS)) .
endfm

Strategy annotations can often improve the termination behavior of programs (by prun-
ing all infinite rewrite sequences starting from any expression). In the example above, the
strategies (0) and (1 0) for symbols s and _._, respectively, guarantee that the resulting
program is terminating1 (note that both strategies are necessary for such a proof of ter-
mination). Strategy annotations can also improve the efficiency of computations (e.g., by
reducing the number of attempted matchings or avoiding useless or duplicated reductions)
[10].

Nevertheless, the absence of some indices in the local strategies can also jeopardize
the ability of such strategies to compute normal forms. For instance, the evaluation of the
expression s(0) + s(0) w.r.t. Example 1 using Maude2 yields the following:

Maude> (red s(0) + s(0) .)

result Nat: s(0 + s(0))

Due to the annotation (0) for the symbol s, the contraction of the redex 0 + s(0) is not
possible and the evaluation stops here.

The handicaps, regarding correctness and completeness of computations, of using (only)
positive annotations are discussed in, e.g., [1,2,15,18,19], and a number of solutions have
been proposed:

1. Performing a layered normalization: when the evaluation stops due to the replacement
restrictions introduced by the strategy annotations, it is resumed over concrete inner
parts of the resulting expression until the normal form is reached (if any) [16];

2. transform the program to obtain a different one which is able to obtain sufficiently
interesting outputs (e.g., constructor terms) [2]; and

3. use strategy annotations with negative indices which allows for some extra evaluation
on-demand, where the demand is an attempt to match an argument term with the
left-hand side of a rewrite rule [18,19,1].

In [7], we have introduced two new commands (norm and eval) to make techniques
1 and 2 available for the execution of Maude programs. In this paper we show how we
have brought on-demand strategies into Maude. Before entering into details, we show how
negative indices can improve Maude strategy annotations.

Example 2. (Continuing Example 1) The following NATS-TO-BIN module implements the
binary encoding of natural numbers as lists of 0 and 1 (starting from the least significative
bit).

fmod NATS-TO-BIN is

ex LAZY-NAT .
pr LIST-NAT .

op 1 : -> Nat .

1 The termination of the specification can be formally proved by using the tool mu-term, see
http://www.dsic.upv.es/∼slucas/csr/termination/muterm.

2 The Maude 2.1 interpreter [5] is available at http://maude.cs.uiuc.edu.
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op natToBin : Nat -> LNat .
op natToBin2 : Nat Nat -> LNat .

vars M N X : Nat . vars XS YS : LNat .

eq natToBin2(0, 0) = 0 .

eq natToBin2(0, M) = 0 . natToBin(M) .
eq natToBin2(s(0), 0) = 1 .

eq natToBin2(s(0), M) = 1 . natToBin(M) .

eq natToBin2(s(s(N)), M) = natToBin2(N, s(M)) .

eq natToBin(N) = natToBin2(N, 0) .
endfm

The evaluation of the expression natToBin(s(0) + s(0)) should yield the binary rep-
resentation of 2. However, we get:

Maude> (red natToBin(s(0) + s(0)) .)

result LNat: natToBin2(s(0 + s(0)), 0)

The problem is that the current strategy annotations disallow the evaluation of subex-
pression 0 + s(0) in natToBin2(s(0 + s(0)), 0), thus disabling the application of the
last equation for natToBin2. The use of the command norm introduced in [7] does not solve
this problem, since it just normalizes non-reduced subexpressions:

Maude> (norm natToBin(s(0) + s(0)) .)

result LNat: natToBin2(s(s(0)), 0)

As we show below, on-demand strategy annotations can solve this problem. In fact, the
use of the strategy (-1 0) for symbol s, declaring its first argument as evaluable only on-
demand, permits to recover the desired behavior while keeping termination of the program
(see Examples 3 and 4 below).

In this paper, we furnish Maude with the ability of dealing with on-demand strategy
annotations. The reflective capabilities of Maude are the key for building such language
extensions, which turn out to be very simple to use thanks to the infrastructure provided
by Full Maude. Full Maude is an extension of Maude written in Maude itself, that endows
Maude with notation for object-oriented modules and with a powerful and extensible module
algebra [4]. Its design, and the level of abstraction at which it is given, make of it an excellent
metalevel tool to test and experiment with features and capabilities not present in (Core)
Maude [8,9,4]. We make use of the extensibility and flexibility of Full Maude to permit the
use of both red (the usual evaluation command of Maude) and norm (introduced in [7])
with Maude programs using on-demand strategy annotations.

2 On-demand evaluation strategy

As explained in the introduction, the absence of some indices in the local strategies of
Maude programs can jeopardize the ability of such strategies to compute normal forms. In
[18,19,1], negative indices are proposed to indicate those arguments that should be evaluated
only ‘on-demand’, where the ‘demand’ is an attempt to match an argument term with the
left-hand side of a rewrite rule [19]. For instance, the evaluation of the subterm 0 + s(0)

of the term natToBin2(s(0 + s(0)), 0) in Example 2 is demanded by the last equation
for symbol natToBin2, i.e., by its left-hand side natToBin2(s(s(N)), M): the argument of
the outermost occurrence of the symbol s in natToBin2(s(0 + s(0)), 0) is rooted by a
defined function symbol, _+_, whereas the corresponding operator in the left-hand side is
s. Thus, before being able to apply the rule, we have to further evaluate 0 + s(0).
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As for our running example, we may conclude that the evaluation with (only) positive
annotations either enters in an infinite derivation —e.g., for the term length(nats), with
the strategy (1 0) for symbol s— or does not provide the intended normal form —e.g.,
with the strategy (0) for symbol s, see Example 2—. The strategy (-1 0), however, gives
an appropriate local strategy for symbol s, since it makes its argument to be evaluated only
“on demand”. Then, the evaluation of the expression natToBin(s(0) + s(0)) under the
strategy (-1 0) for s is able to reduce the symbol natToBin2, and to remove it from the top
position, thus obtaining a head-normal form (see Example 3 below). This also permits to
use the resulting expression as the starting point of a layered evaluation (with norm) leading
to the normal form (see Example 4 below). Note that this is achieved without entering in a
non-terminating evaluation. We refer the reader to [11] for a recent and detailed discussion
about the use of on-demand strategy annotations in programming.

In this paper, we follow the computational model defined in [1] for dealing with negative
annotations. A local strategy for a k-ary symbol f ∈ F is a sequence ϕ(f) of integers in
{−k, . . . ,−1, 0, 1, . . . , k}, which are given inside parentheses. A mapping ϕ that associates
a local strategy ϕ(f) to every f ∈ F is called an E-strategy map [18]. In order to evaluate
an expression e, each symbol in e is conveniently annotated according to the E-strategy
map. The evaluation of the annotated expression takes a term and the strategy associated
to its top symbol, and then proceeds by considering the annotations of such a strategy
sequentially [1]: if a positive argument index is provided, then the evaluation jumps to the
subterm at such argument position; if a negative argument index is provided, then the index
is consumed but nothing is done; if a zero is found, then we try to find a rule to be applied
on such a term. If no rule can be applied, then we proceed to perform their (demanded)
evaluation, that is, we try to reduce one of the subterms in positions with (consumed or
present) negative indices. All consumed indices (positive and negative) are kept associated
to each symbol in the term using an extra strategy list, so that demanded positions can be
searched. See [1] for a formal description of the procedure and for details about why the
memory list is necessary compared to other frameworks for negative annotations as OBJ3
[14] and CafeOBJ [18,19].

In this paper, we do not consider AC symbols or rules with non-linear left-hand side.
Strategy annotations are explicitly prohibited for AC symbols (see [12,13]) and the com-
pleteness of evaluation with strategy annotations is only guaranteed for linear left-hand
sides (see [16,1]).

3 Reflection and the META-LEVEL module

Maude’s design and implementation systematically exploits the reflective capabilities of
rewriting logic [4], providing key features of the universal theory in its built-in META-LEVEL

module. In particular, META-LEVEL has sorts Term and Module, so that the representations
of a term t and of a module R are, respectively, a term t of sort Term and a term R of sort
Module.

The basic cases in the representation of terms are obtained by subsorts Constant and
Variable of the sort Qid of quoted identifiers. Constants are quoted identifiers that contain
the name of the constant and its type separated by a dot, e.g., ’0.Nat. Similarly, variables
contain their name and type separated by a colon, e.g., ’N:Nat. Then, a term is constructed
in the usual way, by applying an operator symbol to a list of terms.

subsorts Constant Variable < Qid Term .
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subsort Term < TermList .
op _,_ : TermList TermList -> TermList [ctor assoc] .

op _[_] : Qid TermList -> Term [ctor] .

For example, the term natToBin2(s(s(0)), 0) of sort LNat in the module NATS-TO-BIN
is metarepresented as

’natToBin2[’s[’s[’0.Nat]], ’0.Nat]

The META-LEVEL module also includes declarations for metarepresenting modules. For
example, a functional module can be represented as a term of sort Module using the following
operator.

op fmod_is_sorts_.____endfm : Qid ImportList SortSet SubsortDeclSet

OpDeclSet MembAxSet EquationSet -> FModule [ctor] .

Similar declarations allow us to represent the different types of declarations we can find in
a module.

The module META-LEVEL also provides key metalevel functions for rewriting and evalu-
ating terms at the metalevel, namely, metaApply, metaRewrite, metaReduce, etc., and also
generic parsing and pretty printing functions metaParse and metaPrettyPrint [6,4]. For
example, the function metaReduce takes as arguments the representation of a module R
and the representation of a term t in that module:

op metaReduce : Module Term -> [ResultPair] .
op {_,_} : Term Type -> ResultPair [ctor] .

metaReduce returns the representation of the fully reduced form of the term t using the
equations in R, together with its corresponding sort or kind.

All these functionalities are very useful for metaprogramming, and in particular when
building formal tools. Moreover, Full Maude provides a powerful setting in which addi-
tional facilities are available, making the addition of new commands or the redefinition of
previous ones, as in this paper, simpler. The specification of Full Maude and its execution
environment can then be used as the infrastructure on which building new features.

4 Extending Full Maude to handle on-demand strategy annotations

We provide the reduction of terms taking into account on-demand annotations as a re-
definition of the usual evaluation command red of Maude (which considers only positive
annotations).

Example 3. Consider the specification resulting from replacing in Example 2 the declaration
of the operator s by this other one:

op s : Nat -> Nat [strat (-1 0)] .

The on-demand evaluation of natToBin(s(0) + s(0)) obtains a head-normal form:

Maude> (red natToBin(s(0) + s(0)) .)

result LNat : 0 . natToBin(s(0))

As for other commands in Full Maude, we may define the actions to take when the
new commands are used by defining its corresponding meta-function. For instance, a red

command is executed by appropriately calling the metalevel metaReduce function. In or-
der to furnish Maude with on-demand evaluation we provide a new metalevel operation
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metaReduceOnDemand which extends the reflective and metalevel capabilities of Maude,
as explained in Section 3. The operation metaReduceOnDemand takes arguments of sorts
Module, OpDeclSet and Term, and returns a term of sort ResultPair. Its arguments repre-
sent, respectively, the module on which the reduction takes place, the operation declarations
in such a module, and the term to be reduced. The result returned is as the one given by
metaReduce (see Section 3). Note that (Core) Maude cannot handle negative annotations,
and therefore, the function takes a valid module, i.e. a module without negative annota-
tions, and the set of operation declarations with any kind of annotation. The redefined
command red must then select between metaReduce and metaReduceOnDemand depending
on whether negative annotations are present or not.

Basically, metaReduceOnDemand calls the auxiliary function procStrat which is the
function that really processes the strategy list associated to the top symbol of the term.

var M : Module . var OPDS : OpDeclSet . var T T’ : Term .

op metaReduceOnDemand : Module OpDeclSet Term -> [ResultPair] .
op procStrat : Module OpDeclSet AnnTerm -> AnnTerm .

ceq metaReduceOnDemand(M, OPDS, T)

= {T’, leastSort(M, T’)}
if T’ := erase(procStrat(M, OPDS, annotate(M, OPDS, T))) .

In order to include annotations into Maude’s representation of terms, we transform the
Maude’s metalevel sort Term into a sort AnnTerm (of annotated terms), where symbols are
equipped with a memory list and a strategy list (as explained in Section 2). Furthermore, we
provide two functions: annotate and erase to move between the sorts Term and AnnTerm.

sorts AnnVariable AnnTerm AnnTermList .

subsorts AnnVariable < AnnTerm < AnnTermList .

op _{} : Variable -> AnnVariable .
op _{_} : Constant IntListNil -> AnnTerm .

op _{_|_}[_] : Qid IntListNil IntListNil AnnTermList -> AnnTerm .

op _,_ : AnnTermList AnnTermList -> AnnTermList [assoc] .

op annotate : Module OpDeclSet TermList -> AnnTermList .

op erase : AnnTermList -> TermList .

The function procStrat follows the description given in Section 2 when processing the
strategy list associated to the top symbol of the term to evaluate. When a positive index is
found, the evaluation of such argument is forced, and the positive index is moved from the
strategy list (right component) to the memory list (left component) of the top symbol. For
example, the equation for an annotated term rooted by a symbol with arity greater than 0
is as follows.

var N N’ : Int . var NL NL’ : IntListNil .
var F : Qid . var ATL : AnnTermList .

ceq procStrat(M, OPDS, F{NL | N NL’}[ATL])

= procStrat(M, OPDS,
F{NL @@ N | NL’}[procStratSel(M, OPDS, ATL, 1, N)])

if N > 0 .

When a negative index is found, no evaluation in that argument is started, and the negative
index is moved from the strategy list (right component) to the memory list (left component).
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ceq procStrat(M, OPDS, F{NL | N NL’}[ATL])
= procStrat(M, OPDS, F{NL @@ N | NL’}[ATL] )

if N < 0 .

When an index 0 is found, the function procStrat attempts to match the term against the
left-hand sides of the rules using the metalevel function metaApply.3 If there is a match,
then the rule is applied. If no match is obtained, then we determine if any demanded
position exists using the function procStratOD, which performs a matching algorithm to
detect which positions under negative annotations are actually demanded by some rule (see
[1] for details). If a demanded position exists, then the evaluation of such a position is
started, and then we will retry the matching against the left-hand sides of the rules after
the evaluation is completed. If no demanded position exists, the current index 0 is removed
from the strategy list and the rest of the strategy list is considered.

var MA : ResultTriple? .

ceq procStrat(M, OPDS, F{NL | 0 NL’}[ATL])

= if MA == failure

then procStratOD(M, OPDS, F{NL | 0 NL’}[ATL])
else procStrat(M, OPDS, annotate(M, OPDS, getTerm(MA)))

fi

if MA :=

metaApply(moveEqsToRls(M), F[erase(ATL)], ’on-demand, none, 0).

When the function procStratOD is executed, i.e. when a demanded position is being
searched, the computational model of [1] specifies that the search order defined by the
position order in the strategy must be followed, i.e. if (-1 -2 0) is the strategy for symbol
. , then any demanded subterm under the first argument would be selected first, despite

any demanded subterm under the second argument (see [1] for details).
Once implemented the function metaReduceOnDemand, we need to redefine parts of

Full Maude so that the command red can be able to execute metaReduce or
metaReduceOnDemand. There is no need to define a new command and extend Full Maude
to accept that command, as it was done for norm and eval commands in [7]. We just need
to modify the way the red command is processed.

In the current version of Maude, input/output is accomplished by the predefined
LOOP-MODE module, which provides a generic read-eval-print loop. In the case of Full Maude,
the persistent state of the loop is given by a single object of class Database which maintains
the database of the system. This object has an attribute db, to keep the actual database
in which all the modules being entered are stored (a set of records), an attribute default,
to keep the identifier of the current module by default, and attributes input and output

to simplify the communication of the read-eval-print loop given by the LOOP-MODE module
with the database. Using the notation for classes in object-oriented modules we can declare
such a class as follows:

class DatabaseClass | db : Database, default : ModName,

input : TermList, output : QidList .

The state of the read-eval-print loop is then given by an object of class DatabaseClass.
In the case of Full Maude, the handling of the read-eval-print loop is defined in the modules
DATABASE-HANDLING and FULL-MAUDE.
3 The function metaApply applies only rules, and therefore equations must be turned into rules before
metaApply is applied.
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The module FULL-MAUDE includes the rules to initialize the loop (rule init), and to
specify the communication between the loop—the input/output of the system—and the
database (rules in and out). Depending on the kind of input that the database receives,
its state will be changed, or some output will be generated. To parse some input using the
built-in function metaParse, Full Maude needs the metarepresentation of the signature in
which the input is going to be parsed. In Full Maude, such a grammar is provided by the
FULL-MAUDE-SIGN module, in which we can find the appropriate declarations so that any
valid input, namely modules, theories, views, and commands, can be parsed. Since we do
not want to change the grammar FULL-MAUDE-SIGN, which is used for parsing the inputs,
we do not need to change the FULL-MAUDE module.

The module DATABASE-HANDLING defines the behavior of the database upon new entries.
The behavior associated to commands is managed by rules describing transitions which
call the function procCommand. For example, the rule defining what to do when the red

command is received is as follows.

rl [red] :

< O : X@Database | db : DB, input : (’red_.[T]),

output : nil, default : MN, Atts >
=> < O : X@Database | db : DB, input : nilTermList,

output : procCommand(’red_.[T], MN, DB),

default : MN, Atts > .

When a red command is entered, the parsing of the input returns a term of the form
red_.[T], where T is a variable of sort T representing a bubble. The result of the parsing is
placed in the input attribute of the database object. The function procCommand specifies
what to do when the term red_.[T] is received, with MN and DB variables with values
the name of the current default module and the state of the database, respectively. In
the original case of the command red, procCommand calls the function procRed with the
appropriate arguments, namely the name of the default module, the flatten module itself,
the bubble representing the argument of the command, the variables in the default module,
and the database. Note that depending on whether the default module is a built-in or
not, and whether it is compiled or not, procCommand will do different things, so that the
arguments for procRed are obtained. In the redefinition for command red, procCommand
calls a new function procReduceOnDemand which redefines procRed.

eq procCommand(’red_.[’bubble[T]], MN, DB)

= if MN inModNameSet builtIns
then procReduceOnDemand(MN, DUMMY(MN), ’bubble[T], none, DB)

else if compiledUnit(MN, DB)

then procReduceOnDemand(MN, getFlatUnit(MN, DB),

’bubble[T], getVbles(MN, DB), DB)
else procReduceOnDemand(MN,

getFlatUnit(MN, evalModExp(MN, DB)),

’bubble[T], getVbles(MN, evalModExp(MN, DB)),

evalModExp(MN, DB))
fi

fi .

The function procReduceOnDemand is in charge of evaluating the bubble given as argu-
ment of the red command, calling the function metaReduce or metaReduceOnDemand, and
then preparing the results (a list of quoted identifiers that will be passed to the output chan-
nel of the read-eval-print loop to be shown to the user). The function procReduceOnDemand
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detects whether negative annotations are present in the module or not4 (using the function
noNegAnns), then calling metaReduceOnDemand or metaReduce. As said above, since Core
Maude does not accept strategies with negative annotations, the function
procReduceOnDemand must call the function metaReduceOnDemand with the module with-
out such negative annotations (remNegAnns is in charge of removing them) and the operator
declarations with them. Finally, the equations defining procReduceOnDemand are as follows.

op procReduceOnDemand : ModExp Module Term OpDeclSet Database
-> QidList .

ceq procReduceOnDemand(MN, M, T, VDS, DB)

*** No negative annotation -> Use metalevel metaReduce

= if RP? :: ResultPair
then (’\b ’reduce ’in

...

else (’\r ’Error: ’\o ’Incorrect ’command. ’\n)

fi
if noNegAnns(getOps(M))

...

/\ TM := solveBubblesRed(T, remNegAnns(M), B, VDS, DB)

/\ RP? := metaReduce(getModule(TM), getTerm(TM)) .

ceq procReduceOnDemand(MN, M, T, VDS, DB)

*** Negative annotations -> Use metalevel metaReduceOnDemand

= if RP? :: ResultPair
then (’\b ’reduce ’on-demand ’in

...

else (’\r ’Error: ’\o ’Incorrect ’command. ’\n)

fi
if not noNegAnns(getOps(M))

...

/\ TM := solveBubblesRed(T, remNegAnns(M), B, VDS, DB)

/\ RP? :=
metaReduceOnDemand(getModule(TM), getOps(M), getTerm(TM)) .

4.1 Extending Full Maude with on-demand strategy annotations to layered
normalization

As explained along the paper, our goal is to provide appropriate normal forms to programs
with strategy annotations. However, the redefinition of command red is not able to provide
the normal form 0 . 1 for the program in Example 2, since the annotation 2 is missing
in the strategy list for symbol . (see the output of the red command in Example 3).
However, as it was explained in Section 1, this concrete problem is solved using either a
layered normalization, or a transformation. In this section, we redefine the command norm

of [7] to perform a layered normalization of the output given by the on-demand evaluation
previously presented.

Example 4. Consider the modules of Example 3. The redefinition of command norm now is
able to provide the intended value associated to the expression natToBin(s(0) + s(0)).

Maude> (norm natToBin(s(0) + s(0)) .)
result LNat : 0 . 1

The redefinition of command norm is almost identical to the implementation of the com-
mand norm given in [7]. We do not give the details here, but basically, the idea is that we keep

4 The ”classical” Maude evaluation is not affected when only positive annotations are provided.
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the metalevel function metaNorm and define a new metalevel function metaNormOnDemand

which calls metaReduceOnDemand instead of metaReduce to reduce the initial term.

eq metaNormODRed(M, OPDS, T)

= procStratOD(M, getTerm(metaReduceOnDemand(M, OPDS, T)), OPDS) .

We refer the reader to [7] for details about the implementation of the norm command.
Note that it is also necessary to perform similar changes to those explained in Section 4:

• we redefine procCommand to call a new function procNormOnDemand, which redefines
procNorm, when the term norm_.[T] is received;

• the function procNormOnDemand calls metaNorm or metaNormOnDemand depending on
whether negative annotations are present or not (using again the function noNegAnns).

5 Conclusions

We have used Full Maude to furnish Maude with the ability to perform on-demand evalu-
ations, a more sophisticated form of lazy behavior for languages such as Maude. We make
use of the extensibility and flexibility of Full Maude to permit the use of both red (the
usual evaluation command of Maude) and norm (introduced in [7]) with Maude programs
using on-demand strategy annotations. The full specification is available at

http://www.dsic.upv.es/users/elp/toolsMaude

These features have been integrated into Full Maude, making them available inside its
programming environment. The high level at which the specification/implementation of Full
Maude is given makes this approach particularly attractive when compared to conventional
implementations (see e.g. [3]). The flexibility and extensibility that Full Maude affords has
made the extension quite simple and in a very short time.

It is worth noting however that our prototype of on-demand evaluation is not compara-
ble in efficiency to other implementations of evaluation with negative annotations such as in
CafeOBJ5 or OnDemandOBJ6. The goal of this piece of work is not to provide a competitive
implementation, but to provide on-demand evaluation for a language such as Maude. Note
that OnDemandOBJ does not include all the capabilities of Maude, and that the compu-
tational model of CafeOBJ for dealing with negative annotations has some drawbacks (see
[1]). In fact, it is not fair looking at it as an implementation of the on-demand strategies,
not even as a prototype. It should be seen as an executable specification of it, closer to its
mathematical definition (given in [1]) than to its implementation. Although a more efficient
executable specification/implementation of the on-demand evaluation following a similar
approach could be given, we are convinced that a direct implementation of the on-demand
evaluation into Maude is desirable.
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Abstract In this paper, we develop a framework for the automated verification of Web sites which can
be used to specify integrity conditions for a given Web site, and then automatically check whether these
conditions are fulfilled. First, we provide a rewriting-based, formal specification language which allows us to
define syntactic as well as semantic properties of the Web site. Then, we formalize a verification technique
which obtains the requirements not fulfilled by the Web site, and helps to repair the errors by finding
out incomplete information and/or missing pages. Our methodology is based on a novel rewriting-based
technique, called partial rewriting, in which the traditional pattern matching mechanism is replaced by tree
simulation, a suitable technique for recognizing patterns inside semistructured documents. The framework
has been implemented in the prototype Web verification system Verdi which is publicly available.

1 Introduction

The increasing complexity of Web sites has turned their design and construction into a
challenging problem. Systematic, formal approaches can bring many benefits to quality Web
site construction, giving support for automated Web site verification. This paper presents
an approach to Web site specification and verification based on rewriting-like machinery.
We use rewriting-based technology both to specify the integrity conditions and to formalize
a verification technique which obtains the requirements not fulfilled by the Web site, and
then is able to repair errors by finding out missing pages and/or incomplete information,
such as the data or the links available in a particular page.

Although the management of Web sites has received significant attention in recent years
[6,11,12], few works address the semantic verification of Web sites. In [12], a declarative
verification algorithm is proposed which checks a particular class of integrity constraints
concerning the Web site’s structure, but not the contents of a given instance of the site.
[11] proposes a methodology which consists of using inference rules and axioms to define
some semantic constraints concerning the Web site contents. Then, a verification technique
is proposed which is based on compiling the specification into Prolog code. Our idea in this
paper is that term rewriting techniques can support in a natural way not only intuitive, high
level Web site specification, but also efficient Web site verification and repairing techniques.
As far as we know, rewriting-based techniques have not been explored in this context to
date. We only know of two related approaches which focus on transformation rather than
verification issues: a rewriting-based implementation is provided in [15] for (a fragment of)
XSLT, the rule-based language designed by W3C for the transformation of XML documents,
whereas rewrite rules are used in [3] to perform HTML transformations with the aim of
improving Web applications by cleaning up syntax, reorganizing frames, or updating to new
standards.

Our contribution. We first provide a rewriting-based, formal specification language
which allows us to define conditions on both the structure and the contents of Web sites

? This work has been partially supported by MCYT under grants TIC2001-2705-C03-01 and HU2003-0003.
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in a simple and concise way. For instance, it allows us to enforce that some information
is available at a given Web page, some links between pages do exist or even the existence
of the Web pages themselves. In our formalism, web pages (HTML/XML documents) are
modeled as Herbrand terms, and, consequently, Web sites are finite sets of terms. Then, we
formalize a verification technique in which a Web site is checked w.r.t. a given Web spec-
ification in order to detect incomplete and/or missing Web pages. Moreover, by analyzing
the requirements not fulfilled by the Web site, we are also able to find out the missing
information which is needed to repair the Web site. Since reasoning on the Web calls for
formal methods specifically fitting the Web context, we develop a novel, rewriting-based
technique called partial rewriting, in which the traditional pattern matching mechanism is
replaced with tree simulation [14] in order to provide a suitable mechanism for recognizing
patterns inside semistructured documents. The notion of simulation has been already used
before for dealing with semistructured data in a number of query and transformation lan-
guages [6,8,13,9]. The reason is twofold: on the one hand, it provides a powerful method to
extract information from semistructured data; on the other hand, efficient algorithms exist
for computing simulations [14]. To assess the feasibility and efficiency of our approach, we
have implemented the prototype system Verdi (VErification and Rewriting for Debugging
Internet sites), which is based on the verification methodology that we propose and is pub-
licly available online.

Plan of the paper. Section 2 summarizes some preliminary definitions and notations.
In Section 3, we formulate a simple method for translating HTML/XML documents into
Herbrand terms. Section 4 is devoted to formalize the specification language, whereas Sec-
tion 5 formalizes the partial rewriting mechanism, which is based on page simulation. In
Section 6, we introduce our verification technique, which is formalized as a fixpoint com-
putation. First, the set of requirements to be fulfilled by the Web site W is computed as the
fixpoint of a suitable operator associated with the Web site specification I. Then, by using
simulations we select those requirements which are not satisfied by W and the corresponding
incomplete/missing Web pages which are the source for the errors. The requirements which
are not satisfied also allow us to ascertain the missing information which is needed to repair
the Web site. Some notes regarding the implementation of the system Verdi are given in
Section 7. Section 8 concludes. More details and missing proofs can be found in [2].

2 Preliminaries

We call alphabet a finite set of symbols. Given the alphabet A, A∗ denotes the set of all
finite sequences of elements over A. Syntactic equality between objects is represented by ≡.

By V we denote a countably infinite set of variables and Σ denotes a set of function
symbols, or signature. We consider varyadic signatures (i.e signatures in which function
symbols have an un-bounded arity, that is, they may be followed by an arbitrary number of
arguments) as in [10]. τ(Σ,V) and τ(Σ) denote the non-ground term algebra and the term
algebra built on Σ ∪ V and Σ, respectively. τ(Σ) is usually called the Herbrand universe
over Σ. A term t is linear, if no variable appears more than once in t.

Terms are viewed as labelled trees in the following way: a term in τ(Σ) is a tree
(V,E, r, label), where V is a set of vertices, E is a set of edges (i.e. pairs of vertices),
r ∈ V is the root vertex and label is a labeling function such that label(v) ∈ (Σ ∪ V), for
each v ∈ V . Let us see a small example.
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Example 1. Consider the term t ≡ (f(g(a), X)) in τ({f, g, a}, {X}). Term t can be repre-
sented by the structure (V,E, r, label), where V = {v0, v1, v2, v3}, E = {(v0, v1), (v0, v2),
(v1, v3)}, r ≡ v0, and function label is defined as follows: label(v0) = f , label(v1) = g,
label(v2) = X, label(v3) = a.

Given two vertices v, v′ ∈ V of a term t ≡ (V,E, r, label), by v ≥ v ′ we mean that v is
a descendant of v′ in t. By t|v we mean the subterm rooted at vertex v of t. We denote
the depth of a vertex v in a term t, that is the number of edges between r and v in t, as
depth(t, v). A substitution σ ≡ {X1/t1, X2/t2, . . .} is a mapping from the set of variables V
into the set of terms τ(Σ,V). By Var (t) we denote the set of variables occurring in term t.

In the following, we consider marked terms. Given Σ and V, we denote the marked
version of Σ (V, respectively) as Σ (V, respectively). A syntactic object o ∈ Σ ∪V is called
the marked version of o ∈ Σ ∪ V. Given a term t ≡ (V,E, r, label) ∈ τ(Σ,V), a marking for
t is a (boolean) function µ : V → {yes, no}. The empty marking ε for t is a marking for t
such that ε(v) = no, for each v ∈ V . We define the marked part of a term t as

mark(t, µ) ≡ ({v ∈ V | µ(v) = yes}, {(v1, v2) ∈ E | µ(v1) = µ(v2) = yes}, r, label).

A valid marking µ for a term t ≡ (V,E, r, label) is the empty marking for t or a marking
for t such that the two following conditions hold:

1. µ(r) = yes;
2. mark(t, µ) is a term in τ(Σ,V).

Given a term t ≡ (V,E, r, label) and a valid marking µ for t, by slightly abusing notation
we recursively define a marked term µ(t) as follows:

µ(t) =





X t ≡ ({v}, ∅, v, label) ∧ label(v) = X ∈ V
∧ µ(v) = yes

X t ≡ ({v}, ∅, v, label) ∧ label(v) = X ∈ V
∧ µ(v) = no

f(µ(t1), . . . , µ(tn)) t ≡ (V,E, r, label) ≡ f(t1, . . . , tn) ∧ µ(r) = yes

f(µ(t1), . . . , µ(tn)) t ≡ (V,E, r, label) ≡ f(t1, . . . , tn) ∧ µ(r) = no

When no confusion can arise, we simply denote the marked term ε(t) by t.

Example 2. Consider again term t ≡ (f(g(a), X)) of Example 1. Let µ1 be a marking for t
defined as µ1(v0) = µ1(v2) = µ1(v3) = yes, µ1(v1) = no. Additionally, let µ2 be a marking
for t such that µ2(v0) = µ2(v1) = yes, µ2(v2) = µ2(v3) = no. Note that µ1 is not a valid
marking for t as the marked part of t is not a term in τ({f, g, a}, {X}), whereas µ2 is valid
for t and µ2(t) = f(g(a), X) is a marked term.

3 Denotation of Web Sites

In this paper, a Web page is either an XML[18] or a HTML[17] document, and a Web site is
a finite collection of Web pages. In the sequel, we provide a formalization of these concepts
by means of semistructured expressions, which can be seen as an abstract syntax which
generalizes the two markup languages XML and HTML. Then, we show how semistructured
expressions can be translated into ordinary terms of a given term algebra in such a way
that Web sites are represented as finite sets of (ground) terms.
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Semistructured Expressions. XML/HTML documents consist of nested structured
data, which can be defined inductively. Abstracting from XML and HTML, we give a for-
mal definition of semistructured expressions which are suitable for representing structured
documents written in one of these two languages.

Let us consider two alphabets T and Tag . We denote the set T ∗ by Text . An object t ∈
Tag is called tag element, while an element w ∈ Text is called text element. A semistructured
expression e over Text and Tag sets can be specified by the following syntax1

e := <t> elist </t> | w ∀ w ∈ Text , t ∈ Tag

elist := e elist | ε

We denote the set of all the semistructured expressions over Text and Tag by S(Text , Tag).
Note that Text ⊆ S(Text , Tag).

Example 3. The following object is a semistructured expression.

<members>

<member>

<name> mario </name>

<surname> rossi </surname>

<status> professor </status>

</member>

<member>

<name> franca </name>

<surname> bianchi </surname>

<status> technician </status>

</member>

<member>

<name> giulio </name>

<surname> verdi </surname>

<status> student </status>

</member>

</members>

Roughly speaking, a semistructured expression is either a raw or a structured piece of
text, where the structure is provided by tags. Consequently, tags allow us to mark up
some textual content, which may contain an arbitrary amount of further well-bracketed
markup. Informally, the more tags we add, the more the text is structured, and in some
sense its “formal organization” will also increase. Note that we have not explicitly dealt
with XML/HTML attributes, as they can be seen as common tagged elements and thus
modeled as semistructured expressions. On the other hand, without loss of generality, other
XML/HTML features such as namespaces, DTDs and/or schemas, that are not relevant to
this work are not conveyed by our notion of semistructured expression.

In the literature, slightly different formalisms have been introduced for modeling XML
and HTML documents, e.g. in [1] semistructured expressions are directed graphs which can
deal with crossing references. Nevertheless, we prefer the hierarchical representation which
does not cause any serious restriction in many practical contexts while it greatly simplifies
our methodology.

1 Note that symbol ε in the syntax given for semistructured expressions denotes the empty string and must
not be confused with the empty marking ε.
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Term representation. Semistructured expressions are provided with a tree-like struc-
ture, therefore they can be conveniently translated into terms by applying the following
straightforward transformation.

Definition 1. Let e be a semistructured expression over Text and Tag . Then, e is repre-
sented by a term of the Herbrand universe τ(Text ∪ Tag) by the translation
s to t : S(Text , Tag)→ τ(Text ∪ Tag) defined as follows:

s to t(e) =

{
w if e ≡ w ∈ Text
t(s to t(e1), . . . , s to t(en)) if e ≡ <t> e1 . . . en</t>

Example 4. Consider again semistructured expression of Example 3. Then, the term p com-
puted by function s to t for that semistructured expression is

members(

member(name(mario),surname(rossi),status(professor)),

member(name(franca),surname(bianchi),status(technician)),

member(name(giulio),surname(verdi),status(Student))

)

To summarize, a Web page, which is coded as an HTML/XML document, can be repre-
sented as a semistructured expression, which is then easily translated into a corresponding
term of a suitable term algebra. Therefore, in the remaining of this work, a Web page is
modeled by a term in τ(Text ∪Tag). Besides, a marked Web page is defined as µ(p), where
p ∈ τ(Text ∪Tag) and µ is a valid marking for p. A Web site is a finite collection of marked
Web pages {ε(p1) . . . ε(pn)}. In the following, we will also consider terms of the non-ground
term algebra τ(Text∪Tag ,V), which may contain variables. An element s ∈ τ(Text∪Tag ,V)
is called Web page template. µ(s) is a marked Web page template, when s ∈ τ(Text∪Tag ,V)
and µ is a valid marking for s. In our methodology, (marked) Web page templates are used
for specifying properties on Web sites as described in the following section.

4 Web specification language

In the following, we present a term rewriting specification language, which is helpful to ex-
press properties about the content and the structure of a given Web site. Roughly speaking,
a specification is a finite set of rules, where the terms in the left-hand side and in the right-
hand side of each rule represent (eventually marked) Web page templates. The operational
mechanism, formalized in Section 5, is based on a novel rewriting-based mechanism, which
is able to extract partial structure from a term, and then rewrite it.

Formally, Web site specifications are as follows.

Definition 2. A rule is a pair of terms l ⇀ µ(r) such that l, r ∈ τ(Text ∪ Tag ,V), l is
linear, Var (r) ⊆ Var(l) and µ is a valid marking for r. A Web site specification I is a finite
set of rules {l1 ⇀ µ1(r1), . . . , ln ⇀ µn(rn)}.
Given a Web specification I, we denote the set of all left-hand sides (right-hand sides
disregarding markings) of rules in I by LhsI (RhsI, respectively). In symbols, LhsI = {l |
l⇀ µ(r) ∈ I} and RhsI = {r | l⇀ µ(r) ∈ I}.

The following example illustrates the definition of a Web specification. Marks are in-
troduced by the user to help locating errors. We do not take care of marks for the time
being but postpone the formal handling of marking information and the description of the
verification framework to Section 6.
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Example 5. Consider the following Web specification, which models some required proper-
ties of a research group Web site containing information about group members affiliation,
scientific publications and personal data.

member(name(X), surname(Y)) ⇀ hpage(name(X), surname(Y), status)

hpage(status(professor)) ⇀ hpage(status(professor), teaching)

pubs(pub(name(X), surname(Y))) ⇀ member(name(X), surname(Y))

First rule formalizes the following property: if there is a Web page containing a member
list, then for each member, a home page exists containing (at least) the name, the surname
and the status of this member. Second rule states that whenever a home page of a professor
is recognized, then that page must also include some teaching information. Finally, the third
rule specifies that whenever there exists a Web page containing information about scientific
publications, each author of a publication should be a member of the research group.

Informally, rules of a Web specification formalize conditions to be fulfilled by a given Web
site. Intuitively, the interpretation of a rule l⇀ µ(r) w.r.t. a Web site W is as follows: if (an
instance of) l is recognized in W, also (an instance of) r must be recognized in a subset of
W, which is determined by computing the sets of all Web pages which embed (an instance
of) the marked part of r. This mechanism is formalized by partial rewriting.

5 Partial Rewriting

In order to mechanize the intended semantics of Web specification rules, we first devise a
mechanism which is able to recognize the structure and the labeling of a given Web page
template inside a particular page of the Web site. This is provided by page simulation.

5.1 Page Simulations

The notion of page simulation for Web pages allows us to analyze and extract the partial
structure of the Web site which is subject to verification.

Roughly speaking, a Web page p1 is simulated by a Web page p2, if the tree-structure
of p1 is “embedded” into the tree-structure of p2. In other words, a simulation of a Web
page (i.e. a labelled tree) p1 in a Web page p2 can be seen as a relation among the nodes
of p1 and the nodes of p2 which preserves the edges and the labelings. Before formalizing
the idea, we illustrate it by means of a rather intuitive example.

Example 6. Consider the following Web pages (called p1 and p2, respectively):

hpage(name,surname,status(professor),teaching)

hpage(name(mario),surname(rossi),status(professor),

teaching(course(logic1),course(logic2)),

hobbies(hobby(reading),hobby(gardening)))

Looking at Figure 1, we observe that the structure of p1 can be recognized inside the
structure of p2 by considering the relation among nodes of p1 and nodes of p2 which is
described by the dashed arrows in the figure. This relation essentially provides the so-called
simulation of p1 in p2. Note that vice-versa does not hold: no relations can be found among
nodes of p2 and nodes of p1, which “embed” the structure of p2 into p1. In other words,
there does not exist a simulation of p2 in p1.
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homepage

name surname status teaching

professor rossimario

homepage

name surname status teaching

professor coursecourse

Logic1 Logic2

hobbies

hobbyhobby

reading gardening

Figure 1. Page simulation between p1 and p2.

Simulations have been used in a number of works dealing with querying and trans-
formation of semistructured data. For instance, [1,13] propose some techniques based on
simulation for analyzing semistructured data w.r.t. a given schema. The language Xcerpt
[7,6] is a (logic) query language for XML and semistructured documents which implements
a sort of unification by exploiting the notion of graph simulation. Other approaches involv-
ing simulation, or closely related notions, have been employed to measure similarity among
semistructured documents [4]. To keep our framework simple, we do not consider a seman-
tic change/load for labels; this would require to introduce ontologies, which are outside the
scope of the paper.

Basically, the reason why simulations are successfully employed in the implementation
of these kinds of manipulation and querying methods is twofold. Firstly, it is a simple and
powerful technique to extract and recognize the partial structure of a document; secondly,
there are several efficient algorithms to compute (graph and tree) simulations (see [14]).

In the following, we provide our notion of simulation which is a slight adaptation of the
one given in [6] to consider Web page templates: we generalize the usual label relation to
cope with the case when variables are used as labels, in the following definition.

Definition 3. Let s1 ≡ (V1, E1, r1, label1), s2 ≡ (V2, E2, r2, label2) be two Web page tem-
plates in τ(Text ∪ Tag ,V). The label relation ∼⊆ V1 × V2 is defined as follows:

v1 ∼ v2 iff label1(v1) = label2(v2) or label1(v1) ∈ V.

Definition 4. Let s1 ≡ (r1, V1, E1, label1), s2 ≡ (r2, V2, E2, label2) be two Web page tem-
plates in τ(Text ∪ Tag ,V) and ∼⊆ V1 × V2 be the corresponding label relation. A page
simulation of s1 in s2 w.r.t ∼ is a relation S ⊆ V1 × V2 such that, for each v1 ∈ V1, v2 ∈ V2

1. r1 S r2;
2. v1 S v2 =⇒ v1 ∼ v2;
3. v1 S v2 ∧ (v1, v

′
1) ∈ E1 =⇒ ∃ v′2 ∈ V2, v

′
1 S v′2 ∧ (v2, v

′
2) ∈ E2.

We define the projection of a simulation S of s1 in s2 w.r.t ∼ as π(S) = {v2 | (v1, v2) ∈ S}.
Roughly speaking, Definition 4 ensures two degrees of similarity between Web page

templates, not only w.r.t. the labelings but also w.r.t. the structures of the templates. On
the one hand, Condition (2) of Definition 4 formalizes the similarity w.r.t labelings, that is,
any pair of nodes (v, v′) in a page simulation S of s1 in s2 have the same label, otherwise
node v must be labelled by a variable, which somehow means that the label of v can be
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seen as a generalization of any concrete label of v ′. Finally, Condition (1) and Condition
(3) provide a relation between the tree structure of s1 and the tree structure of s2.

Note that simulations are just relations among nodes of two given Web page templates.
For our purposes, we are interested in simulations which are injective mappings from nodes
of a given Web page template to nodes of another Web page template. As it will be apparent
later, those simulations allow us to project the structure of a Web page template into another
one, thus performing a sort of “partial” pattern matching between templates, which will be
exploited to formulate our verification technique.

In the following, we define a subclass of simulations called minimal simulations.

Definition 5. Let s1 ≡ (V1, E1, r1, label1), s2 ≡ (V2, E2, r2, label2) be two Web page tem-
plates in τ(Text ∪ Tag ,V). A page simulation S of s1 in s2 w.r.t. ∼ is minimal if there are
no page simulations S′ of s1 in s2 w.r.t. ∼ such that S′ ⊆ S.

Let us see an example which illustrates the notion of minimal simulation.

Example 7. Let us consider the following Web page templates s1 and s2:
hobbies(hobby(X)), hobbies(hobby(reading),hobby(gardening)). In Figure 2(a), the
dashed arrows represent a non-minimal simulation of s1 in s2, while in Figures 2(b) and
2(c) two minimal simulations of s1 in s2 are depicted. Note that the last two simulations
are mappings.

hobbies hobbies

hobbyhobbyhobby

X

(a)

reading gardening

hobbies hobbies

hobbyhobbyhobby

X

(b)

reading gardening

hobbies hobbies

hobbyhobbyhobby

X

(c)

reading gardening

Figure 2. non-minimal and minimal simulations

Lemma 1. Let s1 ≡ (V1, E1, r1, label1), s2 ≡ (V2, E2, r2, label2) be two Web page templates
in τ(Text ∪ Tag ,V). A minimal page simulation S of s1 in s2 w.r.t. ∼ is a mapping S :
V1 → V2 .

Minimal simulations do not guarantee that the tree structure of a given Web page
template can be recognized inside another template. For this purpose, we need to furtherly
restrict our class of simulations. Let us see an example.

Example 8. Consider Web page templates s1 ≡ f(X, Y) and s2 ≡ f(a). Note that there
exists a minimal page simulation of s1 in s2 w.r.t. ∼ (see Figure 3), but the tree structure
of s1 cannot be recognized as part of s2, e.g. the vertex with label f in s1 has two outgoing
edges, while the corresponding vertex in s2 has only one.

To solve the problem presented in Example 8, we simply restrict ourselves to consider
minimal injective page simulations, which provide a one-to-one correspondence among edges
of the two considered Web page templates.

It is not difficult to demonstrate that minimal injective simulations are particular in-
stances of Kruskal’s embeddings [5] w.r.t. the relation ∼. In other words, a minimal injective
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Figure 3. minimal non-injective simulation

page simulation of s1 in s2 w.r.t. ∼ exists iff s1 is embedded into s2 w.r.t. ∼, i.e., we are
able to find out the structure and the labeling of s1 inside s2. Note that the minimal simu-
lation of s1 in s2 depicted in Figure 3 is not injective and thus no embedding of s1 into s2

exists. Instead, Figures 2(b) and 2(c) illustrate two minimal injective simulations, that is,
two embeddings between Web page templates.

5.2 Rewriting Web page templates

Definition 6. Let s1 ≡ (V1, E1, r1, label1), s2 ≡ (V2, E2, r2, label2) ∈ τ(Text ∪ Tag ,V). We
say that s2 partially matches s1 via substitution σ iff

1. there exists a minimal injective simulation S of s1 in s2 w.r.t. ∼;

2. for each (v, v′) ∈ S such that label(v) = X ∈ V, σ(X) = (s2|v′).

In Definition 6, we consider only minimal injective simulations between Web page templates
s1 and s2, since this trivially ensures the existence of a substitution σ such that there exists
a simulation of s1σ in s2 w.r.t. ∼; in other words, s1σ is embedded into s2.

Example 9. Consider again Example 7. We have that s2 partially matches s1 via {X/reading}
(see Figure 2(b)) and s2 partially matches s1 via {X/gardening} (see Figure 2(c)). Note
that performing partial matching by the non-minimal simulation of Figure 2(a) would pro-
duce σ ≡ {X/reading,X/gardening}, which is not a substitution.

Now we are ready to define a partial rewrite relation between marked Web page templates.

Definition 7. Let s ≡ (V,E, r, label), t ∈ τ(Text ∪ Tag ,V). Let µ1 and µ2 be two valid
markings for s and t, respectively. Then, µ1(s) partially rewrites to µ2(t) via rule r ≡ l⇀
µ(r) and substitution σ (in symbols, µ1(s) ⇀σ

r µ2(t)) iff there exists v ∈ V such that

1. s|v partially matches l via σ;

2. t = rσ.

3. Let r ≡ (Vr, Er, r, labelr) and rσ ≡ (Vrσ, Erσ , r, labelrσ). For each v ∈ Vrσ ,

µ2(v) =

{
µ(v) if v ∈ (Vr ∩ Vrσ)
µ(v′) if v ∈ (Vrσ \ Vr) ∧ (∃ v′ ∈ Vr, v ≥ v′, labelr(v′) ∈ Var(r))

When rule r and substitution σ are understood, we simply write µ1(s) ⇀ µ2(t).

It is worth noting that we provide a notion of partial rewriting in which the context of the
selected reducible expression s|v of the Web page template which is rewritten is disregarded
after the rewrite step (see point (2) of Definition 7). Roughly speaking, given a Web speci-
fication rule l⇀ µ(r), partial rewriting allows us to extract a subpart of a given Web page
(template) s, which partially matches l, and to replace s by an instance of r; namely, rσ
(see points (1) and (2) of Definition 7). Point (3) of Definition 7 establishes that rewritten
templates inherit markings from the right-hand sides of the applied rules. More precisely,
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• each vertex of rσ, which is not affected by substitution σ, maintains the same marking
of r;

• each vertex, which belongs to a subterm of rσ replacing a variable X of r, is marked
yes;

• each vertex, which belongs to a subterm of rσ replacing a variable X of r, is marked
no.

Example 10. Consider the Web page p of Example 4 and the first rule r1 of the Web
specification of Example 5. Then, Web page template ε(p) partially rewrites to the following
three Web pages by applying r1.

ε(p) ⇀r1 hpage(name(mario), surname(rossi), status)

ε(p) ⇀r1 hpage(name(franca), surname(bianchi), status)

ε(p) ⇀r1 hpage(name(giulio), surname(verdi), status)

Roughly speaking, markings in the right-hand sides of the rules allow us to find sets of Web
pages, which might be incomplete or missing. Then, real buggy pages are detected inside
these sets. We formalize the idea in the following section.

6 The verification framework

In the following, we show how simulation and partial rewriting can be applied to verify a
given Web site W w.r.t. a Web specification I. Essentially, the main idea is to compute the
set of all possible marked Web pages that can be derived from W via I by means of partial
rewriting. These marked Web pages can be thought of as requirements to be fulfilled by W.
Then, we check whether the computed requirements are satisfied by W by using simulation
and marking information. In summary, the method works in two steps: (1) compute the set
of requirements ReqI,W for W w.r.t. I, (2) check ReqI,W in W.

6.1 Computing the set of requirements

Let us introduce the following operator.

Definition 8. Let T be a set of marked Web page templates and I be a Web specification.
Then,

RI(T) = T ∪ {µ2(s2) | ∃ µ1(s1) ∈ T, r ≡ l⇀ µ(r) ∈ I s.t. µ1(s1) ⇀r µ2(s2)}

Roughly speaking, the operator in Definition 8 computes all marked templates which result
from partial rewriting the Web page templates of T by using the Web specification I, and
returns the union of the resulting set and T. By repeatedly applying this operator, it is
possible to compute all marked Web pages that can be derived from an initial Web site
after an arbitrary number of partially rewriting steps. For this purpose, we formalize the
ordinal powers of the operator RI w.r.t. a Web site W as follows: RI ↑W 0 = W, RI ↑W n =
RI(RI ↑W (n− 1)), n > 0.

It is immediate to demonstrate that the operator RI is continuous on the lattice con-
sisting of the powerset of the term algebra of the marked Web page templates ordered by
set inclusion. This ensures that a least fixpoint of RI exists and can be reached after ω
applications of RI, that is, RI ↑W ω where ω is the first infinite ordinal. Moreover, the least
fixpoint of RI contains all the marked Web pages derivable from Web pages in W via I.
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Now, recalling the interpretation of the rules of the Web site specification given in
Section 4, Web pages derived by the application of a Web specification must be recognized
as (part of) some Web page in the Web site. Therefore, those Web pages in the least fixpoint
of RI which are not in W can be intended as requirements to be fulfilled by W. Thus, we define
the set of requirements for W w.r.t. I as ReqI,W = lfp(RI)\W, where lfp(RI) is the least fixpoint
of the operator RI.

Clearly, the fixpoint of RI (and hence ReqI,W) for an arbitrary Web specification might
be infinite. Consider for instance the following example.

Example 11. Let W ≡ {h(g(0), f(0))} be a Web site and I ≡ {h(g(X)) ⇀ h(g(g(X)))} be
a Web specification. Then, ReqI,W = {h(g(g(0))), h(g(g(g(0)))), h(g(g(g(g(0))))), . . .} is an
infinite set of requirements which is infinite.

Fortunately, the computation of the set of requirements is finite for some interesting
classes of Web specifications. Trivially, non-recursive specifications allow to reach lfp(RI)
after a finite number of applications of RI, i.e., lfp(RI) = RI ↑W k, k ∈ N. However, non-
recursive definitions are not expressive enough for verification purposes, since some relevant
conditions about Web sites cannot be formalized without resorting to recursion; e.g., some
properties stated in Example 5 cannot be formulated by using a non-recursive specification.

In the following, we define a class of recursive Web specifications for which the set of
requirements is finite. Basically, the idea is to consider those specifications for which the
computation of the least fixpoint only generates Web pages whose size is bounded.

The following definition formalizes the considered class of Web site specifications.

Definition 9. A Web specification I is bounded iff, for each
l ≡ (V1, E1, r1, label1) ∈ LhsI, r ≡ (V2, E2, r2, label2) ∈ RhsI and each minimal injective
simulation S of l in r|v w.r.t. ∼, v ∈ V2, the following property holds

if v2 ∈ π(S) and label2(v2) ∈ Var(r|v), then for all v1 ∈ V1 s.t. label1(v1) ∈ Var (l),

depth(r|v , v2) = depth(l, v1).

Roughly speaking, Definition 9 states that, whenever a left-hand side l of a rule is simulated
by (a subterm of) the right-hand side r of a (possibly different) rule, then no variables in
the substructure of r which is recognized by simulation must be located at positions which
are deeper than all the positions of the variables in l.

Example 12. Consider again the specification I in Example 11. The left-hand side of the
rule h(g(X)) ⇀ h(g(g(X))) is simulated by its own right-hand side. Moreover, variable X in
the right-hand side is located at depth 3, while the unique variable in the left-hand side is
at depth 2. Thus, I is not bounded.

Now, take into account specification

I′ ≡ {m(n(X)) ⇀ h(n(X), s(s(X))), h(n(X)) ⇀ m(n(X), t)}.

Then, m(n(X)) is simulated by m(n(X), t) and h(n(X)) is simulated by h(n(X), s(s(X))). In both
cases, variables occurring in the substructures of the right-hand sides which are recognized
by simulation and variables of the respective left-hand sides are located at the same depth.
Therefore, the Web specification I′ is bounded.

For bounded Web specifications, the least fixpoint of the operator RI is finite as stated
by the next proposition. This provides an effective method for computing the set of require-
ments ReqI,W.
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Proposition 1. Let I be a bounded Web specification and W be a Web site. Then, there
exists k ∈ N such that lfp(RI) = RI ↑W k.

Example 13. Consider the bounded Web specification I of Example 5 and the following
Web site W:

W = { members(member(name(mario),surname(rossi),status(professor)),

member(name(franca),surname(bianchi),status(technician)),

member(name(giulio),surname(verdi),status(student))),

hpage(name(mario),surname(rossi),phone(3333),status(professor),

hobbies(hobby(reading),hobby(gardening))),

hpage(name(franca),surname(bianchi),status(technician),phone(5555)),

hpage(name(anna),surname(gialli),status(professor),phone(4444),

teaching(course(algebra))),

pubs(pub(name(mario),surname(rossi),title(blahblah1),year(2003)),

pub(name(anna),surname(gialli),title(blahblah2),year(2002))) }

Then, the set of computed requirements ReqI,W is

{ hpage(name(mario), surname(rossi), status),

hpage(name(franca), surname(bianchi), status),

hpage(name(giulio), surname(verdi), status),

hpage(status(professor), teaching),

member(name(mario), surname(rossi)),
member(name(anna), surname(gialli)),
hpage(name(anna), surname(gialli), status) }

6.2 Checking requirements in Web sites

As we have seen in Section 5.1, simulation allows us to identify the structure of a given
Web page (eventually, a template) into another. By taking advantage of this fact, we can
develop a methodology, which is able to discover incompleteness errors in a given Web site
w.r.t. a Web specification. Basically, the idea is to verify the consistency of the Web site
w.r.t. the set of requirements. To accomplish this task, we first use simulation for checking
whether requirements are embedded into some Web page of the considered Web site and
then exploit marking information in order to diagnose incompleteness errors in the Web
site.

More precisely, our analysis allows us to discover two kinds of incompleteness errors: (1)
Web pages which are missing in a Web site w.r.t. a given Web specification, (2) Web pages
which are incomplete w.r.t a given Web specification.

Let us first consider the former class of errors.

Definition 10. Let W be a Web site, I be a bounded Web specification and ReqI,W be the
set of requirements for W w.r.t. I. Let µ(e) ∈ ReqI,W. The likely missed information set w.r.t.
µ(e) is defined as

LMISµ(e) = {p ≡ (V,E, r, label) ∈ W | there is a minimal injective simulation of

mark(e, µ) in p|v w.r.t. ∼, with v ∈ V }.

Roughly speaking, this definition allows us to compute a subset of the Web site containing
all the web pages which are simulated by the marked part of a given requirement. These
web pages could be potentially incomplete w.r.t. the web specification, since they might not
satisfy the considered requirement. Let us see an example.

42



Example 14. Let us consider the rule r

hpage(status(professor)) ⇀ hpage(status(professor, teaching))

and the website W of Example 13. Rule r allows us to check whether web pages of professors
contain some teaching information. Clearly, requirements computed by this rule should be
only checked in such web pages. For this purpose, we use the marking information in the
rhs of r in order to focus on the professor web pages. Let us consider the requirement

µ1(e1) ≡ hpage(status(professor, teaching))

which can be derived from W by means of r. By applying Definition 10, we get

LMISµ1(e1) = {(1) hpage( name(mario), surname(rossi),
phone(3333), status(professor),
hobbies(hobby(reading), hobby(gardening))),

(2) hpage( name(anna), surname(gialli),
status(professor), phone(4444),
teaching(course(algebra))) }.

which contains only professor web pages to be checked for incompleteness errors.

From Definition 10, we can easily derive that, whenever the likely missed information set
is empty for a given requirement µ(e), µ(e) is not recognized in any Web page of the Web
site. In other words, that requirement identifies a missing element in the Web site.

Definition 11. Let W be a Web site, I be a bounded Web specification and ReqI,W be the
set of requirements for W w.r.t. I. Let µ(e) ∈ ReqI,W and p ∈ W. Then, µ(e) is missing in W

w.r.t I iff LMISµ(e) = ∅.
Let us see an example for clarifying our definitions.

Example 15. Consider again the set of requirements ReqI,W computed in Example 13. Then,
µ(e) ≡ (hpage(name(giulio), surname(verdi), status)) is missing in W w.r.t. I, since LMISµ(e) = ∅.
Indeed, the requirement µ(e) identifies a “group member” home page which does not appear
in the Web site W.

Let us consider now incompleteness errors which refer to incomplete pages, that is, Web
pages in which some piece of information is lacking (e.g. missing items).

Definition 12. Let W be a Web site, I be a bounded Web specification and ReqI,W be the
set of requirements for W w.r.t. I. Let µ(e) ∈ ReqI,W and p ∈ W. Then, p ≡ (V,E, r, label) is
incomplete w.r.t. µ(e) iff

• p ∈ LMISµ(e);
• there is a minimal injective simulation of mark(e, µ) in p|v w.r.t. ∼, with v ∈ V , s. t.

there is no minimal injective simulation of e in p|v w.r.t. ∼.

In this case, we will call µ(e) incompleteness symptom for p.

Example 16. Recall the set of requirements ReqI,W computed in Example 13. Then, consider
the requirement µ1(e1) ≡ (hpage(status(professor), teaching)), we have that

LMISµ1(e1) = {(1) hpage( name(mario), surname(rossi),
phone(3333), status(professor),
hobbies(hobby(reading), hobby(gardening))),

(2) hpage( name(anna), surname(gialli),
status(professor), phone(4444),
teaching(course(algebra))) }.
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Now, by applying Definition 12, we detect that Web page (1) is incomplete w.r.t. µ1(e1),
which is therefore an incompleteness symptom for (1). In fact, Web page (1) lacks teaching
information.

Consider now the requirement µ2(e2) ≡ (member(name(anna), surname(gialli))). The associate
likely missed information set is

LMISµ2(e2) = { members( member(name(mario), surname(rossi), status(professor)),
member(name(franca), surname(bianchi), status(technician)),
member(name(giulio), surname(verdi), status(student))) }.

Note that the Web page in LMISµ2(e2) is incomplete w.r.t. the requirement µ2(e2), which
models the fact that anna gialli must be a member of the group. Finally, the remaining
requirements do not give rise to further errors.

It is worth pointing out that our verification framework is able to detect both the erroneous
Web pages and the cause of the detected errors (i.e., the so-called incompleteness symp-
toms). This allows us not only to locate bugs and inconsistencies w.r.t. a given specification,
but also to easily repair them by comparing incomplete pages to incompleteness symptoms,
since the latter provides the missing information which is needed to complete the erroneous
Web pages.

7 Implementation

The basic methodology presented so far has been implemented in the preliminary proto-
type system Verdi (VErification and Rewriting for Debugging Internet sites), which is
written in DrScheme v205 [16] and is publicly available together with a set of tests at
http://www.dimi.uniud.it/∼demis/#software.

The implementation consists of about 80 function definitions (approximately 1000 lines
of source code). Verdi includes a parser for semistructured expressions and Web specifica-
tions, and several modules implementing the user interface, the partial rewriting mechanism
and the verification technique. The system allows the user to load a Web site consisting
of a finite set of semistructured expressions together with a Web specification. Addition-
ally, he/she can inspect the loaded data and finally check the Web pages w.r.t the Web
site specification. The user interface is guided by textual menus, which are (hopefully)
self-explaining.

We tested the system on several Web site examples which can be found at the URL
address mentioned above. In each considered test case, we were able to detect the errors (i.e.
missing and incomplete Web pages) efficiently. For instance, it took less than one second
the verification of the Web site of Example 13 w.r.t the Web specification of the Example
5, producing error messages when necessary.

8 Conclusions

Conceiving and maintaining Web sites is a difficult task. In this paper, we provide a
rewriting-based, formal specification language which can be used to impose properties both
on the structure (syntactic properties) and on the contents (semantic properties) of Web
sites. The computation mechanism underlying this language is based on a novel rewriting-
like technique, called partial rewriting, in which the traditional pattern matching mecha-
nism is replaced with tree simulation [14]. In our methodology, Web sites are automatically
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checked w.r.t. a given Web specification in order to detect incomplete and missing Web
pages. Moreover, by analyzing the requirements not fulfilled by the Web site, we are also
able to find out the missing information needed to repair the Web site. Our methodology
exploits some marking information on terms which represent the Web pages to better lo-
cate the errors, which is provided by the user in advance. We have also discussed some
implementation details of the preliminary system Verdi, a prototype implemention of the
verification framework that we propose.

Finally, let us conclude by mentioning some directions for future work. We are currently
extending our framework in order to provide a method for synthesizing the marking infor-
mation semi-automatically. We also plan to extend the specification language in order to
support the detection of regular expressions. This is useful to guarantee that proprietary
or “forbidden” data are not displayed on the external version of the site (e.g. a number of
credit card). On the practical side, we plan to develop a fully user-friendly system which
can help Web administrators to design, check and maintain their Web sites.
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Abstract In this paper we describe the RERAL compiler. RERAL is a Rule-based Event-driven Routing
Algorithm Language. It is intended for the configuration of a router for regular networks, as found in parallel
computers or computer clusters. The language combines predicate-logic-derived functional expressions with
Petri-net-based asynchronity. The high performance requirements (a routing decision should take no more
than few nanoseconds) imply sophisticated optimization methods in the compiler, in particular, flattening
the program hierarchy, unrolling loops and mapping high-level program fragments to available application-
specific hardware units.

We also point out a new application area of the concept, namely the management of a memory interface
in a system-on-chip for increased bandwidth utilization.

1 Introduction

Many components of computer or embedded systems use a combination of fixed hardware,
processing units, and configurable hardware. For the latter a wide variety of configuration
methods are known, but most of them require a detailed understanding of the architecture,
tool issues and hardware-related aspects such as timing and resource constraints. When
the system has to be programmed by experts, the complexity of this task is acceptable.
However, a higher abstraction layer is desirable to allow the efficient use of programmable
hardware structures by a non-expert and to make the expert more productive.

In this paper we introduce a rule-based language and its tool environment that were
created to describe routing algorithms for the configuration of interconnection networks in
parallel computers or computer clusters. A second application, which turned out to be of
interest more recently, is the medium-term control of memory-interface usage in Systems-
On-Chip (SoC). Both applications have in common that

• several aspects of the application domain are combined,
• the inputs are formed by an infinite series of unrelated external events (such as the

arrival of a message or a cache miss in an on-chip CPU), and
• there is some freedom in the reaction of the programmable component.

All these properties are reflected in the language RERAL (Rule-based Event-driven Routing-
Algorithm Language). As the name suggests, it combines the aspects of event-triggered
parallel evaluation with the descriptive power of rule-based expressions. Through the use of
a compilation tool, a program can be transformed in such a way that it can be applied to
a VLSI-implementable rule-evaluation engine which performs a complex algorithmic opera-
tion in few clock cycles. In particular, a hierarchically described routing decision is flattened
such that it can be stored in a small on-chip memory, and individual evaluation requires
only one access to this memory thanks to sophisticated address generation.

In this paper we present first the background for the two application areas (Section 3),
with emphasis on routing algorithms. In particular we motivate the modular characteristic
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of the language and the necessary aspects of parallelism and functional complexity. The
target architecture is only sketched so as to leave more room for the introduction of the
language (Section 4) and the discussion of the compilation process (Section 5). Specifically,
we demonstrate how a unification-based method can be used to extract specific functionali-
ties for hardware building blocks in the rule-evaluation engine. If this functionality is spread
over several rules in the user program, it has to be detected by the compiler to maintain
hardware independence.

2 Related Work

The related disciplines are wide-spread; rule-based systems are typically used in the software
world. However, to describe a specialized hardware system, only low-level descriptions with
similarity to rule bases are in use. We have been told that the tool ‘specializer’ as described
in [15] is able to perform many of the tasks the compiler presented here does. We did
not verify this, like to point out that our compiler performs numerous hardware-specific
operations that probably are not covered by a general-purpose tool. An example is the
generation of the addressing logic for higher-dimensional arrays without multiplication [9].

Generating the scanner and parser from a given grammar automatically is a well-
established technique, and we used Eli [13] for this purpose. For the implementation of the
compiler we used the interpreter Hugs for the functional programming language Haskell
[16]. The pattern matching features of the language, the rich set of functions for dealing
with complex data structures including the automated memory handling provide a frame-
work in which the required transformations in the compiler can be described on a high
abstraction level.

The proprietary description language of state machines used in the software suite Log/iC
has some similarity with very basic rules. Neonetworks announced a chip called Stream-
Processor for networking applications that was claimed to exploit parallelism on a “super-
computer scale” and had a building block called “rule processor”. However, information on
this technology has been confidential, and the company has since gone out of business.

With respect to routing in parallel computer networks, Summerville et al. present an
architecture for a bit-pattern-associative router in [18]. They describe their routing algo-
rithms in a pseudo-language that is very similar to the basic pattern used in RERAL. The
target hardware uses a pattern-matching circuit array which is similar to a ternary CAM
(Content addressable Memory). As there are neither dedicated arithmetic circuits nor other
specialized components in the proposed routing engine, only simple routing algorithms can
be carried out without a huge increase in the association circuitry.

In the domain of Internet Protocol (IP)-based networks, rules for routing are popular
because of the hierarchical organization of IP addressing. Consequently, there are many
architectures that process rules, that combine range checks and prefix matching in IP ad-
dresses, together with range checks on the port number. An example is [19]. Because a
parallel check is performed, the hardware effort scales with the number of permitted rules.
Memory-oriented variants are also in use, e.g. [17]. IP-based routing requires the option to
change the rule set dynamically, thus the mapping of the rule set defined on a high abstrac-
tion level to the representation in the hardware has to be computable very efficiently.

All these methods impose strong limitations on the structure of the rules, in particular
they restrict the type of operations that can be applied to the variant inputs. Furthermore,
only one rule set is considered for the reaction to one type of event. The reactions of the
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rules are very simple, such as a drop/non-drop decision in a fire wall. These limitations
inhibit the implementation of advanced algorithms like the ones that will be introduced in
the next section.

3 Area of Application

As pointed out in Section 1, we are considering two areas of applications: the routing in
regular networks and the management of memory-access bandwidth in a SoC, such as a
network processor.

Regular networks use a topology with a high regularity, e.g. a mesh or a hypercube.
They are an important part of parallel computers, in particular PC clusters. The regularity
allows the use of advanced routing algorithms that

• allow scaling the network size, with nearly constant hardware cost in the routers,
• adapt the path for a data item through a network dynamically, depending on link or

router load (adaptivity), and
• route around failed routers or links dynamically (fault tolerance).

A good coverage of these routing algorithms and the basic architecture for routers for this
class of networks is given in [10]. For our purpose it is sufficient to know that the net-
work consists of links and routers (Figure 1) and that the data injected at the routers is
transported in messages to other routers via the links until these messages reach a des-
tination where they leave the network. The routers are identified by an address, and the
messages have a header containing the destination router’s address. There is a protocol,
called link-level flow control, that ensures lossless transmission of data from one router to
the next.

Figure 1. A mesh network, the topology for NARA.

Routing algorithms react to several distinct types of external events: the arrival of a new
message, the notification by the link-level flow control of a changed load situation on an
attached link or neighboring router, the notification of the failure of a network component,
or the completion of the transmission of a message, which releases a resource for the next
message.
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Routing algorithms typically cover several more or less independent aspects. Two as-
pects, deadlock and livelock avoidance, ensure that a message is transported to its destina-
tion in finite time. While a deadlock results in an infinitely long waiting time of messages
within the routers because their further routing depends cyclically on each other, a livelock
situation occurs when one or several messages move continuously through the network with-
out ever reaching their target. For this reason, livelock avoidance specifically includes the
knowledge of the network topology, in particular the capability of the routers to determine
a path to the destination for a given router address. Moreover, routing algorithms contain
a local scheduling that decides which message is preferred in a resource conflict such as
link usage. Two other aspects of importance are related to the avoidance of overloaded and
broken routers or links, if this is possible. They are a combination of the collection and
distribution process of relevant information and the application when routing an individual
message.

The routing algorithm NARA (New Adaptive Routing Algorithm, [5]) is used as an
example. It is intended for two-dimensional meshes as the one shown in Figure 1 where the
address of a router is a coordinate pair (x, y) in an integer-addressed rectangle. To avoid
livelocks, paths of minimal length are preferred, i.e. a message is routed such that it gets
closer to the destination if this is possible.

ON in message(indir,vc,dx,dy) -- a message has arrived

-- if all channels are in use

IF FORALL j IN deadlock free(indir,vc,dx,dy): out chan(j,vc)<>free

THEN out set(indir,vc)<-deadlock free(indir,vc,dx,dy);

-- if any of the minimal paths is free

IF EXISTS i IN minimal(dx,dy): out chan(i,vc)=free AND

(FORALL j IN minimal(dx,dy): mean queue(vc,i)<=mean queue(vc,j))

THEN !send(vc,vc,indir,i),

out queue(vc,i)<-message length(vc,indir);

-- if some channels are free but not the minimal ones

IF EXISTS i IN deadlock free(indir,vc,dx,dy)\minimal(dx,dy): out chan(i,vc)=free AND

(FORALL j IN deadlock free(indir,vc,dx,dy)\minimal(dx,dy):
(mean queue(vc,i)>=mean queue(vc,j)))

THEN !send(vc,vc,indir,i),

out queue(vc,i)<-message length(vc,indir);

END in message

Figure 2. RERAL implementation of the main rule base of NARA, deadlock free and minimal are sub-
bases.

Deadlock avoidance is based on the so-called turn model [14]. NARA distinguishes mes-
sages according to the difference in the Y-direction such that all messages whose destination
has a smaller Y-coordinate than the source (for example a message sent from A to B) are
handled separately from those with increasing Y-coordinates, e.g. C to D. For those mes-
sages with increasing Y-coordinates, the restriction is imposed that the message may not
change its direction after it has used a link with increasing Y-coordinate. For the other
messages, the same restriction applies symmetrically. A path of a message for this case is
shown in the figure, the only downward part leads directly to the destination node. Fur-
thermore, NARA applies an age-based local scheduling strategy that counts the events if
a message loses arbitration to another message when competing for a free link. Finally,
NARA contains a method for adaptivity that consists of summing up the buffer fill levels in
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a router and transporting this information to neighboring routers. If a message arrives, it
is checked whether any of the allowed links is available with respect to deadlock avoidance.

Clearly, this algorithm is complex and its description is preferably done in a high-level
language. This language should allow the use of basic data types (integers, Booleans, and
arrays of them), with appropriate operations (addition, comparisons, logical operations,
etc.), and, most importantly, also allows individual aspects such as deadlock-avoidance
algorithm to be described separately from adaptivity or the topological properties of the
network. Aspects such as variables, and the notion of events (“whenever a message arrives,
do the following”) are also crucial. Finally, the high performance requirements must be
reflected in the language allowing a high parallelism. Most of the events can be handled
concurrently, but at certain points an atomic behavior needs to be guaranteed, for instance
when a shared resource is assigned, e.g. a link to a message.

Furthermore, the hardware for executing the routing algorithm has to provide the re-
sources for storing a structured state (variables, arrays, etc.) and for performing the al-
gorithm on arriving events accordingly. The algorithmic step involves the selection of the
appropriate rules, including evaluating arithmetic expressions on the parameters (for in-
stance the destination node address). The result is the modification of state variables, the
generation of commands to the data-transport part of the router, and in some cases the
generation of new events for further actions. To achieve the performance goals, we have
developed an architecture for a routing engine that combines configurable, problem-specific
components for arithmetic expressions in premises and conclusions of the rules. An example
is the circuit for fault tolerance based on finite ordered sets [8]. The logical skeleton of the
rules is mapped to a look-up table. To keep the table compact, we have developed a set
of compression methods that exploit regularity and symmetry in the algorithmic structure.
Some of these methods can profit from ambiguities in the algorithm; in NARA for example
such an undefined situation exists for messages that stay on the same Y-coordinate level
(e.g. A to C): It does not matter into which class of messages they are assigned by an
implementation.

A second area for applying the hardware-based evaluation of rule bases is the man-
agement of a memory interface in a SoC [12], such as a network processor. In a structure
such as that of [11], several components (network interfaces, processor cores, coprocessors,
extension interfaces) share a common memory interface. Because of the high pin number re-
quired for interfacing memories, bandwidth on this interface is typically a valuable resource.
Therefore, optimizing its use can help to build a cheaper system or to achieve better perfor-
mance at the same cost. However, the components have very different access characteristics;
compare, for instance, the sporadic memory-access pattern with a fixed line size from a data
cache and the fixed pattern of a tree search engine for IP header classification. Some of the
accesses have a temporal elasticity, for instance the flushing of dirty data cache lines can
sometimes be done in advance, i.e. before the cache line is reused and flushing is enforced.
Another example is a network interface that typically contains a buffer. Depending on the
current and future pressure on the memory interface, the point in time for data transport
between this on-chip memory and the off-chip memory through the interface in question
can be varied. The management algorithm for this task has to take the performance goals
of the application and the utilization of the various components (processors, coprocessors)
into account. The reaction in a given over- or underload situation has to be translated
into the reactive capabilities of the individual requester components without degrading the
situation for upcoming cycles. Because of the similarity of this management problem with
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the routing algorithms, we believe that the concept of a rule-based language, combined
with the optimizing compiler and an application-tailored rule-evaluation engine, can also
be applied. Of course, intensive studies including system simulations will have to be carried
out to prove this.

4 RERAL

The language itself and its usage to define routing algorithms are given in [6]. The central
building block of the language is a rule that consists of a condition (premise) and a list of
commands (conclusion). A set of rules forms a rule base or a subbase. In general, subbases
are functions returning a value to the caller. Exploiting side effects, they become a powerful
way of describing subroutines and shaping the code clearly. In contrast to traditional pro-
gramming languages such as C/C++ and MODULA-2, all rules of a rule base are executed
in parallel. The conditions are evaluated with respect to the global state at a rule-base
call, and the commands belonging to the conclusions executed alter the global state also in
parallel.

Here, we briefly state the main syntactical components of RERAL, using a routing-
algorithm implementation as example.

Constant Definition
CONSTANT LinkIndex := 0..5;
Constants are declared by finite sets of numbers, symbols or constant sets. Here, the
constant LinkIndex consists of six numbers {0, 1, 2, 3, 4, 5}. These sets are used like types
and constitute a high abstraction of hardware details.

Variable Definition
VARIABLE Linkload(LinkIndex) IN 0..63;
The variable LinkLoad is an array of numbers where each number is in the range of
0..63. Its size and indices are given by the constant set in parentheses. All variables
have a finite (usually small) domain that is given by a set literal or a constant.

Rule-Base Declaration
DEFER SUBBASE TorusMinimalXDim(Xdest,Ydest)
This kind of declaration predefines a subbase that has two parameters. Subbases are one
form of rule bases. They are the main structuring element and either define a function
or work as subactions having side effects. The declaration is not necessary, but improves
readability.

Subbase Definition
SUBBASE opp(vc) ... END opp
This declaration embeds the subbase. The dots replace a set of independent rules whose
notion contains a high degree of parallelism. Every relevant case has to be covered by
at least one rule (completeness).

Triggered Rule-Base Definition
ON In message(Dir , Chan) ... END In message
This rule base has to be executed exactly once for each occurring event bound to it. As
rule bases describe only functions, time and sequence are expressed separately by the
notion of events.

Rule
IF vc=south THEN opp ← north;
This construct is the core idea of the rulebased language. It can be viewed as a guarded
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command. One rule represents one case of the algorithm. A rule base is some kind of
case distinction where every rule covers at least one case. It is expressed by a predicate
logic expression. In this case the action is the presentation of the function result. In
addition to Boolean operators and arithmetic expressions subbases can be used.

Quantifier Expressions in Premise
EXISTS p IN {0, 1, 2, 3}: OutChannelUsage(dir , p) = FREE
FORALL p IN {0, 1, 2, 3}: OutChannelUsage(dir , p) = FREE
Both expressions are a sort of loop used in conventional languages but they avoid the
sequentiality of conventional loops. The EXISTS expression is a short form for as many
rules as the number of elements of the finite set. Here, the variable p may be reused
in the conclusion. In contrast to the EXISTS expression, the FORALL expression is
not a short form for multiple rules but for a sequence of AND expressions in the same
premise. This variable cannot be reused in the conclusion but it is possible to establish
the same loop in the conclusion as well, see below. Both expression introduce some kind
of local name space.

Event Generation (Conclusion)
!InternalSwitch(fromDir, fromChan, SOUTH, DetNetChan);
Asynchronous control of the hardware is accomplished by generating an event. Events
can also be used to cascade several rule interpretations to generate a final result.

Variable Assignment (Conclusion)
OutLinkUsage(ToDir) ←− OutLinkUsage(ToDir) -1
Rule execution is atomic, i.e. if a variable is checked in the premise and changed in the
conclusion, parallel execution of two rule bases has to be performed on the same system
state.

FORALL-Quantifier in Conclusion
FORALL j IN all directions: !send info(info,j,total load)
The conclusion can contain several commands that are executed concurrently. The same
applies for “loops” which can be nested.

Overall the language eliminates as many sequential dependencies as possible. Note that
the application of a subbase in a premise does not imply that the hierarchically lower sub-
base has to be executed before the main one. In contrast, the hierarchical structure is only
a form of expression for one larger subbase that is evaluated in one piece. The subbase
hierarchy allows abstraction of hardware details. The reading access of a variable cannot be
distinguished syntactically from the application of a subbase. This allows the introduction
of caching techniques (eliminating subbase calls) and the replacement of status arrays by
methods calculating the original expected value from other sources. Hence, a higher interface
can be defined whose implementation on the actual hardware can again be done using rule
bases.

5 Compilation

The compilation process of RERAL programs simplifies all rule bases. There are several
transformations, which can be done in an arbitrary sequence. The goal is a rule base for each
event, which contains a minimal set of rules. The rules’ premises and conclusions should be
flat expressions (conjunctions of simple comparisons) and lists of simple commands. Only
for those functions where a direct hardware implementation is available (e.g. supremum in
a finite ordered set), should the corresponding identifier be found. One transformation aims
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at retrieving a minimal number of rule bases by replacing function calls by their subbase.
Another transformation unrolls loops. They exist in premises using forall or exist quantifiers
and in conclusions using a standard forall statement to loop over all elements of a finite set.
Thirdly, all premises are searched for run-time-independent elements that are evaluated
and the premises are shaped based on the results. Frequently the premise is reduced to
a Boolean constant so that rules with false premises are dropped. All premise terms are
collected in a table and replaced by a label to avoid multiple run-time computations.

The detailed processing can be approximated by the following description:

• Replacement of Constants
The constant definitions are checked for interdependencies to detect illegal ring defini-
tions, and ordered by them to minimize the number of replacements. At the end of this
transformation, all constant values substitute their symbols. This process is especially
important for subsequent premise evaluations.

• Solving Quantifiers
All FORALL (Symbol: ∀) quantifiers used in premises are solved by the following equiv-
alence:

M is a finite set.
p :M→ B is a predicate.

∀i ∈M : p(i) ⇐⇒
∧
i∈M

p(i)

The replacement of the EXISTS (Symbol: ∃) quantifier is more difficult. The conclusion
can use the variable used by ∃ so that each element of M requires its own rule.

M is a finite set.
p :M→ B is a predicate.
c is a parameterized conclusion.

IF ∃i ∈M : p(i)
THEN c(i)

⇐⇒ ∀i ∈M :
IF p(i) THEN c(i);

These replacements often allow the reduction of rule premises at compile time. If p(i)
includes further quantifiers, they are solved beginning with the innermost one.

• Flattening Hierarchies
Here, the modular structure of RERAL programs is decomposed by inserting subbases
inline. The result is a distinctly grown rule base. Assuming rule base A has l rules and
includes k calls of subbase B, A can grow to a size of lk − 1 rules; if the subbase calls
are spread over k rules, the rule base only grows to a size of l ∗ k − k rules.
The order of inserting subbases has a high impact on the efficiency. Suppose that rule
base A calls the subbases B and C and B also calls C, this can be processed in the
following ways:
– one inserts B into A, gets Â as an intermediate result and inserts C into Â, or
– one inserts C into B and A, gets B̂ and Â, and inserts B̂ instead of B into Â.

Unfortunately, it is not possible to find an efficient way by syntactical analysis. Seman-
tical aspects and dependencies decide this issue.

• Reductions
Because of the increasing number of rules per rule base due to preceding steps, reduc-
tion functions are welcome. Later on, each distinct premise term requires a hardware
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resource, such as a comparator, and each rule requires a table entry. Both are limited
in the routing engine. Because flattening hierarchies and solving quantifiers can pro-
duce multiple copies of a single rule in the same rule base, multiple occurrences are
removed. In particular, unfolded quantifiers allow reductions by evaluating comparisons
of constants. Consequently, and considering that the Boolean operator ∧ (and) appears
more frequently than ∨ (or), many rules can be skipped because of fully evaluated
false premises. Furthermore, arithmetic expressions are normalized by sorting variables
and arranging them on one side in an inequality. These reduction steps are repeated
whenever new rules are produced to avoid an explosion of the rule base.

6 Optimization

The expansion of rule bases and subbases produces an exponentially growing number of
rules. Reducing and controlling all these rules is rather difficult for the compiler and in
certain cases impossible because of missing run-time information considering e.g. dynamic
sets. Taking into account that each rule requires chip space, the absolute number of rules is
limited. Algebraic optimizations such as the evaluation of algebraic terms, e.g. comparisons,
or the removal of multiple copies have yet been mentioned. Another idea is to find structures
such as inline-inserted subbases or very small functions that are replaced by function calls
whose hardware implementation is more space-efficient than that of the rule base. Candi-
dates are functions working on huge sets because the required space depends on the size of
these sets. When traditional methods are used to implement them, some only consume a
fixed amount of space. In this case, the fixed-sized function typically outperforms the rule-
based one. To define these structures, search the rule bases, and replace the occurrences
by function calls, a substitution pattern is specified and each rule is transformed into a
first-order logic representation and searched by a unification algorithm.

6.1 Unification

In general, unification tries to identify two symbolic expressions by replacing sub-expressions
by other expressions. Assuming, for example, that f is a function symbol, a, and b are
constants, and x and y are variables, the unification problem of the terms f(a, x) and
f(y, b) is solved by the substitutions x/b and y/a, where e.g. x/b means that the right
element b substitutes the left one x. The result of this example is {x/b, y/a} ◦ f(a, x) =
{x/b, y/a}◦f(y, b) = f(a, b). Here, applied to the language of first-order logic, the unification
is a syntactic one. Baader and Snyder [3] give introduction to syntactic unification and also
present Robinson’s unification algorithm. It decides whether a set of terms is unifiable and,
in the case of a positive decision, returns the most general unifier, i.e. a set of substitutions
that constrains the functions less than all other possible unifiers do. This is often applied
in automatic theorem provers.

6.2 Pattern Matching

To shape the performance of rule bases, a library could provide the programmer with
performance-optimized subbases. For each library function, a substitution pattern that
describes the high-level structure and function and its high-level substitute must be defined.
To track these occurrences in the high-level program representation, a pattern and each
rule of the rule base searched are checked by Robinson’s unification algorithm. Figure 3
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demonstrates an exemplary pattern. Its specification language is a mixture of first-order
terms and RERAL syntax. The left-hand side defines the rule pattern searched in the rule
and the right-hand side is the rule pattern that substitutes the matched rules. Identifiers
beginning with a small letter represent functions with at least one argument, an initial
capital letter denotes variables, and keywords are written in capital letters. The premise of
the exemplary rule pattern in Figure 3 contains a minimum function whose result is used in
the conclusion by all commands: “If there exists an element in the set that is smaller than
or equal to all others then process it.” The pattern premises resemble first-order terms; only
comparison operators are predefined functions because of their high frequency. All other
functions can be determined by general function symbols without any semantics known
by the system. The representation of a conclusion allows two symbols: a variable and a
function with arguments defined in the premise. Also a combination of the two is possible.
The variable can match any sequence of commands, even an empty set. Functions must
match at least one command that depends on the argument specified. In Figure 3, the
function p() is an additional constraint for all elements that must be satisfied; v() is a
kind of weight function. Each occurrence of a rule containing this pattern is replaced by
the rule to the left by removing the innermost loop of the premise and introducing the
library-function call selectminimal.

IF EXISTS A IN Set:

[(p(A))

AND (FORALL B IN Set:

[(p(B))

AND ((v(A)) <= (v(B)))])]

THEN c(A);

=⇒ IF EXISTS A IN Set: [p(A)]

THEN c(selectminimal(Set,p(),v()));

Figure 3. Exemplary pattern specification.

An assumption to apply first-order unification is that the specifications of both inputs
are first-order terms. Each rule and, by analogy, the pattern are transformed into a kind of
prefix notation; even the rule itself is a binary function with two arguments: premise and
conclusion. The transformation result of the example of Figure 3 is shown in Figure 4. As
the algorithm does not match higher-order terms, functions without a determined semantics
are replaced by a variable so that the transformed pattern is more general. The original
meaning of the pattern is restored by a list of constraints that contains a constraint for each
generalization. Another example of generalization and constraints is the multiple frequencies
of the same function, in which each occurrence of a function is replaced by its own variable.
All substitutes of the variables must be the same function (constraint). The constraints
needed to restore the semantic of a pattern are itemized below.

• F_PARAM_EQUAL Int [Function]

All functions of the list must have the same number of arguments. This constraint is
used to ensure equal length of sequences assigned to variables.

• F_ALL_ELEM [Function] Function

All elements of the list must be an argument of the function.

• F_EQUAL Function Function

In addition to their arguments both functions must be equal.
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(F "RULE" [

F "PREMISE" [

F "EXISTSQ" [ V "A", V "Set",

F "AND" [ V "p", F "FORALLQ" [ V "B", V "Set",

F "AND" [ V "p0", F "LESSEQ" [V "v",V "v0"]]]]]],

F "CONCLUSION" [V "c"]],

F "RULE" [

F "PREMISE" [

F "EXISTSQ" [V "A",V "Set",V "p"]],

F "CONCLUSION" [

F "FUNCTION" [V "c", F "FUNCTION" [V "selectminimal", V "Set",

F "FUNCTION" [ V "p0" ], F "FUNCTION" [V "v"]]]]]

)

Figure 4. Transformed exemplary pattern.

• C_ALL_ELEM [Function] [Function] / C_ANY_ELEM [Function] [Function]

All variables of the first list must be bound by all elements/at least one element of the
second list.

Figure 5 shows the list of constraints for the pattern of Figure 3 and its transformation,
shown in Figure 4. The transpositions are derived from the target rule and are necessary to
build the target rule. They must be applied to the pattern before the most general unifier
is employed.

SET [ F PARAM EQUAL 1 [V "c"],

F ALL ELEM [V "A"] (V "p"),

F ALL ELEM [V "B"] (V "p0"),

F EQUAL (V "p") (V "p0"),

F ALL ELEM [V "A"] (V "v"),

F ALL ELEM [V "B"] (V "v0"),

F EQUAL (V "v") (V "v0"),

C ALL ELEM [V "A"] [V "c"]],

[TP (V "A",

F "FUNCTION" [ V "selectminimal",

V "Set",

F "FUNCTION" [V "p0"],

F "FUNCTION" [V "v"]])]

Figure 5. Constraints (left) and transpositions (right) of the exemplary pattern.

By processing the second rule of NARA, see Figure 2, using the pattern of Figure 3, the
algorithm succeeds in computing the most general unifier, see Figure 6. This is attached to
the transpositions gained by transformation and then all substitutions are executed. The
final result, a rule including a library-function call because of a matched pattern, is shown
in Figure 7.

7 Results

The compilation process and the generated implementation of the rule-based hardware
specification are usually greedy for resources. Hence, especially memory size on processing-
system side, and available logic gates and timing constraints on target-system side limit
number and complexity of processable rules. The usage of functions that conserve utilization
of resources provides room to implement more rules. Therefore, the number of rule bases
that can be performed by the routing engine increases.
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[ TP (V "A",V "i"),

TP (V "Set", F "FUNCTION" [ V "minimal", F "SYMB" [ V "dx" ], F "SYMB" [ V "dy" ] ]),

TP (V "p", F "EQUAL" [ F "FUNCTION" [ V "out chan",

F "SYMB" [ V "i" ], F "SYMB" [ V "vc" ] ],

F "SYMB" [ V "free" ] ]),

TP (V "B", V "j"),

TP (V "p0", F "EQUAL" [ F "FUNCTION" [ V "out chan",

F "SYMB" [ V "j" ], F "SYMB" [ V "vc" ] ],

F "SYMB" [ V "free" ] ]),

TP (V "v", F "FUNCTION" [ V "mean queue", F "SYMB" [ V "vc" ], F "SYMB" [ V "i" ] ]),

TP (V "v0", F "FUNCTION" [ V "mean queue", F "SYMB" [ V "vc" ], F "SYMB" [ V "j" ] ])

]

Figure 6. Most general unifier of the exemplary pattern applied to the second rule of NARA.

IF EXISTS i IN minimal(dx, dy): out chan(i, vc) == free

THEN !send(vc, vc, indir,

selectminimal(minimal(dx, dy), equal(), mean queue())),

out queue(vc, selectminimal(minimal(dx, dy),equal(), mean queue()))

← message length(vc, indir);

Figure 7. Result of substitution for the exemplary pattern applied to the second rule of NARA.

The application of the pattern of Figure 3, which selects the minimum of a set deploying
a constraint and weight function, to NARA, see Section 3, delivers some numbers that
support the benefit of our approach. Our goal was the decrease in the number of rules and
the shortening of the premise to shrink the tables of the routing engine. Each comparison of
a premise requires an arithmetic circuit and contributes to the address length for the table
access. The expansion of the second rule of NARA delivers 117 rules with 7 comparisons per
premise. Making use of the unification-based optimization, only 13 rules with 3 comparisons
per premise remain. Here, a reduction to a tenth of the normal number of rules and halve
the number of comparisons per premise is achieved. Unfortunately, the unification-based
optimization has a high mismatch ratio because of the commutativity of several functions.
Because exchanged operands of a binary, commutative operation for example can lead to
mismatches, the operands were sorted by length to decrease the number of mismatches.

The compiler presented breaks a hierarchically described algorithm down into few tables,
one table per event-triggered rule base. The table of the example rule base of NARA requires
about 1 kByte.

Moreover, the prototype of the rule-evaluation engine, implemented on XILINX 4000
FPGAs, achieves a clock frequency of 50 MHz. Assuming that a standard-cell ASIC im-
plementation in current technology would run at about 500 MHz a custom implementation
could achieve clock frequencies of state-of-the-art microprocessors. The system reaction on
a single event has a very low latency (60ns) because the prototype only consumes three
clock cycles per decision. Applied to routing, this value would even satisfy the requirements
of a network for state-of-the-art blade servers, or high-end clusters.

8 Conclusion

Heterogeneous configurable hardware units are comparatively new, and therefore compiler
construction in this area poses new challenges. The experimental compiler presented here
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combines many different techniques and proves that a high-level abstract language can
be used to achieve a very high performance. Combined with the fast reaction to external
events and the compiler-enabled high abstraction level, an execution model for problems
with extremely high real-time requirements and limited hardware resources is available.

It is remarkable that this transformation system breaks a hierarchically described rout-
ing algorithm like NARA down into few tables of a small size. In addition, the reduction
in size and number of rules relieves the processing system and provides new headroom for
larger and more complex rule bases. Besides, if the same methods are applied to a new area,
the crucial functions for the application domain have to be identified first by analyzing the
target set of algorithms. This allows the direct mapping of complex subproblems to con-
figurable hardware units. The expected types of redundancy can also be identified, which
allows the selection of appropriate address-generation methods.

Since the unification-based optimization technique used is not as successful as it should
be, further improvements are desirable. As semantical unification has a high complexity and
computational effort other sorting functions such as any sort of weight function evaluating
and combining different pattern qualities should be tested.
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Abstract The preservation of regular tree languages through rewriting, has already been studied. In this
paper, we study the preservation of context-free tree languages through rewriting, for constructor-based term
rewrite systems. We give positive and negative results. Positive results are effective since we give algorithms
to build context-free grammars.

1 Introduction

The descendants of a set of terms E by a rewrite system R are the terms obtained by
rewriting the elements of E with the rules of R. Computing descendants may be used for
checking rewriting properties, like reachability, joinability,... It may also help to check safety
properties for cryptographic1 protocols [5] : the set of descendants (denoted by R∗(E))
expresses all the possible messages running in the net, and let LI be the set of illegal
messages. Intuitively, R simulates the protocol steps and the intruder actions; and illegal
messages simulate intrusions. The protocol is safe (in a certain sense) iff R∗(E) ∩ LI = ∅.
Protocol verification has also been investigated using other techniques : [1,8,7,11].

In general, the set of descendants R∗(E) is infinite. An easy way to express and handle
such infinite sets is to use finite tree automata, i.e. regular tree languages [3,10,18,17,12].
However, it is undecidable whether a given rewrite system preserves regularity (also called
recognizability) or not [6], and all those papers define subclasses. On the other hand, the
possibility of computing a regular superset of the (possibly non-regular) set of descendants,
assuming weaker restrictions, has been investigated in [4,5]. Computing only descendants
obtained by rewriting respecting some strategies has also been studied [14,13].

In [12], certain restrictions are assumed in order to make R∗(E) regular. R is assumed
to be constructor-based, as well as :

1. Right-hand-sides of rewrite rules are linear.

2. No nested defined-functions in rhs’s.

3. Innermost2 function calls in rhs’s are shallow subterms3.

4. E is a particular regular language : E is the set of constructor-instances of a fixed linear
term t (or more generally t is instantiated by arbitrary regular languages of constructor-terms).

Moreover, some counter-examples show that if anyone among the above four restrictions is
not satisfied, then R∗(E) is not regular. Consequently, the following question arises : does
R∗(E) belong to the previous class in Chomsky’s hierarchy, i.e. is it a context-free tree
language ? If it is, this can still be used for protocol verification because R∗(E) ∩ LI = ∅ is
decidable, provided LI is still regular. This paper attempts to answer this question.

1 For more information on cryptographic protocol, the reader can refer to [16].
2 Innermost is useless when Restriction 2 is satisfied. Without “innermost”, Restriction 3 would imply

Restriction 2, and we want them to be independent.
3 I.e. ∀l→ r ∈ R, ∀p ∈ Pos(r), (r(p) is an innermost defined-function in r =⇒ r|p = f(r1, . . . , rn)) where
r1, . . . , rn are variables or ground constructor-terms.
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Before giving the results, some more notions need to be introduced. We say that a tree
language is NT-bounded if it is generated by a NT-bounded grammar, which means that the
number of nested non-terminals in trees generated by the grammar is bounded. Note that
regular languages are NT-bounded. A context-free tree language is said top-context-free4

if it is generated by a top-context-free grammar, i.e. whose production right-hand-sides
contain only one non-terminal, located on top. Note that top-context-free languages are
context-free and NT-bounded.

We also define some other restrictions :

5. Left-hand-sides of rewrite rules are linear.

6. Recursive5 rewrite rules are not consuming, i.e. their left-hand-sides are of the form
f(x1, . . . , xn), where x1, . . . , xn are variables.

7. E is the set of instances of a fixed linear term t, by arbitrary NT-bounded context-free
languages of constructor-terms.

8. E is the set of instances of a fixed non-linear term t that contains only one defined-
function occurring on top, by instantiating the linear variables of t by arbitrary NT-
bounded context-free languages of constructor-terms, and by instantiating the non-linear
variables of t by arbitrary top-context-free languages of constructor-terms.

Still assuming that R is constructor-based, the results are :

- For all i ∈ {1, 2, 3}, if restrictions 1, 2, 3, 4 are satisfied except Restriction i then R∗(E)
is not context-free in the general case.

- If Restrictions 1, 2, 5, 6 and (7 or 8) are satisfied, then R∗(E) is context-free and
NT-bounded.

- If Restrictions 1, 2, 6, 7 are assumed (i.e. Restriction 5 is not assumed anymore), and
even if Restriction 3 is assumed in addition, then R∗(E) is not context-free in the general
case.

- If Restrictions 1, 2, 5 and (7 or 8) are assumed (i.e. Restriction 6 is not assumed
anymore), and even if Restriction 3 is assumed in addition, then R∗(E) is not context-
free in the general case.

The positive results are obtained by building a context-free grammar that generates R∗(E).

2 Preliminaries

2.1 Terms and Positions

We denote respectively by C, F , X the sets of constructors, defined-functions and variables.
For s ∈ C ∪ F , ar(s) denotes the arity of s. In the following, we write f ∈ F \n for f ∈ F
and ar(f) = n. A term is linear if no variable occurs more than once. A ground term is a
term that does not contain variables. T (Σ,X ) is the set of terms defined on the signature
Σ = F ∪ C, TΣ is the set of ground terms, and TC is the set of ground constructor-terms
(terms that contain only constructors). Let t, t′ be terms. We denote by V ar(t) the set of
variables of t, by Pos(t) the set of positions of t, by PosF (t) the set of positions of defined-
functions of t, and by Pos(t) the set of positions of non-variable symbols of t. A position p
is a list of integers whose length is denoted by |p|. For positions p, p′, p ≥ p′ means that p

4 Initially introduced by A. Arnold and M. Dauchet [2], and called co-regular. It is called top-context-free
in [9].

5 l→ r is recursive means that : l→∗R α where there exists a position p of α s.t. α(p) = l(ε).
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is located below p′, i.e. p = p′.v for some position v, whereas p‖p′ means that p and p′ are
incomparable, i.e. ¬(p ≥ p′)∧¬(p′ ≥ p). Let p ∈ Pos(t), t|p is the subterm of t at position p,
and t(p) is the top symbol of t|p. t[t′]p = t[p← t′] is the term obtained from t by replacing
the subterm at position p by t′. A term C ∈ T (Σ,X ) s.t. V ar(C) = {x1, . . . , xn} is called
a context, and C[t1, . . . , tn] denotes the term obtained from C by replacing each xi by the
term ti.

2.2 Rewrite Systems and Descendants

A term rewrite system (TRS) is a pair (Σ,R) where R is a finite set of rewrite rules l→ r
where l, r ∈ T (Σ,X ) and V ar(r) ⊆ V ar(l). In the following of the paper we write only R
for a rewrite system. lhs stands for left-hand-side, rhs for right-hand-side. R is constructor-
based if every lhs l of R is of the form l = f(t1, . . . , tn) where f ∈ F and t1, . . . , tn contain
only constructors and variables. The rewrite relation →R is defined as follows : t →R t′

(or, t →[p,l→r] t′) if there exists p ∈ Pos(t), a rule 〈→ r and a substitution σ s.t. t|p = lσ
and t′ = t[rσ]p. →∗R denotes the reflexive-transitive closure of →R. t′ is a descendant of t if
t→∗R t′. If E is a set of terms, R∗(E) denotes the set of descendants of elements of E. t is
irreducible if ¬(∃t′ | t →R t′). The set of irreducible ground terms is denoted by IRR(R).
t′ is a normal-form of t if t→∗R t′ and t′ is irreducible. The set of normal-forms of elements
of E is denoted by R!(E). Thus, R!(E) = R∗(E) ∩ IRR(R).

2.3 Recursive and Consuming Rewrite Rules

Definition 1. Let R be a TRS. Let f, g ∈ F . The relation > on F is defined as follows :

f > g ⇐⇒ ∃l→ r ∈ R, l(ε) = f ∧ ∃p ∈ PosF (r), r(p) = g

Definition 2. let R be a TRS and l→ r ∈ R. l→ r is recursive in R if

∃g ∈ F (g ∈ F (r) ∧ g >∗ l(ε))

where >∗ is the reflexive-transitive closure of >, and F (r) are the defined-functions appear-
ing in r.

Lemma 1. Let R be a TRS and l → r, l1 → r1, . . . , li → ri ∈ R. Let t be a term s.t.
PosF (t) = {ε}.

If t→l→r t1 →l1→r1 t2 . . .→ln→rn tn+1 and l→ r is not recursive, then
∀i, li → ri 6= l→ r (i.e l→ r can be used only once).

Proof. l→ r being non-recursive, by applying rules on functions of r, we can never generate
the symbol l(ε). So, ∀i, ∀pi ∈ posF (ti), ti(pi) 6= l(ε).

Definition 3. Let R be a TRS and l → r ∈ R.
l → r is not consuming if l is of the form f(x1, . . . , xn), where f ∈ F\n and x1, . . . , xn are
variables.

2.4 Tree Grammars

A tree grammar G is a quadruple (N , Σ, S, P ) where N is a finite set of non-terminals,
Σ a signature, S ∈ N the axiom, and P a finite set of production rules. In the regular
case, the production rules are of the form : A → t where A ∈ N and t ∈ T (Σ ∪ N ) and
in the context-free case : A(x1, . . . , xn) → t where A is a n-ary non-terminal, x1, . . . , xn
are distinct variables and t ∈ T (Σ ∪ N ∪ {x1, . . . , xn})6. Note that there are only 0-ary

6 Note that t is not necessarily linear.
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non-terminals in the regular case. The language L(G) generated by G is the set of terms
derivable from S. A set of terms E is a regular (resp. context-free) language if there is a
regular (resp. context-free) grammar G such that E = L(G). Grammar 1.a below generates
the regular tree language {f(s∗(a))} while Grammar 1.b generates the context-free tree
language {f(sn(a), sn(b))}.
Example 1.
a. S → f(B)

B → s(B) | a
b. S → F (a, b)
F (x, y)→ F (s(x), s(y)) | f(x, y)

Figure 1 recalls known properties.

L1 L2

L1 ∪ L2 reg. reg. reg.
c-free c-free c-free

reg. reg. reg.
L1 ∩ L2 reg. c-free c-free

c-free c-free c-free

L1 reg. reg.

t ∈ L1 reg. or c-free decidable

L1 = ∅ reg. or c-free decidable

Figure 1. Properties

In a grammar, the notion of recursive production is defined in the same way as for
rewrite rules.

Definition 4. A context-free tree grammar is said NT-bounded if the transitions whose
rhs’s contain nested non-terminals, are not recursive.

Lemma 2. Let G be a NT-bounded context-free tree grammar. The number of nested non-
terminals in trees generated by G is bounded.

Recall that top-context-free languages are defined in the introduction.

Lemma 3. [2] Let L = {f(t, t) | t ∈ L′, f ∈ Σ\2}. L is context-free iff L′ is top-context-free.
And in this case, L is also top-context-free.

Lemma 4. [9] Let Σ be a signature. TΣ is top-context-free iff Σ contains only symbols of
arity at most one or no constant symbol.

3 Negative Results

The negative results come from the counter-examples below, and the following remark :
if R is left-linear, the set of irreducible terms IRR(R) is regular. Therefore, if R∗(E) is
context-free, then R!(E) = R∗(E) ∩ IRR(R) should also be context-free. More generally, if
R∗(E) is context-free and T is regular, then R∗(E) ∩ T should also be context-free.

Counter-example 1 Restrictions 1 to 4 are satisfied, except Restriction 1.
Let C = {c\2, a\0} and TC be the set of terms on C.
Let R = {f(x)→ c(x, x)} and E = {f(s) | s ∈ TC}. Then, R!(E) = {c(s, s) | s ∈ TC}.
From Lemmas 3 and 4, we can conclude that R!(E) is not context-free.
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Counter-example 2 Restrictions 1 to 4 are satisfied, except Restriction 3.
R = {f

x

→ p

f

s

x

, f

x

→ g

x a

, g

s

x

y

→ s

g

x s

y

}, E = { f
a

}. Then, R!(E) = { pn

sn

g

a sn

a

| n ∈ IN}.

It is not context-free because generating the right-hand branch pn(sn(g(sn(a)))) needs to
count n three times.

Remark 1. If Restrictions 1 to 4 are satisfied, except Restriction 2, we can simulate the
previous counter-example by using the same starting language and the following TRS :

R = {f
x

→ p

f

h

x

, f

x

→ g

x a

, g

s

x

y

→ s

g

x h

y

, h

x

→ s

x

}

Counter-example 3 Restrictions 1, 2, 3, 6, 7 are assumed (Restriction 5 is not assumed).
Let R = { f

c

x x

→ x} and t = f(y). Let L = { c

s∗

pn

rk

a

sn

pk

r∗

a

| n, k ∈ IN}.

Let us consider E = t[y ← L]. The tree language L is recognized by the following NT-
bounded context-free grammar :
S → F (a, a)
F (x, y)→ F (x, r(y)) |F1(x, y) F1(x, y)→ F1(r(x), p(y)) |F2(x, y)
F2(x, y)→ F2(p(x), s(y)) |F3(x, y) F3(x, y)→ F3(s(x), y) | c(x, y).

Let TC be the set of terms on C = {c, s, p, r, a}. Obviously, TC is regular.
Hence, R∗(E) is not context-free since R∗(E) ∩ TC = {sn(pn(rn(a))) | n ∈ IN} is not
context-free.

Counter-example 4 Restrictions 1, 2, 3, 5 and 7 are assumed (Restriction 6 is not assumed).
Let :

R = { i

c

x y z

r0→ f

x y z

, f

s

x

y z

r1→ s

f

x y z

, f

a y z

r′1→ g

a y z

,

g

x p

y

z

r2→ p

g

x y z

, g

x a z

r′2→ h

x a z

, h

x y r

z

r3→ r

h

x y z

}
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Let us consider E = { i

c

sn

a

pn

a

rn

a

|n ∈ IN}. Obviously, R!(E) = { sn

pn

rn

h

a a a

|n ∈ IN} is not

context-free. Hence, R∗(E) is not context-free.

Remark 2. If Restrictions 1, 2, 3, 5 and 8 are assumed, we add the rule j(x, y) → i(x) to
the previous counter-example and consider

E = { j

x x

θ | θ : x← { c

sn

a

pn

a

rn

a

|n ∈ IN}}

4 Positive Results

Let R be a constructor-based TRS satisfying Restrictions 1, 2, 5, 6, and let E satisfying
Restrictions 7 or 8 be the starting tree language, generated by the NT-bounded context-free
grammar GE = (NGE , Σ, SGE , PGE ).

In this section, we give some definitions needed to compute R∗(E). Recall that we want
to construct a tree grammar that generates R∗(E). We proceed step by step :
Suppose that {p1, . . . , pn} are outermost defined-functrions positions of E. Being incompa-
rable positions, they can be treated independantly. Finding R∗(E) consists in computing
descendants of elements of E at positions ≥ pi, ∀i ∈ {1 . . . n} (so, we introduce R∗≥pi(E)).
We use the notation ≥ pi in the case of there is at least one defined-function position below
pi. If it is not the case, it is sufficient to compute R∗pi(E) (terms obtained by rewriting E
at position pi in any steps, i.e. at position pi plus possibly at defined-functions positions
issued of rewriting steps) since there is no nested defined-functions in rhs’s.

4.1 Definitions

We first need to introduce how to construct a grammar that generates E in which we
substitute some sub-languages Li = E|pi by other languages L′i.

Definition 5. Let t be a fixed linear term, and let V ar(t) = {x1, . . . , xk}. Let L1, . . . , Lk
be context-free tree languages generated by the grammars GL1 , . . . , GLk . Let p1, . . . , pn ∈
Pos(t) s.t. ∀i, j (i 6= j ⇒ pi||pj). Let L′1, . . . , L

′
n be context-free tree languages generated

by the grammars GL′1 , . . . , GL′n .
The language of instances of t, whose sub-terms at positions p1, . . . , pn have been re-

placed, is defined as follows :

E[p1 ← L′1] . . . [pn ← L′n] = {(tσ)[p1 ← s1] . . . [pn ← sn] | ∀i, xiσ ∈ Li ∧ ∀j, sj ∈ L′j}
By renaming, if necessary, the non-terminals, we can suppose that the set of non-

terminals of GL1 , . . . , GLk , GL′1 , . . . , GL′n are disjoint.
We denote by SGLi (resp. PGLi ) the axiom (resp. the set of productions) of GLi .
The context-free tree grammar GE[p1←L′1]...[pn←L′n] that generates E[p1 ← L′1] . . . [pn ← L′n],
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has the axiom SGE[p1←L′1]...[pn←L′n]
= Tε, and the set of productions :

PGE[p1←L′1]...[pn←L′n]
= PGL1

∪ . . . ∪ PGLk ∪ PGL′1 ∪ . . . ∪ PGL′n
{Tq → t(q)(Tq.1, . . . , Tq.ar(t(q))) | q ∈ Pos(t) ∧ ∀i, ¬(q ≥ pi)}
{Tpi → SGL′

i
| i ∈ {1, . . . , n}}

{Tq → SGLj | q ∈ Pos(t) ∧ t(q) = xj ∧ ∀i,¬(q ≥ pi)}

Remark 3. - The particular case n = 0 defines the language E of the instances of t by
elements of L1, . . . , Lk.

- If GL1 , . . . , GLk , GL′1 , . . . , GL′n are NT-bounded, GE[p1←L′1]...[pn←L′n] is also NT-bounded.

Definition 6. Let p ∈ Pos(t), then we define E|p = {s|p | s ∈ E}.
We obtain a grammar that generates E|p by replacing the axiom of GE by Tp.

Now, we consider the descendants obtained by rewriting below or at position p (R∗≥p),
and the descendants obtained by rewriting starting from position p (R∗p).

Definition 7. Let L be a language and p be a position. We define :

R∗≥p(L) = {s′ | ∃s ∈ L, s→∗[u1,..., un] s
′ ∧ ∀i, ui ≥ p}.

Definition 8. t →+
[p,rhs′s] t

′ means that t′ is obtained by rewriting t at position p, plus
possibly at positions coming from the rhs’s.
Formally, there exist some intermediate terms t1, . . . , tn and some sets of positions P (t), P (t1),
. . . , P (tn) s.t.

t = t0 →[p0,l0→r0] t1 →[p1,l1→r1] . . .→[pn−1,ln−1→rn−1] tn →[pn,ln→rn] tn+1 = t′

where

- p0 = p and P (t) = {p},
- ∀j, pj ∈ P (tj),

- ∀j, P (tj+1) = P (tj)\{p′ | p′ ≥ pj} ∪ {pj .w | w ∈ PosF (rj)}.

Remark 4. P (tj) contains only defined-function positions. Since there are no nested defined-
functions in rhs’s, p, p′ ∈ P (tj) implies p‖p′.

Definition 9. Given a language L and a position p, we define R∗p(L) as follows

R∗p(L) = L ∪ {t′ | ∃t ∈ L, t→+
[p,rhs′s] t

′}

Example 2. Let R = {f(x)→ s(x), g(x)→ s(h(x)), h(x)→ p(f(x))} where F = {f, g, h}
and C = {s, a}. The symbols(s) that are eligible for rewriting, are underlined :

R∗1({f(h(g(a)))}) = {f(h(g(a)))} ∪ {f(p(f(g(a))))} ∪ {f(p(s(g(a))))}

Succt(p) are the nearest defined-function positions of t located below p. Formally :

Definition 10. Let p ∈ Pos(t).
Succt(p) = {p′ ∈ PosF (t) | p′ > p ∧ ∀q ∈ Pos(t) (p < q < p′ ⇒ q /∈ PosF (t))}
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4.2 Computing R∗(E)

The following theorem and lemma give a recursive algorithm (using R∗≥p) to build a NT-
bounded context-free grammar that generates R∗(E), from NT-bounded context-free gram-
mars that generate R∗p.
The proofs are given in [15].

Theorem 1. Let t be a linear term, and E be the language of instances of t.

R∗(E) = R∗≥ε(E) if t(ε) ∈ F
E[p1 ← R∗≥p1

(E)|p1 ] . . . [pn ← R∗≥pn(E)|pn ] otherwise

with Succt(ε) = {p1, . . . , pn}.

Lemma 5. Let t be a linear term, and E be the language of instances of t. Let p ∈ PosF (t).

R∗≥p(E) = R∗p(E[p1 ← R∗≥p1
(E)|p1 ] . . . [pn ← R∗≥pn(E)|pn ]) if Succt(p) = {p1, . . . , pn}

R∗p(E) if Succt(p) = ∅

The following lemma gives an algorithm to build a NT-bounded context-free grammar
that generates R∗p, from a NT-bounded context-free grammar that generates R∗ε .

Lemma 6. Let L′1, . . . , L
′
n be context-free tree languages.

- If Succt(p) = {p1, . . . , pn} 6= ∅, then

R∗p(E[p1 ← L′1] . . . [pn ← L′n]) = E[p← R∗ε (E|p[p1−p← L′1] . . . [pn−p← L′n])]

- If Succt(p) = ∅, then R∗p(E) = E[p← R∗ε (E|p)]

Remark 5. If t contains only one defined-function, occurring at the root, we have R∗(E) =
R∗ε (E). Moreover, we show in Section 4.3 that we can compute R∗ε (E) provided E is a NT-
bounded context-free language. Consequently, the second positive result (assuming t is not
linear) comes from the following lemma.

Lemma 7. Let t be a term. Let E be the set of instances of t s.t. :

- The linear variables of t are instantiated by NT-bounded context-free tree languages,
and

- the non-linear ones are instantiated by top-context-free tree languages.

Then E is a NT-bounded context-free tree language.

4.3 Computing R∗ε

The Maximal Depth of consumable symbols : Depth(R)

Thanks to Restriction 6, in a term t s.t. PosF (t) = {ε}, constructors occurring below
a certain depth are not used when rewriting t in several steps : they are not consumable by
rewriting.

Example 3. Let R = {h(s(x))
ru1→ x, g(p(x))

ru2→ h(x) }.
When rewriting g(p(s(a))) by ru2 and ru1, p, s are consumed, whereas a is not consumed.

Depth(R) as defined below is actually the maximal depth of consumable symbols (see the
completeness proof in [15]).

67



Definition 11. Let R be a TRS satisfying restriction 6, and l → r ∈ R. We define
Depth(l) = Max({|p| | p ∈ pos(l)}) and

Depth(R) =
∑

l→r∈R
Depth(l)

Remark 6. Only consuming rules matter when computing Depth(R), because if l → r is
not consuming, then Depth(l) = 0.

Explanations and Example

Recall that R be a constructor-based TRS satisfying Restrictions 1, 2, 5, 6, and let E
satisfying Restrictions 7 or 8 be the starting tree language, generated by the NT-bounded
context-free grammar GE = (NGE , Σ, SGE , PGE ). Let p ∈ PosF (t) and L = E|p. The al-
gorithm for building a context-free grammar GR∗εL = (NGR∗εL , Σ, SGR∗ε L , PGR∗εL) generat-

ing R∗ε (L) starts with the productions of GL, and adds new productions with 0-ary non-
terminals of the form At, where t is a tree that may contain non-terminals of GL, s.t.
t(ε) ∈ F and L(At) = R∗({t′ | t →∗GL t′}). The algorithm also uses n-ary non-terminals
of the form At, and in this case t contains in addition constants ⊥1, . . . ,⊥n, and produc-
tions are added s.t. (t1, . . . , tn are arbitrary trees that may contain non-terminals of GL)
L(At(t1, . . . , tn)) = R∗({t′ | t[. . . ,⊥i ← ti, . . .]→∗GL t

′}).
The role of At’s is as follows. Since GR∗εL has to be context-free, we cannot create

a production like At(t1, . . . , tn) → t′ to simulate a rewrite step issued from the term
t[. . . ,⊥i ← ti, . . .] (only At(x1, . . . , xn) → t′ is allowed). However, Depth(R) gives the
depth of symbols that may be needed when rewriting. Then, when we deal with At, we
first focus on the depth of symbols in t. When a symbol is deeper than Depth(R), we get
rid of the corresponding sub-term by moving it into arguments of At. To define the depth
of a symbol, we must not take into account the non-terminals that occur above it, since a
non-terminal is replaced by nothing if it is derived by a collapsing production.

Example 4. Let R be the TRS given by the following set of rewrite rules :

{ g

x y

→ c

h

x

f

y

, f

x

→ s

f

s

x

, h

s

x

→ a}

Then, Depth(R) = 1. Obviously, R statisfies restrictions 1, 2, 5, 6.
Let a term t = g

x a

. Obviously, t is linear. And let

E = { g

sn

a

a

|n ∈ IN} = {tσ |xσ = {sn(a) |n ∈ IN}}

generated by the set of production rules :

PGE = {S → g(B, a), B → a | s(B)}.
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The language {sn(a) |n ∈ IN} that instanciates the linear term t is a context-free tree
language. Then, E satisfies restrictions 7.

Here, E contains only one defined-function. So, R∗ε (E) = R∗(E). Then, in the following,
we use R∗(E) instead of R∗ε (E).
Let us denote by SGR∗εL the axiom of GR∗εL : we add SGR∗εL → Ag(B,a) since SGL is the axiom

of the starting grammar and SGL → g(B, a). No symbol is deeper than 1 in g(B, a), then
we try to rewrite g(B, a) and derive B. We add the productions :

Ag(B,a) → c(Ah(B), Af(a)) |Ag(a,a) |Ag(s(B),a).

Four new non-terminals have appeared. We have to deal with them. As previously, we
try to rewrite and derive h(B), f(a) and g(a, a). We add the productions :

Ah(B) → Ah(s(B)) |Ah(a), Af(a) → s(Af(s(a))) and Ag(a,a) → c(Ah(a), Af(a))

Let us remark that we do not rewrite and derive (g(s(B), a)). Indeed, it contains some
symbol (here B) that are deeper than Depth(R). We get rid of it by adding the production :

Ag(s(B),a) → Ag(s(⊥),a)(B)

Four new non-terminals have appeared. h(a) cannot be rewritten nor derived.
g(s(⊥), a) can be rewritten. We add the production :

Ag(s(⊥),a)(x)→ c(Ah(s(⊥))(x), Af(a))

We have to deal with Ah(s(B)) and Af(s(a)).
We add the productions :

Ah(s(B)) → Ah(s(⊥))(B) and Af(s(a)) → Af(s(⊥))(a)

Two new non-terminals have appeared. h(s(⊥)) and f(s(⊥)) can be rewritten. We add
the productions :

Ah(s(⊥))(x)→ a and Af(s(⊥))(x)→ sAf(s(s(⊥)))(x).

One new non-terminal have appeared. We have to deal with Af(s(s(⊥))) We add the
production :

Af(s(s(⊥)))(x)→ Af(s(⊥))(s(x)).

Moreover, for each non-terminal At where t = C[⊥1, . . . ,⊥n], we add the production

At(x1, . . . , xn)→ C[x1, . . . , xn].

No more new non-terminals. The algorithm stops. The reader can checks that the re-
sulting grammar really generates :

{ g

sn

a

a

, c

h

sn

a

sp

f

sp

a

, c

a sp

f

sp

a

|n, p ∈ IN}
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5 Conclusion

In this paper, we have studied the behaviour of descendants of a set of terms over a rewriting
system. Since obtaining regular descendants has already been investigated in the past,
we have studied languages of higher level in the Chomsky hierarchy (so more expressive
languages) : Context-free tree languages.

We have seen that the set of descendants of a language depends on the form of the
rewriting rules and the starting language too. So, some restrictions are necessary.

We have shown by an example how to construct a grammar that generates the set of
descendants of elements of a set E. The reader can find a general algorithm that permits
to construct a grammar that generates the set R∗(E) in the full version of the paper [15].
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Dominique Méry Beverly Sanders, editor, editor, Fifth International Workshop, FMPPTA 2000, volume
1800 of LNCS. Springer-Verlag, 2000.

8. J. Goubault-Larrecq. Vérification de protocoles cryptographiques : la logique à la rescousse! In editor
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Abstract ACTAS is an integrated system for manipulating associative and commutative tree automata (AC-
tree automata for short), that has various functions such as for Boolean operations of AC-tree automata,
computing rewrite descendants, and solving emptiness and membership problems. In order to deal with
high-complexity problems in reasonable time, over- and under-approximation algorithms are also equipped.
Such functionality enables us automated verification of safety property in infinite state models, that is help-
ful in the domain of, e.g. network security, in particular, for security problems of cryptographic protocols
allowing an equational property. In runtime of model construction, for the analysis of state space expan-
sion, intermediate status of the computation can be viewed as a numerical data table, and the line graphs
are dynamically generated. Besides, a graphical user interface of the system provides us a user-friendly
environment for handy use.

1 Introduction

Tree automata are the counterpart of finite automata for strings, in the sense that it inherits
most of the properties holding for finite automata. It is known that tree languages recog-
nized by tree automata are closed under Boolean operations and most of the decidability
results are positive [4]. The tree automata framework is useful in dealing with trees (i.e.
terms), and several verification techniques based on the tree automata framework have been
studied [5,7]. For instance, Kaji et. al pointed out in [8] that some important cryptographic
protocols are modeled by term rewriting systems (TRS for short, [2]) and tree automata,
and moreover, the positive decidability results and closure properties of tree automata allow
us to design an automated deduction technique for reasoning about the security problems.

In fact, verification tools for security protocols have been developed based on tree au-
tomata framework [1,3]. Genet and Viet Triem Tong provided a tree automata library,
called Timbuk [5,6], in which associative and commutative properties of functions sym-
bols are treated by using approximation. Rule-based approaches allowing associativity and
commutativity have been also investigated, e.g. in [9].

Let us briefly explain below how to handle the model checking problem for infinite state
transition systems in practice by using term rewriting and tree automata. We suppose that
a TRS R over the signature F specifies the transition relation of a transition system M.
We sayM admits the transition step s→M t under an initial state space L if (1) s = C[lσ]
and t = C[rσ] for some rewrite rule l→ r in R, context C and substitution σ, and (2) there
is a state s0 in L such that s0 →∗M s, where →∗M is the reflexive and transitive closure of
→M. One should notice that →M ⊆ →R. Namely, the domain of the system M is the set
of all ground terms over F , and the state space of M to be verified is the reachable states
from L by R. We suppose that the initial state space L can be represented by some tree
automaton A, in such a way that t ∈ L if and only if t is accepted by A. So, in this setting,
given a rewrite system and a tree automaton specifying each of M and L, the reachable

72



state space of a transition system is considered to be defined. In the paper, we denote by
L(A) the set of elements accepted by a tree automata A, and by [→∗R ](L(A)) the set of
reachable states.

Let P be some subset of the domain of M, that consists of states to which we do not
allowM to admit the transition step from any initial state in L. For instance in the network
protocols, P is the set of private information, L is the initial knowledge of the intruder,
and R is the intruder’s possible operations. So the information obtainable by the intruder
can be represented by [→∗R ](L), and thus, the intersection of P and [→∗R ](L) contains a
private information that is reachable (i.e. obtainable) somehow by the intruder. In other
words, the non-emptiness of the intersection indicates that the protocol is not secure.

However, the set [→∗R ](L) of reachable states is not a regular tree language even if L
is a regular tree language. Even worse, it is not computable in general. A tree language
L is called regular if there exists a tree automata A such that L is recognized by A. To
overcome the above problem there have been several studies, such as: (1) to find a subclass,
i.e. sufficient conditions, of R in which regularity is preserved, and (2) to extend the tree
automata framework so that a wider class of tree languages can be handled. Decidable
subclasses of such TRS that effectively preserve regularity have been investigated in [15,16].
Regarding the second approach, it is known that regularity is not AC-closed. In other words,
the AC-closure of a regular tree language is no longer regular. A binary function symbol f
in a signature F is associative and commutative if the following axioms are assumed:

f(x, f(y, z)) = f(f(x, y), z) f(x, y) = f(y, x)

The AC-closure of a tree language L is, given a subset FAC of the binary function symbols
in F , a set {t | ∃s ∈ L. s =AC t}. Here =AC denotes the equivalence relation induced by
AC-axioms of all function symbols in FAC. The above negative observation reveals that
for modeling a cryptographic protocol allowing equational property like Diffie-Hellman key
exchange protocol, the reachable state space can not be handled by the standard tree
automata.

In this research we take the second approach. We proposed in [13] an extension of tree
automata, called equational tree automata. We also showed in [10,11] that under certain
useful equational axioms, e.g. associativity and/or commutativity, tree languages accepted
by the equational tree automata are closed under Boolean operations. Moreover, in this
extended framework the previous Diffie-Hellman key exchange protocol can be handled,
and even the verification process is automatable [12].

The AC-tree automata simulator (ACTAS) is a tool for the computation of tree automata
allowing that some of the binary function symbols are associative and commutative. A screen
shot of this system is presented in Fig. 1.

The class of AC-tree automata is effectively closed under union and intersection, and
the membership and emptiness problems are decidable. In regular case, the emptiness test
is solvable in linear time. The decidability result of emptiness problem for non-regular
case is also positive, however, it is not manageable in the sense of real computation. It
can be observed by the fact that the reachability of a Petri-net instance is known to be
EXPSPACE-hard and non-regular AC-tree automata are in some sense a generalization of
Petri-nets. Therefore we designed in ACTAS over- and under-approximation algorithms, for
efficiently computing rewrite descendants [→∗R ](L(A/AC)) of a given AC-tree automaton
A/AC and TRS R.

Through the cryptographic protocol examples in this paper, we explain a verification
technique, based on AC-tree automata framework, using the above functionality in ACTAS.
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Figure 1. Control panel of ACTAS

2 AC-Tree Automata

We begin this section by introducing AC-tree automata. We then explain how to operate
ACTAS as a tool for for manipulating AC-tree automata and even as a tool supporting
automated verification.

A tree automaton (TA for short) A is a 4-tuple (F ,Q,Qfin ,∆), whose components are
the signature F , i.e. a finite set of function symbols with fixed arities, a finite set Q of
special constant symbols, called states, with F ∩Q = ∅, a subset Qfin of Q whose elements
are called final states, and a finite set ∆ of transition rules in one of the following forms:

f(p1, . . . , pn)→ q1 (Type 1)

f(p1, . . . , pn)→ f(q1, . . . , qn) (Type 2)

p1 → q1 (Type 3)

such that f ∈ F with arity(f) = n and p1, . . . , pn, q1, . . . , qn ∈ Q. In Type 2 the root
function symbols of the left- and right-hand sides must be the same. Transition rules in
Type 3 are called ε-rules (“epsilon-rules”). A TA A is called regular if ∆ consists only of
rules in Type 1. Rules of Type 2 are not treated in [4]. Under consideration of equational
properties, however, Type 2 is essential in the sense that, e.g. recognizable tree languages
of our definition have a bijective correspondence to the word language hierarchy [10]. An
efficient algorithm for the intersection of such AC-tree automata, presented in [13], is also
one of the advantages.

A transition move →A is the rewrite relation →∆ by taking ∆ as a TRS ∆ over the
signature F ∪Q. A ground term t over F is accepted if t→∗A qf for some qf ∈ Qfin . The set
of terms accepted by a tree automaton A is denoted as L(A). A tree language L, that is a
subset of all ground terms, is recognizable if there is a tree automata A such that L = L(A).
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1: [signature]

2: AC: f

3: const: a,b

4:

5: [t-rule(q): A]

6: a -> q_a

7: b -> q_b

8: f(q_a,q_b) -> q

9: f(q,q) -> q

Figure 2. An example of AC-tree automaton in ACTAS

An equational tree automaton is a pair of a tree automaton A and an equational theory
E , denoted as A/E . The transition move is defined by the relation→A modulo E . An AC-tree
automaton is an equational tree automaton whose equational theory is the associativity and
commutativity axioms for some of the binary function symbols in F . The basic properties
of AC-tree automata are stated below:

Theorem 1. [11,13] (1) The class of tree languages accepted by AC-tree automata are
closed under union and intersection. (2) The class of tree languages accepted by regular
AC-tree automata are closed under Boolean operations (union, intersection, and comple-
mentation). (3) The membership problem and the emptiness problem for AC-tree automata
are decidable. ut

We consider the tree automaton A with the following transition rules

a→ qa, b→ qb, f(qa, qb)→ q, f(q, q)→ q

and the final state q. Suppose f is associative and commutative, then the AC-tree automaton
A/AC accepts such trees t that

|t|a = |t|b
i.e. the number of occurrences of a is the same as the number of occurrences of b in the
same tree t. One should notice that the above language is not recognizable with any tree
automata.

In ACTAS the above example A/AC is specified as shown in Fig. 2. The signature is spec-
ified by declaring AC-symbols and constant function symbols. The other constant symbols
are recognized as state symbols. The tree automaton A is specified in the module named
A, by listing the transition rules (6–9th lines). The argument q of the predefined symbol
t-rule is the final state of A.

At the current implementation ACTAS is equipped with the following functions for
Boolean operations (1)–(2) and rewrite descendants computation (3), and two solvers for
membership and emptiness problems (4)–(5):

1. Given two AC-tree automata A/AC and B/AC, construct an AC-tree automaton C/AC
such that L(C/AC) = L(A/AC) ∪ L(B/AC).

2. Given two AC-tree automata A/AC and B/AC, construct an AC-tree automaton C/AC
such that L(C/AC) = L(A/AC) ∩ L(B/AC).

3. Given an AC-tree automaton A/AC and a TRS R whose rewrite rules do not contain
AC-function symbols, construct AC-tree automaton C/AC such that L(C/AC) = [→∗R
](L(A/AC)).
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1: [signature]

2: AC: f

3: const: 0

4:

5: [r-rule: R]

6: 0 -> s(s(0))

7: [t-rule(q): A1]

8: 0 -> zero

9: s(zero) -> one

10: zero -> q

11: f(one,one) -> q

12: f(q,q) -> q

13: [t-rule(q): A2]

14: 0 -> q

15: s(q) -> one

16: s(one) -> q

17: f(one,one) -> q

18: f(q,q) -> q

Figure 3. Computing rewrite descendants of AC-tree automata

4. Given an AC-tree automaton A/AC and a term t, determine if t ∈ L(A/AC).

5. Given an AC-tree automaton A/AC, determine if L(A/AC) = ∅,

The computation results obtained by the operations (1)–(3) can be re-used, as new
inputs. For automated verification, the above function (3) is useful in order to construct
models.

We consider the example in Fig. 3. The TRS R consists of the single rewrite rule 0 →
s(s(0)). The tree automaton A1 accepts a tree t if t = 0, t = f(s(0), s(0)), or t =
f(t1, t2) such that t1, t2 are accepted by A1. Under the assumption that f is associative and
commutative, the above language coincides with L = {t | |t|s(0) is even }. Thus a term t
is reachable by R from some term t′ in L if and only if t satisfies that t = C[s1, . . . , sn]
such that C consists of f, root(si) = s or 0, and

∑n
i=1[[si]] is even, where [[0]] = 0 and

[[s(t)]] = [[t]]+1. Roughly speaking, t is an element in [→∗R ](L(A1/AC)) if the sum of natural
numbers occurring in t is even. For instance, f(s(s(0)), f(s(s(s(0))), f(s(0), 0)) belongs to
[→∗R ](L(A1/AC)) that is represented by an AC-tree automaton. Actually, this language is
accepted by the AC-tree automaton A2/AC. An advantage of ACTAS is that by using the
embedded functions, we can construct such AC-tree automata automatically.

Nevertheless, one can observe that the bounded computation is often required in con-
structing AC-tree automata that accept rewrite descendants, because (a) the language
[→∗R ](L(A/AC)) is not computable in general, and (b) even if [→∗R ](L(A/AC)) is com-
putable under a certain condition, it may not be recognizable with AC-tree automata. The
two cases correspond to non-terminating computation.

From this observation, Parameters 1–3 are arranged in the control panel. (See the
lower left-hand corner in Fig. 1). Parameter 1 restricts the number of the execution of
the outermost-loop in the algorithm: For instance, Parameter 1 being 0 in Function (3)
checks whether a given ACTAS code is syntactically correct. By setting Parameter 1 to
be n (>1), we can execute the rewrite descendant computation only of n-loops.

For computing over- or under-approximated result, we select positive integers for Pa-
rameters 2 and 3. For instance, if non-left-linear rewrite rules like f(x, x)→ x are included
in the rewrite system, we need to check in the algorithm of Function (3) whether tree au-
tomata A1 = (F ,Q, {p1},∆) and A2 = (F ,Q, {p2},∆) satisfy

L(A1/AC) ∩ L(A2/AC) 6= ∅

for some p1, p2 in Q with p1 6= p2. The values of Parameters 2 and 3 restrict the search
depth and width of the decision procedure of the above question. But if Parameters 2–3
are the maximum 100, upper-bound limitation is ignored. That in turn results in the exact
solution if the computation terminates. Hence, by selecting appropriate positive integers
for Parameters 1–3, one can obtain under-approximated results of [→∗R ](L(A/AC)) in
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reasonable time. On the other hand, both Parameters 2 and 3 being 0 turn out over-
approximated results.

3 Cryptographic Protocol Verification

We explain below how to verify network protocols by using ACTAS. In the protocol illus-
trated in Fig. 4, we write E(x, y) for a message y encrypted by some key x, and K(x) for a
principal x’s secret key. The goal of this protocol is to send a secret message m from alice to
bob without losing the secrecy. Hence m is encrypted with another secret key (nonce) r, and
thus r is also encrypted and transfered to bob. In this network communication, alice first
sends a triple of E(K(alice), r), alice the sender’s ID, and bob the receiver’s ID. Then server
reacts to this request by sending back E(K(bob), r) to alice. At the final step alice sends the
pair of E(K(bob), r) and E(r,m), to bob. The latter component is generated by encrypting
m by r. The receiver bob can retrieve the clear-text m by decrypting E(K(bob), r) first.

server

(2)E(K(bob), r)vv
alice

(1)E(K(alice), r), alice, bob
55

(3)E(K(bob), r), E(r,m)
// bob

Figure 4. A cryptographic protocol

Now we assume that an intruder eve has the following abilities:

1. If eve knows x and E(x, y), then eve also knows y.

2. eve knows how to apply encryption and decryption functions E and D, i.e. if eve knows
x and y, eve can construct E(x, y) and D(x, y).

3. eve knows its own secret key K(eve) and all principles names alice, bob and eve.

4. eve can wiretap the network channels, i.e. eve knows all information flowing in the
network of Fig. 4.

To detect the security flaw (otherwise, to ensure the secrecy of the protocol), we verify
the protocol by using TRS and tree automata. We first model by a tree automaton the
initial knowledge of the intruder eve. We then generate the set of states reachable from the
initial knowledge by the following TRS:

Rcrypt = {D(x,E(x, y)) → y}

The TRS Rcrypt corresponds to the above intruder’s ability 1. The other assumptions 2–4,
which are the intruder’s initial knowledge and available operations, can be represented by
the tree automaton (Ainitial), that is shown in Fig. 5.

The tree automaton Ainitial accepts a term t if and only if t is obtainable by the in-
truder without using the encryption-decryption axiom Rcrypt. The set [→∗Rcrypt

](L(Ainitial))
of reachable states corresponds to the fixpoint of the intruder’s knowledge. By computing
rewrite descendants (Function (3) in ACTAS), we have a tree automaton Afixpoint that sat-
isfies L(Afixpoint) = [→∗Rcrypt

](L(Ainitial)) if there exists. Therefore, by solving membership

constraint (Function (4) in ACTAS) m ∈ L(Afixpoint)?, it can be determined whether or not
the protocol is secure against wiretapping.
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1: [signature]

2: const: alice,bob,eve,m,r

3: var: x,y

4:

5: [r-rule: R_crypt]

6: d(x,e(x,y)) -> y

7:

8: [t-rule(q): A_initial]

9: d(q,q) -> q

10: e(q,q) -> q

11:

12: alice -> q

13: bob -> q

14: eve -> q

15: k(q_e) -> q

16: eve -> q_e

17:

18: e(q_ka,q_r) -> q

19: k(q_a) -> q_ka

20: alice -> q_a

21:

22: e(q_kb,q_r) -> q

23: k(q_b) -> q_kb

24: bob -> q_b

25:

26: e(q_r,q_m) -> q

27: m -> q_m

28: r -> q_r

Figure 5. Specification code of cryptographic protocol assuming wiretapping only

1: [signature]

2: const: alice,bob,eve,m,r

3: var: x,y,z

4:

5: [r-rule: R_crypt2]

6: d(x,e(x,y)) -> y

7: s(x,y,z) -> e(k(z),d(k(y),x))

8: s(x,y,z) -> x

9: s(x,y,z) -> y

10: s(x,y,z) -> z

11:

12: [t-rule(q): A_initial2]

13: d(q,q) -> q

14: e(q,q) -> q

15: s(q,q,q) -> q

16:

17: alice -> q

18: bob -> q

19: eve -> q

20: k(q_e) -> q

21: eve -> q_e

22:

23: s(q_kar,q_a,q_b) -> q

24: e(q_ka,q_r) -> q_kar

25: k(q_a) -> q_ka

26: alice -> q_a

27:

28: e(q_kb,q_r) -> q

29: k(q_b) -> q_kb

30: bob -> q_b

31:

32: e(q_r,q_m) -> q

33: m -> q_m

34: r -> q_r

Figure 6. Specification code of cryptographic protocol assuming active attack

Along the similar construction scheme, we can detect that the same protocol is not
secure against impersonation. The associated tree automaton and TRS is illustrated in
Fig. 6, that represents the previous protocol example in which intruder’s active attack is
assumed. By allowing that every principal (including the intruder eve) sends a request to
server, we add the rewrite rule

s(x,y,z) -> e(k(z),d(k(y),x))

and the transition rule s(q,q,q) -> q to the previous code. In the left-hand side s(x,y,z)
of the rewrite rule, variables x, y, z are (intended to) assigned to encrypted data, sender’s
ID and receiver’s ID, respectively. The result of this rewriting step is a server’s reply, that
is (assumed to be) received by a sender. More precisely, the sender receives an encrypted
message e(k(s1),d(k(s2),s3)), that is once decrypted with a sender’s key at server site
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loop ](t-rule) ](state) time (sec)

0 18 9 —

1 30 16 3

2 41 16 12

3 44 16 22

4 44 16 32

* The computation is saturated at 3rd loop.

Figure 7. The numbers of transition rules and state symbols at each loop

Figure 8. Intermediate status of the computation in HTML format

and the result is encrypted with a receiver’s key. We assume also that eve can decompose
any data of the form s(t1, t2, t3), and this situation is represented by the other three rewrite
rules.

In the experiment, by using Function (3) of ACTAS with Parameter 1 to be 4 or the
greater (and the others to be arbitrary positive integers), we obtain an under-approximated
result. The numbers of transition rules and state symbols at each loop are shown in Fig. 7.
This table together with the line graphs is generated automatically. We can save the dis-
played data as HTML format files (Fig. 8).

The resulting tree automaton accepts the secret message m, and thus, we know that the
protocol is not secure. Actually, the protocol allows the following security flaw: The intruder
eve first sends the tuple of E(K(alice), r), alice, eve to server. These elements are included in
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eve’s initial knowledge due to Assumptions 3–4. Then eve obtains E(K(eve), r) as a response
from server. By Assumptions 2–3, eve constructs D(D(K(eve), E(K(eve), r)), E(r,m)) that
gives rise to m, because of Rcrypt that is Assumption 1.

4 Diffie-Hellman Key-Exchange Protocol

The protocol illustrated below is called Diffie-Hellman key-exchange algorithm (e.g. Sec-
tion 22.1, [14]):

alice

(1) H(K(alice),r), r //

(3) E(H(H(K(bob),r),K(alice)),m) //
bob

(2) H(K(bob),r)oo

Figure 9. Diffie-Hellman key-exchange algorithm

In the figure H(x, y) stands for the composition of data x and y, that is an integer
yx (mod p where p is given) in the real situation. To simplify the property of H, we assume
in this model that H is implemented as H(x, y) = px+y (mod q where p, q are given). A
secret key of a principal x is denoted by K(x). The goal of this protocol is without losing the
secrecy to share a session key by exchanging some data between the initiator (alice in the
example) and the receiver (bob), and then to send from the initiator to receiver a message
encrypted by the session key. The protocol consists of the three steps: alice first chooses
a number r and sends it to bob together with an integer H(K(alice), r). We suppose that
no one else can retrieve K(alice) only from H(K(alice), r). At the second step bob returns
H(K(bob), r) to alice. Because of the exponentiation in the implementation of H, one can
assume that H is associative and commutative:

H(x,H(y, z)) = H(H(x, y), z) H(x, y) = H(y, x)

Due to the first two steps, alice generatesH(H(K(bob), r),K(alice)) by combiningH(K(bob),
r) and K(alice). Similarly, bob also generates H(H(K(alice), r),K(bob)) such that:

H(H(K(alice), r),K(bob)) =AC H(H(K(bob), r),K(alice)).

Hence bob obtain the message m as follows.
D(H(H(K(alice), r), K(bob)), E(H(H(K(bob), r), K(alice)),m)) =AC

D(H(H(K(bob), r), K(alice)), E(H(H(K(bob), r), K(alice)),m)) →Rcrypt m

The assumption of the protocol can be specified as the ACTAS code like in Fig. 10. In
this setting we suppose that (i) the intruder eve can wiretap the network channels, but
(ii) eve does not actively attack to the protocol. Even if the binary function symbol H is
associative and commutative, the AC-rewrite descendants can be computed by using the
same algorithm of [15], because H does not appear in rewrite rules. But since the left-hand
side of Rcrypt has multiple occurrences of the variable x, the intersection-emptiness problem
for AC-tree automata has to be dealt with in the algorithm. The intersection of AC-tree
automata can be computed in ACTAS efficiently. However, the resulting AC-tree automata
are no longer AC-regular in this efficient construction, and to solve the emptiness problem
for non-regular AC-tree automata is EXPSPACE-hard [11].

In fact, when computing the exact solution fully automatically, it is nearly non-termi-
nating computation. So we apply for this example the over-approximation algorithm (by
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1: [signature]
2: AC: h
3: const: alice,bob,eve,m,r
4: var: x,y
5:
6: [r-rule: R_crypt]
7: d(x,e(x,y)) -> y
8:
9: [t-rule(q): Assumption]
10: d(q,q) -> q
11: e(q,q) -> q
12: h(q,q) -> q
13:
14: alice -> q
15: bob -> q
16: eve -> q
17:
18: k(q_e) -> q
19: eve -> q_e

20: h(q_ka,q_r) -> q

21: k(q_a) -> q_ka

22: alice -> q_a

23: r -> q_r

24:

25: r -> q

26:

27: h(q_kb,q_r) -> q

28: k(q_b) -> q_kb

29: bob -> q_b

30:

31: e(q_kabr,q_m) -> q

32: h(q_kbr,q_ka) -> q_kabr

33: h(q_kb,q_r) -> q_kbr

34: m -> q_m

Figure 10. Diffie-Hellman key-exchange protocol (assuming wiretapping only)

setting Parameter 2 to be 0) and the under-approximation (by choosing appropriate pos-
itive integers for Parameters 2 and 3). Unfortunately, the over-approximated result, that
is an AC-tree automaton accepting some superset of eve’s obtainable knowledge, accepts
m. It does not mean security flaw of the protocol. But at the current implementation there
is no option to refine the over-approximated result. From the under-approximation results,
the security flaw of the protocol is not detected either.

Despite of the above experiment, we observe that this protocol example can be handled
in the AC-tree automata framework. Let A0/AC be the AC-tree automaton initially pro-
vided, and L(A0(q)/AC) a tree language that is accepted by A0/AC with the final state q.
Then, for each state symbols p and q of A0/AC, the intersection-emptiness of L(A0(p)/AC)
and L(A0(q)/AC) is solvable, because L(A0(p)/AC) is finite if p 6= q, where q is the fi-
nal state symbol of the AC-tree automaton in Fig. 10. Membership function in the system
assists us to perform the above test. This implies that all the possible combinations of p
and q are computable in reasonable time. Moreover, by using this result, we can easily
examine whether new transition rules are generated. In fact, no new transition rule can be
constructed for A0/AC and Rcrypt/AC. Therefore A0/AC is already the fixpoint, namely,
the protocol is secure against wiretapping.

Regarding the active attack by assuming impersonation, the security flaw of the protocol
is noted in [14].

Acknowledgments. The authors thank the three anonymous referees for their
numerous comments and suggestions to improve the early version of the paper.
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Abstract We present a low-level specification language used for describing real Internet security protocols.
Specifications are automatically generated by a compiler, from TLA-based high-level descriptions of the
protocols. The results are rule-based programs containing all the information needed for either implementing
the protocols, or verifying some security properties. This approach has already been applied to several well-
known Internet security protocols, and the generated programs have been successfully used for finding some
attacks.

1 Introduction

Internet is becoming everyday a more widely used medium for electronic commerce. This
development is hampered by the natural insecurity of communications, as it is not possible
to guarantee that some data exchanged is not listened by someone else, or even that it
really originated from the claimed sender. This lack of security leads to the development of
security protocols, that is small messages sequences, after which the author provides some
properties to the user, such as the correct identification of the users (called agents) and the
privacy of some data pieces.

There has been a significant amount of work toward the specification of security pro-
tocols in the recent years [23,1,17,7,19]. However, a large part of this work, including our
own, is applied only to toy protocols in the Alice&Bob notation, i.e. as a linear scenario
describing the messages exchanged.

Our main goal is to successfully handle complex protocols such as those under discussion
at the IETF [18]. To this end, a new High-Level Protocol Specification Language (HLPSL)
was developed in the AVISPA project, having in mind the constructions often found in
the specification of these protocols [8]. We have written a compiler transforming a protocol
specification in this language to a set of rewrite rules. We present in this article not the
compiler itself, but the encoding of high-level properties in rewrite rules. We believe that
rule-based systems are a natural framework to encode the properties encountered when
studying cryptographic protocols.
We do not discuss in this paper about verification methods. For more information concern-
ing them, see [12,10] for instance.

This paper is organized as follows: we first describe shortly the high-level specification
language (Section 2); in Section 3, we describe how the initial specification is translated into
a rule-based program, corresponding to a low-level specification; then, we list the examples
of real Internet security protocols that have already been successfully compiled (Section 4),
their rule-based specification being used by several verification tools. In the conclusion, we

? This work was partially funded by the Information Society Technologies programme of the European
Commission, Future and Emerging Technologies under the IST-2001-39252 AVISPA project, and the
RNTL 03V360 Prouvé project.
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compare our compiler with the MuCAPSL-MuCIL translator [13], based on the powerful
language MuCAPSL [20].

2 Specifying Protocols and Intruder

In this section, we first present our objectives concerning protocols specifications, recalling
what should be the properties of specification languages. Such objectives are achieved by the
use of two languages: a high-level language that we describe shortly (see [8] for a complete
description and semantics), to be used by protocol designers; and a low-level language
(described in a further section) to be used by engineers.

2.1 Specification Languages

Studying security protocols is a very important domain nowadays. This is often done in
a three steps process. First, protocols are specified in a high-level, easily understandable
language. Then, this specification is analyzed to ensure that there are no trivial errors. If
no flaws are found, the protocol is verified in a time-consuming last step. We are interested
in this paper in the translation from the high-level language used in the first step to a
language suitable for analysis.

A lot of high-level specification languages have been defined, some very simple (such as
those based on the Alice&Bob notation [7,19]) and some dedicated to a specific tool [17,23].
But all of them either have a very limited expressiveness, or need a high level of expertise,
or both.

Our aim in studying security protocols is based on the following objectives concerning
the specification language: we want to consider real Internet protocols and to define a
language that can be used by industrials; this language has to be able to express many
security properties and has to have a clear semantics; in addition, it has to provide a basis
for automated analysis.

These objectives are motivated by the fact that protocols specifications have to be used
as documentations: in general, protocols are described in long documents (for example
provided by the IETF); this makes them difficult to understand, and may lead to different
interpretations according to the objectives of the reader (to implement the protocol, to
verify it, or simply to understand it). Moreover, the underlying scientific foundations have
to be clear in a protocol specification. This is very important for knowing if the protocol is
easy to implement or not.

For summing up, the requirements for a high-level protocol specification language are:

• Simplicity and comprehension: specifications have to be easy to write, to read and to
understand.

• Flexibility: a modification in the protocol should not mean to rewrite the whole speci-
fication.

• Non-ambiguity: the semantics of the language should be clear enough for avoiding am-
biguous interpretations.

• Modularity: a specification has to be modular; this permits to share some modules
between several protocols, and possibly to hide some parts of the protocol.

• Expressiveness: this is the most difficult criteria to satisfy; it can be decomposed into
the following points:
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– Control flow: the language has to provide some primitives for controlling the recep-
tion and emission of messages, to describe a negotiation phase, for instance.

– Knowledge of the intruder and agents: the user has to be able to manage the knowl-
edge of the participants to the protocol, and that of the intruder.

– Cryptographic primitives: the language has to permit the use of fresh information,
such as nonces (numbers used once) or keys, of hash functions, and also of signatures.

– Complex initial states: sometimes, protocols do not start from scratch, and assume
that some preliminary actions have already been done; so the language has to permit
the use of complex initial states.

– Complex message types: in most languages messages are generally built with simple
primitives, such as encryption, decryption, pairing, but some more complex data
structures may be needed for describing internal data structures or messages of roles
(e.g. sets, lists, records).

– Algebraic properties: in some protocols, the mechanisms for encryption and decryp-
tion or for creating keys is details and involves the use of algebraic operators, such
as exclusive-or or exponentiation; such operators have to be recognized by the spec-
ification language, because they satisfy some properties that may be considered for
implementing the protocols.

Because none of the existing languages satisfies all these crucial requirements, we have
decided, with our partners of the AVISPA project (Siemens AG Münich, DIST Genova and
ETH Zürich), to define a new specification language.

2.2 An Expressive Specification Language

We will illustrate our new specification language [8] with the well-known Needham and
Schroeder Public Key (NSPK) protocol. This example is usually considered as very simple
and far away from real protocols. But the version that can be seen in most papers is a
simplified one. Our aim being to consider all the options that may rise during the execution
of a protocol, we will consider a more complex variant of the NSPK protocol: the NSPK Key
Server (NSPK-KS). This protocol is given as follows, using an Alice&Bob-based notation:

if A does not know KB ,
A→ S : A,B
S → A : {B,KB}K−1

S

A→ B : {NA, A}KB
if B does not know KA,

B → S : B,A
S → B : {A,KA}K−1

S

B → A : {NA, NB}KA
A→ B : {NB}KB

The main originality of this protocol is that agents A and B, needing to know the public
key of each other for running NSPK, can ask it to a server S if they do not already have it.
This means that some steps of the protocol are conditional.

Such a protocol is impossible to specify in other high-level dedicated protocol specifica-
tion languages, because none of them permits to easily define such guarded transitions.
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Modular specification using roles. Our specification language is modular: protocols
are not given as a sequence of messages, but as a set of roles. There are basic roles, each
one representing the behavior of one agent in the protocol. There are also composed roles,
representing the composition of other roles or their instantiations to be considered.
Informally, basic roles correspond to an Alice&Bob description with control; composed roles
correspond to the use of CSP-like operators.

In our example, there are three basic roles: Alice, initiator of the protocol and named
A; Bob, responder, named B; and Server, S.

Each role is an independent process, with external information given as parameter, and
a local environment.

role Server(S: agent, Ks: public key,
KeyMap: (agent.public key) set,
SND,RCV: channel (dy)) played by S def=

local A: agent, B: agent, Kb: public key
knowledge(S) = { inv(Ks) }
transition

step0. RCV(A’.B’) /\ in(B’.Kb’, KeyMap)
=|> SND({B’.Kb’}inv(Ks))

end role

The local environment is given by a list of local variables, and a list of knowledge (for
example, S knows the inverse of the public key Ks, i.e. the corresponding private key).

The messages are exchanged via channels (SND and RCV), parameterized by their level
of security that corresponds to the model of the intruder to be used for them: dy stands for
the standard Dolev-Yao model [15] (no specific protection); ota stands for the over-the-air
model (no diverted message). For a role, there may be several channels for sending and
receiving messages, depending on their security level and on the concerned agents.

Composed roles are used for describing how to combine roles: this is possible to run
roles in parallel or in sequence. For example, in the following NSPK role, Alice and Bob
roles are run in parallel, and in as many instances as required. The Server role does not
appear in this composed role because there will be only one, and it will be launched in
another composed role, in parallel with NSPK.

role NSPK(SC, RC, S SRV, R SRV: agent −> channel (dy),
Ks: public key,
Instances: (agent.agent.public key.public key) set,
KeySet: agent −> (agent.public key) set) def=

composition
/\ { in(A.B.Ka.Kb, Instances) }

Alice(A,B,Ka,Ks,KeySet(A),SC(A),RC(A),S SRV(A),R SRV(A))
/\ Bob(A,B,Kb,Ks,KeySet(B),SC(B),RC(B),S SRV(B),R SRV(B))

end role

Control flow: guarded transitions. The main part of a role is the description of a
transition system. Its originality is that transitions are not ordered: they are of the form
condition =|> action, where condition and action are multisets of facts; a transition can
be applied as soon as its condition is satisfied. So, in a role, several transitions can be
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applicable at the same time.
We illustrate the use of guarded transitions with the role Alice.

role Alice(A,B: agent, Ka,Ks: public key,
KeyRing: (agent.public key) set,
SND B,RCV B,SND S,RCV S: channel (dy)) played by A def=

local State: nat, Na: text(fresh),
Nb: text, Kb: public key

init State = 0
knowledge(A) = { inv(Ka) }
transition

step1a. State = 0
/\ in(B’.Kb’, KeyRing)
/\ RCV B(start)

=|> State’ = 2
/\ SND B({Na’.A}Kb’)

step1b. State = 0
/\ not(in(B.Kb’,KeyRing))
/\ RCV B(start)

=|> State’ = 1
/\ SND S(A.B)

step2. State = 1
/\ RCV S({B.Kb’}inv(Ks))

=|> State’ = 2
/\ KeyRing’ = cons(B.Kb’,KeyRing)
/\ SND B({Na’.A}Kb’)

step3. State = 2
/\ RCV B({Na.Nb’}Ka)

=|> State’ = 3
/\ SND B({Nb’}Kb)

end role

The condition can contain comparisons, Boolean expressions over lists or sets, messages
receptions. The action can contain messages sendings, assignments of variables.
A transition is a change of state, primed variables representing the values of the variables
in the next state. So primed variables can be assigned in the right-hand side of transitions.
However, if the new value of a variable is learned in the left-hand side of a transition (in
a received message, in a comparison, or in a set expression, for examples), then its primed
name is used (see for example step0 of role Server).

The definition of roles is based on a rich type system. Many types are available for
describing protocols: agent, channel, text, message, public key, symmetric key, Boolean,
integer, hash function, enumeration. Some variables of these types may be “fresh”, i.e. their
value is generated at running time; this happens when the primed variable appears only in
the right-hand side of a transition, not assigned.
This is also possible to use type constructors: function, pair, list, set. And some algebraic
operators can be used for representing cryptography properties: xor, exp.
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Verification of properties. In the specification, this is possible to precise a goal section,
indicating a list of properties to be checked. The supported properties are:

• secrecy: some information (keys, nonces, messages,. . . ) have to remain secret, i.e. an
intruder should not get this information;

• authentication: two roles identify each other w.r.t. an information that they send to
each other; this property exists in two versions: weak authentication and strong authen-
tication, the second one proposing a protection against the replay of a protocol.

These properties are kinds of macros, without the need to add some information in the
transitions of roles.
This is however possible to specify LTL formulas that will not be interpreted by the com-
piler, and to add some user-defined facts in the transitions that will be carried by the
compiler.

A more complete description of this high-level language and of its semantics as TLA
formulas is given in [8].

3 Towards a Rule-based Program

Specifications of protocols are compiled into a rule-based program. During this compilation
phase, the syntax and the semantics of the initial specification are verified. If some goals
are specified, the compiler can either generate one program containing all the properties to
be checked, or it can generate one program for each goal.

The generated program contains basically three parts: rules describing the intruder’s
behavior; rules describing role transitions and compositions1; the initial state, describing
the instances to be considered of the protocol.

All this information is divided in several files: a prelude file containing all the protocol
independent information, and at least one protocol specific file. These files represent a
complete and detailed low-level specification of the initial protocol, where all variables and
constants are typed: this is a rule-based program, a rule being of the form:

step rule name (list of variables involved) :=
left hand side => right hand side

The left-hand side and right-hand side of a rule are multisets of terms. So, the multiset
constructor ’.’ is associative and commutative. This permits to handle the non-determinism
when matching the current state of the protocol against the left-hand side of a rule. This
also permits to consider the run in parallel of several instances of the protocol [19].

3.1 General Information

The prelude file contains all the general information necessary for obtaining a self-contained
program. This information is divided into several sections that we are going to describe.

1 Note that currently we only consider parallel compositions; sequential compositions are accepted in the
hight-level specifications, but not yet converted into rules.
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Type symbols. The list of type names is given in this section.

section typeSymbols:
agent, text, symmetric key, public key, function, table,
message, fact, nat, set, protocol id

Signature. This section contains the subtyping information; for example, agents, keys and
nonces are subtypes of messages.

section signature:
message > agent
message > nonce
message > symmetric key
message > public key

In addition, each primitive used for constructing messages is declared, such as:

pair : message ∗ message −> message
crypt : message ∗ message −> message
scrypt : message ∗ message −> message
inv : message −> message
apply : message ∗ message −> message

corresponding to pair construction, asymmetric and symmetric encryption of a message
with a key, key inverse (this is a notation, not an applicable algorithm), and function ap-
plication to a message.
More advanced primitives are also declared, such as intruder’s knowledge, belonging con-
straints, and goal facts:

iknows : message −> fact
contains : message ∗ message −> fact
secret : message ∗ agent −> fact
witness : agent ∗ agent ∗ protocol id ∗ message −> fact

Declaration of variables. The type of each variable used in this prelude file (see the
following sections) is declared in this section.

section types:
F,K,M,M1,M2,M3 : message

Note that all of them are declared of type message for sake of generality. For example, K is
used as a key, but in case of symmetric encryption it could be a compound message.

Equational properties. Protocols specifications are often based on some hypotheses over
the message construction or the cryptography. This section permits to list the equational
properties considered. For example, messages are built by concatenating sub-messages,
forming tuples. But for a more simple representation in the rules, tuples will be repre-
sented by pairing; this choice is correct if pairing is associative.
Another example concerns the keys used for encrypting messages: given a public (resp. pri-
vate) key k, its corresponding private (resp. public) key is denoted inv(k); a consequence
is that the inverse of the inverse of a key is the key itself.
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section equations:
pair(M1,pair(M2,M3)) = pair(pair(M1,M2),M3)
inv(inv(K)) = K

For some protocols, the perfect cryptography hypothesis2 is relaxed by describing how
to generate some keys using the Diffie-Hellman exponentiation [21,9],

exp(exp(M1,M2),M3) = exp(exp(M1,M3),M2)
exp(exp(M1,M2),einv(M2)) = M1

or by describing the encryption mechanism using exclusive-or.

xor(M1,xor(M2,M3)) = xor(xor(M1,M2),M3)
xor(M1,M2) = xor(M2,M1)
xor(M,M) = 0
xor(0,M) = M

Intruder model. The intruder is described by a set of messages that it knows and by
rules over this set. We describe the behavior of an intruder, following the standard Dolev-
Yao model [15], independently of the protocol considered. This general behavior is first the
ability to generate messages from its knowledge:

section intruder:
step gen pair (M1,M2) :=

iknows(M1).iknows(M2) => iknows(pair(M1,M2))
step gen crypt (M1,M2) :=

iknows(K).iknows(M) => iknows(crypt(K,M))
step gen scrypt (M1,M2) :=

iknows(K).iknows(M) => iknows(scrypt(K,M))
step gen apply (M1,M2) :=

iknows(F).iknows(M) => iknows(apply(F,M))

The intruder may also analyze messages in its knowledge, for trying to get new infor-
mation by decomposing them, if possible:

step ana pair (M1,M2) :=
iknows(pair(M1,M2)) => iknows(M1).iknows(M2)

step ana crypt (K,M) :=
iknows(crypt(K,M)).iknows(inv(K)) => iknows(M)

step ana scrypt (K,M) :=
iknows(scrypt(K,M)).iknows(K) => iknows(M)

Finally, the intruder is able to generate fresh information. This is described by the
following rule, where the left-hand side is empty, the right-hand side corresponds to the
addition of a message M in the intruder’s knowledge, and the arrow of the rule contains
the information that M has to be generated at running time: its value has to be an unused
value of the type of M.

step generate (M) :=
=[exists M]=> iknows(M)

All this information in independent of the protocol to be considered. This independence
guarantees an objective and general description of the intruder’s behavior.

2 An encrypted message can only be decrypted by the adequate key.
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3.2 Protocol Information

We describe in this section how a high-level specification is translated into a rule-based
program, and illustrate it with the NSPK-KS protocol.

The high-level specification of a protocol is mainly a list of roles of two kinds: basic
roles, each one representing the behavior of a participant; composed roles, describing the
environment of the basic roles, i.e. how to compose them and which instantiations to con-
sider.

In the resulting program, a basic role, which is initially presented as a module, is then
considered as a state. The environment roles will permit us to generate initial role states;
the transitions in a basic role will describe how to change the state of that role.
What was the local environment of a basic role becomes a list of parameters of the state.
However, in the current version of the compiler, only one kind of channels is considered:
channel on which the Dolev-Yao model of the intruder is applied. So, for avoiding use-
less complex notation in the generated rules, all sent messages are directly added to the
knowledge of the intruder (iknows(. . . )).

Signature. The generated program contains a section with the signature of each role state
primitive, representing the internal data structure of the role. Note that the first argument
of a role state is the name of its player. This information may be useful for tools that have
to use this program, in particular if they want to manage the knowledge of the agents.

section signature:
state Bob: agent * agent * public key * public key * set * nat * text * text

* public key * nat −> fact
state Alice: agent * agent * public key * public key * set * nat * text * text

* public key * nat −> fact
state Server: agent * public key * set * agent * agent * public key * nat
−> fact

In those role states, natural numbers are used as labels for distinguishing steps, and
they are also used for ensuring the uniqueness of agents.

Declarations. Then, all the variables and constants used in the program are declared.
Note that, as in the high-level language, variables always start with a capital letter, and
constants with a small letter or with a digit.

section types:
nb, na : protocol id
kb, ka, ks, ki, Ka, Kb, Ks, Dummy Ka, Dummy Kb, dummy pk : public key
CID, CID2, CID1, State, 0, 1, 2, 3, 4, 5, 6 : nat
Nb, Na, Dummy Nb, Dummy Na, dummy nonce : text
MGoal, KeySet, start : message
AGoal, b, a, s, A, B, S, i, Dummy B, Dummy A, dummy agent : agent
Instances, KeyMap, KeyRing, local 62, local 89, local 104, local 111, local 116 : set

Initialization. The initialization of the protocol is put in a specific section. It contains
the initial states of basic roles, obtained by flattening the composed roles; note that some
parameters of those states correspond to variables that were declared locally (and not
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initialized) in the roles, so they are initialized with specific constants (dummy ...). The
knowledge of the intruder is also initialized in this section, using the knowledge declared
for it in the composed roles, and the knowledge necessary for playing its assigned roles in
the instantiations. The start message is also put in the intruder’s knowledge.
A state of the protocol is a set of roles states and the set of knowledge of the intruder.
Note that in the generated program, the intruder is never assigned as player of a state role.
This is due to the Dolev-Yao intruder model: each message sent by an agent is directly
added to the knowledge of the intruder; so, an agent gets a message by taking it in the
intruder’s knowledge; and as the intruder is able to decompose and compose messages, it
can build messages it is supposed to build when playing a honest role.

section inits:
initial state init1 :=

contains(pair(i,ki),local 62).iknows(local 62).
iknows(ki).iknows(inv(ki)).
iknows(ks).iknows(a).iknows(i).
iknows(start).
state Server(s,ks,local 89,dummy agent,dummy agent,dummy pk,2).
state Alice(a,b,ka,ks,local 104,0,dummy nonce,dummy nonce,dummy pk,4).
state Bob(b,a,kb,ks,local 111,0,dummy nonce,dummy nonce,dummy pk,5).
state Alice(a,i,ka,ks,local 116,0,dummy nonce,dummy nonce,dummy pk,6).
contains(pair(a,ka),local 89).contains(pair(b,kb),local 89).
contains(pair(i,ki),local 89).
contains(pair(a,ka),local 104).
contains(pair(b,kb),local 111).
contains(pair(a,ka),local 116)

The initial state is therefore a term corresponding to the set of the initial role states
and the set of the intruder’s initial knowledge.

In the example given above, only constants are used. However, in the high-level specifi-
cation, variables can be used for describing that some information is shared by several role
states. For example, a will play twice the role Alice, and a variable could have been used
for storing its key set. The translation of this in the initialization section would have been
to used only one constant instead of local 104 and local 116.

Rules. The main section of the generated program is the section of rules. Each rule corre-
spond to a state transition for one of the basic roles. For example, in NSPK-KS, the server
has only one possible transition:

section rules:
step step 0 (S,Ks,KeyMap,Dummy A,Dummy B,Dummy Kb,A,B,Kb,CID) :=

state Server(S,Ks,KeyMap,Dummy A,Dummy B,Dummy Kb,CID).
iknows(pair(A,B)).
contains(pair(B,Kb),KeyMap)
=>
state Server(S,Ks,KeyMap,A,B,Kb,CID).
iknows(crypt(inv(Ks),pair(B,Kb)))

In each rule, the left-hand side contains the general pattern of the role state and the
facts representing conditions for firing the transition; the awaited message has to be in
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the intruder’s knowledge. After automatic diversion, the reply is immediately put into the
intruder’s knowledge. So, in the right-hand side, there is the new role state plus some facts
describing new knowledge for the intruder or the modification of the value of a complex
variable (a set, for example).

The translation of step1b and step2 of role Alice generates the following two rules:

step step 2 (A,B,Ka,Ks,KeyRing,Na,Nb,Dummy Kb,CID) :=
state Alice(A,B,Ka,Ks,KeyRing,0,Na,Nb,Dummy Kb,CID).
iknows(start).
not(contains(pair(B,Kb),KeyRing))
=>
state Alice(A,B,Ka,Ks,KeyRing,1,Na,Nb,Dummy Kb,CID).
iknows(pair(A,B))

step step 3 (A,B,Ka,Ks,KeyRing,Dummy Na,Nb,Dummy Kb,Na,Kb,CID) :=
state Alice(A,B,Ka,Ks,KeyRing,1,Dummy Na,Nb,Dummy Kb,CID).
iknows(crypt(inv(Ks),pair(B,Kb)))
=[exists Na]=>
state Alice(A,B,Ka,Ks,KeyRing,2,Na,Nb,Kb,CID).
iknows(crypt(Kb,pair(Na,A))).
contains(pair(B,Kb),KeyRing).
secret(Na,A).secret(Na,B)

In the last one, the nonce Na has to be created at running time (this is a fresh infor-
mation). The notation =[exists Na]=> means that a fresh value will have to be generated
each time that this rule is applied.
In that rule, there are also terms for indicating that Na is supposed to remain secret, only
shared by agents A and B. This information has been added because the secrecy of Na has
been required as goal property in the high-level specification.
In both transitions, the old state contains some variables named Dummy Kb, for example.
Such variables capture the old value of the corresponding variable (e.g. Kb) when either
a new value will be assigned in the new state (e.g. in step 3), or when the name of this
variable has to be used in the transition without considering its value (e.g. in step 2).

Goals. The last section is devoted to the description of goal properties. For example, if
the secrecy of a term has to be checked, the goal section will be:

section goals:
goal secrecy of (MGoal,AGoal) :=

secret(MGoal,AGoal).
iknows(MGoal).
not(secret(MGoal,i))

This description means that the secrecy property is not satisfied if a message MGoal, declared
as a secret shared by agent AGoal, is in the intruder’s knowledge, and the intruder (whose
name is i) is not supposed to share it.

Similar goals are automatically generated for describing authentication properties.
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4 Use of the Resulting Rule-based Programs

In this section, we list some of the protocols that we have already been able to analyze with
our compiler. We also cite the tools that are using the generated rule-based programs for
trying to find some attacks.
Note that in this paper, we have not illustrated our compiler with one of the industrial
security protocols cited in the following because most of them are complex, involving many
roles. The NSPK-KS protocol has the advantage of being based on a protocol known by
everybody, but this variant is an excellent example for illustrating the importance of the
environment of each agent, and of the control that has to be set.
We also do not list the standard toy protocols of the Clark-Jacob library [11]; they can of
course be considered by our compiler.

4.1 Already Handled Protocols

In order to assess the compilation process, we have built a list of protocols from various
sources. The aim here is to demonstrate that our compiler is able to handle a wide variety of
protocols, known as important in different areas. We have selected both low-level protocols,
such as TLS, as well as high-level ones, such as UMTS-AKA. There are also protocols
already recommended by the IETF as well as protocols still under work.

To handle these protocols does not mean just to be able to specify them in our high-
level language. What we have detailed in the previous sections is that we have defined
a methodology for analyzing such specifications and for translating them into low-level
specifications. All the subsequently given protocols have been automatically compiled, their
specification being as verbatim as possible from their informal definition.

Core security mechanism [6]. Transport Layer Security (TLS) [14]. This two-part protocol
aims at providing low-level privacy and data integrity. We have currently modeled and
compiled the TLS record protocol.

Useful but not core mechanism [6]. Kerberos, ChapV2. The first one is well-spread and
well-known. ChapV2 is an extension by Microsoft of the CHAP protocol used for PPP
authentication.

Authentication mechanism for the Internet. In the survey [22], several protocols were rec-
ommended for authentication with password over the Internet. Among these, we have al-
ready analyzed the protocols EKE, EKE2, SPEKE and the SRP protocols. Among them,
the *EKE protocol family is a family of zero-knowledge protocols for authentication on a
password. We have also successfully analyzed the UMTS-AKA (Authentication and Key
Agreement UMTS) protocol. The SRP protocol was designed by Siemens and presented at
the IETF.

Protocols under development. We also work, in conjunction with Siemens, on the analysis of
protocols under development. Among these, we have already analyzed the AAA MobileIP
protocol, which is a sub-protocol of Mobile IP. See [16] for a description of the protocol
its goal. Note that the Mobile IP protocol is a collection of protocols in development since
1998. We hope to contribute to this development by speeding up part of its analysis. We
have also analyzed the IKEv2 main protocol.
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Other sources. Finally, we have considered protocols from different sources, such as the
ISO/IEC public key protocols. We have also analyzed the two party signature RSA proto-
col [5].

4.2 Verifying the Rule-based Programs

The programs that have been generated for the protocols listed in the previous section have
been studied by several tools:

• OFMC [4]: an on-the-fly model checker developed at ETH, Zürich;
• SATMC [3]: a SAT-based model checker developed at DIST, Genova;
• CL-Atse [24]: a constraint logic-based protocol analyzer developed at LORIA, Nancy.

The first results obtained are still preliminary ones, but some attacks have been found on
several protocols, some of them being new ones (see [8]).

This connection of three very different tools, done for the AVISPA project, demon-
strates the flexibility and expressiveness of the rule-based specifications of protocols that
we generate automatically.

5 Conclusion

We have presented in this paper a low-level framework for expressing protocol specifica-
tions. The security protocols are initially described with a simple, flexible, modular, non-
ambiguous and expressive high-level language [8]. The generated specifications are rule-
based programs with very detailed information: a full typing of variables, constants and
primitives; a precise description of role transitions and of the initial state; the independent
description of the intruder’s model.

The generated rules permit to consider both the parallelism of the agents, and the
non-determinism when applying a rule [19].

The compiler described is written in OCaml and documented with OCamlWeb (140
pages). It has been defined for the AVISPA project, for considering real industrial Internet
security protocols. The first experiments generate very good results, so we are going to con-
tinue its development for being able to handle even more protocols. This is a considerable
improvement compared to the first compiler that was realized for the AVISS project [2],
where only simple protocols could be considered [11].

The only other known attempt to go beyond Alice&Bob notation in a clear high-level
language is the MuCAPSL-MuCil translator [13]. Initial specifications are written in Mu-
CAPSL [20], a new version of the CAPSL language [7] dedicated to the specification of
group communication protocols. While CAPSL was an Alice&Bob notation language, Mu-
CAPSL is completely different: it is based on roles, and provides a large scale of primitives
and data structures; each role is typed (a type contains some attributes, functions, . . . ) and
contains a sequence of instructions, including DO. . . UNTIL loops.
Comparing MuCAPSL with our specification language, this is clear that MuCAPSL offers
many more data structures, primitives and instructions. However, it is unclear how to spec-
ify that some roles share some information, or how many instances of a role are created,
since there is no environment role and roles do not have parameters. In addition, with our
language, the transitions are guarded and are not ordered: their application is not deter-
ministic, and transitions can be applied several times if possible; this is not the case with
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MuCAPSL. So, this is not clear how the example given in this paper, NSPK Key Server,
could be specified in MuCAPSL. About properties to check, MuCAPSL, like our language,
proposes secrecy and authentication.
The MuCAPSL-MuCIL translator generates a specification in MuCIL that contains the
declaration of the used symbols, and a multiset of conditional rewriting rules.

For concluding, MuCAPSL-MuCIL and our compiler have both their own advantages,
and if our specification language is more simple, this is because we have designed it with
the objective to provide it to industrial partners. It is powerful enough for specifying rather
easily most of the Internet security protocols. And the aim of our compiler is to provide rule-
based specifications of protocols to industrials for helping them to implement the protocols
that they design, and also for verifying those protocols, by plugging any kind of verification
tool, as it has already been done with AVISPA for three very different tools.

Acknowledgements: we thank the referees for their relevant remarks that have helped us to
improve this paper.
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Abstract The chemical reaction metaphor describes computation in terms of a chemical solution in which
molecules interact freely according to reaction rules. Chemical models use the multiset as their basic data
structure. Computation proceeds by rewritings of the multiset which consume elements according to reaction
conditions and produce new elements according to specific transformation rules. Since the introduction of
Gamma in the mid-eighties, many other chemical formalisms have been proposed such as the Cham, the
P-systems and various higher-order extensions. The main objective of this paper is to identify a basic
calculus containing the very essence of the chemical paradigm and from which extensions can be derived
and compared to existing chemical models.

1 Introduction

The chemical reaction metaphor has been discussed in various occasions in the literature.
This metaphor describes computation in terms of a chemical solution in which molecules
(representing data) interact freely according to reaction rules. Chemical models use the
multiset as their basic data structure. Computation proceeds by rewritings of the multi-
set which consume elements according to reaction conditions and produce new elements
according to specific transformation rules.

To the best of our knowledge, the Gamma formalism was the first “chemical model of
computation” proposed as early as in 1986 [2] and later extended in [3]. A Gamma program
is a collection of reaction rules acting on a multiset of basic elements. A reaction rule is
made of a condition and an action. Execution proceeds by replacing elements satisfying the
reaction condition by the elements specified by the action. The result of a Gamma program
is obtained when a stable state is reached that is to say when no more reactions can take
place. Figure 1 gives three short examples illustrating the Gamma style of programming.
The reaction max computes the maximum element of a non empty set. The reaction replaces

max = replace x, y by x if x > y
primes = replace x, y by y if multiple(x, y)
maj = replace x, y by{} if x 6= y

Figure 1. Examples of Gamma programs

any couple of elements x and y such that x > y by x. This process goes on till a stable
state is reached, that is to say, when only the maximum element remains. The reaction
primes computes the prime numbers lower or equal to a given number N when applied
to the multiset of all numbers between 2 and N (multiple(x, y) is true if and only if x is
multiple of y). The majority element of a multiset is an element which occurs more than
card(M)/2 times in the multiset. Assuming that such an element exists, the reaction maj
yields a multiset which only contains instances of the majority element just by removing
pairs of distinct elements. Let us emphasize the conciseness and elegance of these programs.
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Nothing had to be said about the order of evaluation of the reactions. If several disjoint
pairs of elements satisfy the condition, the reactions can be performed in parallel.

Gamma makes it possible to express programs without artificial sequentiality. By ar-
tificial, we mean sequentiality only imposed by the computation model and unrelated to
the logic of the program. This allows the programmer to describe programs in a very ab-
stract way. In some sense, one can say that Gamma programs express the very idea of an
algorithm without any unnecessary linguistic idiosyncrasies. The interested reader may find
in [3] a long series of examples (string processing problems, graph problems, geometry prob-
lems, . . . ) illustrating the Gamma style of programming and in [1] a review of contributions
related to the chemical reaction model.

Later, the idea was developed further into the Cham [4], higher-order multiset rewrit-
ing [13], the hmm-calculus [8], the P-systems [14], etc. Although built on the same basic
paradigm, these proposals have different properties and different expressive powers. This
article is an attempt to identify the basic principles behind chemical models.

In Section 2, we exhibit a minimal chemical calculus, from which all other “chemical
models” can be obtained by addition of well-chosen features. Basically, this minimal calcu-
lus, incorporates the γ-reduction which expresses the very essence of the chemical reaction
and the associativity and commutativity rules which express the basic properties of chemical
solutions. This calculus is then enriched in Section 3 with conditional reactions and, further,
the possibility of rewriting atomically several molecules. These extensions give rise to four
possible chemical calculi. Section 4 shows how existing chemical models relate and compare
to the basic calculi presented previously. Section 5 suggests several research directions and
concludes.

2 A minimal chemical calculus

In this section, we introduce a higher-order calculus, the γ0-calculus, that can be seen as a
formal and minimal basis for the chemical paradigm (in much the same way as the λ-calculus
is the formal basis of the functional paradigm).

2.1 Syntax

The fundamental data structure of the γ0-calculus is the multiset (a collection which may
contain several copies of the same element). Elements can move freely inside the multiset
and react together to produce new elements. Computation can be seen either intuitively, as
chemical reactions of elements agitated by Brownian motion, or formally, as higher-order
associative and commutative (AC) rewritings of multisets.

The syntax of γ0-terms (also called molecules) is given in Figure 2. A γ-abstraction is

M ::= x ; variable
| (γ〈x〉.M) ; γ-abstraction
| (M1,M2) ; multiset
| 〈M〉 ; solution

Figure 2. Syntax of γ0-molecules

a reactive molecule which consumes a molecule (its argument) and produces a new one

99



(its body). Molecules are composed using the AC multiset constructor “,”. A solution
encapsulates molecules (e.g., multiset) and keeps them separate. It serves to control and
isolate reactions. To avoid notational clutter, we omit outermost parentheses, parentheses
in multisets and we assume that γ-abstractions associate to the right. For example, the
γ-abstraction (γ〈x〉.(x, (x, (γ〈y〉.y)))) will be written γ〈x〉.x, x, γ〈y〉.y.

The γ0-calculus bears clear similarities with the λ-calculus. They both rely on the no-
tions of (free and bound) variable, abstraction and application. A λ-abstraction and a γ-
abstraction both specify a higher-order rewrite rule. However, λ-terms are tree-like whereas
the AC nature of the application operator “,” makes γ0-terms multiset-like. Associativity
and commutativity formalizes Brownian motion and make the notion of solution necessary,
if only to distinguish between a function and its argument.

2.2 Semantics

The conversion rules and the reduction rule of the γ0-calculus are gathered in Figure 3.
Chemical reactions are represented by a single rewrite rule, the γ-reduction, which applies

(γ〈x〉.M), 〈N〉 −→γ M [x := N ] if Inert(N) ∨Hidden(x,M) ; γ-reduction

γ〈x〉.M ≡ γ〈y〉.M [x := y] with y fresh ; α-conversion
M1,M2 ≡ M2,M1 ; commutativity
M1, (M2,M3) ≡ (M1,M2),M3 ; associativity

Figure 3. Rules of the γ0-calculus

a γ-abstraction to a solution. A molecule (γ〈x〉.M), 〈N〉 can be reduced only if
Inert(N): the content N of the solution argument is a closed term made exclusively of
γ-abstractions or exclusively of solutions (which may be active),

or Hidden(x,M): the variable x occurs in M only as 〈x〉. Therefore 〈N〉 can be active
since no access is done to its contents.

So, a molecule can be extracted from its enclosing solution only when it has reached an
inert state. This is an important restriction that permits the ordering of rewritings. Without
this restriction, the contents of a solution could be extracted in any state and the solution
construct would lose its purpose.

Consider, for example, the following molecules:

ω ≡ γ〈x〉.x, 〈x〉
Ω ≡ ω, 〈ω〉
I ≡ γ〈x〉.〈x〉

Clearly, Ω is an always active (non terminating) molecule and I an inert molecule (the
identity function in normal form). The molecule 〈Ω〉, 〈I〉, γ〈x〉.γ〈y〉.x reduces as follows:

〈Ω〉, 〈I〉, γ〈x〉.γ〈y〉.x −→ 〈Ω〉, γ〈y〉.I −→ I

The first reduction is the only one possible: the γ-abstraction extracts x from its solution
and 〈I〉 is the only inert molecule (Inert(I)∧¬Hidden(x, γ〈y〉.x)). The second reduction is
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possible only because the active solution 〈Ω〉 is not extracted but removed (¬Inert(Ω) ∧
Hidden(y, I))

A molecule is in normal form if all its molecules are inert. We say that two molecules
M1 and M2 are syntactically equivalent (and we write M1 ≡M2), if they can be rewritten
into each other using α-conversion and AC rules.

As usual, rules can be applied in parallel as long as they apply to disjoint redexes. So,
there can be several reactions at the same time for disjoint sub-terms and/or within nested
solutions and/or inside γ-abstractions.

2.3 Expressivity

The γ0-calculus is more expressive than the λ-calculus since it can easily express non-
deterministic programs. For example, let A and B two distinct normal forms:

(γ〈x〉.γ〈y〉.x), 〈A〉, 〈B〉 ≡ (γ〈x〉.γ〈y〉.x), 〈B〉, 〈A〉
↓γ ↓γ

(γ〈y〉.A), 〈B〉 (γ〈y〉.B), 〈A〉
↓γ ↓γ
A 6≡ B

On the other hand, the λ-calculus can easily be encoded within the γ0-calculus. Figure 4
gives here a possible encoding for the strict λ-calculus using the function [[·]] which takes
a λ-term and returns its translation as a γ-term. The standard call-by-name λ-calculus

[[x]]
def
= x

[[λx.E]]
def
= γ〈x〉.[[E]]

[[E1 E2]]
def
= 〈[[E1]]〉, γ〈f〉.f, 〈[[E2]]〉

Figure 4. Translating λ-terms into γ0-molecules

can also be encoded but the translation is slightly more involved. This comes from the
strict nature of the γ0-calculus which enforces the argument to be inert/reduced before the
reaction can take place.

As in the λ-calculus, recursion, integers, booleans, data structures, arithmetic, logical
and comparison operators can be defined within the γ0-calculus. We do not give their precise
definitions in this article since they are similar to their definitions as λ-terms. From now on,
we will give our examples assuming that these constructs have been defined. In particular,
we will use pairs (written a:b) and recursive definitions to define n-shot abstractions (which
re-introduce themselves after each reaction). For example, the molecule performing the
product of all integers in its solution can be defined as:

pi = γ〈x〉.γ〈y〉.〈x ∗ y〉, pi

The reactive molecule pi takes two integers and replaces them by their product and a copy
of itself. For example:

pi, 〈2〉, 〈3〉, 〈2〉 −→γ . . . −→γ pi, 〈12〉 −→γ γ〈y〉.〈12 ∗ y〉, pi
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3 Two fundamental extensions

The γ0-calculus is a quite expressive higher-order calculus. However, compared to the orig-
inal Gamma [3] and other chemical models [8,13,14], it lacks two fundamental features:

• Reaction condition. In Gamma, reactions are guarded by a condition that must be
fulfilled in order to apply them. Compared to γ0 where inertia and termination are
described syntactically, conditional reactions give these notions a semantic nature.

• Atomic capture. In Gamma, any fixed number of elements can take part in a reaction.
Compared to a γ0-abstraction which reacts with one element at a time, a n-ary reaction
takes atomically n elements which cannot take part in any other reaction at the same
time.

These two extensions are orthogonal and enhance greatly the expressivity of chemical cal-
culi. Strictly speaking, these features do not permit to express a larger class of programs
(the γ0-calculus is Turing-complete). But, they do add expressivity in the sense that they are
not syntactic sugar and can only be expressed using a global re-organization of programs.

3.1 Conditional reaction

In the γc-calculus, abstractions hold conditions. The condition of an abstraction must be
satisfied before the reaction occurs. The syntax of the γc molecules is given in Figure 5.
The reaction condition is modeled by M0 which must evaluate to a special constant true

M ::= x ; variable
| γ〈x〉bM0c.M1 ; conditional γ-abstraction
| (M1,M2) ; multiset
| 〈M〉 ; solution

Figure 5. Syntax of γc-molecules

before the reaction occurs. The γc-reduction is formalized as follows:

Inert(N) ∨Hidden(x, (M0,M1)) M0[x := N ]
∗−→c true

(γ〈x〉bM0c.M1), 〈N〉 −→cM1[x := N ]

where the molecule true is a given constant (e.g., γ〈x〉bxc.x).

Clearly, the γc-calculus embeds the γ0-calculus: the abstractions of γ0 correspond to
the abstractions of γc with the condition true. Inert γc-molecules are molecules where no
solution satisfies the reaction condition of any γ-abstraction. So, as opposed to γ0, inert
molecules in the γc-calculus can mix solutions and abstractions as long as no condition is
satisfied. Inertia, as well as termination, becomes a semantic notion.

Consider the task of ceiling a collection of integers by 9. This can be expressed in γc by
the following recursive molecule:

ceil = γ〈x〉bx > 9c.〈9〉, ceil

and, for example,

ceil, 〈10〉, 〈3〉, 〈11〉 ∗−→γ ceil, 〈9〉, 〈3〉, 〈9〉
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Conditions can be used to encode type checking and pattern-matching. For example,
assuming pairs (x:y) (with the access functions Fst and Snd ) and a tag (constant) Int , we
can encode typed integers by Int :x. A γ-abstraction matching an integer as argument can
be written as:

γ〈i〉bFst i = Int ∧M0c.M1

It is easy to define a convenient and expressive pattern language to match integers, booleans,
solutions, γ-abstractions, etc. For example, the γ-abstraction above could also be written:

γ(Int :x)bM0c.M1

There is no simple and local way to encode γc in γ0. The encoding implies a global
reorganization of γ0 programs. A possible encoding consists in a γ0 program interpreting γc
programs. All γc elements are isolated in solutions with their description (type, value) and
γ0-abstractions simulate the semantics of γc (this can be done since γ0 is Turing-complete).
The algorithm must check that the reaction condition of all γ-abstractions is false before it
terminates.

3.2 Atomic capture

In the γn-calculus, abstractions can capture several elements atomically. The syntax of the
molecules is given in Figure 6. The n-ary abstraction can occur if it finds n solutions, oth-

M ::= x ; variable
| γ(〈x1〉, . . . , 〈xn〉).M ; n-ary γ-abstraction
| (M1,M2) ; multiset
| 〈M〉 ; solution

Figure 6. Syntax of γn-molecules

erwise no reaction takes place. Of course, an element cannot participate in several reactions
simultaneously (mutual exclusion). The γc-reduction is formalized as follows:

∀ 1 ≤ i ≤ n Inert(Ni) ∨Hidden(xi,M)

(γ(〈x1〉, . . . , 〈xn〉).M), 〈N1〉, . . . , 〈Nn〉 −→nM [xi := Ni]

For example, the addition and product of a collection of integers can be defined as binary
recursive γ-abstractions:

sigma = γ(〈x〉, 〈y〉).〈x+ y〉, sigma
pi = γ(〈x〉, 〈y〉).〈x ∗ y〉, pi

The following example describes one possible execution where one addition and one multi-
plication have been performed (many other executions are possible):

sigma, pi, 〈2〉, 〈3〉, 〈4〉 ∗−→n 〈20〉, sigma, pi

Consider the previous example but with sigma and pi defined as unary γ0-abstractions.
When there remains only two elements, sigma and pi could each take one element and
would keep waiting for a second. These conflicts (which can also be seen as deadlocks) can
only be avoided with the ability of taking several elements atomically.
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This feature is not syntactic sugar. As with γc, a possible way to encode the atomic
capture, is to isolate all γn elements in solutions and to emulate using γ0 reactions the
semantics of γn. Abstractions of γn are encoded with their arity and the emulator should
test the presence of enough elements before triggering the reaction.

4 Chemical calculi and related chemical models

The previous extensions are orthogonal and can be combined. For example, the γ0-calculus
can be extended using reaction conditions and atomicity capture. We denote the resulting
calculus γcn. The γ-calculi are depicted in Figure 7 where arrows stand for “can be extended
into” or “is less expressive than”. In the following, we relate well-known chemical models
to γ0 and γcn.

γcn

γc

??���������
γn

__?????????

γ0

__?????????

??���������

Figure 7. γ-calculi.

4.1 The γ0-calculus and related models

Our minimal chemical calculus is quite close to Berry and Boudol’s concurrent λ-calculus
(referred to here as the γbb-calculus) introduced after the chemical abstract machine (Cham)
in [4]. The γbb-calculus relies also on variables, abstractions, an AC application operator and
solutions. However, to distinguish between the γ-abstraction and its argument, it adds the
notion of positive ions (denoted M+). The γ-abstractions are negative ions (denoted x−M)
which can react only with positive ions:

β-reaction: (x−M), N+ →M [x := N ]

In fact, no reaction can occur within a positive ion and so arguments are passed unchanged
to abstractions. Furthermore, an additional reduction law, the hatching rule, extracts an
inert molecule M from a solution 〈M〉:

hatching: 〈W 〉
 W if W is inert

In the γ0-calculus, these two notions are replaced by the strict γ-reduction. In particular,
hatching can be written explicitly as

(γ〈x〉.x), 〈M〉

which extracts M from its solution when it becomes inert. Even if the γ0-calculus looks
simpler than the γbb-calculus, it seems that they cannot be translated easily into each other
(e.g., by a translation defined on the syntax rules). They appear to be call-by-value (γ0)
and call-by-name (γbb) versions of similar ideas.
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4.2 The γcn-calculus and related models

In the γcn-calculus, abstractions have a reaction condition and the ability to take several
molecules atomically. Their syntax becomes:

γ(〈x1〉, . . . , 〈xn〉)bM0c.M1

The associated reduction rule mixes γc-reduction and γn-reduction :

∀ 1 ≤ i ≤ n Inert(Ni) ∨Hidden(xi, (C,M)) C[xi := Ni]
∗−→cn true

(γ(〈x1〉, . . . , 〈xn〉)bCc.M), 〈N1〉, . . . , 〈Nn〉 −→cnM [xi := Ni]

The γcn model cumulates the expressive power of γc and γn. For example, the dining
philosophers problem can be expressed in γcn as follows:

Eat = γ(〈Fork:f1〉, 〈Fork:f2〉)bf2 = f1 + 1 mod Nc.〈Phi:f1〉,Eat
Think = γ(〈Phi:f〉)btruec.〈Fork:f〉, 〈Fork:(f + 1 mod N)〉,Think

Initially the multiset contains only forks and the two recursive molecules. The Eat reaction
looks for two adjacent forks 〈Fork:fi〉 and “produces” an eating philosopher 〈Phi:f〉. This
reaction needs the expressive powers of γn and γc: the two forks have to be adjacent (reaction
condition of γc) and should be taken simultaneously (atomicity of γn) to prevent deadlocks.
The Think reaction “transforms” an eating philosopher into two available forks.

Most of the existing chemical models have reaction conditions and the ability to take
several molecules atomically. They are closely related to γcn even when they are first-order
languages. We present here two first-order models (Gamma and the Cham) and higher-order
extensions (higher-order multiset rewriting and the hmm-calculus).

Gamma To the best of our knowledge, Gamma [2,3] is the first chemical model. It consists
in a single multiset containing basic inactive molecules and external, conditional and n-ary
reactions. Reactions are n-shot: they are applied until no reaction can take place. They are
first-order: they are not part of the multiset and cannot be taken as argument or returned
as result. Moreover, there is no nested solutions. Even if sub-solutions can be encoded, there
is no notion of inertia in Gamma (only global termination). A standard Gamma program is
easily expressed as a γcn-molecule made of a solution (inert because without any abstrac-
tion) representing the multiset and a collection of recursive γ-abstractions representing the
reactions. Gamma has inspired many extensions (e.g., composition operators [12]) and other
chemical models. Most of these extensions and models remain related to γcn.

The Chemical Abstract Machines The chemical abstract machine [4] (Cham) is a
chemical approach introduced to describe concurrent computations without explicit control.
It started from Gamma and added many features such as membranes, (sub)solutions, inertia
and airlocks. Like Gamma, reactions are n-ary and n-shot rewrite rules which are not part
of the multisets. The selection pattern in the left-hand side of rewrite rules can include
constants which is a form of reaction condition. For example, in [4], the description of the
operational semantics of the TCCS and CCS calculi contains a cleanup rule (0 ⇀) which
removes molecules equal to 0. The Cham would be equivalent to γcn if it was higher-order.
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Higher-order extensions A first higher-order extension of Gamma has been proposed
in [13]. The definition of Gamma involves two different kinds of terms: the program (set
of rewrite rules) and multisets. The main extension of higher-order Gamma consists in
unifying these two categories of expression into a single notion of configuration. A configu-
ration contains a program and a list of named multisets. It is denoted by [Prog, V ar1 =
Multiset1, . . . , V arn = Multisetn]. The program Prog is a rewrite rule of the multisets
(named V ari) of the configuration. This model is an higher-order model because any con-
figuration can handle other configurations through their program. It includes reaction con-
ditions and n-ary rewrite rules. However, reactions are not first-class citizens since they are
kept separate from multisets of data.

The hmm-calculus [8] (for higher-order multiset machines) is described as an extension
of Gamma where reactions are one-shot and first-class citizens. An abstraction denoted
by λx̃.M1 ⇐ M0 describes a reaction rule: it takes several terms denoted by a tuple x̃,
the term M1 is the action and the term M0 is the reaction condition. Like γbb, the hmm-
calculus uses a call-by-name strategy. It needs an hatching rule to extract an inert molecule
from its solution. Any reaction can occur within solutions and within abstractions. The
hmm-calculus can be seen as a lazy version of the γcn-calculus, or as an extension of the
γbb-calculus with conditional and n-ary reactions.

P-systems P-systems [14] are computing devices inspired from biology. It consists in nested
membranes in which molecules react. Molecules can cross and move between membranes. A
set of partially ordered rewrite rules is associated to each membrane. These rules describe
possible reactions and communications between membranes of molecules. These features can
be expressed in γcn by introducing two new notions. They do not add additional expressive
power but they are convenient and interesting in themselves.

• The first needed notion is universally quantified conditions. Intuitively, a reaction condi-
tion C can be read “if it exists a solution that satisfies C . . . ”. Another kind of condition
could also be considered: “if all solutions satisfy C . . . ”. This universally quantified con-
dition can be expressed in γc. It amounts to testing the absence of a molecule satisfying
¬C. Using this mechanism, it is possible to specify a partial order between reactions
as priorities. A high priority reaction should react before one with a lower priority. To
encode priority, an abstraction should check that no abstraction with a higher priority
can react, i.e., that there is no elements in the solution that satisfy the conditions of
the abstractions with a higher priority.

• The second notion is porous solutions. It is possible to define porous solutions which can
be manipulated by γ-abstractions even when they are active. A porous solution made of
the active molecule X1, . . . , Xn can be encoded by 〈γ〈x〉.X1, . . . , Xn〉. The body of the γ-
abstraction is active but can be accessed by extracting it from its inert enclosing solution
and by applying it to an argument. This feature can be used to represents the porous
membranes of P-systems. This capability is also useful for example when modeling non-
terminating reactive systems which interacts continuously with their environment. The
reactive system is therefore represented by an always active porous solution and the
environment by reactions adding (sending) and removing (receiving) elements in that
solution.

Other models Our list of comparisons is not exhaustive and other models could have
been considered. For example, Linda and its variants (particularly Bauhaus Linda [7]) are
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close to Gamma. Other work has been carried out about concurrent λ-calculus according
to a chemical metaphor such as [11], or, for example, models from [9].

5 Conclusion

In this article, we have studied the fundamental features of the chemical programming
paradigm. The γ0-calculus embodies the essential characteristics (AC multiset rewritings)
in only four syntax rules. Terms are multisets (built with the AC application operator
“,”) which can be nested (inside solutions). This minimal calculus has been shown to be
expressive enough to express the λ-calculus and a large class of non-deterministic pro-
grams. However, it does not reflect closely existing chemical languages such as Gamma.
Two extensions must be considered to achieve a comparable expressive power: reaction
conditions and atomic capture. With appropriate syntactic sugar (recursion, constants, op-
erators, pattern-matching, porous solutions, etc.), the γcn-calculus closely models most of
the existing chemical programming models.

This work suggests several research directions. First, we should prove formally that our
extensions really improve the expressive power of our minimal chemical calculus. The com-
parison of the expressive power of languages has been formally studied by Felleisen in [10].
He formalizes the intuitive notions of “syntactic sugar” and “expressive power”. A new con-
struct is considered as enhancing expressivity if its expression using the other constructs
needs “a global reorganization of the entire program”. A formal comparison of expressive
power of different coordination languages has been carried out in [5]. This work compares
different variants of Linda [6] with different models à la Gamma and with models featuring
communication transactions. A similar approach could be taken to establish formally the
pre-order of Figure 7. Our work could also be completed by providing formal translations
of existing chemical models into the corresponding γ-calculus.

Another direction is to propose a realistic higher-order chemical programming language
based on the γcn-calculus. It would consist in defining the already mentioned syntactic
sugar, a type system, as well as expressive pattern and module languages.

References

1. Jean-Pierre Banâtre, Pascal Fradet, and Daniel Le Métayer. Gamma and the chemical reaction model:
Fifteen years after. In Multiset Processing, volume 2235 of LNCS, pages 17–44. Springer-Verlag, 2001.
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Abstract When viewed from a strategic perspective, a labeled rule base in a rewriting system can be seen
as a restricted form of strategic expression (e.g., a collection of rules strictly composed using the left-biased
choice combinator). This paper describes higher-order mechanisms capable of dynamically constructing
strategic expressions that are similar to rule bases. One notable difference between these strategic expressions
and rule bases is that strategic expressions can be constructed using arbitrary binary combinators (e.g., left-
biased choice, right-biased choice, sequential composition, or user defined). Furthermore, the data used in
these strategic expressions can be obtained through term traversals.

A higher-order strategic programming framework called TL is described. In TL it is possible to dy-
namically construct strategic expression of the kind mentioned in the previous paragraph. A demonstration
follows showing how the higher-order constructs available in TL can be used to solve several problems
common to the area of program transformation.

1 Introduction

The concept of distributing data within a term structure is central to rewrite-based com-
putation [12]. In [17] this problem is characterized and referred to as the distributed data
problem (DDP). When the data to be distributed is independent of the input (i.e., constant
for all input terms), simple strategies for distributing data can oftentimes be constructed
statically. For example, consider constructing a strategy that will rewrite every integer in
a term to the integer 2. Here the objective is to distribute the integer 2 throughout a term
structure by rewriting every integer encountered. This is an example of data distribution
involving data that is independent of any specific input term.

In contrast, consider constructing a strategy that will rewrite every integer in a term so
that all integers are equal to the first integer in the term. For example, for a given term t if
the first integer in t is 27 then all integers in t should be rewritten to 27. This is an example
of data distribution involving data that is dependent on the input term. In the area of
program transformation, the distribution of dependent data throughout a term is typically
more common than the independent distribution of data. For example, variable renaming,
function in-lining, and constant propagation all require the distribution of dependent data
through a term structure.

Strategic/rewriting systems are often provided with extensions in order to enhance their
ability to describe the distribution of data. Parameterization is one extension that is widely
used as a mechanism for data distribution. For example, ASF+SDF [1] has been extended
with a fixed collection of parameterizable traversal functions [5]. Another extension is to
allow rule instances to be dynamically constructed using problem dependent data. In Strat-
ego [14] for example, a primitive is provided making it possible to alter rule bases at runtime
through the dynamic construction and destruction of rules. Such types of manipulations

? This work was in part supported by the United States Department of Energy under Contract DE-AC04-
94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy. Victor Winter was also partially supported by
NSF grant number CCR-0209187.
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can also be realized in Maude [8][7] using its reflective capabilities, and also to some extent
in Elan [3].

In this paper we look at higher-order extensions to strategic programming. Specifically
we will describe how the higher-order rules, strategies, and traversals of a strategic program-
ming language called TL can be used to effectively distribute (dependent) data throughout
term structures. Interesting aspects of this approach are:

1. Within the structure of a source program, data aggregations (e.g., declaration lists, sym-
bol tables, etc.) can be collected via higher-order traversals. During the course of such a
traversal, the data elements forming an aggregation can be independently placed within
individual strategies and rules (e.g., one data element per strategy). These strategies
and rules capture the control necessary to then effectively use the data elements during
a second traversal to achieve a desired program transformation (e.g., symbolic resolution
in Java class files, function in-lining, and so on).

2. Structurally disjoint data can be collected incrementally via rules and strategies that lie
beyond the second order. For example, two disjoint data structures can be manipulated
via a third-order strategy.

Though TL is presently a theoretical framework, a restricted dialect of TL has been
implemented in the HATS1 system [20] and is freely available. All of the examples presented
in this paper have been implemented in HATS.

The remainder of the paper is organized as follows. Section 2 gives an overview of TL.
Section 3 takes an in-depth look at the inner workings of a strategic implementation of
set union in TL. Section 4 looks at two manipulations common in the area of program
transformation. Section 5 discusses some related work, and Section 6 concludes.

2 An Overview of TL

TL [17] is an identity-based higher-order strategic system for rewriting parse trees. We use
the term identity-based to denote rewriting systems in which the failure of rule application
to a term leaves the term unchanged. We use the term failure-based to denote systems where
the unsuccessful application of a rule to a term yields a special failure value. In contrast to
TL, the strategic programming systems Stratego [12] and Elan [2] are failure-based.

In TL, a domain (i.e., a term language) is defined using an Extended-BNF and terms also
called parse expressions are described using a special notation. TL supports the constructs,
combinators and strategic constants shown in Figure 1.

In addition to the constructs shown in Figure 1, TL also provides a number of one-
layer generic traversals providing the ability to construct user-defined traversals. These
constructs are not central to the topic of this paper and are therefore omitted. Instead we
simply present a number of generic traversals that form part of the TL traversal library.

2.1 Term Notation

In TL, term structures are defined using a concrete syntax (e.g., an extended-BNF). This is
somewhat a departure from most rewriting systems where term structures are traditionally
defined using an abstract syntax. There are several advantages to using a concrete syntax

1 Other than differences in syntax, the primary restriction is that the construction of user-defined strategies
is not supported in HATS.
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skip A strategy constant that never applies
lhs→ rhs if condition A conditional first-order strategy (see Section 2.2 for more on conditions)
lhs→ sn if condition A conditional strategy of order n + 1
sn1 ; sn2 Sequential composition
sn1 <+ sn2 Left-biased choice
sn1 +> s2 Right-biased choice
I(sn) A unary combinator that does nothing
fix(s1) The fixed point application of the first-order strategy s1

transient(sn) A unary combinator restricting the application of sn

Figure 1. The basic constructs of TL

for defining term structures (which we will also refer to as trees when we need to distin-
guish them from the more traditional terms). In a practical setting, when using rewriting
to manipulate programs, the conceptual gap between the concrete syntax of an industrial
programming language and its abstract representation is oftentimes significant [15]. The
width of this gap can reach the the point where it negatively impacts the ability to reason
about the program manipulations one wants to achieve. Under such circumstances express-
ing rewriting rules and strategies directly in terms of the concrete syntax of the language
is more appropriate.

Another advantage a concrete syntax offers is that the internal structure of a tree can
be automatically completed using a parser. In contrast, due to the ambiguities inherent in
abstract syntax definitions, the internal structure of a term, in its purest sense, cannot be
automatically completed. In addition to easing the burden of term construction on the user,
automatic completion of trees also assures that trees will always be well-formed entities
as defined by a given concrete grammar. In contrast, abstract syntax-based frameworks
typically require the internal structure of terms to be made explicit (by the user) within
strategy and rule definitions.

We feel that the conceptual gap issue and the term/tree completion capability are sig-
nificant enough distinctions to justify our departure from the traditional term nomenclature
and representation. Tree representations have other advantages over terms, and the reverse
is also true, but such discussions lie beyond the scope of this paper.

In TL, terms are defined in the following compact form which a parser can automat-
ically complete. Let G = (N,T, P, S) denote a context-free grammar where N is the set
of nonterminals, T is the set of terminals, P is the set of productions, and S is the start
symbol. Given an arbitrary symbol B ∈ N and a string of symbols α = X1X2...Xm where
for all 1 ≤ i ≤ m : Xi ∈ N ∪ T , we say B derives α iff the productions in P can be used
to expand B to α. Traditionally, the expression B

∗⇒ α is used to denote that B can derive

α in zero or more expansion steps. Similarly, one can write B
+⇒ α to denote a derivation

consisting of one or more expansion steps.

In TL, we write B[[α′]] to denote an instance of the derivation B
+⇒ α whose resulting

value is a parse tree having B as its root symbol. In TL, expressions of the form B[[α ′]] are
referred to as parse expressions. In the parse expression B[[α′]] the string α′ is an instance
of α because nonterminal symbols in α′ are constrained through the use of subscripts.
Subscripted nonterminal symbols are referred to as schema variables or simply variables
for short. TL also considers a schema variable (e.g., Bi) to be a parse expression in its own
right.
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Figure 2 shows a BNF grammar fragment describing a small portion of an imperative
language. The parse expressions stmt[[ id1 = 5 ]] and stmt[[ id2 = 5 ]] both describe

instances of the derivation stmt
+⇒ id = 5.

stmt ::= assign | cond | ...
assign ::= lvalue “=” expr
...
lvalue ::= id
expr ::= int
...

Figure 2. A concrete syntax fragment

Within a given scope all occurrences of schema variables having the same subscript
denote the same variable. The purpose of placing subscripts on schema variables is to
enable grammar derivations to be restricted with respect to one or more equality-oriented
constraints. The difference between a nonterminal B and a schema variable Bi is that B is
traditionally viewed as a set (or syntactic category) while Bi is a typed variable quantified
over the syntactic category B.

When the dominating symbol and specific structure of a parse expression is unimportant
the parse expression will be denoted by variables of the form t, t1, ... or variables of the
form tree, tree1, tree2, and so on. Parse expressions containing no schema variables are
called ground and parse expressions containing one or more schema variables are called
non-ground. And finally, within the context of rewriting or strategic programming, trees as
described here can and generally are viewed as terms. When the distinction is unimportant,
we will refer to trees and terms interchangeably.

2.2 Rules

TL supports conditional labeled first-order rewrite rules of the form:

label : lhs→ rhs if condition

where lhs and rhs are terms and the rule label and conditional part are optional compo-
nents. Higher-order rules have the form:

label : lhs→ sn if condition

where sn is an unlabeled (possibly higher-order) rule. When parsing higher-order rules, the
→ associates to the right. An abstract example of a second-order condition-free rule is:

r:lhs1 → lhs2 → rhs2

In order to disambiguate the internal structure (e.g., conditional components) of higher-
order rules one may enclose the righthand side of a rule in parenthesis.

label : lhs→ (sn) if condition

As a notational convenience, labeled higher-order rules without conditions may be writ-
ten in curried form when appropriate. For example, a rule of the form:
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r:x1 → x2 → x3 → x4

can be equivalently written as:

r x1:x2 → x3 → x4

or can even be curried further and written as:

r x1 x2:x3 → x4

Rule Conditions The conditional portion of a rule is a match-expression consisting of
one or more match-equations. The symbol �, adapted from the ρ-calculus [6], is used to
denote first-order matching modulo an empty equational theory. Let t2 denote a ground tree
and let t1 denote a parse expression which may contain one or more schema variables. A
match-equation is denoted by t1 � t2. Equivalently we may also write t2 � t1. The symbols
ll and� are boolean valued operations that produce a substitution σ as a by-product (i.e.,
as an internal value that is not explicitly accessible to the user). A substitution σ binding
schema variables to ground parse expressions is a solution to t1 � t2 if σ(t1) = t2 with =
denoting a boolean valued test for syntactic equality.

A match-expression is a boolean expression involving one or more match-equations.
Match-expressions may be constructed using the standard boolean operators: ∧,∨,¬. A
substitution σ is a solution to a match-expression m iff σ(m) evaluates to true using the
standard semantics for boolean operators.

Rule Application The application of a conditional rewrite rule r to a tree t is expressed
as r(t) where r is either a label or an anonymous rule value e.g., lhs → sn. We adopt a
curried notation in the style of ML where application is a left-associative implicit operator
and parentheses are used to override precedence or may be optionally included to enhance
readability. For example, r t denotes the application of r to t and has the same meaning as
r(t).

2.3 Some First-Order Traversals from the TL Library

TL provides support for user-defined first-order traversals. TL also provides a number of
standard generic first-order traversals. There are three degrees of freedom for a generic
traversal: (1) whether a term is traversed bottom-up or top-down, (2) whether the children
of a term are traversed from left-to-right or right-to-left, and (3) whether a standard threaded
semantics or a broadcast semantics is used to propagate strategies within the traversal (see
Section 2.6).

Figure 3 gives a list of the most commonly used generic traversals. The first traversal
is TDL. This traversal will traverse the term it is applied to in a top-down left-to-right
fashion. With the exception of TD BR which is discussed in Section 2.6, the remaining
entries in the table have similar descriptions. The last two traversals perform a fixed point
computation with respect to a given traversal scheme.
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Traversal bottom-up top-down left-to-right right-to-left threaded broadcast

TDL
√ √ √

TDR
√ √ √

TD BR
√ √

BUL
√ √ √

BUR
√ √ √

FIX TDL
√ √ √

FIX TDR
√ √ √

Figure 3. General first-order traversals

2.4 Higher-Order Strategies

TL is a restricted higher-order strategic programming framework. TL is restricted because
it only permits the application of higher-order strategies to ground terms. For example,
strategies may not be applied to other strategies or rules as is allowed in the ρ-calculus [6].
In TL, the result of applying an order n strategy to a (ground) term is a strategy of order
n− 1.

From an operational perspective, a higher-order traversal traverses a term and applies
a higher-order strategy sn to every term encountered. Because the strategy being applied
is of order n, the result of an application will be a strategy of order n − 1. If a traversal
visits m terms, then m strategies of order n− 1 will be produced. Let sn−1

1 , sn−1
2 , ... , sn−1

m

denote the strategies resulting from such a traversal. In TL, a variety of binary strategic
combinators can be used to combine the strategic results sn−1

1 , sn−1
2 , ... , sn−1

m into a
strategic expression (i.e., a strategy). Let ⊕ denote a binary combinator such as sequential
composition, left-biased choice, right-biased choice, or a user-defined binary combinator.
Higher-order traversals will combine these strategies into a strategic expression of the form:

sn−1
1 ⊕ sn−1

2 ⊕ ...⊕ sn−1
m

There is one technical detail that has been omitted from the above explanation. In
addition to combining strategies using a binary combinator, a higher-order traversal also
uniformly applies a unary combinator τ to every resultant strategy. Thus, the actual strategy
produced is:

τ(sn−1
1 )⊕ τ(sn−1

2 )⊕ ...⊕ τ(sn−1
m )

In practice, the unary combinator that is most useful is the transient combinator with
the I combinator playing the role of a default. The transient combinator is described in
Section 2.5.

TL provides support for user-defined higher-order traversals. TL also provides a number
of standard generic higher-order traversals. There are four degrees of freedom for a generic
higher-order traversal: (1) whether a term is traversed bottom-up or top-down, (2) whether
the children of a term are traversed from left-to-right or right-to-left, (3) which binary
combinator should be used to compose the result strategies, and (4) which unary combinator
should be used to wrap each resulting strategy.

Figure 4 gives a list of the most commonly used generic traversals. The first traversal in
this list is rcond tdl. This traversal will traverse the term it is applied to in a top-down left-
to-right fashion. The result strategies will then be composed using the right-biased choice
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combinator and finally each result strategy will be wrapped in the unary combinator I. The
remaining entries in the table have similar descriptions.

Travaersal bottom-up top-down left-to-right right-to-left ⊕ τ

rcond tdl
√ √

+> I

rcond tdr
√ √

+> I

lcond tdl
√ √

<+ I

lcond tdr
√ √

<+ I

rcond bul
√ √

+> I

rcond bur
√ √

+> I

lcond bul
√ √

<+ I

lcond bur
√ √

<+ I

seq tdl
√ √

; I

seq tdr
√ √

; I

seq bul
√ √

; I

seq bur
√ √

; I

Figure 4. General higher-order traversals

2.5 The transient Combinator

The transient combinator is a very special combinator in TL. This combinator restricts a
strategy so that it may be applied at most once. The “at most once” property characterizes
the transient combinator and motivates the introduction of skip into the framework of TL.
We define skip as a strategy whose application never succeeds.

Figure 5 gives some relationships between two abstract strategic constants ε and δ and
the combinators <+ and ;. These relationships are considered from the perspective of a
failure-based framework as well as an identity-based framework. In failure-based systems
such as Stratego and ELAN, ε is typically called id or identity and δ is typically called fail.
In the identity-based framework of TL, ε is called id and δ is called skip.

Strategy Failure-Based Semantics Identity-based Semantics

ε <+s ε ε
s <+ε s <+ε s
δ <+s s s
s <+δ s s

ε ; s s s
s ; ε s s
δ ; s δ s
s ; δ δ s

Figure 5. The semantics of id, skip, and fail

TL defines a strategy of the form transient(s) as a strategy that reduces to the strategy
skip if the application of the strategy s has been observed. Furthermore, only the innermost
(i.e., closest enclosing) transient can observe the application of a strategy. This restriction
is needed to prevent a cascading sequence of reductions for strategies containing nested
transients.
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Transients open the door to self-modifying strategies. When using a traversal to apply
a self-modifying strategy to a term, a different strategy may be applied to every term
encountered during a traversal. For example, let int1 → int[[2]] denote a rule that rewrites
an arbitrary integer to the value 2. If such a rule is applied to a term in a top-down fashion all
of the integers in the term will be rewritten to 2. Now consider the following self-modifying
transient strategy:

transient(int1 → int[[1]]) <+ transient(int1 → int[[2]]) <+ transient(int1 → int[[3]])

When applied to a term in a top-down fashion, this strategy will rewrite the first integer
encountered to 1, the second integer encountered to 2, and the third integer encountered
to 3. All other integers will remain unchanged.

2.6 Traversal Mechanisms

TL provides two types of term traversal: a threaded traversal and a broadcasting traversal.
In a threaded traversal (e.g., TDL, TDR, BUL, BUR), terms are visited in sequential order
and a single strategy is passed from term to term. A diagram showing the behavior of a
threaded traversal can be seen in Figure 6.

In a broadcasting traversal (e.g., TDL BR) a distinct copy of the strategy resulting from
an application will be given to all of the children of a term. For example, the evaluation
of the strategic expression TDL BR(s)t will first apply the strategy s to the term t. Recall
that in the most general case (i.e., when transients are present in the strategy), the result
of such an application will alter both s as well as t. Let s′ and t′ respectively denote the
strategy and term resulting from the application of s to t. Since TDL BR is a broadcasting
traversal, a distinct copy of s′ will be applied to each of the sub-terms of t′. A diagram
showing the behavior of a broadcasting traversal can be seen in Figure 7.

s

s1

0

s2

s3

s4
s5

s6

s7

Figure 6. Diagram of the threaded traversal TDL from the perspective of strategy application
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s

s' s' s'

Figure 7. Diagram of the broadcasting traversal TDL BR from the perspective of strategy application

3 A Benchmark: Set Union

We believe that set union has characteristics similar to a number of common transforma-
tional activities. For example, variations of set union can be used as the basis for variable
renaming, data flow analysis, control flow analysis, symbolic resolution in Java class files
[17], as well as field distribution and method table construction [18] in Java class files. Thus,
because of its wide range of applicability, we consider set union to be a benchmark problem
for a strategic programming system.

In this section we look at how the union benchmark can be solved in TL. Our approach
is to lift basic operations on data (e.g., insertion of an element into a set, etc.) to the
strategy level. For example, when implementing union, we wish to create a strategy that
inserts a particular element into our union set only if the element does not already occur in
the set. In TL the construction of these types of problem specific first-order strategies can
be accomplished though higher-order strategies.

In Figure 8 a BNF grammar is given describing a language of set/sequence expressions.
The meta-symbols of the grammar are ::=, (), |, <, >, “, and ”. The symbol () is used to
denote the epsilon symbol, domain variables are enclosed in pointy brackets and terminal
symbols are enclosed in quotes.

In Figure 9, keep and add are strategies realizing primitive operations on sets such as
adding an element to an empty set. The strategy union s is higher-order and defines a single
computational step (e.g., a strategy that will “union” one element to a set). And finally,
the strategy make union performs its respective set operation by first properly instantiating
union s with respect to every element in set1 and then applying the resulting strategy to
the set2.

set expr ::= set set op set | set
set ::= “{” es “}”
es ::= e es | ()
e ::= <id> | “(” <id> <id> “)”
set op ::= “union”

Figure 8. A BNF describing set/sequence expressions
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keep e1 : es[[e1 es2]]→ es[[e1 es2]]
add e1 : es[[ ]]→ es[[e1]]

union s : es[[ e1 es1 ]]→ transient((keep e1) <+ (add e1))

make union : set expr[[set1 union set2]] → TDL(lcond tdl union s set1) set2

Figure 9. Instantiation and application of second-order strategies to terms

3.1 A Closer Look at the Implementation of Union in TL

The strategic theme here is to decompose a set expression {a1, a2, ..., an} ∪ {e1, e2, ..., em}
into a sequence of incremental strategies each of which can be used to evaluate an expression
of the form: S ∪{ei}. The higher-order strategy union s generates such incremental strate-
gies. Specifically, when given the context es[[ e1 es1 ]], union s will extract the element
e1 and produce a transient strategy consisting of the conditional composition keep(e1) <+
add(e1).

Building on union s is the strategic expression (lcond tdl union s set1) which traverses
set1 producing the conditional composition of instances of union s; one instance for each
element in set1. The resulting strategy is then applied to set2 using the traversal TDL.
Keeping this in mind, let us trace the strategic evaluation of the expression set1 ∪ set2
where set1 = {x1 x2 x3 x4} and set2 = {y1 x2 x3 y2}.

The result of (lcond tdl union s set1) and its application to the first term in set2 are
shown in Figures 10 through 14. Figure 10 shows the initial strategy applied to set2. Figures
11 and 12 show how the strategy changes as it encounters (is applied to) the elements x2

and x3 respectively. The application of the strategy to the element y2 has no effect and is
shown in Figure 13. And finally, in Figure 14 the traversal reaches the end of set2 at which
time the element x1 is added. Note that in this case, both the strategy and set2 are changed
by the application. In a similar fashion, x4 is added yielding {y1 x2 x3 y2 x1 x4} as the final
term and skip as the final strategy.

4 Adaptations to Common Transformational Objectives

In this section we look at TL solutions to two common transformational objectives that
arise in the area of program transformation. We would like to mention that these examples
were inspired from similar examples presented in [14].

Both examples are considered with respect to the grammar fragment defined in Figure
15. The meta-symbols of the grammar are ::=, (), |, <, >, “, ”, [, and ]. The symbol ()
is used to denote the epsilon symbol, domain variables are enclosed in pointy brackets,
terminal symbols are enclosed in quotes, and optional portions of productions are enclosed
in square brackets.

4.1 Variable Renaming

In this example, we consider the variable renaming problem for a small block structured
imperative language. (Note that the grammar given Figure 15 permits blocks to be nested).
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{ ⇓y1 x2 x3 y2}
transient(es[[x1 es2]]→ es[[x1 es2]] <+ es[[ ]]→ es[[x1]])

<+ transient(es[[x2 es2]]→ es[[x2 es2]] <+ es[[ ]]→ es[[x2]])
<+ transient(es[[x3 es2]]→ es[[x3 es2]] <+ es[[ ]]→ es[[x3]])

<+ transient(es[[x4 es2]]→ es[[x4 es2]] <+ es[[ ]]→ es[[x4]]) { ⇓y1 x2 x3 y2}

Figure 10. Union with TDL traversal – The term y1 in set2 is unaffected

transient(es[[x1 es2]]→ es[[x1 es2]] <+ es[[ ]]→ es[[x1]]) {y1
⇓
x2 x3 y2}

<+ transient(es[[x2 es2]]→ es[[x2 es2]] <+ es[[ ]]→ es[[x2]])——————————————————————————— {y1
⇓
x2 x3 y2}

<+ transient(es[[x3 es2]]→ es[[x3 es2]] <+ es[[ ]]→ es[[x3]])
<+ transient(es[[x4 es2]]→ es[[x4 es2]] <+ es[[ ]]→ es[[x4]])

Figure 11. Union with TDL traversal – The term x2 changes the strategy

transient(es[[x1 es2]]→ es[[x1 es2]] <+ es[[ ]]→ es[[x1]]) {y1 x2
⇓
x3 y2}

<+ transient(es[[x2 es2]]→ es[[x2 es2]] <+ es[[ ]]→ es[[x2]])———————————————————————————

<+ transient(es[[x3 es2]]→ es[[x3 es2]] <+ es[[ ]]→ es[[x3]])——————————————————————————— {y1 x2
⇓
x3 y2}

<+ transient(es[[x4 es2]]→ es[[x4 es2]] <+ es[[ ]]→ es[[x4]])

Figure 12. Union with TDL traversal – The term x3 changes the strategy

transient(es[[x1 es2]]→ es[[x1 es2]] <+ es[[ ]]→ es[[x1]]) {y1 x2 x3
⇓
y2 }

<+ transient(es[[x2 es2]]→ es[[x2 es2]] <+ es[[ ]]→ es[[x2]])———————————————————————————
<+ transient(es[[x3 es2]]→ es[[x3 es2]] <+ es[[ ]]→ es[[x3]])———————————————————————————

<+ transient(es[[x4 es2]]→ es[[x4 es2]] <+ es[[ ]]→ es[[x4]]) {y1 x2 x3
⇓
y2 }

Figure 13. Union with TDL traversal – Processing the term y2 has no effect

{y1 x2 x3 y2
⇓ }

transient(es[[x1 es2]]→ es[[x1 es2]] <+ es[[ ]]→ es[[x1]])——————————————————————————— {y1 x2 x3 y2 x1 }
<+ transient(es[[x2 es2]]→ es[[x2 es2]] <+ es[[ ]]→ es[[x2]])———————————————————————————
<+ transient(es[[x3 es2]]→ es[[x3 es2]] <+ es[[ ]]→ es[[x3]])———————————————————————————
<+ transient(es[[x4 es2]]→ es[[x4 es2]] <+ es[[ ]]→ es[[x4]])

Figure 14. Union with TDL traversal – The term x1 is added to the union

The TL solution makes use of a function new2 that has the ability to generate unique
variable names.

The code in Figure 16 highlights some of the issues that must be addressed when re-
naming variables in this setting. First, variables may be redeclared within a nested block.
However, it is assumed that variables may not be redundantly declared within a given decla-
ration list. Second, variable declarations may include an assignment to an initial expression
which may contain occurrences of previously declared variables.

When dealing with declarations having initialization expressions, one must be careful
to associate variables with their proper declarations. For example, in Figure 16 in the
declaration int x1 = x1 + 1 in the inner block, the reference to the variable x1 occurring in
the initialization expression x1 + 1 is actually a reference to the previous declaration of x1

2 Because of its widespread use in program transformation, the function new is provided as a primitive in
many transformation systems.
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prog ::= block
block ::= “{” dec list stmt list “}”
dec list ::= dec “;” dec list | ()
dec ::= type id

| type id “=” expr
| “fun” id “(” id list “)” “=” expr

type ::= “int” | “bool” | ...
stmt list ::= stmt “;” stmt list | ()
stmt ::= assign | block | ...
assign ::= id “=” expr
expr ::= cond | logical expr
cond ::= “if” expr “then” expr “else” expr
logical expr ::= rel | ...
rel ::= expr “=” expr | E | ...
E ::= E “+” T | E “-” T | T
T ::= T “*” F | F “/” F | F
F ::= id | num | “(” expr “)” | id “(” expr list “)” | ...
id list ::= id [ “,” id list ] | ()
expr list ::= actual [ “,” expr list | ()
actual ::= expr
id ::= <ident>
num ::= <integer>
...

Figure 15. A grammar fragment of a small block structured imperative language

in the outer block. Thus it would be incorrect to rename int x1 = x1 + 1 to int new x1 =
new x1 + 1. Instead, the renaming should result in something like int new x1 = x1 + 1.

Another difficulty in this example results from the structure of a block as defined by the
grammar. Specifically, a block has intentionally been defined to consist of a declaration list
followed by a statement list. Note that renaming must occur both within the declaration
list as well as the statement list.

{
int x1;
int x2;
int x3 = x1 + x2;
x1 = 5;
x2 = x1 + 5;
{

int x1 = x1 + 1;
int z1 = x1 + x2;
int z2 = 4;
x1 = x2 + z1 * z2;
};
x1 = x2 + x1;

}

=⇒

{
int y4;
int y5;
int y6 = y4 + y5;
y4 = 5;
y5 = y4 + 5;
{

int y1 = y4 + 1;
int y2 = y1 + y5;
int y3 = 4;
y1 = y5 + y2 * y3;
};
y4 = y5 + y4;

}

Figure 16. Considerations when renaming variables: A block before and after variable renaming

Figure 17 gives a TL implementation of variable renaming. An overview of our strategic
approach to the variable renaming problem is as follows. Blocks are processed in an inside-
out manner (i.e., nested blocks first). When a block is encountered, its declaration list
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restricted id1 id2 : dec[[ type1 id1 = expr1 ]]→ dec[[ type1 id2 = expr1 ]]

unrestricted id1 id2 : id1 → id2

gen rename : dec1 → transient((restricted id1 id2) <+ (unrestricted id1 id2))
if id2 � new ∧ (dec1 � dec[[ type1 id1 ]] ∨ dec1 � dec[[ type1 id1 = expr1]])

rename : block1 → TD BR(cond tdl gen rename dec list1) block1

if block1 � block[[dec list1 stmt list1]]
var rename : prog1 → BUL rename prog1

Figure 17. The strategies for renaming variables

will be traversed in a top-down fashion and a strategic expression will be constructed
that is capable of renaming all variables within the block (variables occurring in both the
declaration list as well as the statement list). Special care is taken to assure that variables
occurring in initializing expressions (i.e., expressions on the right-hand sides of assignments
in declarations) do not have their variables inappropriately renamed.

In the TL implementation shown in Figure 17 the strategies restricted and unrestricted
are third-order strategies in curried form that when given a variable name id1 and a cor-
responding fresh variable name id2 will yield a first-order rule describing a specific kind
of renaming. The strategy restricted id1 id2 describes the rewriting that should occur
when the declaration of id1 is encountered. In particular, the declaration of id1 should
be renamed to id2, but the initializing expression should remain untouched. The strategy
unrestricted id1 id2 describes the rewriting that should occur in all other cases.

Building on the restricted and unrestricted rules, is the higher-order strategy gen re-
name. When applied to a declaration, gen rename will create a transient of the form:

transient((restricted id1 id2) <+ (unrestricted id1 id2))

Note that this transient strategy can only be applied once and will perform either a
restricted or unrestricted rename. During the course of a top-down traversal, the idea is to
have this transient apply to the declaration which generated it after which it will reduce
to skip for all subtrees of that declaration. If this can be accomplished, then any traversal
that continues on to the initialization expression will leave all occurrences of the declared
variable unchanged. In addition to this behavior, we would like the renaming to continue
for the rest of the block (e.g., the remaining declarations and statements). It is precisely
this behavior that can be accomplished by TD BR.

One way of understanding the effect of TD BR when used in conjunction with a tran-
sient is that TD BR captures the notion of “not below” with respect to a tree structure.
The notion of “not below” was first used in TAMPR [4]. For a given tree t and a given leaf
x, let p denote a path from the root of t to the leaf x. Let s denote a first-order strategy
(containing no transient combinators). The traversal TD BR transient(s) t will apply s
at most once on every path in t. For example, if s applies at a particular point in a path,
then transient(s) will reduce to skip after this application and will therefore not apply
anywhere else on the path.
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Given this understanding of the interaction between TD BR and the transient com-
binator, let us consider the parse expression dec list[[dec1; dec list1]]. When applied to
this term, the strategy TD BR s will first apply s to dec list[[dec1; dec list1]] yielding
the strategy s′. A copy of the strategy s′ is then broadcast to each of the children of
dec list[[dec1; dec list1]]. In particular, both dec1 and dec list1 will receive their own copy
of s′. More specifically, let us consider what happens when s is transient((restricted id1 id2)
<+ (unrestricted id1 id2)). In this case, the application of s to dec list[[dec1; dec list1]] will
leave s unchanged (i.e., s = s′). Next a copy of s′ will be broadcast to both dec1 and
dec list1. If dec1 is the declaration responsible for generating s′, then s′ will apply to dec1

but will not apply to any subterm below dec1 (e.g., the initializing expression in dec1). In
contrast, within dec list1 s

′ will continue attempting to apply and broadcast its own copy of
s′ to its children. This will enable the strategy (unrestricted id1 id2) within the transient s′

to rename all remaining occurrences of id1 to id2 within the block which is what is desired.
And finally, in the strategy var rename the traversal BUL causes all the blocks in a

program to be renamed in an inside-out fashion.

4.2 Näıve Function In-lining

When performing function in-lining the goal is to replace a function call with an instance of
its body. This body instance is obtained by substituting the formal parameters associated
with the function definition by the actual parameters associated with the call. An example
of in-lining is shown in Figure 18. In Figure 19, a TL implementation for performing näıve
function in-lining is given. The strategy fun inline is näıve because it does not consider
problems that may arise as a result of recursive function calls or address issues resulting in
the duplication of expressions corresponding to actual arguments.

The strategy fun inline uses matching to split a block into its declaration list and
statement list. The declaration list is then processed by the strategy fun dec which creates
an in-lining strategy for each function declaration and composes the results into a strategic
expression. This strategic expression is then applied to the original declaration list in order
to in-line all the function calls within the declaration list. Then this in-lined declaration list
is again processed by the strategy fun dec. This time the resulting strategy is applied to the
statement list which has the effect of in-lining all function calls. The resulting statement list
is then cleaned up (e.g., excess parenthesis are removed from expressions) by the strategy
remove parens whose implementation is not shown. Finally, the resulting statement list is
substituted for the statement list in the original block.

The strategy fun dec accomplishes its transformational objective through the help of
the strategy inline. This strategy is given the name of a function id1, its formal parameter
list id list1, and its body expr1 in curried form. With this information, the strategy inline
is capable of rewriting a function call F [[ id1(expr list1) ]] to an appropriately in-lined body
F [[ (expr2) ]]. It accomplishes this with the help of the strategy zip.

As a definition the strategy zip is simply a macro and serves no other purpose than to
enhance the readability of the conditional portion of the inline strategy. Operationally, the
body of zip will first perform a traversal on id list the formal parameter list of a function.
This traversal will create one transient strategy for each formal parameter id in id list.
Let s denote the resulting strategic expression. Next, a traversal on the actual parameter
list expr list is performed with the strategy s. This will result in a strategic expression
consisting of a collection of rules of the form F [[ id1 ]] → F [[ (expr1) ]], where id1 is a
formal parameter and expr1 is a corresponding actual parameter. The transient combinator
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{
int z1;

fun f1( x, y ) = x + y ;
fun f2( x, y, z ) = x * y + z;
fun f3(x) = f1(x,x);

z1 = f1( f1(200,300), f1(400,500) );
z1 = f1( 2, 3 ) + f2(22, 33, 44);
z1 = f3(f3(3)) + f3(4);
}

=⇒

{
int z1;

fun f1( x, y ) = x + y ;
fun f2( x, y, z ) = x * y + z;
fun f3(x) = f1(x,x);

z1 = 200 + 300 + 400 + 500;
z1 = 2 + 3 + 22 * 33 + 44;
z1 = 3 + 3 + 3 + 3 + 4 + 4;
}

Figure 18. An example of function in-lining

formal to actual : id1 → transient(actual[[expr1]]→ F [[ id1 ]]→ F [[ (expr1) ]])

zip id list1 expr list1 : cond tdl(cond tdl formal to actual id list1) expr list1

inline id1 id list1 expr1 : F [[ id1(expr list1) ]]→ F [[ (expr2) ]]
if expr2 � TDL(zip id list1 expr list1) expr1

fun dec : dec list[[fun id1(id list1) = expr1; dec list1]]
→ inline id1 id list1 expr1

remove parens : ...

fun inline : block[[dec list1 stmt list1]]→ block[[dec list1 stmt list3]]
if dec list2 � TDL(cond tdl fun dec dec list1) dec list1∧
stmt list2 � TDL(cond tdl fun dec dec list2) stmt list1∧
stmt list3 � TDL remove parens stmt list2

Figure 19. A TL implementation of näıve function in-lining

mentioned previously is needed to assure that the proper correspondences between formals
and actuals are created. When viewed collectively, the resulting rules are capable of rewriting
formal parameters to actual parameters within the body of a function yielding an in-lined
instance of that function.

5 Related Work

The higher-order nature of TL rules can be understood as a form of currried rewrite rule.
In this context, curried arguments can be bound during the course of a higher-order generic
traversal. The composition of strategies created during such generic traversal is related
to a morphism. Specifically, the one-layer generic traversal combinators that are used to
construct full traversals are similar but not identical to hylomorphisms over rose tree found
in functional programming frameworks [10][11]. Similar observations have been made by
others. For example, the catamorphism fold b ⊕ can be understood in strategic terms as
performing a bottom-up term traversal on the structure of a list where the binary function
⊕ of the fold could be used to realize either a type-preserving rewriting function or a
type-unifying accumulating function. This connection between catamorphisms and strategic
driven term traversal is made in [9].
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The ρ-calculus [6] is a failure-based rewriting framework in which matching modulo an
equational theory provides the mechanism for the syntactic comparison of terms. In the
ρ-calculus the distinction between a rule and a term to which a rule is applied is blurred.
Both rules and terms are considered ρ-terms. This uniform treatment is reminiscent of the
relationship between functions and terms in the λ-calculus. And, similar to the λ-calculus,
in the ρ-calculus there are no restrictions regarding variable occurrences within a term. In
particular, free variables may be introduced on the right-hand side of a rule. In fact, the
right-hand side of a rule may itself be a rule, seamlessly opening the door to higher-order
strategies.

In contrast to the ρ-calculus, TL is a restricted higher-order language. In TL, the name
capture problem is sidestepped by the restriction that higher-order strategies only be applied
to ground terms (and not to other strategies). Recall that ground terms do not contain (free)
schema variables. As a result of this restriction, alpha-conversion, as it is defined in the λ-
calculus is not required. In TL, all schema variables within a higher-order strategy fall within
a single scope and must be (statically) distinguished accordingly within the definition.

The notion of creating problem specific instances of rules is a core capability of Stratego
[14]. These dynamic rewrite rules are named rules that can be instantiated at runtime
(i.e., dynamically) yielding a rule instance which is then added to the existing rule base.
Dynamic rewrite rules are placed in the “where” portion of another rule and thus have
access to information from their surrounding context. Similar to our approach, the input
term itself is the driver behind the instantiation of rule variables. The lifetime of dynamic
rules can be explicitly constrained in strategy definitions by the scoping operator { | ... |}.

Primary differences between the higher-order strategies in TL and the scoped dynamic
rules described in [14] are the following:

1. TL higher-order strategies can be used as the basis of constructing strategic expressions
that are created dynamically. The ⊕ and τ combinators provide the user explicit con-
trol over the combinators used to construct this strategy. Stratego views the dynamic
instantiation of rules as a rule base (i.e., a strategy where rules are composed using the
left-biased combinator and newly created rules are placed on the left-most end of the
rule base). It would be interesting to extend the dynamic rule generation mechanism of
Stratego to enable more control over the structure of dynamically generated rule bases.
This idea has been recently proposed by Martin Bravenboer [16].

2. In Stratego, rule instances can be incrementally added and removed from a rule base. In
TL, strategic expressions are created during the course of a separate pass(es) over a term
structure. We believe that a separate pass is conceptually cleaner from the perspective
of reasoning about the correctness of such structures. However, Stratego’s incremental
approach is more efficient and also allows a refined control over the contents of such
rule bases. On the other hand, the transient combinator of TL also allows some degree
of control over the contents of strategic expressions.

3. The incremental nature of Stratego’s rule bases is similar to the operational or deno-
tational environment models used to describe the semantics of scope. This facilitates
thinking about the construction of rule bases in an incremental fashion. In TL, the user
is strongly encouraged to think of strategic expressions in a more holistic manner [19].

4. Though the transient combinator has no direct analogy within scoped dynamic rewrite
rules, its effects can be simulated in Stratego [16]. However, it is somewhat unclear
whether a single approach/method can be used in Stratego to simulate all the behaviors
resulting from the interaction between higher-order strategies and transients.
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6 Conclusion

TL is based on the premise that higher-order rewriting provides a mechanism for deal-
ing with the distribution of data conforming to the tenets of rewriting. In a higher-order
framework, the distribution of data is expressed as a rule. Instantiation of such rules can
be done using standard (albeit higher-order) mechanisms controlling rule application (e.g.,
traversal). Typically, a traversal-driven application of a higher-order rule will result in a
number of instantiations. If left unstructured, these instantiations can be collectively seen
as constituting a rule base whose creation takes place dynamically. However, such rule bases
can encounter difficulties with respect to confluence and termination. In order to address
this concern we also lift the notion of strategy construction to the higher-order as well.
That is, instantiations are structured to form strategic expressions. Nevertheless, in many
cases, simply lifting first-order control mechanisms to the higher-order does not permit the
construction of strategic expressions that are sufficiently refined. This difficulty is alleviated
though the introduction of the transient combinator. The interplay between transients and
more traditional control mechanisms enables a variety of instances of the distributed data
problem to be elegantly solved in a higher-order setting.
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97-08 D. Blostein / A. Schürr: Computing with Graphs and Graph Rewriting

97-09 C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets

97-10 M. Nicola / M. Jarke: Integrating Replication and Communication in

Performance Models of Distributed Databases

97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

97-14 R. Baumann: Client/Server Distribution in a Structure-Oriented Data-

base Management System

97-15 G. H. Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

98-01 ∗ Jahresbericht 1997
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