
Aachen
Department of Computer Science

Technical Report

Mechanizing Dependency Pairs

Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and
Stephan Falke

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2003-8

RWTH Aachen · Department of Computer Science · December 2003

1

The publications of the Department of Computer Science of RWTH Aachen
(Aachen University of Technology) are in general accessible through the World
Wide Web.

http://aib.informatik.rwth-aachen.de/

2

Mechanizing Dependency Pairs

Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{giesl|thiemann|psk}@informatik.rwth-aachen.de

spf@i2.informatik.rwth-aachen.de

Abstract. The dependency pair approach [2, 13, 14] is a powerful technique for
automated termination and innermost termination proofs of term rewrite systems
(TRSs). For any TRS, it generates inequality constraints that have to be satisfied
by well-founded orders. We improve the dependency pair approach by consider-
ably reducing the number of constraints produced for (innermost) termination
proofs.
Moreover, we extend transformation techniques to manipulate dependency pairs
which simplify (innermost) termination proofs significantly. In order to fully
mechanize the approach, we show how transformations and the search for suit-
able orders can be mechanized efficiently. We implemented our results in the
automated termination prover AProVE and evaluated them on large collections
of examples.

1 Introduction

Termination is an essential property of term rewrite systems. Most traditional
methods to prove termination of TRSs (automatically) use simplification orders
[8, 33], where a term is greater than its proper subterms (subterm property).
Examples for simplification orders include lexicographic or recursive path orders
RPOS possibly with status [7, 23], the Knuth-Bendix order KBO [24], and (most)
polynomial orders [26]. However, there are numerous important TRSs which are
not simply terminating, i.e., their termination cannot be shown by simplification
orders. Therefore, the dependency pair approach [2, 13, 14] was developed which
allows the application of simplification orders to non-simply terminating TRSs.
In this way, the class of systems where termination is provable mechanically
increases significantly.

Example 1 The following TRS [2] is not simply terminating, since the left-hand
side of quot’s last rule is embedded in the right-hand side if y is instantiated with
s(x). So classical approaches for termination proofs fail, while the example is easy
to handle with dependency pairs.

minus(x, 0)→ x

minus(s(x), s(y))→ minus(x, y)

quot(0, s(y))→ 0

quot(s(x), s(y))→ s(quot(minus(x, y), s(y)))

In Sect. 2, we recapitulate the dependency pair approach for termination and
innermost termination proofs (i.e., one tries to show that all reductions are fi-
nite, where in the innermost termination case, one only considers reductions of
innermost redexes) and discuss first new refinements. Then we show that the ap-
proach can be improved significantly by reducing the constraints for termination

(Sect. 3) and innermost termination (Sect. 4). Sect. 5 introduces new conditions
for transforming dependency pairs by narrowing, rewriting, and instantiation in
order to simplify (innermost) termination proofs further.

The remainder of the paper is concerned with mechanizing dependency pairs.
To this end, we show how to solve the indeterminisms and search problems of the
dependency pair approach efficiently. One problem is the question when and how
often to apply the dependency pair transformations discussed above. Therefore,
in Sect. 5 we also show how to use these transformations in practice in order
to guarantee the termination of their application without compromising their
power.

For automated (innermost) termination proofs, one tries to solve the con-
straints generated by the dependency pair approach with standard simplification
orders. However, if one uses orders like RPOS or KBO, then the constraints
should first be pre-processed by an argument filtering in order to benefit from
the full power of dependency pairs. Since the number of possible argument filter-
ings is exponential, the search for a suitable filtering is one of the main problems
when automating dependency pairs. We present an algorithm to generate argu-
ment filterings efficiently for our improved dependency pair approach (Sect. 6)
and discuss heuristics to increase its efficiency in Sect. 7. Instead of using orders
like RPOS or KBO in combination with argument filterings, one can also ap-
ply polynomial orders, which already simulate the concept of argument filtering
themselves. In Sect. 8 we show how to mechanize the dependency pair approach
using polynomial orders efficiently.

Our improvements and algorithms are implemented in our termination prover
AProVE. In Sect. 9 we give empirical results which show that they are extremely
successful in practice. Thus, the contributions of this paper are also very help-
ful for other tools based on dependency pairs (e.g., [1], CiME [6], TTT [21]).
Moreover, we conjecture that they can also be used in other recent approaches
for termination [5, 11] which have several aspects in common with dependency
pairs. Finally, dependency pairs can be combined with other termination tech-
niques (e.g., in [34] we integrated dependency pairs and the size-change principle
from termination analysis of functional [27] and logic programs [10]). Moreover,
the system TALP [31] uses dependency pairs for termination proofs of logic pro-
grams. Thus, techniques to mechanize and to improve dependency pairs are also
useful for termination analysis of other kinds of programming languages.

2 Dependency Pairs

We briefly present the dependency pair approach of Arts and Giesl and refer
to [2, 13, 14] for refinements and motivations. We assume familiarity with term
rewriting (see, e.g., [4]). For a TRS R over a signature F , the defined symbols
D are the root symbols of the left-hand sides of rules and the constructors are
C = F \ D. We restrict ourselves to finite signatures and TRSs. Let F] = {f] |
f ∈ D} be a set of tuple symbols, where f] has the same arity as f and we often
write F for f], etc. If t = g(t1, . . . , tm) with g ∈ D, we write t] for g](t1, . . . , tm).

Definition 2 (Dependency Pair) If l → r ∈ R and t is a subterm of r with
defined root symbol, then the rule l] → t] is a dependency pair of R. The set of
all dependency pairs of R is denoted by DP (R).

4

So the dependency pairs of the TRS in Ex. 1 are

MINUS(s(x), s(y))→ MINUS(x, y) (1)

QUOT(s(x), s(y))→ MINUS(x, y) (2)

QUOT(s(x), s(y))→ QUOT(minus(x, y), s(y)) (3)

To use dependency pairs for (innermost) termination proofs, we need the
notion of (innermost) chains. Intuitively, a dependency pair corresponds to a
(possibly recursive) function call and a chain of dependency pairs represents
possible sequences of calls that can occur during a reduction. We always assume
that different occurrences of dependency pairs are variable disjoint and we al-
ways consider substitutions whose domains may be infinite. Here, i→R denotes
innermost reductions.

Definition 3 (R-Chain) A sequence of dependency pairs s1 → t1, s2 → t2, . . .
is an R-chain if there exists a substitution σ such that tjσ→∗R sj+1σ for every
two consecutive pairs sj → tj and sj+1 → tj+1 in the sequence. Such a chain is
an innermost R-chain if tjσ

i→∗R sj+1σ and if sjσ is a normal form for all j.

For instance in Ex. 1, the following sequence is an (innermost) chain.

QUOT(s(x1), s(y1))→ QUOT(minus(x1, y1), s(y1)),
QUOT(s(x2), s(y2))→ QUOT(minus(x2, y2), s(y2))

since QUOT(minus(x1, y1), s(y1))σ →∗R QUOT(s(x2), s(y2))σ holds for a suitable
substitution σ. For example, σ could instantiate x1 with s(0) and y1, x2, y2 with
0. While there are chains of arbitrary finite length in Ex. 1, we have no infinite
chains. We obtain the following sufficient and necessary criterion for termination
and innermost termination.

Theorem 4 (Termination Criterion) A TRS R is terminating iff there is
no infinite chain. R is innermost terminating iff there is no infinite innermost
chain.

For (innermost) termination proofs by Thm. 4, one shows that there is no
infinite (innermost) chain. To this end, one generates constraints which should
be satisfied by some reduction pair (%,�) [25] consisting of a quasi-rewrite order
% (i.e., % is reflexive, transitive, monotonic (closed under contexts), and stable
(closed under substitutions)) and a stable well-founded order � which is compat-
ible with % (i.e., % ◦ �⊆� and �◦%⊆�). However, � need not be monotonic.
The constraints ensure that all rewrite rules are weakly decreasing (w.r.t. %)
and all dependency pairs are strictly decreasing (w.r.t. �). Requiring l % r for
all l→ r ∈ R ensures that in a chain s1→ t1, s2→ t2, ... with tjσ →∗R sj+1σ, we
have tjσ % sj+1σ for all j. However for innermost termination, a weak decrease
is not required for all rules but only for the usable rules. These rules are a su-
perset of those rules that may be used to reduce right-hand sides of dependency
pairs if their variables are instantiated with normal forms. In Ex. 1, the usable
rules are the minus-rules. Of course, rules l → r where l contains a redex as a
proper subterm should never be included in the usable rules. But since such rules
cannot be used in innermost reductions anyway, they should be eliminated in a
pre-processing step before attempting the innermost termination proof.

5

Definition 5 (Usable Rules) For f ∈F , let RlsR(f) = {l→ r∈R | root(l) =
f} and let R′ = R \ RlsR(f). For any term, we define

• UR(x) = ∅ for x ∈ V (where V is the set of all variables) and
• UR(f(t1, ..., tn)) = RlsR(f) ∪ ⋃l→r∈RlsR(f) UR′(r) ∪

⋃n
j=1 UR′(tj).

The above definition of usable rules from [2] can be improved further by
taking into account that in innermost chains s1 → t1, s2 → t2, . . ., we only
regard substitutions σ such that all subterms of sjσ are in normal form. Thus,
subterms of tj which also occur in the corresponding left component sj may
be ignored when computing the usable rules. This leads to the following new
improved definition of usable rules.

Definition 6 (Improved Usable Rules) Let s and t be terms with V(t) ⊆
V(s). Then U sR(t) = ∅ if t is a subterm of s and otherwise

UsR(f(t1, . . . , tn)) = RlsR(f) ∪
⋃

l→r∈RlsR(f)
UR′(r) ∪

⋃n

j=1
UsR′(tj).

For any set P of dependency pairs, we define UR(P) =
⋃
s→t∈P UsR(t).

Example 7 The following TRS illustrates the improved usable rules.

f(a, h(x))→ f(g(x), h(x)) h(g(x))→ h(a)
g(h(x))→ g(x) h(h(x))→ x

Since the term F(g(x), h(x)) from the right-hand side of the first dependency pair
contains g and h, UR(F(g(x), h(x))) consists of the g- and h-rules. On the other

hand, UF(a,h(x))
R (F(g(x), h(x))) only contains the g-rules, since h(x) is a subterm of

the dependency pair’s left-hand side F(a, h(x)). Thus, with the improved usable
rules, a weak decrease of the h-rules is no longer required. We show in Ex. 13 that
this improvement is indeed necessary for the success of the innermost termination
proof.

To estimate which dependency pairs may occur consecutively in (innermost)
chains, we build an (innermost) dependency graph. Its nodes are the dependency
pairs and there is an arc from s→ t to v → w iff s→ t, v → w is an (innermost)
chain. In Ex. 1, we have the following dependency graph that is identical to the
innermost dependency graph.

QUOT(s(x), s(y))→ QUOT(minus(x, y), s(y))

MINUS(s(x), s(y))→ MINUS(x, y)

?

6

?

?

QUOT(s(x), s(y))→ MINUS(x, y)

Since it is undecidable whether two dependency pairs form an (innermost)
chain, for automation we construct estimated graphs such that all arcs in the
real graph are also arcs in the estimated graph. Let cap(t) result from replac-
ing all subterms of t with defined root symbol by different fresh variables. Here,

6

multiple occurrences of the same subterm with defined root are also replaced
by pairwise different fresh variables. Let ren(t) result from replacing all occur-
rences of variables in t by different fresh variables (i.e., ren(t) is a linear term).
Hence, cap(QUOT(minus(x, y), s(y))) = QUOT(z, s(y)) and ren(QUOT(x, x)) =
QUOT(x1, x2). We define caps like cap except that subterms with defined root
that already occur in s are not replaced by new variables.

Definition 8 (Estimated (innermost) dependency graph) The estimated
dependency graph EDG(R) of a TRS R is the directed graph whose nodes
are the dependency pairs and there is an arc from the pair s→ t to v → w iff
ren(cap(t)) and v are unifiable. In the estimated innermost dependency graph
EIDG(R) there is an arc from s→ t to v → w iff caps(t) and v are unifiable by
a most general unifier (mgu) µ such that sµ and vµ are in normal form.

Of course, to check whether there is an arc from s→ t to v → w in E(I)DG,
one has to rename their variables to make them variable disjoint. In Ex. 1, the
estimated dependency graph and the estimated innermost dependency graph are
identical to the real dependency graph.

In [19, 20, 28, 29], the above estimations of [2] were refined. While the approxi-
mations of [28] are based on computationally expensive tree automata techniques,
the following refinements of EDG and EIDG from [19, 20, 29] can be computed
efficiently. In order to draw an arc from s→ t to v → w, apart from checking the
unifiability of a modification of t with v, one also requires the unifiability of a
modification of v with t. To this end, one considers the reversal of R-rules. More
precisely, for any set of non-collapsing rules R′ ⊆ R, let cap−1

R′ (v) result from
replacing all subterms of v that have a root symbol from {root(r) | l → r ∈ R′}
by different fresh variables. If R′ is collapsing, then cap−1

R′ (v) is a fresh variable.
As usual, a rule l→ r is called collapsing if r ∈ V.

Definition 9 (E(I)DG∗ [19, 20, 29]) EDG∗(R) is the graph whose nodes are
the dependency pairs and there is an arc from s→ t to v → w iff both ren(cap(t))
and v are unifiable and ren(cap−1

R (v)) and t are unifiable. In EIDG∗(R) there
is an arc from s→ t to v → w iff both caps(t) and v are unifiable by a mgu µ1

and ren(cap−1
UR(t)(v)) and w are unifiable by a mgu µ2, where sµ1, vµ1, sµ2 are

in normal form.1

E(I)DG∗(R) contains the real (innermost) dependency graph and it is a sub-
graph of E(I)DG(R) [19, 20, 29]. Thus, E(I)DG∗ is a better approximation than
E(I)DG. Since EIDG∗ is based on the computation of usable rules, our new im-
proved usable rules of Def. 6 lead to the following refined approximation EIDG∗∗

which results from replacing UR(t) by UsR(t). It is straightforward to show that
EIDG∗∗(R) still contains the real innermost dependency graph and it is a sub-
graph of EIDG∗(R). Thus, now EDG∗ and EIDG∗∗ are the best known approx-
imations of (innermost) dependency graphs that can be computed efficiently.
Moreover, in Sect. 5 we will show that in contrast to EIDG∗, EIDG∗∗ is well
suited for a combination with dependency pair transformations.

1 Note that it is useless to require vµ2 to be a normal form, since the terms ren(cap−1
UR(t)(v))

and v are variable disjoint.

7

Definition 10 (EIDG∗∗) In EIDG∗∗(R) there is an arc from s→ t to v → w
iff caps(t) and v unify by a mgu µ1 and ren(cap−1

UsR(t)(v)) and t unify by a mgu

µ2, where sµ1, vµ1, sµ2 are in normal form.

The advantage of EIDG∗ over EIDG∗∗ is illustrated by the TRSR from Ex. 7.
The dependency pair F(a, h(x)) → F(g(x), h(x)) forms a cycle in EIDG∗(R),
whereas this is not the case in EIDG∗∗(R). The reason is that for t = F(g(x), h(x))
and v = F(a, h(x′)), UR(t) is collapsing and thus, ren(cap−1

UR(t)(v)) is a fresh

variable, whereas ren(cap−1
UsR(t)(v)) = F(a, h(y)) does not unify with t.

A set P 6= ∅ of dependency pairs is a cycle if for any two pairs s→ t and
v → w in P there is a non-empty path from s→ t to v → w in the graph which
only traverses pairs from P. In Ex. 1, we have the cycles P1 = {(1)} and P2 =
{(3)} of the MINUS- and the QUOT-pair. Since we only regard finite TRSs,
any infinite (innermost) chain of dependency pairs corresponds to a cycle in the
(innermost) dependency graph.

To show (innermost) termination of TRSs, one can now prove absence of infi-
nite (innermost) chains separately for every cycle of the (innermost) dependency
graph. In particular, for every cycle one generates constraints separately and
one can search for different reduction pairs satisfying the constraints. Moreover,
it suffices if in every cycle P only one dependency pair is strictly decreasing,
whereas the others only have to be weakly decreasing. For automation, one may
use any of the estimations discussed above instead of the real graph.

We want to use standard techniques to synthesize reduction pairs satisfy-
ing the constraints of the dependency pair approach. Most existing techniques
generate monotonic orders � like RPOS or KBO. But for the dependency pair
approach we only need a monotonic quasi-order %, whereas � does not have
to be monotonic. (This is often called “weak monotonicity”.) For that reason,
before synthesizing a suitable order, some arguments of function symbols can be
eliminated. To perform this elimination of arguments resp. of function symbols
the concept of argument filtering was introduced in [2] (we use the notation of
[25]).

Definition 11 (Argument Filtering) An argument filtering π for a signature
F maps every n-ary function symbol to an argument position i ∈ {1, . . . , n}
or to a (possibly empty) list [i1, . . . , im] of argument positions with 1 ≤ i1 <
. . . < im ≤ n. The signature Fπ consists of all function symbols f such that
π(f) = [i1, . . . , im], where in Fπ the arity of f is m. Every argument filtering π
induces a mapping from terms over F to terms over Fπ. This mapping is also
denoted by π:

π(t) =

t if t is a variable
π(ti) if t = f(t1, ..., tn) and π(f) = i
f(π(ti1), ..., π(tim)) if t = f(t1, ..., tn) and π(f) = [i1, ..., im]

An argument filtering with π(f) = i for some f ∈ F is called collapsing.

Now dependency pairs can be automated as follows. Here, we always use
argument filterings for the signature F ∪ F].

8

Theorem 12 (Automating Dependency Pairs) A TRS R is terminating
iff for any cycle P of the dependency graph, there is a reduction pair (%,�)
and an argument filtering π such that both

(a) π(s) � π(t) for one dependency pair s→ t from P and
π(s) % π(t) or π(s) � π(t) for all other pairs s→ t from P

(b) π(l) % π(r) for all l→ r ∈ R

A TRS R is innermost terminating if for any cycle P of the innermost de-
pendency graph, there is a reduction pair (%,�) and an argument filtering π
such that both

(c) π(s) � π(t) for one dependency pair s→ t from P and
π(s) % π(t) or π(s) � π(t) for all other pairs s→ t from P

(d) π(l) % π(r) for all l→ r ∈ UR(P)

So in Ex. 1, we obtain the following 10 constraints for termination. Here,
(%i,�i) is the reduction pair and πi is the argument filtering for cycle Pi, where
i ∈ {1, 2}.

π1(MINUS(s(x), s(y))) �1 π1(MINUS(x, y)) (4)

π2(QUOT(s(x), s(y))) �2 π2(QUOT(minus(x, y), s(y))) (5)

πi(minus(x, 0)) %i πi(x) (6)

πi(minus(s(x), s(y))) %i πi(minus(x, y)) (7)

πi(quot(0, s(y))) %i πi(0) (8)

πi(quot(s(x), s(y))) %i πi(s(quot(minus(x, y), s(y)))) (9)

The argument filtering πi(minus) = [1] replaces all terms minus(t1, t2) by
minus(t1). With this filtering, (4) – (9) are satisfied by the lexicographic path
order (LPO) with the precedence quot > s > minus. So termination of the TRS is
proved. Similarly, one could also use a collapsing filtering πi(minus) = πi(quot) =
1 which replaces all terms minus(t1, t2) or quot(t1, t2) by t1. Then even the em-
bedding order orients the resulting constraints.

For innermost termination, we only obtain the constraint (4) for the cycle P1,
since it has no usable rules. For P2, the constraints (8) and (9) are not necessary,
since the quot-rules are not usable for any right-hand side of a dependency pair.
In general, the constraints for innermost termination are always a subset of the
constraints for termination. So for classes of TRSs where innermost termination
already implies termination (e.g., non-overlapping TRSs) [17], one should always
use the approach for innermost termination when attempting termination proofs.

Example 13 The TRS from Ex. 7 shows that the improved usable rules resp.
our improved approximation EIDG∗∗ of innermost dependency graphs can be
necessary for the success of the innermost termination proof. If one uses the
original definition of usable rules (Def. 5) and EIDG∗ or EIDG, then the pair
F(a, h(x))→ F(g(x), h(x)) forms a cycle and the g- and h-rules are usable. Thus,

9

one would have to find an argument filtering π and a reduction pair (%,�) such
that

π(F(a, h(x))) � π(F(g(x), h(x))) (10)

π(g(h(x))) % π(g(x)) (11)

π(h(g(x))) % π(h(a)) (12)

π(h(h(x))) % x (13)

However, there exists no argument filtering such that these constraints are
satisfiable by standard reduction pairs which are based on RPOS, KBO, or poly-
nomial orders. For RPOS, constraint (10) implies that a must be greater than g in
the precedence and since the argument filtering may not eliminate the argument
of h by constraint (13), this precedence contradicts constraint (12). Similarly for
KBO, constraint (10) implies that the argument filtering must remove g’s argu-
ment and that either a must have greater weight than g or their weight is equal
and a is greater than g in the precedence. But again, this contradicts constraint
(12). Finally, for polynomial orders, constraint (10) implies a � g(a), since poly-
nomial orders are total on ground terms. But since h may not be mapped to a
constant polynomial by constraint (13), this would contradict constraint (12).
Thus, with common orders that are amenable to automation, the innermost ter-
mination proof fails when using the classical usable rules of Def. 5.

In contrast, with the improved usable rules of Def. 6 one would not obtain the
constraints (12) and (13). The remaining constraints are satisfied by an LPO with
the precedence a > g if one uses the argument filtering π with π(g) = []. Even
better, when using improved usable rules already in the graph approximation
EIDG∗∗, then one can detect that the graph has no arcs and one does not obtain
any constraint at all.

As shown in [20], to implement Thm. 12, one does not compute all cycles, but
only maximal cycles (strongly connected components, SCCs) that are not con-
tained in other cycles. When solving the constraints of Thm. 12 for an SCC, the
reduction pair (%,�) and argument filtering π may satisfy the strict constraint
π(s) � π(t) for several dependency pairs s → t in the SCC. Thus, all subcycles
of the SCC containing such a strictly decreasing dependency pair do not have
to be considered anymore. So after solving the constraints for the initial SCCs,
all strictly decreasing dependency pairs are removed and one now builds SCCs
from the remaining dependency pairs, which were just weakly decreasing up to
now, etc.

3 Improved Termination Proofs

Now we improve the technique for automated termination proofs (Thm. 12).
Urbain [36] showed how to use dependency pairs for modular termination proofs
of hierarchical combinations of Cε-terminating TRSs. R is Cε-terminating [16]
iff R∪Cε terminates where Cε = {c(x, y)→ x, c(x, y)→ y} for a fresh symbol c
not occurring in R. However in the results of [36], Urbain did not integrate the
consideration of cycles in dependency graphs and required all dependency pairs
to be strictly decreasing. Thm. 14 extends his modularity results by combining
them with cycles. This leads to an improvement for termination proofs with
dependency pairs which can be used for TRSs in general. The advantage is that
the set of constraints (b) in Thm. 12 is reduced significantly.

10

The crucial idea of [36] is to consider the recursion hierarchy of function
symbols. A symbol f depends on the symbol h (denoted f ≥d h) if f = h or
if there exists a symbol g such that g occurs in an f -rule and g depends on h.
We define >d =≥d \ ≤d and ∼d =≥d ∩ ≤d. So f ∼d g means that f and g are
mutually recursive. If R = R1] . . .]Rn and f ∼d g iff RlsR(f)∪RlsR(g) ⊆ Ri,
then we call R1, . . . ,Rn a separation ofR. Moreover, we extend ≥d to the sets Ri
by definingRi ≥d Rj iff f ≥d g for all f, g with RlsR(f) ⊆ Ri and RlsR(g) ⊆ Rj .
For any i, let R′i denotes the rules that Ri depends on, i.e., R′i =

⋃
Ri≥dRj Rj.

Clearly, a cycle can only consist of dependency pairs from some Ri. So in
Thm. 12 we only have to consider cycles with P ⊆ DP (Ri). But to detect these
cycles P, we still have to regard the dependency graph of the whole TRS R
and not just the dependency graph of the subsystem R′i. The reason is that we
have to consider R-chains instead of just R′i-chains. To see this, regard Toyama’s
TRS [35] where R1 = R′1 = {f(0, 1, x) → f(x, x, x)} and R2 = R′2 = {g(x, y) →
x, g(x, y) → y}. R′1’s and R′2’s dependency graphs have no arcs, whereas the
dependency graph of R = R1 ∪R2 has a cycle. Hence, if one only considers the
graphs of R′1 and R′2, one could falsely prove termination.

Our improvement for termination proofs can be combined with any estima-
tion technique for dependency graphs. If one uses the EDG-estimation of Def. 8,
to detect the cycles with P ⊆ DP (Ri), it indeed suffices to regard the estimated
dependency graph EDG(R′i) instead of EDG(R). The reason is that then all
cycles of R’s dependency graph with P ⊆ DP (Ri) are also cycles of EDG(R′i) .
But for other estimations like EDG∗ or the technique of [28] this is not the case.

When handling a cycle with nodes from DP (Ri), the constraints (b) of
Thm. 12 require π(l) % π(r) for all rules l → r ∈ R. The improvement of
Thm. 14 states that instead, it suffices to demand π(l) % π(r) only for rules
l→ r that Ri depends on, i.e., for rules from R′i. So in the termination proof of
Ex. 1, π(l) % π(r) does not have to be required for the quot-rules when regard-
ing the cycle P1 = {MINUS(s(x), s(y)) → MINUS(x, y)}. The reason is that for
every minimal2 chain s1 → t1, s2 → t2, . . . of Ri-dependency pairs, there exists
a substitution σ such that tjσ reduces to sj+1σ using only the rules of R′i ∪ Cε,
cf. [36]. Thus, to ensure tjσ % sj+1σ for all j, we only have to require l % r
for all rules l → r of R′i provided that the quasi-order also satisfies c(x, y) % x
and c(x, y) % y. For automation, this is not a restriction since one usually uses
quasi-simplification orders % (i.e., monotonic and stable quasi-orders with the
subterm property f(. . . t . . .) % t for any term t and symbol f) or polynomial
orders. Any quasi-simplification order orients Cε and similarly, every polynomial
order can be extended to orient Cε.

Theorem 14 (Improved Termination Proofs with DPs) Let R1, ...,Rn be
a separation of R. The TRS R is terminating if for all 1 ≤ i ≤ n and any cycle
P of the dependency graph of R with P ⊆ DP (Ri), there is a reduction pair
(%,�) and an argument filtering π such that both

(a) π(s) � π(t) for one dependency pair s→ t from P and

2 A chain s1→ t1, s2→ t2, . . . is minimal if there is a substitution σ with tjσ→∗R sj+1σ and
all sjσ are terminating. Minimal infinite chains correspond to infinite reductions of minimal
non-terminating terms (i.e., their proper subterms are terminating). So absence of infinite
minimal chains already suffices for termination.

11

π(s) % π(t) or π(s) � π(t) for all other pairs s→ t from P
(b) π(l) % π(r) for all l→ r ∈ R′i ∪ Cε

Proof. If R is not terminating, then by Thm. 4 there exists an infinite chain
s1 → t1, s2 → t2, . . . where tjσ →∗R sj+1σ for all j. As can be seen from the proof
of Thm. 4 in [2, Thm. 6], the infinite chain and the substitution can be chosen
such that all sjσ and tjσ are terminating, i.e., there exists a minimal infinite
chain.

Without loss of generality, the dependency pairs sj → tj come from a cycle
P of R’s dependency graph where P ⊆ DP (Ri). Let R′′i = R\R′i. Then R′i and
R′′i form a hierarchical combination (thus, defined symbols of R′i may occur as
constructors in R′′i , but not vice versa). By [36, Lemma 2] there is a substitution
σ′ such that tjσ

′ →∗R′i∪Cε sj+1σ
′. Since π(l) % π(r) for all l → r ∈ R′i ∪ Cε

by constraint (b), we obtain π(tjσ
′) = π(tj)σ

′
π % π(sj+1)σ′π = π(sj+1σ

′) where
σ′π(x) = π(σ′(x)) for all x ∈ V. Constraint (a) implies π(sj)σ

′
π � π(tj)σ

′
π for

infinitely many j and π(sj)σ
′
π % π(tj)σ

′
π for all remaining j. By compatibility

of % and �, this contradicts the well-foundedness of �. ut

Example 15 This TRS of [32] shows that Thm. 14 not only increases efficien-
cy, but also leads to a more powerful method. Here, int(sn(0), sm(0)) computes
[sn(0), sn+1(0), . . . , sm(0)], nil is the empty list, and cons represents list insertion.

intlist(nil)→ nil (14)

intlist(cons(x, y))→ cons(s(x), intlist(y)) (15)

int(0, 0)→ cons(0, nil) (16)

int(0, s(y))→ cons(0, int(s(0), s(y))) (17)

int(s(x), 0)→ nil (18)

int(s(x), s(y))→ intlist(int(x, y)) (19)

The TRS is separated into the intlist-rules R1 and the int-rules R2 >d R1.
We first show that the constraints of Thm. 12 for termination of the cycle
P = {INTLIST(cons(x, y)) → INTLIST(y)} cannot be solved with reduction
pairs based on simplification orders. Thus, an automated termination proof with
Thm. 12 is virtually impossible.

We must satisfy π(INTLIST(cons(x, y))) � π(INTLIST(y)) (∗). We distinguish
three cases depending on the filtering π. First, let π(s) 6= [] or π(int) = []. Then
we have π(int(0, s(y))) % π(cons(0, int(s(0), s(y)))) % π(cons(0, int(0, s(y)))) by
weak decreasingness of rule (17) and the subterm property. When substituting
x by 0 and y by int(0, s(y)) in (∗), we obtain a contradiction to well-foundedness
of �.

Next, let π(intlist) = []. We have intlist % π(cons(s(x), intlist(. . .))) by rule
(15), which gives a similar contradiction when substituting x by s(x) and y by
intlist(...) in (∗).

Finally, let π(s) = [], π(int) 6= [], and π(intlist) 6= []. Now we obtain a
contradiction, since the filtered rule (19) cannot be weakly decreasing. The reason
is that x or y occur on its right-hand side, but not on its left-hand side.

In contrast, when using Thm. 14, only the intlist-rules R′1 = R1 must be
weakly decreasing when examining P. These constraints are satisfied by the

12

embedding order using an argument filtering with π(cons) = [2] and π(intlist) =
π(INTLIST) = 1.

The constraints from R2’s cycle and rules from R′2 = R1 ∪ R2 can also
be oriented (by LPO and a filtering with π(cons) = 1 and π(INT) = 2). How-
ever, this part of the proof requires the consideration of cycles of the depen-
dency graph. The reason is that there is no argument filtering and simplifi-
cation order such that both dependency pairs of R2 are strictly decreasing:
π(INT(s(x), s(y))) � π(INT(x, y)) implies π(s) = [1]. But then π(INT(0, s(y)))
is embedded in π(INT(s(0), s(y))). Hence, we have π(INT(s(0), s(y))) 6� π(INT(0,
s(y))) for any simplification order �.

In contrast, with Thm. 14, only the intlist-rules R′1 = R1 must be weakly
decreasing for P. These constraints are satisfied by the embedding order using
an argument filtering with π(cons) = [2] and π(intlist) = π(INTLIST) = 1.

The constraints from R2’s cycle and rules from R′2 = R1 ∪ R2 can also be
oriented (by LPO and π(cons) = 1, π(INT) = 2). However, for this part of the
proof one has to consider cycles of the dependency graph. The reason is that there
is no argument filtering and simplification order such that both dependency pairs
of R2 are strictly decreasing.

So if one only considers cycles or if one only uses Urbain’s modularity re-
sult [36], then the termination proof of Ex. 15 fails with simplification orders.
Instead, both refinements should be combined as in Thm. 14. As observed in
[30], if one uses the EDG-estimation from Def. 8 in combination with quasi-
simplification orders, one can only prove Cε-termination. However, since Thm. 14
permits arbitrary estimation techniques for dependency graphs such as EDG∗,
in contrast to the criteria in [36] it can also prove termination of TRSs like
{f(0, 1, x) → f(x, x, x)} that are not Cε-terminating.

4 Improved Innermost Termination Proofs

Proving innermost termination with dependency pairs is easier than proving
termination for two reasons: the innermost dependency graph has less arcs than
the dependency graph and we only require π(l) % π(r) for the usable rules
l → r instead of all rules. In Sect. 3 we showed that for termination, it suffices
to require π(l) % π(r) only for the rules of R′i if the current cycle consists of
Ri-dependency pairs. Still, R′i is always a superset of the usable rules. Now we
introduce an improvement of Thm. 12 for innermost termination in order to
reduce the set of usable rules.

The idea is to apply the argument filtering first and to determine the usable
rules afterwards. The advantage is that after the argument filtering, some sym-
bols g may have been eliminated from the right-hand sides of dependency pairs
and thus, the g-rules do not have to be included in the usable rules anymore.
Moreover, if f ’s rules are usable and f calls a function g, then up to now g’s
rules are also considered usable. However, if all calls of g are only on positions
that are eliminated by the argument filtering, then g’s rules are not considered
usable anymore. Thus, we obtain less constraints of the form π(l) % π(r).

However, for collapsing argument filterings this refinement is not sound. Con-
sider the non-innermost terminating TRS

f(s(x))→ f(double(x)) double(0)→0 double(s(x))→s(s(double(x)))

13

In the cycle {F(s(x))→ F(double(x))}, we can use the filtering π(double) = 1
which results in {F(s(x)) → F(x)}. Since the filtered dependency pair contains
no defined symbols, we would conclude that the cycle has no usable rules. Then
we could easily orient the only resulting constraint F(s(x)) � F(x) for this cycle
and falsely prove innermost termination. Note that the elimination of double in
F(double(x)) is not due to the outer symbol F, but due to a collapsing argument
filtering for double itself. For that reason a defined symbol like double may only be
ignored when constructing the usable rules, if all its occurrences are in positions
which are filtered away by the function symbols above them.

Definition 16 (Usable Rules w.r.t. Argument Filtering) For an argu-
ment filtering π and an n-ary symbol f , the set rpπ(f) of regarded positions
is {i}, if π(f) = i, and it is {i1, . . . , im}, if π(f) = [i1, . . . , im]. Again, let
R′ = R \RlsR(f). For any term, we define

• UR(x, π) = ∅ for x ∈ V and
• UR(f(t1, . . . , tn), π) = RlsR(f) ∪ Sl→r∈RlsR(f) UR′(r, π) ∪ Sj∈rpπ(f) UR′(tj , π).

For a term s, let U sR(t, π) = ∅ if t is a subterm of s and otherwise

UsR(f(t1, .., tn), π) = RlsR(f) ∪Sl→r∈RlsR(f)UR′ (r, π) ∪Sj∈rpπ(f)UsR′ (tj , π).

For any set P of dependency pairs, let UR(P, π) =
⋃
s→t∈P UsR(t, π).

Example 17 We illustrate the new definition of usable rules with the following
TRS of [22] for list reversal.

rev(nil)→ nil (20)

rev(cons(x, l))→ cons(rev1(x, l), rev2(x, l)) (21)

rev1(x, nil)→ x (22)

rev1(x, cons(y, l))→ rev1(y, l) (23)

rev2(x, nil)→ nil (24)

rev2(x, cons(y, l))→ rev(cons(x, rev(rev2(y, l)))) (25)

Note that for any cycle containing the dependency pair REV2(x, cons(y, l))→
REV(cons(x, rev(rev2(y, l)))), up to now all rules would have been usable, since
rev and rev2 occur in the right-hand side and the function rev calls rev1. How-
ever, if one uses an argument filtering π with π(cons) = [2], then with our new
definition of usable rules from Def. 16, the rev1-rules would no longer be usable.
The reason is that while rev and rev2 still occur in the right-hand side of the
filtered dependency pair, rev1 no longer occurs in right-hand sides of filtered rev-
or rev2-rules. We will show in Ex. 20 that this reduction of the set of usable rules
is crucial for the success of the innermost termination proof.

To prove the soundness of our refinement for innermost termination proofs,
we need the following lemma. For a reduction pair (%,�), the pair (%π,�π)
results from applying an argument filtering, where t %π u holds iff π(t) % π(u)
and t �π u holds iff π(t) � π(u). In [2] it was shown that (%π,�π) is indeed a
reduction pair as well.

14

Lemma 18 (Properties of Usable Rules) Let R be a TRS, let π be an ar-
gument filtering, let % be a quasi-rewrite order, let σ be a normal substitution
(i.e., σ(x) is in normal form for all x ∈ V), and let s be a term such that sσ is in
normal form. For each term t, “Or(t)” abbreviates the property that π(l) % π(r)
holds for all l→ r ∈ U sR(t, π). For all terms t, v we have

(i) UsR(t, π) ⊆ UR(t, π)
(ii) If Or(t) and tσ i→R v, then tσ %π v and there is a term u and a

normal substitution σ′ with uσ′ = v, sσ′ = sσ, tσ′ = tσ, and Or(u).

(iii) If Or(t) and tσ i→∗R v then tσ %π v.

Proof. We have UsR(f(t1, .., tn), π=RlsR(f) ∪Sl→r∈RlsR(f) UR(r, π) ∪Sj∈rpπ(f) UsR(tj , π),
where we replaced R′ by R. In the rest of the proof omit the subscript R to
increase readability.

(i) We use induction on t. If t is a subterm of s, then we have U s(t, π) = ∅.
Otherwise, t = f(t1, . . . , tn) and

Us(t, π) = Rls(f) ∪Sl→r∈Rls(f) U(r, π) ∪Sj∈rpπ(f) Us(tj , π)
(ind.)

⊆ Rls(f) ∪Sl→r∈Rls(f) U(r, π) ∪Sj∈rpπ(f) U(tj , π)=U(t, π)

(ii) Since sσ is in normal form, t is not a subterm of s. We perform induction on
the position of the reduction. This position must be in t because σ is normal.
So, t has the form f(t1, . . . , tn).
If tσ = lτ i→R rτ = v, then τ is a normal substitution due to the innermost
strategy. We may assume that the rule is variable disjoint from s and t and
define σ′(x) = τ(x) for x ∈ V(r) and σ′(x) = σ(x) for x ∈ V(s) ∪ V(t). Let
u = r. We have U s(t, π) ⊇ Rls(f)∪⋃l′→r′∈Rls(f) U(r′, π) ⊇ {l → r}∪U s(r, π)
by (i). So Or(t) implies Or(u) and π(l) % π(r) which also shows π(tσ) % π(v).
Otherwise, tσ = f(t1σ . . . tjσ . . . tnσ) →R f(t1σ . . . vj . . . tnσ) = v. If j /∈
rpπ(f), then π(tσ) = π(v). Let v′j result from vj by replacing its variables
x by corresponding fresh variables x′. We define σ′(x′) = x for all these
fresh variables and σ′(x) = σ(x) for all x ∈ V(s) ∪ V(t). Then let u =
f(t1 . . . v

′
j . . . tn). Now uσ′ = v, and Us(t, π) = Us(u, π) implies Or(u). For j ∈

rpπ(f) we have U s(t, π) ⊇ Us(tj , π) which implies Or(tj). By the induction
hypothesis we have π(tjσ) % π(vj) and monotonicity of %π implies π(tσ) %
π(v). By the induction hypothesis there is also some uj and σ′ with ujσ

′ = vj
and Or(uj). Let u = f(t1 . . . uj . . . tn). So uσ′ = v and Us(u, π) ⊆ Us(t, π) ∪
Us(uj , π). Thus, Or(t) and Or(uj) imply Or(u).

(iii) We use induction on the length n of the reduction. For n = 0 the claim
is trivial. Otherwise, tσ i→R v′ i→n−1

R v. By (ii), we have π(tσ) % π(v′) and
there exists a term u and a normal substitution σ ′ with uσ′ = v′ and sσ′ = sσ
such that Or(u). Since sσ′ is a normal form, the induction hypothesis implies
π(uσ) % π(v) and the claim follows from transitivity of %π. ut

Now we can refine the innermost termination technique of Thm. 12 to the
following one where the set of usable rules is reduced significantly.

Theorem 19 (Improved Innermost Termination with DPs) A TRS R
is innermost terminating if for any cycle P of the innermost dependency graph,
there is a reduction pair (%,�) and an argument filtering π such that both

15

(c) π(s) � π(t) for one dependency pair s→ t from P and
π(s) % π(t) or π(s) � π(t) for all other pairs s→ t from P

(d) π(l) % π(r) for all l→ r ∈ UR(P, π)

Proof. By Thm. 4, we have to show absence of infinite innermost chains. Let
s1 → t1, s2 → t2, . . . be an infinite innermost chain from the cycle P. So there is
a normal substitution σ with tjσ

i→∗R sj+1σ where sjσ are in normal form for all
j. Hence, we obtain tjσ %π sj+1σ by (d) and Lemma 18 (iii). By (c) and closure
of �π under substitutions, we have s1σ %π t1σ %π s2σ %π . . . where sjσ �π tjσ
holds for infinitely many j in contradiction to the well-foundedness of �π. ut

Example 20 The TRS for list reversal from Ex. 17 [22] shows the advantages of
Thm. 19. When proving innermost termination with Thm. 12, for the cycle of the
REV- and REV2-dependency pairs, we obtain inequalities from the dependency
pairs and π(l) % π(r) for all rules l → r, since all rules are usable. But with
standard reduction pairs based on RPOS, KBO, or polynomial orders, these
constraints are not satisfiable for any argument filtering.

For RPOS and KBO, we first show that if an argument position is eliminated
by an argument filtering π, then the constraints cannot be satisfied. From (22)
we obtain 1 ∈ rpπ(rev1) which leads to 2 ∈ rpπ(rev1) and 1, 2 ∈ rpπ(cons) by
using (23) twice, so π(rev1) = π(cons) = [1, 2]. Using (21) we obtain 1 ∈ rpπ(rev).
Now we can conclude π(rev2) = [1, 2] from (25). If we have π(rev) = 1, then (21)
yields a contradiction to the subterm property. Hence, π(rev) = [1]. Thus, if we
search for a simplification order such that the rules are weakly decreasing, then
we are not allowed to drop any argument or function symbol in the filtering.
Hence, it is sufficient to examine whether the orders above are able to make the
unfiltered rules weakly decreasing.

There is no KBO satisfying these constraints since (21) is duplicating. If we
want to orient the constraints by some lexicographic or recursive path order, we
need a precedence with rev2 > rev due to (25). But this precedence cannot be
extended further to orient (21).

There is also no polynomial order satisfying the constraints of Thm. 12. A
polynomial interpretation has the following form.

Pol(rev(l)) = p1(l), where p1(l) = p′1 · ln1 + p′′1(l)
Pol(rev1(x, l)) = p2(x, l), where p2(x, l) = p′2(x) · ln2 + p′′2(x, l)
Pol(rev2(x, l)) = p3(x, l), where p3(x, l) = p′3(x) · ln3 + p′′3(x, l)
Pol(cons(x, l)) = p4(x, l), where p4(x, l) = p′4(x) · ln4 + p′′4(x, l)
Pol(nil) = p5

Here, n1, n2, n3, n4 denote the highest exponents used for l in the respective
polynomials, where p′i and p′′i are polynomials with coefficients from IN. So in
p′′1(l), p′′2(x, l), p′′3(x, l), and p′′4(x, l), the variable l occurs only with exponents
smaller than the corresponding ni. Similar to the argumentation above where we
showed that with simplification orders one may not filter away any arguments,
it is easy to show that Pol(rev1(x, l)), Pol(rev2(x, l)), and Pol(cons(x, l)) must
depend on x and l and Pol(rev(l)) must depend on l. Hence, all values ni must
be at least 1 and the polynomials p′i are not the number 0.

From the constraints of (21) and (25) we obtain

Pol(rev(cons(x, l))) ≥ Pol(cons(rev1(x, l), rev2(x, l)))

16

Pol(rev2(x, cons(x, l))) ≥ Pol(rev(cons(x, rev(rev2(x, l))))).

We now examine those parts of the polynomials which have the largest exponent
for l. So for large enough instantiations of l (and instantiations of x where the
p′i are non-zero) we must have

p′1 · p′4(x)n1 · ln1·n4 ≥ p′4(p′2(x) · ln2) · p′3(x)n4 · ln3·n4 (26)

p′3(x) · p′4(x)n3 · ln3·n4 ≥ p′4(x)n1 · p′1
n1·n4+1 · p′3(x)n

2
1·n4 · ln2

1·n3·n4 (27)

Comparison of the highest exponents of l yields n1 · n4 ≥ n3 · n4 ≥ n2
1 · n3 · n4

and thus, n1 = n3 = 1. Moreover, p′4(x) may not depend on x, since otherwise
(26) would imply n1 · n4 ≥ n3 · n4 + n2. Now (26) and (27) simplify to

p′1 ≥ p′3(x)n4 (28)

p′3(x) ≥ p′1n4+1 · p′3(x)n4 (29)

From (28) and (29) we can conclude that p′3(x) does not depend on x and p′3 =
p′1 = 1. Hence, our polynomial interpretation is as follows:

Pol(rev(l)) = l + p′′1
Pol(rev1(x, l)) = p′2(x) · ln2 + p′′2(x, l)
Pol(rev2(x, l)) = l + p′′3(x)
Pol(cons(x, l)) = p′4 · ln4 + p′′4(x, l)
Pol(nil) = p5

Now we obtain

p′4 · pn4
5 + p′′4(x, p5) + p′′1 = (30)

Pol(rev(cons(x, nil))) ≥ (31)

Pol(cons(rev1(x, nil), rev2(x, nil))) ≥ (32)

Pol(cons(x, rev2(x, nil))) = (33)

p′4 · (p5 + p′′3(x))n4 + p′′4(x, p5 + p′′3(x)) ≥ (34)

p′4 · pn4
5 + p′′4(x, p5) + p′4 · p′′3(x)n4 (35)

The step from (31) to (32) is due to the weak decreasingness of rule (21) and the
step from (32) to (33) follows from monotonicity and rule (22). Note that these
inequalities give a contradiction if one instantiates x with a large enough value
like p′′1 + 1, since Pol(rev2(x, l)) and hence p′′3(x) must depend on x.

So the most common orders that are amenable to automation fail when trying
to prove innermost termination according to Thm. 12. In contrast, with Thm. 19
and π(cons) = [2], π(REV) = π(rev) = 1, and π(REV1) = π(REV2) = π(rev2) =
2, we obtain no constraints from the rev1-rules, cf. Ex. 17. Then all filtered
constraints can be oriented by the embedding order.

Our experiments in Sect. 9 show that Thm. 14 and 19 indeed improve upon
Thm. 12 by increasing power (in particular if reduction pairs are based on simple
fast orders like the embedding order) and by reducing runtimes (in particular if
one uses more complex orders).

17

5 Transforming Dependency Pairs

To increase the power of the dependency pair technique, a dependency pair may
be transformed into new pairs by narrowing, rewriting, and instantiation [2, 13].
A term t′ is an R-narrowing of t with mgu µ if a subterm t|p /∈ V of t unifies
with the left-hand side of a (variable-renamed) rule l → r ∈ R with mgu µ,
and t′ = t[r]p µ. To distinguish the variants of narrowing and instantiation for
termination and innermost termination, we speak of t- and i-narrowing resp.
-instantiation.

Definition 21 (Transformations) For a set P of pairs of terms

• P] {s → t} t-narrows to P] {sµ1 → t1, . . . , sµn → tn} iff t1, . . . , tn are
all R-narrowings of t with the mgu’s µ1, . . . , µn and t does not unify with
(variable-renamed) left-hand sides of pairs in P. Moreover, t must be linear.

• P] {s → t} i-narrows to P] {sµ1 → t1, . . . , sµn → tn} iff t1, . . . , tn are all
R-narrowings of t with the mgu’s µ1, . . . , µn such that sµi is in normal form.
Moreover, for all v → w ∈ P where t unifies with the (variable-renamed)
left-hand side v by a mgu µ, one of the terms sµ or vµ must not be in normal
form.

• P] {s → t} rewrites to P] {s → t′} iff UsR(t|p) is non-overlapping and
t→R t′, where p is the position of the redex.

• P] {s→ t} is t-instantiated to
P] {sµ→ tµ |µ = mgu(ren(cap(w)), s), v → w ∈ P} or to
P] {sµ→ tµ |µ = mgu(ren(cap−1

R (v)), t), v → w ∈ P}
• P] {s→ t} is i-instantiated to
P] {sµ→ tµ |µ = mgu(capv(w), s), v → w ∈ P, sµ, vµ normal} or to

P] {sµ→ tµ |µ = mgu(ren(cap−1
UsR(t)

(v)), t), v → w ∈ P, sµ normal}

In termination proofs, one may modify dependency pairs by t-narrowing and
t-instantiation and for innermost termination, one may apply i-narrowing, i-
instantiation, and rewriting of dependency pairs.

In contrast to the instantiation technique in [13], Def. 21 also builds instan-
tiations by regarding pairs that may follow s → t in a chain instead of only
regarding pairs that may precede s→ t. To determine instantiations from pairs
that precede s→ t, one uses estimations as in E(I)DG. To obtain instantiations
from pairs that follow s→ t, we use concepts as in EDG∗ and EIDG∗∗.

Example 22 The instantiation technique of [13] cannot transform the depen-
dency pairs of the TRS f(x, y, z) → g(x, y, z), g(0, 1, x) → f(x, x, x), since in
chains v → w, s → t, the mgu of ren(cap(w)) and s does not modify s.
But in the chain F(x, y, z) → G(x, y, z), G(0, 1, x′) → F(x′, x′, x′), the mgu of
ren(cap−1

R (G(0, 1, x′))) and G(x, y, z) modifies the first pair. So with the im-
proved technique of Def. 21, F(x, y, z)→ G(x, y, z) is instantiated to F(0, 1, z) →
G(0, 1, z). Now the termination proof succeeds since EDG∗ has no cycle, while it
would fail without instantiations for any reduction pair based on simplification
orders.

For innermost termination, Def. 21 extends the transformations of [2, 13]
by permitting their application for a larger set of TRSs. In [13], narrowing a

18

pair s → t was not permitted if t unifies with the left-hand side of some de-
pendency pair, whereas now this is possible under certain conditions. Rewriting
dependency pairs was only allowed if all usable rules for the current cycle were
non-overlapping, whereas now this is only required for the usable rules of the
redex to be rewritten. Finally, when instantiating dependency pairs, in contrast
to [13] one can now use capv. Moreover, for both instantiation and narrowing
of dependency pairs, now one only has to consider instantiations which turn
left-hand sides of dependency pairs into normal forms.

Before proving the soundness of these transformations, we first illustrate their
application with an example which also shows that these transformations are
often crucial for the success of the proof.

Example 23 The following alternative TRS for division is from [3].

le(0, y)→ true minus(x, 0)→ x
le(s(x), 0)→ false minus(s(x), s(y))→ minus(x, y)

le(s(x), s(y))→ le(x, y) quot(x, s(y))→ if(le(s(y), x), x, s(y))
if(true, x, y)→ s(quot(minus(x, y), y))
if(false, x, y)→ 0

Without transformations, no simplification order satisfies Thm. 19’s con-
straints for innermost termination of the following cycle.

QUOT(x, s(y))→ IF(le(s(y), x), x, s(y)) (36)

IF(true, x, y)→ QUOT(minus(x, y), y) (37)

The reason is that the dependency pair constraints of this cycle imply

π(IF(true, x, s(y))) %
π(QUOT(minus(x, s(y)), s(y))) %

π(IF(le(s(y),minus(x, s(y))),minus(x, s(y)), s(y)))

where one of the constraints has to be strict. Hence, we have

π(IF(true, x, s(y))) � π(IF(le(s(y),minus(x, s(y))),minus(x, s(y)), s(y)))

From the minus-rules we see that an argument filtering π must not drop the first
argument of minus. Hence, by the subterm property we get π(minus(x, y)) % π(x).
This leads to

π(IF(true, x, s(y))) � π(IF(le(s(y), x), x, s(y))). (38)

In order to obtain a contradiction we first show the following property.

π(le(s(true), s(true))) % π(true) (39)

If π(le) = [], then using the first le-rule we can directly conclude that (39) holds.
Otherwise, by the last le-rule we get π(le(s(true), s(true))) % π(le(true, true)) and
π(le(true, true)) % π(true) by the subterm property.

19

Now, using (38), (39), and the substitution {x/s(true), y/true} we obtain the
desired contradiction.

π(IF(true, s(true), s(true))) �
π(IF(le(s(true), s(true)), s(true), s(true))) %

π(IF(true, s(true), s(true))).

On the other hand, when transforming the dependency pairs, the resulting
constraints can easily be satisfied. Intuitively, x � minus(x, y) only has to be
required if le(s(y), x) reduces to true. This argumentation can be simulated using
the transformations of Def. 21. By i-narrowing, we perform a case analysis on
how the le-term in (36) can be evaluated. In the first narrowing, x is instantiated
by 0. This results in a pair QUOT(0, s(y))→ IF(false, 0, s(y)) which is not in a
cycle. The other narrowing is

QUOT(s(x), s(y))→ IF(le(y, x), s(x), s(y)) (40)

which forms a cycle with (37). Now we perform i-instantiation of (37) and see
that x and y must be of the form s(. . .). So (37) is replaced by

IF(true, s(x), s(y))→ QUOT(minus(s(x), s(y)), s(y)) (41)

that forms a cycle with (40). Finally, by rewriting (41) we obtain

IF(true, s(x), s(y))→ QUOT(minus(x, y), s(y)) (42)

The constraints of the resulting cycle {(40), (42)} (and all other cycles) are solved
by π(minus)=π(QUOT)=1, π(IF)=2, and the embedding order.

Lemma 24 is needed to prove that if an innermost termination proof is pos-
sible without transformations, then it still works after transformations. In part
(iv), we show that if a term t can be reduced to u, then the usable rules of t
are a superset of u’s usable rules. Thus, any quasi-order which orients the usable
rules of t also orients the usable rules of u. However, this only holds if after the
argument filtering, all variables on right-hand sides of usable rules still occur on
the corresponding left-hand side. Otherwise, the TRS R with the rule f(x)→ x
and additional rules for a symbol a would be a counterexample if one uses an
argument filtering with π(f) = []. Now f(a) would reduce to a, but we would
have UR(f(a), π) 6⊇ UR(a, π), since UR(f(a), π) does not contain the a-rules. So
after rewriting or narrowing, one could obtain additional constraints which re-
quire that the a-rules are weakly decreasing. This might destroy the success of
the innermost termination proof.

Lemma 24 (More Properties of Usable Rules) Let π be an argument fil-
tering, let % be a quasi-rewrite order, let σ be a substitution, and let s and t be
terms, where s is in normal form. Then we have

(i) If V(t) ⊆ V(s), then U sσR (tσ, π) ⊆ UsR(t, π).
(ii) A position p of a term t is called regarded iff p = ε or

p = jp′, t = f(t1, . . . , tn), j ∈ rpπ(f), and p′ is regarded in tj.
If u is a subterm of t at a regarded position,

20

then we have U sR(u, π) ⊆ UsR(t, π).
(iii) If V(π(u)) ⊆ V(π(t)), then U sR(uσ, π) ⊆ UsR(tσ, π) ∪ UR(u, π).
(iv) If V(π(r)) ⊆ V(π(l)) for all l→ r ∈ U sR(t, π),

then t→R u implies UsR(t, π) ⊇ UsR(u, π).
(v) If l %π r for all l → r ∈ U sR(t, π) and t→R u, then t %π u.

Proof. Again we omit the subscript R and use U sR(f(t1, .., tn), π) = RlsR(f) ∪⋃
l→r∈RlsR(f) UR(r, π) ∪⋃j∈rpπ(f) UsR(tj, π).

(i) As in Lemma 18 (i), we use induction on t. If t ∈ V, then t is a subterm of s
and thus, Usσ(tσ, π) = Us(t, π) = ∅. Otherwise, t = f(t1, . . . , tn). Then

Usσ(tσ, π) = Rls(f) ∪Sl→r∈Rls(f) U(r, π) ∪Sj∈rpπ(f) Usσ(tjσ, π)
(ind.)

⊆ Rls(f) ∪Sl→r∈Rls(f) U(r, π) ∪Sj∈rpπ(f) Us(tj , π)=Us(t, π)

(ii) We use induction on t. If t = u then the claim is trivial. If t is a subterm
of s then so is u and U s(t, π) = Us(u, π) = ∅. Otherwise, t has the form
f(t1, . . . , tn) and u is a subterm of some tj for j ∈ rpπ(f). So the claim
follows from the induction hypothesis.

(iii) We perform induction on u. If u is a variable, then uσ is a subterm of tσ
at a regarded position and thus, the claim follows from (ii). Otherwise, we
have u = f(u1, . . . , un). The interesting case is if uσ is not a subterm of s.
Then Us(uσ, π)=Rls(f)∪⋃l→r∈Rls(f) U(r, π)∪⋃j∈rpπ(f) Us(ujσ, π). We have
Rls(f) ∪ ⋃l→r∈Rls(f) U(r, π) ⊆ U(u, π) and for all j ∈ rpπ(f), the induction
hypothesis implies U s(ujσ, π) ⊆ Us(tσ, π) ∪ U(uj , π) ⊆ Us(tσ, π) ∪ U(u, π).

(iv) Let t →R u using the rule l → r ∈ R. As t can be reduced, it is no normal
form and thus, no subterm of s. The only interesting case is if u is no subterm
of s either. We perform structural induction on the position p of the redex.
If p = ε then t = lσ →R rσ = u for a substitution σ. As l → r ∈ U s(t, π),
we have V(π(r)) ⊆ V(π(l)). Since U(r, π) ⊆ U s(lσ, π), now the claim follows
from (iii).
Otherwise p = jp′, t = f(t1 . . . tj . . . tn), u = f(t1 . . . uj . . . tn), and tj →R uj .
If j /∈ rpπ(f), then Us(t, π) = Us(u, π). If j ∈ rpπ(f), then

Us(t, π) = Rls(f) ∪Sl→r∈Rls(f) U(r, π) ∪ . . . ∪ Us(tj , π) ∪ . . .
(ind.)

⊇ Rls(f) ∪Sl→r∈Rls(f) U(r, π) ∪ . . . ∪ Us(uj , π) ∪ . . .
= Us(u, π).

(v) The proof is an easy induction on the position of the redex. ut

The following theorem states the soundness of the dependency pair trans-
formations in part (a). So in (innermost) termination proofs with Thm. 14 and
19, instead of the original dependency pairs one may regard pairs that are trans-
formed according to Def. 21. Of course, then Thm. 14 and 19 have to be updated
accordingly (e.g., in Thm. 14, instead of P ⊆ DP (Ri) we now permit that P
results from pairs of DP (Ri) by transformations). While soundness of the ear-
lier versions of these transformations was already shown in [2, 13], part (b) of
the following theorem is a new completeness result that is important in prac-
tice: if (innermost) termination can be proved without transformations, then the
same proof still works after performing transformations. In other words, applying
transformations can never harm.

21

Theorem 25 (Sound- and Completeness) Let DP (R)′ result from DP (R)
by t-narrowing and t-instantiation (for termination) resp. by i-narrowing, rewrit-
ing, and i-instantiation (for innermost termination).

(a) If the dependency pair constraints for (innermost) termination are satisfiable
using DP (R)′, then R is (innermost) terminating.

(b) If certain reduction pairs and argument filterings satisfy the constraints for
DP (R), then the same reduction pairs and filterings satisfy the constraints for
DP (R)′. Here, one has to use the estimation EDG or EDG∗ for dependency
graphs. For innermost termination, one must use EIDG or EIDG∗∗, and re-
duction pairs (%,�) and filterings π where t %π u implies V(π(u)) ⊆ V(π(t)).

Proof. For soundness (part (a)), one proves that if there is an infinite (innermost)
chain of pairs from DP (R), then there is also an infinite (innermost) chain of
pairs from DP (R)′.3 Hence, if the constraints using DP (R)′ are satisfiable, then
the correctness of the dependency pair approach implies (innermost) termination.
Soundness is proved in [2, Thm. 27] for t-narrowing, in [13, Thm. 12] for i-
narrowing, and in [13, Thm. 20] for instantiation. These proofs can easily be
adapted to the new refined versions of i-narrowing and instantiation in Def. 21,
due to the soundness of EDG∗ and EIDG∗∗ and since in innermost chains one
only regards substitutions which instantiate all left-hand sides of dependency
pairs to normal forms.

For soundness of the refined version of rewriting, we adapt the proof of [13,
Thm. 18]. We assume that DP (R)′ is the result of rewriting a dependency pair
s → t from DP (R) to s → t′ (i.e., t rewrites to t′ at some position p). Let
. . . , s→ t, v → w, . . . be an innermost chain of pairs from DP (R). Hence, there
exists a substitution σ with tσ i→∗R vσ and sσ, vσ are normal forms. Thus,
tσ is weakly innermost terminating. Due to the innermost reduction strategy,
we can split up the reduction of tσ into two parts. First, we reduce only on
positions on or below p until t|pσ is a normal form u. Afterwards we perform the
remaining reduction steps from tσ[u]p to vσ. The only rules applicable to t|pσ
are UsσR (t|pσ). We have U sσR (t|pσ) ⊆ UsR(t|p) by Lemma 24 (i) and thus, U sσR (t|pσ)
is non-overlapping. Hence, by [18, Thm. 3.2.11 (1a) and (4a)], t|pσ is confluent
and terminating. With t|p →R t′|p we obtain t|pσ →R t′|pσ. Hence, t′|pσ is
terminating as well and thus, it also reduces innermost to the same normal form
u using the confluence of t|pσ. So we have t′σ = tσ[t′|pσ]p

i→∗R tσ[u]p. Afterwards,
we can apply the same remaining steps as above that lead from tσ[u]p to vσ.
Therefore . . . , s→ t′, v → w, . . . is an innermost chain as well.

Next we show completeness (part (b)) for t- and i-narrowing. The com-
pleteness proofs for rewriting and instantiation are analogous. We assume that
DP (R)′ is the result of narrowing a dependency pair s→ t from DP (R). In this
transformation, s → t was replaced by narrowings of the form sµ → t′ where
tµ →R t′. Let p be the position of the redex, i.e., tµ|p = lσ and t′ = tµ[rσ]p for
some rule l→ r ∈ R.

We first show that if Q is a cycle of the estimated dependency graph of
DP (R)′ containing sµ → t′, then there is a corresponding cycle P in DP (R)’s

3 The converse direction (i.e., if there is an infinite (innermost) chain of pairs from DP (R)′ then
there is also an infinite (innermost) chain of pairs from DP (R)) holds as well for rewriting,
instantiation, and t-narrowing. For i-narrowing, this direction only holds if the usable rules
are non-overlapping (cf. [2, Ex. 43] and [13, Thm. 17]).

22

estimated dependency graph which results from Q by adding the pair s → t
and deleting its narrowings. Assume there is an arc from v → w to sµ → t′

in the estimated dependency graph of DP (R)′. Thus, ren(cap(w)) and sµ are
unifiable and if one uses EDG∗ instead of EDG, then ren(cap−1

R (sµ)) and w are
also unifiable. Obviously, sµ is an instance of s and moreover, ren(cap−1

R (sµ))
is an instance of ren(cap−1

R (s)) for any term s. The latter is shown by struc-
tural induction on s: if s ∈ V, if R is collapsing, or if root(s) is the root of
some rule’s right-hand side, then ren(cap−1

R (s)) ∈ V. Otherwise, the claim fol-
lows from the induction hypothesis, since s = f(s1, . . . , sn), ren(cap−1

R (s)) =
f(ren(cap−1

R (s1)), . . . ,ren(cap−1
R (sn))), and all ren(cap−1

R (s1)) are variable
disjoint. Hence, if ren(cap(w)) is unifiable with sµ, then it is also unifiable with
s and if ren(cap−1

R (sµ)) unifies with w, then so does ren(cap−1
R (s)). So there is

also an arc from v → w to s→ t in the estimated dependency graph of DP (R).

Similarly, if there is an arc from sµ → t′ to v → w, then there is also an
arc from s → t to v → w in DP (R)’s estimated dependency graph. To see
this, recall that ren(cap(t′)) and v must be unifiable and if one uses EDG∗,
then ren(cap−1

R (v)) and t′ are also unifiable. Unifiability of ren(cap(t′)) and
v implies unifiability of ren(cap(t)) and v, since ren(cap(t′)) is an instance of
ren(cap(tµ)) which in turn is an instance of ren(cap(t)). It remains to show
that if ren(cap−1

R (v)) and t′ unify by a substitution τ , then ren(cap−1
R (v))

and t are unifiable by a substitution τ ′ such that tµτ = tτ ′ for any terms
t and t′ with tµ →R t′. We perform induction on the position p of the re-
dex in the reduction from tµ to t′. In the induction base, we have p = ε and
t′ = rσ. Unifiability of ren(cap−1

R (v)) and t′ implies that v ∈ V, R is collaps-
ing, or root(v) is the root of some rule’s right-hand side. In all these cases,
ren(cap−1

R (v)) is a variable and thus, the claim holds. Otherwise, p = jp′,
t = f(t1, . . . , tn), and t′ = f(t1µ, . . . , tjµ[rσ]p′ , . . . , tnµ). If ren(cap−1

R (v)) /∈ V,
then f is not the root of any rule’s right-hand side and v = f(v1, . . . , vn). Hence,
ren(cap−1

R (v)) = f(ren(cap−1
R (v1)), . . . ,ren(cap−1

R (vn))) and the claim fol-
lows from the induction hypothesis and the fact that all ren(cap−1

R (vi)) are vari-
able disjoint. Here we also need that the unifier of ren(cap−1

R (vj)) and tjµ[rσ]p′

instantiates tµ’s variables in the same way as all unifiers of ren(cap−1
R (vi)) and

tiµ for i 6= j.

Now we show that if a reduction pair (%,�) and an argument filtering π
satisfy all constraints for the cycle P then they also satisfy the constraints for Q.
These constraints only differ in that s %π t resp. s �π t is replaced by sµ %π t′
resp. sµ �π t′. The constraints of Type (b) are the same. Note that if P and Q
contain a pair F (. . .) → . . ., then for every function symbol g ∈ F occurring in
pairs of P or Q, we have g ≤d f . Then s %π t implies sµ %π tµ %π t′ by stability
of %π and by the fact that tµ rewrites to t′ using a g-rule for a function symbol
g ≤d f . Hence, the constraints of Type (b) imply that all g-rules are weakly
decreasing. Similarly, s �π t implies sµ �π tµ %π t′.

Finally we prove completeness of i-narrowing. As for t-narrowing, we first
show that ifQ is a cycle of the estimated innermost dependency graph of DP (R) ′

containing sµ→ t′, then the set P resulting from adding s→ t and removing its
narrowings is a cycle in the estimated innermost dependency graph of DP (R).
As in the termination case, one can show that arcs from v → w to sµ → t′

correspond to arcs from v → w to s→ t in the estimated innermost dependency

23

graph of DP (R) if one uses the estimations EIDG or EIDG∗∗: Assume there is
an arc from v → w to sµ→ t′ in the estimated innermost dependency graph of
DP (R)′. Thus, capv(w) and sµ are unifiable by some mgu τ1 and if one uses
EIDG∗∗ instead of EIDG, then ren(cap−1

UvR(w)(sµ)) and w are also unifiable by a

mgu τ2. In addition, vτi and sµτ1 are normal forms. Again, sµ is an instance of
s and thus, the substitution τ ′1 which is like τ1 on the variables of v and capv(w)
and like µτ1 on the variables of s unifies capv(w) and s where vτ ′1 and sτ ′1 are
normal forms. Since τ ′1 is an instance of the mgu of capv(w) and s, this mgu
instantiates v and s to normal forms, too.

Moreover, by structural induction on s one can show that ren(cap−1
UvR(w)

(sµ))

is an instance of ren(cap−1
UvR(w)(s)) for any term s. If s ∈ V, if U vR(w) is collaps-

ing, or if root(s) is the root of some right-hand side of a rule from U vR(w), then
ren(cap−1

UvR(w)(s)) ∈ V. Otherwise, the claim follows from the induction hypoth-

esis, since we have s = f(s1, . . . , sn), ren(cap−1
UvR(w)(s)) = f(ren(cap−1

UvR(w)(s1)),

. . . ,ren(cap−1
UvR(w)(sn))), and all ren(cap−1

UvR(w)(si)) are variable disjoint. Hence,

unifiability of ren(cap−1
UvR(w)(sµ)) and w implies unifiability ren(cap−1

UvR(w)(s))

and w and both mgu’s are the same on the variables of v (thus, v is still instan-
tiated to a normal form). Therefore, there is also an arc from v → w to s→ t in
the estimated innermost dependency graph of DP (R).

Similarly, if there is an arc from sµ→ t′ to v → w, then there is also an arc
from s→ t to v → w in the estimated innermost dependency graph of DP (R).
To see this, recall that capsµ(t′) and v must be unifiable by some mgu τ1 and
if one uses EIDG∗∗, then ren(cap−1

UsµR (t′)(v)) and t′ are unifiable by a mgu τ2.

Moreover, sµτ1, vτ1, and sµτ2 are normal forms. Unifiability of capsµ(t′) and v
implies unifiability of caps(t) and v, since capsµ(t′) is an instance of capsµ(tµ)
which in turn is an instance of caps(t). To see this, recall that tµ rewrites to t′.
Thus, the subterm of tµ that is the redex in this reduction cannot occur in sµ,
since sµ must be a normal form. Hence, in capsµ(tµ), this subterm (or a subterm
containing this redex) is replaced by a fresh variable and thus, capsµ(t′) is an
instance of capsµ(tµ). If a subterm of t occurs also in s, then the corresponding
subterm of tµ also occurs in sµ. In contrast, there may be subterms of tµ that
occur in sµ, whereas no corresponding subterm of t occurs in s. This indicates
that capsµ(tµ) is an instance of caps(t). So caps(t) and v are unifiable by some
mgu τ ′1, where vτ ′1 = vτ1 and sµτ1 is an instance of sτ ′1. Thus, sτ ′1 and vτ ′1 are
also in normal form.

Now we show that ren(cap−1
UsR(t)(v)) and t are unifiable by a substitution τ ′2

such that tµτ2 = tτ ′2. We first regard the case where ren(cap−1
UsµR (t′)(v)) ∈ V.

Then we have v ∈ V, U sµR (t′) is collapsing, or root(v) is the root of some right-
hand side of a rule from U sµR (t′). Since UsµR (t′) ⊆ UsµR (tµ) ⊆ UsR(t) by Lemma
24 (iv) and (i), in all these cases we also have ren(cap−1

UsR(t)(v)) ∈ V. Here, the

prerequisite V(r) ⊆ V(l) of Lemma 24 (iv) is fulfilled, since we do not use any ar-
gument filtering. To handle the other cases, we again perform induction on the po-
sition p of the redex in the reduction from tµ to t′. In the induction base, we have
p = ε and t′ = rσ for a rule l→ r ∈ U sR(t). If ren(cap−1

UsµR (t′)(v)) /∈ V and if this

term is unifiable with t′, then we must have r ∈ V or root(v) = root(r). So in both

24

cases, we obtain ren(cap−1
UsR(t)(v)) ∈ V. Otherwise, p = jp′, t = f(t1, . . . , tn),

and t′ = f(t1µ, . . . , tjµ[rσ]p′ , . . . , tnµ). If ren(cap−1
UsR(t)

(v)) /∈ V, then f is not

the root of any right-hand side of a rule from U sR(t) and v = f(v1, . . . , vn). Hence,
ren(cap−1

UsR(t)(v)) = f(ren(cap−1
UsR(t)(v1)), . . . ,ren(cap−1

UsR(t)(vn))) and the claim

follows from the induction hypothesis and from the fact that ren(cap−1
UsµR (t′)(vi))

is an instance of ren(cap−1
UsR(t)(vi)) and all ren(cap−1

UsR(t)(vi)) are variable dis-

joint. As in the termination case, we need that the unifier of ren(cap−1
UsR(t)(vj))

and tjµ[rσ]p′ instantiates tµ’s variables in the same way as all unifiers of
ren(cap−1

UsR(t)(vi)) and tiµ for i 6= j. Since τ ′2 is an instance of the mgu of

ren(cap−1
UsR(t)(v)) and t, their mgu instantiates s to a normal form, since sτ ′2 =

sµτ2 is already a normal form.
Next we show that if a reduction pair (%,�) and an argument filtering π

satisfy all constraints for the cycle P, then they also satisfy the constraints for
Q. One difference between these constraints is that s %π t resp. s �π t is replaced
by sµ %π t′ resp. sµ �π t′. Note that s %π t again implies sµ %π tµ %π t′ by
stability of %π and by the fact that tµ rewrites to t′. Here, tµ % t′ follows by
Lemma 24 (v), since all rules in U sµR (tµ, π) ⊆ UsR(t, π) are weakly decreasing
w.r.t. %π (cf. Lemma 24 (i)). Similarly, s �π t implies sµ �π t′.

The other difference is in the set of usable rules. But we have U sµR (t′, π) ⊆
UsµR (tµ, π) ⊆ UsR(t, π) by Lemma 24 (iv) and (i). The application of Lemma
24 (iv) is possible here since we have l %π r for all l → r ∈ U sR(t, π) and
thus, we may conclude the needed requirement V(π(r)) ⊆ V(π(l)) for Lemma
24 (iv) from the restrictions on the quasi-order % and π. Therefore, we obtain
UR(Q, π) ⊆ UR(P, π). ut

The following example shows that the completeness of the transformations
for innermost termination in part (b) does not hold anymore if one uses the
non-improved version of usable rules from Def. 5 or the estimation EIDG∗ that
is based on these non-improved usable rules.

Example 26 We regard a modification of the TRS from Ex. 7.

f(a, x)→ f(g(x), x) h(g(x))→ h(a)
g(h(x))→ g(x) h(h(x))→ x

The EIDG has one cycle {F(a, x) → F(g(x), x)}, the g-rule is usable, and the
resulting constraints are satisfied by LPO using the argument filtering π(g) = [].
However, if one performs i-narrowing, then the dependency pair is replaced by
F(a, h(x)) → F(g(x), h(x)). If one uses the non-improved usable rules of Def. 5,
one obtains the constraints of Ex. 13 which are not satisfiable by RPOS, KBO,
or polynomial orders. Thus, completeness of i-narrowing does not hold anymore
for EIDG.

Completeness is also destroyed for EIDG∗, even if one uses the improved
usable rules of Def. 6 or 16 in the constraints (d) of Thm. 19. Before narrow-
ing, the EIDG∗ has no cycle. So the empty set of constraints is satisfied by
any argument filtering and reduction pair. After narrowing, we have the cycle
{F(a, h(x))→ F(g(x), h(x))}. Now we need a filtering and reduction pair as above
to satisfy the constraints.

25

By Thm. 25, transforming dependency pairs never complicates (innermost)
termination proofs, if one uses improved usable rules. The restriction4 to quasi-
orders % where t %π u implies V(π(u)) ⊆ V(π(t)) is not severe. The reason
is that this requirement is always satisfied if one uses quasi-orders like RPOS,
KBO, or polynomial orders that are amenable to automation. In fact, it holds
for any reduction pair (%,�) where % is a quasi-simplification order and where
there exist terms s, t with s � t and t is no ground term [14, Lemma 2.4].

However, transformations may increase the number of constraints by produc-
ing similar constraints that can be solved by the same argument filterings and
reduction pairs). So sometimes the runtime is increased by these transformations.
On the other hand, transformations are often necessary for the (innermost) ter-
mination proofs, as shown by Ex. 23.

In practice, the main problem is that these transformations may be applied
infinitely many times. Therefore, we have developed restricted safe transforma-
tions which are guaranteed to terminate. Our experiments on the collections of
examples from [3, 9, 32] show that whenever the proof succeeds using narrowing,
rewriting, and instantiation, then applying these safe transformations is suffi-
cient.

A narrowing or instantiation step is safe if it reduces the number of pairs in
cycles of the estimated (innermost) dependency graph. For a set of pairs P, let
SCC(P) be the set of maximal cycles built from pairs of P. Then the transfor-
mation is safe if ΣS∈SCC(P)|S| decreases. So the instantiation in Ex. 22 was safe,
since the EDG∗ had a cycle before instantiation, but no cycle afterwards. More-
over, a transformation step is also considered safe if by this step, all descendants
of some original dependency pair disappear from cycles. For every pair s → t,
o(s→ t) denotes the original dependency pair whose repeated transformation led
to s → t. Now a transformation is also safe if {o(s → t) | s → t ∈ ⋃S∈SCC(P) S}
decreases. Finally, for each pair that was not narrowed or instantiated yet, one
single narrowing and instantiation step which does not satisfy the above require-
ments is also considered safe. Hence, the narrowing and instantiation steps in
Ex. 23 were safe as well.

As for termination, innermost termination proofs also benefit from consider-
ing the recursion hierarchy. So if R1, . . . ,Rn is a separation of the TRS R and
Ri >d Rj, then we show absence of innermost R-chains built from DP (Rj) be-
fore dealing with DP (Ri). Now innermost rewriting a dependency pair F (. . .)→
. . . is safe if it is performed with rules that do not depend on f (i.e., with g-rules
where g <d f). The reason is that innermost termination of g is already verified
when proving innermost termination of f . So in Ex. 23, when proving innermost
termination of the QUOT-cycle, we may assume innermost termination of minus.
Thus, the rewrite step from (41) to (42) was safe.

Definition 27 (Safe Transformations) Q results from a set of pairs P by
transforming s→ t ∈ P as in Def. 21. The transformation is safe if

(1) s→ t was transformed by narrowing or instantiation and

• ΣS∈SCC(P)|S| > ΣS∈SCC(Q)|S|, or

• {o(s→ t) | s→ t ∈ SS∈SCC(P) S}) {o(s→ t) | s→ t ∈ SS∈SCC(Q) S}
4 The restriction on the reduction pair is unnecessary if one computes usable rules without

taking the filtering into account (i.e., if one uses Def. 6 instead of Def. 16).

26

(2) s → t was transformed by innermost rewriting with the rule l → r and
root(l) <d f where f] = root(s)

(3) s→ t was transformed by narrowing and all previous steps which transformed
o(s→ t) to s→ t were not narrowing steps

4 s → t was transformed by instantiation and all previous steps which trans-
formed o(s→ t) to s→ t were not instantiation steps

The following theorem proves that the repeated application of safe transfor-
mations is indeed terminating.

Theorem 28 (Termination) Let R have the separation R1, . . . ,Rn and P ⊆
DP (Ri). If there are no infinite innermost R-chains from DP (Rj) for all Rj <d
Ri, then any repeated application of safe transformations on P terminates.

Proof. We define a measure on sets P consisting of four components:

(a) |{o(s→ t) | s→ t ∈ ⋃S∈SCC(P) S}| (c) |P|
(b) ΣS∈SCC(P)|S| (d) {t | s→ t ∈ P}

These 4-tuples are compared lexicographically by the usual order on naturals for
components (a) – (c). For (d), we use the multiset extension of the innermost
rewrite relation of

⋃
Rj<dRi Rj . Thus, we obtain a well-founded relation � where

P1 � P2 iff P1’s measure is greater than the measure of P2. Due to (a), (b), and
(d), any safe transformation of P with steps (1) or (2) decreases the measure of
P.

For a set of pairs P, let w(P) = 〈P¬n,¬i,Pn,¬i,P¬n,i,Pn,i〉. P¬n,¬i consists of
those s→ t∈P where no (n)arrowing or (i)nstantiation was used to transform
o(s→ t) to s→ t. Pn,¬i are the pairs where narrowing, but no instantiation was
used, etc. Every safe transformation step decreases w(P) lexicographically w.r.t.
�: The leftmost component of w(P) that is changed decreases w.r.t. �, whereas
components on its right-hand side may be increasing. In particular, transforma-
tions with (3) or (4) decrease one component of w(P) w.r.t. � according to (c).

ut

After each transformation, the current cycle or SCC of the estimated (inner-
most) dependency graph is re-computed. For the re-computation, one only has to
regard the former neighbors of the transformed pair in the old graph. The reason
is that only former neighbors may have arcs to or from the new pairs resulting
from the transformation. Regarding neighbors in the graphs also suffices when
performing the unifications required for narrowing and instantiation. In this way,
the transformations can be performed efficiently. Recall that one should always
regard SCCs first and afterwards, one builds new SCCs from the remaining pairs
which were not strictly decreasing (Sect. 2) [20]. Of course, these pairs may
already have been transformed during the (innermost) termination proof of the
SCC. So this approach has the advantage that one never repeats transformations
for the same dependency pairs.

6 Computing Argument Filterings

In the dependency pair approach we may apply an argument filtering π to a set
of constraints before starting an orientation attempt with a reduction pair. When

27

using reduction pairs based on monotonic orders � like RPOS or KBO, this is
necessary to benefit from the fact that the dependency pair approach permits
reduction pairs (%,�) where� is not monotonic. However, the number of possible
argument filterings is exponential in the number and the arities of the function
symbols. We now show how to search for suitable argument filterings efficiently.
More precisely, for every cycle P, we show how to compute small subsets Π t(P)
and Π i(P) of argument filterings which contain all filterings which could possibly
satisfy the constraints for termination or innermost termination, respectively.
A corresponding algorithm was presented in [20] for termination proofs w.r.t.
Thm. 12. However, we now develop such an algorithm for the improved versions
of the dependency pair approach from Thm. 14 and Thm. 19. In particular for
innermost termination (Thm. 19), the algorithm is considerably more involved
since the set of constraints depends on the argument filtering used. Moreover,
instead of treating constraints separately as in [20], we process them according
to an efficient depth-first strategy.

Let RP be a class of reduction pairs describing the particular base order
used (e.g., RP may contain all LPOs with arbitrary precedences or all RPOSs,
etc.). In the termination case, we restrict ourselves to classes of pairs where the
quasi-order orients the Cε-rules. For any set of dependency pairs P, let Π(P)
denote the set of all argument filterings where at least one dependency pair in P
is strictly decreasing and the remaining ones are weakly decreasing w.r.t. some
reduction pair in RP. When referring to “dependency pairs”, we also permit
pairs resulting from dependency pairs by narrowing, rewriting, or instantiation.

We use the approach of [20] to consider partial argument filterings, which
are only defined on a subset of the signature. For example, in a term f(g(x), y),
if π(f) = [2], then we do not have to determine π(g), since all occurrences of
g are filtered away. Thus, we leave argument filterings as undefined as possible
and permit the application of π to a term t whenever π is sufficiently defined
for t. More precisely, any partial argument filtering π is sufficiently defined for a
variable x. So the domain of π may even be empty, i.e., DOM (π) = ∅. An argu-
ment filtering π is sufficiently defined for f(t1, . . . , tn) iff f ∈ DOM (π) and π is
sufficiently defined for all ti with i ∈ rpπ(f). An argument filtering is sufficiently
defined for a set of terms T iff it is sufficiently defined for all terms in T . To
compare argument filterings which only differ in their domain DOM , we intro-
duce a relation “v”. Then Π(P) should only contain v-minimal elements, i.e.,
if π′ ∈ Π(P), then Π(P) does not contain any π < π ′. Of course, all argument
filterings in Π(P) must be sufficiently defined for the terms in the dependency
pairs of P.

Definition 29 (v and Π(P)) For two (partial) argument filterings, we define
π v π′ iff DOM (π) ⊆ DOM (π′) and π(f) = π′(f) for all f ∈ DOM (π). For a
set P of dependency pairs, let Π(P) consist of all v-minimal elements of {π |
there is a (%,�) ∈ RP such that π(s) � π(t) for at least one s → t ∈ P and
π(s) % π(t) for all other s→ t ∈ P}.

In Ex. 1, if P = {QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))} and RP
are all LPOs, then Π(P) consists of the 12 filterings π where DOM (π) =
{QUOT, s,minus}, π(QUOT) ∈ {1, [1], [1, 2]}, and either π(minus) ∈ {[], 1, [1]}
and π(s) = [1] or both π(minus) = π(s) = [].

28

We now define a superset Π t(P) of all argument filterings where the con-
straints (a) and (b) for termination of the cycle P are satisfied by some reduc-
tion pair of RP . So only these argument filterings have to be regarded when
automating Thm. 14. To this end, we have to extend partial argument filterings.

Definition 30 (Ex f , Π
t(P)) For a partial argument filtering π and f ∈ D,

Ex f (π) consists of all v-minimal filterings π ′ with π v π′ such that there is
a (%,�) ∈ RP with π′(l) % π′(r) for all l → r ∈ RlsR(f). For a set Π
of filterings, let Ex f (Π) =

⋃
π∈Π Exf (π). If P originates from DP (Ri) by t-

narrowing and t-instantiation and {f1, . . . , fk} are R′i’s defined symbols, then
Πt(P) = Ex fk(. . .Ex f1(Π(P)) . . .).

We compute Π t(P) by depth-first search. We start with a π ∈ Π(P) and
extend it to a minimal π′ such that f1’s rules are weakly decreasing. Then π ′ is
extended such that f2’s rules are weakly decreasing, etc. Here, f1 is considered
before f2 if f1 >d f2. When we have Π t(P)’s first element π1, we check whether
the constraints (a) and (b) of Thm. 14 are satisfiable with π1. In case of success,
we do not compute further elements of Π t(P). Only if the constraints are not
satisfiable with π1, we determine Π t(P)’s next element, etc. The advantage of
this approach is that Π(P) is usually small, since it only contains filterings that
satisfy a strict inequality. Thus, by taking Π(P)’s restrictions into account, only
a fraction of the search space is examined.

So for the QUOT-cycle P in Ex. 1, we start with computing the first element
of Exquot(Π(P)). To this end, the partial filterings π ∈ Π(P) have to be extended
to filterings that are also defined on quot and 0 where π(quot) ∈ {[], 1, [1], [1, 2]}
and if π(s) = [], then π(quot) may also be 2 or [2]. So |Exquot(Π(P))| = 54.
In Πt(P)=Exminus(Exquot(Π(P))), all filterings π with π(minus) = [] are elim-
inated, since they contradict the weak decrease of the first minus-rule. Thus,
while there exist 6 · 6 · 6 · 3 · 1 = 648 possible argument filterings for the symbols
minus, quot, QUOT, s, and 0, our algorithm reduces this set to only |Π t(P)| = 24
candidates. For TRSs with more function symbols, the reduction of the search
space is of course even more dramatic. Moreover, in successful proofs we only
compute a small subset of Π t(P), since its elements are determined step by step
in a depth-first search until a proof is found.

For innermost termination, the set of constraints to be satisfied depends on
the argument filtering used. If f ≥d g, then when orienting the rules of f , we do
not necessarily have to orient the rules of g as well, since all occurrences of g in f -
rules may have been deleted by the argument filtering, cf. Thm. 19. To formalize
this, we define a relation “`P” on sets of argument filterings. Let us extend rpπ
to partial argument filterings by defining rpπ(f) = ∅ for all f /∈ DOM (π). Now
UR(P, π) is also defined for partial filterings by simply disregarding all subterms
of function symbols where π is not defined.

For a partial argument filtering π, whenever RlsR(f) is included in the usable
rules UR(P, π) for the cycle P, then the relation “`P” can extend π in order to
make the f -rules weakly decreasing. We label each argument filtering by the
set of those function symbols whose rules are already guaranteed to be weakly
decreasing.

Definition 31 (`P) Each argument filtering π is labelled with a set G ⊆ D and
we denote a labelled argument filtering by πG. For sets of labelled argument

29

filterings, we define the relation “`P”: Π]{πG} `P Π ∪{π′G∪{f} | π′ ∈ Ex f (π)},
if f ∈ D \ G and RlsR(f) ⊆ UR(P, π).

When proving innermost termination, we only regard argument filterings that
result from Π(P) by applying `P -reductions as long as possible. So here we
extend each π ∈ Π(P) individually by `P instead of building Exf (Π(P)) as
in the termination case. The advantage of `P is that only those filterings π are
extended to include f in their domain where this is is required by the usable
rules UR(P, π). For instance in Ex. 17, for cycles P containing the dependency
pair REV2(x, cons(y, l)) → REV(cons(x, rev(rev2(y, l)))), the filterings in Π(P)
are not defined on rev1. When performing `P -reductions, those π ∈ Π(P) which
eliminate the first argument of cons will never be extended to rev1, whereas this
is necessary for other filterings in Π(P).

The following lemma is needed to prove that normal forms w.r.t. `P are
unique. It states that Ex f (π) always consists of pairwise incompatible argument
filterings. Here, two argument filterings π1 and π2 are compatible if π1(f) = π2(f)
for all f ∈ DOM (π1) ∩DOM (π2), cf. [20].

Lemma 32 (Incompatibility) Let T be a finite set of terms.

(a) Let π, π1, π2 be (partial) argument filterings. Let π1, π2 ∈ {π′ |π v π′ and π′

is sufficiently defined for T}, where π1 is a v-minimal element of this set. If
π1 and π2 are compatible, then π1 v π2.

(b) If π1, π2 ∈ Ex f (π) with π1 6= π2, then π1 and π2 are incompatible, i.e., Ex f (π)
consists of pairwise incompatible argument filterings.

(c) If Π consists of pairwise incompatible argument filterings, then Ex f (Π) con-
sists of pairwise incompatible argument filterings, too.

Proof. (a) We perform induction on T using the (multi)set version of the proper
subterm relation. If T = ∅, then the only minimal extension of π that is
sufficiently defined for T is π1 = π. Hence, π1 = π v π2.
Next let T = T ′] {x} for a variable x. Clearly, both π1 and π2 are also
sufficiently defined for T ′ and moreover, π1 is a minimal extension of π that
is sufficiently defined for T ′. Thus, the claim follows from the induction hy-
pothesis.
If T = T ′] {f(t1, . . . , tn)}, then f ∈ DOM (π1). Let T ′′ = T ′ ∪ {tj | j ∈
rpπ1(f)}. Both π1 and π2 are sufficiently defined for T ′′ (for π2 this follows
from π2(f) = π1(f) by compatibility of π1 and π2). If π1 is a minimal ex-
tension of π that is sufficiently defined for T ′′, then the claim is implied by
the induction hypothesis. Otherwise, we have f /∈ DOM (π) and we obtain
the following minimal extension π′1 of π that is sufficiently defined for T ′′:
DOM (π′1) = DOM (π1) \ {f} and π′1(g) = π1(g) for all g ∈ DOM (π′1). Then
the induction hypothesis implies π ′1 v π2. Since π1 only differs from π′1 on
the function symbol f and since π1(f) = π2(f), we obtain π1 v π2.

(b) Let π1, π2 ∈ Exf (π) be compatible. As both filterings are minimal extensions
of π that are sufficiently defined for the terms on left- or right-hand sides of
rules from RlsR(f), we use (a) to conclude both π1 v π2 and π2 v π1, which
implies π1 = π2.

(c) Let π1 ∈ Ex f (π′1) and π2 ∈ Ex f (π′2), where π′1, π
′
2 ∈ Π. If π′1 = π′2, then π1

and π2 are incompatible by (b). Otherwise π ′1 6= π′2, and by the assumption

30

about Π we obtain that π′1 and π′2 are incompatible. As π′1 v π1 and π′2 v π2,
this implies that π1 and π2 are incompatible as well. ut

The next theorem shows the desired properties of the relation `P .

Theorem 33 `P is terminating and confluent.

Proof. The termination of `P is obvious as the labellings increase in every `P -
step. Hence for confluence, it suffices to show local confluence. The only crucial
non-determinism in the definition of `P is the choice of f . Suppose that f0, f1 ∈
D \ G with f0 6= f1 and RlsR(f0) ∪ RlsR(f1) ⊆ UR(P, π) for some filtering π.
This leads to two possible reduction steps

Π] {πG} `P Π ∪Π0, where Π0 = {π0
G∪{f0} | π

0 ∈ Ex f0(π)}
Π] {πG} `P Π ∪Π1, where Π1 = {π1

G∪{f1} | π
1 ∈ Ex f1(π)}

Note that UR(P, π) ⊆ UR(P, πi) holds for all πi ∈ Ex fi(π). Thus, for all
filterings πiG∪{fi} ∈ Πi, we have f1−i ∈ D\(G∪{fi}) and RlsR(f1−i) ⊆ UR(P, πi).
Hence, we can build the following reductions (where we also allow the application
of Ex f to labelled argument filterings by simply ignoring their labels).

Π ∪Π0

|Π0|
`P (Π \Π0) ∪

{
π′G∪{f0,f1} | π

′ ∈ Ex f1(Ex f0(π))
}

|Π∩Π1|
`P (Π \ (Π0 ∪Π1)) ∪

{
π′G∪{f0,f1} | π

′ ∈ Ex f1(Ex f0(π))
}

∪
{
π′G∪{f1,f0} | π

′ ∈ Ex f0(Π ∩Π1)
}

Π ∪Π1

|Π1|
`P (Π \Π1) ∪

{
π′G∪{f1,f0} | π

′ ∈ Ex f0(Ex f1(π))
}

|Π∩Π0|
`P (Π \ (Π1 ∪Π0)) ∪

{
π′G∪{f1,f0} | π

′ ∈ Ex f0(Ex f1(π))
}

∪
{
π′G∪{f0,f1} | π

′ ∈ Ex f1(Π ∩Π0)
}

where Ex f0(Π ∩ Π1) ⊆ Ex f0(Ex f1(π)), Ex f1(Π ∩ Π0) ⊆ Ex f1(Ex f0(π)). So to
finish the proof we have to show Ex f0(Ex f1(π)) = Ex f1(Ex f0(π)). By symmetry,
it suffices to prove Ex f0(Ex f1(π)) ⊆ Ex f1(Ex f0(π)). To this end, we only have
to show that for every π01 ∈ Ex f0(Ex f1(π)) there exists a π10 ∈ Ex f1(Ex f0(π))
with π10 v π01. The reason is that in an analogous way one can show that for
π10 there also exists a π′01 ∈ Ex f0(Ex f1(π)) with π′01 v π10. Hence, we have
π′01 v π10 v π01 and by Lemma 32 (b) and (c), this implies π ′01 = π10 = π01.

Let π01 ∈ Ex f0(Ex f1(π)). By the definition of Ex , there must be a π1 ∈
Ex f1(π) and a reduction pair (%,�) ∈ RP with π1 v π01 and π01(l) % π01(r) for
all l → r ∈ RlsR(f0). As π1 ∈ Ex f1(π), we may conclude in the same way that
π v π1 and π1(l) %′ π1(r) for all f1-rules and some reduction pair (%′,�′) ∈ RP .
Since π v π01 and since the f0-rules can be oriented in a weakly decreasing way
using π01, there exists a π0 ∈ Ex f0(π) with π v π0 v π01 such that the f0-
rules can also be oriented using π0. Since π0 v π01 and since the f1-rules can be
oriented with π01, there is a π10 ∈ Ex f1(π0) with π0 v π10 v π01 such that π10

also permits an orientation of the f1-rules. As explained above, this suffices to
prove Ex f0(Ex f1(π)) ⊆ Ex f1(Ex f0(π)). ut

31

Now we can define the set of argument filterings that are regarded for inner-
most termination proofs.

Definition 34 (Π i(P)) Let Nf `P (Π) denote the normal form of Π w.r.t. `P .
Then we define Π i(P) = Nf `P ({π∅ | π ∈ Π(P)}).

To compute Π i(P), we again perform a depth-first search and start with
some π ∈ Π(P). Now π only has to be extended in order to make the rules for
a symbol f weakly decreasing if the f -rules are contained in UR(P, π). If by this
extension, the rules for some new symbol g become usable, then a subsequent
extension with Ex g is also necessary, etc. Similar to the termination case, in this
way the first elements of Π i(P) can be determined very quickly. If for one of
these elements, the constraints (c) and (d) of Thm. 19 can already be solved,
then no further consideration of the cycle P is necessary.

Thm. 35 states that Π t(P) resp. Π i(P) indeed contain all argument filterings
which could possibly solve the dependency pair constraints. Here, P may also
result from narrowing, rewriting, and instantiating dependency pairs. In this
way the set of argument filterings is reduced dramatically and thus, efficiency is
increased. For example, for a TRS from [3, Ex. 3.11] computing quicksort, Π t(P)
reduces the number of argument filterings from more than 26 million to 3734
and with Π i(P) we obtain a reduction from more than 1.4 million to 783.

Theorem 35 Let P be a cycle. If the constraints (a) and (b) of Thm. 14 for
termination are satisfied by some reduction pair from RP and argument filtering
π, then π′ v π for some π′ ∈ Πt(P). If the constraints (c) and (d) of Thm. 19
for innermost termination are satisfied by some reduction pair from RP and
argument filtering π, then π′ v π for some π′ ∈ Πi(P).

Proof. Let π be an argument filtering and let (%,�) ∈ RP be a reduction pair
that solve the constraints (a) and (b) from Thm. 14 or the constraints (c) and
(d) from Thm. 19 for a cycle P, respectively.

We first consider the termination case. There must be a minimal argument
filtering π0 ∈ Π(P) with π0 v π that solves the constraints in (a) using (%,�).
Let P originate from DP (Ri), where R′i has the defined symbols {f1, . . . , fk}.
As π0 v π and π(l) % π(r) for all f1-rules l → r, there must be a filtering
π1 ∈ Ex f1(π0) with π1 v π. We continue in this way and obtain an argument
filtering πk ∈ Ex fk(. . .Ex f1(Π(P)) . . .) = Π t(P) with πk v π.

In the innermost case, let Π(P) = Π0 `P Π1 `P . . . `P Πn = Πi(P) be a
`P -reduction to normal form. We show that for all 0 ≤ j ≤ n there is a πj ∈ Πj

with πj v π by induction on j. For j = 0, since π solves the constraints in (c), by
definition there is again a minimal argument filtering π0 ∈ Π(P) with π0 v π.
For j > 0, we assume that there is a πj−1 ∈ Πj−1 with πj−1 v π. Thus, we
either have πj−1 ∈ Πj as well or else, Πj results from Πj−1 by replacing πj−1

by all elements of Ex f (πj−1) for some f with RlsR(f) ⊆ UR(P, πj−1). Since
πj−1 v π, we have UR(P, πj−1) ⊆ UR(P, π) and thus, π also makes the f -rules
weakly decreasing by the constraints in (d). This implies that there must be a
πj ∈ Ex f (πj−1) ⊆ Πj with πj v π. ut

The converse directions of this theorem do not hold, since in the computation
of Πt(P) and Π i(P), when extending argument filterings, one does not take the

32

orders into account. So even if Ex f (Ex g(. . .)) 6= ∅, it could be that there is no
reduction pair such that both f - and g-rules are weakly decreasing w.r.t. the
same reduction pair from RP .

However, the technique of this section can be extended by storing both ar-
gument filterings and corresponding parameters of the order in the sets Π(P)
and Ex f (. . .). For example, if RP is the set of all LPOs, then Π(P) would now
contain all (minimal) pairs of argument filterings π and precedences such that
π(s) �LPO π(t) resp. π(s) %LPO π(t) holds for s → t ∈ P. When extending ar-
gument filterings, one would also have to extend the corresponding precedence.
Of course, such an extension is only permitted if the extended precedence is
still irreflexive (and hence, well founded). For other path orders like RPO(S),
extensions can be defined in an analogous way. Then Π t(P) (resp. Π i(P)) is
non-empty iff the constraints for (innermost) termination are satisfiable for P.
Thus, after computing Π t(P) resp. Π i(P), no further checking of orders and
constraints is necessary anymore.

7 Heuristics

Now we present heuristics to improve the efficiency of the search for argument
filterings and base orders further. In contrast to the improvements of the pre-
ceding sections, these heuristics affect the power of the method, i.e., there exist
examples whose (innermost) termination can no longer be proved when following
the heuristics.

7.1 Type Inference for Argument Filterings

To reduce the sets Π t(P) and Π i(P) of potential argument filterings, we have
developed the following heuristic based on type inference. In natural examples,
termination of a function is usually due to the decrease of arguments of the same
type. Of course, this type may be different for the different functions in a TRS.
So termination of f may be due to arguments that are natural numbers, while
termination of g may be due to arguments that are lists. We use a (monomorphic)
type inference algorithm to transform a TRS into a sorted TRS (i.e., a TRS with
rules l → r where l and r are well-typed terms of the same type). Then as a
good heuristic to reduce the set of possible argument filterings further, one can
require that for every symbol f , either no argument position is eliminated or all
non-eliminated argument positions are of the same type. In other words, if f is
n-ary, then π(f) = [1, . . . , n], π(f) ∈ {1, . . . , n}, or π(f) = [i1, . . . , ik] where the
argument positions i1, . . . , ik all have the same type. Our experiments show that
all examples in the collections of [3, 9, 32] that can be solved using LPO as a base
order can still be solved when using this heuristic.

7.2 Embedding Order for Dependency Pairs

To increase efficiency in our depth-first algorithm of Sect. 6, a successful heuristic
is to only use the embedding order when orienting the constraints π(s) � π(t)
and π(s) % π(t) for dependency pairs s→ t. Only for constraints π(l) % π(r) for
rules l → r, one may apply more complicated quasi-orders like LPO, RPO(S),
etc. The advantage of this approach is that now Π(P) is much smaller than when

33

using more powerful orders. Thus, the depth-first search starting with Π(P) can
be performed very quickly. Our experiments show that due to the improvements
in Sect. 3 and 4, this heuristic succeeds for more than 96 % of those examples
from [3, 9, 32] where a full LPO was successful, while reducing runtimes by at
least 63 %.

7.3 Bottom-Up Heuristic

To determine argument filterings in Sect. 6, we start with the dependency pairs
and treat the constraints for rules afterwards, where f -rules are considered before
g-rules if f >d g. In contrast, now we suggest a bottom-up approach which starts
with determining an argument filtering for constructors and then moves upwards
through the recursion hierarchy where g is treated before f if f >d g. While in
Sect. 6, we determined sets of argument filterings, now we only determine one
single argument filtering, even if several ones are possible. To obtain an efficient
technique, no backtracking takes place, i.e., if at some point one selects the
“wrong” argument filtering, then the proof can fail.

More precisely, we first guess an argument filtering π which is only defined
for constructors. For every n-ary constructor c we define π(c) = [1, . . . , n] or
we let π filter away all arguments of c that do not have the same type as c’s
result. Afterwards, for every function symbol f , we try to extend π on f such
that π(l) % π(r) for all f -rules l → r. We consider functions according to the
recursion hierarchy >d. So when extending π on f , π is already defined on all
g <d f . Among the extensions of π which permit an orientation of the f -rules, we
choose π(f) such that it eliminates as many arguments of f as possible. Of course,
this is just one of the potential argument filterings for f . If we have chosen the
“wrong” argument filtering for f , the (innermost) termination proof might fail,
although there would have been a solution with a different argument filtering. If
we are not able to orient the rules of f , then we mark f as not orientable. Finally,
after having treated all rules, the filtering is extended to the tuple symbols by
trying to orient the dependency pairs as well (where at least one dependency
pair must be strictly decreasing). Of course, this extension is done separately for
every SCC or cycle, respectively.

In termination proofs, if f ∈ Rj is not orientable, then all symbols in
Ri ≥d Rj as well as all dependency pairs resulting from Ri ≥d Rj are also
not orientable. In innermost termination proofs, if f is not orientable, then a
symbol that depends on f can still be orientable if one can extend the argu-
ment filtering in such a way that all occurrences of f in its rules are eliminated.
Similarly, dependency pairs can still be orientable if the argument filtering elimi-
nates all occurrences of f . Thus, here the bottom-up approach has the advantage
that we already know that certain argument positions must be eliminated when
extending the argument filtering to new function symbols.

This algorithm can also be modified by determining both the argument fil-
tering and the reduction pair step by step. For example, if one uses reduction
pairs based on LPO, then one always tries to extend the current precedence in
a minimal way when proceeding from one function symbol to the next symbol
in the recursion hierarchy. The combination with other orders works in a similar
way.

34

The bottom-up algorithm reduces the search space enormously. The number
of TRSs from [3, 9, 32] where the bottom-up algorithm succeeds is more than
77 % of the number achieved by the full dependency pair approach with LPO,
but runtime is reduced to 32 %.

8 Using Polynomial Orders for Dependency Pairs

In Sect. 6 and 7 we showed how to mechanize the dependency pair approach
with argument filterings and monotonic orders like LPO, RPO(S), KBO, etc.
Now we discuss how to use reduction pairs based on polynomial orders instead,
which are not necessarily monotonic if one also permits the coefficient 0 in poly-
nomials. In contrast to RPO(S) and KBO, it is undecidable whether a set of
constraints is satisfied by a polynomial order, and thus one can only use suf-
ficient criteria when automating these orders. However, polynomial orders are
often very powerful: with the results of this section, even very restrictive linear
polynomial interpretations with coefficients from {0, 1} are sufficient to prove
innermost termination of all examples in [3].

An advantage of polynomial orders is that one does not need any extra ar-
gument filtering anymore, since argument filtering can be simulated directly by
the corresponding polynomials. If

Pol(f(x1, ..., xn)) = a1 x
b1,1
1 . . . x

b1,n
n + . . .+ am x

bm,1
1 . . . x

bm,n
n (43)

for coefficients ai ≥ 0, then this corresponds to the argument filtering πPol with
πPol(f) = [j | ai > 0 ∧ bi,j > 0 for some 1 ≤ i ≤ m]. However, disregarding
argument filterings is a problem in our new technique for innermost termination
(Thm. 19), because the argument filtering π is needed in order to compute the
constraints resulting from the usable rules UR(P, π). Therefore, in Sect. 8.1 we
show how to adapt this technique in the case of polynomial orders. In Sect. 8.2 we
present another improvement of the dependency pair technique which can only
be used for polynomial orders. It eliminates the indeterminism in the constraints
of type (a) or (c) where one has to find a strictly decreasing dependency pair in
each cycle.

8.1 Innermost Termination With Polynomial Orders

When automating Thm. 19 with polynomial orders, one fixes the degree of the
polynomials in the polynomial interpretation and then suitable coefficients for
the polynomials have to be found automatically. So one starts with an abstract
polynomial interpretation Pol. For every function symbol f , Pol(f(x1, . . . , xn))
is as in (43), butm and bi,j are fixed numbers, whereas ai are variable coefficients.
Then the constraints (c) of Thm. 19 would take the form

• Pol(s)−Pol(t) > 0 for one pair s→ t of P
• Pol(s)−Pol(t) ≥ 0 for all other pairs s→ t of P (44)

An abstract polynomial interpretation Pol can be turned into a concrete poly-
nomial interpretation by assigning a natural number to each variable coefficient
ai. We denote such assignments by α and let α(Pol) denote the concrete poly-
nomial interpretation resulting from this assignment. A set of constraints of the

35

form p
(
≥

)
0 as above is satisfiable iff there exists an assignment α such that all

instantiated constraints α(p)
(
≥

)
0 hold. These instantiated constraints still con-

tain the variables x, y, . . . that occurred in the dependency pairs and we say that
α(p)

(
≥

)
0 holds iff the inequality is true for all instantiations of the variables

x, y, . . . by natural numbers. For example, a1x+ a2 − a3y > 0 is satisfied by the
assignment α where α(a1) = 1, α(a2) = 1, and α(a3) = 0. The reason is that α
turns the above constraint into x+ 1 > 0 which holds for all instantiations of x
and y with natural numbers.

The constraints of type (d) in Thm. 19 require l % r for all rules l → r ∈
UR(P, πα(Pol)). The problem is how to determine these constraints in the case of
polynomial orders where the argument filtering πα(Pol) is not given explicitly but
depends on the assignment α of natural numbers to variable coefficients ai. Thus,
πα(Pol) is not available yet when building the constraints although we would have
to know it in order to compute UR(P, πα(Pol)).

The solution is to translate the constraints of type (d) to polynomial con-
straints of the following form:

q · (Pol(l)−Pol(r)) ≥ 0 for all rules l→ r of UR(P) (45)

Here, q will be a polynomial containing only variable coefficients ai but no vari-
ables x, y, . . . from the rules of R. So for any assignment α, α(q) is a number.
We generate the constraints such that for any assignment α, we have α(q) = 0
if l → r /∈ UR(P, πα(Pol)). Thus, the constraints (45) are equivalent to requiring
Pol(l) − Pol(r) ≥ 0 for the rules l → r of UR(P, πα(Pol)), but the advantage
is that the constraints (45) with the variable coefficients ai can be constructed
before determining the assignment α of these variable coefficients.

Let Pol be an abstract polynomial interpretation as in (43). To generate the
constraints (45), we first define a polynomial which sums up the coefficients of
those monomials of Pol(f(x1, ..., xn)) that contain xj.

rpPol(f, j) =
∑

1≤i≤m, bi,j>0
ai

So for any assignment α, α(rpPol(f, j)) is a number and this number is greater
than 0 iff j ∈ rpπα(Pol)(f). Now the set of constraints which corresponds to (d)
in Thm. 19 can be built in an analogous way to the definition of usable rules
(Def. 16).

Definition 36 (Usable Rules for Polynomial Orders) Let Pol be an ab-
stract polynomial interpretation. Again, let R′ = R \ RlsR(f). For any term
t, we define the usable rule constraints ConR(t,Pol) as

• ConR(x,Pol) = ∅ for x ∈ V and
• ConR(f(t1, . . . , tn),Pol) = {Pol(l)−Pol(r) ≥ 0 | l → r ∈ RlsR(f)}

∪ S
l→r∈RlsR(f) ConR′(r,Pol)

∪ S
1≤j≤n {rpPol(f, j) · p ≥ 0 | p ≥ 0 ∈ ConR′(tj ,Pol)}.

For any term s, we define Con sR(t,Pol) = ∅ if t is a subterm of s and otherwise,
it is defined like ConR(f(t1, ..., tn),Pol) where however, “ConR′(tj,Pol)” is re-
placed by “ConsR′(tj,Pol)”. For sets P of dependency pairs, let ConR(P,Pol) =⋃
s→t∈P ConsR(t,Pol).

36

To improve efficiency, constraints like ConR(t,Pol) can often be simplified
using equivalence-preserving transformations.

Example 37 Consider the TRS for list reversal from Ex. 17 again. We use a
linear abstract polynomial interpretation Pol where Pol(nil) = anil, Pol(f(x)) =
af,0 + af,1 x for f ∈ {rev,REV}, and Pol(f(x, y)) = af,0 + af,1 x + af,2 y for all
other (binary) symbols f . Thus, rpPol(f, j) = af,j for all symbols f and positions
j.

We now compute the usable rule constraints for the right-hand side of the
dependency pair REV2(x, cons(y, z))→ REV(rev2(y, z)). LetR′ = R\RlsR(rev2)
and R′′ = R′ \ RlsR′(rev).

ConR(REV(rev2(y, z)),Pol) ={aREV,1 · p ≥ 0 | p ≥ 0 ∈ ConR(rev2(y, z),Pol)}
ConR(rev2(y, z),Pol) ={Pol(l)−Pol(r) ≥ 0 | l→ r ∈ RlsR(rev2)}

∪ ConR′(rev(cons(x, ...)),Pol)
ConR′(rev(cons(x, ...)),Pol) ={Pol(l)−Pol(r) ≥ 0 | l→ r ∈ RlsR′(rev)}

∪ ConR′′ (cons(rev1(...), ...),Pol)
ConR′′(cons(rev1(...), ...),Pol) ={acons,1 ·(Pol(l)−Pol(r)) ≥ 0 | l→r∈RlsR′′(rev1)}

So ConR(REV(rev2(y, z)),Pol) contains aREV,1 ·(Pol(l)−Pol(r))≥0 for rev2- and
rev-rules and aREV,1 · acons,1 · (Pol(l)−Pol(r))≥0 for rev1-rules.

This indicates that if cons is mapped to a polynomial which disregards its first
argument (i.e., if acons,1 = 0), then one does not have to require that the rev1-
rules are weakly decreasing. As shown in Ex. 20, this observation is crucial for
the success of the innermost termination proof. It turns out that all constraints
(for all cycles) are satisfied by the assignment α which maps acons,0, acons,2, arev,1,
arev2,2, aREV2,2, and aREV,1 to 1 and all remaining variable coefficients to 0. So α
turns Pol into a concrete polynomial interpretation where nil and rev1(x, y) are
mapped to 0, cons(x, y) is mapped to 1 + y, rev(x) and REV(x) are mapped to
x, and both rev2(x, y) and REV2(x, y) are mapped to y.

The following lemma shows that ConR indeed corresponds to the constraints
resulting from the usable rules.

Lemma 38 (Con and U) Let Pol be an abstract polynomial interpretation and
t be a term. An assignment α for Pol’s coefficients satisfies ConR(t,Pol) iff α
satisfies Pol(l)−Pol(r)≥ 0 for all l→ r ∈ UR(t, πα(Pol)). An analogous statement
holds for ConsR(t,Pol) and U sR(t, πα(Pol)).

Proof. We use induction over the sizes of R and t. If t ∈ V, then the claim is triv-
ial. Otherwise, let t = f(t1, . . . , tn). The assignment α satisfies ConR(f(t1, ..., tn),
Pol) iff it satisfies Pol(l)−Pol(r) ≥ 0 and ConR′(r) for all l → r ∈ RlsR(f), and
if it also satisfies rpPol(f, j) · p ≥ 0 for all constraints p ≥ 0 from ConR′(tj ,Pol)
where j ∈ {1, . . . , n}.

We have α(rpPol(f, j)) ≥ 0 for all j, and α(rpPol(f, j)) > 0 iff j ∈ rpπα(Pol)(f).
So α satisfies the last requirement iff it satisfies ConR′(tj ,Pol) for j ∈ rpπα(Pol)(f).
Now the claim follows from the induction hypothesis. The proof for Con s

R(t,Pol)
and UsR(t, πα(Pol)) is analogous. ut

Now Thm. 19 for innermost termination can be reformulated to permit the
use of reduction pairs based on polynomial orders.

37

Theorem 39 (Improved Innermost Termination with Polynomials) R
is innermost terminating if for any cycle P of the innermost dependency graph,
there is an abstract polynomial interpretation Pol and an assignment α satisfying
the constraints (44) and ConR(P,Pol).

Proof. The theorem follows from Thm. 19 using the polynomial order given by
α(Pol) as reduction pair and the argument filtering πα(Pol). Then (44) clearly
corresponds to the constraints (c) in Thm. 19 and ConR(P,Pol) corresponds to
the constraints (d) by Lemma 38. ut

8.2 Finding Strict Constraints Automatically

For (innermost) termination with dependency pairs and polynomial orders, we
have to solve constraints like (44) which have the form

pi ≥ 0 for all 1 ≤ i ≤ n and pi > 0 for one 1 ≤ i ≤ n (46)

for polynomials pi. The reason is that all dependency pairs in a cycle must
be weakly decreasing but at least one has to be strictly decreasing. The basic
approach for such constraints is to iterate over all n possible choices for the
strict constraint. So in the worst case, the satisfiability checker for polynomial
inequalities is called n times in order to find an assignment α satisfying (46). We
present an equivalent, but much more efficient method where the satisfiability
checker is only called once. The solution is to transform (46) into the following
constraint.

pi ≥ 0 for all 1 ≤ i ≤ n and
∑

1≤i≤n pi > 0 (47)

Theorem 40 ((46) iff (47)) Let the pi be variable disjoint, except for variable
coefficients. An assignment α satisfies (46) iff it satisfies (47).

Proof. If α satisfies (46), then w.l.o.g. we have α(p1) > 0. Using α(pi) ≥ 0 for all
i ∈ {2, . . . n} we immediately obtain α(

∑
1≤i≤n pi) > 0.

For the other direction, let α satisfy (47) and assume that α(pi) 6> 0 for
all i ∈ {1, . . . , n}. Hence, for all i there exists a variable assignment βi of the
variables x, y, . . . in α(pi) such that βi(α(pi)) = 0. Since the polynomials α(pi) are
pairwise variable disjoint, the assignments βi can be combined to one assignment
β which coincides with each βi on βi’s domain. Thus, β(α(pi)) = 0 for all i and
therefore β(α(

∑
1≤i≤n pi)) = 0. But then α cannot satisfy

∑
1≤i≤n pi > 0 which

gives a contradiction. ut

A well-known method to find variable assignments α satisfying polynomial
constraints is the method of partial derivation [12, 26]. It transforms polynomial
constraints as above into inequalities containing only variable coefficients, but no
variables x, y, . . . from the terms or dependency pairs anymore. The main idea
is that instead of pi(x1, . . . , xn)

(
≥

)
0 one can impose the stronger requirements

pi(0, x2, . . . , xn)
(
≥

)
0 and ∂p(x1,...,xn)

∂x1
≥ 0. Repeating this process finally leads to

a set of polynomial constraints without variables x1, . . . , xn which ensure that
all partial derivations of all pi are at least 0 and pi(0, . . . , 0)

(
≥

)
0.

38

If the satisfiability checker for polynomial constraints uses the above partial
derivation technique, then (47) can be simplified further to

pi ≥ 0 for all 1 ≤ i ≤ n and
∑

1≤i≤n pi(0, . . . , 0) > 0 (48)

The reason is that then the constraints pi ≥ 0 ensure that all partial derivations
of pi must be at least 0. But then, the partial derivations of

∑
1≤i≤n pi are also

at least 0. Thus, it suffices to require
∑

1≤i≤n pi > 0 only for the instantiation of
all variables x, y, . . . by 0.

Example 41 Regard the following cycle of the TRS from Ex. 15.

INT(s(x), s(y))→ INT(x, y)

INT(0, s(y′))→ INT(s(0), s(y′))

We use a linear interpretation Pol(INT(x, y)) = aINT,0 + aINT,1 x + aINT,2 y,
Pol(s(x)) = as,0 + as,1 x, and Pol(0) = a0. To make the dependency pairs
decreasing, we obtain constraints like (46).

aINT,1(as,0 + as,1 x− x) + aINT,2(as,0 + as,1 y − y)
(
≥

)
0 (49)

aINT,1(a0 − as,0 − as,1 a0)
(
≥

)
0 (50)

Instead of choosing one of these constraints to be strict, with our refinement
in (47) one obtains the above constraints with weak inequalities (i.e., with “≥”)
and the additional constraint

aINT,1(as,1 x− x+ a0 − as,1 a0) + aINT,2(as,0 + as,1 y − y) > 0

If the satisfiability checker uses the partial derivation method, then the above
constraint may be simplified by instantiating x and y with 0:

aINT,2 as,0 + aINT,1(a0 − as,1 a0) > 0 (51)

Applying the method of partial derivation finally leads to the constraints (50),
(51), and the following constraints arising from (49).

aINT,1 as,0 + aINT,2 as,0 ≥ 0 aINT,1(as,1 − 1) ≥ 0 aINT,2(as,1 − 1) ≥ 0

These constraints are for example satisfied by the assignment α which maps as,0,
as,1, and aINT,2 to 1 and all other variable coefficients to 0.

9 Conclusion and Empirical Results

We presented improvements of the dependency pair approach which significantly
reduce the sets of constraints π(l) % π(r) for both termination and innermost
termination proofs. Moreover, we extended the applicability of dependency pair
transformations and developed a criterion to ensure that their application is
terminating without compromising the power of the approach in almost all ex-
amples. Subsequently, we introduced new techniques to implement the approach
with polynomial orders and with monotonic orders like RPOS, respectively. For
the latter type of orders, we developed an algorithm for computing argument

39

filterings which is tailored to the improvements of dependency pairs presented
before. In addition, we presented heuristics to increase efficiency which proved
successful in large case studies.

A preliminary version of this paper appeared in [15]. The present article
extends [15] substantially, e.g., by detailed proofs, by improved usable rules U sR
and the new dependency graph estimation EIDG∗∗, by an improved technique for
instantiating dependency pairs, by the extension of our results on completeness
of dependency pair transformations to EDG∗ and EIDG∗∗, by a new section on
automating dependency pairs with polynomial orders, by a detailed description
of our experiments, and by several additional explanations and examples.

We implemented the results of the paper in the system AProVE (Automated
Program Verification Environment), available at http://www-i2.informatik.

rwth-aachen.de/AProVE. The tool is written in Java and proofs can be per-
formed both in a fully automated or in an interactive mode via a graphical user
interface. We tested AProVE 1.0 on the examples of [3, 9, 32] (108 TRSs for ter-
mination, 151 TRSs for innermost termination) with the following techniques:

– Normal is the method of Sect. 3 – 6 with reduction pairs based on LPO
or the embedding order. For LPO we allow different symbols to be equal in
the precedence. Moreover, when computing the sets Π t(P) and Π i(P), we
determine both the argument filterings and the precedences of the LPO, as
illustrated at the end of Sect. 6. However, we do not yet apply the heuristics
of Sect. 7.

– Old+T is Normal, but with Thm. 12 instead of Thm. 14 and 19.

– Old is like Old+T, but without the transformations of Sect. 5.

– Type is Normal, but with the type inference heuristic (Sect. 7.1).

– Emb is like Normal, but it applies the heuristic to use the embedding order
for dependency pairs (Sect. 7.2).

– Bottom-Up uses the heuristic of Sect. 7.3 where we determine both the argu-
ment filtering and the reduction pair step by step.

– Combi is the following algorithm. For every SCC, it combines the heuris-
tics of Sect. 7 as a pre-processing step and only calls the full dependency
pair approach for SCCs where the heuristics fail. In this case, we use linear
polynomial orders with coefficients from {0, 1} according to the technique of
Sect. 8.

1. Safe transformations with Cases (1) and (2) of Def. 27

2. Bottom-up heuristic of Sect. 7.3. For every SCC, we first use polynomial
orders and if they fail, we use LPO.

3. Heuristics of Sect. 7.1 and Sect. 7.2 with LPO as base order

4. Full dependency pair approach with polynomial orders (Sect. 8)

5. Remaining safe transformations according to Def. 27.
If at least one transformation was applied, go back to 1.

When the constraints for the SCC are solved, the algorithm is called re-
cursively with the SCCs of those remaining pairs which were only weakly
decreasing.

The following table shows success rates and runtimes for the different techniques
and heuristics. The “Power” column contains the percentage of those examples
in the collection where the proof attempt was successful. The “Time” column

40

gives the overall time for running the system on all examples of the collection
(also on the ones where the proof attempt failed). For each example we used a
time-out of 30 seconds on a Pentium IV with 2.4 GHz and 1 GB memory. The
detailed results of our experiments can be found in the appendix.

Termination Innermost T.
Algorithm Order Power Time Power Time

Old EMB 37.0 % 18.7 s 51.0 % 27.9 s
Old+T EMB 48.1 % 95.2 s 66.9 % 155.1 s
Normal EMB 59.3 % 102.2 s 80.1 % 131.4 s

Old LPO 63.0 % 144.4 s 64.9 % 205.1 s
Old+T LPO 75.9 % 235.0 s 84.8 % 334.9 s
Normal LPO 78.7 % 219.1 s 86.8 % 298.8 s

Type LPO 78.7 % 203.0 s 87.4 % 275.1 s
Emb LPO 75.9 % 79.8 s 84.8 % 102.5 s

Bottom-Up LPO 61.1 % 67.2 s 74.8 % 96.0 s
Combi 94.4 % 16.4 s 98.0 % 34.8 s

Comparing the results for “Old” and “Old+T” indicates that transforming
dependency pairs according to our heuristics in Sect. 5 increases power by 20 –
30 %. The step from “Old+T” to “Normal” shows the benefits of the results from
Sect. 3 and 4, i.e., that Thm. 14 and 19 indeed improve upon Thm. 12 in practice.
If one uses simple reduction pairs like the embedding order where orientability
can be checked very efficiently, then compared to Thm. 12, Thm. 14 and 19
increase power by almost 20 % on the examples from [3, 9, 32]. For innermost
termination, runtimes are decreased by about 15 %, while for termination one
keeps approximately the same runtimes. If the reduction pairs are more complex
(i.e., LPO), then Thm. 14 and 19 reduce runtime (by about 7 % for termination
and about 11 % for innermost termination), while power is increased moderately.

The remainder of the table illustrates the usefulness of the heuristics of Sect. 7
and the combination algorithm described before. The type inference heuristic
on its own does not improve the performance very much, but it also does not
reduce the set of examples where the method is successful. With the embedding
order heuristic from Sect. 7.2 we only lose a few examples in comparison to
the full algorithm, but we need significantly less time. Using the bottom-up
heuristic, there are several examples where we can no longer prove (innermost)
termination, but we are at least three times faster than with the full approach.
Finally, with the combined algorithm, we obtain the best of all methods. With
this algorithm that integrates all results of the paper, our system succeeded on
98 % of the innermost termination examples (including all of [3]) and on 94.4 %
of the examples for termination. The automated proof for the whole collection
took 34.8 seconds for innermost termination and 16.4 seconds for termination.
These results indicate that the contributions of the paper are indeed very useful
in practice.

References

1. T. Arts. System description: The dependency pair method. In Proc. 11th RTA, pages
261–264, 2000. LNCS 1833.

2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236:133–178, 2000.

41

3. T. Arts and J. Giesl. A collection of examples for termination of term rewriting using
dependency pairs. Technical Report AIB-2001-095, RWTH, 2001.

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

5. C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path orderings.
In Proc. 17th CADE, pages 346–364, 2000. LNAI 1831.

6. E. Contejean, C. Marché, B. Monate, and X. Urbain. Cime version 2, 2000. Available from
http://cime.lri.fr.

7. N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17:279–301, 1982.

8. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69–116,
1987.

9. N. Dershowitz. 33 examples of termination. In Proc. French Spring School of Theoretical
Computer Science, pages 16–26, 1995. LNCS 909.

10. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general framework for
automatic termination analysis of logic programs. Appl. Algebra in Engineering, Commu-
nication and Computing, 12(1,2):117–156, 2001.

11. O. Fissore, I. Gnaedig, and H. Kirchner. Cariboo: An induction based proof tool for termi-
nation with strategies. In Proc. 4th PPDP, pages 62–73. ACM, 2002.

12. J. Giesl. Generating polynomial orderings for termination proofs. In Proc. 6th RTA, volume
914 of LNCS, pages 426–431, 1995.

13. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appl. Algebra
in Engineering, Communication & Comp., 12(1,2):39–72, 2001.

14. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using de-
pendency pairs. J. Symbolic Computation, 34(1):21–58, 2002.

15. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Improving dependency pairs. In
Proc. 10th LPAR, pages 165–179, 2003. LNAI 2850.

16. B. Gramlich. Abstract relations between restricted termination and confluence properties
of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.

17. B. Gramlich. On proving termination by innermost termination. In Proc. 7th RTA, pages
97–107, 1996. LNCS 1103.

18. B. Gramlich. Termination and Confluence Properties of Structured Rewrite Systems. PhD
thesis, Universität Kaiserslautern, Germany, 1996.

19. N. Hirokawa and A. Middeldorp. Approximating dependency graphs without using tree
automata techniques. In Proc. 6th WST, pages 9–11, 2003.

20. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In Proc. 19th
CADE, 2003. LNAI 2741.

21. N. Hirokawa and A. Middeldorp. Tsukuba termination tool. In Proc. 14th RTA, pages
311–320, 2003. LNCS 2706.

22. G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25:239–299, 1982.

23. S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering. Unpublished
Manuscript, University of Illinois, IL, USA, 1980.

24. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. 1970.

25. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation. In Proc.
1st PPDP, pages 48–62, 1999. LNCS 1702.

26. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3,
Louisiana Technical University, Ruston, LA, USA, 1979.

27. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In Proc. POPL ’01, pages 81–92, 2001.

28. A. Middeldorp. Approximating dependency graphs using tree automata techniques. In
Proc. IJCAR 2001, pages 593–610, 2001. LNAI 2083.

29. A. Middeldorp. Approximations for strategies and termination. In Proc. 2nd WRS, 2002.
ENTCS 70(6).

30. E. Ohlebusch. Hierarchical termination revisited. Information Processing Letters,
84(4):207–214, 2002.

5 Available from http://aib.informatik.rwth-aachen.de.

42

31. E. Ohlebusch, C. Claves, and C. Marché. TALP: A tool for termination analysis of logic
programs. In Proc. 11th RTA, pages 270–273, 2000. LNCS 1833.

32. J. Steinbach. Automatic termination proofs with transformation orderings. In Proc. 6th
RTA, LNCS, pages 11–25, 1995. Full version appeared as Technical Report SR-92-23,
Universität Kaiserslautern, Germany.

33. J. Steinbach. Simplification orderings: History of results. Fundamenta Informaticae, 24:47–
87, 1995.

34. R. Thiemann and J. Giesl. Size-change termination for term rewriting. In Proc. 14th RTA,
pages 264–278, 2003. LNCS 2706.

35. Y. Toyama. Counterexamples to the termination for the direct sum of term rewriting
systems. Information Processing Letters, 25:141–143, 1987.

36. X. Urbain. Automated incremental termination proofs for hierarchically defined term
rewriting systems. In Proc. IJCAR 2001, pages 485–498, 2001. LNAI 2083.

A Detailed Experiments

The following tables show the detailed results of our experiments on the examples
of [3, 9, 32]. In the left column of each table, we mention the number of the TRS.
Here, D.x is example x of [9], S.x is example x of [32], and n.x is example x in
Section n of [3]. Since some TRSs are contained in several collections and since
we regarded every TRS only once, there are some numbers missing.

For each of the methods discussed in Sect. 9 there are two columns. The first
one denotes how much time was spent for the proof attempt and the second one
denotes the result of the proof attempt: an “OK” denotes a successful proof, the
infinity sign “∞” denotes a timeout after 30 seconds, and a “-” denotes a failure
of the proof attempt. At the end of each column we wrote the total time needed
for the corresponding method and the number of successful proof attempts.

43

Table 1. Termination

Algorithm Old Old+T Normal Old Old+T Normal Type Emb Bottom-Up Combi
Order EMB EMB EMB LPO LPO LPO LPO LPO LPO

3.1 0.06 OK 0.07 OK 0.07 OK 0.06 OK 0.08 OK 0.08 OK 0.08 OK 0.08 OK 0.06 OK 0.06 OK
3.2 0.06 OK 0.08 OK 0.08 OK 0.07 OK 0.09 OK 0.09 OK 0.09 OK 0.09 OK 0.07 OK 0.05 OK
3.3 0.14 - 0.44 - 0.47 - 0.39 OK 0.46 OK 0.33 OK 0.32 OK 0.24 OK 0.17 OK 0.13 OK
3.4 0.05 - 0.05 - 0.04 - 0.46 OK 0.47 OK 0.13 OK 0.13 OK 0.15 OK 0.07 - 0.10 OK
3.5 0.46 - 1.10 - 0.46 OK 1.43 OK 1.50 OK 1.48 OK 0.99 OK 0.51 OK 0.18 OK 0.15 OK
3.5a 0.47 - 1.88 - 0.47 OK 1.44 OK 1.52 OK 1.49 OK 1.01 OK 0.54 OK 0.20 OK 0.15 OK
3.5b 0.18 - 0.48 - 4.81 - 3.41 OK 3.56 OK 3.12 OK 1.55 OK 0.66 OK 0.27 OK 0.20 OK
3.6 0.43 - 3.38 - 3.44 - 4.62 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 3.73 - 2.46 - 0.22 OK
3.6a 0.41 - 1.67 - 1.64 - 4.26 - 21.22 - 20.92 - 12.40 - 1.84 - 2.02 - 0.20 OK
3.6b 0.21 - 0.69 - 1.26 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 7.00 - 3.04 - 0.27 OK
3.7 0.04 OK 0.06 OK 0.06 OK 0.05 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.04 OK
3.8 0.09 OK 0.12 OK 0.12 OK 0.10 OK 0.14 OK 0.14 OK 0.14 OK 0.13 OK 0.11 OK 0.09 OK
3.8a 0.10 OK 0.13 OK 0.13 OK 0.12 OK 0.15 OK 0.15 OK 0.15 OK 0.15 OK 0.12 OK 0.10 OK
3.8b 0.18 - 0.66 - 0.50 - 0.96 OK 1.07 OK 0.49 OK 0.45 OK 0.40 OK 0.25 OK 0.19 OK
3.9 0.25 - 1.38 - 0.34 OK 0.80 OK 0.92 OK 0.67 OK 0.63 OK 0.39 OK 0.23 OK 0.19 OK
3.10 0.50 - 1.47 - 9.31 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 10.44 - 9.36 - 0.92 OK
3.11 0.38 - 1.37 - 0.73 OK 2.13 OK 2.39 OK 1.63 OK 1.43 OK 0.88 OK 0.59 OK 0.47 OK
3.12 0.08 - 0.26 - 0.24 - 0.24 - 0.82 - 0.82 - 0.78 - 0.30 - 0.21 - 0.09 OK
3.13 7.78 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 0.78 OK
3.14 0.12 - 1.28 - 1.27 - 0.33 - 1.28 OK 1.28 OK 1.29 OK 1.38 - 0.95 OK 0.09 OK
3.15 0.03 - 0.03 - 0.03 - 0.05 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.03 OK
3.16 0.06 - 0.07 - 0.04 - 0.13 OK 0.13 OK 0.09 OK 0.09 OK 0.09 OK 0.05 OK 0.05 OK
3.17 0.05 - 0.05 - 0.05 - 0.79 - 1.39 OK 0.87 OK 0.88 OK 0.43 OK 0.29 - 0.08 OK
3.17a 0.32 - 0.34 - 0.05 - 2.57 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 1.99 - 0.49 - 0.09 OK
3.18 0.05 - 0.05 - 0.05 - 0.26 OK 0.27 OK 0.10 OK 0.11 OK 0.11 OK 0.07 OK 0.09 OK
3.19 0.05 - 0.05 - 0.05 - 0.30 OK 0.36 OK 0.19 OK 0.19 OK 0.19 OK 0.13 OK 0.15 OK
3.20 0.04 - 0.10 OK 0.09 OK 0.18 - 0.24 OK 0.24 OK 0.24 OK 0.11 OK 0.09 OK 0.03 OK
3.21 0.06 - 0.11 OK 0.11 OK 0.40 - 0.46 OK 0.46 OK 0.46 OK 0.12 OK 0.10 - 0.29 OK
3.22 0.06 - 0.07 - 0.04 - 0.21 - 0.22 - 2.74 - 2.74 - 0.29 - 0.11 - 0.52 -

44

Algorithm Old Old+T Normal Old Old+T Normal Type Emb Bottom-Up Combi
Order EMB EMB EMB LPO LPO LPO LPO LPO LPO

3.23 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK
3.24 0.04 - 0.16 - 0.16 - 0.07 - 0.19 - 0.19 - 0.19 - 0.18 - 0.17 - 0.04 OK
3.25 0.03 OK 0.04 OK 0.04 OK 0.04 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.09 - 0.07 OK
3.26 0.03 - 0.13 - 0.13 - 0.03 OK 0.04 OK 0.04 OK 0.04 OK 0.13 - 0.03 OK 0.02 OK
3.27 0.03 - 0.08 - 0.08 - 0.03 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.07 - 0.08 OK
3.28 0.07 - 0.08 - 0.08 - 0.15 OK 0.16 OK 0.16 OK 0.14 OK 0.17 OK 0.07 - 0.49 OK
3.29 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
3.30 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK
3.31 0.02 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK
3.32 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
3.33 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.01 OK
3.34 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.03 OK 0.03 OK 0.02 OK 0.02 OK 0.03 - 0.04 OK
3.35 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.02 OK
3.36 0.08 - 0.68 - 0.57 OK 0.22 OK 0.33 OK 0.33 OK 0.33 OK 0.65 OK 0.41 OK 0.11 OK
3.37 0.04 OK 0.05 OK 0.04 OK 0.04 OK 0.05 OK 0.05 OK 0.05 OK 0.04 OK 0.04 OK 0.03 OK
3.38 0.12 - 0.17 - 0.13 OK 0.55 OK 0.59 OK 0.53 OK 0.54 OK 0.15 OK 0.11 OK 0.08 OK
3.39 0.09 - 0.09 - 0.32 - 0.48 - 0.49 - 0.69 - 0.70 - 0.37 - 0.24 - 0.27 OK
3.40 0.10 - 0.10 - 1.06 - 0.38 - 0.39 - 2.93 - 2.94 - 1.18 - 0.80 - 0.40 OK
3.41 0.03 - 0.03 OK 0.03 OK 0.04 - 0.04 OK 0.04 OK 0.03 OK 0.04 OK 0.04 OK 0.03 OK
3.42 0.07 - 0.13 OK 0.13 OK 0.09 - 0.16 OK 0.16 OK 0.16 OK 0.15 OK 0.15 OK 0.18 OK
3.43 0.03 - 0.04 OK 0.04 OK 0.05 - 0.06 OK 0.06 OK 0.06 OK 0.04 OK 0.04 OK 0.08 OK
3.44 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.02 OK 0.01 OK 0.02 OK 0.01 OK 0.01 OK
3.45 0.04 OK 0.05 OK 0.05 OK 0.04 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.04 OK
3.46 0.02 - 0.02 OK 0.02 OK 0.02 - 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.01 OK
3.47 0.05 OK 0.06 OK 0.06 OK 0.09 OK 0.10 OK 0.10 OK 0.09 OK 0.10 OK 0.04 OK 0.03 OK
3.48 0.15 - 0.16 - 0.07 - 2.83 OK 2.90 OK 1.17 OK 0.96 OK 0.81 - 0.07 - 0.68 OK
3.49 0.07 - 0.09 - 0.09 - 0.17 - 0.19 - 0.19 - 0.14 - 0.09 - 0.07 - 0.13 OK
3.50 0.03 - 0.04 - 0.03 OK 0.09 OK 0.09 OK 0.03 OK 0.03 OK 0.03 OK 0.04 - 0.06 OK
3.51 0.05 - 0.05 - 0.05 - 0.30 OK 0.30 OK 0.13 OK 0.13 OK 0.13 OK 0.06 - 0.10 OK
3.52 0.03 OK 0.04 OK 0.04 OK 0.05 OK 0.06 OK 0.06 OK 0.06 OK 0.05 OK 0.04 OK 0.02 OK

45

Algorithm Old Old+T Normal Old Old+T Normal Type Emb Bottom-Up Combi
Order EMB EMB EMB LPO LPO LPO LPO LPO LPO

3.53 0.29 - 1.49 - 1.48 - 0.51 - 2.34 - 2.34 - 2.36 - 1.61 - 1.45 - 0.27 OK
3.53a 0.03 - 0.05 - 0.06 - 0.03 - 0.06 - 0.07 - 0.06 - 0.07 - 0.09 - 0.02 OK
3.53b 0.03 OK 0.04 OK 0.04 OK 0.05 OK 0.06 OK 0.06 OK 0.06 OK 0.05 OK 0.05 OK 0.02 OK
3.54 0.03 OK 0.05 OK 0.05 OK 0.04 OK 0.06 OK 0.06 OK 0.07 OK 0.05 OK 0.09 - 0.07 OK
3.55 0.53 - 1.69 - 0.87 OK 2.26 OK 2.69 OK 1.94 OK 1.66 OK 1.04 OK 0.70 OK 0.56 OK
3.56 0.07 - 0.11 - 0.08 OK 0.12 - 0.18 - 0.10 OK 0.09 OK 0.09 OK 0.05 - 0.14 OK
3.57 0.47 - 0.50 - 0.06 - 3.42 - 5.70 OK 0.98 OK 0.99 OK 0.65 OK 0.10 - 0.18 OK
D.1 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK
D.2 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.02 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK
D.3 0.02 OK 0.02 OK 0.03 OK 0.02 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK 0.01 OK
D.6 0.02 - 0.02 - 0.02 - 0.02 OK 0.02 OK 0.03 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK
D.7 0.05 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.05 OK 0.05 OK 0.05 OK 0.05 - 0.07 OK
D.8 0.09 OK 0.11 OK 0.10 OK 0.09 OK 0.10 OK 0.11 OK 0.11 OK 0.10 OK 0.12 OK 0.09 OK
D.9 0.03 - 0.03 - 0.03 - 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 - 0.04 OK
D.11 0.40 OK 0.41 OK 0.41 OK 0.41 OK 0.45 OK 0.45 OK 0.46 OK 0.45 OK 0.76 OK 0.41 OK
D.12 0.04 - 0.05 - 0.05 - 0.04 - 0.05 - 0.05 - 0.05 - 0.05 - 0.07 - 0.09 -
D.13 0.07 - 0.07 - 0.06 - 0.10 - 0.11 - 0.10 - 0.09 - 0.10 - 0.06 - 0.16 -
D.17 0.04 - 0.04 - 0.04 - 0.18 OK 0.19 OK 0.12 OK 0.12 OK 0.10 OK 0.05 OK 0.06 OK
D.18 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK
D.20 0.13 - 30.00 ∞ 30.00 ∞ 0.17 OK 0.79 OK 0.79 OK 0.78 OK 0.70 OK 0.69 OK 0.68 OK
D.21 0.07 - 0.09 OK 0.09 OK 0.08 - 0.09 OK 0.09 OK 0.09 OK 0.09 OK 0.10 OK 0.07 OK
D.28 0.06 - 0.07 - 0.07 - 0.05 OK 0.06 OK 0.05 OK 0.05 OK 0.05 OK 0.06 - 0.07 OK
D.29 0.06 - 0.44 - 0.10 OK 0.06 OK 0.10 OK 0.10 OK 0.10 OK 0.11 OK 0.10 OK 0.08 OK
D.30 0.08 - 5.52 - 5.51 - 0.23 OK 0.41 OK 0.41 OK 0.41 OK 0.25 OK 5.63 - 0.26 OK
D.32 0.16 OK 0.19 OK 0.20 OK 0.20 OK 0.24 OK 0.23 OK 0.21 OK 0.21 OK 0.17 OK 0.11 OK
D.33 0.07 - 0.08 - 0.23 - 3.08 - 3.49 - 1.48 - 1.25 - 0.57 - 0.09 - 0.79 -
S.1 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
S.2 0.03 - 0.10 OK 0.10 OK 3.47 - 6.44 OK 6.36 OK 3.61 OK 2.88 OK 0.05 - 0.62 OK
S.3 0.06 OK 0.07 OK 0.07 OK 0.07 OK 0.07 OK 0.07 OK 0.08 OK 0.07 OK 0.07 OK 0.05 OK
S.4 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK

46

Algorithm Old Old+T Normal Old Old+T Normal Type Emb Bottom-Up Combi
Order EMB EMB EMB LPO LPO LPO LPO LPO LPO

S.5 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.04 OK 0.03 OK 0.03 OK 0.03 OK
S.6 0.01 OK 0.02 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
S.7 0.04 OK 0.04 OK 0.05 OK 0.04 OK 0.05 OK 0.05 OK 0.04 OK 0.05 OK 0.04 OK 0.02 OK
S.10 0.03 - 0.03 OK 0.04 OK 0.03 - 0.04 OK 0.04 OK 0.04 OK 0.03 OK 0.04 OK 0.03 OK
S.11 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
S.12 0.02 OK 0.01 OK 0.02 OK 0.01 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.01 OK
S.14 0.08 - 0.09 - 0.09 - 1.09 - 1.12 - 1.12 - 1.12 - 0.10 - 0.07 - 0.16 -
S.15 0.04 - 0.10 - 0.10 - 0.05 - 0.12 - 0.12 - 0.12 - 0.11 - 0.11 - 0.16 -
S.17 0.06 - 0.08 - 0.08 - 0.13 - 0.14 - 0.15 - 0.12 - 0.09 - 0.06 - 0.15 OK
S.18 0.05 - 0.06 - 0.06 - 0.07 - 0.08 - 0.08 - 0.08 - 0.07 - 0.09 - 0.13 OK
S.22 0.07 - 0.13 OK 0.13 OK 0.09 - 0.16 OK 0.16 OK 0.16 OK 0.14 OK 0.15 OK 0.16 OK
S.24 0.20 - 0.64 - 0.16 OK 3.15 - 7.49 - 2.27 OK 1.82 OK 0.18 OK 0.13 OK 0.11 OK
S.25 0.03 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.03 OK
S.26 0.44 - 0.89 - 0.42 OK 2.02 - 3.33 - 0.89 OK 0.90 OK 0.47 OK 0.17 OK 0.11 OK
S.27 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
S.28 0.05 - 0.05 - 0.05 - 0.13 - 0.14 - 0.14 - 0.14 - 0.06 - 0.06 - 0.20 OK
S.29 0.07 OK 0.08 OK 0.08 OK 0.07 OK 0.08 OK 0.09 OK 0.08 OK 0.08 OK 0.08 OK 0.06 OK
S.30 0.23 - 0.09 OK 0.09 OK 0.33 OK 0.10 OK 0.10 OK 0.10 OK 0.10 OK 0.10 OK 0.07 OK
S.31 0.17 - 1.55 OK 1.56 OK 0.49 - 2.79 OK 2.79 OK 2.04 OK 1.72 OK 0.61 - 1.09 OK

Total: 108 18.71 40 95.22 52 102.25 64 144.35 68 234.99 82 219.12 85 202.97 85 79.81 82 67.20 66 16.41 102

47

Table 2. Innermost Termination

Algorithm Old Old+T Normal Old Old+T Normal Type Emb Bottom-Up Combi
Order EMB EMB EMB LPO LPO LPO LPO LPO LPO

3.1 0.06 OK 0.07 OK 0.07 OK 0.11 OK 0.08 OK 0.08 OK 0.08 OK 0.08 OK 0.06 OK 0.05 OK
3.2 0.06 OK 0.08 OK 0.08 OK 0.07 OK 0.09 OK 0.09 OK 0.09 OK 0.09 OK 0.07 OK 0.05 OK
3.3 0.15 - 0.45 - 0.47 - 0.44 OK 0.45 OK 0.33 OK 0.31 OK 0.24 OK 0.17 OK 0.13 OK
3.4 0.12 - 0.60 - 0.17 OK 0.14 OK 0.18 OK 0.18 OK 0.19 OK 0.19 OK 0.14 OK 0.12 OK
3.5 0.46 - 1.10 - 0.46 OK 1.46 OK 1.50 OK 1.46 OK 0.98 OK 0.51 OK 0.18 OK 0.14 OK
3.5a 0.47 - 1.88 - 0.47 OK 1.47 OK 1.50 OK 1.48 OK 1.00 OK 0.54 OK 0.21 OK 0.16 OK
3.5b 0.18 - 0.48 - 4.83 - 3.49 OK 3.50 OK 3.09 OK 1.54 OK 0.66 OK 0.27 OK 0.20 OK
3.6 0.43 - 3.34 - 3.44 - 4.74 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 3.72 - 2.43 - 0.22 OK
3.6a 0.41 - 1.66 - 1.65 - 4.38 - 20.80 - 20.83 - 12.34 - 1.83 - 2.01 - 0.20 OK
3.6b 0.21 - 0.69 - 1.26 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 6.96 - 3.00 - 0.28 OK
3.7 0.04 OK 0.06 OK 0.06 OK 0.05 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.04 OK
3.8 0.09 OK 0.12 OK 0.12 OK 0.11 OK 0.13 OK 0.14 OK 0.14 OK 0.13 OK 0.11 OK 0.09 OK
3.8a 0.10 OK 0.13 OK 0.13 OK 0.12 OK 0.15 OK 0.15 OK 0.15 OK 0.15 OK 0.12 OK 0.10 OK
3.8b 0.17 - 0.65 - 0.50 - 0.97 OK 1.04 OK 0.48 OK 0.45 OK 0.39 OK 0.25 OK 0.20 OK
3.9 0.25 - 1.38 - 0.34 OK 0.80 OK 0.90 OK 0.67 OK 0.63 OK 0.39 OK 0.24 OK 0.19 OK
3.10 0.59 - 1.49 - 9.31 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 10.28 - 9.15 - 0.90 OK
3.11 0.36 - 1.41 - 0.73 OK 2.25 OK 2.33 OK 1.62 OK 1.40 OK 0.87 OK 0.54 OK 0.45 OK
3.12 0.08 - 0.25 - 0.24 - 0.28 - 0.80 - 0.81 - 0.77 - 0.29 - 0.22 - 0.07 OK
3.13 7.77 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 30.00 ∞ 0.75 OK
3.14 0.12 - 1.28 - 1.27 - 0.34 - 1.27 OK 1.28 OK 1.27 OK 1.36 - 0.94 OK 0.09 OK
3.15 0.04 - 0.05 - 0.04 - 0.04 - 0.05 - 0.05 - 0.05 - 0.05 - 0.06 - 0.04 OK
3.16 0.05 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.07 OK 0.06 OK
3.17 0.15 - 0.74 - 0.73 - 0.30 - 1.32 OK 1.34 OK 1.34 OK 0.68 OK 0.57 - 0.13 OK
3.17a 0.21 - 1.43 - 1.43 - 0.36 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 2.21 - 1.14 - 0.22 OK
3.18 0.12 - 1.02 - 0.18 OK 0.13 OK 0.19 OK 0.21 OK 0.21 OK 0.19 OK 0.19 OK 0.15 OK
3.19 0.17 - 1.06 - 0.23 OK 0.18 OK 0.25 OK 0.27 OK 0.27 OK 0.25 OK 0.22 OK 0.19 OK
3.20 0.04 - 0.10 OK 0.11 OK 0.19 - 0.24 OK 0.24 OK 0.24 OK 0.11 OK 0.09 OK 0.03 OK
3.21 0.06 - 0.12 OK 0.11 OK 0.41 - 0.46 OK 0.46 OK 0.46 OK 0.12 OK 0.10 - 0.18 OK
3.22 0.05 OK 0.05 OK 0.05 OK 0.07 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.06 OK 0.04 OK

48

Algorithm Old Old+T Normal Old Old+T Normal Type Emb Bottom-Up Combi
Order EMB EMB EMB LPO LPO LPO LPO LPO LPO

3.23 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK
3.24 0.04 - 0.17 - 0.16 - 0.07 - 0.18 - 0.19 - 0.19 - 0.17 - 0.17 - 0.04 OK
3.25 0.03 OK 0.05 OK 0.04 OK 0.04 OK 0.05 OK 0.05 OK 0.05 OK 0.04 OK 0.09 - 0.07 OK
3.26 0.03 - 0.23 - 0.23 - 0.08 OK 0.05 OK 0.05 OK 0.05 OK 0.25 - 0.05 OK 0.04 OK
3.27 0.01 OK 0.01 OK 0.01 OK 0.05 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.02 OK 0.01 OK
3.28 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.07 OK 0.08 OK 0.07 OK 0.09 - 0.11 OK
3.29 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
3.30 0.01 OK 0.01 OK 0.01 OK 0.02 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK
3.31 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK
3.32 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
3.33 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.01 OK
3.34 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
3.35 0.03 OK 0.04 OK 0.03 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.02 OK
3.36 0.08 - 0.68 - 0.57 OK 0.23 OK 0.31 OK 0.33 OK 0.33 OK 0.65 OK 0.41 OK 0.11 OK
3.37 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.05 OK 0.05 OK 0.05 OK 0.04 OK 0.04 OK 0.03 OK
3.38 0.12 - 0.16 - 0.14 OK 0.56 OK 0.58 OK 0.53 OK 0.53 OK 0.15 OK 0.11 OK 0.07 OK
3.39 0.09 OK 0.12 OK 0.11 OK 0.14 OK 0.12 OK 0.13 OK 0.13 OK 0.12 OK 0.11 OK 0.08 OK
3.40 0.13 OK 0.15 OK 0.15 OK 0.14 OK 0.16 OK 0.16 OK 0.16 OK 0.16 OK 0.14 OK 0.12 OK
3.41 0.03 - 0.03 OK 0.03 OK 0.03 - 0.04 OK 0.04 OK 0.04 OK 0.03 OK 0.04 OK 0.02 OK
3.42 0.07 - 0.14 OK 0.14 OK 0.09 - 0.15 OK 0.16 OK 0.16 OK 0.14 OK 0.15 OK 0.16 OK
3.43 0.03 - 0.05 OK 0.05 OK 0.07 - 0.07 OK 0.07 OK 0.07 OK 0.06 OK 0.06 OK 0.09 OK
3.44 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.03 OK 0.02 OK 0.03 OK 0.02 OK 0.02 OK 0.01 OK
3.45 0.04 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.04 OK
3.46 0.02 - 0.02 OK 0.02 OK 0.08 - 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.01 OK
3.47 0.05 OK 0.05 OK 0.05 OK 0.06 OK 0.06 OK 0.06 OK 0.07 OK 0.06 OK 0.05 OK 0.04 OK
3.48 0.58 - 5.04 - 4.24 - 1.43 OK 1.53 OK 0.72 OK 0.50 OK 4.60 - 4.36 - 0.86 OK
3.49 0.09 - 0.11 - 0.10 - 0.19 - 0.20 - 0.20 - 0.15 - 0.11 - 0.09 - 0.12 OK
3.50 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.01 OK
3.51 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.05 OK 0.03 OK
3.52 0.03 OK 0.04 OK 0.04 OK 0.04 OK 0.05 OK 0.06 OK 0.06 OK 0.05 OK 0.04 OK 0.03 OK

49

Algorithm Old Old+T Normal Old Old+T Normal Type Emb Bottom-Up Combi
Order EMB EMB EMB LPO LPO LPO LPO LPO LPO

3.53 0.29 - 1.49 - 1.49 - 0.54 - 2.26 - 2.32 - 2.44 - 1.59 - 1.32 - 0.29 OK
3.53a 0.01 OK 0.01 OK 0.01 OK 0.02 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK
3.53b 0.03 OK 0.05 OK 0.05 OK 0.05 OK 0.06 OK 0.06 OK 0.07 OK 0.05 OK 0.04 OK 0.04 OK
3.54 0.03 OK 0.05 OK 0.05 OK 0.04 OK 0.05 OK 0.06 OK 0.06 OK 0.05 OK 0.11 - 0.07 OK
3.55 0.52 - 1.69 - 0.87 OK 2.33 OK 2.63 OK 1.93 OK 1.64 OK 1.03 OK 0.69 OK 0.59 OK
3.56 0.05 OK 0.07 OK 0.06 OK 0.06 OK 0.07 OK 0.07 OK 0.06 OK 0.06 OK 0.09 - 0.08 OK
3.57 0.28 - 0.88 - 0.89 - 0.44 - 1.52 OK 1.55 OK 1.55 OK 0.88 OK 0.71 - 0.33 OK
4.1 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK
4.2 0.03 OK 0.04 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK
4.3 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
4.4 0.02 OK 0.01 OK 0.02 OK 0.04 OK 0.01 OK 0.02 OK 0.01 OK 0.02 OK 0.02 OK 0.01 OK
4.4a 0.01 OK 0.02 OK 0.01 OK 0.01 OK 0.01 OK 0.02 OK 0.01 OK 0.02 OK 0.02 OK 0.01 OK
4.5 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
4.6 0.03 - 0.03 OK 0.02 OK 0.06 - 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.01 OK
4.7 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK
4.8 0.07 - 0.05 OK 0.05 OK 0.19 - 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.04 OK
4.9 0.06 - 0.06 OK 0.06 OK 0.14 - 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.06 OK 0.04 OK
4.10 0.02 OK 0.02 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK
4.11 0.03 OK 0.05 OK 0.04 OK 0.03 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.05 OK
4.12 0.04 - 0.03 OK 0.02 OK 0.08 - 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.03 OK
4.12a 0.04 - 0.03 OK 0.02 OK 0.08 - 0.02 OK 0.03 OK 0.02 OK 0.02 OK 0.03 OK 0.02 OK
4.13 0.01 OK 0.02 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.02 OK
4.14 0.03 OK 0.04 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK
4.15 0.05 OK 0.05 OK 0.04 OK 0.03 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.08 - 0.09 OK
4.16 0.03 OK 0.04 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK
4.17 0.06 - 0.05 OK 0.04 OK 0.17 - 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK
4.18 0.03 - 0.03 OK 0.02 OK 0.03 - 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK
4.19 0.07 OK 0.10 OK 0.08 OK 0.12 OK 0.10 OK 0.10 OK 0.09 OK 0.09 OK 0.08 OK 0.09 OK
4.20 0.02 OK 0.03 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK
4.20a 0.03 OK 0.06 OK 0.03 OK 0.04 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK

50

Algorithm Old Old+T Normal Old Old+T Normal Type Emb Bottom-Up Combi
Order EMB EMB EMB LPO LPO LPO LPO LPO LPO

4.21 0.02 OK 0.03 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK
4.22 0.04 OK 0.05 OK 0.05 OK 0.04 OK 0.05 OK 0.05 OK 0.05 OK 0.05 OK 0.06 OK 0.05 OK
4.23 0.09 - 0.27 - 0.10 OK 0.17 OK 0.14 OK 0.14 OK 0.14 OK 0.11 OK 0.10 OK 0.10 OK
4.25 0.02 - 0.02 OK 0.02 OK 0.03 - 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.01 OK
4.26 0.10 - 0.67 - 0.55 OK 0.44 - 1.28 OK 1.20 OK 0.83 OK 0.64 OK 0.57 OK 0.88 OK
4.27 0.08 - 0.10 OK 0.09 OK 0.10 - 0.09 OK 0.10 OK 0.10 OK 0.10 OK 0.10 OK 0.08 OK
4.28 0.05 - 0.13 OK 0.11 OK 0.06 - 0.13 OK 0.13 OK 0.13 OK 0.11 OK 0.11 OK 0.15 OK
4.29 0.23 - 0.83 - 0.65 OK 3.23 - 4.58 OK 4.24 OK 3.11 OK 0.73 OK 0.81 OK 1.05 OK
4.30 0.21 - 0.81 - 0.70 OK 1.64 - 3.18 OK 3.08 OK 2.01 OK 0.79 OK 0.58 OK 0.72 OK
4.30a 0.09 - 0.12 OK 0.12 OK 0.12 - 0.12 OK 0.13 OK 0.13 OK 0.13 OK 0.11 OK 0.10 OK
4.30b 0.45 - 1.23 - 1.12 OK 3.63 - 5.46 OK 5.06 OK 3.94 OK 1.26 OK 0.62 OK 0.92 OK
4.30c 0.25 - 1.63 - 1.58 - 2.50 - 9.61 - 9.39 - 7.11 - 1.73 - 1.48 - 1.28 OK
4.31 0.09 - 0.23 OK 0.20 OK 1.52 - 1.59 OK 1.61 OK 1.61 OK 0.22 OK 0.16 OK 0.36 OK
4.32 0.05 OK 0.06 OK 0.06 OK 0.06 OK 0.07 OK 0.07 OK 0.07 OK 0.06 OK 0.06 OK 0.05 OK
4.33 0.12 OK 0.15 OK 0.15 OK 0.13 OK 0.16 OK 0.16 OK 0.16 OK 0.17 OK 0.15 OK 0.10 OK
4.34 0.16 - 0.58 - 0.57 - 0.58 OK 0.36 OK 0.28 OK 0.26 OK 0.76 - 0.42 - 0.36 OK
4.35 3.75 - 30.00 ∞ 5.50 OK 30.00 ∞ 30.00 ∞ 30.00 ∞ 28.20 OK 3.71 OK 15.24 - 3.57 OK
4.36 1.71 - 3.74 - 2.06 OK 30.00 ∞ 30.00 ∞ 5.62 OK 3.02 OK 2.26 OK 0.71 OK 0.54 OK
4.37 0.05 OK 0.06 OK 0.06 OK 0.08 OK 0.07 OK 0.07 OK 0.06 OK 0.06 OK 0.09 - 0.11 OK
4.37a 0.05 OK 0.07 OK 0.07 OK 0.06 OK 0.07 OK 0.07 OK 0.07 OK 0.07 OK 0.11 - 0.09 OK
D.1 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.03 OK 0.02 OK
D.2 0.02 OK 0.03 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK
D.3 0.01 OK 0.02 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
D.6 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK 0.03 OK 0.01 OK
D.7 0.05 OK 0.06 OK 0.06 OK 0.05 OK 0.06 OK 0.06 OK 0.07 OK 0.06 OK 0.09 - 0.07 OK
D.8 0.09 OK 0.10 OK 0.09 OK 0.09 OK 0.10 OK 0.11 OK 0.10 OK 0.10 OK 0.12 OK 0.09 OK
D.9 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.07 - 0.04 OK
D.11 0.38 OK 0.42 OK 0.41 OK 0.40 OK 0.41 OK 0.46 OK 0.45 OK 0.46 OK 0.77 OK 0.42 OK
D.12 0.09 - 0.11 - 0.10 - 0.10 - 0.11 - 0.12 - 0.11 - 0.11 - 0.14 - 0.15 OK
D.13 0.12 - 0.58 - 0.58 - 0.12 - 0.59 - 0.63 - 0.62 - 0.62 - 0.16 - 0.74 -

51

Algorithm Old Old+T Normal Old Old+T Normal Type Emb Bottom-Up Combi
Order EMB EMB EMB LPO LPO LPO LPO LPO LPO

D.17 0.07 OK 0.08 OK 0.08 OK 0.08 OK 0.08 OK 0.09 OK 0.08 OK 0.09 OK 0.09 OK 0.09 OK
D.18 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK
D.20 0.23 - 30.00 ∞ 30.00 ∞ 0.27 OK 1.43 OK 1.54 OK 1.53 OK 1.45 OK 1.45 OK 1.31 OK
D.21 0.07 - 0.09 OK 0.09 OK 0.08 - 0.09 OK 0.09 OK 0.09 OK 0.09 OK 0.10 OK 0.07 OK
D.28 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.05 OK 0.05 OK 0.04 OK 0.05 OK 0.05 - 0.06 OK
D.29 0.06 - 0.44 - 0.10 OK 0.06 OK 0.09 OK 0.10 OK 0.10 OK 0.10 OK 0.09 OK 0.08 OK
D.30 0.08 - 5.51 - 5.52 - 0.23 OK 0.40 OK 0.41 OK 0.41 OK 0.25 OK 5.68 - 0.26 OK
D.32 0.16 OK 0.19 OK 0.20 OK 0.20 OK 0.23 OK 0.23 OK 0.21 OK 0.21 OK 0.17 OK 0.12 OK
D.33 0.17 - 7.59 - 7.45 - 0.40 - 30.00 ∞ 30.00 ∞ 30.00 ∞ 7.93 - 0.17 - 8.36 -
S.1 0.01 OK 0.01 OK 0.01 OK 0.02 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
S.2 0.03 - 0.04 OK 0.04 OK 0.05 - 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.03 OK
S.3 0.06 OK 0.07 OK 0.07 OK 0.07 OK 0.07 OK 0.07 OK 0.08 OK 0.07 OK 0.07 OK 0.05 OK
S.4 0.01 OK 0.01 OK 0.02 OK 0.02 OK 0.01 OK 0.02 OK 0.01 OK 0.02 OK 0.01 OK 0.01 OK
S.5 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.03 OK 0.02 OK
S.6 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
S.7 0.04 OK 0.05 OK 0.04 OK 0.04 OK 0.05 OK 0.06 OK 0.04 OK 0.05 OK 0.03 OK 0.02 OK
S.10 0.03 - 0.03 OK 0.03 OK 0.03 - 0.04 OK 0.04 OK 0.03 OK 0.04 OK 0.04 OK 0.03 OK
S.11 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
S.12 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.02 OK 0.01 OK
S.14 0.13 OK 0.15 OK 0.14 OK 0.14 OK 0.15 OK 0.16 OK 0.16 OK 0.16 OK 0.16 - 0.22 OK
S.15 0.05 - 0.11 - 0.10 - 0.05 - 0.12 - 0.12 - 0.12 - 0.10 - 0.11 - 0.16 -
S.17 0.10 - 0.47 - 0.47 - 0.15 - 0.62 - 0.64 - 0.57 - 0.51 - 0.42 - 0.21 OK
S.18 0.05 - 0.06 - 0.06 - 0.07 - 0.08 - 0.08 - 0.08 - 0.07 - 0.09 - 0.14 OK
S.22 0.07 - 0.14 OK 0.13 OK 0.09 - 0.15 OK 0.16 OK 0.16 OK 0.14 OK 0.14 OK 0.16 OK
S.24 0.20 - 0.65 - 0.16 OK 3.17 - 7.49 - 2.35 OK 1.79 OK 0.18 OK 0.15 OK 0.11 OK
S.25 0.03 OK 0.04 OK 0.04 OK 0.05 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.04 OK 0.03 OK
S.26 0.44 - 0.89 - 0.42 OK 2.07 - 3.28 - 0.88 OK 0.88 OK 0.47 OK 0.17 OK 0.11 OK
S.27 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.02 OK 0.01 OK 0.01 OK 0.01 OK 0.01 OK 0.00 OK
S.28 0.06 - 0.16 - 0.16 - 0.14 - 0.30 - 0.31 - 0.31 - 0.17 - 0.17 - 0.15 OK
S.29 0.07 OK 0.08 OK 0.08 OK 0.09 OK 0.08 OK 0.09 OK 0.08 OK 0.09 OK 0.08 OK 0.07 OK

52

Algorithm Old Old+T Normal Old Old+T Normal Type Emb Bottom-Up Combi
Order EMB EMB EMB LPO LPO LPO LPO LPO LPO

S.30 0.23 - 0.10 OK 0.09 OK 0.33 OK 0.09 OK 0.10 OK 0.10 OK 0.10 OK 0.10 OK 0.08 OK
S.31 0.16 - 1.55 OK 1.56 OK 0.48 - 2.83 OK 2.77 OK 2.02 OK 1.71 OK 0.61 - 1.07 OK

Total: 151 27.94 77 155.06 101 131.36 121 205.12 98 334.93 128 298.76 131 275.06 132 102.48 128 95.96 113 34.82 148

53

54

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

95-11 ∗ M. Staudt / K. von Thadden: Subsumption Checking in Knowledge

Bases

95-12 ∗ G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements

Analysis from Multiple Perspectives: Experiences with Conceptual Mod-

eling Technology

95-13 ∗ M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-

ized Views

95-14 ∗ P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-

mation Management: Conceptual Models at Work

95-15 ∗ S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on

Information Technologies & Systems

95-16 ∗ W. Hans / St. Winkler / F. Sáenz: Distributed Execution in Functional

Logic Programming

96-1 ∗ Jahresbericht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional

Trees

96-3 ∗ W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins

in Acyclic Queries with Expensive Predicates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6 ∗ M. Jarke / W. Marquardt: Design and Evaluation of Computer–Aided

Process Modelling Tools

96-7 O. Chitil: The ς-Semantics: A Comprehensive Semantics for Functional

Programs

96-8 ∗ S. Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth

International Conference on Algebraic and Logic Programming

96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration

Management

96-11 ∗ C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement

96-12 ∗ R. Dömges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE∗ — An Environment for Managing the Evolution of Chemical

Process Simulation Models

96-13 ∗ K. Pohl / R. Klamma / K. Weidenhaupt / R. Dömges / P. Haumer /

M. Jarke: A Framework for Process-Integrated Tools

96-14 ∗ R. Gallersdörfer / K. Klabunde / A. Stolz / M. Eßmajor: INDIA — Intel-

ligent Networks as a Data Intensive Application, Final Project Report,

June 1996

96-15 ∗ H. Schimpe / M. Staudt: VAREX: An Environment for Validating and

Refining Rule Bases

55

96-16 ∗ M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across

Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and

Transformation

96-19 ∗ P. Peters / M. Jarke: Simulating the impact of information flows in

networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of cooperative information systems

96-21 ∗ G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information

systems: a manifesto

96-22 ∗ S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms

simultaneously: CoWeb architecture and functionality

96-23 ∗ M. Gebhardt / S. Jacobs: Conflict Management in Design

97-01 Jahresbericht 1996

97-02 J. Faassen: Using full parallel Boltzmann Machines for Optimization

97-03 A. Winter / A. Schürr: Modules and Updatable Graph Views for PRO-

grammed Graph REwriting Systems

97-04 M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow

Haskell Compiler

97-05 ∗ S. Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

97-06 M. Nicola / M. Jarke: Design and Evaluation of Wireless Health Care

Information Systems in Developing Countries

97-07 P. Hofstedt: Taskparallele Skelette für irregulär strukturierte Probleme

in deklarativen Sprachen

97-08 D. Blostein / A. Schürr: Computing with Graphs and Graph Rewriting

97-09 C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets

97-10 M. Nicola / M. Jarke: Integrating Replication and Communication in

Performance Models of Distributed Databases

97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

97-14 R. Baumann: Client/Server Distribution in a Structure-Oriented Data-

base Management System

97-15 G. H. Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

98-01 ∗ Jahresbericht 1997

98-02 S. Gruner/ M. Nagel / A. Schürr: Fine-grained and Structure-oriented

Integration Tools are Needed for Product Development Processes

98-03 S. Gruner: Einige Anmerkungen zur graphgrammatischen Spezifikation

von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

98-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

98-05 M. Leucker / St. Tobies: Truth — A Verification Platform for Distributed

Systems

56

98-07 M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.

Paech / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on

the Scenario Use in Twelve Selected Industrial Projects

98-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in natürlichsprach-

lichen Informationssystemen

98-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

98-10 ∗ M. Nicola / M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

98-11 ∗ A. Schleicher / B. Westfechtel / D. Jäger: Modeling Dynamic Software

Processes in UML

98-12 ∗ W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support

using the World Wide Web

98-13 K. Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-

heitsinformation

99-01 ∗ Jahresbericht 1998

99-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

99-03 ∗ R. Gallersdörfer / M. Jarke / M. Nicola: The ADR Replication Manager

99-04 M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-

tional Logic Programs Based on Needed Narrowing

99-07 Th. Wilke: CTL+ is exponentially more succinct than CTL

99-08 O. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge / Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks / Stefan Sklorz / Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop / Christoph Quix (eds.): Proceedings of the Fifth In-

ternational Workshop on the Language-Action Perspective on Commu-

nication Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server

Implementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC Lan-

guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe / Stefan Wöhrle: An Existential Locality Theorem

57

2001-08 Mareike Schoop / James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts / Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark / Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl / Aart Middeldorp: Transformation Techniques for

Context-Sensitive Rewrite Systems

2002-03 Benedikt Bollig / Martin Leucker / Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl / Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter / Thomas von der Maßen / Thomas Weiler: Modelling

Requirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl / Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl / René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl / Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl / René Thiemann / Peter Schneider-Kamp / Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding / Philipp Rohde: Solving the Sabotage Game is

PSPACE-hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter / Thomas von der Maßen / Alexander Nyßen / Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

58

