
Aachen
Department of Computer Science

Technical Report

Innermost Termination of

Context-Sensitive Rewriting

Jürgen Giesl and Aart Middeldorp

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2002-04

RWTH Aachen · Department of Computer Science · Dec. 2002 (revised version)

1

The publications of the Department of Computer Science of RWTH Aachen
(Aachen University of Technology) are in general accessible through the World
Wide Web.

http://aib.informatik.rwth-aachen.de/

2

Innermost Termination of Context-Sensitive

Rewriting

Jürgen Giesl1 and Aart Middeldorp?2

1 LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany,
giesl@informatik.rwth-aachen.de

2 Institute of Information Sciences and Electronics, University of Tsukuba
Tsukuba 305-8573, Japan, ami@is.tsukuba.ac.jp

Abstract. Context-sensitive rewriting is a restriction of term rewriting used to
model evaluation strategies in functional programming and in programming lan-
guages like OBJ. For example, under certain conditions termination of an OBJ

program is equivalent to innermost termination of the corresponding context-
sensitive rewrite system [25]. To prove termination of context-sensitive rewriting,
several methods have been proposed in the literature which transform context-
sensitive rewrite systems into ordinary rewrite systems such that termination
of the transformed ordinary system implies termination of the original context-
sensitive system. Most of these transformations are not very satisfactory when
it comes to proving innermost termination. We investigate the relationship be-
tween termination and innermost termination of context-sensitive rewriting and
we examine the applicability of the different transformations for innermost ter-
mination proofs. Finally, we present a simple transformation which is both sound
and complete for innermost termination.

1 Introduction

Evaluation in functional languages is often guided by specific evaluation strate-
gies. For example, in the program consisting of the rules

from(x) → x : from(s(x)) nth(0, x : y) → x nth(s(n), x : y) → nth(n, y)

a term like nth(s(0), from(0)) admits a finite reduction to s(0) as well as in-
finite reductions. The infinite reductions can for instance be avoided by always
contracting the outermost redex. Context-sensitive rewriting (Lucas [23, 24]) pro-
vides an alternative way of solving the non-termination problem and of dealing
with infinite data objects. Rather than specifying which redexes may be con-
tracted, in context-sensitive rewriting every n-ary function symbol f is equipped
with a replacement map µ(f) ⊆ {1, . . . , n} which indicates which arguments of f
may be evaluated and a contraction of a redex is allowed only if it does not take
place in a forbidden argument of a function symbol somewhere above it. So by
defining µ(:) = {1}, contractions in the argument t of a term s : t are forbidden.

? Partially supported by the Grant-in-Aid for Scientific Research (C)(2) 13224006 of the Min-
istry of Education, Culture, Sports, Science and Technology of Japan.

Now in the example infinite reductions are no longer possible while normal forms
can still be computed. (See [27] for the relationship between normalization under
ordinary and under context-sensitive rewriting.) Context-sensitive rewriting can
also model the usual evaluation strategy for conditionals.

Example 1. 0 6 y → true p(0) → 0

s(x) 6 0 → false p(s(x)) → x

s(x) 6 s(y) → x 6 y if(true, x, y) → x

x − y → if(x 6 y, 0, s(p(x) − y)) if(false, x, y) → y

Because of the rule for “−”, this system is not terminating. However, in functional
languages typically if’s first argument is evaluated first and depending on the
result either the second or third argument is evaluated afterwards. Again, this
can easily be modeled with context-sensitive rewriting by the replacement map
µ(if) = {1} which forbids all reductions in the arguments t2 and t3 of if(t1, t2, t3).

In programming languages like OBJ [6, 8, 16, 17], the user can supply strategy
annotations to control the evaluation [9, 28, 29]. For every n-ary symbol f , a (pos-
itive) strategy annotation is a list ϕ(f) of numbers (i1, . . . , ik) from {0, 1, . . . , n}.
When reducing a term f(t1, . . . , tn) one first has to evaluate the i1-th argument
of f (if i1 > 0), then one evaluates the i2-th argument (if i2 > 0), and so on, until
a 0 is encountered. At this point one tries to evaluate the whole term f(. . .) at
its root position. So in order to enforce the desired evaluation strategy for if in
Example 1, it has to be equipped with the strategy annotation (1, 0).

Context-sensitive rewriting can simulate the evaluation strategy of OBJ. A
strategy is called elementary if for every defined1 symbol f , ϕ(f) contains a single
occurrence of 0, at the end. Lucas [25] showed that for elementary strategies, the
OBJ program is terminating if and only if the corresponding context-sensitive
rewrite system is innermost terminating.2 Here µ(f) is defined to consist of all
numbers greater than 0 in ϕ(f). For example, the program with the rules

f(a) → f(a) a → b

is terminating if ϕ(f) = (1, 0) and ϕ(a) = (0). The corresponding context-
sensitive system with µ(f) = {1} is not terminating, but it is innermost ter-
minating. Thus, to simulate OBJ evaluations with context-sensitive rewriting,
we have to restrict ourselves to innermost reductions where (allowed) arguments
to a function are evaluated before evaluating the function.

Because of this connection to OBJ programs and also because for rewrite
systems innermost termination is easier to prove automatically than termination
[1], it is worthwhile to investigate innermost termination of context-sensitive
rewriting. (As an alternative approach, in [11] a method to prove termination

1 Every symbol on the root position of a left-hand side of a rule is called defined. In Example 1
the defined symbols are “

�
”, “−”, p, and if. All remaining function symbols are called

constructors.
2 The “if” direction even holds without the restriction to elementary strategies [25].

4

of OBJ-like programs by direct induction proofs is proposed.) Termination of
context-sensitive rewriting has been studied in a number of papers (e.g., [5,
10, 14, 15, 20, 23, 24, 27, 32]). Apart from a direct semantic characterization [32]
and some recent extensions of standard termination methods for term rewrit-
ing to context-sensitive rewriting [5, 20], all other proposed methods transform
context-sensitive rewrite systems (CSRSs) into ordinary term rewrite systems
(TRSs) such that termination of the transformed TRS implies termination of
the original CSRS (i.e., all these transformations are sound). Direct approaches
to termination analysis of CSRSs and transformational approaches both have
their advantages. Techniques for proving termination of ordinary term rewrit-
ing have been studied extensively (e.g., [21, 22, 7, 3, 30, 31, 1, 4]) and the main
advantage of the transformational approach is that in this way, all termination
techniques for ordinary TRSs including future developments can be used to infer
termination of CSRSs. For instance, the methods of [5, 20] are unable to handle
systems like Example 1. Of the five transformations described in [10, 14, 23, 32]
only the second one of [14] is also complete: Termination of the original CSRS
implies termination of the transformed TRS.

After introducing the termination problem of context-sensitive rewriting in
Section 2, in Section 3 we review the results of Lucas [25] on innermost termina-
tion of context-sensitive rewriting and we show that the two transformations Θ1

and Θ2 of [14] are sound for innermost termination as well. Despite its soundness
Θ2 is not very useful for proving innermost termination, because termination and
innermost termination coincide for the TRSs it produces. In Section 4 we show
that for the class of orthogonal CSRSs, innermost termination already implies
termination. This result is independent from the transformation framework and
is of general interest when investigating the termination behavior of CSRSs. A
consequence of this result is that for this particular class, Θ1 is complete for in-
nermost termination. In Section 5 we present a new transformation Θ3 which is
both sound and complete for innermost termination, for arbitrary CSRSs. Sur-
prisingly, such a transformation can be obtained by just a small modification
of Θ1. In spite of the similarity between the two transformations, the new com-
pleteness proof is non-trivial. We make some remarks on a possible simplification
of Θ3 and on ground innermost termination in Section 6. In Section 7 we show
that Θ3 is equally powerful as Θ1 when it comes to (non-innermost) termina-
tion. Finally, Appendix A demonstrates how innermost termination of the TRSs
resulting from our new transformation is proved with dependency pairs [1].

2 Termination of Context-Sensitive Rewriting

Familiarity with the basics of term rewriting [2] is assumed. We require that every
signature F contains a constant. A function µ : F → P(N) is a replacement map
if µ(f) is a subset of {1, . . . , arity(f)} for all f ∈ F . A CSRS (R, µ) is a TRS R
over a signature F equipped with a replacement map µ. The context-sensitive
rewrite relation →R,µ is defined as the restriction of the usual rewrite relation

5

→R to contractions of redexes at active positions. A position π in a term t is
active if π = ε (the root position), or t = f(t1, . . . , tn), π = iπ′, i ∈ µ(f), and π′

is active in ti. So s →R,µ t if and only if there is a rule l → r in R, a substitution
σ, and an active position π in s such that s|π = lσ and t = s[rσ]π. If all active
arguments of lσ are in µ-normal form, then the reduction step is innermost and
we write s i→R,µ t. Here a µ-normal form is a normal form with respect to →R,µ.
We abbreviate →R,µ to →µ and i→R,µ to i→µ if R is clear from the context. A
CSRS (R, µ) is left-linear if the left-hand sides of the rewrite rules in R are linear
terms (i.e., they do not contain multiple occurrences of the same variable). Let
l → r and l′ → r′ be renamed versions of rewrite rules of R such that they have no
variables in common and suppose l|π and l′ are unifiable with most general unifier
σ for some non-variable active position π in l. The pair of terms 〈l[r′]πσ, rσ〉 is
a critical pair of (R, µ), except when l → r and l′ → r′ are renamed versions of
the same rewrite rule and π = ε. A non-overlapping CSRS has no critical pairs
and an overlay CSRS has no critical pairs with π 6= ε. A CSRS is orthogonal
if it is left-linear and non-overlapping. Notions like “termination” for a CSRS
(R, µ) always concern the relation →µ (i.e., they correspond to “µ-termination”
in [24]).

To prove termination of CSRSs, several transformations from CSRSs to or-
dinary TRSs were suggested. We recall the transformations Θ1 and Θ2 of Giesl
& Middeldorp and refer to [14, 15] for motivations. The main idea of Θ1 is to
use new unary symbols active and mark to indicate active positions in a term
on the object level. If l → r is a rule in the CSRS then the transformed TRS
contains the rule active(l) → mark(r). The symbol mark is used to traverse a term
top-down in order to place the symbol active at all active positions.

Definition 2 (Θ1). Let (R, µ) be a CSRS over a signature F . The TRS R1
µ

over the signature F1 = F ∪{active,mark} consists of the following rewrite rules:

active(l) → mark(r) for all l → r ∈ R

mark(f(x1, . . . , xn)) → active(f([x1]
f
1 , . . . , [xn]fn)) for all f ∈ F

active(x) → x

Here [t]fi = mark(t) if i ∈ µ(f) and [t]fi = t otherwise. We denote the subset of
R1

µ consisting of all rules of the form

mark(f(x1, . . . , xn)) → active(f([x1]
f
1 , . . . , [xn]fn))

by M. The transformation (R, µ) 7→ R1
µ is denoted by Θ1 and we shorten →R1

µ

to →1.

Because every infinite reduction of a term t in the original CSRS would
correspond to an infinite reduction of mark(t) in the transformed TRS, Θ1 is
sound for termination: Termination of the transformed TRS implies termination
of the original CSRS.

6

In Θ2, active can be shifted downwards to any active position. Here, the root
of a term is marked with the symbol top and the symbol proper is used to check
that terms only contain function symbols from the original signature.

Definition 3 (Θ2). Let (R, µ) be a CSRS over a signature F . The TRS R2
µ over

the signature F2 = F∪{active,mark, top, proper, ok} consists of the following rules
(for all l → r ∈ R, f ∈ F of arity n > 0, i ∈ µ(f), and constants c ∈ F):

active(l) → mark(r)

active(f(x1, . . . , xi, . . . , xn)) → f(x1, . . . , active(xi), . . . , xn)

f(x1, . . . ,mark(xi), . . . , xn) → mark(f(x1, . . . , xi, . . . , xn))

proper(c) → ok(c)

proper(f(x1, . . . , xn)) → f(proper(x1), . . . , proper(xn))

f(ok(x1), . . . , ok(xn)) → ok(f(x1, . . . , xn))

top(mark(x)) → top(proper(x))

top(ok(x)) → top(active(x))

The transformation (R, µ) 7→ R2
µ is denoted by Θ2 and we shorten →R2

µ
to →2.

Transformation Θ2 as well as the transformations3 ΘL of Lucas [23], ΘZ of
Zantema [32], and ΘFR of Ferreira & Ribeiro [10] are sound for termination.
However, only Θ2 is complete, i.e., the other four transformations do not trans-
form every terminating CSRS into a terminating TRS. The following example
demonstrates the reason for the incompleteness of Θ1.

Example 4 ([14]). Consider the non-terminating TRS R consisting of the rules

f(b, c, x) → f(x, x, x) d → b d → c

If µ(f) = {3} then the CSRS is terminating because the cyclic reduction of
f(b, c, d) to f(d, d, d) and further to f(b, c, d) cannot be done, as one would have
to reduce the first and second argument of f. However, the transformed TRS R1

µ

active(f(b, c, x)) → mark(f(x, x, x)) mark(f(x, y, z)) → active(f(x, y,mark(z)))

active(d) → mark(b) mark(b) → active(b)

active(d) → mark(c) mark(c) → active(c)

active(x) → x mark(d) → active(d)

is not terminating:

mark(f(b, c, d)) →1 active(f(b, c,mark(d))) →1 active(f(b, c, active(d)))

→
1

mark(f(active(d), active(d), active(d))) →+
1

mark(f(mark(b),mark(c), d))

→+
1 mark(f(active(b), active(c), d)) →+

1 mark(f(b, c, d))

3 Details of the transformations ΘL, ΘZ, and ΘFR are not needed for a proper understanding
of the present paper. The interested reader is referred to [15].

7

Note that in the third step the ‘active’ subterm active(d) is copied to the first
and second argument positions of f, which are inactive according to µ(f). This
can only happen if the reduction step is non-innermost.

One should remark that transformation Θ2 does not render the other trans-
formations superfluous, since in practical examples, termination of Θ2(R, µ) can
be harder to show than termination of the TRSs resulting from the other trans-
formations. In Figure 1 we compare the power of the five transformations for
proving termination. Here, “Transformation 1 → Transformation 2” means that
Transformation 2 is more powerful than Transformation 1, i.e., if Transforma-
tion 1 yields a terminating TRS, then so does Transformation 2, but not vice
versa. The proofs of the various implications can be found in [15].

Θ2

Θ1

OO

ΘFR

CC�����

ΘZ

CC�����

ΘL

[[77777777777777

Fig. 1. Comparison of existing transformations for proving termination.

3 Innermost Termination of Context-Sensitive Rewriting

Now we examine the usefulness of the five transformations for innermost termi-
nation of CSRSs. Lucas [25] showed that ΘL and ΘZ are unsound4 for innermost
termination, i.e., innermost termination of the transformed TRS does not imply
innermost termination of the original CSRS. The example showing the latter ([25,
Example 12]) also demonstrates that ΘFR is unsound for innermost termination.
Moreover, none of these transformations is complete for innermost termination.
The following new result shows that Θ1 is sound for innermost termination.5

Theorem 5. Let (R, µ) be a CSRS. If R1
µ is innermost terminating then (R, µ)

is innermost terminating.

4 ΘL is sound for the subclass of left-linear CSRSs with the property that all function symbols
in the left-hand sides are on active positions [25].

5 The same claim is made in [25, Theorem 11]. However, Lucas only proved the soundness of
Θ1 and Θ2 for ground innermost termination (cf. Section 6) and later claimed that Θ1 and
Θ2 are unsound for innermost termination [26].

8

Proof. Let F be the signature of R and let c be an arbitrary constant in F .
We show that every innermost reduction step s i→µ t in (R, µ) corresponds to
an innermost reduction sequence mark(sθ)↓M

i→+
1 mark(tθ)↓M in R1

µ. Here θ is
the substitution that maps all variables to c.6 Note that since M is confluent
and terminating, every term u has a unique M-normal form u↓M. First we show
by induction on u ∈ T (F ,V) that mark(uθ)↓M

i→∗
1 active(uθ). If u is a variable

then uθ = c and thus mark(uθ)↓M = active(uθ). If u = f(u1, . . . , un) then
mark(uθ)↓M = active(f(u′

1, . . . , u
′
n)) with u′

i = mark(uiθ)↓M if i ∈ µ(f) and u′
i =

uiθ if i /∈ µ(f). Let i ∈ µ(f). The induction hypothesis yields u′
i

i→∗
1 active(uiθ).

Since uiθ is an R1
µ-normal form, active(uiθ)

i→1 uiθ and thus u′
i

i→∗
1 uiθ. It follows

that mark(uθ)↓M
i→∗

1 active(f(u1θ, . . . , unθ)) = active(uθ).
Now let π be the position of the redex contracted in the reduction step s i→µ t.

We prove the lemma by induction on π. If π = ε then s → t and thus also sθ → tθ
is an instance of a rule in R. We have mark(sθ)↓M

i→∗
1 active(sθ) by the above

observation. Moreover, active(sθ) i→1 mark(tθ) since active(sθ) → mark(tθ) is an
instance of a rule in R1

µ. We also have mark(tθ) i→∗
1 mark(tθ)↓M. Combining all

reductions yields mark(sθ)↓M
i→+

1 mark(tθ)↓M.
If π = iπ′ then s = f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , ti, . . . , sn) with

si
i→µ ti. Note that we have i ∈ µ(f) due to the definition of context-sensitive

rewriting. For 1 6 j 6 n define s′j = mark(sjθ)↓M if j ∈ µ(f) and s′j =

sjθ if j /∈ µ(f). The induction hypothesis yields s′i
i→+

1 mark(tiθ)↓M. The re-
sult follows since mark(sθ)↓M = active(f(s′1, . . . , s

′
i, . . . , s

′
n)) and mark(tθ)↓M =

active(f(s′1, . . . ,mark(tiθ)↓M, . . . , s′n)). ut

Not surprisingly, Θ1 is incomplete for innermost termination.

Example 6 ([25]). Consider the CSRS (R, µ) with R consisting of the rules

f(a) → f(a) a → b

and µ(f) = {1}. The CSRS (R, µ) is innermost terminating but R1
µ

active(f(a)) → mark(f(a)) mark(f(x)) → active(f(mark(x)))

active(a) → mark(b) mark(a) → active(a)

active(x) → x mark(b) → active(b)

is not:

active(f(a)) i→1 mark(f(a)) i→1 active(f(mark(a)))
i→1 active(f(active(a))) i→1 active(f(a))

Observe that applying the rule active(a) → mark(b) instead of active(x) → x
in the fourth step would break the cycle. So the rule active(x) → x can delete
innermost redexes, causing non-innermost active redexes of the underlying CSRS
to become innermost. We come back to this in Section 5.
6 It is interesting to note that the instantiated context-sensitive reduction step sθ →µ tθ need

not be innermost.

9

Transformation Θ2 is sound for innermost termination as well. However, it is
also incomplete and (in contrast to Θ1) rather useless for innermost termination.
These observations are consequences of the following new result. In particular,
Θ2 cannot prove innermost termination of non-terminating CSRSs.

Theorem 7. Let (R, µ) be a CSRS. The TRS R2
µ is innermost terminating if

and only if it is terminating.

Proof. Let F be the signature of R. The “if” direction is trivial. For the “only if”
direction suppose R2

µ is non-terminating. Since Θ2 is complete for termination,
(R, µ) is non-terminating. So there exists an infinite reduction t1 →µ t2 →µ · · ·
consisting of ground terms from T (F). The soundness proof in [14, Theorem 3]
and [15, Theorem 27] transforms this infinite reduction into the following infinite
reduction in R2

µ: top(active(t1)) →+
2 top(active(t2)) →+

2 · · · . It is easy to prove
that this latter reduction is actually innermost. Hence R2

µ is not innermost ter-
minating. ut

The soundness of Θ2 for innermost termination is an immediate consequence
of Theorem 7 and the soundness of Θ2 for termination.

So Θ1 is the only sound and useful transformation for innermost termination
of CSRSs so far. In the remainder of this section we show that it is complete for
an important subclass of CSRSs. More precisely, while in general termination of a
CSRS (R, µ) does not imply termination of the transformed TRS R1

µ (as demon-
strated by Example 4), we show that it at least implies innermost termination
of R1

µ. This implies that for subclasses of CSRSs where innermost termination
is equivalent to termination, Θ1 is complete for innermost termination. In Sec-
tion 4 we show that this subclass contains all orthogonal systems (e.g., CSRSs
like Example 1 from the introduction).

We first show the desired result on innermost termination of R1
µ for those

terms containing the new symbols active and mark on active positions only, except
that subterms of the form markn(x) with n > 1 and x a variable may occur at
inactive positions as well.

Lemma 8. Let (R, µ) be a terminating CSRS over a signature F . Let t ∈
T (F1,V) where active and mark occur on active positions in t only (here the
argument positions of active and mark are also considered active), except that t
may contain subterms of the form markn(x) with x ∈ V at inactive positions.
Then t is R1

µ-terminating.

Proof. Let M1 = M ∪ {active(x) → x}. Note that M1 is confluent and ter-
minating. Hence, every infinite R1

µ-reduction contains infinitely many reduction
steps with rules from R1

µ \M1. Let T1 be the set of all terms t described above.
It is not difficult to see that t →1 u and t ∈ T1 imply u ∈ T1. Let M′ be
the confluent and terminating TRS consisting of the rules active(x) → x and
mark(x) → x. Clearly, t →M1

u implies t↓M′ = u↓M′ . We show that for all

10

t ∈ T1, t →R1
µ\M1

u implies t↓M′ →µ u↓M′ . Since M1 is terminating, every infi-

nite R1
µ-reduction starting from T1 can be transformed into an infinite reduction

in (R, µ), which proves the lemma. From t →R1
µ\M1

u we infer the existence
of a position π in t, a rewrite rule l → r ∈ R, and a substitution σ such that
t|π = active(lσ) and u = t[mark(rσ)]π. Since t ∈ T1, π is an active position in t.
We have t↓M′ = t↓M′ [lσ′]π′ and u↓M′ = t↓M′ [rσ′]π′ for some active position π′

and the substitution σ′ with σ′(x) = σ(x)↓M′ . Therefore, t↓M′ →µ u↓M′ . ut

Now we can show that for a terminating CSRS, the transformed TRS is at
least innermost terminating.

Theorem 9. Let (R, µ) be a CSRS. If (R, µ) is terminating then R1
µ is inner-

most terminating.

Proof. Let F be the signature of R. Let #(t) denote the number of active and
mark-symbols occurring in the term t ∈ T (F1,V), except that we do not count
the occurrences of mark in subterms of the form markn(x). We prove that t is
innermost R1

µ-terminating by induction on #(t). If #(t) = 0 then t is an R1
µ-

normal form. If #(t) > 0 then t must contain an innermost R1
µ-redex, say at

position π. We have t|π = active(t′) or t|π = mark(t′) such that t′ does not
contain any active-symbols and the only mark-symbols occurring in t′ are in
subterms of the form markn(x) (hence, #(t|π) = 1). It follows that Lemma 8
is applicable to t|π. So t|π does not admit infinite R1

µ-reductions. To conclude
that t is innermost R1

µ-terminating, it suffices to show that t[u]π is innermost R1
µ-

terminating for every normal form u of t|π reachable by innermost R1
µ-reductions.

Since #(u) = 0, #(t) > #(t[u]π) and thus the result follows from the induction
hypothesis. ut

So for a terminating CSRS (R, µ), non-termination of R1
µ can only be due

to the rewriting strategy. This provides further evidence for the power of Θ1.
Note that this result does not hold for the transformations of Lucas, Zantema,
and Ferreira & Ribeiro. The CSRS (R, µ) with the rules R = {g(x) → h(x), c →
d, h(d) → g(c)} and µ(g) = µ(h) = ∅ from [32] is terminating, but none of the
TRSs ΘL(R, µ), ΘZ(R, µ), and ΘFR(R, µ) is even innermost terminating. On the
other hand, Θ1(R, µ) = R1

µ is (innermost) terminating [14].

4 Termination versus Innermost Termination

There are two motivations for studying innermost termination of CSRSs. First,
innermost context-sensitive rewriting models evaluation in OBJ and related lan-
guages and thus, techniques for innermost termination analysis of CSRSs can
be used for termination analysis of OBJ-programs. But second, techniques for
innermost termination analysis of CSRSs can also be helpful for (non-innermost)
termination proofs of CSRSs. This is similar to the situation with ordinary term

11

rewriting: Proving innermost termination is much easier than proving termina-
tion, cf. [1]. There are classes of TRSs where innermost termination already im-
plies termination and therefore for such systems, one should rather use innermost
termination techniques for investigating their termination behavior.

In order to use a corresponding approach for context-sensitive rewriting, in
this section we examine the connection between termination and innermost ter-
mination for CSRSs. In general, termination implies innermost termination, but
not vice versa as demonstrated by Example 6. For ordinary TRSs, Gramlich [18,
Theorem 3.23] showed that termination and innermost termination coincide for
the class of locally confluent overlay systems. Non-overlapping rewrite systems
are locally confluent overlay systems. Hence, this provides a simple syntactic
criterion to identify classes of TRSs where innermost termination suffices for
termination. Unfortunately, as noted by Lucas [26], this criterion cannot be ex-
tended to context-sensitive systems.

Example 10 ([26]). Consider the CSRS (R, µ) with R consisting of the rules

f(x, x) → b f(x, g(x)) → f(x, x) c → g(c)

and µ(f) = {1, 2}, µ(g) = ∅. The CSRS (R, µ) is non-overlapping and innermost
terminating, but not terminating since f(c, c) →µ f(c, g(c)) →µ f(c, c) →µ · · · . On
the other hand, in an innermost reduction we would have f(c, c) i→µ f(c, g(c)) i→µ

f(g(c), g(c)) i→µ b.

So non-overlappingness is not sufficient for CSRSs in order to use innermost
termination techniques for termination analysis. Below we show the new result
that the desired equivalence between innermost and full termination at least
holds for orthogonal CSRSs. Thus, this includes all CSRSs which correspond to
typical functional programs like Example 1. Theorem 13 states that for such
systems we only have to prove innermost termination in order to verify their
termination.

In order to prove the theorem, we need some preliminaries. For non-overlap-
ping CSRSs (R, µ) the relation i→µ is confluent. Hence, for every term s there is
at most one µ-normal form reachable by innermost reductions. We call this term
the innermost µ-normal form of s and denote it by s↓i

µ. Now for any term s, let
∇(s) be the set of those terms which result from repeatedly replacing subterms
of s by their innermost µ-normal form (if it exists). Here, one may also consider
subterms on inactive positions. However, the replacement must go “from the
inside to the outside” (i.e., after replacing at position π one cannot replace at
positions below π any more). Moreover, one may only perform replacements on
such positions π where the original term s|π is terminating.

Definition 11. Let (R, µ) be a non-overlapping CSRS. For any term s we define
non-empty sets ∇(s) and ∇′(s) as follows. If s is terminating, then ∇(s) =
∇′(s) ∪ {u↓i

µ | u ∈ ∇′(s) is innermost terminating}. Otherwise, we have ∇(s) =
∇′(s). Moreover, ∇′(s) = {f(u1, . . . , un) | ui ∈ ∇(si)} if s = f(s1, . . . , sn) and
∇′(s) = {s} if s is a variable.

12

The following auxiliary lemma describes how ∇ operates on instantiated sub-
terms of left-hand sides.

Lemma 12. Let (R, µ) be an orthogonal CSRS, let t be a proper subterm of
a left-hand side of a rule, and let u ∈ ∇(tσ) for a substitution σ. Then we
have u = tσ′ for some substitution σ′. Moreover, for all x ∈ Var(t) we have
xσ′ ∈ ∇(xσ) and if u ∈ ∇′(tσ) then we also have xσ′ ∈ ∇′(xσ).

Proof. The lemma is proved by structural induction on t. If t = x ∈ V then
the claim is obvious for the substitution σ′ that replaces x by u. Now let t =
f(t1, . . . , tn). We first regard the case where u ∈ ∇′(tσ). So u = f(u1, . . . , un)
and ui ∈ ∇(tiσ) for all i. The induction hypothesis states that ui = tiσ

′ for all
i. Note that we can use the same substitution σ′ for every i since t is linear due
to the orthogonality of (R, µ). The induction hypothesis also implies that we
have xσ′ ∈ ∇′(xσ) for all x ∈ Var(t1) ∪ · · · ∪ Var(tn) = Var(t). In the remaining
case tσ is terminating and u = v↓i

µ for some v ∈ ∇′(tσ) which is innermost
terminating. Similar as in the previous case, the induction hypothesis states that
v = tσ′ for some substitution σ′ and xσ′ ∈ ∇′(xσ) for all x ∈ Var(t). We define
the substitution σ′′ as

σ′′(x) =

{

xσ′↓i
µ if x is at an active position in t

xσ′ otherwise

The substitution σ′′ is well defined, because if x occurs at an active position in t,
then xσ′ occurs at an active position in tσ′ = v and hence, innermost termination
of v implies innermost termination of xσ′. Since non-variable subterms at active
positions in t do not unify with left-hand sides due to the orthogonality of (R, µ),
we have u = v↓i

µ = tσ′↓i
µ = tσ′′. Let x ∈ Var(t). If x occurs at an active

position in t then termination of xσ follows from termination of tσ. Thus, xσ′′ =
xσ′↓i

µ ∈ ∇(xσ) since xσ′ ∈ ∇′(xσ). If x occurs only at inactive positions in t
then xσ′ ∈ ∇′(xσ) trivially implies xσ′′ = xσ′ ∈ ∇′(xσ) ⊆ ∇(xσ). Thus, σ′′ is a
substitution as required in the lemma. ut

Now we show the desired theorem on the equivalence of innermost and full
termination.

Theorem 13. An orthogonal CSRS (R, µ) is terminating if and only if it is
innermost terminating.

Proof. The “only if” direction is trivial. We prove the “if” direction. Let s →µ t
where the contracted redex is either terminating or a minimal non-terminating
term (i.e., all proper subterms of the redex on active positions are terminating).
We prove the following statements for all innermost terminating s′ ∈ ∇(s):

(1) There exists a t′ ∈ ∇(t) such that s′ i→∗
µ t′.

(2) If the contracted redex in s →µ t is not terminating, then there even exists a
t′ ∈ ∇(t) such that s′ i→+

µ t′.

13

With (1) and (2) one can prove the theorem: If (R, µ) is not terminating,
then there is an infinite reduction s0 →µ s1 →µ . . . in which only terminat-
ing or minimal non-terminating redexes are contracted. Assume that (R, µ)
is innermost terminating. Then all ∇(si) contain only innermost terminating
terms and since s0 ∈ ∇(s0), we can construct an infinite innermost reduction
s0

i→∗
µ t1

i→∗
µ t2

i→∗
µ . . . with ti ∈ ∇(si). However, since the reduction contains

infinitely many steps of type (2), this gives rise to an infinite innermost reduction,
contradicting our assumption.

Now we prove (1) and (2) by structural induction on s. Since s →µ t, s must
have the form f(s1, . . . , sn). We first regard the case where s →µ t is not a root
reduction step. Then we have t = f(s1, . . . , ti, . . . , sn) with si →µ ti for some
i ∈ µ(f). Let s′ ∈ ∇(s) be innermost terminating. First, let s′ = f(u1, . . . , un)
with uj ∈ ∇(sj) for all j. Because i ∈ µ(f), ui is innermost terminating. Hence
by the induction hypothesis, ui ∈ ∇(si) implies that there exists a vi ∈ ∇(ti)
such that ui

i→∗
µ vi. Therefore, we also have s′ = f(u1, . . . , ui, . . . , un) i→∗

µ

f(u1, . . . , vi, . . . , un) ∈ ∇(t). Moreover, if the contracted redex in s →µ t and
hence, in si →µ ti is not terminating, then by the induction hypothesis we even
have ui

i→+
µ vi and therefore s′ i→+

µ f(u1, . . . , vi, . . . , un) ∈ ∇(t).

Now let s′ = f(u1, . . . , un)↓i
µ with uj ∈ ∇(sj) for all j. Hence, s is terminating

and thus, we only have to prove (1). As before, there is a vi ∈ ∇(ti) such that
ui

i→∗
µ vi and f(u1, . . . , vi, . . . , un) ∈ ∇(t). Since innermost reduction is confluent,

we have s′ = f(u1, . . . , ui, . . . , un)↓i
µ = f(u1, . . . , vi, . . . , un)↓i

µ ∈ ∇(t), since t
inherits termination from s.

Finally, we regard the case where s = f(s1, . . . , sn) and s →µ t is a root
reduction step. Hence, there must be a rule l → r ∈ R with l = f(l1, . . . , ln)
and a substitution σ such that si = liσ and t = rσ. First let s′ = f(u1, . . . , un)
with ui ∈ ∇(si) for all i. Since (R, µ) is orthogonal and since si = liσ, due to
Lemma 12 there must be a substitution σ′ such that ui = liσ

′ for all i. Because s′

is innermost terminating, xσ′ must also be innermost terminating for all variables
x which occur on active positions of l. Let σ′′ be the substitution where xσ′′ =
xσ′↓i

µ for all x in active positions of l and xσ′′ = xσ′ for all other x. Then we have
the innermost reduction s′ = f(l1σ

′, . . . , lnσ′) i→∗
µ f(l1σ

′′, . . . , lnσ′′) i→µ rσ′′. We
claim that rσ′′ ∈ ∇(t) = ∇(rσ). To this end, it suffices to show that xσ′′ ∈ ∇(xσ)
for all variables x in r, because in the construction of ∇ arbitrary subterms q can
be replaced by terms from ∇(q). Each variable x occurs in some li and we have
liσ

′ ∈ ∇(liσ). From Lemma 12 we obtain xσ′ ∈ ∇(xσ) for all variables x. If x is
on an inactive position of l, then xσ′′ = xσ′ ∈ ∇(xσ). If x is on an active position
of l, then xσ′′ = xσ′↓i

µ ∈ ∇(xσ), since xσ′ is innermost terminating and because
in this case, xσ is terminating due to the fact that s is either a terminating or a
minimal non-terminating term.

Now let s′ = f(u1, . . . , un)↓i
µ with ui ∈ ∇(si) for all i. Hence, s is terminating

and thus we only have to prove (1). As before, ui = liσ
′ and f(l1σ

′, . . . , lnσ′) i→∗
µ

f(l1σ
′′, . . . , lnσ′′) i→µ rσ′′ with rσ′′ ∈ ∇(t). Since innermost reduction is confluent

and t inherits termination from s, s′ = f(u1, . . . , un)↓i
µ = rσ′′↓i

µ ∈ ∇(t). ut

14

Very recently, Gramlich and Lucas [19] showed that termination and inner-
most termination coincide for locally confluent overlay CSRSs with the addition-
ally property that variables that occur at an active position in a left-hand side
l of a rewrite rule l → r do not occur at inactive positions in l or r. The latter
condition is quite restrictive, e.g., it is not satisfied by the CSRS of Example 1,
since in the rule for “−” the variables x and y occur on active positions in the
left-hand side, but also on inactive positions in the right-hand side.

5 A Sound and Complete Transformation

In Section 3 we have seen that none of the existing transformations is complete for
innermost termination and that only Θ1 and Θ2 are sound. Because of Theorem 7,
Θ2 cannot distinguish innermost termination from termination. So when trying
to develop a sound and complete transformation for innermost termination, we
take Θ1 as starting point. As observed in Example 6, we must make sure that in
innermost reductions, rules of the form active(l) → mark(r) get preference over
the rule active(x) → x, because then this counterexample no longer works. Hence,
we modify the rule active(x) → x in such a way that the innermost reduction
strategy ensures that active(l) → mark(r) is applied with higher preference. In
the modification, active(l) → mark(r) no longer overlaps with the root position
of active(x) → x, but with a non-root position of the new modified rule(s).

Definition 14 (Θ3). Let (R, µ) be a CSRS over a signature F . The TRS R3
µ

over the signature F1 = F ∪{active,mark} consists of the following rewrite rules
(for all l → r ∈ R, f ∈ F , and 1 6 i 6 arity(f)):

active(l) → mark(r)

mark(f(x1, . . . , xn)) → active(f([x1]
f
1 , . . . , [xn]fn))

f(x1, . . . , active(xi), . . . , xn) → f(x1, . . . , xi, . . . , xn)

f(x1, . . . ,mark(xi), . . . , xn) → f(x1, . . . , xi, . . . , xn) ([)

Again, [t]fi = mark(t) if i ∈ µ(f) and [t]fi = t otherwise. We denote the transfor-
mation (R, µ) 7→ R3

µ by Θ3 and we abbreviate →R3
µ

to →3 and i→R3
µ

to i→3.

For the CSRS (R, µ) of Example 6, R3
µ differs from R1

µ in two respects:
active(x) → x is replaced by f(active(x)) → f(x) and moreover, the rule
f(mark(x)) → f(x) is added. As a consequence, the cycle active(f(a)) i→+

active(f(a)) can no longer be obtained with R3
µ, since active(f(active(a))) →

active(f(a)) is not an innermost rewrite step in R3
µ. Indeed, R3

µ is innermost
terminating and in general, Θ3 is sound and complete for innermost termination.

With the new rules f(x1, . . . , active(xi), . . . , xn) → f(x1, . . . , xn) we can re-
move almost every active-symbol, compensating to a large extent the lack of the
rule active(x) → x. The ([)-marked rules can never be used in an innermost re-
duction if xi is instantiated to a non-variable term from T (F ,V). However, they

15

are required if xi is instantiated by a variable or by terms containing the symbols
mark and active. As a matter of fact, the transformation without these rules is
neither sound nor complete for innermost termination.

Example 15. Consider the CSRS (R, µ) with R consisting of the four rules

g(f(x, x)) → g(f(x, x)) f(b, x) → b

f(g(x), y) → b f(f(x, y), z) → b

and µ(f) = µ(g) = {1}. The CSRS (R, µ) is not innermost terminating as
g(f(x, x)) i→µ g(f(x, x)). The transformed TRS R3

µ

active(g(f(x, x))) → mark(g(f(x, x))) mark(b) → active(b)

active(f(b, x)) → mark(b) mark(f(x, y)) → active(f(mark(x), y))

active(f(g(x), y)) → mark(b) mark(g(x)) → active(g(mark(x)))

active(f(f(x, y), z)) → mark(b)

f(active(x), y) → f(x, y) f(mark(x), y) → f(x, y) (∗)

f(x, active(y)) → f(x, y) f(x,mark(y)) → f(x, y) (∗)

g(active(x)) → g(x) g(mark(x)) → g(x) (∗)

also fails to be innermost terminating:

active(g(f(x, x))) i→3 mark(g(f(x, x))) i→3 active(g(mark(f(x, x))))
i→3 active(g(active(f(mark(x), x))))
i→3 active(g(active(f(x, x)))) i→3 active(g(f(x, x)))

However, the TRS without the three rules marked with (∗) is innermost termi-
nating. In other words, if the ([)-rules were missing, then the transformation Θ3

would be unsound for innermost termination.
Termination of R3

µ without the (∗)-rules can be proved as follows. By a min-
imality argument, it is sufficient to show that all terms t whose arguments are
in normal form are innermost terminating. Let #(t) denote the number of oc-
currences of the function symbols b, f, and g in t. Inspection of the rewrite rules
reveals that this number does not increase along a reduction. We use induction
on #(t). If #(t) = 0 then t is a normal form. Suppose #(t) > 0. We distinguish
the following five cases, depending on the root symbol of t.

1. If t = b then t is a normal form.

2. If t = f(t1, t2) is not in normal form then t can only be reduced by the
rule f(active(x), y) → f(x, y) or the rule f(x, active(y)) → f(x, y). After an
application of one of these rules, the arguments of the resulting term remain
in normal form. It follows that any (innermost) reduction starting from t
consists entirely of root reduction steps. Since the two rules decrease the size
of terms, it follows that t is (innermost) terminating.

16

3. If t = g(t1) then we obtain the innermost termination of t as in the previous
case.

4. If t = active(t1) is not a normal form then t1 = f(b, u), t1 = f(g(u1), u2),
t1 = f(f(u1, u2), u3), or t1 = g(f(u, u)). In the first three cases there are at
most two (innermost) reduction steps: t i→ mark(b) i→ active(b). In the fourth
case, any infinite innermost reduction starting from t begins as follows:

t i→1 mark(g(f(u, u)))
i→1 active(g(mark(f(u, u))))
i→1 active(g(active(f(mark(u), u))))

If mark(u) is a normal form then active(g(active(f(mark(u), u)))) reduces only
to the normal form active(g(f(mark(u), u)))). So suppose that mark(u) is re-
ducible, which implies root(u) ∈ {b, f, g}. We have #(t) > #(mark(u)) and
hence mark(u) is innermost terminating by the induction hypothesis. Let
u′ be an arbitrary normal form of mark(u). It suffices to show that t′ =
active(g(active(f(u′, u)))) is innermost terminating. We have u′ = active(b),
u′ = active(f(v1, v2)), or u′ = active(g(v)). Hence, by two innermost reduction
steps, we obtain active(g(mark(b))). Since #(t) > 2 = #(active(g(mark(b)))),
the result follows from the induction hypothesis.

5. If t = mark(t1) is not in normal form then by performing one (innermost)
reduction step we obtain a term of the form u = active(u1) with #(t) = #(u).
Hence innermost termination of t reduces to the previous case.

Example 16. Consider the CSRS (R, µ) with the rules

f(x, x) → b g(f(x, y)) → g(f(y, y))

and µ(f) = µ(g) = {1}. The CSRS (R, µ) is innermost terminating. The trans-
formed TRS R3

µ

active(f(x, x)) → mark(b) mark(b) → active(b)

active(g(f(x, y))) → mark(g(f(y, y))) mark(f(x, y)) → active(f(mark(x), y))

mark(g(x)) → active(g(mark(x)))

f(active(x), y) → f(x, y) f(mark(x), y) → f(x, y) (∗)

f(x, active(y)) → f(x, y) f(x,mark(y)) → f(x, y) (∗)

g(active(x)) → g(x) g(mark(x)) → g(x) (∗)

is also innermost terminating. However, the TRS without the three rules marked
with (∗) is not innermost terminating as can be seen from the following cycle,
with t = mark(active(b)):

mark(g(f(t, t))) i→+ active(g(active(f(mark(t), t))))
i→ active(g(f(mark(t), t))) i→ mark(g(f(t, t)))

Thus, without the ([)-marked rules, the transformation Θ3 would be incomplete
for innermost termination.

17

Now we prove that Θ3 is sound and complete for innermost termination. For
soundness we show that every context-sensitive innermost reduction step s i→µ t
corresponds to a reduction mark(s)↓M

i→+
3 mark(t)↓M in the transformed system.

The next lemma is used when s is an innermost µ-redex.

Lemma 17. If s ∈ T (F ,V) \ V such that all active arguments of s are in µ-
normal form then mark(s)↓M

i→∗
3 active(s).

Proof. We prove the lemma by structural induction on s. Let s = f(s1, . . . , sn).

We have mark(s)↓M = active(f([s1]
f
1↓M, . . . , [sn]fn↓M)). If i ∈ µ(f) and si /∈ V

then [si]
f
i ↓M = mark(si)↓M

i→∗
3 active(si) according to the induction hypothesis,

which is applicable since si is an active argument of s. Note that in this case
active(si) is an R3

µ-normal form because si is not a redex (with respect to R).

If i ∈ µ(f) and si ∈ V then [si]
f
i ↓M = mark(si), which is clearly an R3

µ-normal

form. If i /∈ µ(f) then [si]
f
i ↓M = si↓M = si. So we obtain mark(s)↓M

i→∗
3

active(f(t1, . . . , tn)) where, for all 1 6 i 6 n, either ti = active(si), ti = mark(si),
or ti = si. Moreover, in the first two cases, ti is an R3

µ-normal form. Hence, by
applications of the rules

f(x1, . . . , active(xi), . . . , xn) → f(x1, . . . , xi, . . . , xn)

f(x1, . . . ,mark(xi), . . . , xn) → f(x1, . . . , xi, . . . , xn)

we obtain active(f(t1, . . . , tn)) i→∗
3 active(f(s1, . . . , sn)), and hence mark(s)↓M

i→∗
3 active(s) as desired. ut

Now we can prove the soundness of Θ3 for innermost termination.

Theorem 18. Let (R, µ) be a CSRS. If R3
µ is innermost terminating then (R, µ)

is innermost terminating.

Proof. The proof is similar to the soundness proof of Θ1 (Theorem 5), but there
are also some crucial differences. Let F be the signature of R. To prove the sound-
ness of Θ1, we showed that for all s, t ∈ T (F ,V), s i→µ t implies mark(sθ)↓M

i→+
1

mark(tθ)↓M. Here θ substitutes all variables by an arbitrary constant c from
F .7 In contrast, we now show that s i→µ t implies mark(s)↓M

i→+
3 mark(t)↓M.

In general, mark(sθ)↓M
i→+ mark(tθ)↓M holds for R1

µ, but not for R3
µ and

mark(s)↓M
i→+ mark(t)↓M holds for R3

µ, but not for R1
µ. So the soundness

proofs of the two transformations are really different.

7 This proof relied on the fact that mark(uθ)↓M
i→∗

1 active(uθ) for all u ∈ T (F ,V). However, in
order to reduce mark(uθ)↓M to active(uθ), one has to reduce subterms active(uiθ) in a term
f(. . . , active(uiθ), . . .) to uiθ. In R1

µ this is an innermost step, but in R3

µ this is not the case
if uiθ is an (R, µ)-redex. For that reason we now use Lemma 17 instead. Thus, in the present
proof we have to transform the reduction step s i→µ t into an R3

µ-reduction step where active
arguments below the redex are in (R, µ)-normal form. Consequently, we may not apply a
substitution θ to s any more, since s i→µ t does not imply that the context-sensitive reduction
sθ →µ tθ is innermost.

18

If s i→µ t then there is a rule l → r ∈ R, a substitution σ, and an active
position π in s such that s|π = lσ and t = s[rσ]π. We prove the lemma by
induction on π. If π = ε then s = lσ and t = rσ. Since the step from s to
t is innermost, all active arguments of s are in µ-normal form. Hence we can
apply Lemma 17 to s, which yields mark(s)↓M

i→∗
3 active(s). Since active(s) →

mark(t) is an instance of a rule in R3
µ, we have active(s) i→3 mark(t). We also

have mark(t) i→∗
3 mark(t)↓M. Combining all reductions yields mark(s)↓M

i→+
3

mark(t)↓M.
If π = iπ′ then s = f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , ti, . . . , sn) with

si
i→µ ti. Note that we have i ∈ µ(f) due to the definition of context-sensitive

rewriting. For 1 6 j 6 n define s′j = mark(sj)↓M if j ∈ µ(f) and s′j =

sj if j /∈ µ(f). The induction hypothesis yields s′i
i→+

3 mark(ti)↓M. The re-
sult follows since mark(s)↓M = active(f(s′1, . . . , s

′
i, . . . , s

′
n)) and mark(t)↓M =

active(f(s′1, . . . ,mark(ti)↓M, . . . , s′n)). ut

The structure of the completeness proof is similar to the proof that (full,
i.e. non-innermost) termination of a CSRS (R, µ) implies innermost termination
of R1

µ (Theorem 9). In Lemma 20 we first show the result for a special set of
terms T , which includes all terms that are reachable from terms of the form
mark(t) with t ∈ T (F ,V) by innermost R3

µ-rewrite steps. Afterwards we extend
this result to arbitrary terms in Theorem 21.

Definition 19. A position π in a term t ∈ T (F1,V) is activated if either
root(t) ∈ {active,mark} or root(t) ∈ F and there is a mark-symbol at a posi-
tion above π or an active-symbol at the position directly above π. Let T be the set
consisting of all terms t ∈ T (F1,V) that satisfy the following properties:

(a) mark and active only occur on active positions,
(b) mark does not occur above active or mark,
(c) if an active position π in t is not activated then t|π is not an R-redex,
(d) if π is an activated position in t, then all positions above π are also activated.

Here, the argument positions of active and mark are also considered active.

Lemma 20. Let (R, µ) be an innermost terminating CSRS. All terms in T are
innermost R3

µ-terminating.

Proof. Let F be the signature of R. We first show that t i→3 u and t ∈ T imply
u ∈ T . For that purpose we consider the different forms of rules in R3

µ that can
be used in the reduction step from t to u. Let π be the position of the redex
contracted in t i→3 u. Note that to prove conditions (c) and (d) for the term u,
it is sufficient only to consider positions below π. The reason is that the context
surrounding u|π is unchanged in the reduction step from t to u and, due to
condition (d), π and all positions above π are always activated.

1. First we regard the case where t|π = active(lσ) and u = t[mark(rσ)]π. Since
the reduction step from t to u is innermost, lσ cannot contain any R3

µ-redex.

19

As root(l) ∈ F , this implies that lσ does not contain any active or mark-
symbols. Hence this is also true for rσ. Consequently, u inherits properties
(a) and (b) from t. Since all positions below π in u have a mark-symbol above
them (at position π), u satisfies also properties (c) and (d).

2. Now let t|π = mark(f(t1, . . . , tn)) and u = t[active(f([t1]
f
1 , . . . , [tn]fn))]π. Since

t satisfies properties (a) and (b), u satisfies these properties, too. Since all
active positions in the subterms t1, . . . , tn of u have a mark-symbol above
them, u satisfies property (c). For property (d) we observe that in u, the
positions in ti for i /∈ µ(f) are not activated (since t1, . . . , tn ∈ T (F ,V), as t
satisfies property (b)).

3. Next we regard the case where t|π = f(t1, . . . , active(ti), . . . , tn) and u =
t[f(t1, . . . , ti, . . . , tn)]π. The term u clearly satisfies properties (a) and (b).
In order to conclude property (c), it suffices to show that ti is not an R-
redex. Suppose to the contrary that ti is an R-redex. This implies that
active(ti) = active(lσ) →3 mark(rσ) for some l → r ∈ R and substitution
σ, which contradicts the assumption that the reduction step from t to u is
innermost. We conclude that u satisfies property (c). The term u satisfies
also property (d), because if ti contains active or mark, then there cannot
be a function symbol from F above it (otherwise the reduction step is not
innermost).

4. Finally, we consider the case where t|π = f(t1, . . . ,mark(ti), . . . , tn) and u =
t[f(t1, . . . , ti, . . . , tn)]π. Since the step from t to u is innermost and ti does
not contain active or mark-symbols according to property (b), ti must be a
variable. But then it trivially follows that u inherits the four properties of t.

Let erase: T (F1,V) → T (F ,V) remove all active and mark-symbols, i.e.,

erase(x) = x for all variables x

erase(f(t1, . . . , tn)) = f(erase(t1), . . . , erase(tn)) for all f ∈ F

erase(active(t)) = erase(mark(t)) = erase(t)

We want to transform every infinite innermost R3
µ-reduction of a term t ∈ T

into an infinite innermost context-sensitive reduction of erase(t). Let M′ be the
subset of R3

µ consisting of M together with all rules of the form

f(x1, . . . , active(xi), . . . , xn) → f(x1, . . . , xi, . . . , xn)

f(x1, . . . ,mark(xi), . . . , xn) → f(x1, . . . , xi, . . . , xn)

Clearly t →M′ u implies erase(t) = erase(u). Since M′ is terminating (which is
shown by RPO using the precedence mark > active), every infinite R3

µ-reduction
contains infinitely many reduction steps with rules from R3

µ \M′. We now show
that for all t ∈ T , if t i→3 u by applying a rule from R3

µ \M′ then erase(t) i→µ

erase(u). Thus, every infinite innermost R3
µ-reduction starting from T can be

transformed into an infinite reduction in (R, µ), which proves the lemma.

20

There exist a position π in t, a rewrite rule l → r ∈ R, and a substitution
σ such that t|π = active(lσ) and u = t[mark(rσ)]π. In case 1 above we already
observed that lσ and rσ belong to T (F ,V). Hence erase(t) = erase(t)[lσ]π′ and
erase(u) = erase(u)[rσ]π′ for some position π′ which is active (since π is active in
t due to property (a) in the definition of T). Therefore, erase(t) →µ erase(u). It
remains to show that this is really an innermost context-sensitive rewrite step.
Suppose that lσ contains an R-redex on an active position π′′ > ε. Then this
R-redex occurs in t = t[active(lσ)]π at the active position π1π′′. According to
property (c), this position has to be activated, which means that there is a
mark-symbol above it or an active-symbol directly above it. Since lσ ∈ T (F ,V)
the second alternative is impossible and the first alternative would contradict
property (b). Hence we indeed have erase(t) i→µ erase(u). ut

Now we can show the desired completeness result.

Theorem 21. Let (R, µ) be a CSRS. If (R, µ) is innermost terminating then
R3

µ is innermost terminating.

Proof. Let F be the signature of R. Suppose that R3
µ is not innermost ter-

minating. Then there exists a minimal term s ∈ T (F1,V) with an infinite
innermost R3

µ-reduction (i.e., all proper subterms of s only have finite inner-
most R3

µ-reductions). So every infinite innermost R3
µ-reduction from s contains

a root reduction step. Let t i→3 u be the first such root reduction step. So
all proper subterms of t admit only finite innermost R3

µ-reductions. Note that
we cannot have t = f(t1, . . . , active(ti), . . . , tn) or t = f(t1, . . . ,mark(ti), . . . , tn)
and u = f(t1, . . . , tn). The reason is that then u can only have an infinite in-
nermost reduction if one of its subterms has an infinite innermost reduction,
but this would contradict the minimality of t. If t = mark(f(t1, . . . , tn)) and

u = active(f([t1]
f
1 , . . . , [tn]fn)) then t1, . . . , tn ∈ T (F ,V) as the step from t to u is

innermost and f ∈ F . Thus, t ∈ T . But since all terms in T are innermost R3
µ-

terminating by Lemma 20 this is impossible. So t = active(lσ) and u = mark(rσ)
for some rule l → r ∈ R and substitution σ. We again infer that lσ and rσ belong
to T (F ,V), and thus we obtain u ∈ T which contradicts Lemma 20. Hence R3

µ

is innermost terminating. ut

To demonstrate the use of Θ3, in Appendix A we show for several CSRS
(R, µ) including Example 1 how innermost termination of R3

µ can be proved
with dependency pairs.

6 Ground Innermost Termination

Unlike for termination, to conclude innermost termination it is not sufficient to
prove that all ground terms are innermost terminating.

Example 22. This is witnessed by the TRS {f(f(x)) → f(f(x)), f(a) → a}. This
TRS is not innermost terminating but ground innermost terminating over the
signature {f, a}, i.e., all ground terms only permit finite innermost reductions.

21

It is well known that innermost termination of a TRS R over a signature
F is equivalent to ground innermost termination of R over the signature F ∪
{c, h} where c is a fresh constant and h is a fresh unary function symbol. The
reason is that a term t with the variables x1, . . . , xn starts an infinite innermost
reduction iff the ground term tσ starts an infinite innermost reduction where
σ(xi) = hi(c). So the fresh symbols c and h are needed to create arbitrarily many
different ground terms (in order to handle non-linear rewrite rules). A similar
correspondence holds for innermost context-sensitive reductions with µ(h) = ∅

or µ(h) = {1}.

The following results state that Θ1 and Θ2 cannot distinguish ground inner-
most termination from innermost termination. This provides further explanation
for the incompleteness of these transformation for innermost termination. Be-
cause Θ1 and Θ2 are sound for innermost termination, it follows that they are
sound for ground innermost termination, too.

Theorem 23. Let (R, µ) be a CSRS. The TRS R1
µ is ground innermost termi-

nating if and only if it is innermost terminating.

Proof. The “if” direction is trivial. For the “only if” direction we reason as
follows. Let F be the signature of R, let c be any constant in F , and let M be
the set consisting of all terms markn(x) with x ∈ V and n > 0. For any term
t ∈ T (F1,V) we let ϕ(t) denote the result of replacing in t all maximal subterms
belonging to M by c. Note that ϕ(t) ∈ T (F1). We show that if s i→1 t with
s, t ∈ T (F1,V) then ϕ(s) i→+

1 ϕ(t). So any infinite innermost reduction gives
rise to an infinite ground innermost reduction, which proves the theorem. We
distinguish three cases.

1. First suppose that s|π = ∆(active(l)σ) and t = s[∆(mark(r)σ)]π for some
position π, substitution σ, rule l → r ∈ R, and sequence ∆ of mark-symbols
(where we ignore parentheses around function arguments) such that there is
no mark-symbol directly above the position π in s. Let the substitution σ′ be
defined by σ′(x) = ϕ(σ(x)) for all variables x. Then we have

ϕ(s) = ϕ(s)[∆(active(l)σ′)]π (l does not contain mark-symbols)
i→1 ϕ(s)[∆(mark(r)σ′)]π (active(l)σ′ is an innermost redex)
i→∗

1 ϕ(s)[ϕ(∆(mark(r)σ))]π (see explanation below)

= ϕ(t)

It remains to show that ∆(mark(r)σ′) i→∗
1 ϕ(∆(mark(r)σ)). We distinguish

two cases. If rσ /∈ M then ∆(mark(r)σ′) = ϕ(∆(mark(r)σ)). If rσ ∈ M then
∆(mark(r)σ) ∈ M and r ∈ V and thus rσ′ = c = ϕ(∆(mark(r)σ)). An easy
induction proof on the length of ∆ reveals that ∆(mark(c)) i→+

1 c and hence
we are done.

22

2. Let s|π = mark(f(u1, . . . , un)) and t = s[active(f([u1]
f
1 , . . . , [un]fn))]π for some

position π, n-ary function symbol f ∈ F , and terms u1, . . . , un. Then we have

ϕ(s) = ϕ(s)[mark(f(ϕ(u1), . . . , ϕ(un)))]π
i→1 ϕ(s)[active(f([ϕ(u1)]

f
1 , . . . , [ϕ(un)]fn))]π

i→∗
1 ϕ(s)[active(f(ϕ([u1]

f
1), . . . , ϕ([un]fn)))]π (see explanation below)

= ϕ(t)

We show that we always have [ϕ(ui)]
f
i

i→∗
1 ϕ([ui]

f
i). For i /∈ µ(f) this is clear,

since [ϕ(ui)]
f
i = ϕ(ui) = ϕ([ui]

f
i). If i ∈ µ(f) then [ϕ(ui)]

f
i = mark(ϕ(ui)) and

ϕ([ui]
f
i) = ϕ(mark(ui)). We distinguish two cases. If ui /∈ M then mark(ui) /∈

M and thus mark(ϕ(ui)) = ϕ(mark(ui)). If ui ∈ M then mark(ui) ∈ M
and thus mark(ϕ(ui)) = mark(c) and ϕ(mark(ui)) = c. Since mark(c) i→1

active(c) i→1 c, the result follows.

3. Finally, let s|π = ∆(active(u)) and t = s[∆(u)]π for some position π, term u,
and ∆ as in case 1 of this proof. Then we have

ϕ(s) = ϕ(s)[∆(active(ϕ(u)))]π
i→1 ϕ(s)[∆(ϕ(u))]π (ϕ(u) is a normal form)

and ϕ(t) = ϕ(s)[ϕ(∆(u))]π. If u /∈ M then ∆(ϕ(u)) = ϕ(∆(u)). If u ∈ M
then ∆(u) ∈ M and thus ∆(ϕ(u)) = ∆(c) and ϕ(∆(u)) = c. It is easy to
show by induction on the length of ∆ that ∆(c) i→∗

1 c.
ut

Theorem 24. Let (R, µ) be a CSRS. The TRS R2
µ is ground innermost termi-

nating if and only if it is innermost terminating.

Proof. The “if” direction is trivial. For the “only if” direction suppose R2
µ is

ground innermost terminating. From the proof of Theorem 7 it follows that
(R, µ) is terminating. Since Θ2 is complete for termination, R2

µ is terminating
and thus also innermost terminating. ut

Because Θ3 is sound and complete for innermost termination, ground inner-
most termination of R3

µ does not imply innermost termination of R3
µ in general.

In fact, Θ3 is also sound and complete for ground innermost termination.

Theorem 25. A CSRS (R, µ) is ground innermost terminating if and only if
R3

µ is ground innermost terminating.

Proof. The proofs of Theorems 18 and 21 can easily be adapted. It is worth
remarking that the restriction to ground terms does not simplify the proofs
significantly. The main difference is that one can immediately conclude that an
innermost R3

µ-redex has no mark strictly below the root if one is restricted to
ground terms. ut

23

ground innermost innermost
termination termination termination

sound complete sound complete sound complete

ΘL � × × × × ×

ΘZ � × × × × ×

ΘFR � × × × × ×

Θ1 � × � × � ×

Θ2 � � � × � ×

Θ3 � × � � � �

Fig. 2. Summary.

One might think that the ([)-marked rules in Definition 14 are not needed to
obtain a sound and complete transformation for ground innermost termination.
While soundness is easily proved, completeness does not hold.

Example 26. Consider the (ground) innermost terminating CSRS (R, µ) from
Example 16 again. Since the innermost cycle only involves ground terms, the
transformed TRS without the ([)-marked rules is not ground innermost termi-
nating.

As explained above, a transformation that is sound for ground innermost
termination can also be used for innermost termination analysis by adding fresh
function symbols to the signature. However, for completeness the situation is
different. Here, it is desirable that the transformation is not only complete for
ground, but also for full innermost termination. The reason is that while there do
exist techniques to analyze ground innermost termination [11], the best-known
technique for automated innermost termination analysis [1] really checks full
(non-ground) innermost termination of TRSs. A complete transformation for
innermost termination transforms every innermost terminating CSRS into an
innermost terminating TRS and hence, innermost termination of this TRS can
potentially be checked by every technique for innermost termination analysis of
ordinary TRSs. But if the transformed TRS is only ground innermost terminat-
ing, (full) innermost termination analysis techniques for TRSs cannot be applied
successfully.

7 Comparison

Figure 2 contains a summary of the soundness and completeness results covered
in the preceding sections. The negative results for ground innermost termination
for ΘL, ΘZ, and ΘFR are shown by the same examples used to demonstrate
the corresponding results for innermost termination, cf. the first paragraph of
Section 3. The results on termination for Θ3 follow from Theorem 34 below.

Moreover, in order to assess the relative power of our transformations, we
illustrate in Figure 3 the relationship between the following twelve properties:

24

(2) +3
KS

��

(1) +3
KS

��

(6) +3
KS

��

(5) +3
KS

��

(9)
KS

��
(4) (3)

KS

��

(10) (8) (12)

(7)
KS

��
(11)

Fig. 3. Comparison.

(1) (R, µ) is terminating
(2) R1

µ is terminating

(3) R2
µ is terminating

(4) R3
µ is terminating

(5) (R, µ) is innermost terminating
(6) R1

µ is innermost terminating

(7) R2
µ is innermost terminating

(8) R3
µ is innermost terminating

(9) (R, µ) is ground innermost terminating
(10) R1

µ is ground innermost terminating

(11) R2
µ is ground innermost terminating

(12) R3
µ is ground innermost terminating

Implication (2) ⇒ (1) is the soundness of transformation Θ1 for termination [14],
implication (1) ⇒ (6) is Theorem 9, implication (6) ⇒ (5) is Theorem 5, and
implication (5) ⇒ (9) is trivial.

Equivalence (1) ⇔ (3) is the soundness and completeness of Θ2 for termina-
tion [14], equivalence (3) ⇔ (7) is Theorem 7, equivalence (10) ⇔ (6) is The-
orem 23, equivalence (11) ⇔ (7) is Theorem 24, and equivalence (9) ⇔ (12) is
Theorem 25. The equivalence of (5) and (8) amounts to the soundness and com-
pleteness of transformation Θ3 for innermost termination (Theorems 18 and 21).
The equivalence of (2) and (4) means that Θ1 and Θ3 are equally powerful when
it comes to proving termination. This may not come as a surprise but the proof,
which is given below, is surprisingly difficult.

None of the missing implications in Figure 3 hold, except those that follow by
transitivity: (1) 6⇒ (2) and (5) 6⇒ (6) are the incompleteness of Θ1 for termina-
tion (Example 4) and innermost termination (Example 6). Moreover, (6) 6⇒ (1)
follows by using µ(f) = {1, 2, 3} in Example 4 and (9) 6⇒ (5) follows from Exam-
ple 22 with µ(f) = {1}.

In the next few pages we prove that the transformations Θ1 and Θ3 are
equivalent when it comes to termination. First we show that termination of R1

µ

implies termination of R3
µ. For termination it suffices to regard ground terms (as

noted in Section 6 this is different from innermost termination). The problem
when simulating R3

µ-steps with R1
µ are the last rules of R3

µ which allow the

25

elimination of mark-symbols below symbols from F . However, for ground terms
t without adjacent active or mark-symbols and without such symbols at the root,
one can show mark(t) →+

1 t. So instead of regarding arbitrary ground terms, our
aim is to transform every reduction sequence into a reduction between terms t of
this special form. More precisely, we show that every ground reduction step s →3

t in R3
µ corresponds to a reduction s↓A →∗

1 t↓A where A removes adjacent active
and mark-symbols by replacing them by the rightmost such symbol. Moreover,
if s →3 t by applying a rule of the form active(l) → mark(r) then s↓A →+

1
t↓A.

Since the remaining rules constitute a terminating subset of R3
µ, any infinite

R3
µ-reduction would then give rise to an infinite R1

µ-reduction.

Definition 27. Let A be the rewrite system consisting of the following rules:

active(active(x)) → active(x) active(mark(x)) → mark(x)

mark(active(x)) → active(x) mark(mark(x)) → mark(x)

It is easy to see that A is terminating and confluent.

The following two preliminary results will come in handy. Lemma 28 states
that if t contains no adjacent active and mark-symbols and root(t) is from F ,
then mark(t) can always be reduced to active(t) in R1

µ.

Lemma 28. Let (R, µ) be a CSRS over a signature F and let t ∈ T (F1) with
root(t) ∈ F . If t↓A = t then mark(t) →+

1 active(t).

Proof. The lemma is proved by induction on the term structure of t. If t is a
constant, then the rule mark(t) → active(t) is contained in R1

µ. Otherwise, t has
the form f(t1, . . . , tn) for some f ∈ F . Define terms s1, . . . , sn as follows:

si =

{

ui if i ∈ µ(f) and either ti = active(ui) or ti = mark(ui)

ti otherwise

Let 1 6 i 6 n. We claim that ti →
∗
1 si. If si = ti this is trivial. If ti = active(ui)

and si = ui this follows by applying the rule active(x) → x. If ti = mark(ui) and
si = ui then root(ui) ∈ F because t is an A-normal form and hence we can apply
the induction hypothesis. This yields ti →

∗
1 active(ui) and thus ti →

∗
1 ui by an

application of the rule active(x) → x. We obtain

mark(t) →∗
1 mark(f(s1, . . . , sn))

→1 active(f([s1]
f
1 , . . . , [sn]fn))

→∗
1 active(f(t1, . . . , tn)) (see explanation below)

We show that [si]
f
i →∗

3 ti for all 1 6 i 6 n.

If i ∈ µ(f) and ti = mark(ui) then [si]
f
i = mark(ui) = ti. If i ∈ µ(f)

and ti = active(ui) then [si]
f
i = mark(ui) →∗

1 active(ui) = ti by the induc-
tion hypothesis (which is applicable because root(ui) ∈ F due to the require-
ments on t). Otherwise we have si = ti and root(ti) ∈ F . If i ∈ µ(f) then

26

[si]
f
i = mark(si) →∗

1 active(si) →1 si = ti by the induction hypothesis and an

application of the rule active(x) → x. If i /∈ µ(f) then [si]
f
i = si = ti. ut

The next lemma shows how to eliminate active or mark-symbols at the root of
terms by R1

µ-reductions. Together with Lemma 28 this implies mark(t) →+
1 t for

ground terms t with root(t) ∈ F and without adjacent active or mark-symbols.
Hence, for such (sub)terms, the last rules of R3

µ can also be simulated in R1
µ.

Lemma 29. For every t ∈ T (F1), active(t)↓A →∗
1 t↓A and mark(t)↓A →∗

1 t↓A.

Proof. We distinguish three cases. If root(t) ∈ F then active(t)↓A = active(t↓A)
→1 t↓A and mark(t)↓A = mark(t↓A) →+

1 active(t↓A) →1 t↓A by Lemma 28. Let
∆ denote an arbitrary sequence of active and mark-symbols. If t = ∆(active(u))
and root(u) ∈ F , then active(t)↓A = mark(t)↓A = active(u↓A) = t↓A. In the
remaining case we have t = ∆(mark(u)) with ∆ and u as before, and therefore
active(t)↓A = mark(t)↓A = mark(u↓A) = t↓A. ut

Using the two previous lemmata, we can now show that R3
µ is not more

powerful than R1
µ for proving termination of CSRSs.

Theorem 30. Let (R, µ) be a CSRS. If R1
µ is terminating then R3

µ is terminat-
ing.

Proof. Let F be the signature of R. We show that if s →3 t with s, t ∈ T (F1)
then s↓A →∗

1 t↓A. Moreover, if s →3 t by applying a rule of the form active(l) →
mark(r) then s↓A →+

1
t↓A. As explained before, the remaining rules of R3

µ ter-
minate and therefore, this proves the theorem.

1. First suppose that s|π = ∆(active(l))σ and t = s[∆(mark(r))σ]π for some
position π, substitution σ, and rule l → r ∈ R, such that there is no active or
mark-symbol directly above the position π in s. Again, ∆ denotes an arbitrary
sequence of active and mark-symbols. Moreover, let the substitution σ′ be
defined by σ′(x) = σ(x)↓A for all variables x. Then we have

s↓A = s↓A[active(l)σ′)]π′ (l does not contain active or mark-symbols)

→1 s↓A[mark(r)σ′]π′

→∗
1 s↓A[mark(r)σ↓A]π′ (see explanation below)

= s[mark(r)σ]π↓A (neither active nor mark directly above π)

= s[∆(mark(r))σ]π↓A

= t↓A

It remains to show that mark(r)σ′ →∗
1 mark(r)σ↓A. We distinguish three

cases. If rσ = ∆′(active(u)) with root(u) ∈ F then rσ′ = active(u↓A) and

27

hence

mark(r)σ′ = mark(active(u↓A))

→1 mark(u↓A)

→+
1 active(u↓A) (due to Lemma 28)

= mark(∆′(active(u)))↓A

= mark(r)σ↓A

If rσ = ∆′(mark(u)) with root(u) ∈ F then rσ′ = mark(u↓A) and hence

mark(r)σ′ = mark(mark(u↓A))

→+
1 mark(active(u↓A)) (due to Lemma 28)

→1 mark(u↓A)

= mark(∆′(mark(u)))↓A

= mark(r)σ↓A

Finally, if root(rσ) ∈ F then we clearly have mark(r)σ′ = mark(r)σ↓A.

2. Let s|π = ∆(mark(f(u1, . . . , un))) and t = s[∆(active(f([u1]
f
1 , . . . , [un]fn)))]π

for some position π, terms u1, . . . , un, and f ∈ F , such that there is no active
or mark-symbol directly above the position π in s. Then we have

s↓A = s↓A[mark(f(u1↓A, . . . , un↓A))]π′

→1 s↓A[active(f([u1↓A]f1 , . . . , [un↓A]fn))]π′

→∗
1 s↓A[active(f([u1]

f
1↓A, . . . , [un]fn↓A))]π (see explanation below)

= s[∆(active(f([u1]
f
1 , . . . , [un]fn)))]π↓A

= t↓A

We show that we always have [ui↓A]fi →∗
1 [ui]

f
i ↓A. For i /∈ µ(f) this is clear,

since [ui↓A]fi = ui↓A = [ui]
f
i ↓A. If i ∈ µ(f) then [ui↓A]fi = mark(ui↓A) and

[ui]
f
i ↓A = mark(ui)↓A. We distinguish three cases. If ui = ∆′(active(u)) with

root(u) ∈ F then

mark(ui↓A) = mark(active(u↓A))

→1 mark(u↓A)

→+
1 active(u↓A) (by Lemma 28)

= mark(ui)↓A

If ui = ∆′(mark(u)) with root(u) ∈ F then

mark(ui↓A) = mark(mark(u↓A))

→+
1 mark(active(u↓A)) (by Lemma 28)

→1 mark(u↓A)

= mark(ui)↓A

Finally, if root(ui) ∈ F then clearly mark(ui↓A) = mark(ui)↓A.

28

3. Next let s|π = f(u1, . . . ,mark(ui), . . . , un) and t = s[f(u1, . . . , un)]π for some
position π, terms u1, . . . , un, and f ∈ F . Then we have

s↓A = s↓A[f(u1↓A, . . . ,mark(ui)↓A, . . . , un↓A)]π′

→∗
1 s↓A[f(u1↓A, . . . , ui↓A, . . . , un↓A)]π′ (Lemma 29)

= t↓A

4. Finally, let s|π = f(u1, . . . , active(ui), . . . , un) and t = s[f(u1, . . . , un)]π for
some position π, terms u1, . . . , un, and f ∈ F . Then we have

s↓A = s↓A[f(u1↓A, . . . , active(ui)↓A, . . . , un↓A)]π′

→∗
1 s↓A[f(u1↓A, . . . , ui↓A, . . . , un↓A)]π′ (Lemma 29)

= t↓A
ut

Next we show that termination of R3
µ implies termination of R1

µ. The problem
when simulating R1

µ-steps in R3
µ is that R3

µ does not allow the elimination of
active unless there is a symbol from F directly above it. Thus, our aim is again
to restrict ourselves to ground terms without adjacent active or mark-symbols.

We show that every ground rewrite step s →1 t can be transformed into a
reduction active(s)↓B →∗

3 active(t)↓B. Moreover, if the step s →1 t is done by a
rule of the form active(l) → mark(r) then active(s)↓B →+

3 active(t)↓B. (This is
sufficient to transform infinite R1

µ-reductions into infinite R3
µ-reductions.) Here

B replaces every sequence ∆ of adjacent active and mark-symbols by mark, if ∆
contains any mark-symbol, and by active, otherwise. Moreover, mark-symbols
are propagated downwards to active positions using the rules of M. Hence,
active(s)↓B contains no mark-symbols and it has an active-symbol directly above
every active position of s and directly above those positions which were consid-
ered active due to the active and mark-symbols in s. Thus, we use the rewrite
system defined below.

Definition 31. Let B be the rewrite system consisting of the rules of M together
with the following rules:

active(active(x)) → active(x) active(mark(x)) → mark(x)

mark(active(x)) → mark(x) mark(mark(x)) → mark(x)

It is easy to show that B is terminating and confluent.

We start with two preliminary lemmata. Lemma 32 shows that for certain
terms, the result of normalizing with B can also be achieved with the rules of
R3

µ.

Lemma 32. Let t ∈ T (F1) be in B-normal form. If root(t) ∈ F then mark(t)
→∗

3 mark(t)↓B.

29

Proof. The lemma is proved by induction on the term structure of t. Write t =
f(t1, . . . , tn). We define terms s1, u1, . . . , sn, un as follows:

si =

{

t′i if i ∈ µ(f) and ti = active(t′i)

ti otherwise

and

ui =

{

mark(si)↓B if i ∈ µ(f)

si otherwise

We have

mark(t) →∗
3 mark(f(s1, . . . , sn)) (see explanation below)

→3 active(f([s1]
f
1 , . . . , [sn]fn))

→∗
3 active(f(u1, . . . , un)) (see explanation below)

The initial reduction mark(t) →∗
3 mark(f(s1, . . . , sn)) is obtained by applications

of rules of the form f(x1, . . . , active(xi), . . . , xn) → f(x1, . . . , xn). For the final

part of the above reduction it is sufficient to show [si]
f
i →∗

3 ui for all 1 6 i 6 n.
If i ∈ µ(f) and ti = active(t′i) then si = t′i starts with a function symbol of F
(because ti is in B-normal form) and thus we can apply the induction hypothesis

which yields [si]
f
i = mark(si) →∗

3 mark(si)↓B = ui. If i ∈ µ(f) and root(ti) 6=
active then si = ti and root(ti) ∈ F (because ground B-normal forms do not

contain any mark-symbols) and thus [si]
f
i = mark(si) →

∗
3 mark(si)↓B = ui by the

induction hypothesis. If i /∈ µ(f) then [si]
f
i = si = ti = ui.

Obviously, active(f(u1, . . . , un)) is in B-normal form. In order to conclude
that active(f(u1, . . . , un)) is the B-normal form of mark(t), it suffices to show

mark(t) →∗
B active(f(u1, . . . , un)). We have mark(t) →B active(f([t1]

f
1 , . . . , [tn]fn))

and [si]
f
i →∗

B ui for all 1 6 i 6 n. Hence, it remains to show that [ti]
f
i →∗

B

[si]
f
i for all 1 6 i 6 n. If i ∈ µ(f) and ti = active(t′i) then we have [ti]

f
i =

mark(active(t′i)) →B mark(t′i) = [si]
f
i . Otherwise ti = si and thus [ti]

f
i = [si]

f
i . ut

Lemma 33 proves that the R3
µ-reduction sketched in Lemma 32 can be ex-

tended to obtain the root symbol active.

Lemma 33. Let t ∈ T (F1) with root(t) ∈ F . If t↓B = t then mark(t)↓B →∗
3

active(t).

Proof. We again use induction on the term structure of t. Write t = f(t1, . . . , tn).
We define terms u1, v1, . . . , un, vn as follows:

ui =











mark(t′i)↓B if i ∈ µ(f) and ti = active(t′i)

mark(ti)↓B if i ∈ µ(f) and root(ti) ∈ F

ti otherwise

30

and

vi =











active(t′i) if i ∈ µ(f) and ti = active(t′i)

active(ti) if i ∈ µ(f) and root(ti) ∈ F

ti otherwise

Let 1 6 i 6 n. We claim that ui →
∗
3 vi. For i /∈ µ(f) this is obvious. If i ∈ µ(f)

and root(ti) ∈ F then ui = mark(ti)↓B →∗
3 active(ti) = vi by the induction

hypothesis. If i ∈ µ(f) and ti = active(t′i) then root(t′i) ∈ F because t is in
B-normal form. Hence we obtain ui →∗

3 vi as in the previous case. Using this
observation, now we can prove the lemma. We have

mark(t)↓B = active(f(u1, . . . , un)) (as in the proof of Lemma 32)

→∗
3 active(f(v1, . . . , vn))

→∗
3 active(f(t1, . . . , tn))

= active(t)

The final part of the above reduction follows by suitable applications of rules of
the form f(x1, . . . , active(xi), . . . , xn) → f(x1, . . . , xn). ut

With the two previous lemmata we can now prove the desired theorem.

Theorem 34. Let (R, µ) be a CSRS. If R3
µ is terminating then R1

µ is terminat-
ing.

Proof. Let F be the signature of R. We claim that for terms s, t ∈ T (F1), if
s →1 t then active(s)↓B →∗

3 active(t)↓B. Moreover, if a rule of the form active(l) →
mark(r) is used then active(s)↓B →+

3 active(t)↓B. Since M ∪ {active(x) → x} is
terminating (which can be shown by RPO using the precedence mark > active),
every infinite R1

µ-reduction is transformed into an infinite R3
µ-reduction, which

proves the theorem.

To prove the claim, we distinguish three cases depending on the form of the
rewrite rule applied in s →1 t.

1. Suppose that s|π = ∆(active(lσ)) and t = s[∆(mark(rσ))]π for some posi-
tion π, substitution σ, and rule l → r ∈ R, such that there is no active
or mark-symbol directly above the position π in s. As usual, ∆ denotes an
arbitrary sequence of active and mark-symbols. Moreover, let the substitu-
tion σ′ be defined by σ′(x) = σ(x)↓B for all variables x. First we show that
active(s)↓B →∗

3 active(s)↓B[active(lσ′)]π. We distinguish two cases.

(a) Suppose π = π′π′′ such that root(s|π′) = mark and π′′ is an active position
in s|π′ . (As usual, the argument positions of active and mark are also
considered active.) In this case, when B-normalizing active(s), the mark-
symbol at position π′ is propagated to the root of s|π and subsequently

31

consumes all active and mark-symbols in front of lσ. Hence

active(s)↓B = active(s)↓B[mark(lσ)↓B]π

= active(s)↓B[mark(lσ′)↓B]π (lσ →∗
B lσ′)

→∗
3 active(s)↓B[active(lσ′)]π (Lemma 33)

Note that Lemma 33 is applicable because lσ′↓B = lσ′ and root(lσ′) ∈ F .

(b) If there is no mark-symbol above position π such that π is in its “active
range” then we clearly have

active(s)↓B = active(s)↓B[active(lσ)↓B]π

= active(s)↓B[active(lσ′)]π

It remains to prove that active(s)↓B[active(lσ′)]π →+
3 active(t)↓B. We again

distinguish two cases.

(a) If root(rσ′) ∈ F then

active(s)↓B[active(lσ′)]π →3 active(s)↓B[mark(rσ′)]π

→∗
3 active(s)↓B[mark(rσ′)↓B]π (Lemma 32)

= active(s)↓B[mark(rσ)↓B]π (rσ →∗
B rσ′)

= active(t)↓B

(b) The case where root(rσ′) /∈ F requires some more effort. We must have
r ∈ V. Because rσ′ is in B-normal form, rσ′ = active(u) with root(u) ∈ F .
We define the substitution τ as follows:

τ(x) =

{

u if x = r

σ′(x) otherwise

By suitable applications of rules of the form f(x1, . . . , active(xi), . . . , xn)
→ f(x1, . . . , xn) we obtain lσ′ →∗

3 lτ . We have

mark(rσ′) = mark(active(u)) →B mark(u) = mark(rτ)

and thus mark(rσ′)↓B = mark(rτ)↓B. Therefore

active(s)↓B[active(lσ′)]π →∗
3 active(s)↓B[active(lτ)]π

→3 active(s)↓B[mark(rτ)]π

→∗
3 active(s)↓B[mark(rτ)↓B]π (Lemma 32)

= active(s)↓B[mark(rσ′)↓B]π

= active(s)↓B[mark(rσ)↓B]π (rσ →∗
B rσ′)

= active(t)↓B

32

2. Next let s|π = mark(f(u1, . . . , un))) and t = s[active(f([u1]
f
1 , . . . , [un]fn))]π for

some position π, terms u1, . . . , un, and f ∈ F . In this case we have s →B t
and thus trivially active(s)↓B = active(t)↓B.

3. Finally, let s|π = ∆(active(u)) and t = s[∆(u)]π for some position π and term
u, such that there is no active or mark-symbol directly above the position
π in s. If ∆ is not empty then ∆(active(u))↓B = ∆(u)↓B and hence also
active(s)↓B = active(t)↓B. So suppose that ∆ is empty. We distinguish two
further cases.

(a) Suppose π = π′π′′ such that root(s|π′) = mark and π′′ is an active
position in s|π′ . In this case, when B-normalizing active(s), the mark-
symbol at position π′ is propagated to the root of s|π and the active-
symbol at position π is subsequently consumed by an application of
the rule mark(active(x)) → mark(x) of B. It follows that active(s)↓B =
active(s)↓B[mark(u)↓B]π = active(t)↓B.

(b) In the remaining case there is no mark-symbol above position π such that π
is in its “active range”. If π = ε then active(s)↓B = active(active(u))↓B =
active(u)↓B = active(t)↓B. If π > ε then we must have π = π′j with
s|π′ = f(s1, . . . , sn) and sj = active(u). Hence

active(s)↓B = active(s)↓B[f(s1↓B, . . . , active(u)↓B, . . . , sn↓B)]π

and

active(t)↓B = active(s)↓B[f(s1↓B, . . . , u↓B, . . . , sn↓B)]π

If root(u) ∈ {active,mark} then active(u)↓B = u↓B and thus active(s)↓B =
active(t)↓B. Otherwise, root(u) ∈ F and thus active(u)↓B = active(u↓B).
In this latter case we apply the rewrite rule f(x1, . . . , active(xj), . . . , xn) →
f(x1, . . . , xn) to conclude active(s)↓B →3 active(t)↓B.

ut

8 Conclusion

We investigated five existing transformations from context-sensitive to ordinary
rewrite systems. Of these five transformations, only the transformations Θ1 and
Θ2 from [14] are sound for proving innermost termination of CSRSs. We showed
that Θ2 is not very useful when it comes to innermost termination, but that ter-
mination of a CSRS (R, µ) already implies innermost termination of Θ1(R, µ).
So for classes of CSRSs where termination and innermost termination are equiv-
alent, Θ1 is sound and complete for innermost termination. While in general Θ1

is still incomplete, we developed a new transformation Θ3 which is sound and
complete for innermost termination. As far as (non-innermost) termination is
concerned, Θ3 and Θ1 are equally powerful.

33

So with our new transformation, innermost termination of context-sensitive
rewriting can be fully reduced to innermost termination of ordinary rewriting.
Moreover, for orthogonal CSRSs innermost termination already suffices for ter-
mination. So for such systems, innermost termination of the transformed TRS
even implies termination of the CSRS. The existing methods for innermost ter-
mination analysis of TRSs are much more powerful than the ones for termina-
tion. Hence, our result now enables the use of these methods for (innermost)
termination of context-sensitive rewriting, cf. Appendix A, where we use our
transformation in combination with the dependency pair technique for TRSs in
order to verify (innermost) termination of CSRSs.

Acknowledgments. We thank Salvador Lucas and anonymous referees for
many helpful remarks.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236:133–178, 2000.
2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
3. F. Bellegarde and P. Lescanne. Termination by completion. Applicable Algebra in Engi-

neering, Communication and Computing, 1:79–96, 1990.
4. C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path orderings.

In Proceedings of the 17th International Conference on Automated Deduction, volume 1831
of Lecture Notes in Artificial Intelligence, pages 346–364, 2000.

5. C. Borralleras, S. Lucas, and A. Rubio. Recursive path orderings can be context-sensitive.
In Proceedings of the 18th Conference on Automated Deduction, volume 2392 of Lecture

Notes in Artificial Intelligence, pages 314–331, 2002.
6. M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In Proceedings of the

1st International Workshop on Rewriting Logic and its Applications, volume 4 of Electronic

Notes in Theoretical Computer Science, 1996.
7. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69–116,

1987.
8. R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language, Proof Techniques, and

Methodologies for Object-Oriented Algebraic Specification, volume 6 of AMAST Series in

Computing. World Scientific, 1998.
9. S. Eker. Term rewriting with operator evaluation strategies. In Proceedings of the 2nd

International Workshop on Rewriting Logic and its Applications, volume 15 of Electronic

Notes in Theoretical Computer Science, pages 1–20, 1998.
10. M.C.F. Ferreira and A.L. Ribeiro. Context-sensitive AC-rewriting. In Proceedings of the

10th International Conference on Rewriting Techniques and Applications, volume 1631 of
Lecture Notes in Computer Science, pages 173–187, 1999.

11. O. Fissore, I. Gnaedig, and H. Kirchner. Induction for termination with local strategies.
In Proceedings of the 4th International Workshop on Strategies in Automated Deduction,
volume 58 of Electronic Notes in Theoretical Computer Science, 2001.

12. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Applicable

Algebra in Engineering, Communication and Computation, 12(1,2):39–72, 2001.
13. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using de-

pendency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.
14. J. Giesl and A. Middeldorp. Transforming context-sensitive rewrite systems. In Proceedings

of the 10th International Conference on Rewriting Techniques and Applications, volume
1631 of Lecture Notes in Computer Science, pages 271–285, 1999.

34

15. J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive rewrite sys-
tems. Technical Report AIB-2002-02, RWTH Aachen, Germany, 2002. Extended version
of [14]. Available from http://aib.informatik.rwth-aachen.de.

16. J. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT Press, 1997.
17. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing

OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering with OBJ: algebraic

specification in action. Kluwer, 2000.
18. B. Gramlich. Abstract relations between restricted termination and confluence properties

of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.
19. B. Gramlich and S. Lucas. Modular termination of context-sensitive rewriting. In Pro-

ceedings of the 4th International Conference on Principles and Practice of Declarative Pro-

gramming, pages 50–61. ACM Press, 2002.
20. B. Gramlich and S. Lucas. Simple termination of context-sensitive rewriting. In Proceedings

of the 3rd ACM SIGPLAN Workshop on Rule-Based Programming, pages 29–41, 2002.
21. D.E. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor,

Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.
22. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3,

Louisiana Technical University, Ruston, LA, USA, 1979.
23. S. Lucas. Termination of context-sensitive rewriting by rewriting. In Proceedings of the

23rd International Colloquium on Automata, Languages and Programming, volume 1099 of
Lecture Notes in Computer Science, pages 122–133, 1996.

24. S. Lucas. Context-sensitive computations in functional and functional logic programs.
Journal of Functional and Logic Programming, 1:1–61, 1998.

25. S. Lucas. Termination of rewriting with strategy annotations. In Proceedings of the 8th

International Conference on Logic for Programming, Artificial Intelligence and Reasoning,
volume 2250 of Lecture Notes in Artificial Intelligence, pages 666–680, 2001.

26. S. Lucas, 2001–2002. Personal communication.
27. S. Lucas. Termination of (canonical) context-sensitive rewriting. In Proceedings of the

13th International Conference on Rewriting Techniques and Applications, volume 2378 of
Lecture Notes in Computer Science, pages 296–310, 2002.

28. T. Nagaya. Reduction Strategies for Term Rewriting Systems. PhD thesis, School of Infor-
mation Science, Japan Advanced Institute of Science and Technology, 1999.

29. M. Nakamura and K. Ogata. The evaluation strategy for head normal form with and
without on-demand flags. In Proceedings of the 3rd International Workshop on Rewriting

Logic and its Applications, volume 36 of Electronic Notes in Theoretical Computer Science,
2001.

30. J. Steinbach. Simplification orderings: History of results. Fundamenta Informaticae, 24:47–
87, 1995.

31. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informati-

cae, 24:89–105, 1995.
32. H. Zantema. Termination of context-sensitive rewriting. In Proceedings of the 8th Interna-

tional Conference on Rewriting Techniques and Applications, volume 1232 of Lecture Notes

in Computer Science, pages 172–186, 1997.

A Examples

In this section, we demonstrate how our transformation Θ3 can be used in combi-
nation with dependency pairs in order to prove innermost termination of context-
sensitive rewrite systems. For an introduction to dependency pairs we refer to
[1].

The TRSs R3
µ resulting from our transformation have a special form and

hence, to ease their innermost termination proof, the following refinements can

35

be used when applying dependency pairs. (Refinement (E) can even be used for
arbitrary TRSs, but the other refinements are due to the special form of R3

µ.)

(A) If s → t is a dependency pair with root(s) ∈ {ACTIVE,MARK}, then no
narrowing is needed which would instantiate variables with terms containing
active or mark.

(B) If s → t is a dependency pair with root(s) ∈ {ACTIVE,MARK}, then s → t
can be replaced by all pairs of the form sµ → wµ for all dependency pairs
v → w where µ is the most general unifier of cap

′(t) and v. Here, cap
′

replaces all subterms built with mark or active by pairwise different fresh
variables. (In other words, one can combine s → t with all pairs v → w which
possibly follow this pair in an innermost chain.)

(C) In any dependency pair of the form

ACTIVE(C[x]) → C ′[f(. . . ,mark(x), . . .)]

where x is on an active position of C[x], the subterm mark(x) can be replaced
by x, i.e., one can replace the dependency pair by

ACTIVE(C[x]) → C ′[f(. . . , x, . . .)]

(D) If constructors only have active argument positions and (R, µ) is an orthog-
onal constructor system8 such that in right-hand sides of dependency pairs
of R3

µ defined symbols of R occur only at position 1 and where dependency
pairs do not contain the symbol active, then the active-rules are not “usable”
[1].

(E) Rewriting dependency pairs [12] can be extended to overlapping systems as
follows: if s → t is a dependency pair and t|π is a reducible ground term
then s → t can be replaced by the pairs s → t[u1]π, . . . , s → t[un]π, where
u1, . . . , un are the terms reachable from t|π in one innermost rewrite step.

All these refinements can also be used for modular innermost termination proofs
[13] where one regards subsets of dependency pairs separately for every cycle of
the innermost dependency graph.

Note that refinements (B), (C), (E), as well as the refinements of narrowing,
rewriting, and instantiating dependency pairs in [12] modify the original depen-
dency pairs to new pairs of terms. When formulating the refinements above, we
also refer to these new pairs as “dependency pairs”. In other words, the refine-
ments may be applied repeatedly after each other and finally, the resulting set of
pairs is taken as “the” set of dependency pairs. So for example, refinement (D)
can also be applied if the set of pairs resulting from modifying the dependency
pairs has the required form.

8 A constructor system has the property that no defined symbol occurs below the root position
in some left-hand side.

36

The above refinements are generally applicable when proving innermost ter-
mination of systems resulting from transforming CSRSs. The conditions for their
application can be checked automatically.

We demonstrate the usefulness of our transformation with two examples. In
Section A.1 we handle a variant of Example 6, i.e., a CSRS that is innermost
terminating but not terminating. Example 1 (Section A.2) is a natural CSRS
that is terminating but where innermost termination is significantly easier to
prove than termination and where innermost termination is already sufficient for
termination. A thorough justification of the refinements (A)–(E) can be found
in Section A.3.

A.1 Variant of Example 6

We regard the following CSRS (R, µ) with R consisting of the three rules

f(g(b)) → f(g(a)) f(a) → f(a) a → b

and µ(f) = {1} and µ(g) = ∅. The TRS R is not innermost terminating. The
CSRS (R, µ) is innermost terminating but not terminating. (This CSRS corre-
sponds to Example 6 extended by the additional rule f(g(b)) → f(g(a)). This rule
is added to demonstrate that our method is also successful for systems which are
innermost terminating as a CSRS but not as a TRS. The innermost termination
proof of Example 6 proceeds in the same way.) Our transformation produces the
following TRS R3

µ:

active(f(g(b))) → mark(f(g(a))) mark(f(x)) → active(f(mark(x)))

active(f(a)) → mark(f(a)) mark(g(x)) → active(g(x))

active(a) → mark(b) mark(a) → active(a)

mark(b) → active(b)

f(active(x)) → f(x) f(mark(x)) → f(x)

g(active(x)) → g(x) g(mark(x)) → g(x)

We show that innermost termination of this TRS can be proved easily with
dependency pairs. We omit pairs of the form MARK(·) → F(·) and MARK(·) →
G(·) as well as ACTIVE(·) → F(·) and ACTIVE(·) → G(·) since these pairs are
obviously not on cycles of the (estimated) innermost dependency graph. In the
sequel we abbreviate MARK to M and ACTIVE to active.

A(f(g(b))) → M(f(g(a))) (1) M(f(x)) → A(f(mark(x))) (5)

A(f(a)) → M(f(a)) (2) M(g(x)) → A(g(x)) (6)

A(a) → M(b) (3) M(a) → A(a) (7)

M(f(x)) → M(x) (4) M(b) → A(b) (8)

F(active(x)) → F(x) (9) F(mark(x)) → F(x) (11)

G(active(x)) → G(x) (10) G(mark(x)) → G(x) (12)

37

Dependency pairs (3), (6), (7), and (8) are not on cycles of the innermost de-
pendency graph (this can easily be detected using refinement (B)). According
to refinement (B), both (1) and (2) can be combined with dependency pairs (4)
and (5) and hence are replaced by

A(f(g(b))) → M(g(a)) (13) A(f(a)) → M(a) (15)

A(f(g(b))) → A(f(mark(g(a)))) (14) A(f(a)) → A(f(mark(a))) (16)

Pairs (13) and (15) are not on cycles. Since the right-hand sides of (14) and (16)
are ground, one can innermost rewrite them according to refinement (E). This
yields

A(f(g(b))) → A(f(g(a))) A(f(a)) → A(f(b))

With refinement (B) we immediately detect that these pairs are not on cycles and
hence, they can be deleted. But then (5) is not on a cycle either, because there is
no longer any dependency pair whose left-hand side has the root A. So the only
dependency pairs on cycles are (4) and (9)–(12). Since these pairs have no usable
rules, the resulting constraints are already satisfied by the embedding order.
Hence, R3

µ is innermost terminating (and using our refinements, this innermost
termination proof can easily be performed automatically).

A.2 Example 1

We regard the CSRS (R, µ) with R consisting of the rules

0 6 y → true p(0) → 0

s(x) 6 0 → false p(s(x)) → x

s(x) 6 s(y) → x 6 y if(true, x, y) → x

x − y → if(x 6 y, 0, s(p(x) − y)) if(false, x, y) → y

with µ(if) = {1} and µ(f) = {1, . . . , arity(f)} for all other function symbols f .
This system is a natural formulation of the subtraction algorithm using a

conditional if. In functional languages like LISP which have no pattern match-
ing, p and if would be built-in and one would have to formulate algorithms using
if and selectors like p. A corresponding algorithm was already treated in [1, Ex-
ample 41], but there the if-symbol had to be encoded in a counterintuitive way
to prevent the evaluation of the third argument of if. In contrast, the formula-
tion above is natural, but it is only possible in context-sensitive rewriting. Our
transformation produces the following TRS R3

µ:

active(p(0)) → mark(0) mark(0) → active(0)

active(p(s(x))) → mark(x) mark(true) → active(true)

active(0 6 y) → mark(true) mark(false) → active(false)

38

active(s(x) 6 0) → mark(false) mark(s(x)) → active(s(mark(x)))

active(s(x) 6 s(y)) → mark(x 6 y) mark(p(x)) → active(p(mark(x)))

active(if(true, x, y)) → mark(x) mark(x 6 y) → active(mark(x) 6 mark(y))

active(if(false, x, y)) → mark(y) mark(x − y) → active(mark(x) − mark(y))

active(x − y) → mark(if(x 6 y, 0, s(p(x) − y)))

mark(if(x, y, z)) → active(if(mark(x), y, z))

s(f(x)) → s(x) x 6 f(y) → x 6 y if(f(x), y, z) → if(x, y, z)

p(f(x)) → p(x) f(x) − y → x − y if(x, f(y), z) → if(x, y, z)

f(x) 6 y → x 6 y x − f(y) → x − y if(x, y, f(z)) → if(x, y, z)

for f ∈ {mark, active}. We show how innermost termination of this TRS is proved
with dependency pairs. Since R3

µ is a non-overlapping TRS, innermost termina-
tion of this TRS coincides with its termination. Nevertheless, proving innermost
termination is considerably easier than proving termination directly. We again
omit dependency pairs of the form M(·) → F (·) and A(·) → F (·) where f ∈ F
since these pairs are obviously not on cycles of the (estimated) innermost depen-
dency graph.

A(p(0)) → M(0) (17) M(0) → A(0) (24)

A(p(s(x))) → M(x) (18) M(true) → A(true) (25)

A(0 6 y) → M(true) (19) M(false) → A(false) (26)

A(s(x) 6 0) → M(false) (20) M(s(x)) → A(s(mark(x))) (27)

A(s(x) 6 s(y)) → M(x 6 y) (21) M(p(x)) → A(p(mark(x))) (28)

A(if(true, x, y)) → M(x) (22) M(x 6 y) → A(mark(x) 6 mark(y)) (29)

A(if(false, x, y)) → M(y) (23) M(x − y) → A(mark(x) − mark(y)) (30)

A(x − y) → M(if(x 6 y, 0, s(p(x) − y))) (31)

M(if(x, y, z)) → A(if(mark(x), y, z)) (32)

M(s(x)) → M(x) (33) M(x − y) → M(x) (37)

M(p(x)) → M(x) (34) M(x − y) → M(y) (38)

M(x 6 y) → M(x) (35) M(if(x, y, z)) → M(x) (39)

M(x 6 y) → M(y) (36)

plus dependency pairs like S(f(x)) → S(x), etc. These latter dependency pairs
are only on cycles with themselves and they have no usable rules. Hence the con-
straints for these cycles of dependency pairs are easily solved by the embedding
order.

Dependency pairs (17), (19), (20), (24), (25), (26), and (27) are not on any
cycle (this can easily be seen using refinement (B)) and hence we will not consider

39

them further. By combining (31) with (32) and (39) according to refinement (B),
we can replace (31) by

A(x − y) → A(if(mark(x 6 y), 0, s(p(x) − y))) (40)

A(x − y) → M(x 6 y) (41)

Narrowing (40) one step (where we do not have to narrow on p(x), p(x) − y, or
x 6 y according to refinement (A)) yields

A(x − y) → A(if(x 6 y, 0, s(p(x) − y))) (42)

A(x − y) → A(if(active(mark(x) 6 mark(y)), 0, s(p(x) − y))) (43)

Moreover, due to refinement (C), in (43) we can replace mark(x) and mark(y) by
x and y, respectively:

A(x − y) → A(if(active(x 6 y), 0, s(p(x) − y))) (44)

Now we perform narrowing on (44) (observing refinement (A)) and replace it by
the pairs (42) and

A(0 − y) → A(if(true, 0, s(p(0) − y))) (45)

A(s(x) − 0) → A(if(false, 0, s(p(s(x)) − 0))) (46)

A(s(x) − s(y)) → A(if(mark(x 6 y), 0, s(p(s(x))− s(y)))) (47)

Dependency pairs (42) and (45) are not on a cycle. This is detected by refinement
(B), since (42) cannot be combined with any pair and (45) can be combined with
(22), but the resulting pair cannot be combined any further. Pair (46) is combined
with (23) which yields

A(s(x) − 0) → M(s(p(s(x)) − 0)) (48)

Pair (47) can be combined with (22) and (23). In order to perform the unification
required for the combination, we first have to replace the subterm mark(x 6 y)
by a new variable. This yields

A(s(x) − s(y)) → M(0) (49)

A(s(x) − s(y)) → M(s(p(s(x)) − s(y))) (50)

Dependency pair (49) is not on a cycle. Both pairs (48) and (50) can be combined
with (33) which yields

A(s(x) − 0) → M(p(s(x)) − 0) A(s(x) − s(y)) → M(p(s(x)) − s(y))

Combining these pairs with (30), (37), and (38) yields

A(s(x) − 0) → A(mark(p(s(x))) − mark(0)) (51)

A(s(x) − s(y)) → A(mark(p(s(x))) − mark(s(y))) (52)

40

A(s(x) − 0) → M(p(s(x))) (53) A(s(x) − s(y)) → M(p(s(x))) (55)

A(s(x) − 0) → M(0) (54) A(s(x) − s(y)) → M(s(y)) (56)

Dependency pair (54) is not on a cycle. For dependency pair (51) we perform
narrowing repeatedly until no further narrowing steps are possible. However, in
this process we do not regard narrowing steps which would instantiate variables
with terms containing active or mark (due to refinement (A)). Moreover, whenever
we encounter a subterm of the form mark(x), we replace it by x (due to refinement
(C)) before continuing the narrowing process. We proceed in an analogous way
for dependency pair (52). Thus, these two pairs are transformed into

A(s(x) − 0) → A(x − 0) (57) A(s(x) − s(y)) → A(x − s(y)) (59)

A(s(x) − 0) → A(p(s(x)) − 0) (58) A(s(x) − s(y)) → A(p(s(x)) − s(y)) (60)

Combining (58) and (60) with (41) yields

A(s(x) − 0) → M(p(s(x)) 6 0) (61) A(s(x) − s(y)) → M(p(s(x)) 6 s(y)) (62)

Pairs (61) and (62) are now combined with (29), (35), and (36), which yields

A(s(x) − 0) → A(mark(p(s(x))) 6 mark(0)) (63)

A(s(x) − 0) → M(p(s(x))) (53)

A(s(x) − 0) → M(0) (54)

A(s(x) − s(y)) → A(mark(p(s(x))) 6 mark(s(y))) (64)

A(s(x) − s(y)) → M(p(s(x))) (55)

A(s(x) − s(y)) → M(s(y)) (56)

Again, pair (54) is not on a cycle. For (63) and (64) we perform narrowing re-
peatedly until no further narrowing steps are possible. However, in this process
we do not regard narrowing steps which would instantiate variables with terms
containing active or mark (due to refinement (A)). Moreover, whenever we en-
counter a subterm of the form mark(x), we replace it by x (due to refinement
(C)) before continuing the narrowing process. This transforms these two pairs
into

A(s(x) − 0) → A(p(s(x)) 6 0) (65) A(s(x) − s(y)) → A(p(s(x)) 6 s(y)) (67)

A(s(x) − 0) → A(x 6 0) (66) A(s(x) − s(y)) → A(x 6 s(y)) (68)

Now (65), (66), and (67) are not on a cycle. To summarize, we are left with the
following pairs:

A(p(s(x))) → M(x) (18) A(s(x) − 0) → A(x − 0) (57)

A(s(x) 6 s(y)) → M(x 6 y) (21) A(s(x) − s(y)) → A(x − s(y)) (59)

A(if(true, x, y)) → M(x) (22) A(s(x) − 0) → M(p(s(x))) (53)

A(if(false, x, y)) → M(y) (23) A(x − y) → M(x 6 y) (41)

A(s(x) − s(y)) → M(x 6 s(y)) (68) M(x − y) → M(x) (37)

A(s(x) − s(y)) → M(p(s(x))) (55) M(x − y) → M(y) (38)

A(s(x) − s(y)) → M(s(y)) (56) M(if(x, y, z)) → M(x) (39)

41

M(p(x)) → A(p(mark(x))) (28) M(s(x)) → M(x) (33)

M(x 6 y) → A(mark(x) 6 mark(y)) (29) M(p(x)) → M(x) (34)

M(x − y) → A(mark(x) − mark(y)) (30) M(x 6 y) → M(x) (35)

M(if(x, y, z)) → A(if(mark(x), y, z)) (32) M(x 6 y) → M(y) (36)

To solve the resulting constraints we use an argument filtering which replaces
mark and active by their arguments and RPO with a precedence where “−” is
greater than both p and “6” and where A and M are equal in the precedence.
Then the dependency pairs (28)–(32) are weakly decreasing and all other pairs
are strictly decreasing.

Note that R is an orthogonal constructor system where all argument positions
of constructors are active. Moreover, in the above dependency pairs of R3

µ, defined
symbols of R occur only at position 1 in right-hand sides. Hence, refinement (D)
is applicable which implies that the active-rules are not usable. As a consequence,
by the above argument filtering, the left and right-hand sides of all usable rules
are made equal. In other words, the constraints resulting from the usable rules
are fulfilled. Hence, the transformed system is innermost terminating and thus,
the original CSRS is also innermost terminating. Since the CSRS is orthogonal,
this also implies its termination.

This example demonstrates that our results are also helpful for termination
proofs of such CSRSs, because they imply that it is sufficient to prove innermost
termination of the transformed system. In general, proving innermost termina-
tion is significantly easier than proving termination [1]. Indeed, in our proof we
made use of several refinements of the dependency pair approach which can only
be used for innermost termination proofs:

– Refinements (A)–(E) only work for innermost termination.

– The technique of narrowing dependency pairs (for non-right-linear systems
like R3

µ) can only be used for innermost termination.

– The technique of usable rules only works for innermost termination (this is
also important when handling the S(f(x)) → S(x) dependency pairs which
have no usable rules).

A.3 Refinements to the Dependency Pair Approach

In this section we comment on the correctness of the refinements (A)–(E) that
were used in the preceding examples.

A.3.1 Refinement (A)

In innermost chains one only regards instantiations of dependency pairs where
the left-hand side is a normal form. Since there is a symbol f ∈ F above every
variable in the left-hand side of every A or M-dependency pair, it follows that the
variables in these pairs cannot be be instantiated by terms containing active or

42

mark. Hence, in A or M-dependency pairs, no narrowing is needed which would
instantiate variables with terms containing active or mark.

A.3.2 Refinement (B)

Refinement (B) is a special case of the following refinement, which can be used
for dependency pairs in general.

Theorem 35 (combining dependency pairs). Let R be a TRS, let P be a
set of pairs of terms such that Var(v) ⊆ Var(u) for all u → v ∈ P, and let
s → t ∈ P. Let t = t′τ with Dom(τ) = Var(t′) \ Var(t) such that for all σ with
sσ a normal form and Dom(σ) ∩ Dom(τ) = ∅, any normal form of tσ has the
form t′(σ ∪ τ ′) for some τ ′ with Dom(τ ′) ⊆ Dom(τ). Let

P ′ = P \ {s → t} ∪ {sµ → vµ | u → v ∈ P and µ = mgu(t′, u)}

If there exists no infinite innermost R-chain of pairs from P ′, then there exists
no infinite innermost R-chain of pairs from P.

Proof. If

· · · , s → t, u → v, · · ·

is an innermost chain of pairs from P, then there exists a substitution σ such
that sσ and uσ are normal forms and such that tσ i→∗

R uσ. Since τ ′ only operates
on the new variables in t′ we have uσ = t′(σ ∪ τ ′) = u(σ ∪ τ ′). Hence, σ ∪ τ ′

is a unifier of t′ and u. Let µ be the mgu of these two terms. So there exists a
substitution ρ such that σ∪ τ ′ = µρ. Hence, the two dependency pairs s → t and
u → v in the innermost chain can be replaced by the new pair sµ → vµ where
instead of the instantiation σ one now has to use the instantiation ρ. ut

Recall that the variables in the A and M-dependency pairs cannot be instan-
tiated by terms containing active or mark. Thus, the symbols from F occurring in
right-hand sides of dependency pairs can be treated like constructors when using
the technique of combining dependency pairs. In other words, all dependency
pairs s → t with root(s) ∈ {A,M} and no active and mark-symbols occurring in
t have the property required in Theorem 35, i.e., for all σ where sσ is a normal
form, tσ is a normal form, too.

Due to the form of R3
µ, for arbitrary terms t the following holds. Let t =

C[t1, . . . , tk] where the context C does not contain mark and active-symbols, and
where the root symbol of the terms ti is mark or active. For substitutions σ
which do not introduce mark or active-symbols, tσ has the form Cσ[t1σ, . . . , tkσ]
and again, Cσ does not contain mark and active-symbols. Note that tσ can only
rewrite in R3

µ to terms of the form Cσ[u1, . . . , uk]. Hence, if we replace all mark
and active-subterms in t by pairwise different fresh variables then the resulting
term cap

′(t) satisfies the requirements on the term t′ in Theorem 35.

43

A.3.3 Refinement (C)

First note that if R3
µ is not innermost terminating, then there also exists an

infinite innermost R3
µ-reduction with terms from T where T is defined as in

Definition 19. (To see this, note that if R3
µ is not innermost terminating then

(R, µ) is not innermost terminating as a consequence of the completeness of
Θ3. From the proof of Theorem 18 we then infer the existence of an infinite
innermost reduction starting from a term of the form mark(s)↓M. Obviously,
mark(s)↓M ∈ T .) Further note that according to the proof of Lemma 20, the set
T is closed under innermost R3

µ-reduction.

Now we show that without loss of generality we can assume that in the left-
hand side A(C[x]) of every A-dependency pair with x on an active position of
C[x], x can only be instantiated with terms s ∈ T (F ,V) such that for all active
positions π in s, s|π is not an R-redex. Every infinite innermost R3

µ-reduction
corresponds to an infinite innermost chain of dependency pairs. As explained
above, we can restrict ourselves to reductions between terms of T . Then an
instantiation of a dependency pair A(C[x]) → . . . with a substitution σ can only
occur in this innermost chain if there is a term t = t[active(Cσ[xσ])]π′ ∈ T in the
infinite innermost R3

µ-reduction. According to the definition of T , the position
π′ of the displayed occurrence of active in t is active. Because the position of x is
active in C[x], it is also active in t. Let s = xσ. Due to the form of the dependency
pairs, C[x] contains at least one symbol of F above x. Moreover, in innermost
chains, the variables of A or M-dependency pairs cannot be instantiated by terms
containing active or mark, cf. the argumentation for refinements (A) and (B).
From these two observations we infer that the active positions π of s are not
activated. Hence, by the definition of T , s|π is not an R-redex. Thus, we can
indeed assume that in dependency pairs A(C[x]) → . . . with x on an active
position of C[x], x is only instantiated with terms s ∈ T (F ,V) without R-redexes
on active positions.

Note that for such terms s, the normal form of mark(s) (reachable by inner-
most R3

µ-reduction) is mark(s) or active(s). To see this, we consider two cases.
If s ∈ V then mark(s) is a normal form. Otherwise, by Lemma 17 the normal
form of mark(s) is active(s) since any innermost R3

µ-reduction would first reduce
mark(s) to mark(s)↓M. Hence, any instantiation of a dependency pair

A(C[x]) → C ′[f(. . . ,mark(x), . . .)]

will only lead to a right-hand side that is reduced to C ′[f(. . . , active(s), . . .)] or
C ′[f(. . . ,mark(s), . . .)] and then to C ′[f(. . . , s, . . .)]. Hence, one can immediately
replace the right-hand side by C ′[f(. . . , x, . . .)].

A.3.4 Refinement (D)

We have the following theorem.

44

Theorem 36. Let (R, µ) be an orthogonal CSRS which is a constructor system
with µ(c) = {1, . . . , arity(c)} for all constructors c. If (R, µ) is not innermost
terminating then there exists a term without defined symbols below the root which
starts an infinite innermost reduction.

Proof. For an innermost terminating term u we denote by ϑ(u) the result of
replacing in the unique µ-normal form of u all subterms with defined root symbol
by a (distinguished) variable. We call a term that is obtained from a term s by
replacing some occurrences of some innermost terminating subterms u by ϑ(u)
a normal form variant of s.

Let s i→µ t and let s′ be a normal form variant of s. We claim that there
exists a normal form variant t′ of t such that s′ i→=

µ t′. To prove the claim we
distinguish two cases.

1. We first regard the case where in the step from s to t a rule l → r is applied
to a redex not inside one of the replaced subterms. Thus we have s = C[lσ]π
and t = C[rσ]π such that no subterm on or above position π is replaced
in s′. Since constructors have only active argument positions, replacing a
term u by ϑ(u) is the same as replacing all subterms u′ of u with defined
root symbol by ϑ(u′). Hence, without loss of generality we can assume that
below π one only replaces subterms with defined root symbol. Since R is a
constructor system, all subterms with defined root symbol are introduced by
the substitution σ. Since R is orthogonal, the replacement of such subterms u′

by ϑ(u′) corresponds to the use of a modified substitution σ′. So s′ = C ′[lσ′]π
for a suitable substitution σ′. The resulting term t′ = C ′[rσ′]π is easily seen
to be a normal form variant of t and the step from s′ to t′ is innermost.

2. If the step from s to t takes place inside a replaced subterm u of s then we
have s = C[u] and t = C[v] with u i→µ v. In the normal form variant s′, the
term u has been replaced by ϑ(u). We have ϑ(u) = ϑ(v) since u and v have
the same µ-normal form. Hence, s′ = C ′[ϑ(u)] = C ′[ϑ(v)] is a normal form
variant of t.

Let s be a minimal term with an infinite innermost reduction, i.e., all proper
subterms are innermost terminating. From the preceding discussion we infer that
the normal form variant s′ of s obtained by replacing all proper subterms u of s by
ϑ(u) again has an infinite innermost reduction; note that the second alternative
above happens only finitely many times as the replaced subterms are innermost
terminating. Since s′ has no defined symbols below the root, this proves the
theorem. ut

One should remark that the above theorem does not hold if constructors have
inactive argument positions. As a counterexample consider the CSRS consisting
of the two rules

f(c(x)) → f(x) b → c(b)

45

with µ(f) = {1} and µ(c) = ∅. The term f(c(b)) starts an infinite innermost
context-sensitive reduction, but all terms without defined symbols below the
root are innermost terminating.

Furthermore, the orthogonality requirement cannot be weakened to non-
overlappingness, as can be seen from the CSRS

f(x) → g(x, i(h(c))) g(x, x) → f(h(b)) h(b) → i(h(c))

with the argument positions of all function symbols active. The term f(h(b))
starts an infinite innermost reduction, but all terms without defined symbols
below the root are innermost terminating.

According to Theorem 36, if (R, µ) is not innermost terminating, then there
exists a term f(t1, . . . , tn) with an infinite innermost µ-reduction such that the
terms t1, . . . , tn contain no R-defined function symbols. Then mark(f(t1, . . . , tn))
has an infinite innermost R3

µ-reduction. The reason is that since t1, . . . , tn contain
no R-redexes, any innermost R3

µ-reduction would first reduce mark(f(t1, . . . , tn))
to mark(f(t1, . . . , tn))↓M. Then the claim follows from the proof of Theorem 18.

The term mark(f(t1, . . . , tn)) is obviously a minimal term with an infinite
innermost R3

µ-reduction, i.e., all its subterms are innermost terminating with
respect to R3

µ. From the soundness proof of the dependency pairs technique [1,
Theorems 31 and 6] one can see that every minimal non-innermost terminating
term f1(u1) gives rise to an infinite innermost chain of dependency pairs

F1(v1) → F2(u2), F2(v2) → F3(u3), · · ·

such that every fi(v �) → ri is a rewrite rule, fi+1(u � +1) is a subterm of ri,
there are substitutions σi such that Fi+1(u � +1)σi

i→∗
3 Fi+1(v � +1)σi+1, and every

Fi+1(v � +1)σi+1 is a normal form. Moreover, we have F1(u1)
i→∗

3 F1(v1)σ1. Hence,
in our setting there is an infinite innermost chain starting with a dependency
pair whose left-hand side is M(f(. . .)) and σ1 instantiates the variables of this
dependency pair by terms without R-defined symbols.

By assumption no right-hand side Fi(u �) of a dependency pair contains an
R-defined symbol strictly below position 1. Hence, if R-defined symbols only
occur at position 1 in an instantiated left-hand side Fi(v �)σi of a dependency
pair, then this also holds for the instantiated right-hand side Fi(u � +1)σi of the
pair. Hence, in the instantiated dependency pairs, mark is only applied to terms
which contain no R-defined function symbols. The terms resulting from these
reductions again contain no R-defined symbols. It follows that the only usable
rules are rules of the form mark(f(. . .)) → active(f(. . .)) for constructors f and
rules f(. . . , g(x), . . .) → f(. . . , x, . . .) for f ∈ F and g ∈ {mark, active}.

A.3.5 Refinement (E)

The following theorem holds for arbitrary TRSs.

46

Theorem 37. Let R be a TRS and let P be a set of pairs of terms. Let s → t ∈
P, let t|π be a reducible ground term, and let u1, . . . , un be the terms reachable
from t|π in one innermost rewrite step. Let P ′ result from P by replacing s → t
with s → t[u1]π, . . . , s → t[un]π. If there exists no infinite innermost chain of
pairs from P ′, then there exists no infinite innermost chain from P either.

Proof. Let
· · · , s → t, u → v, · · ·

be an innermost chain of pairs from P. Then there must be a substitution σ
with tσ i→∗

R uσ where uσ is a normal form. Since tσ|π = t|π is reducible, there is
at least one rewrite step in this reduction. Since the reduction is innermost, t|π
must be normalized before reduction steps are applied to positions above π in tσ.
Obviously, it does not matter in which order reduction steps are performed on
pairwise disjoint positions. Hence, we can assume that in the reduction tσ i→∗

R uσ
one first normalizes t|π. So there exists a term ui such that tσ i→R t[ui]πσ i→∗

R uσ.
Hence, we can replace the dependency pair s → t by s → t[ui]π in the above
innermost chain. ut

47

48

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

95-11 ∗ M. Staudt / K. von Thadden: Subsumption Checking in Knowledge

Bases

95-12 ∗ G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements

Analysis from Multiple Perspectives: Experiences with Conceptual Mod-

eling Technology

95-13 ∗ M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-

ized Views

95-14 ∗ P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-

mation Management: Conceptual Models at Work

95-15 ∗ S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on

Information Technologies & Systems

95-16 ∗ W. Hans / St. Winkler / F. Sáenz: Distributed Execution in Functional

Logic Programming

96-1 ∗ Jahresbericht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional

Trees

96-3 ∗ W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins

in Acyclic Queries with Expensive Predicates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6 ∗ M. Jarke / W. Marquardt: Design and Evaluation of Computer–Aided

Process Modelling Tools

96-7 O. Chitil: The ς-Semantics: A Comprehensive Semantics for Functional

Programs

96-8 ∗ S. Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth

International Conference on Algebraic and Logic Programming

96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration

Management

96-11 ∗ C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement

96-12 ∗ R. Dömges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE∗ — An Environment for Managing the Evolution of Chemical

Process Simulation Models

96-13 ∗ K. Pohl / R. Klamma / K. Weidenhaupt / R. Dömges / P. Haumer /

M. Jarke: A Framework for Process-Integrated Tools

49

96-14 ∗ R. Gallersdörfer / K. Klabunde / A. Stolz / M. Eßmajor: INDIA — Intel-

ligent Networks as a Data Intensive Application, Final Project Report,

June 1996

96-15 ∗ H. Schimpe / M. Staudt: VAREX: An Environment for Validating and

Refining Rule Bases

96-16 ∗ M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across

Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and

Transformation

96-19 ∗ P. Peters / M. Jarke: Simulating the impact of information flows in

networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of cooperative information systems

96-21 ∗ G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information

systems: a manifesto

96-22 ∗ S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms

simultaneously: CoWeb architecture and functionality

96-23 ∗ M. Gebhardt / S. Jacobs: Conflict Management in Design

97-01 Jahresbericht 1996

97-02 J. Faassen: Using full parallel Boltzmann Machines for Optimization

97-03 A. Winter / A. Schürr: Modules and Updatable Graph Views for PRO-

grammed Graph REwriting Systems

97-04 M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow

Haskell Compiler

97-05 ∗ S. Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

97-06 M. Nicola / M. Jarke: Design and Evaluation of Wireless Health Care

Information Systems in Developing Countries

97-07 P. Hofstedt: Taskparallele Skelette für irregulär strukturierte Probleme

in deklarativen Sprachen

97-08 D. Blostein / A. Schürr: Computing with Graphs and Graph Rewriting

97-09 C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets

97-10 M. Nicola / M. Jarke: Integrating Replication and Communication in

Performance Models of Distributed Databases

97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

97-14 R. Baumann: Client/Server Distribution in a Structure-Oriented Data-

base Management System

97-15 G. H. Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

98-01 ∗ Jahresbericht 1997

50

98-02 S. Gruner/ M. Nagel / A. Schürr: Fine-grained and Structure-oriented

Integration Tools are Needed for Product Development Processes

98-03 S. Gruner: Einige Anmerkungen zur graphgrammatischen Spezifikation

von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

98-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

98-05 M. Leucker / St. Tobies: Truth — A Verification Platform for Distributed

Systems

98-07 M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.

Paech / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on

the Scenario Use in Twelve Selected Industrial Projects

98-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in natürlichsprach-

lichen Informationssystemen

98-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

98-10 ∗ M. Nicola / M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

98-11 ∗ A. Schleicher / B. Westfechtel / D. Jäger: Modeling Dynamic Software

Processes in UML

98-12 ∗ W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support

using the World Wide Web

98-13 K. Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-

heitsinformation

99-01 ∗ Jahresbericht 1998

99-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

99-03 ∗ R. Gallersdörfer / M. Jarke / M. Nicola: The ADR Replication Manager

99-04 M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-

tional Logic Programs Based on Needed Narrowing

99-07 Th. Wilke: CTL+ is exponentially more succinct than CTL

99-08 O. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge / Marcin Jurdziński: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 ∗ Mareike Schoop: Cooperative Document Management

2000-06 ∗ Mareike Schoop, Christoph Quix (Ed.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

51

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server

Implementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation free µ-calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC lan-

guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe / Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop / James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts / Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark and Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl / Aart Middeldorp: Transformation Techniques for

Context-Sensitive Rewrite Systems

2002-03 Benedikt Bollig / Martin Leucker / Thomas Noll: Generalised Regular

MSC Languages

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

52

