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Abstract. In this paper, we establish the concept of regularity for languages
consisting of Message Sequence Charts (MSCs). To this aim, we formalise their
behaviour by string languages and give a natural definition of regularity in terms
of an appropriate Nerode right congruence. Moreover, we present a class of ac-
cepting automata and, using this characterisation, establish several decidability
and closure properties of MSC languages. We also provide a logical character-
isation by a monadic second-order logic interpreted over MSCs. In contrast to
existing work on regular MSC languages, our approach is neither restricted to a
certain class of MSCs nor tailored to a fixed communication medium (such as a
FIFO channel). It explicitly allows MSCs with message overtaking and is thus
applicable to a broad range of channel types like mixtures of stacks and FIFOs.

1 Introduction

Components of distributed systems usually communicate with each other via
message passing: A sender process sends a message over a channel, from which
it is taken by the receiver process. A prominent formalism to model this kind of
systems is that of Message Sequence Charts (MSCs) [9, 10]. They are standard-
ised, can be denoted both textually and graphically, and are often employed in
industry. Furthermore, they are quite similar to the notion of sequence charts of
the Unified Modelling Language (UML) [2].

An MSC defines a set of processes and a set of communication actions between
these processes. In the visual representation of an MSC, processes are drawn
as vertical lines. A labelled arrow from one line to another corresponds to the
communication event of sending the labelling value from the first process to the
second. As the vertical lines are interpreted as time axes, there is the general rule
that arrows must not go “upwards”, because this would describe a situation that
a message is received before it has been sent. Figure 1(a) gives an example of
an MSC. Collections of MSCs are used to capture the scenarios that a designer
might want the system to follow or to avoid.

When one considers the dynamic behaviour of an MSC, i.e., the sequences
of actions that may be observed when the system is executed, one distinguishes
between the so-called visual-order semantics and the causal-order semantics. The
visual order assumes that the events are ordered as shown in the MSC. That is,

? ? ? Most of the work was completed during the author’s employment at Lehrstuhl für Informatik
II, Aachen University of Technology, Germany.
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Fig. 1. An MSC and its formalisation

the events on a single process line are linearly ordered, and sending events precede
their corresponding receiving events. For example, Process Q in Figure 1(a) has
to read the a symbol before it can read b. In the causal order-based semantics,
a concrete communication medium between the processes is taken into account,
e.g., a first-in-first-out (FIFO) channel. Furthermore, receiving events on the
same process line are not ordered unless they are “causality dependent”. For
instance, reading event b may occur before reading a: As Process P might have
sent a after R has sent b and assuming a single FIFO incoming channel for Q,
Q will potentially receive b before a. Note that, under the same communication
assumption, reading c must occur before reading d. To simplify our presentation,
we adopt the visual-order point of view in the following. But we would like to
stress that—with minor modifications—our very general approach also works
wrt. the causal order.

Given the system specification in the form of a collection of MSCs, one is
interested in doing formal analysis to discover errors at the early stages of system
design. Of course, the first question arising is which kinds of collections of MSCs
are amenable to formal methods. In a pioneering work by Henriksen et al. [8], a
definition of regularity of MSC languages is proposed. A characterisation in terms
of message-passing automata and in terms of monadic second-order logic is also
given. The paper explains in a convincing way the benefits of these alternative
descriptions, arguing that this is the “right” notion of regularity for MSCs. For
example, a characterisation in terms of finite devices (automata) gives evidence
for a collection of MSCs to be realisable.

However, this approach has a serious limitation. So-called “MSCs with mes-
sage overtaking” cannot be considered. But these are explicitly defined in the
official standard [9] and must be taken into account. The limitation stems from
the fact that, for establishing a link between MSCs and classical language the-
ory, the graphical representation of an MSC has somehow to be mapped to the
domain of strings. The straightforward approach, enumerating the possible lin-
earisations of the events that occur in an MSC, only works for simple types of
MSCs where the correspondence between a sending event and its receiving coun-
terpart can be derived from the order in which they occur in the string. Note
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that also [1] has to restrict the admissible class of MSCs in order to be able to
relate MSCs and string languages.

Our solution to this problem is to associate with every communication event
in the string representation of an MSC a natural number that explicitly es-
tablishes this correspondence. As it will become clear in the next section, this
allows us to drop any restriction on the set of MSCs under consideration. The
price to pay is that, for arbitrary collections of MSCs, we have to work with
strings, automata, etc. over infinite alphabets. For practical applications though,
the “simple” collections of MSCs are of interest. Therefore, within the domain of
(MSC word) languages, we will spot the regular ones. These are defined in terms
of a Nerode right congruence, which allows a straightforward generalisation to
languages over infinite alphabets.

To support formal analysis, we introduce a new kind of automaton (MFA)
accepting linearisations of MSCs. More precisely, our notion of MFAs guarantees
that every accepted word is indeed a linearisation of an MSC. Moreover, we es-
tablish several closure properties and decidability results. In particular, we show
that language inclusion is decidable, a crucial property for model-checking appli-
cations. Our concept of automata is similar to the one introduced by Kaminski
and Francez [11]. Note, however, that in their setting the problem of language
inclusion is undecidable [15]. Furthermore, our framework is well suited for ex-
tensions. In [7], compositional message sequence graphs (CMSGs) are introduced
to describe larger classes of MSCs. Our automata model MFA is well prepared
to accept languages of CMSGs, which can be characterised by MSC languages
with a regular set of representative linearisations, a concept defined and studied
by Madhusudan and Meenakshi [13]. However, due to lack of space, this topic
will be discussed elsewhere.

Subsequently, we follow the line of [8] and develop an alternative automata-
theoretic characterisation based on message-passing automata as well as a de-
scription in terms of monadic second-order logic. Note that, although the results
are similar, the proofs are of a different nature because it is generally impossible
to lift proofs directly from the setting of languages over finite alphabets to the
infinite case.

The main contribution of the paper is to develop a theory of regular collec-
tions of MSCs in terms of Nerode right congruences, finite automata, message-
passing automata, and models of MSO formulas for the full class of MSCs. Thus,
we provide the formal basis for subsequent verification questions. Note that our
approach has already turned out to be useful in the setting of LTL model checking
for MSCs [3].

This paper is a revised version of the Technical Report [4].

2 Message Sequence Charts and Their Linearisations

In this section, we present our formal model for MSCs and establish a string
representation, which describes their behaviour in a linear way.
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2.1 Message Sequence Charts

For N ≥ 2, let PN := {1, . . . , N} be a set of processes and Λ a finite mes-
sage alphabet. Let further ΣS := {Sq

p(λ) | p, q ∈ PN , p 6= q, λ ∈ Λ} and
ΣR := {Rq

p(λ) | p, q ∈ PN , p 6= q, λ ∈ Λ} denote the sets of send and receive
actions, respectively, and Σ := ΣS ∪ ΣR their union. An action Sq

p(λ) stands
for sending a message λ from Process p to Process q, and Rq

p(λ) represents the
corresponding receive action, which is then executed by Process q. In this sense,
Corr := {(Sq

p(λ),Rq
p(λ)) | p, q ∈ PN , p 6= q, λ ∈ Λ} relates those actions that

belong together. From now on, all premises and definitions are made wrt. a fixed
set PN of processes and a fixed message alphabet Λ.

An MSC is a tuple of the form M = ({Ep}p∈PN
, {�p}p∈PN

, f, L) where
{Ep}p∈PN

is a family of pairwise disjoint finite sets of events, each of which
is totally ordered by a relation �p⊆ Ep × Ep. (For simplicity, we consider �p

as a relation over E :=
⋃

p∈PN
Ep, the set of all events.) Let P : E ∪ Σ → PN

yield the process an event or an action belongs to, i.e., P (e) = p for any e ∈ Ep,
P (Sq

p(λ)) = p, and P (Rq
p(λ)) = q. M is required to induce a partition E = S ∪R

of the events into send (S) and receive events (R) such that f : S → R is a
bijective mapping satisfying the following:

– The visual order �⊆ E × E of M , i.e., the reflexive and transitive closure
of

⋃
p∈PN

�p ∪ {(e, f(e)) | e ∈ S}, is a partial order; in particular, it is
antisymmetric.

– L : E → Σ provides information about the messages being interchanged by
communicating events whereby, for all e ∈ S, there is some λ ∈ Λ such that

L(e) = S
P (f(e))
P (e) (λ) and L(f(e)) = R

P (f(e))
P (e) (λ).

For example, Figure 1(b) presents a formal version of the MSC shown in
Figure 1(a).

A partial execution (configuration) of an MSC can be described by a down-
wards closed subset of events, containing those events that occurred so far. For-
mally, given an MSC M = ({Ep}p∈PN

, {�p}p∈PN
, f, L), a configuration of M is a

subset E′ of E satisfying E ′ = ↓E′ := {e ∈ E | ∃e′ ∈ E′ : e � e′}. Let Conf (M)
denote the set of configurations of M . The execution of M can be described by
a transition relation −→M ⊆ Conf (M)×Σ ×Conf (M) where c

σ
−→M c′ iff there

exists e ∈ E − c such that L(e) = σ and c′ = c ∪ {e}.

2.2 MSC Words

A suitable notion of regularity for a class of objects should have similarities with
existing notions for regular sets of objects. We will therefore reduce regularity
of collections of MSCs to regularity of word languages. Thus, we have to iden-
tify an MSC with a set of words, which will be called linearisations or MSC
words. A linearisation represents a possible execution sequence of the events oc-
curring in an MSC. To justify this view, it is necessary to guarantee that—up to
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isomorphism—from a set of linearisations a corresponding MSC can be unam-
biguously inferred and vice versa. We are then able to define an equivalence on
MSC words whose equivalence classes on their own determine exactly one MSC
and, as a whole, stand for the set of all MSCs.

So one of the main problems is how to define an MSC word. For example,
w = S2

1(a)S
2
1(a)R

2
1(a)R

2
1(a) ∈ Σ∗ might define the MSC M1 given in Figure

2. But as w is also a correct linearisation of the MSC aside, we could likewise
imagine that w represents M2, relating the first and the fourth position of w.
We therefore cannot unambiguously correlate a word in Σ∗ with an MSC. Faced
with causal-order semantics, the problem of relating events will be even more
involved. In particular, if we make use of nondeterministic channels (which might
allow MSCs to behave both in a FIFO manner and as a stack, for example), we
need some information about which positions belong together. For this purpose,
each position of a word w ∈ Σ∗ is equipped with a natural number indicating the
matching positions (namely those showing the same number). The words α1, α2 ∈
(Σ × IN)∗ from Figure 3 are such MSC words. Notice that α1 will determine the
MSC M1, whereas M2 will emerge from α2. To avoid these difficulties, [8] and
[1] do not allow an MSC like M2. However, M2 is a perfect “MSC with message
overtaking”, which is explicitly allowed in the MSC standard [9, 10].

S2
1(a)

S2
1(a)

R2
1(a)

R2
1(a)

S2
1(a)

S2
1(a)

R2
1(a)

R2
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M1 M2

Fig. 2. MSCs generated by α1 and α2

We want to develop the respective theory step by step and first call a word
α ∈ (Σ × IN)∗

– proper iff for all (σ, τ) ∈ Corr , π ∈ IN, and prefixes α′ of α, |α′|(τ,π) ≤
|α′|(σ,π) ≤ |α′|(τ,π) + 1, and

– complete iff it is proper and for all (σ, τ) ∈ Corr and π ∈ IN, |α|(σ,π) = |α|(τ,π).

Thus, in a proper word every receiving event (we sometimes refer to positions of
MSC words as events) must be preceded by a sending counterpart, and, for each
number π and each send action, at most one “open” sending event is admitted.

Definition 1 (MSC Word). A word σ1 . . . σ`π1 . . . π`
∈ (Σ × IN)∗ is called an MSC

word iff it is complete. Let MW denote the set of all MSC words and PW the
set of proper words.
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To see some examples, look at the words α1, . . . , α4 ∈ (Σ × IN)∗ given in
Figure 3. As mentioned before, α1 and α2 are MSC words, whereas α3 is certainly
proper but not complete and α4 is not even proper. We will refer to α1 and α2

as exemplary MSC words throughout the rest of the paper.
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1(a)
1

S2
1(a)
3

R2
1(a)
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R2
1(a)
3

α2 =
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2
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1
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1
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1
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1

S1
2(b)
1

S2
1(a)
2

Fig. 3. Exemplary words

Given a proper word α = σ1 . . . σ`π1 . . . π`
∈ PW, we determine which positions are

matching. For i, j ∈ {1, . . . , `}, we write i↘α j iff the following conditions hold:

– i < j,

– (σi, σj) ∈ Corr , and

– j = min{k | k > i and πk = πi and (σi, σk) ∈ Corr}.

Referring to the previous example, the matching positions of α1 and α2 can
be illustrated as in Figure 4, i.e., 1 ↘α1 3 and 2 ↘α1 4 as well as 1 ↘α2 4 and
2 ↘α2 3.
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1

S2
1(a)
3

R2
1(a)
1

R2
1(a)
3

S2
1(a)
1

S2
1(a)
2
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2

R2
1(a)
1

Fig. 4. Matching positions

2.3 From MSC Words to MSCs

Let us show that MSC words indeed represent MSCs. Falling back on the match-
ing relation, a word α = σ1 . . . σ`π1 . . . π`

∈ MW generates an MSC M(α) := ({Ep}p∈PN
,

{�p}p∈PN
, f, L) where

– Ep = {n ∈ {1, . . . , `} | P (σn) = p},
S = {n ∈ {1, . . . , `} | σn ∈ ΣS},
R = {n ∈ {1, . . . , `} | σn ∈ ΣR},

– n �p m iff n,m ∈ Ep and n ≤ m,

– f(n) = m iff n↘α m, and

– L(n) = σn.
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For example, α1 generates the MSC M1 illustrated in Figure 2, whereas α2

generates M2.
Moreover, there is no problem in extending the above definition to proper

words, which then determine prefixes of MSCs.
Note that two different proper words can stand—up to isomorphism—for

one and the same MSC or configuration of an MSC, respectively: Since the
naturals are only used for identifying matching positions, we have some freedom
in choosing the actual value. Furthermore, we are free to choose the linearisation
of independent events. Therefore, we define two equivalence relations ≈⊆ PW×
PW and ∼⊆ MW × MW. The first identifies words with equivalent projections
onto the second component; the latter, as introduced further below, allows to
permute the positions of an MSC word.

Thus, for α = σ1 . . . σ`π1 . . . π`
∈ PW and β = τ1 . . . τmρ1 . . . ρm

∈ PW, let α ≈ β iff σ1 . . . σ` =

τ1 . . . τm and for all i, j ∈ {1, . . . , `}, i↘α j iff i↘β j.

Remark 1. ≈ is an equivalence relation.

For instance, let αn
1 emerge from α1 by replacing 3 in the natural-number

component with some n ∈ IN. Then, αn
1 ∈ MW iff n 6= 1, and αn

1 ∈ MW implies
α1 ≈ αn

1 . But notice that α1 6≈ α2 because the second condition in the definition
of ≈ is violated.

For a proper word α = σ1 . . . σ`π1 . . . π`
∈ PW, let open(α) ⊆ ΣS × IN denote the

set of those send events that are not followed by a matching receive event, i.e.,
open(α) := {(σi, πi) | σi ∈ ΣS and there is no j > i such that i ↘α j}. We call
the elements of open(α) open events. A word α ∈ PW is called in normal form
iff for all prefixes σ1 . . . σkπ1 . . . πk

of α, σk ∈ ΣS implies πk = min{π ∈ IN | (σk, π) 6∈
open(σ1 . . . σk−1π1 . . . πk−1

)}. Thus, for every sending event, the lowest available number is

chosen. Note that every equivalence class in PW/≈ contains exactly one word
in normal form. For α ∈ PW, let furthermore nf(α) = β iff α ≈ β and β is in
normal form. For instance, nf(α1) = α2

1, whereas α2 is already in normal form
so that nf(α2) = α2. nf is applied to sets of words in the expected manner.

In the following, we will not distinguish ≈-equivalent words.

Definition 2 (MSC Word Language). A set L ⊆ MW is called an MSC
word language iff L = L≈ where L≈ denotes the ≈-closure of L.

Note that, for any MSC word language L, it holds L = nf(L)≈.
Characterising regular languages within the scope of MSCs, a certain restric-

tion of words and MSCs will prove to be important. Given a natural number
B, α ∈ MW is called B-bounded iff for all prefixes α′ of α and actions σ ∈ ΣS ,
|open(α′)∩{(σ, π) | π ∈ IN}| ≤ B. This means that the number of open events is
bounded by B for every send action. Examples for 2-bounded MSC words are α1

and α2. Note that we could likewise call α B-bounded iff for all prefixes α′ of α,
|open(α′)| ≤ B, i.e., the total number of open send events is bounded by B, or also
iff for all prefixes α′ of α and p ∈ PN , |open(α′)∩{(σ, π) |π∈ IN, P (σ) = p}| ≤ B,
which means that the number of open events per process is bounded by B.
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The definitions differ in the concrete bound, and the appropriate definition
taken may vary depending on an underlying channel type. However, all presented
results hold for every of these definitions.

2.4 Linearisations of MSCs

To finally relate MSCs to the rich theories of languages and automata over words,
the concept of linearisations of an MSC is essential. We call an MSC word α =
σ1 . . . σ`π1 . . . π`

∈ (Σ × IN)∗ a linearisation of an MSC M = ({Ei}i∈PN
, {�i}i∈PN

, f, L)
with a set of events E = {e1, . . . , e`} iff there are c1, . . . , c` ∈ Conf (M) with

∅
σ1−→Mc1

σ2−→M · · ·
σ`−→Mc` and there is a bijective mapping χ : E → {1, . . . , `}

such that

– for all e ∈ E, L(e) = σχ(e), and

– for all e ∈ S, e′ ∈ R, f(e) = e′ implies χ(e) ↘α χ(e′).

Lin(M) denotes the set of linearisations of M . For a set M of MSCs, we canoni-
cally define Lin(M) :=

⋃
{Lin(M) |M ∈ M}. For instance, the exemplary word

α1 is a linearisation of the MSC M1 shown in Figure 2, and α2 is a linearisation
of M2. When, above, we spoke of isomorphism of two MSCs, we actually meant
“inducing the same set of linearisations” instead.

An MSC is called B-bounded iff all of its linearisations are B-bounded. A
collection of MSCs (a collection of MSC words, respectively) is B-bounded iff all
members are B-bounded. Furthermore, we speak of boundedness in general iff we
deal with B-boundedness for an arbitrary B.

We now turn towards ∼⊆ MW × MW, the second natural equivalence rela-
tion to study on linearisations of MSCs because it takes permutations of posi-
tions into account. For example, in Figure 1, it makes no real difference whether
S2

3(b) occurs before R2
1(a) or after it. Given Σ, we define the dependence relation

D(Σ) ⊆ (Σ × IN)2 and write (σ, π)D(Σ)(σ′, π′) iff

– P (σ) = P (σ′) or

– (σ, σ′) ∈ Corr and π = π′ or

– (σ′, σ) ∈ Corr and π = π′.

It turns out that the pair (Σ × {1, . . . , B}, D(Σ) ∩ (Σ × {1, . . . , B})2) is a
Mazurkiewicz trace alphabet [6] for every natural B—a fact which was already
used in [12] providing a direct link between Mazurkiewicz traces and MSCs.

We then define the relation ∼ to be the least equivalence relation satisfying
the following: If α = β1(σ, π)(σ′, π′)β2 and α′ = β1(σ

′, π′)(σ, π)β2 for suitable
β1, β2 and not (σ, π)D(Σ)(σ′, π′), then α ∼ α′.

This section concludes with the following important properties of sets of lin-
earisations that are induced by MSCs. In particular, they establish the expected
connections between linearisations and the equivalence relations ≈ and ∼.

Theorem 1. For an MSC M and α ∈ Lin(M), Lin(M) = Lin(M(α)).
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Theorem 2. For α ∈ MW, Lin(M(α)) = [α](≈∪∼)∗ .

Theorem 1 and Theorem 2 can be shown by employing standard techniques
taken, for example, from the theory of Mazurkiewicz traces. The proofs are left
to the reader.

3 Regular MSC Word Languages and Their Automata

We already mentioned that the regularity of collections of MSCs will be defined
in terms of regular MSC word languages. But as MSC words are defined over
the infinite alphabet Σ× IN, we have to modify the usual notion of regularity. In
[11], a definition of regular word languages over infinite alphabets is proposed by
providing an extended automata model that employs a finite transition relation
but generates a behaviour catering for the fact that we deal with an infinite al-
phabet. However, important questions for these automata are undecidable. Thus,
we follow a different approach. We first constitute an algebraic characterisation
of regularity by means of a slightly adapted version of the Nerode right congru-
ence, which allows a straightforward extension to infinite alphabets. Then, we
establish its equivalence to an automata model that has similarities with the one
described in [11] but is better suited for MSCs and provides desired properties.

3.1 Regular MSC Word Languages

Given an MSC word language L, recall the definition of the Nerode right con-
gruence ≡L ⊆ PW × PW:

α ≡L β iff ∀γ ∈ (Σ × IN)∗.αγ ∈ L iff βγ ∈ L

As we want to identify ≈-equivalent words, we define ≈∼L ⊆ PW × PW as an
extension of the Nerode right congruence by α ≈∼Lβ iff nf(α) ≡L nf(β). Figure 5
illustrates the definition of ≈∼L.

α ≈∼L β

≈ ≈
nf(α) ≡L nf(β)

Fig. 5. Extending the Nerode right congruence

Definition 3 (Regular MSC Word Language). An MSC word language L
is called regular iff ≈∼L has finite index.

The next characterisation of regular MSC word languages prepares for prov-
ing their correspondence with a certain class of finite automata, which we intro-
duce further below.
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Theorem 3. Let L be an MSC word language. L is regular iff nf(L) is a regular
word language over Σ ×Q for a finite subset Q of IN.

Proof. (=⇒) Let Q =
⋃
{{π1, . . . , π`} | σ1 . . . σ`π1 . . . π`

∈ nf(L)}. We show both that Q
is finite and that ≡nf(L) has finite index. Then nf(L) is a regular word language.

We begin proving the finiteness of Q. Suppose Q is infinite. Then there is a
family {αn}n∈IN ⊆ nf(L) such that (without loss of generality) n is the maximal
number occurring in αn and αn = σn1 . . . σnkn

. . . σn`nπn1 . . . n . . . πn`n

where σnkn
is the last

send action annotated with n. Let α′
n = σn1 . . . σnknπn1 . . . n

(and hence nf(α′
n) = α′

n).

As ≈∼L has finite index, there are i, j ∈ IN, i < j, with α′
i
≈∼Lα

′
j . By definition,

nf(α′
i) ≡L nf(α′

j) and consequently α′
i ≡L α

′
j . But for γ = σiki+1

. . . σi`iπiki+1

. . . πi`i

, α′
iγ ∈ L

and α′
jγ 6∈ L, because j does not occur in γ which is necessary to make αjγ an

MSC word. So assuming that Q is infinite leads to a contradiction.
Let us then show that ≡nf(L) has finite index, again by contradiction. Suppose

that ≡nf(L) has infinite index. Then there is a family {αn}n∈IN ⊆ PW such that for
all n,m ∈ IN with n 6= m, αn 6≡nf(L) αm, and, without loss of generality, αn is in
normal form. As ≈∼L has finite index, there are i, j ∈ IN, i 6= j, satisfying αi

≈∼Lαj

and hence nf(αi) ≡L nf(αj). Let γ ∈ (Σ × IN)∗ such that nf(αi)γ ∈ nf(L). Then
nf(αj)γ must also be an MSC word, furthermore in normal form and therefore
contained in nf(L). (γ has to close the same send events in nf(αi) as in nf(αj). The
“rest” of γ forms a proper and complete word in normal form so that nf(αj)γ
is in normal form.) We conclude nf(αi) ≡nf(L) nf(αj) and hence αi ≡nf(L) αj

leading to a contradiction.
(⇐=) Let us first slightly extend the definition of ≈ by writing α ≈ β for

suffixes α and β of MSC words iff there is a word α′ ∈ PW such that α′α ≈ α′β.
Let nf(L) ⊆ (Σ × Q)∗, Q ⊆ IN finite, be a regular word language. Suppose

≈∼L has infinite index. There exists a family {αn}n∈IN ⊆ PW with αn 6 ≈∼Lαm

and hence nf(αn) 6≡L nf(αm) for all n,m ∈ IN with n 6= m. But as ≡nf(L) has
finite index, we can find i, j ∈ IN, i 6= j, satisfying nf(αi) ≡nf(L) nf(αj). Let
γ ∈ (Σ × IN)∗ such that nf(αi)γ ∈ L. Then there exists a word γ ′, γ′ ≈ γ, with
nf(αi)γ

′ ∈ nf(L) and (due to nf(αi) ≡nf(L) nf(αj)) nf(αj)γ
′ ∈ nf(L). As L is the

≈-closure of nf(L), we finally get nf(αj)γ ∈ L and altogether nf(αi) ≡L nf(αj)
resulting in a contradiction. �

Corollary 1. Regular MSC word languages are bounded.

The next theorem will be useful when, in Section 4, we consider ∼-closed
MSC word languages.

Theorem 4. Let L be a ∼-closed regular MSC word language. Then nf(L)∼ is
a regular word language over a finite alphabet.

Proof. To prove the theorem, we need to introduce some Mazurkiewicz trace
theory. Given a (finite) alphabet A and a relation D ⊆ A × A, we call the pair
(A,D) a dependence alphabet iff D is reflexive and symmetric. (A,D) induces an
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equivalence relation ∼(A,D)⊆ A∗ × A∗ as follows: w ∼(A,D) w
′ iff there exists a

sequence w1, . . . , wn ∈ A∗ such that w = w1, w
′ = wn, and for all i ∈ {1, . . . , n−

1}, there are letters z, z ′ ∈ A and words wi1 , wi2 ∈ A∗ with

– wi = wi1zz
′wi2 ,

– wi+1 = wi1z
′zwi2 , and

– (z, z′) 6∈ D.

In other words, w and w′ are equivalent iff w′ can be obtained from w by finitely
often permuting independent letters where two letters are called independent
iff they are not dependent. A language X ⊆ A∗ is called a regular Mazurkiewicz
trace language over (A,D) iff it is a regular word language and ∼(A,D)-closed. We
assume A to be totally ordered and < to denote the corresponding lexicographic
ordering on A∗. A word w ∈ A∗ is said to be in lexicographic normal form iff it is
minimal in [w]∼(A,D)

wrt. <. Furthermore, for X ⊆ A∗, Min(X) := {w ∈ X | w
is in lexicographic normal form} denotes the set of minimal elements in X. Due
to Theorem 4.6 and Corollary 4.6 in [6], for a regular word language X ⊆ A∗,
Min(X∼(A,D)) ⊆ X implies that X∼(A,D) is a regular Mazurkiewicz trace lan-
guage. Thus, for a regular set X containing at least the representatives in lexi-
cographic normal form, the closure of X wrt. ∼(A,D) is a regular (Mazurkiewicz
trace) language.

We now turn towards the proof. So let L be a ∼-closed regular MSC word
language. As we already know from Theorem 3, there is a B ∈ IN such that
nf(L) is a regular word language over Σ × {1, . . . , B}. We define Σ̂ to be the
pair (Σ × {1, . . . , B}, D(Σ) ∩ (Σ × {1, . . . , B})2) and easily verify that Σ̂ is a
dependence alphabet satisfying ∼ �

Σ
=∼ ∩(Σ × {1, . . . , B})2. Let Σ × {1, . . . , B}

be totally ordered such that for all (σ, π) ∈ ΣS × {1, . . . , B} and (σ′, π′) ∈
ΣR × {1, . . . , B}, (σ, π) is smaller than (σ ′, π′). We show that Min(nf(L)∼) ⊆
nf(L) and, according to the previous remarks, conclude that nf(L)∼ is a regular
(Mazurkiewicz trace) language. Suppose there is a non-minimal word α ∈ nf(L).
We show that it is possible to transform α into a (lexicographically) minimal MSC
word α′ in normal form (wrt. ≈) such that α′ ∼ α. As L is ∼-closed, we conclude
that α′ ∈ nf(L) so that nf(L) indeed contains the minimal representatives. Con-
sider α: It may be of the form β1(σ, π)(σ′, π′)β2 for suitable β1 and β2 where,
wrt. the underlying total ordering, (σ ′, π′) is smaller than (σ, π). Consider the
case that σ, σ′ ∈ ΣS and ((σ, π), (σ′, π′)) 6∈ D(Σ). Obviously, β1(σ

′, π′)(σ, π)β2 is
in normal form (wrt. ≈) as well but respecting the lexicographic ordering at the
considered positions. The cases σ, σ ′ ∈ ΣR and (σ, σ′) ∈ ΣR ×ΣS behave in the
same manner, respectively. By successively applying such permutations, we can
obtain the minimal word α′ in [α]∼. �

3.2 MSC Finite-Memory Automata

We now present an automata model that characterises the class of regular MSC
word languages. Our definition is inspired by [11] but modified to suit the re-
quirements for MSCs and to allow stronger decidability results. Our model can
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be described as a finite automaton that makes use of a finite window whose
positions occur in the labellings of the transitions—as well as elements of Σ—
and indicate where to store a symbol of the infinite alphabet Σ× IN (concerning
send actions) and where to take it from (concerning receive actions), respectively.
Note that normal forms of regular MSC word languages could also be accepted
by “standard” finite automata and we can use this fact to establish certain clo-
sure properties. However, not every finite automaton accepts normal forms of
MSC words so that we do not get a precise automata-theoretic characterisation
of regular MSC word languages which is the basis for a powerful algorithmic
support of the theory on MSCs.

Definition 4 (MSC Finite-Memory Automaton). An MSC finite-memory
automaton (MFA) is a quintuple of the form A = (S, r,∆, q0, F ) where

– S is a nonempty finite set of states,
– r ≥ 1 is a natural number called window length,
– ∆ ⊆ S × (Σ × {1, . . . , r}) × S is the transition relation,

– q0 ∈ S is the initial state, and
– F ⊆ S is the set of final states.

s0

s1 s12 s2

s21

# #

S,1

R,1

S,2 R,1

S,1R,2

R,2

s0

s1

s2

# #

S,1 R,1

S,2 R,2

A1: A2:

Fig. 6. Two MFAs

Figure 6 shows two MFAs, each with a window of length two. Let thereby S
stand for S2

1(a) and R for R2
1(a).

Let A be an MFA as above. A configuration of A lists the current state and
the current window entries, which are either numbered send events or empty
(denoted by #). Thus, let ConfA := S× ((ΣS × IN)∪{#})r denote the (infinite)
set of configurations of A. We define a transition relation =⇒A⊆ ConfA × (Σ ×
IN) × ConfA as follows:

– For σ ∈ ΣS , (s,w)
(σ,π)
=⇒A (t,v) iff (σ, π) does not occur in w and there is a

transition (s, (σ, k), t) ∈ ∆ such that

• w[k] = #,

14



• v[k] = (σ, π), and

• for each l 6= k, w[l] = v[l].

– For σ ∈ ΣR, (s,w)
(σ,π)
=⇒A (t,v) iff there is a transition (s, (σ, k), t) ∈ ∆ such

that

• w[k] = (τ, π) where (τ, σ) ∈ Corr ,

• v[k] = #, and

• for each l 6= k, w[l] = v[l].

Thus, the meaning of a transition (s, (Sq
p(λ), k), t) is the following: If A is in

state s, it is able to read an input symbol (Sq
p(λ), π), π ∈ IN, iff the kth position of

its window is currently free and, furthermore, (Sq
p(λ), π) does not occur elsewhere

in the window, i.e., there is no further open (Sq
p(λ), π)-labelled send event. Taking

the transition, the automaton stores (Sq
p(λ), π) in the kth position and enters

state t. If, in contrast, the automaton reads an input symbol (Rq
p(λ), π), there

has to be a transition (s, (Rq
p(λ), k), t) such that the kth position of the window

currently shows the corresponding send symbol (Sq
p(λ), π). Replacing this symbol

with #, the automaton enters state t.

A run of A on a word σ1 . . . σ`π1 . . . π`
∈ (Σ × IN)∗ is a corresponding sequence

(s0,w0)(s1,w1) . . . (s`,w`) of configurations such that

– s0 = q0,

– w0 = #r, and

– for each i ∈ {1, . . . , `}, (si−1,wi−1)
(σi,πi)
=⇒A (si,wi).

The run is accepting iff s` ∈ F and w` = #r. L(A) := {α | there is an accepting
run of A on α} forms the language defined by A. We conclude that matching
events in an accepted word use one and the same position of the window for their
“agreement”.

Due to the conditions we laid down for making transitions and accepting
words, the automaton will accept MSC words only. A receive symbol has to be
preceded by a corresponding send symbol, which, on its part, has to wait for the
corresponding receive symbol before repeating the identical send symbol. Thus,
we make sure that an accepted word is proper. Furthermore, recall that a run is
accepting as soon as it ends in a final configuration featuring an empty window.
In this way, completeness of accepted words is ensured. Moreover, the recognised
language is ≈-closed because matching symbols can be read with—up to the
MSC-word condition—arbitrary natural numbers. Notice that a regular MSC
word language is not necessarily ∼-closed, a key feature allowing [13] to model
CMSGs in terms of MSC word languages. We sum up these considerations as
follows:

Proposition 1. Given an MFA A, L(A) is an MSC word language.

For example, let us consider the MFAs A1 and A2 illustrated by Figure 6 and
behaving in a FIFO manner and as a stack, respectively. For the sake of clarity,
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let S stand for S2
1(a) and R for R2

1(a). Note that our MFAs permit only Process 1
to send and only Process 2 to receive a message a.

Recall our exemplary words α1 and α2. In fact, α1 ∈ L(A1) and α2 ∈ L(A2),
but α1 6∈ L(A2) and α2 6∈ L(A1). An accepting run of A1 on α1 first writes
(S2

1(a), 1) into the first position of the window and then (S2
1(a), 3) into the second,

whereupon the window is cleared in the same order, reading first (R2
1(a), 1) and

then (R2
1(a), 3).

We can show that our notion of automata covers exactly the class of regular
MSC word languages.

Theorem 5. An MSC word language L is regular iff there is an MFA A such
that L = L(A).

Proof. Exploiting Theorem 3, we specify respective automata.

(=⇒) Let A = (S,−→, q0, F ) be a finite automaton with −→⊆ S×(Σ×Q)×S
for a finite set Q ⊆ IN such that L(A) = nf(L). We can consider A as an MFA
A′ = (S′, r,∆, q′0, F

′) satisfying L(A′) = L(A)≈ = L as follows:

– S′ = S,

– r = |Q|,

– (s, (σ, k), t) ∈ ∆ iff s
(σ,k)
−→ t,

– q′0 = q0, and

– F ′ = F .

(⇐=) Given an MFA, the corresponding set of MSC words in normal form
makes use of finitely many configurations only, which become states in the fi-
nite automaton to be constructed. Thus, for an MFA A = (S, r,∆, q0, F ), let
Q = {1, . . . , r} and A′ = (S′,−→, q′0, F

′) be the corresponding finite automaton
satisfying L(A′) = nf(L(A)), defined as follows:

– S′ = S × ((ΣS ×Q) ∪ {#})r,

– −→⊆ S′ × (Σ × Q) × S ′ where (s,w)
(σ,π)
−→ (t,v) iff both (s,w)

(σ,π)
=⇒A (t,v)

and σ ∈ ΣS implies π = min{π′ ∈ IN | (σ, π′) does not occur in w},

– q′0 = (q0,#
r), and

– F ′ = F × {#r}.

In both cases, it is straightforward to show that the constructed automaton
has the desired property. �

Given an MSC word language in terms of an MFA, the first natural question
is whether it defines the trivial language.

Theorem 6. It is decidable whether a regular MSC word language given by an
MFA is empty.
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Proof. Theorem 6 is a direct consequence of Theorem 3 and the constructive
proof of Theorem 5. Given an MFA A, build the corresponding finite automaton
A′ satisfying L(A′) = nf(L(A)), which is then checked for emptiness by means
of standard techniques. And clearly, L(A) = ∅ iff L(A′) = ∅. �

By means of Theorem 3 and due to the fact that the concatenation of two
MSC words in normal form is again in normal form, we obtain some closure
properties of regular MSC word languages.

Theorem 7. The class of regular MSC word languages is closed under union,
intersection, concatenation, and Kleene star.

To support the algorithmic handling of MFAs, we furthermore illustrate cor-
responding automata-theoretic constructions, which also establish the above clo-
sure properties.

Let A1 = (S1, r1,∆1, q01, F1) and A2 = (S2, r2,∆2, q02, F2) be MFAs, S1 ∩
S2 = ∅. The MFA A∪ = (S, r,∆, q0, F ), q0 6∈ S1 ∪ S2, satisfying L(A∪) =
L(A1) ∪ L(A2), is given by

– S = S1 ∪ S2 ∪ {q0},

– r = r1 + r2,

– (s, (σ, k), t) ∈ ∆ iff

• s = q0 and (q01, (σ, k), t) ∈ ∆1 or

• s = q0 and (q02, (σ, k − r1), t) ∈ ∆2 or

• (s, (σ, k), t) ∈ ∆1 or

• (s, (σ, k − r1), t) ∈ ∆2, and

– F = F1 ∪ F2 ∪ {q0 | q01 ∈ F1 or q02 ∈ F2}.

The main idea is to assign to each of the automata an exclusive part of the
window. A run first decides to enter either A1 or A2 and is henceforth limited
to the respective part of the window.

The other cases require the automata constructions used in the proof of The-
orem 5. Finite automata accepting normal forms can be intersected and concate-
nated using standard techniques. As mentioned above, the resulting automata
can be understood as MFAs.

We easily see that the class of regular MSC word languages is not closed
under complement, because the complement of a regular MSC word language is
always unbounded. This also implies that the standard way to show decidability
of language inclusion does not work. However, in contrast to the general case of
regular languages over infinite alphabets where language inclusion is undecidable
(see [15]), we can directly show that the inclusion problem is decidable. This is
of great importance for the development of model checking algorithms.

Theorem 8. Given MFAs A1 and A2, it is decidable whether L(A1) ⊆ L(A2).
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Proof. According to the construction in the proof of Theorem 5, we are able
to ascribe decidability to the case of regular languages over finite alphabets. In
fact, given finite automata A′

1 and A′
2 with L(A′

1) = nf(L(A1)) and L(A′
2) =

nf(L(A2)), it holds L(A1) ⊆ L(A2) iff L(A′
1) ⊆ L(A′

2). �

4 Regular MSC Languages and Their Automata

4.1 Regular MSC Languages

We now extend our theory of regular MSC word languages to collections of MSCs.
Regularity of such a collection is ascribed to regularity of the set of corresponding
linearisations.

Definition 5 (Regular MSC Language). A collection M of MSCs is called
a regular MSC language iff Lin(M) is a regular MSC word language.

According to this definition, the set of linearisations of a regular MSC lan-
guage is necessarily ∼-closed by Theorem 2. Hence, regular MSC languages can-
not be characterised by MFAs as presented in the previous section because these
accepts also non-∼-closed languages. We therefore develop a generalisation of
message-passing automata [8] that accept exactly regular MSC word languages
corresponding to regular MSC languages. It should be noted that a regular MSC
language is bounded.

One might ask at this stage for the reason considering regular MSC word
languages as well as regular MSC languages because the latter seem to be the
first choice studying linearisations of MSCs. This is true when we abstract from a
communication medium between the processes of an MSC. Consider for example
the MSC presented in Figure 1(b). In the visual-order approach, there is no
difference whether S2

3(b) occurs before R2
1(a) or vice versa. However, turning

towards more complex semantics of MSCs, this might not be true any longer.
Suppose the two processes communicate via a one element buffer. Then the only
linear execution we will see is that R2

1(a) occurs before S2
3(b). Thus, the set of

linearisations of an MSC is no longer necessarily ∼-closed. It is indeed possible
to model communication mediums by means of certain MFAs, which enrich a
specification in form of MSCs [3]. However, let us come back to visual-order
semantics and to ∼-closed languages.

4.2 Generalised Message-Passing Automata

The following automata model employs different automata components, each
of which executes the actions of one single process. They communicate with
each other over a window roughly as featured by an MFA. The length of this
window is still bounded by a natural number r. The crucial point is that the
window entries are no longer single send events (each paired with a natural num-
ber) but sequences of send events (each paired with a natural number and an
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additional message). To preserve ∼-closedness of the recognised languages, the
components rather have to restrict themselves, whereas the window is a commu-
nication medium only. For example, we could imagine an automata component
that has to keep a send action waiting until it executes a certain receive action,
which, in turn, has to be preceded by a corresponding send action executed by
another component. In fact, for regular languages, our view generalises the model
proposed in [8], which has its origins in [16].

Definition 6. A generalised message-passing automaton (GMPA) is a family
A = ({Ap}p∈PN

, r, qin , F,Mess) of so-called local automata together with a nat-
ural number r ≥ 1, a global initial state qin , a set of global final states F ,
and a nonempty finite set of messages Mess. A local automaton is of the form
Ap = (Sp,∆p) where

– Sp is a nonempty finite set of local states and

– ∆p ⊆ Sp × (Σp × {1, . . . , r} × Mess) × Sp is a set of local transitions (Σp

contains the actions belonging to Process p).

qin is an element and F a subset of SA :=×p∈PN
Sp, the set of global states of A.

For an GMPA A, the (infinite) set of its configurations is defined by ConfA :=
SA ×{χ | χ : ΣS ×{1, . . . , r} → (IN×Mess)∗}. Let s[p] be the pth component of
a global state s ∈ SA. Furthermore, for W : ΣS × {1, . . . , r} → (IN × Mess)∗, let
W[(σ, k) / w] denote the function that coincides with W with the exception that, for
(σ, k), it yields w. We define a transition relation =⇒A⊆ ConfA×(Σ×IN)×ConfA
as follows:

– For σ ∈ ΣS with P (σ) = p, (s, W)
(σ,π)
=⇒A (t, V) iff for all k′ ∈ {1, . . . , r}

and m′ ∈ Mess, (π,m′) does not occur in W(σ, k′), and there is a transition
(s[p], (σ, k,m), t[p]) ∈ ∆p such that

• V = W[(σ, k) / W(σ, k) · (π,m)] and

• for all l ∈ PN − {p}, s[l] = t[l].

– For σ ∈ ΣR with P (σ) = p and (τ, σ) ∈ Corr , (s, W)
(σ,π)
=⇒A (t, V) iff there are

a transition (s[p], (σ, k,m), t[p]) ∈ ∆p and a word w ∈ (IN×Mess)∗ such that

• W(τ, k) = (π,m) · w,

• V = W[(τ, k) / w], and

• for all l ∈ PN − {p}, s[l] = t[l].

A run of A on a word σ1 . . . σ`π1 . . . π`
∈ (Σ × IN)∗ is defined in analogy to the

MFA case. That is, we are dealing with a sequence (s0, W0)(s1, W1) . . . (s`, W`) of
configurations such that

– s0 = qin ,

– W0(σ, k) = ε for all (σ, k) ∈ ΣS × {1, . . . , r}, and

– for each i ∈ {1, . . . , `}, (si−1, Wi−1)
(σi ,πi)
=⇒A (si, Wi).
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The run is accepting iff s` ∈ F and W`(σ, k) = ε for all (σ, k) ∈ ΣS × {1, . . . , r}.
Finally, L(A) := {α | there is an accepting run of A on α} denotes the language
defined by A.

Let Reach(A) denote the set of configurations reachable within a run of A.
For B ∈ IN, we call A B-bounded iff for all (s, W) ∈ Reach(A) and σ ∈ ΣS ,∑

k∈{1,...,r} |W(σ, k)| ≤ B. We call it bounded iff it is B-bounded for some B.
Figure 8 illustrates a possible run of the automaton A from Figure 7.

s0

s2

s1

S2
1(a),1,X

S2
1(a),1,Y

R1
2(b),1,X t0

t2

t1

R2
1(a),1,X

R2
1(a),1,Y

S1
2(b),1,XA:

Fig. 7. A 2-bounded GMPA

Let us formulate the fundamental result of this section.

Theorem 9. Let L ⊆ MW be an MSC word language. The following statements
are equivalent:

1. There is a regular MSC language M with Lin(M) = L.

2. L is a ∼-closed regular MSC word language.
3. There is a bounded GMPA A such that L(A) = L.

Proof. The equivalence of 1. and 2. immediately follows from the definitions.
Given a bounded GMPA, it is an easy task to define an equivalent MFA which
shows that 3. implies 2. The other direction, however, is more involved and
requires some results on regular Mazurkiewicz trace languages and related au-
tomata due to Zielonka [16].

A nonempty family Ã = {Ai}i∈{1,...,n} of (not necessarily disjoint) finite al-
phabets is called a distributed alphabet. From now on, for z ∈ A :=

⋃
i∈{1,...,n}Ai,

loc(z) := {i | z ∈ Ai} will denote the set of components in which z is in-
volved. An asynchronous automaton over the distributed alphabet Ã is a tuple
Z = ({Qi}i∈{1,...,n}, {−→z}z∈A, q0, F ) where

– Qi is a nonempty finite set of local states,
– −→z⊆ (×i∈loc(z)Qi)

2 is the transition relation of z,

– q0 ∈×i∈{1...,n}Qi is the (global) initial state, and

– F ⊆×i∈{1...,n}Qi is the set of (global) final states.

Let QZ :=×i∈{1...,n}Qi denote the set of global states of Z, and, for C ⊆
{1, . . . , n}, let q|C be the projection of q ∈ QZ onto the components from C.
The global transition relation =⇒Z⊆ QZ × A × QZ of Z is defined as follows:
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Fig. 8. A run of A
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q
z

=⇒Z q′ iff q|loc(z) −→z q
′
|loc(z) and q|{1,...,n}−loc(z) = q′|{1,...,n}−loc(z). The lan-

guage of Z, L(Z) ⊆ A∗, is defined in the obvious manner.

Ã induces the dependence alphabet (A,D), D = {(z, z ′) | ∃i ∈ {1, . . . , n} :
{z, z′} ⊆ Ai}. According to [16],X ⊆ A∗ is a regular Mazurkiewicz trace language
over (A,D) iff there is an (even deterministic) asynchronous automaton Z over
Ã recognising X.

Given a B-bounded ∼-closed regular MSC word language L, we build a B-
bounded GMPA A with L(A) = L. The outline of this construction is as follows:
We first observe that nf(L)∼ can be considered to be a regular Mazurkiewicz
trace language over Σ × {1, . . . , B} with an appropriate dependence alphabet.
Then we can find an asynchronous automaton recognising nf(L)∼. The under-
lying distributed alphabet will comprise, apart from alphabets for each process,
some additional components, which guarantee that the induced dependence re-
lation complies with D(Σ) (see also the proof of Theorem 4). These additional
components have to be factored into the process components and the transi-
tion relation, making the transformation of the asynchronous automaton into a
GMPA complicated. Concretely, the transitions synchronously taken by several
local automata have to be simulated by message passing. For example, consider
Process P1 sending a message to Process P2 by executing (σ, k). Actually, an
equally labelled transition would have to be taken on the part of an additional
component, in which (σ, k) is involved. But as in the GMPA such a component
is not at the disposal of P1, P1 guesses a corresponding move and writes it, along
with the original message, into the message pool. The receiving process can take
this message if the guessed move corresponds to the actual state of the additional
component, which P2 carries along. Our construction is similar to the one in [8]
but uses the time-stamping protocol for non-FIFO computations described in
[14] to ensure boundedness of the constructed GMPA. However, the main dif-
ference is the choice of the underlying distributed alphabet. Recalling the ideas
of [12], it reflects precisely the dependence relation D(Σ), while [8] deals with a
context-sensitive dependence relation, which cannot be directly represented as a
(static) distributed alphabet.

Let Co := {(σ, τ, π) | (σ, τ) ∈ Corr , π ∈ {1, . . . , B}} and, for (σ, τ, π) ∈
Co, Σ(σ,τ,π) := {(σ, π), (τ, π)}. We define the distributed alphabet Σ̃ to be

{Σx}x∈PN∪Co . Then Σ̃ induces the dependence alphabet Σ̂ := (Σ × {1, . . . , B},
D(Σ) ∩ (Σ × {1, . . . , B})2). In accordance with Theorems 1, 2, and 4, nf(L)∼

forms a regular Mazurkiewicz trace language over the alphabet Σ̂. Thus, there is
an asynchronous automaton Z = ({Qx}x∈PN∪Co , {−→(σ,π)}(σ,π)∈Σ×{1,...,B}, q0, F )

over Σ̃ such that L(Z) = nf(L)∼. Let TS denote the set of time-stamps generated
by the protocol of [14]. For Mess = (

⋃
x∈Co(Qx×Qx))×TS , we define A to be the

GMPA ({Ap}p∈PN
, B, qin , F

′,Mess), Ap = (Sp,∆p), with L(A) = L(Z)≈ = L.
Ap is given by Sp = {(s, s, ϑ) | s ∈ Qp, s ∈ ×x∈Co,Σx∩Σp⊆ΣR

Qx, ϑ ∈ TS} and
the following:
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– For σ = Sq
p(λ) and τ = Rq

p(λ), ((sp, sp, ϑp), (σ, k,m), (s′p, s
′
p, ϑ

′
p)) ∈ ∆p iff

sp = s′p and there are s, s′ ∈ Q(σ,τ,k) with
• m = ((s, s′), ϑ′p),
• (sp, s) −→(σ,k) (s′p, s

′), and
• ϑ′p is the time-stamp generated from ϑp by the protocol of [14].

– For σ = Sq
p(λ) and τ = Rq

p(λ), ((sq, sq, ϑq), (τ, k,m), (s′q , s
′
q, ϑ

′
q)) ∈ ∆q iff there

are s, s′, s′′ ∈ Q(σ,τ,k) and ϑ ∈ TS with
• m = ((s, s′), ϑ),
• s = sq[(σ, τ, k)],
• (sq, s

′) −→(τ,k) (s′q, s
′′),

• s′q[x] =

{
s′′ iff x = (σ, τ, k)
sq[x] otherwise

, and

• ϑ′p is the time-stamp generated from ϑp and ϑ by the protocol of [14].

qin and F ′ are defined as expected.
Thanks to the use of the time-stamping protocol, A is B-bounded. Further-

more, it is straightforward to show that L(Z)≈ ⊆ L(A). On the other hand, each
accepting run of A on a word σ can be reordered resulting in an accepting run of
Z on a word σ′ with σ(≈ ∪ ∼)∗σ′. For example, A may simulate a run of Z on
S2

1(a)
1

R2
1(a)
1

S2
1(a)
1

R2
1(a)
1

by a run on α1 from Figure 3. Accordingly, L(A) ⊆ L(Z)≈

which concludes our proof. �

Thus, bounded GMPAs characterise exactly those regular MSC word lan-
guages that are ∼-closed and therewith exactly the regular MSC languages. For
example, the 2-bounded GMPA A given in Figure 7 recognises the (≈ ∪ ∼)∗-
closure of {(

S2
1(a)
1

S2
1(a)
2

R2
1(a)
1

R2
1(a)
2

S1
2(b)
1

R1
2(b)
1

)n �
�
�
�
�
n ≥ 0

}
.

5 A Logical Characterisation

We formulate a monadic second-order logic that characterises exactly the class of
regular MSC languages. Given a supply Var = {x, y, . . .} of individual variables
and a supply VAR = {X,Y, . . .} of set variables, the syntax of MSO(PN , Λ) is
defined by

ϕ ::= Lσ(x) | x ∈ X | x � y | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ ∈ MSO(PN , Λ)

where σ ∈ Σ, x, y ∈ Var, and X ∈ VAR. Moreover, we allow the usual abbrevi-
ations. Let M be an MSC with set of events E and labelling function L. Given
an interpretation function I, which assigns to an individual variable x an event
I(x) ∈ E and to a set variable X a set of events I(X) ⊆ E, the satisfaction
relation M |=I ϕ for an MSC M and a formula ϕ ∈ MSO(PN , Λ) is inductively
defined as follows:

– M |=I Lσ(x) iff L(I(x)) = σ,
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– M |=I x ∈ X iff I(x) ∈ I(X),
– M |=I x � y iff I(x) � I(y),
– M |=I ¬ϕ iff M 6|=I ϕ,
– M |=I ϕ ∨ ψ iff M |=I ϕ or M |=I ψ,
– M |=I ∃xϕ iff ∃e ∈ E : M |=I[x/e] ϕ, and
– M |=I ∃Xϕ iff ∃E′ ⊆ E : M |=I[X/E′] ϕ.

From now on, we only consider formulas without free variables and accord-
ingly write M |= ϕ instead of M |=I ϕ. For ϕ ∈ MSO(PN , Λ) and B ∈ IN, let
MB

ϕ := {M |M is B-bounded and M |= ϕ}.
We present the fundamental result of this section.

Theorem 10. Given a collection M of MSCs, M is a regular MSC language
iff there exist a formula ϕ ∈ MSO(PN , Λ) and B ∈ IN such that

Lin(M) = Lin(MB
ϕ ).

Proof. The proof follows the outline of [8] although the concrete steps are differ-
ent.

(=⇒) Let M be a regular MSC language. We can find B ∈ IN such that
Lin(M) is a ∼-closed B-bounded regular MSC word language. Due to Büchi’s
Theorem [5] and Theorem 4, there is a formula ϕ ∈ MSO(Σ × {1, . . . , B}) over
words such that Lϕ = nf(Lin(M))∼ where Lϕ = {α | α |= ϕ}. Accordingly, our
aim is to define a formula ϕ ∈ MSO(PN , Λ) with Lin(MB

ϕ ) = L≈
ϕ . Let ϕ = ||ϕ||

where

– ||L(σ,π)(x)|| := Lσ(x),
– ||x ∈ X|| := x ∈ X,
– ||¬ψ|| := ¬||ψ||,
– ||ψ1 ∨ ψ2|| := ||ψ1|| ∨ ||ψ2||,
– ||∃xψ|| := ∃x||ψ||,
– ||∃Xψ|| := ∃X||ψ||, and
– ||x ≤ y|| := (x � y ∧ y � x) ∨ Lex (x, y).

The last item weakens the relation ≤ since, informally spoken, x ≤ y on the part
of words does not imply x � y on the part of MSCs. By means of the predicate
Lex (x, y), as it is defined in [8], we fall back on a canonical linearisation of an
MSC along which the formula to be constructed is interpreted.

(⇐=) We transform ϕ into a sentence ϕ ∈ MSO(Σ × {1, . . . , B}) over words
such that Lϕ = nf(Lin(MB

ϕ )). ϕ is of the form Comp ∧ Normal ∧ ||ϕ||. Comp
ensures that only MSC words are defined, Normal guarantees that we finally deal
with MSC words in normal form, and ||ϕ|| helps to restrict the set of such MSC
words to the ones contained in Lin(MB

ϕ ). Let us begin: Due to the underlying
finite alphabet, ||ϕ|| specifies B-bounded words. So let

Comp =
∧

(σ, τ) ∈ Corr
π ∈ {1, . . . , B}

Φ1(σ, τ, π) ∧ Φ2(σ, τ, π) ∧ Φ3(σ, τ, π) where
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– Φ1(σ, τ, π) =
∀x∀y[x<y ∧ L(σ,π)(x) ∧ L(σ,π)(y) −→ ∃z(x<z<y ∧ L(τ,π)(z))]

ensures that (σ, π) and (τ, π) only occur in turns,

– Φ2(σ, τ, π) = ∀x[L(τ,π)(x) −→ ∃y(y<x ∧ L(σ,π)(y))]

guarantees that (τ, π) is preceded by its send event (σ, π), and furthermore

– Φ3(σ, τ, π) = ∀x[L(σ,π)(x) −→ ∃y(x<y ∧ L(τ,π)(y))]

makes sure that a send event (σ, π) is finally followed by its receive event
(τ, π).

Notice that, in the context of Comp , Φ1 and Φ2 lead to properness, whereas
completeness is only guaranteed with the help of Φ3. Let furthermore

Normal =
∧

(σ, τ) ∈ Corr
π ∈ {2, . . . , B}

∀x[L(σ,π)(x) −→ ∃y(y<x ∧ L(σ,π−1)(y)∧
∀z(y<z<x −→ ¬L(τ,π−1)(z)))].

Finally, we inductively obtain ||ϕ|| as above except that

– ||Lσ(x)|| :=
∨

π∈{1,...,B} L(σ,π)(x) and

– ||x � y|| :=E(x, y)

where E is defined by

E(x, y) := ∃X[x ∈ X ∧ y ∈ X∧
∀z(z ∈ X ∧ z 6= y −→ ∃z′(z′ ∈ X ∧ z<z′∧

Proc(z) = Proc(z′)∨ ↘(z, z′)))]

where Proc is used and defined in the obvious manner and the matching predicate
is given as follows:

↘(x, y) :=
∨

(σ, τ) ∈ Corr
π ∈ {1, . . . , B}

[x<y ∧ L(σ,π)(x) ∧ L(τ,π)(y) ∧ @z(x<z<y ∧ L(τ,π)(z))]

In fact, one can easily see that the formula ϕ has the desired properties. From
Büchi’s Theorem [5], we conclude that this direction of Theorem 10 holds. �
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95-16 ∗ W. Hans / St. Winkler / F. Sáenz: Distributed Execution in Functional

Logic Programming

96-1 ∗ Jahresbericht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional

Trees

96-3 ∗ W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins

in Acyclic Queries with Expensive Predicates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6 ∗ M. Jarke / W. Marquardt: Design and Evaluation of Computer–Aided

Process Modelling Tools

96-7 O. Chitil: The ς-Semantics: A Comprehensive Semantics for Functional

Programs

96-8 ∗ S. Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth

International Conference on Algebraic and Logic Programming

96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration

Management

96-11 ∗ C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement

96-12 ∗ R. Dömges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE∗ — An Environment for Managing the Evolution of Chemical

Process Simulation Models

96-13 ∗ K. Pohl / R. Klamma / K. Weidenhaupt / R. Dömges / P. Haumer /

M. Jarke: A Framework for Process-Integrated Tools

27



96-14 ∗ R. Gallersdörfer / K. Klabunde / A. Stolz / M. Eßmajor: INDIA — Intel-

ligent Networks as a Data Intensive Application, Final Project Report,

June 1996

96-15 ∗ H. Schimpe / M. Staudt: VAREX: An Environment for Validating and

Refining Rule Bases

96-16 ∗ M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across

Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and

Transformation

96-19 ∗ P. Peters / M. Jarke: Simulating the impact of information flows in

networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of cooperative information systems

96-21 ∗ G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information

systems: a manifesto

96-22 ∗ S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms

simultaneously: CoWeb architecture and functionality

96-23 ∗ M. Gebhardt / S. Jacobs: Conflict Management in Design

97-01 Jahresbericht 1996

97-02 J. Faassen: Using full parallel Boltzmann Machines for Optimization
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2000-02 Jens Vöge / Marcin Jurdziński: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 ∗ Mareike Schoop: Cooperative Document Management

2000-06 ∗ Mareike Schoop, Christoph Quix (Ed.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

29



2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server

Implementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation free µ-calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC lan-

guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic
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