
Aachen
Department of Computer Science

Technical Report

Proceedings of the Young Researchers’
Conference “Frontiers of Formal
Methods”

Thomas Ströder and Wolfgang Thomas (Editors)

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2015-06

RWTH Aachen · Department of Computer Science · February 2015

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Contents

Preface . 11

Program Committee 13

Invited Speakers 15

Moshe Vardi (Houston): The Rise and Fall of
Linear Temporal Logic 17

Bernd Finkbeiner (Saarbrücken): Distributed
Synthesis . 19

Jean-Francois Raskin (Brussels): Variations
on the Stochastic Shortest Path Problem . . . 21

Azadeh Farzan (Toronto): Succinct Proofs of
Concurrent Programs 23

Eric Bodden (Darmstadt): SPLlift: Statically
Analyzing Software Product Lines in Minutes
instead of Years 25

Joel Ouaknine (Oxford): Termination of Lin-
ear Loops: Algorithmic Advances and Chal-
lenges . 27

Contributions 29

Mohamed Abdelaal: Fuzzy Compression Ren-
ement via Curvature Tracking 31

Parvaneh Babari: A Nivat Theorem for Weighted
Picture Automata and Weighted MSO Logics 37

5

Frontiers of Formal Methods 2015

Stephan Barth: Deciding Monadic Second Or-
der Logic over omega-words by Specialized Fi-
nite Automata 41

Félix Baschenis: From sweeping transducers
to one way transducers 47

Benedikt Brütsch: Synthesizing Structured Re-
active Programs via Deterministic Tree Au-
tomata . 53

Claudia Carapelle: Satisfiability of ECTL*
with constraints 57

Pierre Carlier: Composition of Stochastic Timed
Automata . 61

Florian Corzilius: SMT-RAT: An SMT-Compliant
Nonlinear Real and Integer Arithmetic Toolbox 67

Christian Dehnert: Fast Debugging of PRISM
Models . 73

Manuel Eberl: A Verified Compiler for Prob-
ability Density Functions 77

Andreas Ecke: Relaxing Description Logics
Queries using Similarity Measures 83

Björn Engelmann: Formally Verifying Dynamically-
typed Programs like Statically-typed Ones A
different perspective 87

Shiguang Feng: Path-Checking for MTL and
TPTL over Data Words 93

Oliver Fernández Gil: Threshold Concepts in
a Lightweight Description Logic 97

Nils Erik Flick: Derivation Languages of Graph
Grammars and Correctness 99

Yang Gao: Decision Procedure for Stochastic
Satisfiability Modulo Theories with Continu-
ous Domain 103

6

Table of Contents

Manuel Gieseking: Trace Refinement of pi-
Calculus Processes 109

Friedrich Gretz: Conditioning in Probabilistic
Programming 115

Dennis Guck: Markov Reward Automata in
Railway Engineering 121

Doreen Heusel: Weighted Unranked Tree Au-
tomata over Tree Valuation Monoids 127

Philipp Hoffmann: Negotiations as a concur-
rency primitive: Summaries and Games 131

Johannes Hölzl: Probability Theory and Markov
Processes in Isabelle/HOL 135

Fabian Immler: Continuous Systems Reacha-
bility using Adaptive Runge-Kutta Methods -
Formally Verified 141

Christina Jansen: Generating Abstract Graph-
Based Procedure Summaries for Pointer Pro-
grams . 145

Nils Jansen: A Greedy Approach for the Effi-
cient Repair of Stochastic Models 151

Benjamin Lucien Kaminski: Analyzing Ex-
pected Outcomes and (Positive) Almost-Sure
Termination of Probabilistic Programs is Hard 157

Edon Kelmendi: Two-player shift-invariant and
submixing stochastic games are half-positional 163

Saifullah Khan: Trafc Data Dissemination in
Realistic Urban VANETs Environment 167

Veronika Loitzenbauer: A Hierarchical Spar-
sification Technique for Faster Algorithms in
Graphs and Game Graphs 173

Bogdan Mihaila: Synthesizing Predicates from
Abstract Domain Losses 177

7

Frontiers of Formal Methods 2015

Suvam Mukherjee: Efficient Shape Analysis
of Multithreaded Programs 183

Christian Müller: An Analysis of Universal
Information Flow based on Self-Compositions 187

David Müller: Are Good-for-games Automata
Good for Probabilistic Model Checking? . . . 193

Ren Neumann: A verified LTL model checker 199

Giuseppe Perelli: Strategy Logic 205

Vitaly Perevoshchikov: Decomposition of Weighted
Timed Automata 211

Mickael Randour: Games with Window Quan-
titative Objectives 215

Frederic Reinhardt: Automatic Structures with
Parameters 221

Jan Oliver Ringert: Extensible Support for
Specification Patterns in GR(1) Synthesis –
Work in Progress 227

Stefan Schulze Frielinghaus: Inter-procedural
Two-Variable Herbrand Equalities are in
PTIME . 231

Loredana Sorrentino: On Promptness in Par-
ity Games . 237

Thomas Ströder: Transformational Termina-
tion Analysis of Programs with Pointer Arith-
metic . 243

Mitra Tabaei Befrouei: Abstraction and Min-
ing of Traces to Explain Concurrency Bugs . . 249

Andreas Tönnis: Packing Secretaries 255

Dmitriy Traytel: Derivatives of WS1S
Formulas . 259

Thomas Weidner: Probabilistic Logic and Reg-
ular Expressions on Finite Trees 261

8

Table of Contents

Sarah Winter: Uniformization of Automatic
Tree Relations by Top-down Tree Transducers 265
Sascha Wunderlich: Weight Monitoring with
Linear Temporal Logic 269

Aachener Informatik-Berichte 275

9

Frontiers of Formal Methods 2015

10

Preface

Preface

The Young Researchers’ Conference “Frontiers of Formal
Methods” (FFM 2015) is a “singularity” – an event that is
not part of a longer conference series, but organized follow-
ing a nice coincidence of interests of several research groups
in Germany and Austria.

It all started with a loose promise given five years ago:
When the second phase of the DFG research training group
(Graduiertenkolleg) “AlgoSyn” started in Aachen, we pro-
mised to organize a final conference at the end of altogether
nine successful years of work by and with doctoral students.
In discussions between the speakers of closely related re-
search training groups, it became then clear that all our
doctoral students would gain most by a jointly organized
conference. Five partners joined their forces: the DFG re-
search training groups

• AlgoSyn (Algorithmic Synthesis of Reactive and Dis-
crete-Continuous Systems), Aachen,

• PUMA (Program and Model Analysis), Munich,

• QuantLA (Quantitative Logics and Automata), Dres-
den & Leipzig,

• SCARE (System Correctness under Adverse Condi-
tons), Oldenburg,

• and the Austrian Research Network ARiSE (Rigorous
System Engineering).

AlgoSyn offered to do the local organization, and so all
its doctoral students took part in the preparation of the
event. Sincere thanks are due to all of them for their diligent

11

Frontiers of Formal Methods 2015

work, as well to Helen Bolke-Hermanns and Silke Cormann
for their help in the administration. The program commit-
tee was formed from advisors and postdoc researchers of the
participating institutions: Erika Ábrahám, Joost-Pieter Ka-
toen, Wolfgang Thomas as chair (Aachen), Franz Baader,
Manfred Droste, Karin Quaas (Dresden/Leipzig), Michael
Luttenberger, Tobias Nipkow, Helmut Seidl (Munich), Mar-
tin Fränzle, Ernst-Rüdiger Olderog, Oliver Theel (Olden-
burg), and Roderick Bloem, Martina Seidl, Florian Zuleger
(ARiSE).

We are most grateful to our six invited speakers for of-
fering intriguing one-hour lectures: Moshe Vardi (Houston),
Jean-Francois Raskin (Brussels), Joel Ouaknine (Oxford),
Bernd Finkbeiner (Saarbrücken), Azadeh Farzan (Toronto),
and Eric Bodden (Darmstadt).

But the most important contribution to the conference
was the work of the doctoral students of the participating
institutions and from many other places around the world,
condensed into short abstracts as they now appear in these
informal proceedings.

A final word of thanks goes to the Deutsche Forschungs-
gemeinschaft DFG and the Austrian Science Fund (Fonds
zur Förderung der wissenschaftlichen Forschung FWF) for
their generous support – and to RWTH Aachen University
for providing the infrastructure of FFM 2015.

Wolfgang Thomas
Speaker of the Research Training Group “AlgoSyn”

12

Program Committee

Program Committee

• Erika Ábrahám, RWTH Aachen University (AlgoSyn)

• Joost-Pieter Katoen, RWTH Aachen University
(AlgoSyn)

• Wolfgang Thomas (chair), RWTH Aachen University
(AlgoSyn)

• Franz Baader, TU Dresden (QuantLA)

• Manfred Droste, University of Leipzig (QuantLA)

• Karin Quaas, University of Leipzig (QuantLA)

• Michael Luttenberger, TU Munich (PUMA)

• Tobias Nipkow, TU Munich (PUMA)

• Helmut Seidl, TU Munich (PUMA)

• Martin Fränzle, University of Oldenburg (SCARE)

• Ernst-Rüdiger Olderog, University of Oldenburg
(SCARE)

• Oliver Theel, University of Oldenburg (SCARE)

• Roderick Bloem, TU Graz (ARiSE)

• Martina Seidl, JKU Linz (ARiSE)

• Florian Zuleger, TU Vienna (ARiSE)

13

Frontiers of Formal Methods 2015

14

Invited Speakers

15

Frontiers of Formal Methods 2015

16

The Rise and Fall of Linear Temporal Logic

Moshe Vardi (Houston):

The Rise and Fall of Linear Tempo-

ral Logic

One of the surprising developments in the area of program
verification in the late part of the 20th Century is the emer-
gence of Linear Temporal Logic (LTL), a logic that emerged
in philisophical studies of free will, as the canonical language
for describing temporal behavior of computer systems. LTL,
however, is not expressive enough for industrial applications.
The first decade of the 21 Century saw the emergence of in-
dustrial temporal logics such as ForSpec, PSL, and SVA.
These logics, however, are not clean enough to serve as ob-
jects of theoretical study. This talk will describe the rise and
fall of LTL, and will propose a new canonical temporal logic:
Linear Dynamic Logic (LDL).

17

Frontiers of Formal Methods 2015

18

Distributed Synthesis

Bernd Finkbeiner (Saarbrücken):

Distributed Synthesis

More than fifty years after its introduction by Alonzo Church,
the synthesis problem is still one of the most intriguing chal-
lenges in the theory of reactive systems. On the one hand,
synthesis algorithms have found applications in many ar-
eas of computer science and systems engineering, from the
construction and optimization of circuits and device drivers
to the synthesis of controllers for robots and manufactur-
ing plants. On the other hand, the logical and algorithmic
foundations of the synthesis problem are still far from com-
plete. In this talk, I will focus on the problem of synthesizing
distributed systems, a particularly interesting, and also par-
ticularly difficult, version of the synthesis problem. I will
give an overview of the state of the art in models, logics,
and algorithms for the synthesis of distributed systems and
present ideas for future directions.

19

Frontiers of Formal Methods 2015

20

Variations on the Stochastic Shortest Path Problem

Jean-Francois Raskin (Brussels):

Variations on the Stochastic Short-

est Path Problem

In this talk, we revisit the stochastic shortest path problem,
and show how results allow one to improve over the classi-
cal solutions: we present algorithms to synthesize strategies
with multiple guarantees on the distribution of the length of
paths reaching a given target, rather than simply minimiz-
ing its expected value. The concepts and algorithms that we
propose here are applications of more general results that
have been obtained recently for Markov decision processes
and that are described in a series of recent papers.

21

Frontiers of Formal Methods 2015

22

Succinct Proofs of Concurrent Programs

Azadeh Farzan (Toronto):

Succinct Proofs of Concurrent Pro-

grams

In this talk, I will briefly look at the general trends in the
history of proof methods for concurrent programs, and the
dominant quest for compositional proof methods. I will then
talk about the recent progress that my colleagues and I have
made in this area. The key observation is that composition-
ality is not the only way of achieving succinctness in proofs,
and decidability or tractability in the verification process.

23

Frontiers of Formal Methods 2015

24

SPLlift: Statically Analyzing Software Product Lines in
Minutes instead of Years

Eric Bodden (Darmstadt):

SPLlift: Statically Analyzing Soft-

ware Product Lines in Minutes in-

stead of Years

A software product line (SPL) encodes a potentially large va-
riety of software products as variants of some common code
base. Up until now, re-using traditional static analyses for
SPLs was virtually intractable, as it required programmers
to generate and analyze all products individually. In this
talk, however, I will show how an important class of existing
inter-procedural static analyses can be transparently lifted
to SPLs. Without requiring programmers to change a single
line of code, our approach SPLlift automatically converts any
analysis formulated for traditional programs within the pop-
ular IFDS framework for inter-procedural, finite, distribu-
tive, subset problems to an SPL-aware analysis formulated
in the IDE framework, a well-known extension to IFDS. Us-
ing a full implementation based on Heros, Soot, CIDE and
JavaBDD, we were able to show that with SPLlift one can
reuse IFDS-based analyses without changing a single line of
code. Experiments using three static analyses applied to four
Java-based product lines showed that the approach produces
correct results and outperforms the traditional approach by
several orders of magnitude.

25

Frontiers of Formal Methods 2015

26

Termination of Linear Loops: Algorithmic Advances and
Challenges

Joel Ouaknine (Oxford):

Termination of Linear Loops: Algo-

rithmic Advances and Challenges

In the quest for program analysis and verification, program
termination – determining whether a given program will al-
ways halt or could execute forever – has emerged as a pivotal
component. Unfortunately, this task was proven to be unde-
cidable by Alan Turing eight decades ago, before the advent
of the first working computers! In recent years, however,
great strides have been made in the automated analysis of
termination of programs, from simple counter machines to
Windows device drivers.

In this talk, I will focus, from a theoretical (i.e., decid-
ability and complexity) point of view, on the special case of
simple linear loops, i.e., un-nested WHILE programs with
linear assignments and linear exit conditions (and no con-
ditionals, side effects, nothing). Somewhat surprisingly, the
study of termination of simple linear loops involves advanced
techniques from a variety of mathematical fields, including
analytic and algebraic number theory, Diophantine geome-
try, and real algebraic geometry. I will present an overview
of known results, and discuss existing algorithmic challenges
and open problems.

This is joint work with James Worrell.

27

Frontiers of Formal Methods 2015

28

Contributions

29

Frontiers of Formal Methods 2015

30

Fuzzy Compression Refinement via Curvature
Tracking
Mohamed Abdelaal

System Software and Distributed Systems
Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

mohamed.abdelaal@informatik.uni-oldenburg.de

Abstract—In this paper, we aim at developing a unique com-
pression technique which “breaks the downward spiral” between
compression ratio and data fidelity. The recently-developed Fuzzy
Transform is exploited as a sensor data compressor, called Fuzzy
Transform Compression (FTC). Based on contrasting FTC to other
compressors, we design and implement a modified version of the
FTC algorithm, referred to as FuzzyCAT–Fuzzy Compression:
Adaptive Transform. FuzzyCAT adapts the transform parameters
in accordance with the signal curvature, which could be inferred
from the signal derivatives, to accomplish the optimal balance
between compression ratio and precision. Generally, FuzzyCAT
provides the users/apps with full control to prioritize either
compression ratio or precision according to the significance.
FuzzyCAT considerably outperforms the original FTC, whereas
preserving its favorable qualities like periodicity and resilience
to lost packets. Moreover, a full appraisal depicts the FuzzyCAT
eclipses over the LTC at compression ratios above 75. A series
of experiments with a network of TelosB sensor nodes revealed
that transmission costs of the FuzzyCAT algorithm is 96% less
than that of the LTC at the expense of 10.28% increase of
processing activities, which makes it an outstanding candidate
for data compression in WSN.

Keywords—Wireless Sensor Networks; Energy Efficiency; Fuzzy
Transform; Data Compression

I . I N T R O D U C T I O N

Wireless sensor networks (WSNs) have a wide range of
potential applications to industry, science, transportation, civil
infrastructure, and security. For instance, Industrial applications
of WSNs are projected to extend by 553% within the five
years, to nearly 24 million installed sensor points [1]. Energy
efficiency plays a vital role in the WSNs wide-spreading.

A rational methodology to mitigate the energy consumption
problem could commence with identifying the major energy
consumption sources to be tackled. A set of experiments with
TelosB nodes has been executed to identify the dominant factor
of energy consumption within each sensor node. Specifically,
the CPU consumes much less current than the transceiver. This
result is consistent with the energy model of the TelosB energy
model listed in Table I. Declining the transceiver’s activities
via data manipulation could significantly extend the lifetime.

This research is funded by the German Research Foundation through the
Research Training Group DFG-GRK 1765: “System Correctness under Adverse
Conditions” (SCARE, scare.uni-oldenburg.de).

Supervisor: Prof. Dr.-Ing. Oliver Theel, Department of Computer Science,
System software and Distributed Systems Group, Carl von Ossietzky University
of Oldenburg, Germany, email: theel@informatik.uni-oldenburg.de

TABLE I: Power model for TeloSB sensor nodes

Mode Current
((µA))

Mode Current
(mA)

CPU Radio
Active (1 MHz, 2.2
V)

300 Rx 18.8

Standby Mode 1.1 Idle listening
Off Mode (RAM re-
tention)

0.2 Tx (0 dBm) 17.4

LPM0 50 Tx (-1dBm) 16.5
LPM1 50 Tx (-3 dBm) 15.2
LPM2 11 Tx (-5 dBm) 13.9
LPM3 2.5 Tx (-7 dBm) 12.5
LPM4 1.1 Tx (-10 dBm) 11.2
LEDs 0.2 Tx (-15 dBm) 9.9
Sensor board Tx (-25 dBm) 8.5
Temperature and
Humidity Sensors

550 Idle 0.426

Light Sensor 1.3 Sleep 0.02

Over the past decade, most research in WSNs has emphasized
the data reduction significance for long-life networks. Data
compression is classified into lossless and lossy approaches.
The former has zero recovery error with relatively small
compression ratios, which makes it suitable for applications
requiring high precision like patients monitoring in health
care. Lossy compression methods, on the other hand, incur
recovery errors but achieve higher compression ratios. For
applications that can tolerate some information loss, like
environmental monitoring and other types of data logging, lossy
compression techniques afford high savings in terms of power
consumption at the minor cost of permissible reconstruction
error. Moreover, lossy algorithms tend to be less complex than
their lossless counterparts, hence are easier to implement on
the computationally constrained motes.

In this work, we refine our proposed fuzzy compression
algorithm (FTC) [2] for the sake of improving its accuracy.
Additionally, we differentiate our novel fuzzy transform com-
pression to the lightweight temporal compression technique
[3]. In fact, this article deals with the latter setting, where data
transmission dominates all other contributions to energy dissi-
pation, such that techniques like sleep modes for transceivers
or sensor nodes between sensing phases, efficient routing and
topology control have only limited impact.

Our strategy to improve the FTC precision is to tracking the
signal curvature. Thus, a novel version of the FTC, referred
to as fuzzy compression adaptive transform (FuzzyCAT) is
presented. Its core idea is to adapt the transform parameters to

Fuzzy Compression Renement via Curvature Tracking

31

the signal’s curvature inferred from the time derivatives. The
paper comprises a variety of simulations and real experiments
with Telosb sensor nodes. These evaluations aim at comparing
the performance of FTC, FuzzyCAT and LTC in terms of
time/space complexity and energy consumption. For data
recovery precision, the results show the superiority of FTC and
FuzzyCAT over LTC algorithm for CRs above 50. Moreover,
FuzzyCAT saves 96.07% of the radio energy consumption at
the expense of consuming 10.28% more processing energy
consumption over that of the LTC algorithm.

The remainder of the paper is organized as follows. Section II
briefly formulate the accuracy conflict within lossy compres-
sion techniques. Section III summarizes the recent efforts in
data compression for WSNs. Section IV discusses the idea
behind the proposed FuzzyCAT approach. Moreover, plenty of
performance evaluations, outlining the merits and flaws, are
introduced. Finally, Section V concludes the paper and provides
some suggestions for possible extensions.

I I . P R O B L E M F O R M U L AT I O N

The sensor readings are forged as a time series X =
〈x[1], x[2], ...〉 where x ∈ Rn is the ADC output due to an
observed physical phenomenon. The term X[i : j] denotes
a data window in the period i ≤ n ≤ j, i.e., X[i : j] =
〈x[i], x[i+ 1], ..., x[j]〉. At the bases station, an approximated
version of X is generated such that Y = 〈y[1], y[2], ...〉 where
y ∈ Rn.

A rate here is defined as the average number of bits used
to represent a subseries X[i : j]. The rate distortion function
R(D) is typically utilized to characterize the trade-offs between
rate and the lossy compression distortion D [4]. The function
R(D) specifies the lowest rate at which the output of a source
can be encoded while keeping the distortion less than or equal
to D. Recall that the general form of the distortion is

D =

N−1∑

i=0

M−1∑

j=

d(xi, yj)× P (xi)× P (yj |xi) (1)

where d(xi, yi) := |yi − xi| is the Euclidean distance between
these two sequences, P (xi) is the source density, and P (yj |xi)
is the conditional probability. Assuming a binary source with
P (0) = p, the rate distortion function is given in Eq. 2 in terms
of the the probability p and the distortion D. The function H(.)
denotes the entropy as a measure of the average amount of
information in the sequence. Clearly, minimum representation
of the source data is feasible whenever the distortion D is
minimized.

R(D) = H(p)−H(D) forD < min{p, 1− p} (2)

I I I . R E L AT E D W O R K

In this section, we briefly discuss the idea behind the
Fuzzy compression technique (FTC) the lightweight temporal
compression. Moreover, we present a comparison between them
which motivated us to refine the fuzzy compressor.

A. Fuzzy Encoding
Fuzzy transform is defined as a fuzzy set mapper of a

continuous/discrete function into an n-dimensional vector [5].
Assume a time series is confined into an interval φ = [a, b]
as a universe. This domain is fuzzy-partitioned by Fuzzy sets
given by their membership functions.

Definition 1. Suppose uniformly distributed nodes x1 ≤ ... ≤
xn within φ such that n ≥ 2. The fuzzy sets A1, .., Ak, .., An
are referred to as a uniform basic function whenever they
conform to the following conditions for k = 1, ..., n:

1) Ak : [a, b]→ [0, 1], Ak(xk) = 1
2) Ak = 0 if x /∈ (xk−1, xk+1)
3) Ak is continuous over φ
4) Ak rigorously increases on [xk1, xk] and rigorously

decreases on [xk, xk+1]
5)

∑n
k=1Ak(x) = 1 ∀ x ∈ [a, b]

Figure 1 depicts an example of a uniform triangular basic
function with equidistant nodes given by Eq. 3. The red line
delineates condition 5 where summation of any two vertical
points should equal one. Generally, the shape of basic functions
forges the approximating function. Hence, the F-transform
is well-suited for dealing with linear and non-linear sensor
readings.

x1 xk

0

1

x0 = a xn = b

p

1-p

A1 A2 Ak An

Fig. 1: Uniform triangular basic function

xk = a+
(b− a)(k − 1)

(n− 1)
(3)

Strictly speaking, direct F-transform converts the original
signal into an n-dimensional vector, where n corresponds to the
number of membership functions applied. Inverse F-transform,
on the other hand, approximates the original signal utilizing the
Fuzzy vector. The F-transform is explicitly defined for discrete
as well as continuous functions.

Definition 2. Assume a fuzzy partition of φ be given by basic
functions A1, ..., An ⊂ φ and n > 2. If a F-transformer has
been triggered with a discrete function f : φ → R known at
nodes x1, ..., xl such that for each k = 1, ..., n, there exists
j = 1, ..., l : Ak(xj) > 0. Then, the n-tuple of real numbers
[F1, ..., Fn] is given by

Fk =

∑l
j=1 f(xj)Ak(xj)∑l

j=1Ak(xj)
(4)

Fuzzy control theory is crucial for understanding the F-
transform essence. Specifically, the direct F-transform resem-
bles the defuzzification process (Center of gravity) through

Frontiers of Formal Methods 2015

32

which linguistic variables (“low”, “medium”, “high”, etc.)
are mapped onto real numbers. This implies that each vector
element Fk constitutes the weighted average of the data points
f(xj) ∈ [xk−1, xk+1].

Definition 3. Suppose a fuzzy vector Fn[f] = [F1, ..., Fn] w.r.t.
A1, .., An has been stimulated to an inverse F-transformer. The
recovered signal is given by

fF,n(x) =
n∑

k=1

FkAk(x) (5)

The basic functions characteristics such as their shape and
length, devote a fine-grained control over the recovery process.
Therefore, they have to be carefully designed to avoid imperfect
transformation. The interested readers can find more properties
and proofs in [5].

B. Lightweight Temporal Compression
Targeting environmental applications such as temperature,

humidity, and light sensing, the LTC algorithm [3] exploits
the signal’s high temporal correlation to approximate it by a
sequences of line segments. The information loss is controlled
by a user-set error margin: whenever the approximating line
deviates from the next data point by more than the error margin,
the current line parameters are sent and a new approximation
is started.

In the context described above, our work lies in the realm
of lossy compression at individual source nodes. Therefore, to
give a fair point of reference, we will compare our algorithm
with that of the LTC, as the original and the more well-known
version of data linear approximation.

To compare FTC performance against that of LTC, we ran
a series of experiments on authentic sensor data acquired by
the Berkeley Lab in 2005 [6]. In particular, the signal used
for the assessment came from the light sensor of node #50.
Figure 2 represents a segment of time series light intensity
data in its original form, as well as two recovered time
series utilizing LTC and FTC decompressors. As a metrics
for performance evaluation, we used the compression ratio
(CR) and the normalized root mean square error (RMSE).

CR =
Uncompressed size

Compressed size
(6)

RMSE =

√√√√ 1

N

N∑

i=1

(yi − yi reconstructed)2 (7)

normalized RMSE =
RMSE

ymax − ymin
× 100% (8)

Despite both algorithms exhibit similar performance. How-
ever, the FTC in its original form is completely irrespective of
the properties of the data being compressed. This is sometimes
disadvantageous. Implementing an adaptive approach to data
processing is therefore a crucial improvement for the FTC
algorithm.

0 20 40 60 80 100
1200

1400

1600

1800

2000

Timestamp

L
ig

ht
CI

nt
en

si
ty

OriginalCdata
RecoveredC(FTC)
RecoveredC(LTC)

Fig. 2: Data recovery with FTC and LTC techniques

I V. F U Z Z Y C AT: F T C R E F I N E M E N T

In the series of experiments on Intel Lab Data [6], it became
evident that the algorithm yields a higher reconstruction error
when the signal has high fluctuations. An easy, low-computation
way to detect fluctuations is to monitor the second derivative of
the signal, which is the indicator of curvature. Figure 3 shows
that there exists a certain correlation between the absolute error
and the first and the second derivatives. Although it is not true
that for all points with high reconstruction error the derivative
is high too, but it holds that for all points p with high derivative,
the interval of the time series around p exhibit an increased error.
Thus, a problem arises: environmental data, such as temperature
or humidity, is intrinsically smooth, with few abrupt changes.
But, when such sudden fluctuations do occur, then they are often
of particular interest to the scientists studying the phenomena,
and therefore require minimal reconstruction error.

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

7

8

9

Timestamp

A
bs

ol
ut

ec
V

al
ue

Error
FirstcDerivative
SecondcDerivative

Fig. 3: First and second derivatives as measures of smoothness

Algorithm 1 depicts the mechanism by which signal curvature
is detected. The number ω of data points to be compressed, the
base number n of basic functions to be applied to the Fuzzy
universe, as well as the number e of extra basic functions to
be applied per half period, are set by the user such that (1)
(n− 1)|ω and (2) (e+ 1)| ωn−1 . The data is acquired through
iterating over half periods of a basic function. Throughout
the process, the program maintains a meta array where each
cell is set if the corresponding half period requires higher
resolution. For each data point, with an obvious exception of
the first two, the second derivative d2f(t)

dt2 is computed. Knowing
the high noise level seen in sensed environmental data, it is
important to only increase the resolution of the transform if
the fluctuations detected are significant. To ensure this, two
stages of filtering are applied. In the first stage, the current
d2f(t)
dt2 is compared to the derivative threshold Tderiv set by the

Fuzzy Compression Renement via Curvature Tracking

33

user. If the threshold is exceeded, then a counter of data points
with excessive derivative is incremented. In the second stage,
that counter is compared to another user-set threshold Tpercent
representing the maximum percentage of the data points in
one half period with excessive derivatives. If that threshold
is exceeded too, then the current half period likely contains
significant fluctuations. Hence, it is marked as needing higher
resolution in the meta array. This double threshold approach is
influenced by the notion of measurement correctness in [7].

Algorithm 1 FuzzyCAT curvature detection

Require: ω and n
1: Determine half period = ω

(n−1) ;
2: Construct meta[ω

half period];
3: for i : 0→ n

half period do
4: for j : 0→ half period do
5: Acquire xk;
6: if k > 2 ∧ (xk − 2 ∗ xk−1 − xk−2) > Tderiv then
7: Increment high derivative counter;
8: if high derivative counter > Tpercent then
9: Set meta[i] = 1;

Once the signal has been assessed on the matter of fluc-
tuations, the modified F-transform is applied. Algorithm 2
commences with constructing two kinds of basic functions.
The first function (Ak) is delineated based on the number
of coefficients, the data window needs to be compressed
into assuming there are no significant fluctuations. The other
function, a narrower one (Ek), is based on the number of extra
fuzzy sets to be added in a half period marked as requiring
higher resolution. Note that to minimize computation, the basic
functions are only computed once in a node’s lifetime and stored
away. The program iterates over half periods of the window
size and applies the transform choosing the basic functions
based on the information about the current half period recorded
in the meta array. To ensure that the decompressor distinguishes
between coefficients resulting from regular basic functions and
the ones added for higher resolution, the extra coefficients
have their sign bit flipped. This way, no further information
needs to be transmitted, unlike in the case of data sorting. The
obvious limitation of this approach is that it does not work if
the signal’s range can span both, positive and negative values.
But in that case, it is possible to offset the signal with a known
constant so that it always remains “on the same side of zero”.

Algorithm 2 FuzzyCAT at the source node

Require: ω, n, e, and meta array
1: Compute Ak and Ek
2: Determine half period = ω

(n−1) ;
3: for i : 1→ ω

half period do
4: if meta[i] = 0 then
5: Compute Fk and Fk+1 using Ak and Ak+1

6: else
7: Compute −Fk and −Fk+1 using Ek and Ek+1

8: Transmit the fuzzy vector Fk = [F1, ...];

If one were to graph the resulting basic functions over the
whole time window, then one would see something like the
graph given in Figure 4. The sample signal is shown on top,
and the fuzzy sets constructed by FuzzyCAT for that signal
are displayed on the bottom. On the half periods where the
signal is smooth, the regular membership functions are applied.
In the half period where fluctuations were detected, narrower
basic functions are applied (in blue). Note that to fulfill the
requirement (5) of Definition 1, the basic functions adjacent to
the high-resolution half period (in red) are asymmetric. They
represent so-called hybrids because they are constructed using
part of a regular and an additional basic function. As a result,
the area around the points with high d2f(t)

dt2 is transformed using
smaller basic functions, thus ensuring higher precision.

x1 xk

0

1

x0 = a xn = b

p

1-p

A1 A2 Ak An

100 200 300 400 500 600 700 800
0100200300400500600700800
35

40

45

50

55

60

t

L
ig

h
t

In
te

n
si

ty

Fig. 4: Structure of the adaptive basic function

Figure 5 presents an example of comparison between the
regular FTC and FuzzyCAT performance on a segment of
the temperature signal from the Berkely lab dataset. Both
algorithms aimed to compress the 1000 data points into 26
coefficients, while FuzzyCAT was set to add three additional
basic functions per half period when needed. The scaled
pink line, representing the difference between the signal
reconstructed by the regular FTC and FuzzyCAT, reveals that
the algorithms yielded identical results on most of the segment,
only deviating on the intervals with high fluctuations. The FTC
yields compression ratio of 38.46, with normalized RMSE of
8.72%. The adaptive transform added 9 extra membership
functions, decreasing the compression ratio to 28.57 and
bringing the normalized RMSE down to 4.22%. Adding extra
membership functions cut the RMSE by more than half - a 52%
decrease, while the resulting compression ratio was only 25%
percent smaller than the original. Thus, FuzzyCAT exhibits a
compelling advantage over the regular F-transform.

Figure 6 shows the results of the comparison. Note that
depending on the error margin, LTC can yield different
reconstruction errors with the same compression ratio. LTC
performs best, when CR is under 50, after which the FuzzyCAT
is likely to perform just as well. For a CR above 75, FuzzyCAT
and FTC outperform the LTC technique.

To evaluate how FuzzyCAT and LTC affect the energy
consumption, we ran a series of experiments using TelosB
sensor nodes (CM5000 MSP) with Contiki OS. The setup

Frontiers of Formal Methods 2015

34

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

30

40

50

60

Timestamp

A
bs

ol
ut

ef
V

al
ue

ActualfData
FTf
FuzzyCATf
DifffdFT,fFuzzyCAT)
FirstfDerivative
SecondfDerivative

Fig. 5: FuzzyCAT outperforms the regular FTC

0 50 100 150 200 250 300
0

5

10

15

20

CompressionPRatio

N
or

m
al

iz
ed

PR
M

S
E

P(
%

)

LTC
FTC
modFTC
Poly(LTC,5)
Poly(FTC,5)
Poly(modFTC,5)

Fig. 6: Normalized error versus compression ratio of LTC, FTC,
and FuzzyCAT

involved a network under ConikiMAC radio duty cycling
protocol with the unicast communication primitive in the Rime
stack. A network of three nodes: a LTC node, a FuzzyCAT
node, and a sink node was established. The run-time power
consumption was estimated utilizing the Energest module in the
Contiki OS. For the fairness of the experiment, the parameters
of each algorithms were set such that both resulted in the same
normalized RMSE. The LTC node sent, on average, 53 packets
whereas the FuzzyCAT transmitted solely 11 packets for the
same data received at the sink. Figure 7a delineates the power
consumed via broadcasting the LTC and the FuzzyCAT vectors.
In fact, the FuzzyCat consumes 96.07% less energy than the
LTC for a fixed throughput. This significant gain comes at the
expense of 10.28% increase in the processing tasks as shown
in Fig. 7b.

V. C O N C L U S I O N

In this paper, we presented a novel lossy compression algo-
rithm for WSN called (FuzzyCAT), designed and implemented
in the C programming language for Contiki OS. Testing the
algorithm against the well-known LTC using a network of
TelosB sensor nodes revealed that FuzzyCAT consumes 96.07%
less transmission energy than LTC for a fixed throughput, which
is the dominant source of power consumption in WSN.

Thus, despite the tongue-in-cheek name, FuzzyCAT is a very
competitive candidate as a WSN compressor. Besides being
more energy efficient and less computationally complex than
LTC, it is characterized by periodicity, a property that increases
the resilience to lost packets and makes the algorithm compati-
ble with scheduling protocols. On the other hand, FuzzyCAT
possesses such negative qualities as high latency, potentially

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

PacketFEpoch

P
ow

er
FC

on
su

m
pt

io
nF

(m
W

)

LTC
FuzzyCAT

(a) Transmission costs

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

PacketFEpoch
P

ow
er

FC
on

su
m

pt
io

nF
(m

W
)

LTC
FuzzyCAT

(b) Processing costs

Fig. 7: Power consumption of the LTC and the FuzzyCAT
nodes

overusing the limited storage capacity of the mote and the
packets, and complex parameters requiring careful optimization.
However, we believe that FuzzyCAT is a promising technique
for data compression in WSN targeting such applications as
environmental monitoring and other data logging.

As opportunities for future work, we consider setting up
predictors for mitigating the effect of long delay inherent in
the compression process.

R E F E R E N C E S

[1] RF Wireless Technology: Industrial Wireless Sensor Networks, accessed
17th April 2014. [Online]. Available: http://de.mouser.com/applications/
rf-sensor-networks/

[2] M. Abdelaal and O. Theel, “An efficient and adaptive data compression
technique for energy conservation in wireless sensor networks,” The IEEE
Conference on Wireless Sensors (ICWiSe 2013), pp. 124–129, Dec 2013.

[3] T. Schoellhammer, B. Greenstein, E. Osterweil, and et al., “Lightweight
Temporal Compression of Microclimate Datasets [Wireless Sensor
Networks],” in Proc. of The 29th Annual IEEE International Conference
on Local Computer Networks, Nov 2004, pp. 516–524.

[4] K. Sayood, “Mathematical Preliminaries for Lossy Coding,” in
Introduction to Data Compression (Third Edition), third edition ed.,
Burlington, 2006, pp. 195 – 225. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/B9780126208627500080

[5] I. Perfilieva, “Fuzzy transforms,” Transactions on Rough Sets II, pp.
63–81, 2004.

[6] “Intel Berkeley Research Lab,” accessed in 2014. [Online]. Available:
http://db.csail.mit.edu/labdata/labdata.html

[7] U. Raza, A. Camerra, A. Murphy, and et al., “What Does Model-driven
Data Acquisition Really Achieve in Wireless Sensor Networks?” in Proc.
of The 2012 IEEE International Conference on Pervasive Computing and
Communications (PerCom), March 2012, pp. 85–94.

Fuzzy Compression Renement via Curvature Tracking

35

Frontiers of Formal Methods 2015

36

A Nivat Theorem for Weighted Picture Automata and
Weighted MSO Logic∗

Parvaneh Babari†(babari@informatik.uni-leipzig.de)

Institut für Informatik, Universität Leipzig, 04109 Leipzig, Germany

The theory of picture languages as a generalization of formal string languages was
motivated by problems arising from image processing and pattern recognition [20, 32],
and also plays a role in the theory of cellular automata and other devices of parallel com-
puting [29, 35]. In the nineties, the family of recognizable picture languages was defined
and characterized by many different devices [21, 23]. Several research groups obtained a
description of recognizable picture languages in terms of automata, sets of tiles, rational
operations, and existential monadic second-order logic [22, 24, 25, 28]. Bozapalidis and
Grammatikopoulou introduced the interesting model of weighted (quadrapolic) picture
automata whose transitions carry weights taken as elements from a given commutative
semiring [4]. The behavior of such a picture automaton is a picture series which maps
pictures over an arbitrary alphabet to elements of the semiring. In 2006, Fichtner pro-
vided a notion of a weighted MSO logic over pictures [17, 18, 19]. She proved that for
commutative semirings, the class of picture series defined by sentences of the weighted
logics coincides with those computed by weighted picture automata [17].

In this paper we define picture valuation monoids as the abstract model for the
weight structures and we introduce weighted two-dimensional on-line tessellation au-
tomata (W2OTA) taking weights from picture valuation monoids. By this, we can model
several application examples, e.g., the average light of picture (interpreting the alpha-
bet as different levels of light) which can not be modelled with commutative semirings.
Weighted automata over words computing objectives like the average cost were introduced
recently by Chatterjee, Doyen, and Henzinger [5, 6, 7, 8].

As our first main result, we prove a Nivat-like theorem for recognizable picture series,
i.e., for the behaviors of W2OTA. Nivat’s Theorem is a fundamental characterization of
rational transductions and provides a connection between rational transductions and ra-
tional languages; see [10] for a version of this result for semiring-weighted automata on
words. Recently, Droste and Perevoshchikov [12] proved a Nivat-like theorem for recog-
nizable quantitative timed languages. Here, we will derive such a result for recognizable
picture series. We show that recognizable picture series can be obtained precisely as
projections of particularly simple unambiguously recognizable series restricted to unam-
biguously recognizable picture languages. In addition, we show that if the underlying
picture valuation monoid is idempotent, then we do not need unambiguity of the under-
lying picture language.

∗Joint work with Manfred Droste
†Supported by DFG Graduiertenkolleg 1763 (QuantLA)

A Nivat Theorem for Weighted Picture Automata and
Weighted MSO Logics

37

In the second part of this paper we define a new weighted MSO logic which can model
average density of pictures. The weighted MSO logic used here is a combination of the
ideas from [3], [11], [12] and [17]. In [17], disjunction and existential quantification were
interpreted by the sum, and the semantics of both conjunction and universal quantification
were defined by the product operation of the semiring. In this paper, using picture
valuation monoids as the abstract model, the semantics of universal quantification will be
interpreted by a picture valuation function, which for example provides the average value
of light of a picture.

Our second main result states that the weighted automata device of W2OTA and a
fragment of weighted MSO logic are expressively equivalent. To reach this result, we
define a suitable fragment of our logic in which the application of universal first order
(FO) quantification is restricted to almost boolean FO formulas, and the application of
conjunction is restricted to either almost boolean FO formulas or boolean FO formulas.
In addition, we restrict the use of constants in the formula by allowing their occurrence
only in the scope of an FO universal quantifier. This enables us to derive our second main
result for arbitrary product picture valuation monoids, not requiring regularity as in [11].
Also, our results differ from the ones in [17] which required commutative semirings as
weight structure.

We would like to mention that our results do not need distributivity of multiplication
over addition or commutativity or even associativity of multiplication, while considering
a commutative semiring as the weight structure was previously an essential assumption
in the weighted picture automata theory.

References

[1] M. Anselmo, D. Giammarresi, M. Madonia, and A. Restivo. Unambiguous recognizable
two-dimensional languages. Theoretical Information and Application, vol. 40(2), 277-
293 (2006).

[2] P. Babari, M. Droste. A Nivat theorem for weighted picture automata and weighted
MSO logic, in: LATA, Lecture Notes in Computer Science, accepted (2015).

[3] B. Bollig, P. Gastin. Weighted versus probabilistic logic, in: DLT 2009, in: Lecture
Notes in Computer Science, vol. 5583, 18-38, Springer (2009).

[4] S. Bozapalidis, A. Grammatikopoulou. Recognizable picture series. Journal of Au-
tomata, Languages and Combinatorics, 10: 159-183 (2005).

[5] K. Chatterjee, L. Doyen, T.A. Henzinger, Quantitative languages, in: CSL 2008,
Lecture Notes in Computer Science, vol. 5213, 385-400, Springer (2008).

[6] K. Chatterjee, L. Doyen, T.A. Henzinger, Alternating weighted automata, in: FCT,
Lecture Notes in Computer Science, vol. 5699, 3-13, Springer (2009).

[7] K. Chatterjee, L. Doyen, T.A. Henzinger, Expressiveness and closure properties for
quantitative languages. Logical Methods in Computer Science, 6(3-10), 1-23 (2010).

[8] K. Chatterjee, L. Doyen, T.A. Henzinger, Probabilistic weighted automata, in: CON-
CUR 2009, in: Lecture Notes in Computer Science, vol. 5710, 244-258, Springer (2009).

Frontiers of Formal Methods 2015

38

[9] M. Droste, P. Gastin. Weighted automata and weighted logics. Theoretical Computer
Science, 380(1-2), 69-86 (2007).

[10] M. Droste, D. Kuske. Weighted automata. In: Pin, J.-E. (ed.) Handbook: ”Au-
tomata: from Mathematics to Applications”. European Mathematical Society (to ap-
pear).

[11] M. Droste, I. Meinecke. Weighted automata and weighted MSO logics for average-
and longtime-behaviors. Information and Computation, 220-221, 44-59 (2012).

[12] M. Droste, V. Perevoshchikov. A Nivat theorem for weighted timed automata and
weighted relative distance logic, in: ICALP, Lecture Notes in Computer Science, vol.
8573, 171-182 (2014).

[13] M. Droste, G. Rahonis. Weighted automata and weighted logics on infinite words.
10th Int. Conf. on Developments in Language Theory (DLT), Lecture Notes in Com-
puter Science vol. 4036, 49-58, Springer (2006).

[14] M. Droste, H. Vogler. Weighted automata and multi-valued logics over arbitrary
bounded lattices. Theoretical Computer Science, 418, 14-36 (2012).

[15] M. Droste, H. Vogler. Weighted tree automata and weighted logics. Theoretical Com-
puter Science, 366, 228-247 (2006).

[16] S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press
(1974).

[17] I. Fichtner. Weighted picture automata and weighted logics. Theory of Computing
Systems, 48(1), 48-78 (2011).

[18] I. Fichtner. Characterizations of recognizable picture series. Theoretical Computer
Science, 374, 214-228 (2007).

[19] I. Fichtner. Weighted picture automata and weighted logics. STACS 2006, Lecture
Notes in Computer Science, vol. 3884, 313-324, Springer (2006).

[20] K. S. Fu. Syntactic Methods in Pattern Recognition. Academic Press, New York
(1974).

[21] D. Giammarresi, A. Restivo. Recognizable picture languages. International Journal
of Pattern Recognition and Artificial Intelligence 6(2, 3), 241-256 (1992).

[22] D. Giammarresi, A. Restivo. Two-dimensional finite state recognizability. Fundamen-
tal Informaticae, 25(3), 399-422 (1996).

[23] D. Giammarresi and A. Restivo. Two-dimensional languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, vol.3, 215-267, Springer (1997).

[24] D. Giammarresi, A. Restivo, S. Seibert, W. Thomas. Monadic second-order logic over
rectangular pictures and recognizability by tiling systems. Information and Computa-
tion, 125(1), 32-45 (1996).

A Nivat Theorem for Weighted Picture Automata and
Weighted MSO Logics

39

[25] K. Inoue, A. Nakamura. Some properties of two-dimensional on-line tessellation ac-
ceptors. Information Sciences, 13, 95-121 (1977).

[26] K. Inoue, I. Takanami. A survey of two-dimentional automata theory. Information
Sciences, 55, 99-121 (1991).

[27] W. Kuich, A. Salomaa. Semirings, Automata, Languages, volume 6 of EATCS Mono-
graphs, Theoretical Computer Science. Springer (1986).

[28] M. Latteux, D. Simplot. Recognizable picture languages and domino tiling. Theoret-
ical Computer Science, 178, 275-283 (1997).

[29] K. Lindgren, C. Moore, and M. Nordahl. Complexity of two-dimensional patterns.
Journal of Statistical Physics, 91(5-6), 909-951 (1998).

[30] O. Matz. On piecewise testable, starfree, and recognizable picture languages. FoS-
SaCS, Lecture Notes in Computer Science, vol. 1378, 203-210. Springer (1998).

[31] I. Meinecke. Weighted logics for traces. in: CSR 2006, Lecture Notes in Computer
Science, vol. 3967, 235-246 (2006).

[32] M. Minski, S. Papert. Perceptron. M.I.T. Press, Cambridge, Mass. (1969).

[33] A. Salomaa, M. Soittola. Automata-Theoretic Aspects of Formal Power Series. Texts
and Monographs on Computer Science, Springer (1978).

[34] D. Simplot. A characterization of recognizable picture languages by tilings by finite
sets. Theoretical Computer Science, 218(2), 297-323 (1999).

[35] R.A. Smith. Two-dimensional formal languages and pattern recognition by cellular
automata. 12th IEEE FOCS Conference Record, 144-152 (1971).

[36] W. Thomas. On logics, tilings, and automata. in: ICALP. Lecture Notes in Computer
Science, vol. 510, 441-453, Springer (1991).

Frontiers of Formal Methods 2015

40

Deciding Monadic Second Order Logic over ω-words
by Specialized Finite Automata

Stephan Barth (stephan.barth@ifi.lmu.de)

Ludwig-Maximilians-Universität München, Germany
Research Training Group 1480: Programm- und Modell-Analyse (PUMA)

Introduction

Several different automata models can describe all ω-regular languages. The most com-
monly used models for that are Büchi, parity, Rabin, Streett and Muller automata. We
present deeper insights and further enhancements to a lesser known model. This model
was chosen and the enhancements developed with a specific goal: Decide monadic second
order logic (MSO) over infinite words more efficiently.

MSO over various structures is of interest in different applications, mostly in formal
verification. Due to its inherent high complexity, most solvers are designed to work only
for subsets of MSO. The most notable full decider is MONA, which decides MSO formulae
over finite words and trees.

The MONA team identified efficient minimization as one of the crucial properties
an automaton model has to support to decide MSO efficiently[2]. The classical models
for ω-languages do not support that. The other central optimizations MONA used are
compatible with all the classical ω-automata models (these are BDD-compression of the
alphabet and three-valued logic; our here presented model is compatible with these as
well).

To obtain a suitable automaton model,we further studied a representation of ω-regular
languages by regular languages[1]. We succeeded in developing an algorithm for homo-
morphisms in this representation, which is crucial for deciding MSO. For even higher
efficiency, we contribute a new automaton model for regular languages, that is more suc-
cinct than finite automata, especially for this kind of regular languages.

Representation of ω-regular languages by regular lan-

guages

The starting point is the following method for representing ω-regular languages by regular
ones: for given ω-regular languages L, L$:= {u$v | uvω ∈ L} is regular.

We call L$ the loop language of L, an automaton for L$ loop automaton, and L-X the
loop automaton model that results from using the automaton model X for loop languages.

Transformations between nondeterministic Büchi automata (NBA) accepting L and
deterministic finite automata (DFA) accepting L$ were presented in 1994[1].

Deciding Monadic Second Order Logic over omega-words
by Specialized Finite Automata

41

Note, that L$ and thus the minimal DFA are uniquely determined, hence the known
efficient minimization procedure for DFA work for L-DFA as well.

It is thus natural to base a decision procedure for MSO on loop automata. However,
in doing so one faces the obstacle that homomorphism has to be implemented on the level
of loop automata.

Indeed this obstacle seems to have prevented other authors from following this path.
It is precisely this gap we close in this paper.

Homomorphism Closure of Loop automata

The crucial idea to perform homomorphisms is the use of two-way automata[3] as inter-
mediate device.

Given an homomorphism f , it happens often, that f(L$) 6= (f(L))$, hence applying
the homomorphisms directly on the regular language does not yield the correct result.

Instead {u$v | ∃i, j.uvi$vj ∈ f(L$)} = (f(L))$. A nondeterministic two-way-automaton
with linear many states for this language can be constructed out of L, transformations
from nondeterministic two-way-automata to DFA are known for a long time.

Hence, homomorphisms on loop automata can be computed, and with that loop au-
tomata can be used for deciding MSO.

Further optimization of loop automata

This method works fine in practice, as for example the comparisons in Table 2 show, but
we can do better. L-DFA are often bigger than DPA or NBA for the same language.
We identified one of the main sources for their bigger state space: Loop automata tend
to contain a lot of strongly connected components (SCC), which are identical but in the
finality of their states.

As a countermeasure, we developed a new automata model for regular languages,
coarser merging finite automata (CMFA), which can often merge these different SCC into
a single one. CMFA have a strongly restricted stack. Due to these restrictions, they
still only recognize regular languages. As a result from these restrictions, CMFA allow
for states in Nerode relation to be merged just like in DFA. But because of the stack,
they admit further state merges within a new equivalence relation, the mutual right
derivative (MRD) relation, which is coarser than the Nerode relation: Two states are in
MRD relation, when their languages are mutual right derivatives by some words u and
v. States in MRD relation can be merged in CMFA, whenever they are in different SCC.
The neccessary u and v have to be stored in the CMFA at the corresponding transition.
Hence, CMFA offer more minimization opportunities than DFA.

CMFA are defined like a DFA but the transition function is changed to
δ : Q× Σ→ Q× Σ∗ × Σ∗

when Q is the state set and Σ the alphabet.
δ must hold the property that for every tuple δ(p,) = (q, w, r) if p and q are in the

same SCC of the automaton, then w = r = ε.
(w, r) is a witness for q and some removed state to be in MRD relation and can be

used to reconstruct this removed state.

Frontiers of Formal Methods 2015

42

ω-regular expres-
sion

(a|b)∗bω (a|b)∗(ab)ω

Büchi automaton

b

a,b

b a

a,b

b

a

Loop regular ex-
pression

(a|b)∗$b+ (a|b)∗$((ab)+|(ba)+)

Loop DFA
a,b b

$,a,b

$ b

$,a
$,a a,b

$,a,b
$

b

a
$

$,b $,a
a

b

$,a $,b

b

a

Loop CMFA
a,b b

$,a,b

$ b

$,a
$,a

a,b

$,a,b

$

b
a
a,b

$
$,b

$,a
a

b

Table 1: Two examples of languages for comparing the ω-regular language and its
corresponding loop language

Table 1 displays the representation of two example languages in the different models.

Unfortunately, full minimization of CMFA is not very efficient. Nevertheless, there is
an efficient heuristic which guarantees a partial minimization to at most the size of DFA,
and in practice often leads to minimial CMFA, or at least CMFA which are not much
bigger than the minimal ones.

While CMFA are up to exponentially more succinct than DFA, the relevant algorithms
for deciding MSO are still applicable in an efficient manner.

Complexity

It was already known that NBA of size n can be transformed into L-DFA of size 2O(n2)

and L-DFA of size n into NBA of size O(n5)[1].

This of course can be used to performe homomorphisms on L-DFA in 2O(n10) states,
as homomorphisms on NBA keep the state count. Our new algorithm needs at most
2O(n2) states for that. Complementation needs O(n) states. Union and intersection are
performed on L-DFA precisely by performing them on the DFA. This leads to the same
O(n ·m) complexity as DFA have.

For L-CMFA complementation also needs at most linear many states.

Homomorphism, union, and intersection might need more states in L-CMFA regarding

Deciding Monadic Second Order Logic over omega-words
by Specialized Finite Automata

43

the size of the input automata and the precise sizes are unknown, yet. Nevertheless the
size is always bound by the size of the coresponding L-DFA.

Experimental Evaluation

For benchmark purposes, we compared the efficiency for deciding MSO between this new
loop CMFA (L-CMFA) model, loop DFA (L-DFA) and a more classical approach utilizing
NBA and deterministic parity automata (DPA) together with state reduction heuristics.

As there are some widely used minimization heuristics for NBA and DPA, we also
applied a minimization heuristic for them. In the DPA, we check for every pair of states,
whether the language of the DPA stays the same, if the states are merged. This heuristic
subsumes quite some widely used heuristics, but is not frequently used as such, as it is
too slow; nevertheless, it is still too weak for deciding MSO, at least in comparison to
loop automata.

The L-CMFA approach indeed turns out to be a lot more efficient for many formulae
than the NBA/DPA-approach. In these cases, the CMFA compression contributes very
little to the efficiency in comparison to DFA. However, for some formulae the NBA/DPA-
approach is slightly more efficient than the L-CMFA approach. In these cases, the CMFA
compression tends to contribute more to the efficiency of the procedure.

Formula NBA/DPA L-DFA L-CMFA

after(X, Y) := ∀x.(x ∈ X ⇒ ∃y.(y >
x ∧ y ∈ Y))

6/3 7 7

fair(X, Y) := after(X, Y) ∧ after(Y,X) 42/27 9 9
∀X.(fair(X, Y)⇒ fair(Y, Z)) (14377)/

(6131)1
12 12

suc(x, y) := x < y∧∀z.(¬x < z∨¬z < y) 20/5 6 6
inone(i, j, U, V,W) := (j ∈ U ⇒ i ∈ V ∨
i ∈ W)

7/13 15 15

∀i∀j.(suc(i, j) ⇒ inone(i, j, V,W,Z) ∧
inone(i, j,W,X, V)∧inone(i, j,X, Y,W)∧
inone(i, j, Y, Z,X) ∧ inone(i, j, Z, V, Y)

(t/o)/
(t/o)2

16 10

offset(X, Y) := ∀i∀j.(suc(i, j) ∧ i ∈ X ⇒
j ∈ Y)

4/3 9 7

offset(X, Y) ∧ offset(Y, Z) ∧ offset(Z,X) 49/40 107 61
offset(V,W)∧offset(W,X)∧offset(X, Y)∧
offset(Y, Z) ∧ offset(Z, V)

97/(444)3 2331 583

Table 2: State count of automata from MSO formulae

Most of the tested formulae fall into one of three classes:

• The formula is small, hence both approaches are equivalently fast.

1Timeout in minimization of DPA. With weaker minimization, it ended up in this result.
2 Computation did not finish in over a day. When it was stopped, it was in the process of computing

a DPA out of an NBA and had already over 190000 states.
3 Minimization of parity automaton did not finish in a day.

Frontiers of Formal Methods 2015

44

• The loop automaton is much smaller than the automaton from the NBA/DPA
approach, the CMFA compression does not make a big difference.

• The NBA/DPA approach is more efficient than the L-DFA approach, but L-CMFA
regain most of the efficiency.

Table 2 shows some typical results of the experimental evaluation. It contains at least
one example for each of the three classes. Efficiency here is measured in state count of
the automata, because this only depends on the adequateness of the automata models,
but not on the quality of the implementation.

Conclusion

For loop automata we now know all neccessary algorithms to decide MSO. Hence, we
now have an automaton model for ω-regular languages, that is suitable for deciding MSO
and allows for efficient minimization at the same time. Along with its applicability for
MSO, L-CMFA might offer further theoretical and practical enhancements in the field of
ω-languages.

On the experimental side, the first benchmarks hint that loop automata, especially
L-CMFA, are indeed superior to classical automata for ω-regular languages in efficiently
deciding MSO. A full implementation of MSO over ω-words utilizing L-CMFA and inte-
gration of other optimizations MONA uses, is in developement.

References

[1] Hugues Calbrix, Maurice Nivat, and Andreas Podelski. Ultimately periodic words of
rational omega-languages. In Stephen Brookes, Michael Main, Austin Melton, Michael
Mislove, and David Schmidt, editors, Mathematical Foundations of Programming Se-
mantics, volume 802 of Lecture Notes in Computer Science, pages 554–566. Springer
Berlin / Heidelberg, 1994. 10.1007/3-540-58027-1 27.

[2] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementation
secrets. International Journal of Foundations of Computer Science, 13(4):571–586,
2002. World Scientific Publishing Company. Earlier version in Proc. 5th International
Conference on Implementation and Application of Automata, CIAA ’00, Springer-
Verlag LNCS vol. 2088.

[3] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3(2):114–125, 1959.

Deciding Monadic Second Order Logic over omega-words
by Specialized Finite Automata

45

Frontiers of Formal Methods 2015

46

From sweeping word transducers to one-way word
transducers∗

Félix Baschenis, (felix.baschenis@labri.fr)

LaBRI, Université de Bordeaux, France

1 Introduction

Automata theory provides many different computational models that can deal with the
same classes of problems. One can extend automata by non-determinism, alternation, or a
two-way head and obtain the same class of languages in the case of finite-state automata.
However it can be difficult to express the memory cost of the transformation from one
model to another. Moreover, several properties do not extend from automata when we
add outputs, i.e., when we consider transducers. For instance, non-deterministic two-way
transducers (2NFT for short) are more powerful than their one-way counterpart (NFT for
short). As an example, the transduction mapping the input to its mirror can be realized
by a 2NFT, but not by an NFT. We are interested here in the following question: given a
2NFT, is it possible to find an equivalent NFT? We consider here only functional NFTs,
that is NFTs that produce at most one output for each input word.

The above problem was adressed by one of my supervisors in [1]. They proved that the
above question is decidable, and gave a non-elementary procedure to build an equivalent
NFT when possible. Their approach analyzes runs of the 2NFT. They identify in each
run some elementary two-way motions on the input tape, called Z-motions. Such motions
have a zigzag shape between two positions i and j: the input head moves from i to j, then
from j to i, and finally back from i to j. They show that if the given 2NFT is equivalent
to an NFT, then it is possible to eliminate Z-motions one by one until an equivalent NFT
is obtained. Since each step involves an exponential blow-up in the number of states, the
overall procedure given in [1] has non-elementary complexity.

Our goal is to extend the ideas of [1] in order to provide a direct construction of an
equivalent NFT that avoids the non-elementary complexity blow-up.

We provide here such a direct construction for a particular class of 2NFTs, namely
sweeping transducers (SNFT for short). An SNFT is a 2NFT whose head reversals on the
input tape can only occur at the left or at the right border of the tape. Our construction
of NFT from a given SNFT has doubly exponential complexity.

∗Supported by Anca Muscholl, Olivier Gauwin and Gabriele Puppis

From sweeping transducers to one way transducers

47

2 A simple example

We explain some ideas behind our construction by considering first sweeping automata
with only one reversal, i.e. back-and-forth transducers that start reading the input left-
most, go rightmost and then back to the left border.

The well-known combinatorial result below [2] will be used a lot in our proofs. An
integer p ∈ N is called period of a word w = a1 · · · an if ai = ai+p, for every 1 ≤ i ≤ n− p.
The primitive root of a word x is denoted µ(x). For u, v ∈ Σ∗ we write u ∼ v if the
primitive roots of u and v are conjugated, i.e., µ(u) = xy and µ(v) = yx for some words
x, y.

Theorem 2.1 (Fine and Wilf) If w is a word of periods π1 and π2 and |w| > π1 +π2−
gcd(π1, π2), then w has also period gcd(π1, π2).

An equivalent formulation of Fine and Wilf’s theorem states that if uω and vω have a
common factor of length greater than |u|+ |v| − gcd(|u|, |v|), then u ∼ v.

We define the crossing sequence of a run of a two-way automaton at a position i, as the
sequence of states the transducer takes at each successive pass at position i, together with
the letter of the input at position i. When two positions i and j have the same crossing
sequences, they form what we call a loop: if we pump the input between those positions,
the part of the run between i and j is equally duplicated. We write M = |Q|2 × p × |Σ|
where Σ is the alphabet of the back-and-forth 2NFT, and p is the maximal size of an
output of a transition. So M is the maximal size of an output produced by a back-and-
forth 2NFT in a run without loops. When we consider a two-way transducer, we write
outk(i, j) for the output produced on the k-th pass, between the position i and j (the
order between i and j is determined by k). We also use the notation out(〈i, k〉, 〈j, `〉) for
the output produced by the run of the transducer between position i on the k-th pass and
position j on the `-th pass. A loop L is denoted by a pair (i, j) of input positions i < j.
For two loops L = (i, j), L′ = (i′, j′) we write L < L′ if j < i′.

The following propositions state some sufficient conditions under which parts of the
output of the 2NFT are periodic, with small period. The periodicity is consequence of
Fine & Wilf’s theorem, and we obtain it by considering word equations related to loops in
the run. Such periodic outputs can be produced by an NFT, once the period is guessed.

Proposition 2.2 Let A be a back-and-forth 2NFT that is equivalent to some NFT. We
consider a run ρ of A. If L = (i, j) is a loop of ρ such that out2(i, j) 6= ε and out1(i, j) 6= ε,
then out(〈i, 1〉, 〈i, 2〉) has period at most M .

Proposition 2.3 Let A be a back-and-forth 2NFT that is equivalent to some NFT. We
consider a run ρ of A. Assume that L1 = (i1, j1) and L2 = (i2, j2) are two loops of ρ such
that L2 ≥ L1, out2(i1, j1) 6= ε, out1(i2, j2) 6= ε and out2(i2, j2) = ε. Then out(〈i2, 1〉, 〈i1, 2〉)
has period at most M .

Proposition 2.4 Let A be a back-and-forth 2NFT that is equivalent to some NFT. We
consider a run ρ of A. Assume that there exist two loops L1 = (i1, j1) and L2 = (i2, j2) of ρ
with L2 ≥ L1 such that out2(i1, j1) 6= ε, out1(i1, j1) = ε, out1(i2, j2) = ε and out2(i2, j2) 6=
ε. Then out(〈j2, 2〉, 〈i1, 2〉) has period at most M .

Frontiers of Formal Methods 2015

48

Proposition 2.5 Let A be a back-and-forth 2NFT that is equivalent to some NFT. We
consider a run ρ of A. Assume that there exist two loops L1 = (i1, j1) and L2 = (i2, j2)
in ρ with L2 ≥ L1 and such that out2(i1, j1) 6= ε, out1(i1, j1) = ε, out1(i2, j2) 6= ε and
out2(i2, j2) 6= ε. Then out(〈i2, 1〉, 〈i1, 2〉) has period at most M .

Theorem 2.6 Let A be a back-and-forth 2NFT. One can construct an exponential size
NFT B such that

1. B ⊆ A, and

2. dom(B) = dom(A) if A is equivalent to some NFT.

Proof. Consider a run r of A on input U with output V . There are two main cases.
The first one is when there is no loop L of A with out2(L) 6= ε. In this case V = V1V2,
and the output V2 from right-to-left is small. The NFT B guesses ρ, outputs V1 and keeps
V2 in memory for the end.

The second case is where there is some loop L with out2(L) 6= ε. We consider the
leftmost such loop L = (i, j). Three subcases:

1. Assume that out1(L) 6= ε. Then, by Proposition 2.2, the output Y from position
〈i, 1〉 to position 〈i, 2〉 is periodic with period at most M . The entire output V can
be written as V = XY Z, with |Z| < M . The NFT B outputs X (guessing where
it ends) and keeps in memory Z for the end. It guesses then the period word of Y
and outputs Y accordingly.

2. Assume that out1(L) = ε and there is no loop L′ > L such that out1(L
′) 6= ε. If

there is some loop L′ > L such that out2(L
′) 6= ε then we take the rightmost one

L′ = (i′, j′). By Proposition 2.4, the output Y from position 〈j′, 2〉 to position 〈i, 2〉
is periodic with period at most M . The output V can be written as V = XX ′Y Z
with |X ′| < 2M , |Z| < M , with X the output up to position 〈i, 1〉. The NFT B
outputs X (storing Z), guesses X ′ and outputs it. Then it produces Y (checking at
the same time the guess of X ′), and finally reproduces Z that it has stored.

3. Assume that out1(L) = ε and there is some loop L′ > L such that out1(L
′) 6= ε. We

consider the first such loop L′ = (i′, j′). Then, by Proposition 2.3 or 2.5 (depending
on the emptiness of out1(L

′)), the output Y from position 〈i′, 1〉 to position 〈i, 2〉
is periodic with period at most M . The output V can be written as V = XX ′Y Z,
where |Z| < M , X is the output up to position 〈j, 1〉 and X ′ up to 〈i′, 1〉, thus |X ′| <
M . The NFT B outputs X (storing Z) then guesses and outputs X ′ immediately.
From position 〈i, 1〉 on, B produces Y .

2

3 Some ideas about the general proof

3.1 Statement of the theorem

The difference between a general sweeping transducer, and a back-and-forth 2NFT is that
loops of the sweeping automaton can have non-empty outputs on several levels . Thus,

From sweeping transducers to one way transducers

49

•
B1

B2

B3

u1

u2

u3

u4

Figure 1: Block decomposition.

the parts of the run that produce periodic outputs can expand on several levels too. This
yields the notion of a block decomposition, namely a decomposition of the run in different
blocks producing periodic outputs, blocks ordered from left to right on the input tape,
and from the lower levels to the higher ones of the run. Such a decomposition is described
in Figure 1. We say that a decomposition is suitable if it satisfies some properties on the
size of the outputs outside each block: the upper leftmost part and the lower rightmost
part of the run must produce bounded outputs. Our main result can now be stated:

Theorem 3.1 Let A be an SNFT. Then A is equivalent to some NFT if and only if
each accepting run has a suitable decomposition. Moreover, we can construct a doubly
exponential size NFT B such that:

1. B ⊆ A, and

2. dom(B) = dom(A) if and only if A is equivalent to some NFT.

3.2 The decomposition

Here we describe the ideas behind the proof of the left-to-right implication of the previous
theorem. The blocks are obtained by considering loops as in the back-and-forth case, the
only difference if that we should look for loops on several levels of the run. When a pair
of loops is found such that the lowest non-empty output of the rightmost loop is lower
than the upper non-empty output of the leftmost loop, we identify a block with periodic
output. The equations induced by the two loops, in the same way as the back-and-forth
case, are more complex, because the number of words iterated is bigger, but they behave
in the same way as the equations used in the previous section.

3.3 Construction of the NFT

We describe here how we build a NFT that simulates the sweeping automata, guessing
some suitable block decomposition of the run and producing the output according to this
decomposition. So this corresponds exactly to the right-to-left implication of Theorem 3.1.

The simulation of the run of the given SNFT is done in two separate modes, and can
go from one to another by making non-deterministic choices.

Frontiers of Formal Methods 2015

50

The first mode of computation occurs when the head of the input tape is not inside a
block. In this case, it simulates the output of the SNFT on the current level (the words
ui in Figure 1), and simultaneously checks the guesses made by the NFT.

In the second mode, the transducer assumes that it is in a block, whose length will
be determined by the non-deterministic choice when to go back to the first mode. The
NFT produces outputs in a periodic pattern, using the guessed primitive roots. At the
beginning of the block the NFT guesses the number of periods outputted on the right and
the left of the block, and outputs the amount guessed. Then, it continues its simulation
and outputs as many letters as there are on the outputs produced by the SNFT at all
levels of the current block. When reaching the end of a block, the NFT has progressed in
his production of the output until the rightmost, uppermost corner of the block, and can
go on.

Let us consider the example of u2 and B2 of the decomposition in figure 1, to illustrate
all the checks made by the NFT.

When we simulated the output of B1 we also guessed (and outputted) the bounded
output to the right of B1 on levels 1 and 2. These guesses must be checked, so while
we output u2 we check those guesses. Since u2 is not part of a block we also check that
the output above u2 is bounded. We need to remember this output: the parts on levels
4, . . . , 7 will be outputted together with B2, whereas levels 8, . . . , 11 will be stored together
with what we remembered above u1 and B1. Note that we only remember words up to
length M .

Let us consider B2. We need to check that the output from the beginning to the end
of B2 is of the form t∗t′, for some word t of length at most M , i.e. the fact that B2 is
indeed a block. When we output in this mode we use the stored outputs on levels 4, . . . , 7
and guess the outputs right of B2 on levels 3, . . . , 6, that will also need to be checked.

4 Conclusion

This work had two objectives. First, to provide an efficient way to simulate a sweeping
transducer by an NFT. Moreover, the NFT built does more than being equivalent when
the SNFT is NFT-definable. In some way, even when the SNFT is not NFT-definable, the
NFT that we build computes the transduction of all the words that can be outputted by
an NFT. Then, to decide if a SNFT is NFT-definable, one needs to check the equivalence
between the two automata underlying the SNFT and the NFT that we have built.

The second goal of this work is the possibility of lifting the technique to the general
model of 2NFTs. The decomposition that we obtained cannot be directly used in this
case, but we think that a similar decomposition of the run of the transducer can be done
in the general case.

References

[1] E. Filiot, O. Gauwin, P. Reynier, and F. Servais. From two-way to one-way finite state
transducers. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 468–477. IEEE Computer Society, 2013.

[2] J. Karhumäki and C. Choffrut. Combinatorics of words. Springer-Verlag, 1997.

From sweeping transducers to one way transducers

51

Frontiers of Formal Methods 2015

52

Synthesizing Structured Reactive Programs
via Deterministic Tree Automata

Benedikt Brütsch (bruetsch@automata.rwth-aachen.de)

Lehrstuhl für Informatik 7, RWTH Aachen University, Germany

1 Introduction

Most approaches to the synthesis of controllers in reactive systems, for instance [1, 5, 4, 2],
involve synthesizing transition systems such as Mealy or Moore automata. Unfortunately,
the resulting transition systems can be very large. For example, for certain specifications
in linear temporal logic (LTL), the size of the smallest transition system satisfying the
specification is doubly exponential in the length of the formula [6].

The subject of this presentation is the synthesis of controllers represented in a more
succinct way: We consider structured reactive programs over a finite set B of Boolean
variables, building on work of Madhusudan [3]. The syntax of structured programs is

defined by the following grammar, where b stands for a variable in B and ~b for a vector of
variables:

〈exp〉 ::= true | false | b | 〈exp〉 ∧ 〈exp〉 | 〈exp〉 ∨ 〈exp〉 | ¬〈exp〉
〈prog〉 ::= b := 〈exp〉 | input ~b | output ~b | 〈prog〉;〈prog〉

if 〈exp〉 then 〈prog〉 else 〈prog〉 | while 〈exp〉 do 〈prog〉

Intuitively, “input ~b” reads an input symbol (i.e., a bitvector) and stores it in the

variables ~b. Conversely, “output ~b” writes the output symbol consisting of the current
values of the variables ~b. (The length of the input and output bitvectors is fixed.)
Such programs can be viewed a trees, as shown in figure 1.

while true do {

input (b1);
b2 := b2 ∨ b1;
output (b2)

}

while

true ;

input (b1) ;

assign-b2

∨
b1 b2

output (b2)

Figure 1: A program and its tree representation.

A program is called reactive if it never terminates and each of its computations reads
an infinite sequence of input symbols and writes an infinite sequence of output symbols.

Synthesizing Structured Reactive Programs via
Deterministic Tree Automata

53

2 Synthesis of Structured Reactive Programs

For a given ω-regular specification R, representing the permissible input/output sequences,
and a given finite set B of Boolean variables, the synthesis problem asks to construct a
structured reactive program over B satisfying the specification (if such a program exists).
We assume that the specification is provided in the form of a nondeterministic Büchi
automaton AR that recognizes the complement of the specification.

Madhusudan [3] proposes a solution to this problem based on two-way alternating
ω-automata on finite trees (representing programs), which can then be transformed into
equivalent nondeterministic tree automata (NTAs).

We provide a more elementary approach by directly constructing a deterministic bottom-
up tree automaton (DTA) recognizing the set of correct programs, without a detour via
more intricate types of automata. The DTA inductively computes a representation of
the behavior of a given program in the form of so-called co-execution signatures. A
co-execution is a pair consisting of a computation of the program and a corresponding
run of the specification automaton AR. A co-execution signature for a given program and
a given specification automaton captures the essential information about their possible
co-executions. In particular, such a signature suffices to determine whether there exists
a computation of the program such that AR accepts the corresponding input/output
sequence (which means that the specification is violated).

Our approach is not limited to programs that read input and write output in strict
alternation, but extends Madhusudan’s results to the more general class of programs with
bounded delay, which may read several input symbols before producing an output symbol
(or vice versa).

The size of the resulting DTA is exponential in the size of the given specification
automaton and doubly exponential in the number of program variables and the delay
bound. We also establish a lower bound, showing that the set of all programs over m
Boolean variables that satisfy a given specification cannot even be recognized by an NTA
with less than 22m−1

states, if any such program exists. However, note that a DTA (or
NTA) accepting precisely these programs enables us to extract a minimal program for the
given specification and the given set of program variables. Hence, while the tree automaton
may be large, the synthesized program itself might be rather small.

3 Required Program Variables: A Lower Bound

Furthermore, we consider the question of how many (Boolean) variables are needed to
satisfy a given specification. More specifically, we show that for certain specifications in
LTL, at least Ω(2

√
n) Boolean variables are required, where n is the size of the respective

LTL formula. This lower bound almost matches the exponential upper bound that can be
derived from the doubly exponential upper bound for the size of transition systems for
a given LTL specification [6]. In order to prove this lower bound, we draw on concepts
from graph theory and exploit the fact that the so-called transition graphs of structured
programs over a small number of variables have small tree-width. We show that for certain
specifications, the tree-width of the transition graphs of the programs satisfying these
specifications must be large, which allows us to deduce a lower bound for the number of
variables used by these programs.

Frontiers of Formal Methods 2015

54

References

[1] J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-
state strategies. Transactions of the American Mathematical Society, 138:295–311,
April 1969. ISSN 0002-9947. doi:10.2307/1994916.

[2] Orna Kupferman and Moshe Y. Vardi. Church’s problem revisited. The Bulletin of
Symbolic Logic, 5(2):245–263, June 1999. ISSN 1079-8986. doi:10.2307/421091.

[3] Parthasarathy Madhusudan. Synthesizing reactive programs. In Marc Bezem, editor,
Proceedings of Computer Science Logic (CSL ’11) – 25th International Workshop/20th
Annual Conference of the EACSL, volume 12 of Leibniz International Proceedings in
Informatics, pages 428–442. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2011.
ISBN 978-3-939897-32-3. doi:10.4230/LIPIcs.CSL.2011.428.

[4] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proceedings
of the 16th Symposium on Principles of Programming Languages (POPL ’89), pages
179–190. ACM, 1989. ISBN 0-89791-294-2. doi:10.1145/75277.75293.

[5] Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, 1972. ISBN 0821816632.

[6] Roni Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute
of Science, 1992.

Synthesizing Structured Reactive Programs via
Deterministic Tree Automata

55

Frontiers of Formal Methods 2015

56

Satisfiability of ECTL∗ with constraints∗

Claudia Carapelle (carapelle@informatik.uni-leipzig.de)

Institut für Informatik, Universität Leipzig, Germany

Temporal logics like LTL, CTL or CTL∗ are nowadays standard languages for specifying
system properties in model-checking. They are interpreted over node labeled graphs
(Kripke structures), where the node labels (also called atomic propositions) represent
abstract properties of a system. Clearly, such an abstracted system state does in general
not contain all the information of the original system state. Consider for instance a
program that manipulates two integer variables x and y. A useful abstraction might
be to introduce atomic propositions v−232 , . . . , v232 for v ∈ {x, y}, where the meaning of
vk for −232 < k < 232 is that the variable v ∈ {x, y} currently holds the value k, and
v−232 (respectively, v232) means that the current value of v is at most −232 (respectively,
at least 232). It is evident that such an abstraction might lead to incorrect results in
model-checking.

To overcome these problems, extensions of temporal logics with constraints have been
studied. We first explain the idea in the context of LTL: Fix a relational structure A, typi-
cal examples for A are number domains like the integers or rationals extended with certain
relations. We add to standard LTL atomic formulas of the form R(Xi1x1, . . . ,X

ikxk), so
called atomic constraints. Here, R is one of the relations of the structure A, i1, . . . , ik ≥ 0,
and x1, . . . , xk are variables that range over the universe of A. An LTL-formula contain-
ing such constraints is interpreted over infinite paths of a standard Kripke structure,
where in addition every node (state) associates with each of the variables x1, . . . , xk an
element of A (one can think of A-registers attached to the system states). A constraint
R(Xi1x1, . . . ,X

ikxk) holds in a path s0 → s1 → s2 → · · · if the tuple (a1, . . . , ak), where
aj is the value of variable xj at state sij , belongs to the A-relation R. In this way, the
values of variables at different system states can be compared. In our example from the
first paragraph, one might choose for A the structure (Z, <,=, (=a)a∈Z), where < is the
usual order on Z, = is the equality relation, =a is the unary predicate that only holds
for a. This structure has infinitely many predicates, which is not a problem with respect
to satisfiability because any formula can only use finitely many of those predicates. Our
main result actually is about an expansion of (Z, <,=, (=a)a∈Z). Then, one might for
instance write down a formula (<(x,X1y))U(=100(y)) which holds on a path if and only
if there is a point of time where variable y holds the value 100 and for all previous points
of time t, the value of x at time t is strictly smaller than the value of y at time t+ 1.

In [7], Demri and Gascon studied LTL extended with constraints from a language IPC∗.
If we disregard succinctness aspects, these constraints are equivalent to constraints over
the structure

Z = (Z, <,=, (=a)a∈Z, (≡a,b)0≤a<b), (1)

∗Supported by the DFG Research Training Group 1763 (QuantLA).

Satisfiability of ECTL* with constraints

57

where ≡a,b denotes the unary relation {a + xb | x ∈ Z}, expressing that an integer is
congruent to a modulo b. The main result from [7] states that satisfiability of LTL with
constraints from Z is decidable and in fact PSPACE-complete, and hence has the same
complexity as satisfiability for LTL without constraints.

In the same way as outlined for LTL above, atomic constraints can be added as atomic
path formulas to branching-time logics as CTL, CTL∗ and even its extension ECTL∗. A
weak form of CTL∗ with constraints from Z (where only integer variables at the same
state can be compared) was first introduced in [4], where it is used to describe properties
of infinite transition systems, represented by relational automata. It is shown in [4] that
the model checking problem for CTL∗ over relational automata is undecidable.

Demri and Gascon [7] asked whether satisfiability of CTL∗ with constraints from Z
over Kripke structures is decidable. This problem was investigated in [2, 9], where several
partial results where shown: If we replace in Z the binary predicate < by unary predicates
<c = {x | x < c} for c ∈ Z, then satisfiability for CTL∗ has been shown decidable by [9].
For the full structure Z satisfiability has been shown decidable for CEF+, the fragment of
CTL∗ which contains the existential and universal fragment of CTL∗ as well as EF, see [2].

In our work we deal with ECTL∗ [11, 12], which is a proper extension of CTL∗, where the
CTL∗ path formulas are replaced by the set of all regular properties of paths (represented
by Büchi-automata or MSO-formulas). The main result we obtain is the following:

Theorem 1 Satisfiability of ECTL∗ with constraints over Z is decidable.

Our proof is divided into two steps. The first step provides a tool to prove decidability of
ECTL∗ with constraints over any structure A (called a concrete domain) over a countable
signature σ which satisfies the property that the complement of any of its relations has to
be definable in positive existential first-order logic over A (in this case we call A negation
closed). Let L be a logic that satisfies the following three properties:

P.1 Satisfiability of a given L-sentence over the class of infinite node-labeled trees is
decidable.

P.2 L is closed under boolean combinations with monadic second-order formulas (MSO).

P.3 L is compatible with one dimensional first-order interpretations and with the k-copy
operation.

A typical such logic is MSO itself. By Rabin’s seminal tree theorem [10], satisfiability
of MSO-sentences over infinite node-labeled trees is decidable, and Muchnik’s theorem
(cf. [13]) implies compatibility of MSO with k-copying.

Assuming L has these properties, we prove that satisfiability of ECTL∗ with constraints
over A is decidable if one can compute from a given finite subsignature τ ⊆ σ an L-
sentence ψτ (over the signature τ) such that for every countable τ -structure B, B |= ψτ if
and only if there is a homomorphism from B to A (i.e., a mapping from the domain of B
to the domain of A that preserves all relations from τ). We say that the structure A has
the property EHD(L) if such a computable function τ 7→ ψτ exists. EHD(L) stands for
“existence of homomorphism is L-definable”. For instance, the structure (Q, <,=) has
the property EHD(MSO).

The first step of our proof can be then summarized in the following:

Frontiers of Formal Methods 2015

58

Theorem 2 Let L be a logic satisfying P.1-3. If the relational structure A

• is negation closed,

• has the property EHD(L),

then satisfiability of ECTL∗ with constraints over A is decidable.

The second step consists in showing that Z satisfies the conditions to apply Theorem
2. While it is easy to see that Z from (1) is negation closed, it is not clear whether it has
the property EHD(MSO) (we conjecture that it does not). Hence, we need a different logic.
It turns out that Z has the property EHD(Bool(MSO,WMSO+B)), where WMSO+B is
the extension of weak monadic second-order logic (where only quantification over finite
subsets is allowed) with the bounding quantifier B and Bool(MSO,WMSO+B) stands for
all Boolean combinations of MSO and WMSO+B sentences. A formula BX ϕ holds in a
structure A if and only if there exists a bound b ∈ N such that for every finite subset B
of the domain of A with A |= ϕ(B) we have |B| ≤ b. Recently, Bojańczyk and Toruńczyk
have shown that satisfiability of WMSO+B over infinite node-labeled trees is decidable
[1]. Thus, WMSO+B is a candidate logic for our method. Unfortunately, WMSO+B
is not closed under Boolean combinations with MSO-sentences. Thus, we consider the
logic L = Bool(MSO,WMSO+B) that consists of all Boolean combinations of MSO and
WMSO+B-sentences. Fortunately, the decidability proof for WMSO+B can be extended
to L. Moreover, L is compatible with one-dimensional first-order interpretations and with
the k-copy operation. Thus, we show that:

Theorem 3 L = Bool(MSO,WMSO+B) satisfies P.1-3, and Z is negation closed and
enjoys the property EHD(L).

Theorem 3 and Theorem 2 together yield Theorem 1.
While it would be extremely useful to add successor constraints (y = x + 1) to

Z, this would lead to undecidability even for LTL [6]. Nonetheless Z allows qualita-
tive representation of increment, for example x = y + 1 can be abstracted by (y >

x) ∧ ∨2k−1
i=−2k(≡i,2k(x) ∧ ≡i+1,2k(y)) where k is a large natural number. This is why tem-

poral logics extended with constraints over Z seem to be a good compromise between
(unexpressive) total abstraction and (undecidable) high concretion.

Since satisfiability of ECTL∗ (without constraints) is non-elementary (which follows
from the fact that MSO over infinite words is non-elementary), the same lower complexity
bound also holds for ECTL∗ with constraints from Z. On the other hand, satisfiability of
CTL∗ is 2EXPTIME-complete [8], but unfortunately, our proof does not yield any complex-
ity bound for satisfiability of CTL∗ with constraints from Z. The boolean combinations of
(WMSO+B)-sentences and MSO sentences that have to be checked for satisfiability (over
infinite trees) are of a simple structure, in particular their quantifier depth is not high,
but no complexity statement for satisfiability of WMSO+B is made in [1], and it seems
to be difficult to analyze the algorithm from [1]. It is based on a construction for cost
functions over finite trees from [5], where the authors only note that their construction
seems to have very high complexity.

Let us stress that the approach to decide satisfiability of ECTL∗ with constraints via
property EHD(L) is rather general and not restricted to be used for the integers. For

Satisfiability of ECTL* with constraints

59

instance, this method can be applied to several “tree-like” concrete domains, like semi-
linear orders, ordinal trees and trees of a fixed height. Moreover, with a slight variation
the approach can also deal with finite satisfiability, i.e., with the problem whether a given
formula has a model whose underlying Kripke structure is finite.

These results are part of a joint work with Alexander Kartzow and Markus Lohrey,
and some of them have already appeared in [3].

References

[1] M. Bojańczyk and S. Toruńczyk. Weak MSO+U over infinite trees. In Proc. STACS
2012, vol. 14 of LIPIcs, 648–660. Schloss Dagstuhl, 2012.

[2] L. Bozzelli and R. Gascon. Branching-time temporal logic extended with qualitative
Presburger constraints. In Proc. LPAR 2006, LNCS 4246, 197–211. Springer, 2006.

[3] C. Carapelle, A. Kartzow, and M. Lohrey. Satisfiability of CTL* with constraints. In
Proc. CONCUR 2013, LNCS 8052, pages 455–469. Springer, 2013.

[4] K. Čerāns. Deciding properties of integral relational automata. In Proc. ICALP 1994,
LNCS 820, 820:35–46. Springer, 1994.

[5] T. Colcombet and C. Löding. Regular cost functions over finite trees. In Proc. LICS
2010, 70–79. IEEE Computer Society, 2010.

[6] S. Demri and D. D’Souza. An automata-theoretic approach to constraint LTL. Inf.
Comput., 205(3):380–415, 2007.

[7] S. Demri and R. Gascon. Verification of qualitative Z constraints. Theor. Comput.
Sci., 409(1):24–40, 2008.

[8] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of pro-
grams. SIAM Journal on Computing, 29(1):132–158, 1999.

[9] R. Gascon. An automata-based approach for CTL∗ with constraints. Electr. Notes
Theor. Comput. Sci., 239:193–211, 2009.

[10] M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1–35, 1969.

[11] W. Thomas. Computation tree logic and regular omega-languages. In Proc. REX
Workshop 1988, LNCS 354, 690–713. Springer, 1988.

[12] M. Y. Vardi and P. Wolper. Yet another process logic (preliminary version). In
Proc. Logic of Programs 1983, LNCS 164, 501–512. Springer, 1983.

[13] I. Walukiewicz. Monadic second-order logic on tree-like structures Theor. Comput.
Sci., 275(1-2):311–346, 2002.

Frontiers of Formal Methods 2015

60

Composition of Stochastic Timed Automata
Pierre Carlier (pierre.carlier@umons.ac.be)

LSV, CNRS & ENS Cachan, France & Université de Mons, Belgium

We consider the model of stochastic timed automata that has been introduced in
[1], a model in which both delays and discrete choices are made probabilistically. We
are interested in the composition of two stochastic timed automata in the case where
both automata run independently. In order to define this composition, we have to find
probability measures over delays and edges satisfying some properties, which are not trivial.
We try to find a class of stochastic timed automata in which the composition is internal,
well-defined and expresses an independent running of both automata.

1 Stochastic Timed Automata
1.1 Definition
The notion of stochastic timed automata has been introduced in [1]. We first recall the
notion of timed automata. Let X be a finite set of real-valued variables called clocks. A
clock valuation over X is a function ν : X → R+ where R+ is the set of non-negative real
numbers. We write RX+ for the set of clock valuations over X. Given ν ∈ RX+ , τ ∈ R+ and
Y ⊆ X we define the clock valuations ν + τ by (ν + τ)(x) = ν(x) + τ for every x ∈ X,
and [Y ← 0]ν by [Y ← 0]ν(x) = 0 if x ∈ Y and [Y ← 0]ν(x) = ν(x) otherwise. A guard
over X is any finite conjunction of expressions of the form x ∼ c where x ∈ X, c ∈ N and
∼∈ {<,>}. We denote by G(X) the set of guards over X. We say that ν satisfies a guard
of the form x ∼ c with x ∈ X, c ∈ N and ∼∈ {<,>} whenever ν(x) ∼ c and we write
ν |= g if ν satisfies g.

A timed automaton is a tuple A = (L, l0, X,E) such that: (i) L is a finite set of
locations, (ii) l0 ∈ L is the initial location, (iii) X is a finite set of clocks and (iv)
E ⊆ L× G(X)× 2X × L is a finite set of edges.

The semantics of a timed automaton is a transition system TA = (Q, q0,→) where
Q = L × RX+ is the set of states, q0 = (l0,0X) is the initial state, with 0X being the
clock valuation that assigns 0 to each clock x, and → is the transition relation defined as
follows: given (l, ν) and (l′, ν ′) ∈ Q, we have (l, ν)→ (l′, ν ′) if there is τ ∈ R+ and there
is e ∈ E such that e = (l, g, Y, l′) for some g ∈ G(X) and some Y ⊆ X, ν + τ |= g and
ν ′ = [Y ← 0](ν + τ). We then write (l, ν) τ,e−→ (l′, ν ′). We define a finite run ρ of A as
a finite sequence of consecutive transitions: ρ = q1

τ1,e1−−→ q2
τ2,e2−−→ · · · τn,en−−→ qn+1 where,

for each i, qi = (li, νi) is a state. Similarly, we define an infinite run ρ of A as an infinite
sequence of consecutive transitions: ρ = q1

τ1,e1−−→ q2
τ2,e2−−→ · · · . We write Runs(A, q1) (resp.

Runsf (A, q1)) for the set of infinite (resp. finite) runs of A that start in q1.

Composition of Stochastic Timed Automata

61

One would like to extend the notion of timed automata to the notion of stochastic
timed automata in order to define a probability measure over Runs(A, q) for every state
q. In order to do it, we have to equip A with probability distributions over both delays
and edges. We first introduce some notations. Given a state q of A and an edge e ∈ E,
we define I(q, e) := {τ ∈ R+ | ∃q′ ∈ Q s.t. q τ,e−→ q′ ∈→} and I(q) := ⋃

e∈E I(q, e).
Intuitively, the set I(q, e) depicts the set of delays after which, starting from q, edge e is
immediately enabled while I(q) is the set of delays after which, starting from q, some edge
e is immediately enabled. In the sequel we are only interested by the reachable states
and we assume that λ(I(q)) > 0 for each reachable state q, where λ denotes the Lebesgue
measure.

Definition 1.1. A stochastic timed automaton is a tuple A = (L, l0, X,E, (µq, pq)q∈L×RX+
)

where (L, l0, X,E) is a timed automaton and:

(i) for every q = (l, ν) ∈ L×RX+ , µq is a probability distribution over R+ (equipped with
the Borel σ-algebra) such that µq(I(q)) = 1 and pq is a probability distribution over
the set of edges enabled in q, i.e. over {(l, g, Y, l′) ∈ E | ν |= g},

(ii) for every q ∈ L× RX+ , µq is equivalent to the restriction of λ on I(q).

We recall that two measures µ and ν over a σ-algebra S ⊆ 2Ω are said equivalent if for
every A ∈ S, µ(A) = 0⇔ ν(A) = 0. We also recall that the restriction of the Lebesgue
measure λ on a Borel set B of R+, denoted by λB, is defined by λB(A) = λ(A ∩ B) for
every Borel set A.

1.2 A probability measure over infinite runs
Now, given a stochastic timed automaton A, with the aim of defining a probability
measure over Runs(A, q) for each state q, we introduce some notations. Given a state
q and a finite sequence of edges (ei)1≤i≤n we define the symbolic path starting from q

and determined by (ei)1≤i≤n as the set of finite runs π(q, e1, . . . , en) := {ρ = q
τ1,e1−−→

q1 · · · τn,en−−→ qn | τ1, . . . , τn ∈ R+}. Similarly, given a Borel set C of Rn+, we define the
constrained symbolic path starting from q, determined by (ei)1≤i≤n and satisfying C as
the set of finite runs πC(q, e1, . . . , en) = {ρ = q

τ1,e1−−→ q1 · · · τn,en−−→ qn | (τ1, . . . , τn) ∈ C}.
Given a (constrained) symbolic path π, we define the cylinder generated by π, denoted by
Cyl(π), as the set of infinite runs ρ such that there is a prefix of ρ that is in π. In other
words, if π = πC(q, e1, . . . , en) where q ∈ Q, e1, . . . , en ∈ E and C is a Borel set of Rn+, then
Cyl(π) = {ρ ∈ Runs(A, q) | ρ = q

τ1,e1−−→ q1 · · · τn,en−−→ qn → · · · and (τ1, . . . , τn) ∈ C}.
We inductively define a measure, denoted by PA, over finite symbolic paths from state

q by:
PA(π(q, e1, . . . , en)) =

∫

t∈I(q,e1)
pq+t(e1)PA(π(qt, e2, . . . , en))dµq(t)

where e1, . . . , en are in E and qt is such that q t→ q + t
e1→ qt, and we initialize with

PA(π(q)) = 1. The formula for PA relies on the fact that the probability of taking
transition e1 at time t coincides with the probability of waiting t time units and then
choosing e1 among the enabled transitions, i.e. pq+t(e1)dµq(t). The value of PA(π), where
π = π(q, e1, . . . , en), is the result of n successive integrals. Hence one can extend the

Frontiers of Formal Methods 2015

62

measure PA to the the constrained symbolic paths. This extension is required to measure
rather complex sets. Now, since we are interested by the set of infinite runs, one can
extend PA to the cylinders by PA(Cyl(π)) = PA(π), where π is a (constrained) symbolic
path. Using some extension’s theorem as the Carathéodory’s theorem, we can extend PA
in a unique way to the σ-algebra generated by the cylinder starting in q, which we note
Ωq
A.

Proposition 1.2 ([2]). Let A = (L, l0, X,E, (µq, pq)q∈L×RX+
) be a stochastic timed automa-

ton. For every state q ∈ Q, PA is a probability measure over (Runs(A, q),Ωq
A).

2 Compostion
2.1 Construction and defininition
We want now to define the composition of two stochastic timed automata. We first
define the composition of two timed automata. If A1 = (L1, l

(1)
0 , X1, E1) and A2 =

(L2, l
(2)
0 , X2, E2) are two timed automata such that X1 ∩ X2 = ∅, we define the timed

automaton A1 × A2 as the tuple A1 × A2 = (L1 × L2, (l(1)
0 , l

(2)
0), X1 ∪ X2, E), where

E = E1,• ∪ E•,2, E1,• = {((l1, l2), g, Y, (l′1, l2)) | (l1, g, Y, l′1) ∈ E1, l2 ∈ L2}, and E•,2 is
defined similarly. We abusively denote E1,• by E1 and E•,2 by E2.

Now one would like to extend the composition to the stochastic timed automata. Let
A1 =

(
L1, l

(1)
0 , X1, E1, (µ(1)

q , p(1)
q)

q∈L1×R
X1
+

)
and A2 =

(
L2, l

(2)
0 , X2, E2, (µ(2)

q , p(2)
q)

q∈L2×R
X2
+

)

be two stochastic timed automata. We want to find a family of couples of probability
measures, (µq, pq)q∈L1×L2×R

X1
+ ×R

X2
+
, in order to define the stochastic timed automaton

A1 ×A2 =
(
L, l0, X,E, (µq, pq)q∈L×RX+

)
, where (L, l0, X,E) is as defined in the previous

definition and thus, L×RX+ = L1×L2×RX1
+ ×RX2

+ . For any state q = ((l1, l2), (ν1, ν2)) ∈ L1×
L2×RX1

+ ×RX2
+ we have to choose a probability distribution µq over I(q) and a probability

distribution pq over the set of enabled edges in q, i.e. the set {((l1, l2), g, Y, (l′1, l′2)) ∈ E |
(ν1, ν2) |= g}. We first introduce some notations. Given q = ((l1, l2), (ν1, ν2)) a state of
A1 ×A2 we write q1 (resp. q2) for the projection of q in A1 (resp. A2), i.e. q1 = (l1, ν1)
(resp. q2 = (l2, ν2)). We write fq,1 (resp. fq,2) for the Radon-Nikodym derivative of µ(1)

q

(resp. µ(2)
q) with respect to the Lebesgue measure λ, i.e. µ(i)

q (A) =
∫
A fq,i(t)dt for each

Borel set A of R+ and each i ∈ {1, 2}. We have that fq,i is the density function of µ(i)
q and

we write Fq,i for the cumulative function associated to fq,i for each i ∈ {1, 2}. We then
write Xq,1 (resp. Xq,2) for a random variable of density fq,1 (resp. fq,2) and where Xq,1
and Xq,2 are independent.

We define µq(A) =
∫
A fq,min(t)dt for each Borel set A, where fq,min is the density function

of min(Xq,1, Xq,2). One can show that fq,min(t) = fq,1(t)(1− Fq,2(t)) + fq,2(t)(1− Fq,1(t))
for every t ≥ 0. In order to define the probability distributions pq over the enabled
edges in q, one could consider that from state q, both systems A1 and A2 are in a
race to win the next edge, i.e. A1 wins the race if the first edge taken from q is in
E1. Hence, given t ∈ I(q), and an edge e ∈ E1 enabled in q + t, one would like that
pq+t(e) = w1

q(t)p
(1)
q+t(e) where w1

q(t) is the probability that, starting from q, A1 wins
the race knowing that it was won after a delay of t time units. Formally, we define
w1
q(t) = limε→0 P

(
Xq,1 = min(Xq,1, Xq,2) | min(Xq,1, Xq,2) ∈ [t, t+ ε]

)
for every t ≥ 0 and

Composition of Stochastic Timed Automata

63

we then can show that w1
q(t) = fq,1(t)(1−Fq,2(t))

fq,min(t) if fq,min(t) 6= 0. We formalize this in the
next definition.

Let CSTA denote the class of stochastic timed automata A such that for every state q,
(a) the density function fq associated with µq is almost-surely continuous on R+, and

(b) for every t, t′ ≥ 0 with t and t+t′ in I(q), fq(t+t′)(1−Fq+t(t′)) = fq+t(t′)(1−Fq(t+t′)),
where Fq (resp. Fq+t) is the cumulative function associated with fq (resp. fq+t).

Definition 2.1. Let A1 and A2 be two stochastic timed automata as before. We say
that A1 and A2 are composable if A1 and A2 are in CSTA and if X1 ∩ X2 = ∅ and
we define the composition A1 × A2 as the stochastic timed automaton A1 × A2 =
(L, l0, X,E, (µq, pq)q∈L×RX+

), where, for any q = ((l1, l2), (ν1, ν2)),
(i) (L, l0, X,E) is the composition of the underlying timed automata A1 and A2,

(ii) µq is defined as follows: ∀A ∈ B(R+), µq(A) =
∫
A fq,min(t)dt, where fq,min(t) =

fq,1(t)(1− Fq,2(t)) + fq,2(t)(1− Fq,1(t)) for every t ≥ 0, and

(iii) for any t ∈ I(q), pq+t is defined as follows: pq+t(e) = 1E1(e)w1
q(t)p

(1)
q+t(e)+1E2(e)w2

q(t)p
(2)
q+t(e)

for every e ∈ E, where for any t ∈ I(q),

w1
q(t) := fq,1(t)(1− Fq,2(t))

fq,min(t) and w2
q(t) := fq,2(t)(1− Fq,1(t))

fq,min(t)
if fq,min(t) 6= 0, and w1

q(t) = w2
q(t) = 0 if fq,min(t) = 0.

Hypotheses (a) and (b) are needed so that for every state q, fq,min, w1
q and w2

q are
well-defined. One can notice that the hypotheses express conditions that do not depend of
the distributions of both automata simultaneously, it is independent of the automaton
product. Hypothesis (b) comes from the fact that, given a state q, pq is well-defined if for
any t, t′ ≥ 0, p(q+t)+t′ = pq+(t+t′) since (q + t) + t′ = q + (t+ t′). One can show that this
equality holds if wiq(t+ t′) = wiq+t(t′) for any t, t′ ≥ 0 and for any i ∈ {1, 2}. We can then
show that it suffices that hypothesis (b) holds to have this last equality. One can show
that if A1 and A2 ∈ CSTA then A1 ×A2 ∈ CSTA.

It is not difficult to show that uniform and exponential distributions satisfy hypothesis
(a) and (b). One can thus see that two stochastic timed automata A1 and A2, equipped
with uniform or exponential distributions over the delays, are composable. We now give
an example of probability measures that do not satisfy hypothesis (b).
Example 2.2 (Weighted uniform distributions). If for any q = (l1, ν1) with ν1 ∈ [0, 1], we
have that for any t ≥ 0,

fq,1(t) = 3
2

1
1− ν1

1[0, 1−ν1
2 [(t) + 1

2
1

1− ν1
1[1−ν1

2 ,1−ν1].

Then one can easily show that Fq,1(t) = 3
2

t
1−ν1

1[0, 1−ν1
2 [(t) +

(
1
2 + 1

2
t

1−ν1

)
1[1−ν1

2 ,1−ν1](t) +
1]1−ν1,+∞[(t). Now, let us assume that q = (l1, 0), t = 1

2 and t′ = 1
8 . Then t and t+ t′ are

in I(q) and we can show that fq,1(5/8)
(
1− Fq+(1/2),1(1/8)

)
= 5/16 and fq+(1/2),1(1/8)

(
1−

Fq,1(5/8)
)

= 9/16. We conclude that hypothesis (b) is not satisfied for some weighted
uniform distribution and thus, a stochastic timed automaton equipped with this weighted
uniform distribution over the delays, can not be composed with another stochastic timed
automaton.

Frontiers of Formal Methods 2015

64

2.2 Independence
Now, in order to express an independent running of A1 and A2, one would like for example
that, given a state q = ((l1, l2), (ν1, ν2)), the probability that e1 is the first edge in E1
taken in A1 ×A2 from q coincides with the probability that e1 is the first edge taken in
A1 from (l1, ν1):

PA1×A2(q A
∗
2→ · e1→) = PA1(q1

e1→ ·) (1)

where q A
∗
2→ · e1→= ⋃

n∈N
⋃

(f1,...,fn)∈En2 Cyl(π(q, f1, . . . , fn, e1)). One can show that (1) is
satisfied if A1 and A2 are almost-surely non-zeno and if for each i ∈ {1, 2}, for each state
q of A1 ×A2, for each t, t′ ≥ 0,

fq,i(t+ t′) = (1− Fq,i(t))fq+t,i(t′). (2)

We recall that an infinite run ρ = q1
τ1,e1−−→ q2

τ2,e2−−→ q3 . . . is zeno if ∑i≥1 τi < +∞ and
that the set of zeno runs can be expressed by means of cylinders. Moreover, one can
show that if C is the class of stochastic timed automata almost-surely non-zeno, satisfying
hypothesis (a) and (b) of Definition 2.1 and satisfying (2), then the composition is internal
and well-defined in C, and satisfies (1).

3 Future Work
Since we are interested by the model-checking problem, we would like now to find an
interesting class of stochastic timed automata in which, given an automaton A and an
LTL-formula ϕ, we can decide whether the probability that A satisfies ϕ is 1 or not. We
try to find such an interesting class, satisfying all hypothesis of the class C, such that
the composition is internal and well-defined in C, and satisfies (1). Several classes of
stochastic timed automata in which we can decide the almost-sure model-checking problem
are described in [2] and [3].

We are also currently working on a notion of bisimulation in stochastic timed automata.
The objective is to have a bisimulation that is a congruence with regard to the composition.

References
[1] Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Marcus

Größer. Probabilistic and topological semantics for timed automata. In FSTTCS’07:
Foundations of Software Technology and Theoretical Computer Science, volume 4855
of Lecture Notes in Computer Science, pages 179–191. Springer Berlin Heidelberg,
December 2007.

[2] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet, Marcus Größer,
and Marcin Jurdziński. Stochastic timed automata. 2014. To appear.

[3] Patricia Bouyer, Thomas Brihaye, Marcin Jurdziński, and Quentin Menet. Almost-sure
model-checking of reactive timed automata. In QEST’12: Quantitative Evaluation of
Systems, pages 138–147, September 2012.

Composition of Stochastic Timed Automata

65

Frontiers of Formal Methods 2015

66

SMT-RAT: An SMT-Compliant Nonlinear
Real and Integer Arithmetic Toolbox

Florian Corzilius (corzilius@cs.rwth-aachen.de)

Theory of Hybrid Systems, RWTH Aachen University, Germany

1 Introduction
The Satisfiability-Modulo-Theories (SMT) problem addresses checking the satisfiability of
SMT formulas, i.e., Boolean combinations of constraints of one or more theories. SMT
solvers use a SAT solver to find satisfying solutions for the Boolean skeleton of an input
SMT formula, which are in turn checked for consistency for the underlying theories with
other decision procedures.

The last decade has brought great achievements in the field of SMT solving. For
instance, the SMT-LIB standard defines a common input format for SMT solvers and
provides the community with benchmarks for different theories. In addition, SMT com-
petitions motivate the development and improvement of SMT solvers. Nowadays, different
efficient SMT solvers are available for several theories, e.g., for linear real arithmetic. How-
ever, only a few solvers support nonlinear real arithmetic (NRA) and nonlinear integer
arithmetic (NIA), the theory of the reals and integers with addition and multiplication.

Nonlinear real arithmetic was shown to be decidable by Tarski [17]. Though the
worst-case time complexity of solving real arithmetic formulas is doubly exponential in
the number of variables [19], its existential fragment, which is addressed by SMT solving,
can be solved in exponential time [12]. One of the most widely used decision procedures
for NRA is the cylindrical algebraic decomposition (CAD) method [7]. Other well-known
methods use, e.g., Gröbner bases (GB) [18] or the realization of sign conditions [2]. Some
incomplete methods based on, e.g., interval constraint propagation (ICP) [11] and virtual
substitution (VS) [20], can handle significant fragments and, even though they have the
same worst-case complexity as the complete methods, they are more efficient in practice.
Moreover, they are well suited to be complemented by complete methods, to which they
pass reduced sub-problems.

Nonlinear integer arithmetic is not decidable, however there are some approaches which
try to tackle this problem. Procedures which are tailored for NRA can always be used to
find the unsatisfiability of the real relaxation of the given NIA instance. Furthermore, ICP
can be adapted to be used for NIA and we can transform an NIA formula into a formula
in propositional logic, if we consider only the decidable fragment where the domains of
all variables are bounded (bit-blasting [6]).

Most activities in the area of SMT solving focus on theories such as equality logic,
bitvectors, arrays, uninterpreted functions or linear arithmetic over the reals and integers.
This research resulted in SMT solvers like, e.g., CVC3 [1], MathSAT [5] or OpenSMT [4] just

SMT-RAT: An SMT-Compliant Nonlinear Real and Integer
Arithmetic Toolbox

67

to name a few. However, less activity can be observed for SMT solvers for NRA, as the
underlying procedures are very complex: besides some incomplete solvers like MiniSmt [21]
and iSAT3 [11, 16], we are aware of only one SMT solver, i.e., Z3 [13], that is complete for
NRA. Even less activity is observed in NIA: to the best of our knowledge, only Z3 and
the SMT solving spin-off of Aprove [6] implementing bit-blasting can tackle this logic.

The development of a complete SMT solver for NRA is problematic because the afore-
mentioned NRA and NIA decision procedures are not SMT-compliant, i.e., they do not
fulfill the requirements for an embedding into an efficient SMT solver. Firstly, in less-lazy
SMT solving, theory solvers should be able to work incrementally, i.e., if they determine
the satisfiability of a set of constraints, they should be able to check an extended set of
constraints on the basis of the previous result. Secondly, in case a constraint set is un-
satisfiable, theory solvers should be able to compute an infeasible subset as explanation.
Thirdly, they must be able to backtrack according to the search of the SAT solver.

2 Satisfiability modulo real and integer arithmetic

SMT solving denotes an algorithmic framework for solving Boolean combinations of con-
straints from some theories. SMT solvers combine a SAT solver computing satisfying
assignments for the Boolean structure of the SMT formula with procedures to check the
consistency of theory constraints. For more details on SMT we refer to [3, Ch. 26].

We consider NRA/NIA formulas ϕ, which are Boolean combinations of constraints
c comparing polynomials p to 0. A polynomial p can be a constant, a variable x, or a
composition of polynomials by addition, subtraction or multiplication:

p ::= 0 | 1 | x | (p+ p) | (p− p) | (p · p)
c ::= p = 0 | p < 0 | p > 0
ϕ ::= c | (¬ϕ) | (ϕ ∧ ϕ) | (∃xϕ)

The semantics of NRA/NIA formulas is defined as usual.
Given a polynomial p = a1x

e1,1
1 · · ·xen,1

n + · · · + akx
e1,k
1 · · ·xen,k

n in monomial normal
form, by deg(p) := max1≤j≤k(

∑n
i=1 ei,j) we denote the degree of p. We call an NRA/NIA

formula ϕ linear if deg(p) ≤ 1 for all polynomials p in ϕ, and nonlinear otherwise.

3 The design of SMT-RAT

SMT-RAT is a C++ library consisting of a collection of SMT-compliant implementations of
methods for solving NRA/NIA formulas we refer to as modules. These modules can be
combined to (1) a theory solver in order to extend the supported logics of an existing SMT
solver by NRA/NIA (see Figure 2) or (2) an SMT solver for NRA/NIA (see Figure 1).
The latter is especially intended to be a testing environment for the development of SMT-
compliant implementations of further methods tackling NRA/NIA. Here, the developer
only needs to implement the given interfaces of an SMT-RAT module and does not need
to care about parsing input files, transforming formulas to conjunctive normal form or
embedding a SAT solver in order to solve the Boolean skeleton of the given formula.
Instead, SMT-RAT provides this and more features, e.g., lemma exchange.

Frontiers of Formal Methods 2015

68

Fr
on

te
nd

Manager
Strategy

ConditionCondition Condition
. . .

Module Module Module Module . . .

Figure 1: A snapshot of an SMT-RAT composition being an SMT solver.

SMT solver

SAT
solver

Manager
Strategy

ConditionCondition Condition
. . .

Module Module Module Module . . .

Figure 2: A snapshot of an SMT-RAT composition being a theory solver embedded in an
SMT solver.

SMT-RAT defines three types of components: the manager, the strategy and, as already
mentioned, modules. In addition, a front-end (1) provides the interfaces to an external
SMT solver or (2) parses an input file storing an NRA/NIA formula, which we denote in
the following simply as formula.

A module m contains a set of formulas, called its set of received formulas and denoted
by Crcv(m). The main procedure of a module is check() and either decides whether
Crcv(m) is satisfiable or not returning sat or unsat, respectively, or returns unknown.
Note, that a set of formulas is semantically defined by their conjunction. We can ma-
nipulate the set of received formulas by adding (removing) formulas ϕ to (from) it with
add(ϕ) (remove(ϕ)). Usually, Crcv(m) is only changed slightly between two consecu-
tive check() calls, hence, the solver’s performance can be significantly improved if the
modules work incrementally and support backtracking. In case the module determines
the unsatisfiability of Crcv(m), it is expected to compute at least one preferably small
infeasible subset Cinf (m) ⊆ Crcv(m). Moreover, a module has the possibility of naming
lemmas, which are formulas being tautologies, that is they hold for all assignments of the
variables occurring in them. These lemmas should encapsulate information which can be
extracted from a module’s internal state and propagated among other SMT-RAT modules.
Furthermore, SMT-RAT provides the feature that a module itself can ask other modules for
the satisfiability of a set of formulas, called its set of passed formulas denoted by Cpas(m),
using the procedure runBackends() which is controlled by the manager.

SMT-RAT allows a user to decide how to compose the different procedures, which are
implemented in the modules. For this purpose we provide a graphical user interface,
where the user can create such a composition we call strategy. A strategy is a directed
tree T := (V,E) with a set V of (instances of) modules as nodes and E ⊆ V × Ω × V ,
where Ω is a set of conditions. The manager contains the strategy and the input formula

SMT-RAT: An SMT-Compliant Nonlinear Real and Integer
Arithmetic Toolbox

69

Cinput, either received by a prefixed solver or parsed from an example file. Furthermore,
it maintains the allocation of modules as follows.

Initially, the manager calls the method check() of the module mr given by the root
of the strategy with Crcv(mr) = Cinput being the set of received formulas of this module.
Whenever a module m ∈ V calls runBackends(), with Cpas(m) being its set of passed
formulas, the manager calls check() of each module m′ with Crcv (m’) = Cpas (m) being
its set of received formulas, for which an edge (m,ω,m′) ∈ E exists such that ω holds
for Cpas(m), and passes the results back to m. Furthermore, it also passes back the
infeasible subsets and lemmas provided by the invoked modules. The module m can now
benefit in its solving and reasoning process from this shared information. A condition
ω ∈ Ω on formulas is an arbitrary Boolean combination of formula properties, such as
propositions about the Boolean structure of the formula, e.g., whether it is in conjunctive
normal form (CNF), about the constraints, e.g., whether it contains equations or about
the polynomials, e.g., whether they are linear.

There are already various procedures for NRA and NIA implemented in SMT-RAT, all
being SMT-compliant. One module, for instance, applies an efficient CNF transformation.
Another module abstracts its input NRA/NIA formula in CNF to propositional logic and
applies the efficient SAT solver minisat [10]. One module uses the Simplex method
combined with branch-and-bound and cutting-plane procedures as presented in [9]. We
apply it on the linear constraints of any conjunction of NRA and NIA constraints. For
a conjunction of NRA constraints and the real relaxation of NIA constraints SMT-RAT
provides modules implementing the GB [14], VS [8] and CAD [15] procedures.

References
[1] Barrett, C., Tinelli, C.: CVC3. In: Proceedings of the 19th International Conference

on Computer Aided Verification (CAV ’07). Lecture Notes in Computer Science, vol.
4590, pp. 298–302. Springer (Jul 2007)

[2] Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer
(2010)

[3] Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

[4] Bruttomesso, R., et al.: The OpenSMT solver. In: Proc. of TACAS’10. LNCS, vol.
6015, pp. 150–153. Springer (2010)

[5] Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The mathSAT
4SMT solver. pp. 299–303

[6] Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semiring con-
straints. In: SMT Workshop 2012 10th International Workshop on Satisfiability
Modulo Theories SMT-COMP 2012. p. 87

[7] Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Automata Theory and Formal Languages. LNCS, vol. 33, pp.
134–183. Springer (1975)

Frontiers of Formal Methods 2015

70

[8] Corzilius, F., Ábrahám, E.: Virtual substitution for SMT solving. In: Proc. of
FCT’11. Springer (2011)

[9] Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Proc.
of CAV’06. LNCS, vol. 4144, pp. 81–94. Springer (2006)

[10] Eén, N., Sörensson, N.: An extensible sat-solver. In: Proc. of the 6th Int. Conf.
on Theory and Applications of Satisfiability Testing (SAT’03). LNCS, vol. 2919, pp.
502–518. Springer (2004)

[11] Fränzle, M., et al.: Efficient solving of large non-linear arithmetic constraint systems
with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and
Computation 1(3-4), 209–236 (2007)

[12] Heintz, J., Roy, M.F., Solernó, P.: On the theoretical and practical complexity of the
existential theory of the reals. The Computer Journal 36(5), 427–431 (1993)

[13] Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR’12). LNCS, vol. 7364, pp. 339–354. Springer
(2012)

[14] Junges, S., Loup, U., Corzilius, F., Ábrahám, E.: On Gröbner bases in the context
of satisfiability-modulo-theories solving over the real numbers. Tech. Rep. AIB-2013-
08, RWTH Aachen University (2013), http://aib.informatik.rwth-aachen.de/
2013/2013-08.pdf

[15] Loup, U., Scheibler, K., Corzilius, F., E. Ábrahám, E., Becker, B.: A symbiosis of
interval constraint propagation and cylindrical algebraic decomposition. In: Proc. of
CADE-24. pp. 193–207. LNCS, Springer (2013)

[16] Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the smt solver
isat. In: MBMV. pp. 231–241 (2013)

[17] Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of
California Press (1948)

[18] Weispfenning, V.: A new approach to quantifier elimination for real algebra. In:
Quantifier Elimination and Cylindrical Algebraic Decomposition. pp. 376–392. Texts
and Monographs in Symbolic Computation, Springer (1998)

[19] Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic
Computation 5(1-2), 3–27 (1988)

[20] Weispfenning, V.: Quantifier elimination for real algebra – The quadratic case and
beyond. Applicable Algebra in Engineering, Communication and Computing 8(2),
85–101 (1997)

[21] Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In:
Proc. of the 16th Int. Conf. on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR-16). LNAI, vol. 6355, pp. 481–500. Springer (2010)

SMT-RAT: An SMT-Compliant Nonlinear Real and Integer
Arithmetic Toolbox

71

Frontiers of Formal Methods 2015

72

Fast Debugging of PRISM Models

Christian Dehnert (dehnert@cs.rwth-aachen.de)

Software Modelling and Verification Group,
RWTH Aachen University, Germany

Model checking has become an increasingly popular technique to determine whether
a system’s behavior conforms to its specification. One of the main features responsible
for its success is the ability to generate counterexamples if the desired property is not
guaranteed by the model, since they constitute an explanation as to why to verification
task failed [4]. Based on such a counterexample, the system designer can then track
down the erroneous behavior and refine the system in order to meet the specification.
Furthermore, counterexample-guided abstraction refinement, one of the most successful
automated abstraction refinement schemes, relies on the analysis of counterexamples to
refine an over-approximation of the model [3, 8, 2].

When checking a system’s conformity to the specification, one often wants to ensure
that the system may never reach a set of “bad states” T . For “regular”, qualitative,
models, a counterexample for such a safety property is given by a finite execution fragment
that takes the system from an initial state to one of the states in T . However, for
systems whose behavior is inherently probabilistic, like randomized algorithms or realistic
hardware models, it is often impossible to guarantee that a bad state is never reached.
However, this may be tolerable as long as the probability for that “bad” event to occur
is below a given threshold. For example, a system may behave correctly at least 99% of
the time, but not strictly always. Therefore, a reachability property in the probabilistic
setting consists of a set of bad states T together with a probability bound λ that must
not be exceeded.

In this setting, a finite trace does not necessarily constitute a violation, since its prob-
ability mass may be smaller than λ. Sets of finite paths may now be used to form a
counterexample, but it can be shown that the sizes of these sets may be doubly expo-
nentially large in the number of states of the system [7]. To alleviate this problem, the
notion of critical subsystems was proposed [12]: by selecting a (hopefully small) number
of states of the system, implictly all paths only visiting the selected states are selected.
This way, infinitely many “bad” paths that together exceed the probability bound λ can
be represented using finitely many states. In practice, critical subsystems are often large
and can therefore be of limited use in the debugging process [9].

Instead of explicitly listing all transitions at the state-space level, system models are
typically specified in a high-level formalism such as, e.g., process algebras. For probabilis-
tic models, one typically employs the modelling language of the well-known probabilistic
model checker Prism [10], which is based on Alur and Henzinger’s reactive modules [1], to
formally capture the behavior of the system. In this language, an input model consists of
several modules that define variables and commands. The valuations of the variables then

Fast Debugging of PRISM Models

73

compute min. C

(wrt. constraints)
add constraints

compute reachability

probability in M|C
analysis of M|C

model

M

solution

> λ

≤ λ

Figure 1: A schematic overview of our MaxSAT-based approach.

form the state space of the model, while the commands induce (probabilistic) transitions
between the states. Clearly, a representation of a counterexample in terms of fragments
of the (high-level) system model promises to be succinct as well as easily accessible by
the system designer.

We therefore aim at computing the smallest set of commands of a Prism model that
induces a critical subsystem. Such a set is called a minimal critical command set [13]. The
problem of finding a minimal critical command set is NP-hard in the number of states of
the model and can be solved via a formulation as a mixed-integer linear program (MILP)
[13]. However, even when applying optimizations and using state-of-the-art commercial
solvers, only models of moderate size can be handled and for most models the technique
cannot solve the problem within reasonable time [13]. We propose a new technique to
compute minimal critical command sets that scales to systems with millions of states.

Our new approach is based on enumerating sets of commands in ascending size. Start-
ing with the empty set, larger and larger sets of commands (“hypotheses”) are enumerated.
Given a hypothesis, we can restrict the high-level description of the model to the chosen
set of commands and thereby obtain a sub-modelM|C of the original modelM. A prob-
abilistic model checker can then be used to compute the probability to reach a state in T
inM|C . If the probability mass exceeds λ, the current hypothesis is an optimal solution,
since all smaller sets have been enumerated earlier. If, on the other hand, the reachability
probability is below λ, the enumeration process is continued with the next hypothesis.

Clearly, in order to make this enumeration process efficient in practice, as many sub-
optimal solutions as possible must be pruned before they are enumerated. To achieve
this, we derive constraints from the high-level representation of the model that are known
to be true in any optimal solution but potentially rule out a lot of suboptimal solutions.
Given such a set of constraints, a MaxSAT solver [6] can be used to find the smallest set
of commands that respects these constraints. A schematic of this approach is depicted in
Figure 1. Starting with a set of constraints that can be statically derived from the high-

Frontiers of Formal Methods 2015

74

level input model M, the MaxSAT solver is used to find the smallest set of commands
C that is a potential solution to the minimal critical command set problem. If a model
checker confirms that the hypothesis C exceeds the probability threshold λ, it is in fact the
smallest critical command set. If, however, C does not suffice to violate the reachability
property, the hypothesis is analyzed and additional constraints are derived that (i) rule
out the current hypothesis and (ii) try to eliminate as many suboptimal solutions from
the hypothesis enumeration process as possible.

We implemented the new approach in our model checking framework and performed
experiments using a selection of four well-known benchmark models from Prism’s website
[11] to evaluate its effectiveness. The data shows that the MaxSAT-based approach
outperforms the MILP-based approach on all instances. More concretely, it achieves a
speed-up of up to five orders of magnitude, consistently uses one order of magnitude less
memory and therefore is able to scale to systems with millions of states [5].

We believe that our technique together with the conciseness of high-level counterex-
amples complements existing counterexample representations in the probabilistic setting.
Unlike the MILP-based approach, it can be applied to the broader range of monotonic
properties by introducing appropriate constraints. Additionally, the runtime can be fur-
ther improved by exploiting parallel computing and developing more sophisticated anal-
ysis techniques for insufficient hypotheses that allow for pruning even more suboptimal
solutions.

References

[1] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

[2] K. Chatterjee, M. Chmeĺık, and P. Daca. CEGAR for qualitative analysis of prob-
abilistic systems. In Proc. of CAV, volume 8559 of LNCS, pages 473–490. Springer,
2014.

[3] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proc. of CAV, volume 1855 of LNCS, pages 154–169.
Springer, 2000.

[4] E. M. Clarke and H. Veith. Counterexamples revisited: Principles, algorithms, appli-
cations. In Verification: Theory and Practice, volume 2772 of LNCS, pages 208–224.
Springer, 2003.

[5] C. Dehnert, N. Jansen, R. Wimmer, E. Ábrahám, and J. Katoen. Fast debugging of
PRISM models. In Proc. of ATVA, volume 8837 of LNCS, pages 146–162. Springer,
2014.

[6] Z. Fu and S. Malik. On solving the partial MAX-SAT problem. In Proc. of SAT,
volume 4121 of LNCS, pages 252–265. Springer, 2006.

[7] T. Han, J.-P. Katoen, and B. Damman. Counterexample generation in probabilistic
model checking. IEEE Trans. on Software Engineering, 35(2):241–257, 2009.

Fast Debugging of PRISM Models

75

[8] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In Proc. of CAV,
volume 5123 of LNCS, pages 162–175. Springer, 2008.

[9] N. Jansen, E. Ábrahám, B. Zajzon, R. Wimmer, J. Schuster, J.-P. Katoen, and
B. Becker. Symbolic counterexample generation for discrete-time Markov chains. In
Proc. of FACS, LNCS, pages 134–151. Springer, 2012.

[10] M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of proba-
bilistic real-time systems. In Proc. of CAV, volume 6806 of LNCS, pages 585–591.
Springer, 2011.

[11] Prism case studies (2014). http://www.prismmodelchecker.org/casestudies.

[12] R. Wimmer, N. Jansen, E. Ábrahám, J.-P. Katoen, and B. Becker. Minimal critical
subsystems for discrete-time Markov models. In Proc. of TACAS, volume 7214 of
LNCS, pages 299–314. Springer, 2012.

[13] R. Wimmer, N. Jansen, A. Vorpahl, E. Ábrahám, J.-P. Katoen, and B. Becker. High-
level counterexamples for probabilistic automata. In Proc. of QEST, volume 8054 of
LNCS, pages 18–33. Springer, 2013.

Frontiers of Formal Methods 2015

76

A Verified Compiler for Probability Density Functions

Manuel Eberl (eberlm@in.tum.de)

PUMA, Fakultät für Informatik,
Technische Universität München, Germany

1 Introduction

Random distributions of practical significance can often be expressed as probabilistic
functional programs. When studying a random distribution, it is often desirable to determine
its probability density function (PDF). This can be used to e. g. determine the expectation
or sample the distribution with a sampling method such as Markov-chain Monte Carlo
(MCMC).

Bhat et al. [2] presented a compiler that computes the probability density function of
a program in the probabilistic functional language Fun. Fun is a small functional language
with basic arithmetic, Boolean logic, product and sum types, conditionals, and a number of
built-in discrete and continuous distributions. It does not support lists or recursion. They
evaluated the compiler on a number of practical problems and concluded that it reduces
the amount of time and effort required to model them in an MCMC system significantly
compared to hand-written models. A correctness proof for the compiler is sketched.

Bhat et al. [1] stated that their eventual goal is the formal verification of this compiler
in a theorem prover. We have verified such a compiler for a similar probabilistic functional
language in the interactive theorem prover Isabelle/HOL [7, 8]. Our contributions are the
following:

• a formalisation of the source language, target language (whose semantics had previ-
ously not been given precisely), and the compiler on top of a foundational theory of
measure spaces

• a formal verification of the correctness of the compiler

• executable code for the compiler using Isabelle’s code generator

In the process, we uncovered an incorrect generalisation of one of the compiler rules in the
draft of an extended version of the paper by Bhat et al. [3].

The complete formalisation is available online [5]. For a detailed account of the for-
malisation, see the 2015 ESOP paper [6] or the Master’s thesis that is the basis of this
work [4].

A Verified Compiler for Probability Density Functions

77

datatype pdf type =

UNIT | B | Z | R | pdf type× pdf type

datatype val =

UnitVal | BoolVal bool | IntVal int | RealVal real | <|val, val|>
datatype pdf operator =

Fst | Snd | Add | Mult | Minus | Less | Equals | And | Or | Not | Pow |
Fact | Sqrt | Exp | Ln | Inverse | Pi | Cast pdf type

Figure 1: Types and values in source and target language

2 Source and Target Language

The source language used in the formalisation was modelled after the language Fun
described by Bhat et al. [2]; similarly, the target language is almost identical to the target
language used by Bhat et al. However, we have made the following changes in our languages:

• Variables are represented by de Bruijn indices.

• No sum types are supported. Consequently, the match-with construct is replaced
with an IF-THEN -ELSE. Furthermore, booleans are a primitive type rather than
represented as unit + unit.

• The type double is called real and it represents a real number with absolute precision
as opposed to an IEEE 754 floating point number.

2.1 Types, values, and operators

The source language and the target language share the same type system and the same
operators. Figure 1 shows the types and values that exist in our languages. Additionally,
standard arithmetical and logical operators exist.

2.2 Source language

datatype expr =

Var nat | Val val | LET expr IN expr | pdf operator $ expr | <expr, expr> |
Random pdf dist | IF expr THEN expr ELSE expr | Fail pdf type

Figure 2: Source language expressions

Figure 2 shows the syntax of the source language. It contains variables (with de Bruijn
indices), values, LET-expressions (again de Bruijn), operator application, pairs, sampling

Frontiers of Formal Methods 2015

78

datatype cexpr =

CVar nat | CVal val | pdf operator $c cexpr | <cexpr, cexpr>c |
IFc cexpr THEN cexpr ELSE cexpr |

∫
c
cexpr ∂pdf type

Figure 3: Target language expressions

a parametrised built-in random distribution, IF-THEN -ELSE and failure. We support the
same distributions as Bhat et al. (Bernoulli, uniform, Poisson, Gaussian), except for the
Beta and Gamma distributions (merely because we have not formalised them yet).

The informal semantics of the source language should be largely obvious. Every source
language expression returns a sub-probability distribution; the Random construct returns
a random value taken from one of the built-in distributions, parametrised with another
expression (e. g. mean/standard deviation for Gaussian distributions). The Fail construct
returns the null measure, effectively returning no result at all. For the formal semantics,
refer to one of the previously-mentioned sources. [4, 5, 6]

2.3 Target language

The target language is again modelled very closely after the one by Bhat et al. [2]. The
type system and the operators are the same as in the source language. The key difference is
that the Random construct has been replaced by an integral. As a result, while expressions
in the source language return a measure space, expressions in the target language always
return a single value. Figure 3 shows the syntax of the target language.

3 Definition and Correctness Proof of the Compiler

The correctness proof is done in two steps using a refinement approach: first, we define
and prove correct an abstract compiler that returns the density function as an abstract
mathematical function. We then define an analogous concrete compiler that returns a
target-language expression and show that it is a refinement of the abstract compiler, which
will allow us to lift the correctness result from the latter to the former.

As a first step, we implemented an abstract density compiler as an inductive predicate.
We proved soundness for the abstract compiler w. r. t. the semantics of the source language,
i. e. given a well-typed expression in the source language, the abstract compiler returns a
density function of the distribution of the expression’s result.

The concrete compiler is another inductive predicate, modelled directly after the abstract
compiler, but returning a target-language expression instead of a HOL function. We use a
standard refinement approach to relate the concrete compiler to the abstract one. We thus
lift the soundness result on the abstract compiler to an analogous result on the concrete
compiler.

A Verified Compiler for Probability Density Functions

79

This shows that the concrete compiler always returns a well-formed target-language
expression that represents a density for the sub-probability space described by the source
language.

4 Conclusion

We formalised the semantics of a probabilistic functional programming language with
predefined probability distributions and a compiler that returns the probability distribution
that a program in this language describes, based on the work by Bhat et al.. Then we
formally verified the correctness of this compiler w. r. t. the semantics of the source and
target languages.

This shows not only that the compiler given by Bhat et al. is correct (apart from the
incorrect generalisation we mentioned earlier), but also that a formal correctness proof for
such a compiler can be done with reasonable effort and that Isabelle/HOL in general and
its measure theory library in particular are suitable for it. A useful side effect of our work
was the formalisation of the Giry Monad, which is useful for formalisations of probabilistic
computations in general.

Acknowledgements. Johannes Hölzl and Tobias Nipkow were coauthors of the 2015
ESOP paper [6] and were the author’s advisor (resp. supervisor) for the Master’s thesis on
which this work is based [4].

Frontiers of Formal Methods 2015

80

References

[1] Bhat, S., Agarwal, A., Vuduc, R., Gray, A.: A type theory for probability density
functions. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 545–556. POPL ’12, ACM, New York,
NY, USA (2012), http://doi.acm.org/10.1145/2103656.2103721

[2] Bhat, S., Borgström, J., Gordon, A.D., Russo, C.: Deriving probability density func-
tions from probabilistic functional programs. In: Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Science, vol.
7795, pp. 508–522. Springer Berlin Heidelberg (2013), http://dx.doi.org/10.1007/
978-3-642-36742-7_35, best Paper Award

[3] Bhat, S., Borgström, J., Gordon, A.D., Russo, C.: Deriving probability density functions
from probabilistic functional programs (full version, submitted for publication)

[4] Eberl, M.: A Verified Compiler for Probability Density Functions. Master’s thesis,
Technische Universität München (2014), https://in.tum.de/~eberlm/pdfcompiler.
pdf

[5] Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. Archive of Formal Proofs (Oct 2014), http://afp.sf.net/entries/Density_
Compiler.shtml, Formal proof development

[6] Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density functions.
In: European Symposium on Programming (ESOP). Springer Berlin Heidelberg (2015),
to appear

[7] Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer (2014), http:
//www.concrete-semantics.org

[8] Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL – A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

A Verified Compiler for Probability Density Functions

81

Frontiers of Formal Methods 2015

82

Relaxing Description Logics Queries using Similarity
Measures

Andreas Ecke (ecke@tcs.inf.tu-dresden.de)

DFG Research Training Group 1763
“Quantitative Logics and Automata”

Technische Universität Dresden

This is joint work with Anni-Yasmin Turhan and Rafael Peñaloza.

Description Logic (DL) knowledge bases are formal vocabularies that describe cate-
gories or specific subjects from application domains—such as for service matching, the
bio-medical or geo-spatial field. The concepts in the knowledge base are characterized
by relationships to other concepts using constructors available in the DL in which the
knowledge base is formulated. Traditionally, DL reasoning systems only support crisp
inference services, like subsumption and instances queries. The latter can be effectively
used to perform different types of search tasks: Given an ABox, which describes individual
objects in terms of the defined concepts, an instance query returns all those individuals
that are instance of the query concept Q, rejecting all others.

However, often it is also interesting to consider those individuals that are not instances:
Are they completely different to Q or how similar are they to Q? In cases where the
original query does not retrieve any resulting individuals, those individuals that are ‘very
close’ to being an instance can still be a good alternative. The instance queries that do
not only return the instances but also those that nearly match the query concept are
called relaxed instance queries [2]. A natural way to relax instance queries is by using
concept similarity measures (CSMs). Such a measure ∼ is a function that assigns to each
pair of concepts a similarity value between 0 and 1. Together with a fixed threshold t, the
instance query can be relaxed by returning all individuals that are instance of a concept
with a similarity value of at least t to the query concept w.r.t. ∼. One advantage of using
CSMs as a parameter for this inference is that they can implement different notions of
similarity, and regard certain features more important than others. This allows to relax
queries with respect to certain features, but leave others fixed (see Figure 1).

Example 1. Humans can estimate the similarity between different animals, and actually
use this similarity to reason about animals. For example, if one sees a new animal and
wants to guess whether this animal can fly, one would check if similar animals are able
to fly or not. But of course, for this application, certain features are more important
than other: One would not compare animals with regards to their color, but rather
compare if they both have wings (and how large these wings are), and if the animal is
light enough. Those features are much more important to assess whether an animal can
fly. The resulting similarity measure could be called ∼flying.

Relaxing Description Logics Queries using Similarity
Measures

83

QI

∆I

Figure 1: Relaxed instances w.r.t. two different CSMs (solid and dashed). Darker colors
represent larger thresholds t.

Of course, for different applications, we would use other similarity measures. To guess
the diet of a new animal, we would rather compare the form of the jaws and teeth of
animals and maybe compare their claws. This similarity measure might be called ∼diet.

Both these measures can be used to relax queries. ∼flying will then yield result that
are similar to the query w.r.t. the ability to fly, while allowing to relaxing other features;
∼diet will yield results similar to the query w.r.t. the diet.

In this work, we consider the Description Logic EL. In this DL, classes of the knowledge
domain can be described by EL-concepts, which are built from a set NC of concept names
and a set NR of role names using the following rule:

C,D ::= A | > | C uD | ∃r.C

where A ∈ NC , r ∈ NR and C,D are concepts. General concept inclusions (GCI for
short) of the form C v D express that one concept C subsumes another concept D, and
are collected in a TBox. Additionally, assertion of the form C(a) and r(a, b) can express
knowledge about individuals a, b from a set of individual names NI . An ABox is a set
of assertions, while a knowledge base (KB) consists of both an ABox and TBox. The
semantics of EL are defined using the notion of interpretations I = (∆I , ·I) consisting
of the interpretation domain ∆I , and the interpretation function ·I . Each concept name
is interpreted as a subset, each role name as a binary relation and each individual as an
element of ∆I . The interpretation is extended to EL-concepts by interpreting >I as the
full domain ∆I , (C u D)I as the intersection of CI and DI , and existential restrictions
∃r.C as the image of CI under rI . Then an interpretation satisfies a GCI C v D if
CI ⊆ DI , and assertions C(a) and r(a, b) if aI ∈ CI and (aI , bI) ∈ rI , respectively. It
satisfies a KB K = (T ,A) if it satisfies all GCIs in the TBox T and all assertions in
the ABox A. The following are commonly used reasoning tasks: Concept subsumption
C vT D asks, given a TBox T and two concepts C and D, whether C is subsumed by D
w.r.t. T , i.e., CI ⊆ DI for all models I of T . Given an individual a, a concept C, and a
KB K, a is called an instance of C w.r.t. K, denoted K |= C(a), iff aI ∈ CI for all models
I of K.

Let C(EL) be the set of all EL-concept descriptions. A concept similarity measure ∼T
w.r.t. a TBox T is a function ∼T : C(EL) × C(EL) → [0, 1], where C ∼T C = 1 for all
concepts C ∈ C(EL). Several properties of CSMs have been formalized in [5], the most
important ones here are symmetry and equivalence invariance; the latter expresses that
the similarity value between two concepts remains the same when replacing one concept

Frontiers of Formal Methods 2015

84

for an equivalent one w.r.t. T . Based on this notion we can formalize the central inference
as follows:

Definition 1 (relaxed instance). The individual a is a relaxed instance of the query
concept Q w.r.t. the KB K, the CSM ∼T and the threshold t ∈ [0, 1) iff there exists a
concept description X such that Q ∼T X > t and K |= X(a).

To compute the relaxed instances of an EL-concept (w.r.t. an EL-KB) it is not feasible
to compute all sufficiently similar concepts and then perform instance checking for those,
since (1) the number of those concepts can be infinite leading to an infinite number of
queries and (2) a similarity measure does not necessarily provide a method how to obtain
a ‘sufficiently similar’ concept.

In [2], we showed how relaxed instance queries can be solved for unfoldable TBoxes,
which basically only allow to introduce abbreviations for concepts and can be dropped
after expanding all concepts. It also restricts to those similarity measures, that are equiv-
alence invariant and work by recursively comparing the structure of the concepts. How-
ever, for general EL-TBoxes as introduced above, the approach described in [2] fails, as
the query concept may have a cyclic definition and thus can not be expanded. Addition-
ally, we were not able to find a structural, equivalence invariant measure that works for
concepts w.r.t. to a general TBox. To solve this, we introduce a CSM ∼c that uses the
canonical models of a concept C w.r.t. a TBox T , denoted with IC,T [6], and a similarity
measure ∼i between interpretations as follows: C ∼c D = (IC,T , dC) ∼i (ID,T , dD), where
dC and dD are the elements in their respective canonical models corresponding to the
concepts C and D.

The family of CSMs ∼c for EL inherits several formal properties from ∼i, in particular
symmetry and equivalence invariance. The interpretation similarity measure (ISM) ∼i can
be parametrized by a weighting function that assigns different weights to each concept and
role name, by a primitive measure between concept and role names and by a discounting
factor. Using those parameters, it is possible to achieve the different weighting of features
as described in Example 1 for ∼flying and ∼diet. For relaxed instance queries, this means
that those parameter together with the threshold t allow to specify, which features may
be relaxed, and which should stay close to the query concept.

The ISM ∼i between elements of two interpretations is defined recursively by compar-
ing the concept names, that those elements are instances of, and the successors they have
in the interpretation domain, i.e., roles that connect those elements to others (the com-
plete definition can be found in [3]). If written as an equation system, solving this system
will yield the similarity values between all pairs of elements of the two interpretations.
Indeed, this equation system can be transformed into a linear optimization problem, and
can be solved in polynomial time.

If we built such an equation system for the canonical model IQ,T of the query concept
Q and the canonical model IA,T of the ABox A that we want to query (both w.r.t. the
TBox T), and modify this equation system by guessing the best subsets of the concept
names and role-successors for the elements in IA,T , we actually get a nondeterministic
algorithm that computes, to which degrees all of the individuals in the ABox A belong
to the query concept Q w.r.t. the CSM ∼c and the TBox T . Then it is sufficient to check
for each individual a, if the degree is larger than the threshold t. This algorithm is sound
and complete, and allows us to formulate the following theorem:

Relaxing Description Logics Queries using Similarity
Measures

85

Theorem 2. Relaxed instances of a query concept Q w.r.t. ∼c and a general knowledge
base K is in NP.

To conclude, we have proposed a new reasoning service that allows relaxed instance
query answering for application-specific notions of similarity by the appropriate choice of
a CSM ∼T and threshold t. We have introduced a new family of CSMs that take the
whole information from general TBoxes into account. The ∼c CSMs are, to the best of
our knowledge, the first CSMs of this kind for general TBoxes. Based on these we gave a
computation algorithm for relaxed instances w.r.t. general TBoxes. For more details see
[3, 4] and for its extension to EL++ see [1].

References

[1] A. Ecke. Similarity-based relaxed instance queries in EL++. In T. Lukasiewicz,
R. Peñaloza, and A.-Y. Turhan, editors, Proceedings of the First Workshop on Log-
ics for Reasoning about Preferences, Uncertainty, and Vagueness, CEUR-WS. CEUR,
2014. To appear.

[2] A. Ecke, R. Peñaloza, and A.-Y. Turhan. Towards instance query answering for con-
cepts relaxed by similarity measures. In L. Godo, H. Prade, and G. Qi, editors,
Workshop on Weighted Logics for AI (in conjunction with IJCAI’13), Beijing, China,
2013.

[3] A. Ecke, R. Peñaloza, and A.-Y. Turhan. Answering instance queries relaxed by con-
cept similarity. In Proceedings of the Fourteenth International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR’14), Vienna, Austria, 2014.
AAAI Press. To appear.

[4] A. Ecke and A.-Y. Turhan. Similarity measures for computing relaxed instances w.r.t.
general EL-TBoxes. LTCS-Report 13-12, Chair of Automata Theory, Institute of
Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany,
2013. See http://lat.inf.tu-dresden.de/research/reports.html.

[5] K. Lehmann and A.-Y. Turhan. A framework for semantic-based similarity measures
for ELH-concepts. In L. F. del Cerro, A. Herzig, and J. Mengin, editors, Proc. of
the 13th European Conf. on Logics in A.I. (JELIA 2012), Lecture Notes In Artificial
Intelligence, pages 307–319. Springer, 2012.

[6] C. Lutz and F. Wolter. Deciding inseparability and conservative extensions in the
description logic EL. Journal of Symbolic Computation, 45(2):194–228, 2010.

Frontiers of Formal Methods 2015

86

Formally Verifying Dynamically-typed Programs like
Statically-typed Ones – Another perspective

Björn Engelmann (bjoern.engelmann@uni-oldenburg.de)

Carl von Ossietzky Universität Oldenburg, Germany∗

Introduction Formal verification methods have (with few exceptions) been developed
for – and are thus tailored to – statically typed programming languages. Recently,
dynamically-typed programming languages are growing in popularity even for business-
and safety-critical applications. Also, the ubiquity of JavaScript as the “assembly lan-
guage of the web” is widely acknowledged. The increasing need for safety guarantees for
this kind of programs is echoed in the research community by an increasing number of pro-
posals adapting verification methods from statically-typed to dynamically-typed programs
[6, 9, 3, 8]. However, the absence of statically known type information in dynamically-
typed programs usually creates significant overhead when applying such methods and
significantly reduces the effectiveness of automated reasoning engines.

In [5], we investigated the impact of such adaptions by comparing an adapted Hoare
logic [6] with its traditional statically-typed counterparts [1, 2] (see Section B). Based on
these observations, [5] makes the following main contributions:

• A layer of abstraction, abstracting from the complexity of dynamic typing and thus
allowing to verify dynamically-typed programs just like statically-typed ones given
sufficient type information.

• A methodology for semi-automatically deriving such type information based on in-
tegrating a type analysis into Hoare logic and exchanging results bidirectionally.
The methodology requires manual intervention only when the type analysis is insuf-
ficient and is complete relative to the Hoare logic used. It also allows interleaving
proof steps for type safety with those for other properties.

To allow for properly discussing the generality of these results, we will now give a brief
account of formal verification methods in general:

A. Formal Methods Software Verification is the attempt to logically reason about
program behavior. Formal Methods are distinguished from testing by the fact that they
are not concerned with a particular program execution from a particular start state, but
rather with all possible program executions from all possible (or reachable) start states.
For such methods it is of vital importance to concisely represent (possibly infinite) sets

∗This work is supported by the German Research Foundation through the Research Training Group
(DFG GRK 1765) SCARE (www.scare.uni-oldenburg.de).”

Formally Verifying Dynamically-typed Programs like
Statically-typed Ones A different perspective

87

of states that a program execution (or part thereof) can start or result in. Depending on
the method’s focus, this can be achieved in different ways.

A.1. Focus on Automation Formal methods focussing on automation are often called
“program analysis” or “automatic verifier” to emphasise their fully automatic nature.
They are mostly based on the concept of Abstract Interpretation [4] and usually use finite
abstract domains to ensure termination:

A (possibly infinite) value domain D is abstracted into a (usually finite) complete
lattice (A,v) called the “abstract domain” using a Galois connection1. Examples include
type abstractions, parity abstractions, sign abstractions and interval abstractions. The
abstraction is then lifted to program states in the natural way, enabling the use of abstract
states like {x 7→ [1, 5], y 7→ [2, 4]} for denoting sets of concrete ones.

Program operations are also abstracted to work on abstract values instead of concrete
ones. For the statement r := x+ y, this allows deriving properties like:

{x 7→ [1, 4], y 7→ [5, 10]} r := x + y {x 7→ [1, 4], y 7→ [5, 10], r 7→ [6, 14]}

Note that the abstract postcondition contains concrete states like {x 7→ 1, y 7→ 5, r 7→ 14}
that cannot result from executing the above statement from any start state. Such over-
approximation is neccessary since the abstract domain of intervals is not flexible enough
to precisely express the real set of result states.

In essence, such approaches simulate (“interpret”) runs of abstracted programs on
abstracted data, iterating loops and recursion until reaching a fixpoint. With all transfer
functions monotone and the abstract domain finite, Tarski’s fixpoint theorem guarantees
termination. In case of infinite abstract domains, a technique called “widening” acceler-
ates the process by enforcing larger over-approximation steps at the expense of precision.

A.2. Focus on Completeness Formal Methods focussing on completeness are often
called “program logics”. They avoid the loss of precision outlined above by using ex-
tremly flexible formula-based state set representations. Similar to what mathematicians
do when using variables representing arbitrary values instead of concrete values, symbolic
variables vu0 are used to represent the initial values of variables u and all further values
are represented as terms over these variables. Such methods are therefore often called
“symbolic”. Applying them to above example yields the following property:

{x 7→ vx0 , y 7→ vy0} r := x+ y {x 7→ vx0 , y 7→ vy0 , r 7→ vx0 + vy0}

which is obvioulsly more precise than the postcondition derived by abstract interpreta-
tion above. Note that such term-based or formula-based representations can be seen as an
(infinite) abstract domain. In fact, applying abstract interpretation using such a “sym-
bolic” domain would be very similar to approaches like symbolic execution or Dijkstra’s
strongest-postcondition calculus. Also, such approaches are often parameterized in the
logic, since it’s expressivity correlates to the flexibility of the abstract domain.

While increasing precision is clearly preferable, these formal methods usually require
manual assistance to deal with loops and recursion as naively applying them would iterate

1a pair of a monotone abstraction function α : 2D 7→ A and a monotone concretization function
γ : A 7→ 2D, such that α ◦ γ v idA and γ ◦ α ⊆ idD

Frontiers of Formal Methods 2015

88

such loopy control flows indefinitely, creating larger and larger symbolic state representa-
tions2. Verifiers based on such approaches hence ask the user to specify loop invariants
and method contracts a priori and apply automatic reasoning only along straight-line
program segments to check these user-supplied assertions for mutual consistency.

A.3. Completeness vs. Automation While precision is necessary for completeness,
termination is necessary for automation. The over-approximation in abstraction-based
approaches enables termination at the expense of precision and hence aims at automation.
The symbolic representation of state sets in formula-based approaches increases precision
at the expense of termination and hence aims at completeness.

B. Static vs. Dynamic Typing In [5], we compared an (adapted) Hoare logic for
JavaScript [6] with its more traditional counterparts [1, 2] for statically-typed languages.
We were able to identify the following key sources for additional complexity in verifying
dynamically-typed programs. To show that our observations are not particular to Hoare
logic, but stem from its formula-based nature, we will here offer a generalized explanation:

B.1. Mapping Predicates Formula-based formal methods rely on their ability to
symbolically represent the results of programming-language operations as equivalent terms
over symbolic values. However, in statically-typed programs the well-typedness of these
terms rests on the following assumptions:

• logic and programming language must share the same type system,

• all programming language operations must also be available in the logic,

• each symbolic value vu0 must have the same type as the variable u whose value it
represents, and

• the program must be well-typed.

While these assumptions are often left implicit, relinquishing any one of them opens
the door for potential logical inconsistencies as the usual two-valued logic does not leave
room for type-errors. To reuse the example from above, if the variable x would reference
a boolean value instead of an integer, the term vx0 + vy0 would not make sense as the
operation + is undefined for boolean values. Usually, this is mitigated by treating program
variables as untyped3 and introducing mapping predicates4 for mapping between such
untyped program values and their respective typed logical values.

B.2. Pure Expressions When all operations and types of the programming language
are also available in the assertion language, then the symbolic representation of a pro-
gram expression’s result nearly always looks exactly like this very program expression
– just with variables u substituted by their respective symbolic values (vu0). From this
observation, it usually does not take long until someone introduces shortcut rules – proof

2just like in abstract interpretation with an infinite abstract domain without widening
3in object-oriented languages usually all variables are given the type O of objects
4like the predicates True and False in [6], which are similar to our B(, true) and B(, false).

Formally Verifying Dynamically-typed Programs like
Statically-typed Ones A different perspective

89

rules that allow transferring program expressions directly into assertions instead of step-
wise dissecting their syntax-tree while reconstructing their logical representation in the
assertion language. These two classic Hoare logic rules are examples for such shortcuts:

{p[u := e]}u := e{p}
{p ∧ b}S1{q} {p ∧ ¬b}S2{q}
{p} if b then S1 else S2 end {q}

B.3. Type Safety Preconditions In dynamically-typed programs, type errors are
runtime events and hence need to be avoided just like failure or divergence. Proof rules
for type-safe notions of correctness hence include type-safety preconditions – additional
requirements for safeguarding program executions against type errors. In statically-typed
programs, these are not necessary.

C. Layer of Abstraction In [5], we could show that, given sufficient type information,
it is possible to mitigate all these sources of complexity and verify dynamically-typed
programs just like statically-typed ones – that is, with all conveniences that statically
known type information enables: objects may be automatically mapped into typed values,
type-safety preconditions may be omitted and shortcut rules allowed. However, deriving
such type information for a dynamically-typed program is itself an uncomputable problem.

C.1. Type Information in its Various Forms Although uncomputable, we noticed
that type information can be extracted from type safety proofs in Hoare logic. Since such
proofs (like with other symbolic approaches) are derivable for all type-safe programs due
to the (relative) completeness of Hoare logic, it follows that the needed type information
exists (and can be derived) for all dynamically-typed programs that are type-safe. In [5]
we could show the entire procedure to be complete relative to the Hoare logic used.

D. Semi-Automatically Deriving Type Information Since manually deriving type
safety proofs is tedious, we integrated a type inference algorithm based on data-flow
analysis (an abstraction-based program analysis) into our program logic with the aim of
automating as much of the process as possible. The type inference algorithm first derives
a basic typing for the entire program that is used to support manual Hoare logic proofs as
outlined above. Whenever type information can be extracted from a user’s manual proof,
it is used as a trusted assumption to increase the analysis’s precision. Such refinements do
not break any previously derived guarantees5, thus turning verification into an iterative
back-and-forth between automated analysis and manual proving.

Discussion Formula- and abstraction-based formal methods have complementary strength
and weaknesses. Several researchers have proposed different ways of combining them [8, 7].

Nguyen et al. [8] propose a contract verifier based on symbolic execution, but use a
technique similar to widening to enforce termination. This mechanism can be seen as a
form of abstraction (and also causes a loss of precision). Their approach hence combines
symbolic with abstraction-based reasoning.

Khoo et al. [7] propose a framework for integrating symbolic execution with type
analysis. First, the user partitions his/her program into so-called s- and t-blocks. The

5Due to a monotonicity property inherent in data-flow analyses

Frontiers of Formal Methods 2015

90

analysis then applies type analysis to t-blocks while using (exhaustive and hence sound)
symbolic execution on s-blocks. The derived results are bidirectionally exchanged using
MIX rules. In essence, analysis results are used to construct start states for symbolic
execution and types derived by symbolic execution can be used in the type analysis.
Our proposal for semi-automatically deriving type information ([5, Section 6], Section
D) also falls into this category as it combines a formula-based program logic with an
automated, abstraction-based type inference.

Since nothing about our approach is particular to Hoare logic, it is reasonable to be-
lieve that a similar construction is possible with other formula-based approaches to pro-
gram verification like Floyd’s inductive assertions, symbolic execution, refinement types
or Dijkstra’s predicate transformer semantics.

As detailed in Section B, the layer of abstraction can also be expected to apply to
formula-based approaches in general. However, it requires type information and is hence
tied to type analysis. Nevertheless, the entire concept seems applicable to arbitrary
formula-based formal methods for dynamically-typed programming languages, comple-
menting them with an abstraction-based type-analysis to decrease the annotation burden
and increase the effectiveness of automated reasoning engines as was the aim of [5].

References

[1] Apt, K.R., de Boer, F.S., Olderog, E.R., de Gouw, S.: Verification of Object-Oriented
Programs: A Transformational Approach. J. Comp. Sys. Sci. 78(3), 823ff (2012),

[2] de Boer, F.S., Pierik, C.: How to Cook a Complete Hoare Logic for Your Pet OO
Language. In: FMCO. LNCS, vol. 3188, pp. 111–133. Springer (2003)

[3] Chugh, R., Herman, D., Jhala, R.: Dependent types for javascript. In: Proc. OOPSLA
2012. pp. 587–606. ACM, New York, NY, USA,

[4] Cousot, P., Cousot, R.: Abstract interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL 1977.
pp. 238–252. ACM,

[5] Engelmann, B., Olderog, E.R., Flick, N.E.: Closing the Gap – Formally Verify-
ing Dynamically Typed Programs like Statically Typed Ones Using Hoare Logic.
arXiv:1501.02699v1 [cs.PL] (January 2015),

[6] Gardner, P., Maffeis, S., Smith, G.D.: Towards a program logic for JavaScript. In:
Field, J., Hicks, M. (eds.) POPL. pp. 31–44. ACM (2012),

[7] Khoo, Y.P., Chang, B.E., Foster, J.S.: Mixing Type Checking and Symbolic Execu-
tion. In: Proc. of PLDI 2010. pp. 436–447.

[8] Nguyen, P.C., Tobin-Hochstadt, S., Van Horn, D.: Soft contract verification. In: Proc.
ICFP 2014. pp. 139–152. ACM, New York, NY, USA,

[9] Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying Higher-
Order Programs with the Dijkstra Monad. In: Proc. PLDI 2013

Formally Verifying Dynamically-typed Programs like
Statically-typed Ones A different perspective

91

Frontiers of Formal Methods 2015

92

Path-Checking for MTL and TPTL over Data Words∗

Shiguang Feng†(shiguang.feng@informatik.uni-leipzig.de)

Institut für Informatik, Universität Leipzig, Germany

1 Introduction

Linear time temporal logic (LTL) is nowadays one of the main logical formalisms used
for the specification and verification of reactive systems, and has found applications in
industrial tools. Two extensions of LTL are MTL (metric temporal logic) [5] and TPTL
(timed propositional temporal logic) [1]. In MTL, the temporal operators next (X) and
until (U) are indexed by time intervals. For instance, the formula pU[2,3) q holds at a
certain time t, if there is a time t′ ∈ [t + 2, t+ 3), where q holds, and p holds during the
interval [t, t′). TPTL is a more powerful logic that is equipped with a freeze formalism. It
uses register variables, which can be set to the current time value and later these register
variables can be compared with the current time value. Each MTL-formula is equivalent
to a TPTL-formula. For instance, the above MTL-formula pU[2,3) q is equivalent to the
TPTL-formula x.(pU (q ∧ 2 ≤ x < 3)). Here, the constraint 2 ≤ x < 3 should be read
as: The difference of the current time value and the value stored in x is in the interval
[2, 3). We consider the model-checking problem of MTL and TPTL over finite or infinite
data words. Let P be a finite set of atomic propositions. A data word over P is a finite
or infinite sequence (P0, d0)(P1, d1) · · · of pairs from 2P ×N. It is monotonic, if di ≤ di+1

for all appropriate i. It is pure, if Pi = ∅ for all i ≥ 0.
As for TPTL, freeze LTL can store the current data value in a register x. But in

contrast to TPTL, the value of x can only be compared for equality with the current data
value. For model-checking freeze LTL the authors of [3] consider one-counter machines
(OCM) as a mechanism for generating infinite non-monotonic data words, where the data
values are the counter values along the unique computation path. Whereas freeze LTL
model-checking for non-deterministic OCM turned out to be Σ1

1-complete, the problem
becomes PSPACE-complete for deterministic OCM [3].

We extend the PSPACE-completeness result for freeze LTL to TPTL over non-monotonic
data words. Our first main result states that model-checking for TPTL over determinis-
tic OCM is PSPACE-complete. This sharpens the decidability result from [6] and at the
same time generalizes the PSPACE-completeness result for freeze LTL. We also show that
PSPACE-hardness already holds (i) for the fragment of TPTL with only two register vari-
ables and (ii) for full TPTL, where all interval borders are encoded in unary (the latter
result can be shown by a straightforward adaptation of the PSPACE-hardness proof in

∗This is a joint work with Markus Lohrey and Karin Quaas.
†The author is supported by the DFG Research Training Group 1763.

Path-Checking for MTL and TPTL over Data Words

93

[3]). On the other hand, if we restrict TPTL to (i) a constant number of register variables
and unary encoded numbers in constraints, or (ii) one register variable but allow binary
encoded numbers, then model-checking over deterministic OCM is P-complete. Note that
the latter covers MTL over non-monotonic data words.

We actually prove our upper complexity bounds for infinite periodic data words.
Such a data word is given by two finite data words u = (P1, d1) · · · (Pm, dm) and v =
(Q1, e1) · · · (Qn, en) (where d1, . . . , dm, e1, . . . , en ∈ N) together with an offset number K.
The resulting infinite data word is u

∏
i≥0(v + iK), where v +M denotes the data word

(Q1, e1 +M) · · · (Qn, en +M). It can be easily seen that the infinite data word produced
by a deterministic OCM is such a periodic data word.

We write TPTLr
u, TPTLu and MTLu (resp. TPTLr

b, TPTLb, and MTLb) if we want to
emphasize that numbers are encoded in unary (resp., binary) notation.

2 Lower Bound

Theorem 1. Path-checking for TPTL1
u over finite unary encoded strictly monotonic pure

data words is P-hard.

Proof Sketch. A synchronous alternating monotone circuit with fanin 2 and fanout 2
(SAM2-circuit) is a monotone variable-free circuit divided into levels such that all gates in
the same level are of the same type and the levels alternate between ∧-levels and ∨-levels.
The circuit value problem for SAM2-circuits (SAM2CVP) is P-complete [4]. We reduce
from SAM2CVP to the path-checking problem for TPTL1

u.

Theorem 2. Path-checking for TPTLu over finite unary encoded strictly monotonic pure
data words is PSPACE-hard.

Proof Sketch. We show PSPACE-hardness by a reduction from the PSPACE-complete
quantified Boolean formula problem (QBF).

The constructions in the proof of Theorem 1 and 2 can be easily adapted to infinite
data words. The next lower bound only holds for infinite data words.

Theorem 3. Path-checking for TPTL2
b over infinite strictly monotonic pure data words

is PSPACE-hard.

Proof Sketch. The theorem is proved by a reduction from the PSPACE-complete quan-
tified subset sum problem (QSS), see [7].

3 Upper Bound

Theorem 4. Path-checking for TPTLb over infinite binary encoded data words is in
PSPACE.

Proof Sketch. Fix two finite data words u1, u2, a number k ∈ N and a TPTL-formula
ψ, and let w = u1

∏
i≥0(u2 + ik). We show that one can decide in APTIME = PSPACE

whether w |= ψ holds.
If all numbers are unary encoded and the number of register variables is fixed, then

the alternating Turing-machine from the proof of Theorem 4 works in logarithmic space.
Since ALOGSPACE = P, we obtain:

Frontiers of Formal Methods 2015

94

TPTL1
u

TPTL<∞
u TPTL1

b

TPTLu TPTL2
b

TPTLb

infinite data words finite data words

P-c. P-c.

PSPACE-c. PSPACE-c.

TPTL1
u

TPTL<∞
u TPTL<∞

b

TPTLu

TPTLb

Figure 1: Complexity results for path checking

Theorem 5. For every fixed r ∈ N, path-checking for TPTLr
u over infinite unary encoded

data words is in P.

For finite data words, there is a polynomial time algorithm also for binary encoded
data words (assuming again a fixed number of register variables). The point is that we
only have to consider polynomially many register valuations.

Theorem 6. For every fixed r ∈ N, path-checking for TPTLr
b over finite binary encoded

data words is in P.

For infinite data words we have to reduce the number of register variables to one in
order to get a polynomial time complexity for binary encoded numbers:

Theorem 7. Path-checking for TPTL1
b over infinite binary encoded data words is in P.

Figure 1 collects our complexity results for path checking problems. The lower bounds
all hold for pure strictly monotonic unary encoded data words. The upper bound hold
for general (non-pure and non-monotonic) data words that are binary encoded, except for
TPTL<∞

u (membership in P), where the data word has to be unary encoded.
For a given DOCM A one can check in logspace, whether run(A) is finite or infinite.

Moreover, if run(A) is finite, then the corresponding data word in unary encoding can
be computed in logspace. If run(A) is infinite, then one can compute in logspace two
unary encoded data words u1 and u2 and a unary encoded number k such that run(A) =
u1

∏
i≥0(u2 + ik) [3]. The diagram from Figure 1 also shows the complexity results for

TPTL-model-checking over DOCM.

References

[1] R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41(1):181–204, 1994.

[2] D. Bundala and J. Ouaknine. On the complexity of temporal-logic path checking. In
Proc. ICALP 2014, Part II, LNCS 8573, pages 86–97. Springer, 2014.

[3] S. Demri, R. Lazić, and A. Sangnier. Model checking memoryful linear-time logics
over one-counter automata. Theor. Comput. Sci., 411(22-24):2298–2316, 2010.

Path-Checking for MTL and TPTL over Data Words

95

[4] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P-
completeness Theory. Oxford University Press, 1995.

[5] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

[6] K. Quaas. Model checking metric temporal logic over automata with one counter. In
Proc. LATA 2013, LNCS 7810, pages 468–479. Springer, 2013.

[7] S. Travers. The complexity of membership problems for circuits over sets of integers.
Theor. Comput. Sci., 369(1):211–229, 2006.

Frontiers of Formal Methods 2015

96

Threshold Concepts in a Lightweight Description Logic∗

Oliver Fernández Gil (fernandez@informatik.uni-leipzig.de)

Department of Computer Science, University of Leipzig, Germany

Description Logics (DLs) [1] are a well-investigated family of logic-based knowledge
representation formalisms. They can be used to represent the relevant concepts of an
application domain using concept descriptions, which are built from sets of concept names
and role names using certain concept constructors. Using concept descriptions one can
define important concepts of interest, by expressing the necessary and sufficient conditions
for an individual to belong to the concept. The semantics for these concepts is given by
usual first-order logic interpretations where a non-empty domain of elements is assumed,
concept names are interpreted as subsets from the domain and role names as binary
relations over the domain.

In particular the lightweight DL EL, which offers the concept constructors conjunction
(u), existential restriction (∃r.C) and the top concept (>), has shown to be of great
interest. On the one hand, though quite inexpressive, it can be used to define large
biomedical ontologies such as SNOMED CT1. On the other hand, important inference
problems like subsumption have been shown to be decidable in polynomial time, even
with respect to terminological axioms [2]. In EL we can, for example, define the concept
of a happy man as a male human that is healthy and handsome, has a rich and intelligent
wife, a son and a daughter, and a friend:

Human uMale u Healthy u Handsome u
∃spouse.(Rich u Intelligent u Female) u (1)

∃child.Male u ∃child.Female u ∃friend.>

Since concept descriptions are interpreted using the classical semantics from first-
order logic, for an individual to belong to this concept, it has to satisfied all the stated
properties. However, maybe we would still want to call a man happy if most, though not
all, of the properties hold. It might be sufficient to have just a daughter without a son,
or a wife that is only intelligent but not rich, or maybe an intelligent and rich spouse of
a different gender. But still, not too many of the properties should be violated.

This work presents a DL extending EL that allows to define concepts in such an
approximate way. The main idea is to use a membership degree function, which instead
of giving a value in {0, 1} to evaluate the membership of an individual into a concept,
gives a value in the interval [0..1]. Then, from an EL concept description C, we can build
the threshold concept C≥t for t ∈ [0..1] which contains all the individuals that belong to

∗Supported by DFG Graduiertenkolleg 1763 (QuantLA).
1see http://www.ihtsdo.org/snomed-ct/

Threshold Concepts in a Lightweight Description Logic

97

C with degree at least t. In addition, we also allow the construction of lower threshold
concepts of the form C≤t and the use of strict inequalities. Based on this, for instance,
we can then require a happy man to belong to the EL concept (1) with degree at least
.8. Conversely, an unhappy man could be required to belong to the EL concept (1) with
degree less than .2.

We extend EL by adding new threshold concept constructors which are based on an
arbitrary, but fixed graded membership function satisfying certain minimal requirements.
Then, we introduce a specific graded function which satisfies these requirements. Its def-
inition is a natural extension of the homomorphism characterization of crisp membership
in EL. More precisley, in EL concept descriptions and interpretations can be represented
by EL description trees and EL description graphs, respectively [3, 4]. Then, member-
ship in EL can be characterized via existence of homomorphisms between EL description
graphs[3].

The general idea is the following: given an interpretation I, a concept C and an
individual d from the domain of I; the degree of membership of d in C decreases, in
a uniform way, for each property of C that d does not have. To identify these missing
properties we explore all the possible ways in which the structure of C can be (partially)
mapped into the structure of d. Further, we define a weighted function which associates
to each partial mapping a corresponding value in the interval [0..1], that tells how far
away is d from C according to the mapping. The maximum among these values is then
taken as the degree of membership for d in C.

Finally, we investigate the computational properties of extending EL with thresh-
old concepts using our specific membership function. Basically, we look at standard
reasoning tasks in DLs, e.g., concept satisfiability, subsumption, ABox consistency and
instance checking. We obtain NP-completeness for satisfiability and consistency; and
coNP-completeness for subsumption. Regarding instance checking we consider the two
well-known criteria of data and combined complexity. For data complexity the instance
problem is coNP-complete, whereas a preliminary coNEXP-time upper bound is obtained
with respect to combined complexity.

This is a joint work with Franz Baader and Gerhard Brewka.

References

[1] Baader, Franz and Calvanese, Diego and McGuinness, Deborah L. and Nardi, Daniele
and Patel-Schneider, Peter F. The Description Logic Handbook: Theory, Implemen-
tation, and Applications, 2003, Cambridge University Press, New York, NY, USA.

[2] Sebastian Brandt. Polynomial Time Reasoning in a Description Logic with Existential
Restrictions, GCI Axioms, and - What Else?. Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI’2004, 298-302. Valencia, Spain, August
22-27, 2004.

[3] Franz Baader, Ralf Küsters, Ralf Molitor. Computing Least Common Subsumers in
Description Logics with Existential Restrictions, IJCAI, 1999, 96-103.

[4] Franz Baader. Terminological Cycles in a Description Logic with Existential Restric-
tions, IJCAI, 2003, 325-330.

Frontiers of Formal Methods 2015

98

Derivation Languages of Graph Grammars and
Correctness

Nils Erik Flick (flick@informatik.uni-oldenburg.de)

Carl v. Ossietzky Universität Oldenburg, Abt. Formale Sprachen

Graph grammars have been extensively studied, mainly to characterise the sets of
graphs generated by them [3, 6, 4]. It is well known that arbitrary Turing machines
can be simulated with graph grammars. However, despite the computational power of
graph grammars the language of control expressions is a decidable set of strings for any
given graph grammar. By this we mean the rule label sequences of possible derivations
from a given start graph. Graph transformation as a string language generation device is
obviously very powerful and includes the corresponding notion for Chomsky grammars,
which is known as Szilard languages. It also generalizes Petri net languages.

Double-pushout graph transformation rules specify a left hand side L, a right hand side
R and a common subgraph of both, the interface K. Identifying L as a subgraph of the
graph to be transformed induces a transformation step, provided that removing the items
of L−K still results in a graph (no node may be deleted unless all edges incident to it are
also deleted). The successor graph is then uniquely determined by removing the nodes
and edges of L −K and adding those of R −K. Figure 1 shows a few derivation steps.
Each step corresponds to a rule application, and the images of the left hand sides under
the respective matches have been highlighted. The forms of the rules can be deduced
because the rule effect is always a local change in the graph, consuming and producing a
fixed pattern of nodes and edges.

Our motivation is to formulate language-theoretic correctness problems for systems
that are modeled by graph transformation rules: given a graph grammar, is there an
execution sequence outside of the specification language? There exists some recent work
where rewriting games on finite structures, including graphs, are solved [5] which we take
as evidence for the relevance of such questions. This abstract is about our paper [2], and
some supplementary, as yet unreviewed, results found since its publication.

a⇒ a⇒ b⇒ b⇒ c⇒ c⇒ $⇒

Figure 1: a graph grammar derivation yielding the word aabbcc (rule matches marked).

In [2], we defined L$ as the family of terminal derivation languages of double-pushout
graph grammars, where terminal states are recognised by a graph rule, equivalently a
finite set of such rules. The central result in that paper was the closure of L$ under
(nondeleting) letter-to-letter homomorphisms, which is nontrivial because rules are labeled
unambiguously in our formalism.

Derivation Languages of Graph Grammars and Correctness

99

Theorem 1. If L ∈ Σ∗ is the terminal derivation language of a graph grammar G and
h : Σ∗ → Σ′∗ is a letter-to-letter homomorphism, then h(L) is the terminal derivation
language of another graph grammar G ′.
Proof idea. By induction over |dom(h)− cod(h)|, h is decomposed into a finite number of
two-letter mergers. The two-letter mergers are handled by constructing a single rule out
of the rules whose labels are merged, and extending the start state as sketched below:

0 1 2 3

G L1 L2 L1 L2

G is the original start graph, L1 and L2 are the left hand sides of the two rules to be
merged, respectively. The nodes and edges in the top serve to guide the simulation: every
node originally present, or created during the derivation, is additionally linked to one of
the nodes 0, 1, 2 or 3 via an extra edge. The combined rule is crafted in such a way that
a match is composed of a match of L1 and a match of L2, respecting the guide nodes and
edges. When the first rule is simulated, the match of L1 consists entirely of nodes linked
to 0 (and edges between these) and the match of L2 consists entirely of nodes all linked to
i, where i is either 1 or 2. Node 3− i is then refurbished with a new L2, and node 3 with
a new copy of L1 (adding a new L2 is necessary so we can always simulate the first rule
again; adding a new L1 is unavoidable because the rule effect, in terms of what is deleted
and added, is fixed). The situation when the second rule is simulated is analogous. Node
3 is entirely for garbage – surplus L1’s and L2’s accumulated because the simulation of
choice between the two original rules must really always effect both. The construction is
proven correct by an induction over the length of the derivation, where it is shown that
(a) the simulation can always proceed and (b) no spurious steps are created.

The closure property is very useful for showing the containment of other families in
L$. As a basic example, we showed that the context-free languages are in L$ (immediately
obtaining undecidability of many questions like emptiness because L$ is also closed under
intersections). There are more extensive known families which are also contained, for
instance we could subsequently show that the growing context-sensitive languages (GCSL)
[1] are terminal derivation languages of graph grammars. The proof makes heavy use
of the nondeterminism inherent in graph grammars and is aided by the fact that any
finite sequence of graph transformation rules can be replaced by a finite set of graph
transformation rules (not sequences) with the same effect. This allows a graph grammar
to perform a simulation of the derivation of a word w in the GCS grammar in b |w|

2
c steps,

while the remaining steps are used for checking the consistency of the simulation and
whether the rules used (whose labels are recorded in another string-like part of the graph)
spell out w, and enabling the end rule only if both conditions are met.

Unsurprisingly, L$ does appear to be very large and we could not ascertain whether
all of the languages in our family are even context sensitive (the straightforward simu-
lation by a nondeterministic Turing machine uses a slightly more than linear amount of

Frontiers of Formal Methods 2015

100

space). Conversely, an open conjecture is that the language of {ap | p prime} is not in
L$. Extending our work published in [2], we found it useful to restrict attention to graph
grammars that only produce graphs of bounded pathwidth. Although it is not a syntactic
restriction and the restriction itself is undecidable, multiple advantages would be gained
(the following results being preliminary and not yet published): all languages obtained
thus are indeed context sensitive; it seems that the closure properties we found (L$ being
in fact an intersection-closed AFL, i.e. closed under intersection, union, concatenation,
Kleene plus, non-deleting homomorphisms, inverse homomorphisms and intersections with
regular languages) are not destroyed, because the constructions only increase the path-
width bound; furthermore, the more pathological examples seem to be excluded. We are
aware that in its current form, our work does not solve the problem of finding classes
of graph grammars that allow verification of language-theoretic correctness, for example
compliance with a specification in linear temporal logic. A search for practically relevant
restricted versions of L$ could move us closer to that goal.

References
[1] Gerhard Buntrock and Krzysztof Loryś. On growing context-sensitive languages. In

Proc. 19th ICALP, volume 623 of LNCS. Springer, 1992.

[2] Nils Erik Flick. Derivation languages of graph grammars. Electronic Communications
of the EASST, 61, 2013.

[3] Annegret Habel and Hans-Jörg Kreowski. Some structural aspects of hypergraph
languages generated by hyperedge replacement. In STACS 87, volume 247 of LNCS,
pages 207–219. Springer, 1987.

[4] Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph transfor-
mation revisited. Mathematical. Structures in Comp. Sci., 11(5):637–688, October
2001.

[5] Łukasz Kaiser. Synthesis for structure rewriting systems. In Mathematical Foundations
of Computer Science, volume 5734 of LNCS, pages 415–426. Springer, 2009.

[6] Clemens Lautemann. The complexity of graph languages generated by hyperedge
replacement. Acta Informatica, 27(5):399–421, 1990.

Derivation Languages of Graph Grammars and Correctness

101

Frontiers of Formal Methods 2015

102

Decision Procedure for Stochastic Satisfiability
Modulo Theories with Continuous Domain∗

Yang Gao (yang.gao@uni-oldenburg.de)

SCARE Research Training Group, Oldenburg University, Germany

1 Introduction

The idea of modelling uncertainty within propositional satisfiability (SAT) was first introduced
in [1] by adding randomized quantifiers to the SAT formula. The resulted formula is an SAT
formula bounded by a sequence of quantifiers, i.e., an SSAT formula with classic quantifiers
and randomized quantifiers. This work has been extended by Tino Teige et al [2, 3], in their
innovative work, the randomized quantifiers are introducedto SMT (Satisfiable Modulo The-
ory) so that a larger class of properties can be formulated and analysed. Instead of reporting
true or false, an SSMT (or SSAT) formulaΦ will return a quantitative number, which is the
maximum probability of satisfaction ofΦ. Benefit from the expressive power of SSMT and
SSAT, the concise description of diverse problems combining reasoning under uncertainty with
data dependencies are permitted, which have been extensively studied in Artificial Intelligence
[4, 5, 6], Probabilistic Hybrid Systems [2] etc.

The limitation of Tino Teige’s work is: the variables in an SSMT formulaΦ which bounded
by randomized quantifiers can only take values in discrete domains, that is to say, SSMT formula
considered in their work can only handle problems with discrete probability distributions. Due
to the lack of continuity, a large number of properties can not be dealt with the SSMT/SSAT
framework, such as the white noise in the system etc. Inspired by their work and in order to fill
in the gaps between continuous and discrete probabilistic behaviors, we relax the constraints for
the randomized variables and they can be assigned accordingto probability distributions, which
can be either discrete or continuous.

2 Stochastic Satisfiability Modulo Theories with Continuous
Domain

Definition 2.1. An SSMT formula with continuous domain (SSMT-C) is of the form: Φ = Q :
ϕ, where:

∗This research is funded by the German Research Foundation through the Research Training Group DFG-GRK
1765: “System Correctness under Adverse Conditions” (SCARE, scare.uni-oldenburg.de).

Decision Procedure for Stochastic Satisfiability Modulo
Theories with Continuous Domain

103

• Q = Q1x1 ∈ dom(x1) . . . Qnxn ∈ dom(xn) is a sequence of quantified variables,
dom(xi) denotes the domain of variablexi, Qi is either an existential quantifier∃ or a ran-
domized quantifier

R

πi
with probability density functionπi satisfying

∫
dom(xi)

πi(xi)dxi =
1.

• ϕ is an SMT formula over quantifier-free non-linear arithmetic theoryT . Without loss of
generality, we assume thatϕ is in conjunctive normal form (CNF), i.e.,ϕ is a conjunction
of clauses, and a clause is a disjuction of (atomic) arithmetic predicates with the formxi

or ¬xi. ϕ is also called the matrix.

Definition 2.2. The semantics of a SSMT-C formulaΦ = Q : ϕ is defined by the maximum
probability of satisfactionPr(Φ) as follows:

• Pr(ϕ) = 0 if ϕ is unsatisfiable.

• Pr(ϕ) = 1 if ϕ is satisfiable.

• Pr(∃xi ∈ dom(xi) . . .Qnxn ∈ dom(xn) : ϕ)
=supv∈dom(xi) Pr(Qi+1xi+1 ∈ dom(xi+1) . . .Qnxn ∈ dom(xn) : ϕ[v/xi]).

• Pr(

R

πi
xi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)

=
∫

v∈dom(xi)
Pr(Qi+1xi+1 ∈ dom(xi+1) . . .Qnxn ∈ dom(xn) : ϕ[v/xi])πi(v)dv.

Figure 1 shows an example, which uses a semantic tree to indicate the probability of satis-
faction w.r.t. an SSMT-C formulaΦ.

Φ = ∃x ∈ [−1, 1]
R

N (0,1)y ∈ (−∞, +∞) : (x > 0 ∨ 2a · sin(4b) ≥ 3) ∧ (y > 0 ∨ 2a · sin(4b) < 1)

x

x ∈ [−1, 0] x ∈ (0, 1]

y y

y ∈ (−∞, 0]
Pr = 0.5

y ∈ (0, ∞)
Pr = 0.5

y ∈ (−∞, 0]
Pr = 0.5

y ∈ (0, ∞)
Pr = 0.5

Pr = 0 Pr = 1 Pr = 1 Pr = 1

Pr = 0.5 · 0 + 0.5 · 1 = 0.5 Pr = 0.5 · 1 + 0.5 · 1 = 1

Pr(Φ) = max(0.5, 1) = 1

2a · sin(4b) ≥ 3
2a · sin(4b) < 1

unsat

2a · sin(4b) ≥ 3
sat

2a · sin(4b) < 1
sat

sat

Figure 1: Semantics of a C-SSMT formula depicted as a tree.

3 Decision Procedure for SSMT-C

3.1 Decision Procedure

In this section, we will concentrate on the following decision problem:

Frontiers of Formal Methods 2015

104

Given an SSMT-C formulaΦ = Q1x1 ∈ dom(x1) . . . Qnxn ∈ dom(xn) : φ and a
reference probabilityδ, the decision procedure will return:

• GE: if the lower bound ofPr(Φ) is greater than or equal toδ;

• LE: if the upper bound ofPr(Φ) is less than or equal toδ;

• Inconclusive: ifδ is in the range of the bounds ofPr(Φ) w.r.t. the computation
accuracyǫ.

The algorithm is equipped with the following structures:

• C: a set collecting the constrains which must be satisfied, initially assigned to∅.

• ρ: an ordered list (corresponding to the order of variables inQ) which records the interval
valuation for each variable, initially assigned to[dom(x1), . . . , dom(xn)].

• H: a set of computation cells, initially assigned to∅.

3.1.1 SMT Level.

Rule (INI) adds the first computation cell toH, which contains: 1) the formulaQ : Φ which
to be decided; 2) domain for each variable, recorded inρ; 3) the constraintsC which must be
satisfied, initially it’s empty; 4)(p, q)i is an over approximation which ignores the variables in
front of xi in Q, i.e., the probability estimation forxi and its substructure.

H → H ∪ {(Q : φ, ρ, C)(0,1)1} (INI)

If all the parts except one in one clause can not be satisfied w.r.t the current evaluationρ,
then this unit must hold. Rule (UP) corresponds to the unit propagation in classical DPLL
framework.

L ∨ l′ ∈ φ, ρ 2 L

H ′ ∪ {(Q : φ, ρ, C)(p,q)i} → H ′ ∪ {(Q : φ, ρ, C · 〈l′〉)(p,q)i} (UP)

If the range of a variablexj can be narrowed according to the constraintsC and current
evaluationρ, we update the evaluation set and the probability estimation. This can be done by
performing interval constraint propagation rule (ICP).

ρ
C (xj ∼ b), ρ 2hc (xj ∼ b)

H ′ ∪ {(Q : Φ, ρ, C)(p,q)i} → H ′ ∪ {(Q : Φ, updateρ(xj ∼ b), C)renewalρj (p,q)i}
(ICP)

where

updateρ(xj ∼ b)(xi) =

{
ρ(xj) ∩ {x|x ∼ b}, if xi = xj

ρ(xj), otherwise

and

renewalρj
(p, q)i =

{
(p, q)i, if xj ≺ xi

P(ρ(xi) × · · · × ρ(xj) ∩ {x|x ∼ b} × · · · ρ(xn))i, otherwise

When we are at a point that nothing can be done, i.e.,Φ is inconclusive under current config-
uration, we perform the splitting rule (SPL) to split the current computation cell into two cells
and updateρ and probability estimation accordingly.

Decision Procedure for Stochastic Satisfiability Modulo
Theories with Continuous Domain

105

φ is inconclusive onρ andρj 6= ∅
H′∪{(Q:φ,ρ,C)(p,q)i}→

H′∪{(Q:φ,ρ′·〈ρ1
j 〉·ρ′′,C)

renewal
ρ1
j
(p,q)j

,(Q:φ,ρ′·〈ρ2
j 〉·ρ′′,C)

renewal
ρ2
j
(p,q)j

}

(SPL)

3.1.2 Constraint Solving Level.

When a conflict is obtained, i.e., the current evaluationρ and constraintsC lead to some empty
sets, the computation cell can be marked with probability0. As shown in rule (CFL).

ρ
C (xi = ∅)

H ′ ∪ {(Q : φ, ρ, C)(p,q)i} → H ′ ∪ {(Q : φ, ρ, C)(0,0)n} (CFL)

If the current evaluationρ is hull consistent w.r.t. the constraint setC, a constraint solving
procedure can be performed in order to generate the inner approximation and outer approxima-
tion for the solution. Generally speaking, we will get some inner boxes and outer boxes. For
inner boxes, we construct computation cells with real probability; for outer boxes, we construct
computation cells with over approximation, as shown in rule(CNSIS).

ρ �hc C
H′∪{(Q:φ,ρ,C)(p,q)i}→

H′∪{(Q:φ,ρ,C)(pin,pin)n}∗∪{(Q:φ,ρ,C)(0,pout)n}∗

(CNSIS)

3.1.3 Stochastic SMT Level.

If two computation cells are combinative, i.e., the probability are estimated w.r.t. the same
variablexi. If xi is bounded by∃, the two cells can be combined by maximizing the probability
(Rule (∃-COM)); otherwise if it’s bounded by

R

, the two cells can be combined by adding the
probability (Rule

R

-COM).

ρx1
i ⊎x2

i
is the convex hull ofx1

i andx2
i

H′∪{(Q′∃xiQ′′:φ,ρ′·〈x1
i 〉·ρ′′,C)(p1,q1)i ,(Q′∃xiQ′′:φ,ρ′·〈x2

i 〉·ρ′′,C)(p2,q2)i}→
H′∪{(Q:φ,ρ′·〈x1

i ⊎x2
i 〉·ρ′′,C)max((p1,q1)i,(p2,q2)i)}

(∃-COM)

ρx1
i ⊎x2

i
is the convex hull ofx1

i andx2
i

H′∪{(Q′

R

xiQ′′:φ,ρ′·〈x1
i 〉·ρ′′,C)(p1,q1)i ,(Q′

R

xiQ′′:φ,ρ′·〈x2
i 〉·ρ′′,C)(p2,q2)i}→

H′∪{(Q:φ,ρ′·〈x1
i ⊎x2

i 〉·ρ′′,C)(p1,q1)i+(p2,q2)i}

(

R

-COM)

If all the computation cells in the same level have been tackled, the probability should be prop-
agated to the upper level, the Rule (LFT) checks all the computation cells inH, and lift the cell
to its upper level if all its siblings have been combined.

∀(Q : φ, ρ′, C ′)(·,·)j ∈ H ′ : j 6= i

H ′ ∪ {(Q : φ, ρ, C)(p,q)i} → H ′ ∪ {(Q : φ, ρ, C)(p,q)i−1} (LFT)

3.1.4 Termination.

At any time, if the estimate probability atx1 is less equal than the reference probabilityδ, the
original formula is concluded to beδ-LE, i.e., rule (LE); on the other hand,δ-GE if the estimate
probability is grater equal thanδ, i.e., rule (GE).

q ≤ δ

H ′ ∪ {(Q : φ, ρ, C)(p,q)1} → LE
(LE)

Frontiers of Formal Methods 2015

106

p ≥ δ

H ′ ∪ {(Q : φ, ρ, C)(p,q)1} → GE
(GE)

Otherwise, the formula is inconclusive w.r.t.δ if the δ-GE orδ-LE can not be judged under
the accuracyǫ:

q > δ ∧ p < δ, |p − q| < ǫ

H ′ ∪ {(Q : φ, ρ, C)(p,q)1} → INCON
(INCON)

4 Conclusion

In this short abstract, we briefly introduce our recent work on decision procedure w.r.t. s-
tochastic SMT formula with continuous domain, which can be applied to reason and verify the
systems with probabilistic behaviors and hybrid evolutions, i.e., stochastic hybrid system[7]. In
order to verify the properties on such systems, e.g., reachability properties, one can translate the
behaviours of the systems to an SSMT-C formula:

Q : I ∧ T ∧ G

whereQ is a sequence of existential and randomized quantifiers,I is the initial condition,T
represents the transition relations andG is the goal which we hope the system can achieve. The
the properties can be quantitatively verified by compute theprobability of satisfaction.

References

[1] Christos H Papadimitriou. Games against nature.Journal of Computer and System Sci-
ences, 31(2):288–301, 1985.

[2] Martin Fränzle, Holger Hermanns, and Tino Teige. Stochastic satisfiability modulo theory:
A novel technique for the analysis of probabilistic hybrid systems. InHybrid Systems:
Computation and Control, pages 172–186. Springer, 2008.

[3] Tino Teige and Martin Fränzle. Stochastic satisfiability modulo theories for non-linear
arithmetic. InIntegration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, pages 248–262. Springer, 2008.

[4] Stephen M Majercik and Michael L Littman. Maxplan: A new approach to probabilistic
planning. InAIPS, volume 98, pages 86–93, 1998.

[5] Michael L Littman, Stephen M Majercik, and Toniann Pitassi. Stochastic boolean satisfia-
bility. Journal of Automated Reasoning, 27(3):251–296, 2001.

[6] Stephen M Majercik and Michael L Littman. Contingent planning under uncertainty via
stochastic satisfiability. InAAAI/IAAI, pages 549–556, 1999.

[7] Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Probabilistic reach-
ability and safety for controlled discrete time stochastichybrid systems. Automatica,
44(11):2724–2734, 2008.

Decision Procedure for Stochastic Satisfiability Modulo
Theories with Continuous Domain

107

Frontiers of Formal Methods 2015

108

Trace Refinement of π-Calculus Processes∗

Manuel Gieseking (manuel.gieseking@informatik.uni-oldenburg.de)

Correct System Design, Carl von Ossietzky University of Oldenburg,
Germany

Classically, the general focus while investigating the π-calculus [4] is put on bisimula-
tions between processes to determine their behavioral equivalence [5]. From a somewhat
more application-oriented point of view, it is of interest to analyze process algebras in
terms of the so-called refinement relation. That is to determine whether an implemen-
tation satisfies its specification. This approach has for instance been investigated in the
context of Tony Hoare’s CSP (Communication Sequential Processes [2]).

Both algebras are widely accepted for modeling and analyzing the communication
between concurrent systems. Even though they have similar capabilities like parallel
composition of processes, choice operators and actions/events which can be performed,
they differ in some main features like the mobility aspect of the π-calculus to establish
new communication by sending channels over channels.

Tony Hoare wrote in 2006 about CCS, the foundation of the π-calculus without the
mobility aspect: “[. . .] the time has come to unify the two modelling styles [(CSP and
CCS)], to enable practicing engineers to exploit a combination of their complementary
advantages”1. Following this approach, we investigate in our work how the refinement
notions of CSP can be applied to the π-calculus to exploit their advantages. Therefore,
we present a new denotational semantics for the monadic π-calculus with guarded choice
and without match and mismatch prefixes [1]. This approach is inspired by the trace
semantics of CSP, as presented in [6] for example. Our further contributions are the proofs
of compositionality results of the semantics, proofs establishing relations between trace
refinement and (weak and strong) simulations, as well as algebraic laws and additional
properties of the trace semantics for example concerning applications of substitutions and
transpositions of names.

We choose the early transition system [7] as the foundation of our semantics, where
every possible behavior a process can have is encoded in the label of the transitions.
Thus, we can define a big-step semantics, similar to approaches for CSP, by collecting
the labels of the transitions while following a path through the transition system. Those
sequences of labels are also called traces. They hide the internal steps, that is, the internal
communication of the process, since we would like to relate processes by their behavior
visible to the environment. By collecting all possible traces of a process, we are obtaining
the trace semantics. Instead of using the processes themselves we take their equivalence

∗Acknowledgements: I would like to thank Sven Linker and Ernst-Rüdiger Olderog for being my
supervisors and guides during the work of the underlying Master’s thesis. Especially Sven, thank you for
your patience and the hours of fruitful discussions.

1[3], page 209.

Trace Refinement of pi-Calculus Processes

109

classes (denoted by [P] for a process P) with respect to the renaming of bound names
within the process. The bound names are those occurring as an object of an input prefix
(for example the name x in the process a(x).P) or as a restricted name within a process
(that is, for instance, the name x in newx P). For a process P evolving with a big-step

to Q by using the trace t, we write [P]
t

=⇒ [Q]. The trace semantics for a process P is
denoted by T ([P]) and a trace itself is written t = 〈α1, . . . , αn〉, with only visible actions
αi. Thus, we can now define a condition (the specification) and check whether another
process (the program) meets this specification by calculating the process’ semantics and
checking set-inclusion. We say a process Q refines P (written P vT Q) if and only if
T ([Q]) ⊆ T ([P]).

As an example we consider an abstract communication protocol, where Alice A sends
a message m1 to Bob B over a server S via a private channel c1.

COM =def A | S | B
A =def new c1 (s〈c1〉.c1〈b〉.c1〈m1〉)
S =def s(c).c(r).c(m).

(
log〈m〉.r〈m〉+ r〈m〉

)

B =def b(m2).y〈m2〉

First of all, Alice can establish a connection to the server via channel s by sending
it the private channel c1, which is further used for the communication between Alice
and the server. Then Alice sends the name of the recipient b and the message m1 over
this private channel. Afterwards the server has the possibility to log the message and
subsequently sending the received message to Bob or directly delivering it. Bob only
listens at his address for some message and then does something not further specified
with this message. This desired behavior is visualized through an extract of the process’
operational semantics within Fig. 1. The internal communications are denoted by τ -
transitions. The transitions which are used for calculating the visualized big-step with its
trace 〈log〈m1〉, b〈m1〉〉, are the transitions of the left branch of the given extract of the
transition system.

The trace semantics does not only consider the behavior resulting from the synchro-
nized communication of the processes, but also collects all interleavings of the visible
actions the constituent processes can perform. Figure 2 visualizes an extract of Alice’s
actions. Remark that the transitions labeled with s(x), where x may be any name, which
does not occur free in the communication process, exist by reason of considering equiva-
lence classes of the processes.

By collecting all of those traces – meaning all paths and all of their prefixes – in one
set, we are gaining the trace semantics. That is for a process P the trace semantics is
defined by

T ([P]) =
{
t ∈ Traces | ∃Q ∈ Pπ : [P]

t
=⇒ [Q]

}
,

where Pπ is the set of all processes and Traces the set of all traces. If we additionally
consider a server without logging (S ′ =def s(c).c(r).c(m).r〈m〉), we can prove by set-
inclusion that the protocol without logging refines the other, since it has less behavior
than the logging one.

The compositionality of the CSP trace semantics is one advantage which we tried to
preserve by the definition of our denotational semantics. That is, for each syntactical

Frontiers of Formal Methods 2015

110

[
new c1

(
s〈c1〉.c1〈b〉.c1〈m1〉

)
| s(c).c(r).c(m).

(
log〈m〉.r〈m〉+ r〈m〉

)
| B
]

[
new c1

(
c1〈b〉.c1〈m1〉 | c1(r).c1(m).

(
log〈m〉.r〈m〉+ r〈m〉

))
| B
]

[
new c1

(
c1〈m1〉 | c1(m).

(
log〈m〉.b〈m〉+ b〈m〉

))
| B
]

[
new c1

(
0 |
(
log〈m1〉.b〈m1〉+ b〈m1〉

))
| B
]

[
new c1

(
0 | b〈m1〉

)
| B
] [

new c1
(
0 | 0

)
| B
]

[
new c1

(
0 | 0

)
| B
]

τ

τ

τ

log〈m1〉 b〈m1〉

b〈m1〉

〈log〈m1〉, b〈m1〉〉

Figure 1: An extract of the early transition system of the communication between Alice
and the server.

operator of the π-calculus we would like to have a semantical counterpart, such that the
semantics of the composition of the syntactical processes is equal to the composition of
the semantics of the syntactically composed parts. For instance, we try to find for a
binary syntactical operator ◦ a semantical one ◦T with T ([P ◦Q]) = T ([P]) ◦ T T ([Q]).
We show that the τ and output prefix, as well as the choice operator are compositional
similar to their corresponding operators in CSP. Thus, we can easily show that for given
processes P,Q ∈ Pπ and names a, x ∈ N

T ([τ.P]) = T ([P]) (TAU)

T ([a〈x〉.P]) = {〈〉} ∪ {〈a〈x〉〉}_T ([P]) (OUTPUT)

T ([P +Q]) = T ([P]) ∪ T ([Q]) (CHOICE)

hold. Where _ is the concatenation of the traces within the given sets, 〈〉 the empty
trace without containing any visible behavior, and N the set of all possible names /
channels. But due to the specialty of the π-calculus permitting new communication to be
established by transmitting a channel via an input process, the compositionality of the
input prefix is limited. Given a process P ∈ Pπ and names a, x ∈ N , then

T ([a(x).P]) = {〈〉} ∪ {〈a y〉_ s | s ∈ T ([P {y/x}]), y ∈ N}

Trace Refinement of pi-Calculus Processes

111

[new c1 (s〈c1〉.c1〈b〉.c1〈m1〉) | S | B]

· · · · · ·
[c1〈b〉.c1〈m1〉 | S | B][a〈b〉.a〈m1〉 | S | B] [z〈b〉.z〈m1〉 | S | B]

...
...

[c1〈m1〉 | S | B]

[0 | S | B]

...

s(c1)
s(a) s(z)

c1〈b〉
. . .

c1〈m1〉
. . .

Figure 2: An extract of the early transition system of Alice’s sole behavior.

holds. Where {y/x} is the substitution of the name x with the name y in the process
P . Since the application of the substitution is within the trace semantics, we have not
obtained a compositional definition of the behavior of an input process. However, at
least for every fresh name received by an input process the calculation of the traces is
compositional. This stems from the equality of a transposition and a substitution of
free names and the equality of the trace semantics by applying a transposition of names
to the process within the semantics or to the semantics itself. That is, for a process
P and a transposition σ the equality T ([Pσ]) = T ([P])σ holds. Furthermore, we show
that the parallel composition is compositional for processes without any occurrence of
restriction operators inside. The proof exploit a Gödel numbering of the traces and a new
inductively defined trace calculation of the parallel composition [1]. To show that the
limitation to restriction free processes for the compositionality of the parallel composition
is still feasible, we extend Milner’s structural congruence, such that every restriction
operator can be moved right at the front of the process. That is, we add rules still
preserving the congruence properties to extend the scope of a restriction over prefix and
choice operators. We show that the limitation to restriction free processes within the
compositionality of the parallel composition is not harmful, since we offer an extended
standard form, to which every process can be transformed such that the resulting process
is still structural congruent to the original one. A process in extended standard form has
all restriction operators right at the front of the process. The proof of transforming a
process in extended standard form is constructive and since it does not increase or reduce
the number of operators, the transformation does not incur a large blowup. Furthermore,
we show that the restriction operator is most likely compositional, but the proof of the
one set-inclusion is not yet completely finished.

Additionally, we sketch an algorithmic idea for calculating the trace semantics for a
finite set of names provided by the environment. This approach takes advantage of the

Frontiers of Formal Methods 2015

112

compositional aspects of the semantics.
Moreover, we show that the trace semantics preserves some algebraic laws and useful

properties. For instance, we show that the prefix operator distributes over the choice
operator, that is, T ([π.M1 + π.M2]) = T ([π. (M1 +M2)]), and state that M1 vT M2 and
M3 vT M4 implies M1+M3 vT M2+M4 for an arbitrary prefix π and sums M1, . . . ,M4.
Furthermore, we prove that Q vT P is equivalent to a〈x〉.Q vT a〈x〉.P for all processes
P,Q and names a, x.

Finally, we connect our new approach to the well-known concepts of weak and strong
simulations. Thus, we prove that a weak as well as a strong simulation imply the trace
refinement of every element of the simulation. That is, if a process Q simulates P (strongly
or weakly, respectively), then the process P also refines Q. Furthermore, the strong or
weak bisimilarity of processes implies their trace equivalence.

References

[1] Gieseking, M. Refinement of π-calculus processes. Master’s thesis, Carl von Ossi-
etzky University of Oldenburg, 2014.

[2] Hoare, C. A. R. Communicating sequential processes. Communications of the
Association for Computing Machinery 21, 8 (1978), 666–677.

[3] Hoare, C. A. R. Why ever CSP? Electronic Notes in Theoretical Computer Science
162 (2006), 209–215.

[4] Milner, R., Parrow, J., and Walker, D. A calculus of mobile processes, parts
I and II. Information and Computation 100, 1 (1992), 1–77.

[5] Pistore, M., and Sangiorgi, D. A partition refinement algorithm for the π-
calculus. In Computer Aided Verification (1996), Springer, pp. 38–49.

[6] Roscoe, A. W. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[7] Sangiorgi, D., and Walker, D. The π-Calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

Trace Refinement of pi-Calculus Processes

113

Frontiers of Formal Methods 2015

114

Conditioning in Probabilistic
Programming

Friedrich Gretz∗

fgretz@cs.rwth-aachen.de

Software Modeling and Verification Group

RWTH Aachen University

We consider sequential probabilistic programs, which are a means to model randomised
algorithms in computer science. These algorithms occur in many areas within computer
science such as machine learning [3], artificial intelligence [11], security [2] or randomised
algorithms design [9]. A probabilistic programming language allows for the straightfor-
ward specification of algorithms and moreover, it facilitates the formal analysis of al-
gorithms. For instance, deductive verification techniques, which rely on invariants and
may be mechanised using theorem proves, can be applied to establish the correctness of
probabilistic programs. Here we choose to work with the probabilistic Guarded Command
Language (pGCL), which is a probabilistic extension of Dijkstra’s GCL [5], and was intro-
duced by McIver and Morgan [8]. A program written in this language can draw a sample
from a Bernoulli distribution and, depending on the outcome, executes one or the other
branch of a choice statement. A common illustration of a Bernoulli experiment is a coin
flip which has two outcomes “heads” or “tails”. Of course, a Bernoulli experiment need
not have equal probabilities for both outcomes and then in our illustration we speak of a
biased coin flip. Having only Bernoulli trials at our disposal might seem to be a severe
limitation, but in fact this is sufficient to write subprograms that produce a sample from
e.g. geometric, binomial or uniform distributions.

In probability theory, it is common to condition the probability of an event or the
expectation of a random variable on the occurrence of some other event. In this way one
obtains conditional probability distributions and conditional expectations. An application
of conditional probabilities can, for instance, be found in medicine where one tries to
estimate the likelihood of a particular disease after having observed some symptoms. In a
similar way, we may ask for the expected outcome of a probabilistic program given the fact
that it has visited particular states during its execution. To allow for such specifications
we follow Claret et al. [4] and add the observe keyword to the pGCL language. Consider
the following program for example.

∗This abstract is based on a paper, currently under review, that has been jointly written with Nils
Jansen, Benjamin Kaminski, Joost-Pieter Katoen, Annabelle McIver and Federico Olmedo.

Conditioning in Probabilistic Programming

115

1 (f1 := goldfish [0.5] f1 := piranha);
2 f2 := piranha;
3 (sample := f1 [0.5] sample := f2);
4 observe([sample = piranha]);

This program models an example taken from [12, p. 216]. A fishbowl contains two fishes
f1 and f2 where we only know that f1 could equally likely be a piranha or a goldfish while
f2 is surely a piranha. Randomly one of the fish is removed from the fishbowl and observed
to be a piranha. We can ask for the probability that f1 is a piranha given our observation
that the sample fish is a piranha. This happens to be the case with probability 2/3. In [4]
and related work, e.g. [7, 10], they are concerned with purely probabilistic programs for
which they try to find the probability of some outcome using simulation or symbolic
program execution. All their programs are assumed to be terminating almost surely. Our
contribution is to

1. provide semantics without making assumptions about the termination behaviour of
the program and link operational and denotational semantics for fully probabilistic
programs,

2. explain why denotational semantics cannot be defined inductively for non-deterministic
programs,

3. and finally, we introduce program transformation that allow to eliminate condition-
ing

For the lack of space we exemplify the aforementioned points while skipping all technical
details.

Semantics Earlier work [6] shows how probabilistic programs may be understood as
a (possibly infinite) reward Markov decision process (RMDP). For a program P , the
RMDP Rf [[P]] models the stepwise behaviour of P and assigns rewards to the final
states according to a given reward function f . Thus the average outcome of the program
P with respect to f is determined by the minimal expected reward in Rf [[P]].

Now we can generalise this approach to conditional expectations. We only need to
add one rule to the structured operational semantics (SOS) in [6] in order to construct
an RMDP for a program with observe statements. This new rule translates observe
statements as a deterministic step without any effects (just like skip), however if the
observations does not hold in the current state, this state is labelled with a . Then, the
average outcome of P with respect to f , given that all observations are passed can be
easily calculated as follows: as before, we determine the expected reward in Rf [[P]], but
now we divide it by the probability of all runs that never violate an observations. Due
to the presence of non-deterministic choices this quotient has to be minimised across all
schedulers. Formally the conditional minimal expected reward until reaching T from s
avoiding states, denoted CExpRew(M,r)(s |= ♢T |¬♢), is defined by:

inf
S

∑
c∈C c · PrS{ π ∈ PathsS(s,♢T) | rT (π) = c }

1 − PrS{ π ∈ PathsS(s, ♢) }
.

Frontiers of Formal Methods 2015

116

s0

s1

1

s2

s3

2

s4

s5

s6

2.21
2

1
2

µ

ν

1
2

1
2

Figure 1: Positional schedulers do not suffice in this RMDP.

An alternative way to determine expected outcomes of a program P is to consider its
denotational semantics in terms of expectation transformers. For this McIver and Mor-
gan [8] introduced the notions of the greatest pre-expectation wp(P, ·) and greatest lib-
eral pre-expectation wlp(P, ·) which are quantitative generalisation of Dijkstra’s predicate
transformers [5]. In earlier work [6] we have established a correspondence between the
minimal expected reward in Rf [[P]] and wp(P, f). Recently we were able to generalise this
result to conditional expectations and have shown that the conditional minimal expected
reward of program P and reward function f amounts to cwp(P, f) = wp(P,f)

wlp(P,1)
for fully

probabilistic programs P . However if the program text in P contains non-deterministic
choices it becomes impossible to determine the conditional expectation using wp or wlp.
This is the result of the next section.

No inductive definition of for non-deterministic programs In the following we illus-
trate why positional schedulers are not sufficient to determine the conditional expected
reward in an RMDP. This is closely related to a result due to [1]. As a consequence we do
not have a cwp rule for non-deterministic choice that tells us how to compute the minimal
conditional expectation from the current valuation and the cwp(P, ·) and cwp(Q, ·) of the
two subprograms P and Q.

Consider the RMDP R in Figure 1. There are only two schedulers. Let Sµ be the
scheduler that chooses to go from s2 to s3 and let Sν be the scheduler that chooses s4 as
the successor of s2. Further let T = {s1, s3, s6} and let RS be the Markov chain obtained
from R by resolving all choices according to S. Then we calculate

CExpRewRSµ (♢T | ¬♢) = 1.5 and CExpRewRSν (♢T | ¬♢) = 1.4 .

Hence CExpRewR (♢T | ¬♢U) = 1.4 and the minimising scheduler is Sν . However if we
only consider the subsystem R’ that starts execution in state s2 we obtain

CExpRew
R′

Sµ (♢T | ¬♢) = 2 and CExpRewR′
Sν (♢T | ¬♢) = 2.2 .

So in that subsystem the minimising choice is given by Sµ. This shows how choices
are resolved depending on the “context” within which the state occurs in the system.
As mentioned above, Andrés et al. [1] show that a particular class of history dependent
schedulers is needed to find the conditional expected reward.

This example shows that any attempt to define any transformer T for non-deterministic
choice as

T ({P} [] {Q}, X) = min
4

{T (P, X), T (Q,X)}

Conditioning in Probabilistic Programming

117

must fail for any representation of conditional expectations X and any order 4 between
them because the decision is made at a point where the “context” information is missing.
In this sense no inductive definition of a conditional expectation transformer is possible
as was the case for wp and wlp.

Transformations Probabilistic programs with conditioning can be analysed using the
operational or denotational semantics as described above. However in some instances
we may simplify the analysis by removing the observations entirely and determining the
unconditioned expected reward on the transformed program. For this we propose two
approaches. One is based on the insight that observations can be “pushed” upwards in
the program text. The idea is that it is possible to pre-compute the probability that all
observations are passed starting in a given initial state. This precomputation is carried
out regardless of the reward function at hand. Thus the conditional expected reward
is then simply determined as the (unconditioned) expected reward on the transformed
program.

The second proposed transformation restarts a program run every time it violates some
observation. Thus only those runs terminate and contribute to the outcome of the program
that pass all observations on their way. This transformation can be carried out purely
syntactically but may complicate the analysis as it introduces an extra loop.

References

[1] Miguel E. Andrés and Peter van Rossum. Conditional probabilities over probabilistic
and nondeterministic systems. In TACAS 2008, volume 4963 of Lecture Notes in
Computer Science, pages 157–172. Springer, 2008.

[2] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Prob-
abilistic relational reasoning for differential privacy. ACM Trans. Program. Lang.
Syst., 35(3):9, 2013.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[4] Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Jo-
hannes Borgström. Bayesian inference using data flow analysis. In ESEC/SIGSOFT
FSE, pages 92–102, 2013.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[6] Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. Operational versus
weakest pre-expectation semantics for the probabilistic guarded command language.
Perform. Eval., 73:110–132, 2014.

[7] Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel. Slicing
probabilistic programs. In PLDI 2014, page 16. ACM, 2014.

[8] Annabelle McIver and Carroll Morgan. Abstraction, Refinement And Proof For Prob-
abilistic Systems (Monographs in Computer Science). SpringerVerlag, 2004.

Frontiers of Formal Methods 2015

118

[9] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[10] Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel. R2: an
efficient MCMC sampler for probabilistic programs. In AAAI 2014, pages 2476–
2482. AAAI Press, 2014.

[11] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[12] Henk C. Tijms. Understanding Probability: Chance Rules in Everyday Life. Cam-
bridge University Press, 2004.

Conditioning in Probabilistic Programming

119

Frontiers of Formal Methods 2015

120

Markov Reward Automata in Railway Engineering∗

Dennis Guck (d.guck@utwente.nl)

Formal Methods and Tools, Faculty of EEMCS
University of Twente, The Netherlands

1 Introduction

RAMS (Reliability, Availability, Maintenance, Safety) requirements are utmost important
for safety-critical systems like the railway infrastructure. Furthermore, costs and rewards
are important ingredients in the analysis of many of those systems, e.g. modelling critical
aspects like energy consumption, task completion, repair costs, and memory usage. For
example in railway engineering typical optimisation questions are: Should we carry out
preventive maintenance to prevent future costs? Can we reduce the down-time during
a maintenance procedure? How can we schedule the maintenance task such that the
operational costs are minimised? Such optimisation questions incorporate typically the
following ingredients: (1) stochastic timing to model degeneration or delay; (2) discrete
probability to model random failures; (3) nondeterministic choices to model uncertain
behaviour; (4) costs/rewards to measure the quality of a solution.

Markov automata (MAs) have been introduced in [6] as a continuous-time version
of Segalas probabilistic automata [11]. They provide a formalism for modelling systems
incorporating continuous stochastic timing, discrete probabilistic choices as well as nonde-
terministic choices. They provide a well-defined semantics for generalised stochastic Petri
nets (GSPNs) [5], dynamic fault trees [2] and the domain-specific language AADL [3].
Moreover, recent work demonstrated that MAs are suitable for modelling and analysing
distributed algorithms such as a leader election protocol, performance models such as a
polling system and even hardware models such as a processor grid [12]. Furthermore, in
[9] the model was extended with rewards to Markov reward automata (MRAs), such that
it is now possible to incorporate instantaneous transition rewards as well as time-based
state rewards.

2 Approach

In recent work we investigated quantitative analysis of MAs [7] as well as their extension to
rewards [9]. We extended the formalism of Markov reward automata with two reward func-
tions: a transition-reward function and a state-reward function. The transition-reward

∗This work has been supported by the STW-ProRail partnership program ExploRail under the project
ArRangeer (12238), and we acknowledge our cooperation with Movares in the ArRangeer project.

Markov Reward Automata in Railway Engineering

121

function assigns a rational number to each transition, representing an instantaneous re-
ward that is obtained directly when taking that transition. The state-reward function
assigns a rational number to each state, representing a reward that is obtained over time
during a stay of one time unit in that state.

Definition 2.1 (Markov reward automata). A Markov reward automaton (MRA) is a
tuple M = 〈S, s0, A, T, ρ〉, where

• S is a countable set of states, of which s0 ∈ S is the initial state;

• A ⊆ Act is a countable set of actions ;

• T ⊆ S×Aχ×R≥0×Distr(S) is the transition relation including transition rewards ;

• ρ : S → R≥0 is the state-reward function.

We require for each s ∈ S that there is at most one transition labelled with χ(·)1. Further,
we require that T is countable and write s

α−→r µ if (s, α, r, µ) ∈ T .

The function ρ associates a real number to each state. This number may be zero,
indicating the absence of a reward. The state-based rewards are gained while being in a
state, and are proportional to the duration of this stay. The transition-based rewards are
gained instantaneously when taking a transition and are included directly in the transition
relation.

Rewards can be used to model many quantitative aspects of systems, like energy
consumption, memory usage, deployment or maintenance costs, etc. The total reward of a
path (e.g., total amount of energy consumed) is then obtained by adding all rewards along
that path, that is, all state rewards multiplied by the sojourn times of the corresponding
states plus all transition rewards on the path.

In [7] we presented a framework for modelling and quantitative analysis of timed and
long-run objectives of MAs. Following this work, we lifted the existing framework to
the realm of rewards [9]. There we introduced MRAs and extended the algorithms for
computing time-bounded, goal-bounded and long-run objectives to rewards. Further,
the MAMA tool-chain consisting of SCOOP and IMCA was extended to incorporate all
changes.

3 Quantitative analysis

The three main aspects of the quantitative analysis of MRAs that we consider are: (1) the
expected time/reward to reach a set of goal states, (2) the expected probability/reward
until a given time bound, and (3) the long-run average time/reward of a set of states.
Typical examples where those objectives are important are respectively: to minimise the
average energy consumption of a server farm; to minimise the average maintenance cost
of a railway line over the first year of deployment; and to maximise the yearly revenues
of a data center over a long time horizon. In the following subsections we give a short
summary of the results of the quantitative analysis form [7] and [9].

1The actions χ(·) represent exit rates and are used to distinguish probabilistic and Markovian transi-
tions.

Frontiers of Formal Methods 2015

122

3.1 Goal-bounded objectives

In the goal-bounded reachability we are interested in the minimal and maximal expected
cumulative reward gained until reaching a set of goal states G ⊆ S. Therefore, we
accumulate the state and transition rewards until a state in G is reached; if no state in
G is reached, we keep on accumulating rewards. The expected cumulative reward can
be formalized into a classical Bellman equation. A direct consequence of this is, that the
expected cumulative reward is attained by a stationary deterministic policy. In case we
are interested in the expected time, we have to assign each transition a reward of 0 and
each state a reward of 1.

3.2 Time-bounded objectives

The time-bounded objectives can be distinguished in: (1) probability of reaching a set
of goal states in time T; (2) accumulated reward until time T. Both problems can be
generalised as a fixed point characterisation (FPC) similar to [14]. However, the FPC is
not algorithmically tractable and needs to be discretised. In both cases we will discretise
the computation in the following manner. We split the time interval into equally-sized
discretisation steps, each of length δ. Thus, we divide the time horizon [0, b] into a
generally large number of equidistant time steps, each of length 0 < δ < b, such that
b = kδ for some k ∈ N. The discretisation step is assumed to be small enough such that
with high probability it carries at most one Markovian transition. The advantage of this
discretisation is, that we can specify the desired error bound a priori and based on that
adjust the discretisation step. A time-dependent deterministic policy is sufficient for the
time-bounded reachability. That is, the policy decides on the basis of the states visited
so far and their timing.

3.3 Long-run objectives

In the long-run average objectives we are interested in the average cumulative reward
induced by a set of goal states G ⊆ S in the long-run as well as long-run average fraction
of time spent in G. The computation can be split up in a three step procedure:

1. Determine the maximal end components2 {M1, . . . ,Mk} of MRA M.

2. Determine the long-run average in maximal end componentMj for all j ∈ {1, . . . , k}.

3. Reduce the computation of the long-run average in MRAM to a stochastic shortest
path (SSP) problem.

The first phase can be performed by a graph-based algorithm [4], whereas the last two boil
down to solving distinct LP problems. For determining the long-run average in each MEC,
we can reduce the problem to the long-run ratio objective for Markov decision processes
[1]. The last phase is then a SSP computation, where the long-run averages from phase

2A sub-MRAM is a pair (S′,K) where S′ ∈ S and K is a function that assigns to each state s ∈ S′
a non-empty set of actions, such that for all α ∈ K(s), s

α−→ µ with µ(s′) > 0 implies s′ ∈ S′. An end
component is a sub-MRA whose underlying graph is strongly connected; it is maximal (a MEC) w.r.t.
K if it is not contained in any other end component (S′′,K).

Markov Reward Automata in Railway Engineering

123

two are used as goal costs. As a consequence of this, a stationary deterministic policy is
sufficient to compute the long-run average.

4 Reliability engineering

Fault tree analysis (FTA) [13] is often used in industry as part of their RAMS analysis.
Fault trees (FTs) model the failure propagation throughout a system: the leaves are basic
events (BEs) and represent component failures and the other nodes express the failure
propagation via AND and OR gates. Shortly summarized, FTA yields measures for system
availability and reliability, however it lacks the capability to incorporate maintenance
procedures. In [8] we presented a first step of incorporating simple maintenance analysis
to the FTA approach from [2]. Note that we consider dynamic fault trees (DFTs), they
extend standard FTs with a number of intuitive gates and facilitate the modelling of
often recurring concepts in reliability engineering, i.e. spare management, functional
dependencies, and order-dependent behaviour. Furthermore, the underlying quantitative
model used for analysis are input-output interactive Markov chains [10].

Extending the framework to MRAs will give us several advantages. On the one hand
we can incorporate down-time, repair, and maintenance costs into the model. Thus, we
can use those metrics to find the optimal and most cost efficient maintenance strategy.
On the other hand we can combine continuous and probabilistic behaviour of a system by
keeping the modularity of the FTA approach from [2]. Thus, new events like a probabilistic
installation error can be introduced to the FT. This will give the engineers the possibility
for a more accurate description of the fault behaviour of a system.

5 Conclusion and Challenges

We presented Markov reward automata (MRAs), an extension of Markov automata (MAs)
featuring both transition-based and state-based rewards. This formalism allows to model
a wide variety of systems featuring nondeterminism, discrete probabilistic choice, con-
tinuous stochastic timing and transition-based and state-based rewards. Furthermore,
we presented several algorithms for quantitative analysis of MRAs, including expected
reachability properties as well as long-run average properties.

The integration of a more realistic FT behaviour including maintenance strategies
using MRAs is currently in development. Furthermore, future work on the quantitative
analysis of MRAs will be on negative rewards, more complex optimisation criteria, as well
as the handling of several rewards as multi-optimisation problem are important topics for
future research.

References

[1] L. de Alfaro (1997): Formal Verification of Probabilistic Systems. Ph.D. thesis,
Stanford University.

Frontiers of Formal Methods 2015

124

[2] H. Boudali, P. Crouzen & M. I. A. Stoelinga (2010): A Rigorous, Compositional,
and Extensible Framework for Dynamic Fault Tree Analysis. IEEE Transactions on
Dependable and Secure Computing 7(2), pp. 128–143, doi:10.1109/TDSC.2009.45.

[3] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll & M. Roveri (2011):
Safety, Dependability and Performance Analysis of Extended AADL Models. The
Computer Journal 54(5), pp. 754–775, doi:10.1093/comjnl/bxq024.

[4] Krishnendu Chatterjee & Monika Henzinger (2011): Faster and Dynamic
Algorithms for Maximal End-Component Decomposition and Related Graph
Problems in Probabilistic Verification. In: SODA, SIAM, pp. 1318–1336,
doi:10.1137/1.9781611973082.101.

[5] C. Eisentraut, H. Hermanns, J.-P. Katoen & L. Zhang (2013): A Semantics for Every
GSPN. In: Proc. of the 34th Int. Conf. on Application and Theory of Petri Nets
and Other Models of Concurrency (ICATPN), LNCS 7927, Springer, pp. 90–109,
doi:10.1007/978-3-642-38697-8 6.

[6] C. Eisentraut, H. Hermanns & L. Zhang (2010): On Probabilistic Automata in Con-
tinuous Time. In: Proc. of the 25th Annual IEEE Symposium on Logic in Computer
Science (LICS), IEEE, pp. 342–351, doi:10.1109/LICS.2010.41.

[7] D. Guck, H. Hatefi, H. Hermanns, J. P. Katoen & M. Timmer (2014): Analysis of
timed and long-run objectives for Markov automata. Logical Methods in Computer
Science 10(3), p. 17, doi:10.2168/LMCS-10(3:17)2014.

[8] D. Guck, J. P. Katoen, M. I. A. Stoelinga, T. Luiten & J. Romijn (2014): Smart
railroad maintenance engineering with stochastic model checking. In: Proc. of the 2nd
Int. Conf. on Railway Technology: Research, Development and Maintenance, Rail-
ways 2014, Civil-Comp Proc. 104, Civil-Comp Press, p. 299, doi:10.4203/ccp.104.299.

[9] D. Guck, M. Timmer, H. Hatefi, E. J. J. Ruijters & M. I. A. Stoelinga (2014): Mod-
elling and analysis of Markov reward automata. In: Proc. of the 12th Int. Symp. on
Automated Technology for Verification and Analysis (ATVA), LNCS 8837, Springer
Verlag, Berlin, pp. 168–184, doi:10.1007/978-3-319-11936-6 13.

[10] H. Hermanns (2002): Interactive Markov Chains and the Quest for Quantified Qual-
ity. LNCS 2428, Springer.

[11] R. Segala (1995): Modeling and Verification of Randomized Distributed Real-Time
Systems. Ph.D. thesis, Massachusetts Institute of Technology.

[12] M. Timmer (2013): Efficient Modelling, Generation and Analysis of Markov Au-
tomata. Ph.D. thesis, University of Twente, doi:10.3990/1.9789036505925.

[13] W. E. Veseley, F. F. Goldberg, N. H. Roberts & D. F. Haasl (1981): Fault Tree
Handbook, NUREG-0492. Technical report, NASA.

[14] Lijun Zhang & Martin R. Neuhäußer (2010): Model Checking Interactive Markov
Chains. In: TACAS, LNCS 6015, Springer, pp. 53–68, doi:10.1007/978-3-642-12002-
2 5.

Markov Reward Automata in Railway Engineering

125

Frontiers of Formal Methods 2015

126

Weighted Unranked Tree Automata
over Tree Valuation Monoids∗

Doreen Heusel (dheusel@informatik.uni-leipzig.de)

Institut für Informatik, Universität Leipzig, D-04109 Leipzig, Germany

Recently, the investigation of formal languages of unranked trees has found much atten-
tion due to the development of the modern document language XML and the fact that
(fully structured) XML-documents can be formalized as unranked trees. With the help of
unranked tree automata, one can investigate qualitative questions on XML- documents.
To allow the study of quantitative aspects, Droste and Vogler [8] introduced and inves-
tigated weighted automata on unranked trees over semirings. These weighted automata
enable us, for instance, to evaluate the consumption of resources in systems, to assess the
reliability of transitions, or to model real-valued degrees of truth values of events.

Weighted logics over semirings represent another common approach for the investi-
gation of quantitative aspects. For words, a weighted MSO logic which is expressively
equivalent to weighted word automata was already developed in 2005 by Droste and
Gastin [3]. Analogous formalisms followed for various structures like for infinite words,
for ranked trees, for infinite trees, for trace languages, for picture languages, for texts and
for nested words.

In order to obtain a logic counterpart for their weighted unranked tree automata,
Droste and Vogler [8] presented a weighted MSO logic for unranked trees. Their au-
tomata capture the expressiveness of their logic but surprisingly not the other way around.
Droste and Vogler stated as an open problem to determine a weighted automata model
expressively equivalent to their logic. Our goal is to attack this problem.

For this, we present a new class of weighted tree automata. Syntactically they do not
differ much from the ones of [8]. They still consist of a state set and a family of weighted
word automata which are used to calculate the local weight of a position of an input
tree by letting the weighted word automaton associated with this position run on the
labels of the children of the position. The conceptual differences are the following: for the
behavior definition of the weighted unranked tree automata over valuation monoids, we
do not use runs anymore. Instead we fall back on the technically more involved extended
runs, which were already introduced in [8]. Besides from the information of classical runs,
extended runs also collect a run per weighted word automaton called for every position
of the input tree. In addition we change the way how the weight of such an extended run
is calculated. For weighted unranked tree automata over semirings, the local weight of a
position is defined by the weight of the run chosen for the word emerged of its children’s
labels. Here the local weight of a position equals the weight of the transition taken for
this position in the run of the position’s parent.

∗Partially supported by DFG Graduiertenkolleg 1763 (QuantLA).

Weighted Unranked Tree Automata over Tree Valuation
Monoids

127

Moreover we consider tree valuation monoids as weight structures which resort to the
ideas of Chatterjee, Doyen, and Henzinger [2] that were already generalized to valua-
tion monoids for words by Droste and Meinecke [7]. Tree valuation monoids are additive
monoids equipped with a valuation function that assigns any tree whose labels are stem-
ming from the additive monoid to a value from this monoid. We will use the valuation
function to calculate the weights of a run in a global way, i.e. given a run we apply
the valuation function to all local weights which appear along the run. Tree valuation
monoids are a very general structure. They contain all semirings, all bounded (possibly
non-distributive) lattices, which occur in multi-valued logics, and in addition they enable
us to cope with non-binary evaluation functions like average or discounting.

Now our main results are the following.

• With the new definition of weighted unranked tree automata over tree valuation
monoids based on extended run we obtain a model that subsumes the weighted
unranked tree automata over commutative semirings as well as the weighted ranked
tree automata over tree valuation monoids we introduced in [5].

• We show that our weighted unranked tree automata are closed under the common
operations like sum, product and relabeling.

• We define a weighted MSO logic for unranked trees over tree valuation monoids
analogously to the one for words over valuation monoids from Droste and Meinecke
[7] and characterize the behavior of our weighted unranked tree automata by four
different fragments of the logic. Which fragment can be used depends on purely
syntactically restrictions on the underlying tree valuation monoid. Thereby we
solve the open equivalence problem of Droste and Vogler.

• We investigate weighted unranked tree automata over a special class of tree valuation
monoids; the locally finite tree valuation monoids. Here a restriction of the weighted
MSO logic is unnecessary in order to obtain an equivalence result to the weighted
unranked tree automata if some additional assumptions on underlying valuation
monoids are fulfilled.

Our penultimate main result indicated above generalizes both the respective results of
[8] about weighted unranked tree automata over commutative semirings and the results
we got about weighted ranked tree automata over tree valuation monoids (cf. [5]).

At the end, we investigate the supports of weighted unranked tree automata (to be
published in [6]). The support of a weighted automaton is defined as the language of the
underlying structures (strings, trees, ...) which the weighted automaton evaluates to non-
zero. We show that the support of a weighted unranked tree automaton over a zero-sum
free, commutative strong bimonoid is recognizable. For this, we use methods of Kirsten
[9], in particular, his construction of finite automata recognizing the supports of weighted
automata on strings over zero-sum free, commutative semirings. We also get an effective
construction of a finite tree automaton recognizing the support of a given weighted un-
ranked tree automaton for zero-sum free, commutative strong bimonoids where Kirsten’s
zero generation problem is decidable. In addition, we give a translation of nested weighted
automata into weighted unranked tree automata for arbitrary commutative strong bi-
monoids. As a consequence, we derive the main result of [4] on the support of nested

Frontiers of Formal Methods 2015

128

weighted automata and the present support result. Our result on the support of nested
weighted automata together with the results of Bollig, Gastin, Monmege, and Zeitoun
[1] partially solve the open problem “to determine for which semirings the satisfiability
problem is decidable” which was stated by Bollig et al. in [1].

References

[1] Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble weighted automata and
transitive closure logics, LNCS, vol. 6199, pp. 587–598. Springer (2010)

[2] Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. In: Proceedings of
CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer (2008)

[3] Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Computer
Science 380, 69–86 (2007)

[4] Droste, M., Götze, D.: The support of nested weighted automata. In: Non-Classical
Models of Automata and Applications (NCMA), pp. 101–116. Österreichische Com-
puter Gesellschaft (2013)

[5] Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over valu-
ation monoids and their characterization by weighted logics. In: Kuich, W., Rahonis,
G. (eds.) Algebraic Foundations in Computer Science, LNCS, vol. 7020, pp. 30–55.
Springer (2011)

[6] Droste, M., Heusel, D.: The support of weighted unranked tree automata. Fundamenta
Informaticae, to appear

[7] Droste, M., Meinecke, I.: Describing average- and longtime-behavior by weighted MSO
logics. In: Proceedings of MFCS 2010. LNCS, vol. 6281, pp. 537–548. Springer (2010)

[8] Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory of Com-
puting Systems 48, 23–47 (2011)

[9] Kirsten, D.: The support of a recognizable series over a zero-sum free, commutative
semiring is recognizable. Acta Cybernetica 20, 211–221 (2011)

Weighted Unranked Tree Automata over Tree Valuation
Monoids

129

Frontiers of Formal Methods 2015

130

Negotiations as a concurrency primitive:
Summaries and Games∗

Philipp Hoffmann (ph.hoffmann@tum.de)

Technische Universität München

1 Negotiations

In [7, 8], Javier Esparza and Jörg Desel have introduced a model of concurrency with multi
party negotiation as primitive. The model allows one to describe distributed negotiations
obtained by combining “atomic” multi party negotiations, or atoms. Each atom has a
number of parties (the subset of agents involved), and a set of possible outcomes. The
parties agree on an outcome, which determines for each party the subset of atoms it is
ready to engage in next.

1.1 Soundness

Ill-designed negotiations may deadlock, or may contain useless atoms, i.e., atoms that
can never be executed. The problem whether a negotiation is well designed or sound was
studied in [7, 8]. The main result was that for a class called deterministic negotiations,
there is a reduction procedure that decides the soundness problem in polynomial time
and for a class called acyclic weakly deterministic negotiations a similar procedure can be
applied which is conjectured to also be polynomial.

In my thesis, we study the approach of [7] which involves summarizing a negotiation,
that is, reducing the number of atoms to one while maintaining the possible transforma-
tions of the agent’s internal states. It is shown that a negotiation can be summarized
with the given reduction procedure if and only if it is sound. We analyze their proofs and
results and point out oversights. For each such flaw, we provide a correction in form of
modified definitions, rephrased theorems or new proofs.

It turns out that our proposed changes to [7] not only correct errors but also allow us
to extend their results: The extended rules we provide can also summarize acyclic weakly
deterministic type 2 negotiations, a new, wider class of negotiations that we will introduce.
Furthermore, we relax the concept of cyclic negotiations and are able to generalize the
result to weakly deterministic negotiations in which only the deterministic agents are
acyclic.

We also give a summarization procedure that is able to summarize all acyclic negotia-
tions. This procedure is based on a different approach: Instead of applying the reduction

∗Joint work with Javier Esparza

Negotiations as a concurrency primitive: Summaries and
Games

131

rules until a summary is reached, there is also a final step that is not a rule but a “clean
up” after the rules have processed the negotiation.

The provided reduction algorithms of [7, 8] that we also study avoid the construction of
the state space. Instead, syntactic reduction rules are applied exhaustively to simplify the
system step by step while simultaneously maintaining important aspects of the behavior
like absence of deadlocks. For Petri nets or workflow nets this approach has been studied
for quite some time, mostly for the liveness and soundness problems[2, 12, 13]. For these
problems there are various reduction rules known, and they have been proven complete for
certain classes of systems [11, 5, 6], meaning that they reduce all live or sound systems in
the class, and only those, to a trivial system (in our case to a single atomic negotiation).
However, for the summary problem many of these rules, like the linear dependency rule
of [6], are unfit as they do not preserve all behaviors, but only the soundness property.

The rules presented in [7] which we extend and modify form a complete set of reduction
rules for the summarization problem of acyclic negotiations that are either deterministic
or weakly deterministic. These rules are inspired by reduction rules used to transform
finite automata into regular expressions by eliminating states [14].

1.2 Games

We furthermore start the study of games on negotiations. As for games played on push-
down automata [17], vector addition systems with states (VASS) [3], counter machines
[15], or asynchronous automata [16], games on negotiations can be translated into games
played on the (reachable part of the) state space. However, the number of states of a
negotiation may grow exponentially in the number of agents, and so the state space can
be exponentially larger than the negotiation. We explore the complexity of solving games
in the size of the negotiation, not in the size of the state space. In particular, we are in-
terested in finding negotiation classes for which the winner can be decided in polynomial
time, thus solving the state space explosion problem.

We study games formalizing two interesting questions related to a negotiation. First,
can a given coalition (i.e., a given subset of agents) force termination of the negotiation?
(Negotiations may contain cycles.) Second, can the coalition force a given final outcome?

Our first results show that these two problems are EXPTIME-complete in the size
of the negotiation. This is the case even if the negotiation is deterministic, and so it
seems as if the tractability results of [7, 8] cannot be extended to games. However, we
are able to show that, surprisingly, the problems are polynomial for deterministic (or
even weakly deterministic) negotiations that are sound. This is very satisfactory: since
unsound negotiations are ill-designed, they are not of interest to us anyway. And, very
unexpectedly, the restriction to sound negotiations has as collateral effect a dramatic
improvement in the complexity of the problem. Moreover, the restriction comes “at
no cost”, because deciding soundness of deterministic negotiations is also decidable in
polynomial time.

Our games can be seen as special cases of concurrent games [1, 4] in which the arena is
succinctly represented as a negotiation. Explicit construction of the arena and application
of the algorithms of [1, 4] yields an exponential algorithm, while we provide a polynomial
one.

Negotiations have the same expressive power as 1-safe Petri nets or 1-safe VASS,

Frontiers of Formal Methods 2015

132

although they can be exponentially more compact (see [7, 8]). Games for unrestricted
VASS have been studied in [3]. However, in [3] the emphasis is on VASS with an infinite
state space, while we concentrate on the 1-safe case.

The papers closer related to ours are those studying games on asynchronous automata
(see e.g. [16, 9, 10]). Like negotiations, asynchronous automata are a model of distributed
computation with a finite state space. These papers study algorithms for deciding the
existence of distributed strategies for a game, i.e., local strategies for each agent based
only on the information the agent has on the global system. Our results identify a special
case with much lower complexity than the general one, in which local strategies are even
memoryless.

In my thesis, we study earlier work [7] and analyze the approaches and results given.
We therefore repeat definitions, theorems and proofs for readability and in-depth analysis.
The games chapter is an extension of an arXiv paper with the title “Negotiation Games”
by the author of this thesis and Javier Esparza.

References

[1] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, 2002.

[2] G. Berthelot. Transformations and decompositions of nets. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets, volume 254 of LNCS, pages
359–376. Springer, 1986.

[3] T. Brázdil, P. Jancar, and A. Kucera. Reachability games on extended vector addition
systems with states. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der
Heide, and P. G. Spirakis, editors, ICALP (2), volume 6199 of Lecture Notes in
Computer Science, pages 478–489. Springer, 2010. ISBN 978-3-642-14161-4.

[4] L. de Alfaro, T. A. Henzinger, and O. Kupferman. Concurrent reachability games.
Theor. Comput. Sci., 386(3):188–217, 2007.

[5] J. Desel. Struktur und Analyse von Free-Choice-Petrinetzen. DUV Informatik.
Deutscher Universitätsverlag, 1992. ISBN 978-3-8244-2030-8.

[6] J. Desel and J. Esparza. Free choice Petri nets. Cambridge University Press, New
York, NY, USA, 1995.

[7] J. Esparza and J. Desel. On negotiation as concurrency primitive. In P. R. D’Argenio
and H. C. Melgratti, editors, CONCUR, volume 8052 of Lecture Notes in Computer
Science, pages 440–454. Springer, 2013. ISBN 978-3-642-40183-1.

[8] J. Esparza and J. Desel. On negotiation as concurrency primitive II: Deterministic
cyclic negotiations. In A. Muscholl, editor, FoSSaCS, volume 8412 of Lecture Notes
in Computer Science, pages 258–273. Springer, 2014. ISBN 978-3-642-54829-1.

[9] P. Gastin, N. Sznajder, and M. Zeitoun. Distributed synthesis for well-connected
architectures. Formal Methods in System Design, 34(3):215–237, 2009.

Negotiations as a concurrency primitive: Summaries and
Games

133

[10] B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Asynchronous games over
tree architectures. In F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska, and D. Peleg,
editors, ICALP (2), volume 7966 of Lecture Notes in Computer Science, pages 275–
286. Springer, 2013. ISBN 978-3-642-39211-5.

[11] H. J. Genrich and P. S. Thiagarajan. A theory of bipolar synchronization schemes.
Theor. Comput. Sci., 30:241–318, 1984.

[12] S. Haddad. A reduction theory for coloured nets. In G. Rozenberg, editor, Advances
in Petri Nets, volume 424 of LNCS, pages 209–235. Springer, 1988.

[13] S. Haddad and J.-F. Pradat-Peyre. New efficient Petri nets reductions for parallel
programs verification. Parallel Processing Letters, 16(1):101–116, 2006.

[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[15] A. Kucera. Playing games with counter automata. In A. Finkel, J. Leroux, and
I. Potapov, editors, RP, volume 7550 of Lecture Notes in Computer Science, pages
29–41. Springer, 2012. ISBN 978-3-642-33511-2.

[16] S. Mohalik and I. Walukiewicz. Distributed games. In P. K. Pandya and J. Radhakr-
ishnan, editors, FSTTCS, volume 2914 of Lecture Notes in Computer Science, pages
338–351. Springer, 2003. ISBN 3-540-20680-9.

[17] I. Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comput., 164
(2):234–263, 2001.

Frontiers of Formal Methods 2015

134

Probability Theory and Markov Processes in Isabelle∗

Johannes Hölzl (hoelzl@in.tum.de)

Institut für Informatik, TU München

1 Introduction

In this paper I present Isabelle’s probability theory. The development is now at a point
where we can formalize probabilistic semantics [8] (by employing the Giry monad), start to
prove stochastic results (e.g. the Central Limit Theorem [2]), or analyse Markov decision
processes [10, 21, 13, 12]. When developing these applications, we formalized a lot of
probability theory itself. We generalized these new formalizations and moved them into
our main probability theory. Usually, this happens in lockstep, i.e. new applications often
force us to formalize new concepts or at least to generalize existing concepts. But then,
new concepts allow us to tackle new applications.

2 Implementing Probability Theory

Measurability Many theorems in measure and probability theory assume the mea-
surability of the occurring sets and functions. While for some measurable spaces (e.g.
Borel sets) it is hard to construct a non-measurable sets or functions, measurability is
still a side-condition we need to prove for each measure-theoretic rule we apply. I imple-
mented a measurability prover for Isabelle: the user annotates measurability rules which
are then used by the rewrite engine to prove measurability side-conditions. Measurability
is compositional, so proving measurability is mostly concerned in finding the necessary
rules.

For some constants, the measurability rule can get complicated. For example, mea-
surability of the Lebesgue integral requires the measurable space of subprobabilities
S(N) [9, ?], and the product space M×N . In the following, B is the Borel space where all
real intervals are measurable sets. To state that a function f is measurable from M into
N we write f ∈ M(M,N). With the space S(N) we express measurability of functions
into (subprobability) measures, i.e. (λµ. µ A) ∈ M(S(N),B), for all N -measurable sets
A. We use the product space M ×N to express the measurability of functions depending
on multiple variables. This can be used to give a measurability rule for the Lebesgue
integral in its full generality:

(λ(x, y). f x y) ∈M(M ×N,B) µ ∈M(M,S(N))
(
λx.

∫

y

f x y d(µx)
)
∈M(M,B)

∗Supported by DFG project Ni 491/15-1

Probability Theory and Markov Processes in Isabelle/HOL

135

In most mathematical text books the measurability of integration is not provided in this
generality. Usually, the measure µ is not allowed depend on the variable x.

Besides the measurability rules and prover support, we also provide means to prove
measurability for (co)inductive predicates and (co)recursive functions. This is done by
reducing the definition to its least (resp. greatest) fixed point construction and proving
the continuity of the defining rules.

Constructing Measures We provide various means to construct measures. We for-
malized the classical constructions from measure theory, like products, counting space,
the Lebesgue measure, the push-forward measure of a measurable function, measures with
a density, or the limit of measures by invoking the Danielle-Kolmogorov extension theo-
rem [16]. These measures already provide a convenient way to construct new ones, e.g.
the normal distribution can be easily constructed by applying the bell curve as a density
to the Lebesgue measure.

A more modern construction we provide is the Giry monad [9], which provides a very
flexible way to compose measures. The bind-operator of the Giry monad can be seen as
integration over measures: (µ�= ν)A =

∫
x
ν xA dµ for all ν ∈M(M,S(N)) and A ∈ N .

This allows us to define the semantics of probabilistic programming languages where the
choice of a random value depends on other random values.

Bochner Integration Lebesgue integration comes in two flavours: (1) as integration
over real-valued non-negative measurable functions, which is always defined, but the re-
sult can be infinity, and (2) as integration over integrable functions which are measurable
and where the positive and the negative part have a finite non-negative integral. The
second flavour can be generalized to Bochner integration: integration of functions into
Banach spaces (with a second-countable topology). We chose to formalize this general-
ization, which was well-supported by the availability of Banach spaces and the necessary
topological results [11] in Isabelle.

Probability Mass Functions While the previous results are all generalized for mea-
sures on arbitrary measurable spaces, an important subclass are the discrete measures.
They are described by probability mass functions (pmf), i.e. non-negative real-valued
functions which sum up to 1. From each pmf we can construct a measure and hence re-
use all results we formalized in measure theory. Andreas Lochbihler recently formalized
that the relator on pmfs preserves weak-pullbacks (i.e. the relator preserves transitivity:
[17]). This integrates the pmfs with Isabelle’s new datatype package [5].

3 Applications

Central Limit Theorem The central limit theorem is the only theorem in Isabelle
concerning classic stochastical analysis [2]. It is special, as it is not related to software
verification. The formalization of characteristic functions forced us to generalize the
Lebesgue integral, which led to the formalization of Bochner integration. The theorem is
stated in terms of weak convergence on measures, which resulted in many measurability
rules for analytical functions and predicates.

Frontiers of Formal Methods 2015

136

Density Compiler Bhat et al. [4] describe a density compiler for a simple probabilistic
programming language. It processes a program P containing random values into a term
describing the density of the results of P . Eberl [8] formalized this in Isabelle. The se-
mantics of the programming language is defined using the Giry monad. The distributions
of the random values, e.g. uniform, exponential, and normal distribution, were already
available.

Markov Processes The construction and analysis of Markov processes is one of the
main applications of Isabelle’s probability theory. Currently we only support discrete-state
discrete-time time-homogeneous Markov chains and Markov decision processes. The state
space can be countably infinite. To analyse Markov chains and to classify their states, we
provide theorems like the Chapman-Kolmogorov equations or the existence of a stationary
distribution.

Markov processes are either represented by their trace space T , or by their kernel
K (i.e. the transition matrix). The kernel of a Markov chain is specified as a function
K = S → D(S), and for a Markov decision process as a function K = S → P(D(S)),
where D(S) are all pmf’s on the state set S. For Markov chains we can show that the
trace space is the only solution to the fixpoint equation:

∀s. Ts = do {t→ Ks;ω → Tt; return (t · ω)} .
Where Ts is the trace space with initial state s and Ks is the transition distribution when
in state s. The do-notation is syntactic sugar for the bind-operator of the Giry monad.

Using this construction we formalized the analysis of expected runtime of the address
handshake in the zero-conf protocol and the leaked information in the CROWDS proto-
col [12], and a framework for probabilistic non-interference [21]. The formalization also
allows us to verify algorithms operating on Markov chains and Markov decision processes.
We formalized pCTL model checking on Markov chains [13] and most of the pCTL model
checking on Markov decision processes. For Isabelle it is not only interesting to verify
the algorithms, but also to find ways to certify the results of a model checking run. We
can certify exact results, but it is not clear how approximate results can be efficiently
generated and certified.

4 Related Work

Hurd [14] formalized probability theory used in the context of program verification. While
he formalized measure theory (e.g. Caratheodory’s extension theorem), the focus of his li-
brary were discrete random variables. Hurd et al. [15], Audebaud and Paulin-Mohring [1],
and Cock [6], did away with the measure theoretic approach, and completely focused on
discrete random variables.

Richter [22] formalized the Lebesgue integral in Isabelle, limited to integrable non-
negative functions. Wang et al. [23] formalized Caratheodory’s extension theorem in
Isabelle, unfortunately their work is not publicly available. Berg et al. [3] used Isabelle
to formalize probabilistic semantics, they left proof holes (i.e. sorry statements) which
could be closed with our development of probability theory.

Liu et al. [19] formalized the classification of Markov chain states. Their approach
is limited to finite-state MCs, and they do not give a construction for Markov chains.

Probability Theory and Markov Processes in Isabelle/HOL

137

Mhamdi et al. [20] developed Lebesgue integration, but their final goal, entropy, is again
limited to finite random variables.

Lester [18] formalized different aspects of measure theory in PVS.

References

[1] Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Science
of Computer Programming 74(8), 568–589 (2009)

[2] Avigad, J., Hölzl, J., Serafin, L.: A formally verified proof of the Central Limit
Theorem. CoRR abs/1405.7012 (2014)

[3] Backes, M., Berg, M., Unruh, D.: A formal language for cryptographic pseudocode.
In: LPAR, pp. 353–376 (2008)

[4] Bhat, S., Borgström, J., Gordon, A.D., Russo, C.: Deriving probability density
functions from probabilistic functional programs. In: TACAS 2013. LNCS, vol. 7795,
pp. 508–522 (2013)

[5] Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly
modular (co)datatypes for Isabelle/HOL. In Klein, G. Gamboa, R. (eds.) ITP 2014.
LNCS, vol. 8558, pp. 93–110

[6] Cock, D.: Verifying probabilistic correctness in Isabelle with pGCL. In: Systems
Software Verification. EPTCS, vol. 102, pp. 167–178 (2012)

[7] Doberkat, E.E.: Stochastic relations: foundations for Markov transition systems.
Studies in Informatics. Chapman & Hall/CRC (2007)

[8] Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density functions.
In: ESOP 2015. LNCS (2015)

[9] Giry, M.: A categorical approach to probability theory. In: Categorical Aspects of
Topology and Analysis. LNM, vol. 915, pp. 68–85 (1982)

[10] Hölzl, J.: Construction and Stochastic Applications of Measure Spaces in Higher-
Order Logic. PhD thesis, TU München (2013)

[11] Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analysis
in Isabelle/HOL. In Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 279–294

[12] Hölzl, J., Nipkow, T.: Interactive verification of Markov chains: Two distributed
protocol case studies. In Fahrenberg, U., Legay, A., Thrane, C. (eds.) QFM 2012

[13] Hölzl, J., Nipkow, T.: Verifying pCTL model checking. In Flanagan, C. König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 347–361 (2012)

[14] Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD thesis, University of
Cambridge (2002)

Frontiers of Formal Methods 2015

138

[15] Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in
HOL. Theoretical Computer Science 346(1), 96–112 (2005)

[16] Immler, F.: Generic construction of probability spaces for paths of stochastic pro-
cesses in Isabelle/HOL. Master’s thesis, TU München (2012)

[17] Johnsson, B., Larsen, K.G., Li, W.: Probabilistic extensions of process algebras,
685–710 (2001)

[18] Lester, D.R.: Topology in PVS: continuous mathematics with applications. In: AFM
2007, pp. 11–20

[19] Liu, L., Hasan, O., Aravantinos, V., Tahar, S.: Formal reasoning about classified
markov chains in HOL. In: ITP 2013. LNCS

[20] Mhamdi, T., Hasan, O., Tahar, S.: Formalization of entropy measures in HOL. In
van Eekelen, M. C. J. D., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011

[21] Popescu, A., Hölzl, J., Nipkow, T.: Formalizing probabilistic noninterference. In
Gonthier, G. Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 259–275

[22] Richter, S.: Formalizing integration theory with an application to probabilistic algo-
rithms. In Slind, K., Bunker, A., Gopalakrishnan, G. (eds.) TPHOLs 2004

[23] Wang, J., Yang, H., Zhang, X.: Liveness reasoning with Isabelle/HOL. In Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS

Probability Theory and Markov Processes in Isabelle/HOL

139

Frontiers of Formal Methods 2015

140

Continuous Systems Reachability using Adaptive
Runge-Kutta Methods – Formally Verified∗

Fabian Immler (immler@in.tum.de)

Institut für Informatik, Technische Universität München, Germany

1 Introduction

The work presented in this extended abstract is largely based on the author’s original
publications [14, 15].

Many real-world systems with continuous dynamics can be modeled with ordinary
differential equations (ODEs). An important task is to determine for a set of initial
states all reachable states. This requires to compute enclosures for solutions of ODEs,
which is done by tools for guaranteed integration (e.g., by a family of tools surveyed
by Nedialkov [17], Nedialkov’s state-of-the-art tool VNODE-LP [18], or COSY [3]) and
also by tools for reachability analysis of hybrid systems (with the state-of-the-art tool
for linear dynamics SpaceEx [8] and tools supporting non-linear dynamics like flow* [6],
HySAT/iSAT [9], or Ariadne [2]).

Such tools aim at computing safe overapproximations, an intended use is often the
analysis of safety-critical systems. Therefore any effort to improve the level of rigor
is valuable, and such efforts have been undertaken already: Nedialkov [18] implemented
VNODE-LP using literate programming such that correctness of the code can be examined
by human experts. Taylor models, which are used to represent reachable sets in COSY,
flow*, and Ariadne, have been formalized in theorem provers in the context of Ariadne [7]
but also as a generic means for validated numerics [5, 20].

Here we present the formal verification of an algorithm for reachability analysis of
continuous systems. The algorithm splits, reduces and collects reachable sets during
the analysis, crucial features for being able to analyze chaotic systems. Propagation of
reachable sets is implemented using higher-order Runge-Kutta methods with adaptive
step size control. The formal verification of all those algorithms is a novel contribution
and a qualitative improvement on the level of trust that can be put into reachability
analysis of continuous systems. Experiments show that our algorithms allow to analyze
low-dimensional, non-linear systems that are out of reach for many of the existing tools.
Nevertheless, our work should not be considered a rival to the existing tools or concepts,
which are more mature and flexible. We would rather like to demonstrate that formal
verification does not exclude competitive performance.

∗Supported by DFG RTG 1480 (PUMA)

Continuous Systems Reachability using Adaptive
Runge-Kutta Methods - Formally Verified

141

We build on our formalization of affine arithmetic and the Euler method [13]. The
verification is carried out with respect to the theory of ODEs in the interactive theorem
prover Isabelle/HOL [19].

2 Reachability Analysis

We consider the problem of computing reachable sets for systems defined by an au-
tonomous ODE ẋ = f(x) with f : Rn → Rn. We denote the solution depending on
initial condition x0 and time t with ϕ(x0, t). Reachability analysis aims at computing (or
overapproximating) all states of the system that are reachable from some set of initial
states X0 ⊆ Rn within a time horizon T ⊆ R, i.e., the set ϕ(X0, T).

In the following, we illustrate the main ingredients of our algorithm for reachability
analysis. We do not claim originality for those ideas, however combining all of them for
numerically solving ODEs and especially formally verifying them is, to the best of our
knowledge, a novel contribution.

Rigorous Numerics. First of all, in any numerical computation, continuous, real-
valued quantities are approximated with finite precision. One therefore needs to cope
with round-off errors. Reasoning about them explicitly gets very tedious. We therefore
take the approach of set-based computing, or rigorous numerics : The idea is to compute
with sets instead of single values and abstract all kinds of errors (including round-off) by
including them into the set. The data structure we choose is affine forms, they represent
sets called zonotopes and have been successfully applied in hybrid systems analysis [1, 10],
but also as numerical domain in static analysis [12].

Guaranteed Runge-Kutta Methods with Step Size Adaptation Bouissou et
al. [4] presented the idea to turn “classical” numerical algorithms into guaranteed meth-
ods by using affine arithmetic. They illustrated their approach on a stiff (i.e., numerical
approximations requiring very small step sizes in parts of the state space) ODE, which
makes adaptive step size control necessary. In general, automatic step size adaptation
improves the performance of any numerical method, as it avoids wasting computational
time on “easy” parts of the solution and maintains high accuracy on “hard” parts of the
solution.

Splitting Zonotopes are convex sets, this leads to loss of precision when non-convex
sets need to be enclosed. But non-linear dynamics produce non-convex sets, which is why
a purely zonotope based approach is likely to fail because of more and more increasing
overapproximations. The immediate approach is to split the sets before they grow too
large, and have the union of smaller sets represent the larger non-convex set.

Reduction While splitting sets allows to maintain precision in the presence of non-
convex sets, it leads to problems when the dynamics produce large sets. Especially when
analyzing chaotic systems, small initial sets expand rapidly – due to the dynamics of
the system, not necessarily because of inaccurate computations. This may produce a
prohibitively large number of split sets. Any possibility to reduce the size of reachable

Frontiers of Formal Methods 2015

142

sets therefore is a valuable improvement because it helps to reduce the number of sets. Our
method is based on the idea that whenever a reachable set flows through a hyperplane,
it can be reduced to the intersection with that hyperplane.

To this end, we have implemented a functional algorithm to compute the zono-
tope/hyperplane intersection and verified it in Isabelle/HOL. The intersection is per-
formed geometrically, as described by Girard and Le Guernic [11] and is similar to convex
hull algorithms. Such algorithms have been successfully verified with Knuth’s [16] theory
of counterclockwise systems for discrete sets of points. As Zonotopes represent continuous
sets, we needed to extend Knuth’s theory to continuous vector spaces. The interesting
fact is that we combine a mixture of different fields: a discrete geometrical algorithm to
perform operations on the continuous sets represented by zonotopes.

References

[1] Matthias Althoff, Olaf Stursberg, and Martin Buss. Computing reachable sets of
hybrid systems using a combination of zonotopes and polytopes. Nonlinear Analysis:
Hybrid Systems, 4(2):233 – 249, 2010. IFAC World Congress 2008.

[2] Andrea Balluchi, Alberto Casagrande, Pieter Collins, Alberto Ferrari, Tiziano Villa,
and Alberto L. Sangiovanni-Vincentelli. Ariadne: a framework for reachability anal-
ysis of hybrid automata. In Proceedings of the 17th International Symposium on
Mathematical Theory of Networks and Systems (MTNS 2006), Kyoto, Japan, July
2006.

[3] Martin Berz and Kyoko Makino. Verified integration of odes and flows using differ-
ential algebraic methods on high-order taylor models. Reliable Computing, 4(4):361–
369, 1998.

[4] Olivier Bouissou, Alexandre Chapoutot, and Adel Djoudi. Enclosing temporal evo-
lution of dynamical systems using numerical methods. In Guillaume Brat, Neha
Rungta, and Arnaud Venet, editors, NASA Formal Methods, volume 7871 of LNCS,
pages 108–123. Springer, 2013.

[5] Nicolas Brisebarre, Mioara Joldeş, Érik Martin-Dorel, Micaela Mayero, Jean-michel
Muller, Ioana Paşca, Laurence Rideau, and Laurent Théry. Rigorous Polynomial
Approximation Using Taylor Models in Coq. In Alwyn E. Goodloe and Suzette
Person, editors, NASA Formal Methods, LNCS, pages 85–99. Springer, 2012.

[6] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. In Natasha Sharygina and Helmut Veith, editors, CAV,
volume 8044 of LNCS, pages 258–263. Springer, 2013.

[7] Pieter Collins, Milad Niqui, and Nathalie Revol. A Validated Real Function Calculus.
Mathematics in Computer Science, 5(4):437–467, 2011.

[8] Goran Frehse, Colas Le Guernic, Alexandre Donz, Scott Cotton, Rajarshi Ray,
Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.
SpaceEx : Scalable Verification of Hybrid Systems. pages 1–16, 2011.

Continuous Systems Reachability using Adaptive
Runge-Kutta Methods - Formally Verified

143

[9] Martin Fränzle, Christian Herde, Stefan Ratschan, and Tobias Schubert. Efficient
Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean
Structure. 1:209–236, 2007.

[10] Antoine Girard. Reachability of Uncertain Linear Systems Using Zonotopes. pages
291–305, 2005.

[11] Antoine Girard and Colas Le Guernic. Zonotope / Hyperplane Intersection for Hybrid
Systems Reachability Analysis. Hybrid Systems: Computation and Control, 2008.

[12] Eric Goubault and Sylvie Putot. Static Analysis of Numerical Algorithms. (1):1–17,
2006.

[13] Fabian Immler. Formally Verified Computation of Enclosures of Solutions of Ordinary
Differential Equations. 1480, 2014.

[14] Fabian Immler. A verified algorithm for geometric zonotope/hyperplane intersection.
In Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP ’15,
pages 129–136, New York, NY, USA, 2015. ACM.

[15] Fabian Immler. Verified reachability analysis of continuous systems. In Christel Baier
and Cesare Tinelli, editors, TACAS 2015, LNCS. Springer, 2015. to appear.

[16] Donald Knuth. Axioms and Hulls. Springer, Berlin New York, 1992. Number 606 in
Lecture Notes in Computer Science.

[17] Nedialko S. Nedialkov. Interval tools for ODEs and DAEs. SCAN 2006, 2006.

[18] Nedialko S. Nedialkov. Implementing a rigorous ODE solver through literate pro-
gramming. Mathematical Engineering, pages 3–19. Springer, 2011.

[19] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A proof
assistant for higher-order logic. LNCS. Springer, 2002.

[20] Roland Zumkeller. Formal global optimisation with taylor models. Automated Rea-
soning, 2006.

Frontiers of Formal Methods 2015

144

Generating Abstract Graph-Based Procedure
Summaries for Pointer Programs∗

Christina Jansen (christina.jansen@cs.rwth-aachen.de)

Software Modeling and Verification Group, RWTH Aachen University,
Germany

Dynamic data structures such as lists and trees, implemented using pointers, are heav-
ily used in e.g. all kinds of application software, but also device drivers, operating systems,
and so forth. While pointers offer a flexible concept allowing for very complex program be-
haviour, pointer programming is error-prone, even being one of the most common sources
of bugs in software [1]. Typical problems are dereferencing of null pointers, creation of
memory leaks, unsought aliasing effects and the accidental invalidation of data structures
through destructive updates, i.e., errors which are usually difficult to trace. However,
with the flexibility of pointer programs comes the complexity of analysing them, as they
generally induce unbounded state spaces. A common approach to tackle this problem is
to apply abstraction techniques to obtain a finite representation.

In Sect. 1 we present an abstraction technique based on graph grammars for analysing
intraprocedural pointer programs and tailor it towards a modular analysis that can handle
interprocedural programs in Sect. 2. Sect. 3 discusses analysis internals. In Sect. 4 and 5
we conclude with related work and and future research.

1 Heap Abstraction using Graph Grammars

Hyperedge replacement grammars (HRGs) have proven to be an intuitive concept for
defining and implementing abstractions [5]. The key idea is to represent heaps as hy-
pergraphs (HGs) that contain placeholders representing abstracted fragments of a data
structure. Thus they combine concrete and abstract heap parts. Placeholders are realised
by deploying hyperedges, i.e., edges that connect an arbitrary number of nodes, labelled
with nonterminal symbols (NTs).

Example 1 A typical implementation of a doubly-linked list consists of a sequence of list
elements connected by next (n) and previous (p) pointers. Fig. 1 depicts a HG repre-
sentation of a such a list. The three nodes (circles) represent objects on the heap. The
L-labelled box represents an NT edge of rank two indicating an abstracted doubly-linked
list between the first and second attached node. The head-labelled box represents a pro-
gram variable head referencing the first list element. The connections between NT edges
and nodes are labelled with their ordinal. A shaded circle indicates a special type of node,

∗Supported by Thomas Noll, Software Modeling and Verification Group, RWTH Aachen University.

Generating Abstract Graph-Based Procedure Summaries
for Pointer Programs

145

called external node, identifiable through its node label. Intuitively these nodes form the
coupling links of hypergraphs, defining how they can be attached to each other. For the
sake of readability, edges representing selectors (n and p) are depicted as directed edges.

..1.. L. 2.

head

.
n

.
p

.
1

.
2

.
1

Figure 1: Heap representation

The abstract structures represented by nontermi-
nal labelled hyperedges are specified by HRGs. HRGs
consist of a set of production rules, given by a nonter-
minal as left-hand side and an HG as right-hand side.
Intuitively, an HRG can be understood as a connector
system. The right-hand sides of the production rules
provide the building blocks of the system.

L → ..1. 2.
n

.
p

..1.. L. 2.
n

.
p

.
1

.
2

Figure 2: A grammar for doubly-linked lists

Building blocks are joined
to an existing structure, i.e.
an HG, by applying produc-
tion rules, that is, by replac-
ing a nonterminal-labelled hy-
peredge by a right-hand side
graph: The coupling pins of
the right-hand side, i.e. the external nodes of the graph, are connected to the socket
of the edge to-be-replaced, that is its attached nodes.

Example 2 Fig. 2 specifies an HRG for doubly-linked lists. It employs one NT L and
two production rules. The right one recursively adds one list element, whereas the left one
terminates a derivation. An example application of the second rule to an HG representing
a doubly-linked list is illustrated in Fig. 3.

... L..
1

.
2

.

1

..

L

.

2

.

n

.

p

.

1

.

2

....
p

.
n

(a) Replacement of L-
edge

..... L..
n

.
p

.
1

.
2

..
p

.
n

(b) Resulting hypergraph

Figure 3: Hyperedge replacement

Abstraction and its reverse op-
eration, concretisation, are im-
plemented by applying grammar
rules in forward and backward di-
rection, respectively. Note that,
provided the employed HRG cap-
tures the data structures aris-
ing during program execution (the
approach is robust against finitely
many heap structures that violate
it), the abstract execution terminates and yields a finite state space.

In [4] we have shown how the HRG formalism can be employed for handling Java byte-
code with (recursive) methods and local variables. The approach is based on the explicit
modelling of the runtime stack on the heap, where unbounded recursion is dealt with by
abstraction using HRGs. However, this requires the development of appropriate HRGs
that capture not only the data structures arising during program execution, but addi-
tionally their interaction with the runtime stack, leading to large and intricate grammar
specifications. The situation becomes even more complex when tackling the extension to
concurrent Java or dynamic thread generation in general, where the list of threads has to
be added to the heap representation as a third component.

Frontiers of Formal Methods 2015

146

2 Summarising Procedure Effects

To overcome this increasing complexity in HRG specification, we advocate an alternative
approach, which clearly separates heap abstraction from control abstraction. The former
still employs HRGs to handle the data structures occurring during program execution.
For dealing with the program code, modular reasoning on the level of procedures is used.
More exactly, the goal is to automatically derive a summary, refered to as contract, for
each procedure in the given program, which abstractly and comprehensively represents
the possible effects of its execution. In essence, a contract specifies a graph transformation
in the form of a pre- and a postcondition, capturing the heap state before executing the
procedure and after. Preconditions are given by hypergraphs and describe the heap upon
procedure entry. Postconditions are represented as sets of hypergraphs associated with
the respective precondition that describe the possible changes in the precondition after
procedure execution.

Example 3 In Fig. 4, the contract of a simple list reversal procedure is given. It consists
of several pre-postcondition-pairs as indicated by the dots, where one is provided in detail.
The precondition of this pair describes the situation where the reversal procedure is entered
with a variable head set to the first and tail to the last element of a doubly-linked list.
The postcondition is a singleton set stating that the doubly-linked list from head to tail
is reversed, indicated by the mirrored L-labelled hyperedge. The contracts indicated by the
dots comprise e.g. the situation where the reversal algorithm is called on an empty list.

{ (
.. 1. L. 2.

head

.

tail

. 1. 2..
, {.. 1. L. 2.

head

.

tail

. 2. 1

}), . . . }
Figure 4: Contract of a list reversal procedure

Note that restricting the pre-
condition to the fragment reach-
able from the procedure param-
eters is sufficient for capturing
the procedure effect as the rest
of the heap is non-accessible and
therefore immutable. This gen-
erally improves the modularity of the approach, as the resulting preconditions are appli-
cable to a larger set of initial heaps.

Given a pointer program, our analysis aims to derive sound (and precise) procedure
contracts by symbolic execution. As these programs may contain e.g. recursive proce-
dures or looping constructs, the handling of unbounded runs and thus termination of the
symbolic execution, while preserving soundness, is of great importance.

3 Deriving Contracts

The proposed approach is based on an interprocedural dataflow analysis (IPA), which
handles the runtime stack and local variables. The analysis information derived at each
program point is provided as a stack of (sets of) contracts. Each stack entry comprises
the effect of the procedure execution up to the current program point.

Example 4 In Fig. 5, a schematic execution of a call to procedure p passing procedure
parameters l1, . . . , lk at program point m can be found. The current analysis information
in form of a contract stack at the calling site is depicted by the rectangle above of the call,

Generating Abstract Graph-Based Procedure Summaries
for Pointer Programs

147

containing the set of contracts with d as top-most entry. Upon call of procedure p, a new
contract e is generated using the current heap state provided by d as basis. The precondition
of e is the fragment of the current heap reachable from the parameters l1, . . . , lk. This
contract is pushed onto the existing contract stack of procedure p, as indicated by the
upper dashed arrow, resulting in the stack [e, e0, . . .]. The procedure body of p is executed
symbolically on the new contract e, which is depicted by the wavy edge. After the execution
of p terminated, we end up in program state n with analysis information [e′, e0, . . .]. Thus
e′ summarises the result of p’s execution on the initially calculated precondition. This
procedure summary is integrated into the top-most contract at the calling site m of p as
indicated by the bottom dashed arrow and resulting in the adapted top-most stack entry d′.

...

m : p(l1, . . . , lk)

.

. . .

.. p(x1, . . . , xk).

n : exit

.

e0

.

..

.

d
..
.

. e
..
.

.

e
e0

.

..

.

e′
e0

.

..

.

e′

.

..

.

d′

.

.

.

Figure 5: Schematic: Procedure call p(l1, . . . , lk)

To make use of the modu-
larity offered by contracts and
to ensure that symbolic execu-
tion eventually terminates, we
reuse contracts whenever pos-
sible. That is, whenever the
analysis reaches a procedure
call, it first checks if one of
the previously generated con-
tracts coincides with the cur-
rent heap state. If so, the con-
tract is applied directly with-
out recomputation of the pro-
cedure body. Otherwise a new
contract for that situation is
generated and we proceed with
the contract derivation as illus-
trated in the previous example.

We utilise a demand-driven
IPA based on fixpoint iteration to determine the least set of contract information at
every program point. Thus, the n-th stack entry results from the n-th iteration of the
analysis. This approach forms an instance of the general IPA framework introduced
in [6]. That is, provided the abstract state space of the program is finite, termination of
the program analysis is guaranteed and the results coincide with the meet-over-all-paths
solution according to the Interprocedural Coincidence Theorem [6]. Thus the approach
tackles the “important, and still open, problem of handling an unbounded number of live
cutpoints under abstraction” [7] successfully.

4 Related Work

In [10] the runtime stack is explicitly represented and abstracted as a linked list, using
shape analysis. This is similar to our previous work in [4]. The alternative interprocedural
heap abstraction approach developed in the present paper is based on the general IPA
framework as described, e.g., in [6,13]. Specific instances have been proposed for the finite,
distributive subset case (IDFS; [9]) and the distributive environments case (IDE; [12]).

Frontiers of Formal Methods 2015

148

A generalisation of these is presented in [14] where a class of abstract domains and as-
sociated transformations is defined which allows to obtain precise and concise procedure
summaries. However, these instances are not applicable in our setting due to the com-
bination of recursion and local variables. A framework for interprocedural heap shape
analysis in the cutpoint-free case is first proposed in [11] and later generalised in [7] by
admitting non-live cutpoints. Moreover, [2] describes a modular interprocedural shape
analysis that can handle a bounded number of cutpoints (interpreted as additional proce-
dure parameters). However, the analysis is restricted to the setting of singly-linked lists,
while the approach proposed here deals with all data structures of bounded tree-width.

5 Conclusion

This paper presents a novel IPA for automatically deriving procedure contracts for pointer
programs. The IPA builds upon an abstraction framework based on HRGs [5]. We
follow an approach that separates heap from control abstraction. The proposed analysis
summarises procedure effects in so-called contracts and thus allows a modular reasoning
at procedure level. It supports recursive procedures with local variables and cutpoints,
i.e., heap objects that are shared between the heap fragment a procedure call operates
on and the calling context. It turns out that the HRG approach is particularly suited for
determining and applying such contracts as it offers an intuitive formalism for describing
heap transformations, which moreover can be automatically derived.

We are planning to extend our techniques to concurrent programs with threads. In
this setting, we expect the contract approach to be even more beneficial than in the
interprocedural case. While the latter can alternatively be handled by providing HRG
rules that allow to abstract the runtime stack in order to get a finite-state representation
[4], it seems hopeless to develop similar (efficient) abstraction techniques for the concurrent
case [8]. Our idea to overcome the efficiency problem is to develop a thread-modular
analysis that, similarly to [3], avoids the enumeration of all possible interleavings between
threads.

References

[1] P. Fradet, R. Caugne, and D. L. Métayer. Static detection of pointer errors: An ax-
iomatisation and a checking algorithm. In European Symp. on Programming, volume
1058 of LNCS, pages 125–140. Springer, 1996.

[2] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated
heap abstractions. In SAS, volume 4134 of LNCS, pages 240–260. Springer, 2006.

[3] A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI 2007), pages 266–277. ACM Press, 2007.

[4] J. Heinen, C. Jansen, and H. Barthels. Juggrnaut – an abstract JVM. In 2nd Int.
Conf. on Formal Verification of Object-Oriented Software (FoVeOOS2011), volume
7421 of LNCS, pages 142–159. Springer, 2012.

Generating Abstract Graph-Based Procedure Summaries
for Pointer Programs

149

[5] J. Heinen, T. Noll, and S. Rieger. Juggrnaut: Graph grammar abstraction for un-
bounded heap structures. In Proc. 3rd Int. Workshop on Harnessing Theories for
Tool Support in Software, volume 266 of ENTCS, pages 93–107. Elsevier, 2010.

[6] J. Knoop and B. Steffen. The interprocedural coincidence theorem. In CC’92, volume
641 of LNCS, pages 125–140. Springer, 1992.

[7] J. Kreiker, T. Reps, N. Rinetzky, M. Sagiv, R. Wilhelm, and E. Yahav. Interproce-
dural shape analysis for effectively cutpoint-free programs. In Programming Logics,
volume 7797 of LNCS, pages 414–445. Springer, 2013.

[8] T. Noll and S. Rieger. Verifying dynamic pointer-manipulating threads. In FM’08,
volume 5014 of LNCS, pages 84–99. Springer, 2008.

[9] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Proc. 22nd ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL ’95), pages 49–61. ACM Press, 1995.

[10] N. Rinetzky and M. Sagiv. Interprocedural shape analysis for recursive programs. In
Compiler Construction, volume 2027 of LNCS, pages 133–149. Springer, 2001.

[11] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-free
programs. In SAS’95, volume 3672 of LNCS, pages 284–302. Springer, 2005.

[12] S. Sagiv, T. W. Reps, and S. Horwitz. Precise interprocedural dataflow analysis
with applications to constant propagation. In TAPSOFT ’95: Theory and Practice
of Software Development, volume 915 of LNCS, pages 651–665. Springer, 1995.

[13] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications, chapter 7, pages 189–233.
Prentice-Hall, 1981.

[14] G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise procedure
summaries. In Proc. 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL2008), pages 221–234. ACM Press, 2008.

Frontiers of Formal Methods 2015

150

A Greedy Approach for the Efficient Repair of
Stochastic Models?

Nils Jansen

RWTH Aachen University, Germany

Abstract. For discrete-time probabilistic models there are efficient meth-
ods to check whether they satisfy certain properties. If a property is
refuted, available techniques can be used to explain the failure in form of
a counterexample. However, there are no scalable approaches to repair a
model, i. e., to modify it with respect to certain side conditions such that
the property is satisfied. In this paper we propose such a method, which
avoids expensive computations and is therefore applicable to large models.
A prototype implementation is used to demonstrate the applicability and
scalability of our technique.

Discrete-time Markov chains (DTMCs) are a widely used modeling formalism for
systems that exhibit probabilistic behavior, some typical application areas being
distributed computing, security, hardware, and systems biology. DTMCs can be
seen as directed graphs whose transitions are equipped with probabilities. This
enables the possibility to use well-known graph algorithms such as Dijkstra’s
shortest path search [1] for the investigation of properties on DTMCs. A popular
language to specify properties of such models is probabilistic computation tree logic
(PCTL) [2] which is the probabilistic extension of the well-known computation
tree logic (CTL).

Model checking of an important subclass of PCTL properties or ω-regular
properties can be reduced to model checking reachability problems. In particular,
it is verified whether the probabilities of reaching a set of distinguished target
states are within some required thresholds. Efficient probabilistic model checkers
like PRISM [3] or MRMC [4] are available.

In context of these systems, a natural question is how to correct or identify
errors in a model of a safety-critical system. In the recent past, much effort has
been made in automatically generating explanations for the failure of a property
in the form of counterexamples. For an overview on different approaches and
literature we refer to [5]. In spite of various efficient methods for counterexample
generation, a still open problem is how to automatically repair a DTMC model
that does not meet a certain requirement.

A first approach, referred to as model repair for DTMCs, was presented
in [6]. Basically, linear combinations of real-valued parameters are added to the
transition probabilities of a DTMC that does not satisfy a desired reachability

? This work was partially supported by the Excellence Initiative of the German federal
and state government.

A Greedy Approach for the Efficient Repair of Stochastic
Models

151

property. Additionally, a cost-function over the parameters is given. The goal
is to find an evaluation of the parameters which on the one hand induces the
satisfaction of the property and on the other hand minimizes the value of the
cost-function, i. e., changing the transition probabilities and thereby repairing
the DTMC under minimal costs.

Formally, the underlying model is a parametric discrete-time Markov chain
(PDTMC). Such models can also be used in early system development stages,
where the parameters represent design variables whose values can be fixed later.
For verifying this parametric model, the values shall then be fixed such that the
resulting instantiated model satisfies some properties within a fixed probability
range and is optimal (or nearly optimal) with respect to a given objective function.
Recently, some approaches were proposed to represent the probability that a
PDTMC satisfies a required property in form of a rational function over the
parameters [7, 8], as being implemented in the tool PARAM [9]. Optimization
according to the objective function under the given side conditions can be
used to synthesize suitable parameter values. In [6], such a rational function
is computed for the PDTMC underlying the model repair problem. Then a
non-linear optimization problem [10] is solved implying that the desired property
is satisfied for this formula while the cost-function is minimized. This can be
done, e. g., via IPOPT [11]. If satisfiable, the resulting evaluation is a solution for
the model repair problem. Moreover, a method for Markov decision processes
(MDPs) was proposed, encompassing approximative methods [12]. Model repair
for non-stochastic system has, e. g., been studied in [13].

The main practical obstacle of using non-linear optimization, be it using a
dedicated optimization algorithm or using an SMT-solver for non-linear real alge-
bra [14] coupled with a binary search towards the optimal solution, is scalability.
As even the computation of the rational function involves costly computations
of greatest common divisors of polynomials, approaches like [7, 8] are inherently
restricted to small PDTMCs with just a few parameters. Thus there is a need
for scalable model repair methods, avoiding the involvement of state-of-the-art
PDTMC verification techniques.

Here, we present a new technique which we call local repair. We define three
subclasses of PDTMC models with increasing expressivity. For each class, we
present methods that start from an initial parameter assignment and iteratively
change the parameter values by local repair steps. Intuitively, the three classes
are defined as follows:

Type-1: PDTMCs where each variable appears on at most one transition.
Type-2: PDTMCs where each variable appears in at most one probability

distribution, i. e., variables can occur on several transitions which all emerge
from the same state.

Type-3: General PDTMCs, allowing each variable to appear several times
possibly in different distributions.

Example 1. Figure 1 shows examples for the three PDTMC classes. Note that
sometimes Type-2 PDTMCs can be transformed to Type-1 PDTMCs.

2

Frontiers of Formal Methods 2015

152

P1 : (1) (2)

1
2
−x′

1
2
−y′

1
2
+x 1

2
+y

P2 : (1) (2)

1
2
−x

1
2
−y

1
2
+x 1

2
+y

P3 : (1) (2)

1
2
−x

1
2
−x

1
2
+x 1

2
+x

Fig. 1. Type-1 PDTMC P1, Type-2 PDTMC P2, and Type-3 PDTMC P3.

As mentioned before, finding an evaluation of parameters that satisfies a property
with respect to the imposed restrictions, is hard. We therefore aim at defining a
greedy method to stepwise improve a given initial valuation. More precisely, given
an initial valid valuation for a PDTMC, our goal is to iteratively manipulate
the valuation such that in the induced DTMC the probability of reaching target
states is successively changed until the property is met.

For our approach, correctness and completeness can be shown in the sense
that each local repair step improves the reachability probability towards a desired
bound for a repairable PDTMC and terminates with an optimal solution.

Example 2. Consider the PDTMC P depicted in Figure 2. State (2, 2) shall
be the target state and (1, 2) shall be the initial state. Using computations as
described in [7, 8], the probability to reach the target state from the initial state
is described by the rational function p(1,2) = −x+y+1

−x−y+2 . In this simple example this
function is linear, however, this is no necessarily the case for real applications.

Using an initial valuation v of the parameters x and y with v(x) = v(y) = 0
yields the DTMC D depicted in Figure 2. Using these values to evaluate the
rational function yields a reachability probability of 1

2 which is the probability to
reach state (2, 2) from (1, 2) inside this DTMC. We want to reduce this probability
via model repair.

Consider the evaluation v̂ with v̂(x) = 0.2, v̂(y) = 0. The resulting DTMC D̂
is depicted in Figure 2 on the right. The probability to reach state (2, 2) from
state (1, 2) is now p̂(2,1) = 1

3 < 1
2 . Thus, the D̂ is the repaired DTMC with

respect to the PDTMC P.

We implemented our approach in a prototype and tested it thoroughly in an
application from a robotics scenario, where the given environment is modeled
by a Markov Decision Process (MDP) and where a controller—modeled by a
DTMC—is synthesized via reinforcement-learning [15]. This controller shall be
repaired until a certain property is satisfied. Furthermore, we present well-known
benchmarks from the PRISM benchmark suite and categorize each of them into
one of our three PDTMC subclasses. The experiments show the feasibility of our
approaches, where the standard method as proposed in [6] immediately fails even
for very small systems.

3

A Greedy Approach for the Efficient Repair of Stochastic
Models

153

P :

(1, 1) (2, 1)

(1, 2) (2, 2)

1
1
4
+ 1

2
x

1
4
+ 1

2
y 1

1
4
+ 1

2
x

1
4
− 1

2
x

1
4
− 1

2
x1

4
− 1

2
y

1
4
− 1

2
y

1
4
+ 1

2
y

D :

(1, 1) (2, 1)

(1, 2) (2, 2)

1
1
4

1
4

1

1
4

1
4

1
4

1
4

1
4

1
4

D̂ :

(1, 1) (2, 1)

(1, 2) (2, 2)

1
7
20

1
4

1

7
20

3
20

3
20

1
4

1
4

1
4

Fig. 2. PDTMC P, DTMC D, and repaired DTMC D̂.

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

2. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5) (1994) 512–535

3. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: Proc. of CAV. Volume 6806 of LNCS, Springer (2011) 585–591

4. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2)
(2011) 90–104

5. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J., Wimmer, R.: Coun-
terexample generation for discrete-time Markov models: An introductory survey.
In: Proc. of SFM. Volume 8483 of LNCS, Springer (2014) 65–121

6. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C., Smolka, S.A.: Model repair
for probabilistic systems. In: Proc. of TACAS. Volume 6605 of LNCS, Springer
(2011) 326–340

7. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Software Tools for Technology Transfer 13(1) (2010) 3–19

8. Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.P., Becker,
B.: Accelerating parametric probabilistic verification. In: Proc. of QEST. Volume
8657 of LNCS, Springer (2014) 404–420

9. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: A model checker
for parametric Markov models. In: Proc. of CAV. Volume 6174 of LNCS, Springer
(2010) 660–664

10. Bradley, S., Hax, A., Magnanti, T.: Applied Mathematical Programming. Addison-
Wesley Pub. Co. (1977)

11. Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: An
integrating framework for enterprise-wide dynamic optimization. Computers &
Chemical Engineering 33(3) (2009) 575–582

12. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair
for Markov decision processes. In: Proc. of TASE, IEEE (2013) 85–92

4

Frontiers of Formal Methods 2015

154

13. Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S.A., Katsaros, P.: Abstract
model repair. In: NASA Formal Methods (NFM). Volume 7226 of LNCS, Springer
(2012) 341–355

14. Jovanovic, D., de Moura, L.M.: Solving non-linear arithmetic. In: Proc. of IJCAR.
Volume 7364 of LNCS, Springer (2012) 339–354

15. Sutton, R., Barto, A.: Reinforcement Learning – An Introduction. MIT Press
(1998)

5

A Greedy Approach for the Efficient Repair of Stochastic
Models

155

Frontiers of Formal Methods 2015

156

Analyzing Expected Outcomes and (Positive)
Almost–Sure Termination of Probabilistic Programs is

Hard∗

Benjamin Lucien Kaminski†(benjamin.kaminski@cs.rwth-aachen.de)

Software Modeling and Verification Group, RWTH Aachen, Germany

Probabilistic programs [1] are imperative sequential programs with the ability to toss a
biased coin and proceed their computations depending on the outcome of the coin toss.
They are used in security to describe cryptographic constructions (such as randomized
encryption) and security experiments [2], in machine learning to describe distribution
functions that are analyzed using Bayesian inference [3], and in randomized algorithms.
They are typically just a small number of lines, but hard to understand and analyze, let
alone algorithmically. We consider two major analysis problems for these programs:

1. Computing expected outcomes: Is the expected outcome of a program (variable)
smaller, equal, or larger than a given rational number?

2. Deciding (positive) almost–sure termination [4]: Does a program terminate with
probability one (in an expected finite number of computation steps)?

Regarding almost–sure termination, the majority of the literature does either not consider
the hardness of the problem or states that it must be somewhat harder to decide than the
classical termination problem, as arithmetical instead of topological reasoning is needed
(see e.g. [5, 6]).

In our work, we strive to give a precise classification of the computational and arith-
metical complexity of solving the aforementioned analysis problems. Most of the results
summarized here together with proofs can be found in [7].

Preliminaries: Our classifications will be in terms of levels in the arithmetical hierarchy
[8]—a concept which we first briefly recall: For any n ∈ N the class Σ0

n is defined as
Σ0
n = {A | A = {~x | ∃y1 ∀y2 ∃y3 · · · ∃/∀yn : (~x, y1, y2, y3, . . ., yn) ∈ R}, R is a decidable

relation}}, the class Π0
n is defined as Π0

n = {A | A = {~x | ∀y1 ∃y2 ∀y3 · · · ∃/∀yn : (~x,
y1, y2, y3, . . ., yn) ∈ R}, R is a decidable relation}}, and the class ∆0

n is defined as
∆0
n = Σ0

n ∩ Π0
n. We implicitly always quantify over Q+ and by the boldface ~x’s we mean

tuples over Q+. In a formula, multiple consecutive quantifiers of the same type can be

∗This research is funded by the Excellence Initiative of the German federal and state governments and
by the EU FP7 MEALS project.
†I would like to thank Joost-Pieter Katoen and Luis Maŕıa Ferrer Fioriti for many valuable discussions

and comments.

Analyzing Expected Outcomes and (Positive) Almost-Sure
Termination of Probabilistic Programs is Hard

157

contracted to one quantifier of that type, so n really refers to the number of quantifier
alternations rather than to the number of quantifiers actually used in a formula. A set
A is called arithmetical, iff A ∈ Γ0

n, for some Γ ∈ {Σ, Π, ∆} and some n ∈ N. The
arithmetical sets form a strict hierarchy, i.e. ∆0

n (Σ0
n,Π

0
n (∆0

n+1 for all n ≥ 1. We have
that Σ0

0 = Π0
0 = ∆0

0 = ∆0
1 is precisely the class of decidable sets and Σ0

1 is precisely the
class of recursively enumerable sets.

Next we recall the concept of many–one reducibility and the concept of completeness
[8]: Let A, B be arithmetical sets and let X be some appropriate universe, such that
A,B ⊆ X. B is called many–one–reducible to A, denoted B ≤m A, iff there exists a
computable function f : X → X, such that ∀~x ∈ X :

(
~x ∈ B ⇐⇒ f(~x) ∈ A

)
. Intuitively

this means that it is computationally at least as hard to solve problem A as it is to solve
problem B. A is called Γ0

n–complete, for Γ ∈ {Σ, Π, ∆}, iff both A ∈ Γ0
n and A is Γ0

n–hard,
meaning B ≤m A, for any set B ∈ Γ0

n. The universal halting problem (does a classical,
i.e. non–probabilistic, program terminate on any given input?), denoted UH, for instance,
is Π0

2–complete whereas its complement, denoted UH, is Σ0
2–complete [9].

Notice that if B is Γ0
n–complete and B ≤m A then A is Γ0

n–hard.Another important
fact about Σ0

n– and Π0
n–complete sets is that they are in some sense the most complicated

sets in Σ0
n and Π0

n, respectively. Formally, this can be expressed as follows: If A is Σ0
n–

complete, then A ∈ Σ0
n \ Π0

n. Analogously if A is Π0
n–complete, then A ∈ Π0

n \ Σ0
n. This

implies in particular that if A is Σ0
n–complete or Π0

n–complete then A 6∈ ∆0
n.

Probabilistic Programs: We study analysis problems for pGCL–like probabilistic pro-
grams à la McIver & Morgan [10]—an extension of Dijkstra’s GCL programs [11]. If v
stands for a program variable, e for an arithmetical expression over program variables,
and p ∈ [0, 1] ⊂ Q for a probability, then the programs that we consider adhere to the
following grammar:

P −→ v := e
∣∣ P;P

∣∣ {P} [p] {P}
∣∣ WHILE (b) {P}

While assignment, concatenation, and the while–loop are classical programming language
constructs, the command {P1} [p] {P2} represents a probabilistic choice between the two
programs P1 and P2. With probability p the program P1 is executed, while with proba-
bility 1− p the program P2 is executed. While classical programs upon termination yield
a variable valuation, probabilistic programs instead yield a subdistribution over variable
valuations where the missing probability mass is the probability of non–termination. For
example, the program

x := 0; {c := 0} [1/2] {c := 1}; WHILE (c=1)
{
x := x+1; {c := 0} [1/2] {c := 1}

}

terminates with probability 1 and establishes for c the valuation 0 with probability 1 and
for x a geometric distribution over the valuations 0, 1, 2, . . .

Expected Outcomes: The first analysis problem we consider is to approximate ex-
pected outcomes. By the expected outcome of a variable v we mean the value we expect
v to have after the program has been executed. In the above example program, for in-
stance, the expected outcome of x is 1 as 1

2
· 0 + 1

4
· 1 + 1

8
· 2 + · · · = 1. Formally, the

Frontiers of Formal Methods 2015

158

expected outcome of a variable v after executing the program P starting with variable
valuation η, denoted EP,η(v), can be expressed by

EP,η(v) =
∞∑

i=1

∞∑

j=0

W
(
P, η, v, i, h(j)

)
,

where W is a computable function that simulates the program P on η for i computation
steps while resolving all probabilistic choices that occur during simulation according to a
sequence h(j) ∈ {L, R}∗ which encodes whether to take the Left or the Right branch when
the simulation encounters a probabilistic choice. Note that a computable enumeration h
of all words over {L, R} exists. If P terminates after exactly i computation steps with
exactly |h(j)| probabilistic choices, then W returns the resulting valuation of the variable
v multiplied with the probability with which the probabilistic choices encoded in h(j)
would have been made, otherwise 0. Such a function W can be obtained by a slight
adaption of the Kleene Normal Form Theorem to probabilistic programs [12]. With the
above formula we sum over all possible execution steps and all possible resolutions of the
probabilistic choices and sum up all resulting valuations of v weighted with their according
probabilities.

For approximations of expected outcomes from below, we define the set LEXP by
(P, η, v, q) ∈ LEXP iff q < EP,η(v). A tuple (P, η, v, q) is in LEXP if the expected
outcome of variable v after executing P starting in η is strictly larger than the rational
q. This set can be defined by a Σ0

1–formula, namely

(P, η, v, q) ∈ LEXP ⇐⇒ ∃ ı̂ ∃ ̂ : q <
ı̂∑

i=1

̂∑

j=0

W
(
P, η, v, i, h(j)

)
,

and is therefore recursively enumerable. This means that arbitrarily close rational ap-
proximations from below can effectively be enumerated.

For approximations from above the set REXP is defined by (P, η, v, q) ∈ REXP iff
q > EP,η(v). If REXP was recursively enumerable, arbitrarily close rational approxima-
tions from below and from above could effectively be enumerated and expected outcomes
would therefore fall into the class of computable reals. We can, however, prove that
REXP is not only in Σ0

2, defined by

(P, η, v, q) ∈ REXP ⇐⇒ ∃ δ ∀ ı̂ ∀ ̂ : q − δ >
ı̂∑

i=1

̂∑

j=0

W
(
P, η, v, i, h(j)

)
,

but is also Σ0
2–complete. We can prove the Σ0

2–hardness of REXP by showing UH ≤m

REXP . The set REXP would be recursively enumerable, if there was access to an oracle
for the halting problem (does a classical program halt on a certain fixed input?) [8].

Deciding whether some rational q equals the expected outcome of v is even harder: The
according set, denoted EXP , is defined as (P, η, v, q) ∈ EXP iff q = EP,η(v). This set is in
Π0

2. To see this, consider that (P, η, v, q) ∈ EXP means that both (P, η, v, q) 6∈ LEXP
and (P, η, v, q) 6∈ REXP . By negating the defining formulas for LEXP and REXP
we obtain a Π0

1– and a Π0
2–formula, respectively. The conjunction of these two formulas

gives a Π0
2–formula defining EXP . By showing UH ≤m EXP we can also prove the Π0

2–
hardness of EXP and therefore we can establish that EXP is Π0

2–complete. This means

Analyzing Expected Outcomes and (Positive) Almost-Sure
Termination of Probabilistic Programs is Hard

159

that determining exact expected outcomes is not semi–decidable, even if there was access
to an oracle for the halting problem.

Almost–Sure Termination: The probability that P terminates on input η, denoted
PrP,η(↓), can be expressed by

PrP,η(↓) =
∞∑

i=1

∞∑

j=0

T
(
P, η, i, h(j)

)
,

where T is a computable function similar to W , but instead of returning a variable valua-
tion multiplied with the probability of the probabilistic choices encoded in h(j), T returns
only those probabilities. We say that a program P terminates almost–surely on input η
iff PrP,η(↓) = 1. The according set AST is defined as (P, η) ∈ AST iff PrP,η(↓) = 1. By
showing AST ≤m EXP we can prove that AST ∈ Π0

2 and by showing UH ≤m AST we
can establish that AST is also Π0

2–hard and hence Π0
2–complete.

For ordinary programs, we have that the universal halting problem is Π0
2–complete,

whereas the non–universal version of the halting problem is only Σ0
1–complete, thus com-

putationally less hard to solve. Interestingly, for almost–sure termination this is not the
case: The set of all universally almost–surely terminating programs, denoted UAST , is
defined by P ∈ UAST iff ∀η : PrP,η(↓) = 1. By showing AST ≤m UAST we can prove
that UAST is Π0

2–hard. Furthermore, we can express UAST using AST , namely by

P ∈ UAST ⇐⇒ ∀η : (P, η) ∈ AST ,

thus UAST is in the universal closure of AST . As Π0
n is closed under universal quantifi-

cation for any n ≥ 1 and AST ∈ Π0
2, we have that UAST ∈ Π0

2 and therefore UAST is
also Π0

2–complete.

Positive Almost–Sure Termination: Along the lines of [13], we can express the
expected termination time of P on input η, denoted EP,η(↓), by

EP,η(↓) =
∞∑

k=1

1−

k−1∑

i=1

2k−1∑

j=0

T
(
P, η, i, h(j)

)

 .

We say that a program P terminates positively almost–surely on input η iff EP,η(↓) <∞,
i.e. the expected number of steps until termination is finite. The according set, denoted
PAST , is defined as (P, η) ∈ PAST iff EP,η(↓) < ∞. Notice that if the expected
number of steps until termination is finite, then the program also terminates almost–
surely. However, there exist programs that do terminate almost–surely but not positively,
i.e. we have that PAST (AST . PAST is computationally more benign than AST , as
it can be defined by

(P, η) ∈ PAST ⇐⇒ ∃ c ∀ k̂ :
k̂∑

k=1

1−

k−1∑

i=1

2k−1∑

j=0

T
(
P, η, i, h(j)

)

 < c ,

Frontiers of Formal Methods 2015

160

and we thus have PAST ∈ Σ0
2. We can furthermore show UH ≤ PAST and therefore

establish that PAST is Σ0
2–complete. The result of this reduction is somewhat counterin-

tuitive as each classical program that does not terminate on some input is transformed by
a computable function f into a probabilistic program that does terminate in an expected
finite amount of steps, whereas the same f transforms a program that does terminate on
all inputs into a program that does not terminate in an expected finite amount of steps.

The set corresponding to the universal version of PAST , denoted UPAST , is defined
by P ∈ UPAST iff ∀η : (P, η) ∈ PAST . As the universal closure of a set in Σ0

n is
in Π0

n+1 for any n ≥ 1 and PAST ∈ Σ0
2, we have that UPAST ∈ Π0

3. Furthermore
consider the Π0

3–complete set COF of classical programs defined by P ∈ COF iff P does
not terminate on infinitely many inputs [9]. By showing COF ≤m UPAST , we can prove
the Π0

3–completeness of UPAST and thus UPAST is even harder to solve than AST .

References

[1] Kozen, D.: Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22(3) (1981)
328–350

[2] Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic Relational Reasoning
for Differential Privacy. ACM Trans. Program. Lang. Syst. 35(3) (2013) 9

[3] Borgström, J., Gordon, A., Greenberg, M., Margetson, J., van Gael, J.: Measure
Transformer Semantics for Bayesian Machine Learning. LMCS 9(3) (2013)

[4] Hart, S., Sharir, M., Pnueli, A.: Termination of Probabilistic Concurrent Programs.
TOPLAS 5(3) (1983) 356–380

[5] Morgan, C.: Proof Rules for Probabilistic Loops. In: Proc. of the BCS-FACS 7th
Conference on Refinement. FAC-RW’96, British Computer Society (1996) 10

[6] Esparza, J., Gaiser, A., Kiefer, S.: Proving Termination of Probabilistic Programs
Using Patterns. In: CAV. Volume 7358 of LNCS., Springer (2012) 123–138

[7] Kaminski, B.L., Katoen, J.P.: Analyzing Expected Outcomes and Almost-Sure Ter-
mination of Probabilistic Programs is Hard. ArXiv e-prints (October 2014)

[8] Odifreddi, P.: Classical Recursion Theory. Elsevier (1992)

[9] Odifreddi, P.: Classical Recursion Theory, Volume II. Elsevier (1999)

[10] McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Springer (2004)

[11] Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)

[12] Kleene, S.C.: Recursive Predicates and Quantifiers. Trans. of the AMS 53(1) (1943)
41 – 73

[13] Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic Termination: Soundness, Com-
pleteness, and Compositionality. In: Proc. of POPL 2015, ACM (2015) 489–501

Analyzing Expected Outcomes and (Positive) Almost-Sure
Termination of Probabilistic Programs is Hard

161

Frontiers of Formal Methods 2015

162

Two-Player Perfect-Information Shift-Invariant
Submixing Stochastic Games Are Half-Positional∗

Edon Kelmendi (edon.kelmendi@labri.fr)

LaBRI, Université de Bordeaux, France

The object of this study are two-player zero-sum stochastic games with perfect infor-
mation and infinite duration, the property of these games that we study is positionality,
namely the question: when can one player play optimally without memory and without
a source of random bits? We give a sufficient condition on the payoff function to achieve
half-positionality (Player 1 can play optimally with a positional strategy). The condition
is that the payoff function should be shift-invariant and submixing. In [2] it is shown
that one-player stochastic games with shift-invariant and submixing payoff functions are
positional, and in [3] the half-positionality of deterministic two-player games with shift-
invariant and submixing payoff functions is demonstrated. We extend these two results
to half-positionality of two-player stochastic games.

Two player games can be used to model systems where the environment is seen as the
adversary and the objective that we want to reach is given by the payoff function. Then
the question of synthesizing a controller that reaches the given objective is equivalent to
finding an optimal strategy.

A payoff function f is a bounded and Borel-measurable function mapping plays S(AS)ω

to R. Where S is the set of states and A is the set of actions. We make the main result
more precise.

Definition 1. A payoff function f is shift-invariant (also known as prefix-independent)
if for all finite histories h ∈ S(AS)∗ and infinite plays p ∈ S(AS)ω,

f(hp) = f(p).

Definition 2. A payoff function f is submixing if for all plays p1, p2 ∈ S(AS)ω, and any
shuffling p of p1 and p2,

f(p) ≤ max{f(p1), f(p2)}.

We say that p = u1v1u2v2 · · · is a shuffling of p1 and p2 if they can be factorized into
p1 = u1u2 · · · , p2 = v1v2 · · · where ui and vi are words in S(AS)+.

∗This is joint work with Hugo Gimbert (hugo.gimbert@labri.fr)

Two-player shift-invariant and submixing stochastic games
are half-positional

163

The players have opposing objectives since the game is zero-sum, we assume that the
objective of Player 1 is to maximize the expected payoff while Player 2 has the opposite
objective.

Now the main result can be stated in the following way:

Theorem 1. Assume that the payoff function is both shift-invariant and submixing, then
Player 1 has an optimal strategy that is both pure and stationary.

In the way of proving our main result we also show that for all ε > 0, given that
the payoff function is shift-invariant, both players have ε-subgame perfect strategies, i.e.
strategies that are ε-optimal not only from the beginning of the game but also for any
finite play already played.

The submixing and shift-invariant payoff functions form a class that is large enough to
have the half-positionality of games equipped the following well-known payoff functions
follow easily from our main result:

• Mean payoff: each state is labeled by some reward r : S → R which for every play
induces an infinite sequence of rewards r1, r2, Then the payoff function is

f(r1r2 · · ·) = lim sup
n

1

n

n∑

j=1

rj.

• Discounted payoff: each state is labeled by some immediate reward r : S → R
and a discount factor λ : S → [0, 1) and the payoff function measures the long-term
performance with an inflation rate:

f(s1s2 · · ·) =
∞∑

j=1

(
r(sj)

j∏

k=1

λ(sk)

)
.

• Parity condition: states are labeled by integers c : S → N, Player 1 wins if the
largest integer seen infinitely often is odd:

f(c1c2 · · ·) =

{
1 if lim sup c1c2 · · · is odd

0 otherwise.

• Limsup (liminf) payoff: states are labeled by rewards r : S → R, and the payoff
function computes the limsup (liminf) of the rewards:

f(r1r2 · · ·) = lim sup(r1r2 · · ·), or

f(r1r2 · · ·) = lim inf(r1r2 · · ·).

The (half)-positionality of games equipped with the payoff functions above have been
shown by numerous authors, using different techniques. We provide a unified proof in the
quest to understand what is the common denominator that allows for very simple optimal
strategies in all these seemingly different games. On the other hand the main theorem

Frontiers of Formal Methods 2015

164

also provides an easy to use tool to check the half-positionality of games, albeit it only is
a sufficient condition. One can also construct new types of games that are half-positional,
using the main theorem as a guide.

Interesting future work would be to see if the theorem holds for infinite but compact
action spaces, or to try to provide a necessary condition for half-positionality.

Given a payoff function such that every one-player stochastic game equipped with it
is positional does not imply that the two-player game is half-positional. We provide a
counter-example.

References

[1] Gimbert, Hugo, and Edon Kelmendi. ”Two-Player Perfect-Information Shift-Invariant
Submixing Stochastic Games Are Half-Positional.” arXiv preprint arXiv:1401.6575
(2014).

[2] Gimbert, Hugo. ”Pure stationary optimal strategies in Markov decision processes.”
STACS 2007. Springer Berlin Heidelberg, 2007. 200-211.

[3] Kopczyński, Eryk. ”Half-positional determinacy of infinite games.” Automata, Lan-
guages and Programming. Springer Berlin Heidelberg, 2006. 336-347.

Two-player shift-invariant and submixing stochastic games
are half-positional

165

Frontiers of Formal Methods 2015

166

Traffic Data Dissemination in Realistic Urban
VANETs Environment

Saifullah Khan (saifullah.khan@uni-oldenburg.de)

SCARE Research Training Group, University of Oldenburg, Germany

1 Introduction
Vehicular ad-hoc networks (VANETs) using IEEE 802.11p-based technology are expected to
support a large spectrum of mobile distributed applications ranging from traffic alert dissem-
ination and dynamic route planning to context-aware advertisement1 and file sharing. Inter
vehicle communication (IVS) is becoming a promising field of research and we are moving
closer to the vision of intelligent transportation systems (ITS), which can enable a wide range
of applications, such as collision avoidance, emergency message dissemination, dynamic route
scheduling, real-time traffic condition monitoring and different kind of infotainment informa-
tion spreading (i.e. movies, gaming and advertisement). In urban VANETs, more issues should
be considered in the design of routing protocols such as the large number of vehicles, vari-
ous traffic signals, the restricted movement area, uneven vehicle distributions, no transmitting
power constraints, obstacles. Among these factors, the impact of obstacles on the communi-
cation quality is a more representative characteristic in urban scenario. VANETs are a special
type of mobile ad-hoc networks (MANETs), but have several properties that distinguish them,
among them relatively high node mobility. This means that, despite safety-criticality of some
of the envisioned applications, the probability of network segregation is higher and end-to-end
connectivity is not guaranteed. Indeed, the traditional node-centric view of the routes (i.e., an
established route is a succession of nodes between the source and destination) leads to frequent
route breakage due to node mobility and the ubiquitous signal-weakening obstructions, such as
buildings, vegetation, or parked and moving vehicles in the vicinity [1]. In contrast to, e.g.,
airborne ad-hoc networks (AANETs), blocked line of sight (LOS) in city areas is the rule rather
than an exception [2]. To account for the instability of multi-hop wireless communications in
vehicular environments, routing protocols exploit geographical information that can be broadly
be classified into two categories, namely topology or position based. Multi-hop data deliv-
ery through VANETs is complicated by the fact that node densities in vehicular networks are
far from even, rapidly fluctuating, and sometimes sparse. To solve the connectivity problem,
different types of routing protocols have been presented in the literature, with most of them
exploiting geographical information. An important class of protocols selects forwarding paths
or nodes based on the current road-traffic conditions, and hence on the potential presence of
relaying nodes along the path. Although some proposals to estimate road traffic conditions in
situ have been reported in the recent literature, they usually imply a high communication over-
head as they collect non-local traffic information. In this context, this paper introduces TASR,

1The MIT also provides information online, http://cartel.csail.mit.edu.

Trafc Data Dissemination in Realistic Urban VANETs
Environment

167

a locally informed multi-hop routing protocol for vehicular ad-hoc networks in city environ-
ments. TASR is a fully distributed protocol without the need of any pre-installed infrastructure,
just relying on the mobile nodes. Its mechanism is designed to improve the success probability
of routing protocols by dynamically estimating the multi-hop forwarding capabilities of road
segments and the network connectivity among them.

2 System Model
We assume that vehicles communicate with each other through a short-range wireless channel
(300m) and each node can obtain its latest position via GPS or A-GPS. Vehicles enclose their
own physical location, current velocity, and direction information in their periodic beacon mes-
sages, and this information can be overheard by their one-hop neighbors. We also assume that
vehicles are equipped with preloaded digital maps, which provide street-level maps as well as
traffic statistics concerning expected traffic density, average vehicle speed on roads at different
times of the day, and traffic signal schedule at intersections. The latest one is developed by Map-
Mechanics2 and includes road speed data and an indication of the relative density of vehicles on
each road. A three-dimensional box-shaped volume constrains our model region. Within this
volume, points represent vehicles and square blocks represents obstacles that shield communi-
cation. As shown in Fig1, two points between which an unobstructed line can be drawn have
communication potential if in range. A graph represents the current communication-network
topology, where vertices represent vehicles and the edges between the vehicles on the bidirec-
tional road segments represent the connection between them. n cars are moving with speed ~v
in the (x, y) coordinate system. Initially, their positions are assumed to be independent random
variables that are uniformly distributed over the range [Xmin, Xmax] and [Ymin, Ymax]. If a path
from a starting point to a goal can be extracted from the graph, then a routing capability exists
through the network. For our model we determine the future Meeting Point (MP) in advance, at
which both vehicles share a road segment and hence a LOS.

3 TASR Protocol
TASR is based on a heuristics for selecting an appropriate path from source to destination.
The objective is to select the next forwarding path which gives us the smallest packet delivery
delay and maximum probability of packet delivery. Suppose that a situation in our VANET
can be modeled as an undirected connectivity graph G(V,E) using a similar representation as
described in [3], where V is a finite set of cars, and (i, j) ∈ E represents a wireless link between
node i and node j. A time-dependent function is used to indicate the nodes’ mobility conditions
in the network i.e. F (t) = f [x(i, t), y(i, t), z(i, t), v(i, t), ¸(i, t), Ri] , where, x(i, t), y(i, t) and
z(i, t) represents the position, v(i, t) the speed, (i, t) the movement direction of the node i on
the road at time t, and Ri is the unobstructed communication range of node i. TASR bases its
routing decisions on capturing real-time traffic density estimation of the next-to-next segments
chosen by the last node on the segment, i.e., on local density information only. In Fig1, suppose
that source node S is willing to send a data packet to the destination node D and has not
yet established a communication route. To forward the data packet, S received the real-time
information about the traffic on different segments in the vicinity. There are three possibilities

2Further information is provided online, http://www.mapmechanics.com.

Frontiers of Formal Methods 2015

168

Figure 1: Trajectory model for the TASR protocol

to choose a route, namely sBEFd(s → I1 → I2 → I3 → I6 → d), sBDd(s → I1 → I2 →
I5 → d) and sACd(s → I1 → I4 → I5 → d). The traffic densities on the different segments
are A = 2, B = 5, C = 3, D = 0, E = 5, and F = 3 cars per length segment where the
segment length is longer than the communication range. In our proposed scheme the priority
is given to choose that path whose latency is minimum and connectivity between the node is
sufficient. The proposed scheme therefore selects sACd deterministically as this route provides
the shortest possible path with minimum delay to the expected meeting point (MP), trying to
avoid waiting-time overhead and to reduce expected delay. Thus, our TASR protocol follows
the following basic principles. (1) Transfer the data packet through wireless channel as far as
possible in a single hop, exploiting the LOS. (2) If the packet is to be relayed via a hop into an
adjacent segment, the segment with sufficient density in the best next-to-next segment should
be chosen. (3) Due to the unpredictable and highly dynamic nature of the VANET, we cannot
guarantee that the data packet would be successfully routed along the path.

4 Segment Selection and Data Forwarding

In TASR, segments through which a packet must pass to reach its destination are chosen dy-
namically and one by one in order to dynamically adapt to the real-time variation in vehicle
densities. To select a robust route among the temporarily possible routes, the selecting node in
TASR will select a next segment that has a sufficiently connected next-to-next road segment.
The node which comes last on the current segment is responsible to select the next-to-next seg-
ment which is most attractive based on the current traffic density and the connection probability
between the adjacent segments. Hello beacons are used by idle nodes to advertise their presence.
Let suppose that the frequency of hello beacons is related to the minimum contact duration. If
the frequency of transmission is high, the time necessary for the information to reach the outer
bounds of the geographic area is lower. After selection of the next segment as discussed in the
above section, data packets forwarding takes place. The sender node has the information about
the estimated future position of the destination node as well as the meeting point (MP). After
neighbor discovery, the second phase of TASR deals with the individual node determining the
next hop for a particular transmission. A node receiving an RREQ packet sends RREP packets
back to the source if it has a route to the destination or is the destination itself; otherwise, it will
rebroadcast the RREQ. Data packets are sent to the destination after the source node receives
the RREP. The routing information is updated to ensure that the best route is chosen along the
selected segment. If a link breaks while the route is active, a route error (RERR) message is
sent to the source node. The source node may then re-initiate a route discovery process.

Trafc Data Dissemination in Realistic Urban VANETs
Environment

169

5 Calculating ECD
In this section, we study the connectivity of nodes on the bi-directional road segment using the
metric expected connectivity degree (ECD). The expected connectivity degree or probability is
measured in terms of road connectivity along the path between the source and destination. Two
vehicles are considered to be connected if their distance is less than the vehicle transmitting
range R. A road segment is represented by a tuple of two end points as presented in [3], i.e.
seg = (s, ds), (s, dd), where (s, ds) shows the street crossing on one end of the road segment
and (s, dd) is the next street crossing on the other end so all the segments in a grid is represented
as N = {((s1, ds1), (s1, dd1)) . . . ((sn, dsn), (sn, d

d
n))}.

ECD = 1−∑k
j=1(−1)j−1

(
Nnodes−1

j

) (
1− j R

Lseg

)
where k = min

{
Nnodes − 1,

[
Lseg

R

]}
, R is

the transmission range of node, Lseg is the length of each segment and Nnodes is the average
number of vehicles on the road segment. Through this formula we can calculate the probability
in the form of expected connectivity degree for every neighbor next-to-next segments and after
computing we can deterministically choose the best option as the next-to-next segment.

6 Performance Evaluation
The proposed protocol has been implemented in the OMNeT++ 4.5 network simulator. We also
used the Simulator for Urban MObility 0.21.0 (SUMO) to build the simulation scenario and
reflect vehicle mobility. Furthermore, the experiments rely on the network framework Veins
3.0, which is well accepted by the research community and certainly improves the reliability
of our results, since Veins implements the IEEE 802.11p protocol stack among other features
used in our analysis. The test area is a 2000m × 2000m area within the relatively dense road
network of the city of Oldenburg, yielding the grid layout shown in Fig2a. When the destination
is reached, another destination is randomly selected. This procedure is repeated until the end
of the simulation. We select a small sub-grid as shown in Fig2b that helps us to evaluate the
performance and fix the nodes speed to 40km/h. The total number of nodes varies from 60 to
150. IEEE 802.11 DCF protocol is used as the MAC layer transmission protocol. We compared
TASR with the established JBR and MURU routing protocols [4, 5]. Simulation results are
shown in Fig3. The simulations 3a demonstrate that TASR consistently improves over JBR and
MURU concerning packet delivery ratio often by a substantial margin of approximately 50%.
From 3b, we note that when the network density is low, 60 to 100, MURU and TASR give
constant result, but when the density increase, the overhead of MURU increase dramatically.
This is due to the suitable segment selection of TASR which avoid the congested segment
and thus a considerable difference can be seen compared with JBR and MURU. 3c shows the
average end-to-end delay. In this result TASR performing much better than JBR. However
MURU is also slightly increase when the density increase.

7 Conclusion
We proposed a routing protocol called TASR for urban area vehicular networks. TASR is de-
signed to find robust path to delivery data with high delivery ratio, and low overhead and min-
imum packet delay. A new metric ECD is introduced to compute the most robust segment.
Simulation results shows that TASR is performing well over comparative protocol. Related to

Frontiers of Formal Methods 2015

170

(a)
(b)

Figure 2: (a) City of Oldenburg as a street graph in SUMO (b) A small fragment from Fig2a

(a) (b) (c)

Figure 3: (a) PDR vs. density (b) Routing overhead vs. density (c) End-to-end delay vs. density

this work, more simulation works will be done for better performance evaluation under diverse
scenarios. Also, new cross layered architecture will be concerned for further works.

References
[1] C. Sommer, D. Eckhoff, R. German, and F. Dressle. A computationally inexpensive em-

pirical model of ieee 802.11 p radio shadowing in urban environments. In 2011 Eighth
International Conference on Wireless On-Demand Network Systems and Services, 2011.

[2] M. Boban, T. Vinhoza, J. Barros M. Ferreira, and O. Tonguz. Impact of vehicles as obstacles
in vehicular ad hoc networks. IEEE journal on selected areas in communication, 29(1):15–
28, January 2011.

[3] H. Higaki. Navigation system based dtn routing in sparse vehicular networks. In Interna-
tional Conference on Communications and Information Technology, pages 171–175, March
2011.

[4] S. Tsiachris, G. Koltsidas, and F. N. Pavlidou. Junction-based geographic routing algo-
rithm for vehicular ad hoc networks. Wireless Personal Communications, 71(2):955–973,
September 2012.

[5] Z. Mo, H. Zhu, K. Makki, and N. Pissinou. Muru: A multi-hop routing protocol for urban
vehicular ad hoc networks. In Proceeding 3rd Annual International Conference Mobile
Ubiquitous System Networking and Services, pages 1–8, 2006.

Trafc Data Dissemination in Realistic Urban VANETs
Environment

171

Frontiers of Formal Methods 2015

172

A Hierarchical Sparsification Technique for Faster
Algorithms in Graphs and Game Graphs∗

Veronika Loitzenbauer (vl@cs.univie.ac.at)

University of Vienna, Faculty of Computer Science, Austria

We present a sparsification technique, called hierarchical graph decomposition, and
survey its recent applications to problems relevant in computer-aided verification. We
provide some intuition for which kind of problems this technique can lead to algorithms
with improved asymptotic runtimes, in particular for dense graphs. Apart from classical
graphs, we also consider Markov decision processes (MDPs) and (two-player) game graphs.
For the definitions of the listed problems as well as their application in computer-aided
verification we refer the reader to the cited literature. For example, parity games with
three priorities can be used to analyze timed automaton games (a model for real-time
systems) with reachability and safety objectives [9, 8, 4, 7].

Related Work. Henzinger et al. [10] introduced the hierarchical graph decomposition
as a graph sparsification technique to replace ’m’, the number of edges, with ’n’, the
number of vertices, in the running time bound. They considered the problem of quickly
identifying a new connected component in an undirected graph after a batch of edge
deletions, motivated by a problem in computational biology. Chatterjee and Henzinger [2]
extended the technique to directed graphs, MDPs, and game graphs. They applied it to two
problems where the basic algorithms are based on repeated vertex deletions: Computing
the maximal end-component decomposition of MDPs (MEC) and computing the winning
sets of both players in Büchi games (Büchi).

problem previous runtime when m = Θ(n2) new algorithm

MEC O(min{mn2/3, m3/2}) [1] O(n8/3) O(n2) [2]
Büchi (ignoring log factors) O(mn) [6, 5] O(n3) O(n2) [2]
Parity-3 O(mn) [14] O(n3) O(n5/2) [3]
Streett (simplified runtime) O(min{mn, m3/2}) [12] O(n3) O(n2) [3]
2SCC O(mn) [15, 13] O(n3) O(n2) [11]

Results. In recent work [3] we applied the technique in two ways: We showed how the
runtime analysis can be modified in the case where vertices are not removed from the

∗This abstract is based on joint work [3, 11] with Krishnendu Chatterjee, Monika Henzinger, and
Sebastian Krinninger. This work was partially funded by the Austrian Science Fund (FWF): P23499-N23
and the Vienna Science and Technology Fund (WWTF) grant ICT10-002. Additionally, the research
leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 340506.

A Hierarchical Sparsification Technique for Faster
Algorithms in Graphs and Game Graphs

173

graph, which yields a faster algorithm for the nonemptiness problem of Streett automata
(Streett) in dense graphs; and we showed how the technique can be used to combine
and speed up known algorithms for the winning sets in Parity games with three priorities
(Parity-3). The latter approach extends to Parity games with an arbitrary number of
priorities and is different from the algorithm for Büchi games (which are equal to Parity
games with two priorities). For completeness we also list our recent improved algorithm
for a classical graph problem (2SCC) [11]. We summarize the running time improvements
in our and related work in the table above. Note that while for some problems the runtime
can only be improved for dense graphs, for other problems the runtime is improved for all
cases except when the number of edges m is in the order of the number of vertices n.

Decomposition. We decompose a directed graph G = (V, E) with m = |E| edges and
n = |V | vertices into a hierarchy of graphs Gi = (V, Ei) for levels i ∈ {1, . . . , dlog ne}. We
will define the set of edges Ei such that |Ei| is O(n · 2i), Ei−1 ⊆ Ei for all i > 1, and
Edlog ne = E. Whether an edge (u, v) ∈ E is included in Ei will depend on the in- and
out-degree of u and v, and can for game graphs additionally depend on the player to which
the vertices on the other end of the incoming or outgoing edges of u and v belong. For
example, in the algorithms for MEC and Streett the set Ei contains all edges (u, v) ∈ E
for which the out-degree of u is at most 2i. In the algorithm for Parity-3 the set Ei

additionally contains the first 2i incoming edges of each vertex, where the incoming edges
are sorted such that those from Player 2 come first. For now we call all vertices that are
not missing outgoing edges in Gi white.

Size-Degree Relation. To see why this definition can be useful, think about a strongly
connected component that has no outgoing edges, called a bottom scc. Let C be a bottom
scc with 2i vertices. Then each vertex in C must have an out-degree of less than 2i, i.e.,
in Gi all vertices in C are white. This implies that if we search for bottom sccs in Gi

that only contain white vertices, then we will detect C. In the algorithms for MEC and
Streett we repeatedly search for such bottom sccs after some vertices were removed
from the graph. This search is started at level i = 1, and the level is increased by one
until the search is successful. Whenever we have to go up to level i∗ to identify such a
bottom scc C, then C has to contain more than 2i∗−1 vertices since otherwise it would
have been identified at level i∗ − 1. The hierarchical graph decomposition can only be
applied if one can show a similar relation between the size of searched sets and the degree
of the vertices in this set. For Parity games the searched sets of vertices are part of the
winning set of one of the players.

Runtime Analysis. A bottom scc in Gi can be found in time O(|Ei|), which is O(n ·2i).
In the algorithm for MEC the vertices in the identified bottom scc are then removed
from the graph and thus can be charged the work to identify them, which leads to a
total runtime of O(n2). Although for Streett the identified bottom scc is not removed
from the graph, we can show the same runtime (for this part of the algorithm) using
a parallel search in the reverse graph. For Parity-3 the time to identify a part of the
winning set is proportional to |Ei| times the size of this part; the runtime bound of O(n2.5)
comes from searching only for parts with at most

√
n vertices with the hierarchical graph

decomposition and using an O(n2) algorithm for larger parts.
When can it be applied? All the mentioned problems can be seen as vertex or edge

partitioning problems (e.g. partition of vertices into winning set of Player 1 and (parts
of) winning set of Player 2). Further, they all have a basic algorithm that iteratively

Frontiers of Formal Methods 2015

174

refines a maintained partition, i.e., there exists a “fast” way to either further divide a
set in the maintained partition or to decide that no further refinement is needed. When,
e.g., the algorithm for Streett identifies a bottom scc, then it recurses on each of the
bottom scc and the subgraph induced by the remaining vertices and thereby refines the
(implicitly) maintained partition. The crucial step in applying the presented technique is
to show a similar size-degree relation, as described above for bottom sccs, for a set of
vertices or edges that can be used to refine the maintained partition and that can be found
“fast” (e.g. in linear time). We believe that more problems with such a structure exist.

References

[1] K. Chatterjee and M. Henzinger. Faster and Dynamic Algorithms For Maximal End-
Component Decomposition And Related Graph Problems In Probabilistic Verification. In
SODA, pages 1318–1336, 2011.

[2] K. Chatterjee and M. Henzinger. Efficient and Dynamic Algorithms for Alternating Büchi
Games and Maximal End-component Decomposition. Journal of the ACM, 61(3):15, 2014.
announced at SODA’11 and SODA’12.

[3] K. Chatterjee, M. Henzinger, and V. Loitzenbauer. Improved Algorithms for One-Pair and
k-Pair Streett Objectives. http://arxiv.org/abs/1410.0833v2, October 2014.

[4] K. Chatterjee, T. A. Henzinger, and V. S. Prabhu. Timed parity games: Complexity and
robustness. Logical Methods in Computer Science, 7(4), 2011.

[5] K. Chatterjee, T.A. Henzinger, and N. Piterman. Algorithms for Büchi games. In Games in
Design and Verification (GDV), 2006.

[6] K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Simple stochastic parity games. In
CSL’03, volume 2803 of LNCS, pages 100–113. Springer, 2003.

[7] K. Chatterjee and V. S. Prabhu. Synthesis of memory-efficient, clock-memory free, and
non-zeno safety controllers for timed systems. Inf. Comput., 228:83–119, 2013.

[8] L. de Alfaro and M. Faella. An accelerated algorithm for 3-color parity games with an
application to timed games. In CAV, pages 108–120, 2007.

[9] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element of
surprise in timed games. In CONCUR, pages 142–156, 2003.

[10] M. Henzinger, V. King, and T. Warnow. Constructing a Tree from Homeomorphic Subtrees,
with Applications to Computational Evolutionary Biology. Algorithmica, 24:1–13, 1999.

[11] M. Henzinger, S. Krinninger, and V. Loitzenbauer. 2-edge and 2-vertex strongly connected
components in quadratic time. http://arxiv.org/abs/1412.6466, December 2014.

[12] M. Henzinger and J.A. Telle. Faster Algorithms for the Nonemptiness of Streett Automata
and for Communication Protocol Pruning. In SWAT, pages 16–27, 1996.

[13] R. Jaberi. On computing the 2-vertex-connected components of directed graphs.
http://arxiv.org/abs/1401.6000v1, January 2014.

[14] M. Jurdziński. Small Progress Measures for Solving Parity Games. In STACS, pages 290–301,
2000.

[15] H. Nagamochi and T. Watanabe. Computing k-edge-connected components of a multigraph.
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer
Sciences, E76–A(4):513–517, 1993.

A Hierarchical Sparsification Technique for Faster
Algorithms in Graphs and Game Graphs

175

Frontiers of Formal Methods 2015

176

Synthesizing Predicates from Abstract Domain Losses

Bogdan Mihaila (mihaila@in.tum.de)

Technical University of Munich, Garching b. München, Germany

1 Introduction

Verification by means of a reachability analysis is based on abstract domains that over-
approximate the possible concrete states that a program can reach. The forte of abstract
domains is their ability to synthesize new invariants that are not present in the program.
However, their inherent approximation may mean that the invariant required to verify
a program cannot be deduced. On the contrary, the strength of predicate abstraction
used in software model checking is that predicates precisely partition the state space of
a program. The challenge here is to synthesize new predicates that eventually suffice to
verify a program. This work combines the benefits of both approaches: we synthesize new
predicates by observing the precision loss in numeric domains and refine the precision
of the numeric domains using the predicates. Our technique is particularly useful for
expressing non-convex invariants that are commonly lost when using off-the-shelf numeric
abstract domains that are based on convex approximations.

2 Related Work

A common approach to enriching numeric abstract domains to allow expressing non-
convex states is to use disjunctive completion, that is, a set of states. In particular,
several works have proposed to some variant of a binary decision-diagram (BDD) where
decision nodes are labeled with predicates and the leaves are abstract domains [3, 5]. A
similar effect is obtained by duplicating the control flow graph (CFG) for each subset of
satisfied predicates [6]. In both settings, the number of numeric domains that are tracked
may be exponential in the number of predicates. Our work improves over this setup by
combining classic predicate abstraction [1] with a single numeric domain, thereby avoiding
this exponential duplication of the numeric state. In particular, we present a generic
combinator domain that is parameterized over any numeric abstract domain and allows
any predicate expressible by the abstract domain. We thereby also generalize over bespoke
domains that explicitly track specific disjunctive information, such as disequalities [7].

3 The Predicate Abstract Domain

We present our predicate domain as a co-fibered domain [9], that is, as a domain that is
parameterized by another domain. A co-fibered domain D is parameterized by a child

Synthesizing Predicates from Abstract Domain Losses

177

domain C that it controls. Their combination is written as D B C and a state as a tuple
〈d, c〉 ∈ D B C. A transfer function on D B C may apply any number of transfer functions
on its child c ∈ C before returning a result. Co-fibered domains may be nested. For
instance, we combine the predicate domain P with a co-fibered affine equality domain A
[8] and a plain interval domain I, yielding a stack of domains P B A B I where a state
〈ῑ, 〈a, i〉〉 contains the individual domain states ῑ ∈ P, a ∈ A and i ∈ I. The predicate
domain is given by the lattice 〈P � C,vP,tP ,uP〉 where the universe P : ℘(Pred × Pred)
is a finite set of implications p1 → p2 over predicates pi ∈ L(Pred). Predicates relate linear
expressions over the program variables X using a comparison operator ./. Note that the
set of operators is closed under negation so that the universe of predicates is closed under
negation. The choice of implications between only two predicates allows for a simple yet
effective propagation of information, as detailed in the next section.

4 Transfer Functions and Reductions

The transfer functions of the combined domain state 〈ῑ, c〉 ∈ P B C are presented next. In
general, a transfer function [[l]]P〈ῑ, c〉 applies the corresponding transfer function on the
child domain c ∈ C, yielding 〈ῑ′, [[l]]Cc〉 where ῑ′ is the new state of the predicate domain.
We distinguish three forms of assignments. The first, [[x = a ./ b]]P , assigns the result
of a comparison to a variable x. Here, the predicate domain removes any predicate that
mentions x and adds new predicates based on the comparison. We assume that x is set
to one if test a ./ b holds and to zero otherwise. Thus, the predicates x = 0 and x = 1
are used to encode the value of x in the implications. Specifically, the two outcomes
x = 1↔ a ./ b and x = 0↔ a 6./ b are stored using four implications.

The transfer function [[x = NonLin]]P for non-linear assignment removes all implications
in the predicate domain containing x. An assignment [[x = Lin]]P of a linear expression to
x tries to transform implications containing x if Lin contains x, e.g. x=x+1. For example,
consider the predicates state ῑ = {f = 0→ x ≤ 5, x � 10→ y = 10} and the assignment
x=x+1 mentioned above. Given the substitution σ = [x/x+ 1] that describes the change
of the state space, we compute σ−1 = [x/x − 1] that describes how predicates can be
transformed so that they are valid in the new state. In the example, applying σ−1 to the
implications yields ῑ′ = {f = 0→ x ≤ 6, x � 11→ y = 10}.

We now consider the transfer function for an assumption [[a ./ b]]P . The information
from the test a ./ b is used by the predicate domain to gather further facts about the state.
The process of applying these facts to the child domain is called reduction. The reduction
is performed as a fixpoint computation and can be seen as an instance of Granger’s
framework for reduction by local iteration [2]. Specifically, a function named fixapply
gathers a set of predicates p̄ deduced from a ./ b and recursively applies each to the child
state c′, yielding [[t]]Cc′

5 Lattice Operations and Predicate Synthesis

We continue by detailing the entailment test 〈ῑ1, c1〉 vP 〈ῑ2, c2〉. It performs the entailment
test c1 vC c2 on the child domain and tests if all the implications in the right argument
ῑ2 are entailed by the left argument by calling the function entailed(ῑ′, ῑ, c). The latter

Frontiers of Formal Methods 2015

178

c1 c2 synthI(c1, c2) c1 tI c2
x ∈ [0,5] [10, 15] {5 < x→ 2 ≤ y, [0, 15]
y ∈ [−5,−1] [2, 3] −1 < y → 10 ≤ x} [−5, 3]

Figure 1: The join of two states in the intervals domain I and the synthesized implications
correlating the bounds lost due to the convex approximation.

function returns an implication p′ → q′ ∈ ῑ′ if it is either syntactically entailed in ῑ or
semantically entailed in the state c. Note that neither the syntactic nor the semantic
entailment test subsumes the other as both approximate the test differently.

The join 〈ῑ1, c1〉 tP 〈ῑ2, c2〉 independently computes a join on the predicate domain and
on the child domain. In oder to join the implication sets ῑ1 and ῑ2, we define a function
join that keeps all implications that hold in the respective other state using the entailed
function described above. Note that the semantic entailment test in entailed is particularly
important for the join as one of the predicate domain states may be empty so that the
syntactic entailment would discard all implications. The semantic join is able to retain
newly inferred predicates in, for example, loop bodies as illustrated later.

In addition to the predicates returned by the join function, new implications are
synthesized from the child domain states using the synthC function. The idea is to
synthesize implications that characterize the approximation that occurred as part of the tC
operation. Which synthesized implications are generated depends on the numeric domain.
If the predicate language is sufficiently expressive, a domain could potentially characterize
all precision losses that occur during a join.

6 Recovering Precision using Relational Information

One strength of our synthI function is that it creates relational information, that is, it
generates implications between different variables. This relational information enables
fixapply to deduce, from a test of one variable, more precise ranges for other variables. In
particular, a test t that separates two states, i.e. [[t]]Ic1 = c1 and [[t]]Ic2 = ⊥ is enriched
by the relational implications so that all losses due to convexity are recovered, that is,
[[t]]P(〈ῑ1, c1〉 tP 〈ῑ2, c2〉) = 〈ῑ′1, c1〉.

We illustrate this ability using two states s1 = 〈∅, {x ∈ [0, 5], y ∈ [−5,−1]}〉 and
s2 = 〈∅, {x ∈ [10, 15], y ∈ [2, 3]}〉. The joined state s = s1 tP s2 is given by s =
〈{5 < x → 2 ≤ y,−1 < y → 10 ≤ x}, {x ∈ [0, 15], y ∈ [−5, 3]}〉. This operation is
illustrated in Fig. 1 where the bounds in bold are those that are lost and the arrows
indicate which bounds are related by the generated implications. We now show how
applying the test 0 < y on s recovers the numeric state in s2 and, analogously, that
applying y ≤ 0 recovers the numeric state of s1. Specifically, when applying the test
0 < y on state s, the left-hand side of the implication −1 < y → 10 ≤ x is syntactically
entailed, so that 10 ≤ x is also applied to the child state, yielding the precise value
[10, 15] for x. The predicate 10 ≤ x syntactically entails the other implication 5 <
x → 2 ≤ y. Thus, the predicate 2 ≤ y is applied to the child state, yielding the
precise value [2, 3] for y. After that no new predicates are entailed and the recursive
predicate application in the function fixapply stops with the state s′2 = 〈{5 < x→ 2 ≤ y,

Synthesizing Predicates from Abstract Domain Losses

179

1 p = &some_var;

2 n = 5;

3 while (n >= 0) {

4 assert(p != 0);

5 // dereference p

6 ...

7 if (n == 0)

8 p = 0;

9 n--;

10 }

step line intervals implications
p n

1 2 [99, 99]
2 3 [99, 99] [5, 5]
3 4 [99, 99] [5, 5]
· · · · · · · · ·

5 7 [99, 99] [5, 5]
6 9 [99, 99] [5, 5]
7 10 [99, 99] [4, 4]
8 3 t [99, 99] [4, 5]
8’ 3’ ∇ [99, 99] [−1, 5]
9 4 [99, 99] [0,5]
· · · · · · · · ·

12 8 [99, 99] [0, 0]
13 9 t [0,99] [0, 5] {0 < n→ 99 ≤ p,0 < p→ 0 ≤ n}
14 10 [0, 99] [−1, 4] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}
15 3 t [0, 99] [−1, 5] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}
16 4 [99,99] [0, 5] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}
· · · · · · · · ·

22 3 v [0, 99] [−1, 5] {−1 < n→ 99 ≤ p, 0 < p→ −1 ≤ n}

Figure 2: Challenging example: freeing a pointer in the last loop iteration.

−1 < y → 10 ≤ x}, {x ∈ [10, 15], y ∈ [2, 3]}〉. Observe that the interval domain is identical
to that of s2. Analogously, we get a state s′1 in which the interval for x is [0, 5] and for y
is [−5,−1] after applying the opposing condition y ≤ 0.

7 Application to Separation of Loop Iterations

A particularly challenging example from the literature [4] requires that variable values
of certain loop iterations are distinguished. The example in Fig. 2 is prototypical for a
loop that frees a memory region in its last iteration. The assertion in line 4 expresses that
the memory region pointed-to by p has not yet been deallocated. In order to prove this
assertion, an analysis needs to separate the value of the pointer p in the last loop iteration
from its value in all previous iterations. In particular, the example is difficult to prove
using convex numeric domains due to a precision loss that occurs when joining the point
〈p, n〉 = 〈0,−1〉 at line 10 of the last loop iteration with the states where p 6= 0 and n ≥ 0.

However, using the simple interval numeric domain and our predicate domain, the
example is proved using the fixpoint computation detailed in Fig. 2. In step 1 of the
table, p is initialized to a non-zero address of a variable, which we illustrate by using the
value 99. After initializing the loop counter n in step 2, the loop is entered as the loop
condition n >= 0 is satisfied. In step 5, it is determined that the then-branch in line 8
is not reachable. After decrementing n, the state is propagated to the loop head via the
back-edge in step 8. At this point, widening is applied. Additional heuristics [6] ensure
that the interval [−1, 5] is tried for n, rather than widening n immediately to [−∞, 5]. By
applying the loop condition n >= 0, a new state for the loop body is obtained in step 9. In
step 12, it is observed that the then-branch in line 8 is reachable. In the next step in line 9
the states of both branches are joined and the interval domain approximates p with [0, 99].
In the same step, the implications 0 < n→ 99 ≤ p, 0 < p→ 0 ≤ n are synthesized. In step
14 these predicates are transformed using σ−1 = [n/n+ 1]. This state is joined with the
previous state at the loop header at step 15. Our widening heuristic suppresses widening
since a new branch in the program has become live [6]. Since the resulting numeric state
has changed due to the new value of p, the fixpoint computation continues. Note that

Frontiers of Formal Methods 2015

180

during the join in step 15, both implications −1 < n → 99 ≤ p, 0 < p → −1 ≤ n are
semantically entailed in the current state at the loop head (as computed in step 8’) and
therefore kept in the joined state. Evaluating the loop condition in step 16 enforces that
n ≥ 0, that is, 0 ≤ n. The latter predicate syntactically entails the predicate −1 < n.
Thus, the fixapply function deduces that 99 ≤ p holds, yielding p ∈ [99, 99]. The assertion
holds since intersecting the state at step 16 with p = 0 yields ⊥. Thus, at line 4, p cannot
be 0 and the assertion holds. Continuing the analysis of the loop observes a fixpoint in
step 22. Note that the assertion can also be shown when using standard widening that sets
n to [−∞, 0] in step 8’. However, for the sake of presentation, we illustrated the example
with the more precise states.

References

[1] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic Predicate
Abstraction of C Programs. In Programming Languages, Design and Implementation,
pages 203–213. ACM, 2001.

[2] P. Granger. Improving the Results of Static Analyses of Programs by Local Decreasing
Iterations. In R. Shyamasundar, editor, Foundations of Software Technology and
Theoretical Computer Science, volume 652 of LNCS, pages 68–79. Springer, 1992.

[3] A. Gurfinkel and S. Chaki. Boxes: A Symbolic Abstract Domain of Boxes. In
R. Cousot and M. Martel, editors, Static Analysis Symposium, volume 6337 of LNCS,
pages 287–303. Springer, 2010.

[4] M. Heizmann, J. Hoenicke, and A. Podelski. Software Model Checking for People Who
Love Automata. In N. Sharygina and H. Veith, editors, Computer Aided Verification,
volume 8044 of LNCS, pages 36–52. Springer, July 2013.

[5] L. Mauborgne and X. Rival. Trace Partitioning in Abstract Interpretation Based Static
Analyzers. In M. Sagiv, editor, European Symposium on Programming, volume 3444 of
LNCS, pages 5–20, Edinburgh, UK, April 2005. Springer.

[6] B. Mihaila, A. Sepp, and A. Simon. Widening as Abstract Domain. In NASA Formal
Methods, volume 7871 of LNCS, pages 170–186, Moffett Field, California, USA, May
2013. Springer.

[7] M. Péron and N. Halbwachs. An Abstract Domain Extending Difference-Bound Matrices
with Disequality Constraints. In B. Cook and A. Podelski, editors, Verification, Model
Checking, and Abstract Interpretation, volume 4349 of LNCS, pages 268–282, Nice,
France, January 2007. Springer.

[8] A. Sepp, B. Mihaila, and A. Simon. Precise Static Analysis of Binaries by Extracting
Relational Information. In M.Pinzger and D. Poshyvanyk, editors, Working Conference
on Reverse Engineering, Limerick, Ireland, October 2011. IEEE.

[9] A. Venet. Abstract Cofibered Domains: Application to the Alias Analysis of Untyped
Programs. In Static Analysis Symposium, LNCS, pages 366–382, London, UK, 1996.
Springer.

Synthesizing Predicates from Abstract Domain Losses

181

Frontiers of Formal Methods 2015

182

Efficient Shape Analysis of Multithreaded Programs

Suvam Mukherjee (suvam@csa.iisc.ernet.in)

Computer Science and Automation,
Indian Institute of Science, India.

1 Introduction

A large number of commercial programs, like device drivers, manipulate a dynamically
allocated memory space (the heap), shared among multiple threads. These threads may
concurrently update the heap in different ways. For example, in a device driver, a producer
thread may continually add incoming requests to a linked list, while a consumer thread
would continually remove requests from the list (assuming it is not empty). Any run
of the program would involve intricate interleaved pointer manipulations. An incorrect
implementation of such a program could result in the list becoming cyclic, or getting
partitioned into different components. In general, it is difficult to prove the correctness
of such implementations, owing to the nondeterminism of the scheduler which results in
a large number of possible interleavings and heap configurations. Thus, it is necessary to
equip the developer with tools, which can algorithmically prove “deep-heap” properties
(acyclicity of a list, connectivity of components, etc.)

Coming up with such algorithms is a non-trivial task, as the analysis would have to
simultaneously reason about a large number of thread interleavings, along with a large
number of possible heap configurations.

Shape analysis for sequential programs is a well researched topic. Some of the promi-
nent works include [1, 2, 5, 9]. The algorithm in [9] uses 3-valued logic to abstract the
memory configurations, while the others employ separation logic.

Among the work on shape analysis for multi-threaded programs, in [11], the 3-valued
heap abstraction is used to model check concurrent Java programs. This technique may
have false negatives, as only a subset of actual execution paths are analyzed. [6] extends
the approach in [5] to prove shape properties in certain kinds of concurrent programs.
However, the algorithm, and the associated proof of soundness, is complex. [8] provides an
elegant way of dealing with multiple threads updating the heap, by decomposing the heap
into (possibly overlapping) regions. For precision, each transfer function composes some of
these regions, applies the transformer, and decomposes the resulting heap. The technique
is very general, and does not rely on any particular heap abstraction. Additionally, the
decomposition leads to significant state space savings. However, it suffers from scalability
issues, as it explores a superset of actual execution paths.

At a high level, we come up with a novel algorithm which exploits the generality and
precision of the shape analysis in [8], while leveraging the efficiency of the concurrent
dataflow analysis in [4]. In our algorithm, the user specifies regions of the heap, typically

Efficient Shape Analysis of Multithreaded Programs

183

protected by locks. At each program point, the computation then maps regions to sets
of shapes (called region sets). Our analysis runs over sync-CFGs, which only explore a
small set of paths. A sync-CFG is a graph, constructed from the control flow graphs of
static thread codes, by adding additional edges between specific pairs of synchronization
points. A prerequisite for our analysis is that the input concurrent program be free from
both data- and region-races. A region r is relevant at a program point if the statement
reads r along some actual execution. We show that our analysis computes sound and
precise shapes for relevant regions.

2 Our Algorithm

We illustrate our algorithm by partially working out an example. Consider the program in
Figure 1 (which shows the sync-CFG representation). The program consists of 3 threads,
one of which is designated as main. All the variables are assumed to be global. The
program maintains two lists, the head of each being pointed to by f1 and f2 respectively.
The main thread performs some initialization, and then spawns a couple of threads. Each
spawned thread has a producer component, and a consumer component. Thread 1 non-
deterministically adds an entry to the first list, or removes an entry from the second.
Thread 2 does the reverse, again in a nondeterministic way.

We seek to verify properties like

1. Do f1 and/or f2 point to acyclic lists?

2. Are there possible null dereferences in the program?

3. Are there memory leaks in the program?

Figure 1: Example for our analysis

Frontiers of Formal Methods 2015

184

rf1
rt1

rf1
rt1

f1 t1

n
n

(a) Shapes for Region 1 after
program point 22

f2

f2
n n

rf2

rf2 rf2

(b) Shapes for Region 2 after
program point 32

f1

t1

rf1
rt1

rf1
rt1

n n

f1 rf1 rf1
n n

(c) Shapes for Region 1 after
program point 56

Figure 2: Shapes for Regions at fixpoint. We assume that we have a cyclicity instrumen-
tation predicate c, which is true for an object if it is part of a cycle. We also assume that
the value of a predicate on an object is 0, if the the predicate is not marked on the object
in the figure.

In this example, it is natural to decompose the heap into two regions: one region
comprises the memory objects reachable from f1 (region 1), the other comprises the
objects reachable from f2 (region 2). We analyze the shapes we obtain after our analysis
attains fixpoint. After 22, we might want to ensure that the insert to list 1 does not cause
it to become acyclic or disconnected. For this, we might insert assert(acyclic(f1))

immediately before the release. The assert would constitute a read of the first region,
and would be non-racy. At fixpoint, the shapes computed for region 1, immediately after
22, are given in Figure 2a. Here, we use 3-valued logic to represent shapes. The obtained
shape indicates that after the insert operation, the linear list pointed to by f1 has no
cycles or disconnected components (as c is 0 for all the objects, and the reachability
predicate rf1 holds for all objects).

Again, if we want to verify whether removing a node from list 2 (in thread 1) maintains
the acyclicity and connectivity of the list, we could insert an assert after 32. This would
constitute a non-racy read of the region 2. The least fixpoint solution for region 2, after
32, is given in Figure 2b. Both the shapes indicate that, after the deletion, f2 points
to an acyclic list with no disconnected components (as c is 0 for all the objects, and the
reachability predicate rf2 holds for all objects).

The statement at 57 does a dereference of the object pointed to by f1. If we add an
assert(isNotNull(f1)) statement before 57, then the assert passes. This is because
the fixpoint solution for region 1, after statement 56, is given in Figure 2c. Clearly, in
all the shapes, f1 points to a memory object; thus, a dereference in the next statement
cannot cause an error.

3 Future Work

Currently, we are working on the proof of soundness, which provides a theoretical expla-
nation for why the shapes for the relevant regions are soundly approximated. We are also
working on a static analysis to detect region races. Finally, we intend to implement our
algorithm on the TVLA framework.

Efficient Shape Analysis of Multithreaded Programs

185

References

[1] Josh Berdine, Cristiano Calcagno, and Peter W Ohearn. Smallfoot: Modular auto-
matic assertion checking with separation logic. In Formal Methods for Components
and Objects, pages 115–137. Springer, 2006.

[2] Josh Berdine, Byron Cook, and Samin Ishtiaq. Slayer: Memory safety for systems-
level code. In Computer Aided Verification, pages 178–183. Springer, 2011.

[3] Ravi Chugh, Jan W Voung, Ranjit Jhala, and Sorin Lerner. Dataflow analysis for
concurrent programs using datarace detection, volume 43. ACM, 2008.

[4] Arnab De, Deepak DSouza, and Rupesh Nasre. Dataflow analysis for datarace-free
programs. In Programming Languages and Systems, pages 196–215. Springer, 2011.

[5] Dino Distefano, Peter W Ohearn, and Hongseok Yang. A local shape analysis based
on separation logic. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 287–302. Springer, 2006.

[6] Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. Thread-modular
shape analysis. In ACM SIGPLAN Notices, volume 42, pages 266–277. ACM, 2007.

[7] Jens Knoop, Bernhard Steffen, and Jürgen Vollmer. Parallelism for free: Efficient and
optimal bitvector analyses for parallel programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 18(3):268–299, 1996.

[8] Roman Manevich, Tal Lev-Ami, Mooly Sagiv, Ganesan Ramalingam, and Josh
Berdine. Heap decomposition for concurrent shape analysis. In Static Analysis,
pages 363–377. Springer, 2008.

[9] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Transactions on Programming Languages and Systems
(TOPLAS), 24(3):217–298, 2002.

[10] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio Lerda.
Model checking programs. Automated Software Engineering, 10(2):203–232, 2003.

[11] Eran Yahav. Verifying safety properties of concurrent java programs using 3-valued
logic. In ACM SIGPLAN Notices, volume 36, pages 27–40. ACM, 2001.

Frontiers of Formal Methods 2015

186

An Analysis of Universal Information Flow based on
Self-Compositions∗

Christian Müller (muellchr@in.tum.de)

Fakultät für Informatik, Technische Universität München, Germany

1 Introduction

In order to analyze the information flow properties of a program, information flow lattices
can be used which assign security levels to the program variables [2]. The program is then
deemed “secure” if there is no information flow from variables with a higher security level
to one with a lower security level. Recent work has shown that results for all possible
security lattices can be obtained from a universal information flow lattice [4]. The authors
also provide an analysis for this lattice based on type systems in [3]. In some cases, though,
their analysis may exhibit unnecessary loss in precision.

Example 1. Consider the following program:

y ← y + 1 ;
if (secret = 0) {x ← y ; y ← y + 1 ; }
else {x ← y}

This program consists of a branching construct, where the branching condition depends
on the secret. Flow-sensitive type systems such as [3] would conclude that the final value
of x may depend on the initial value of secret, since it is assigned to inside a branching
construct depending on the value of secret. A more precise analysis, however, may take
into account that both branches affect the variable x in the same way and thus conclude
that the value of secret does not influence x.

2 Weakest Precondition Calculus

Non-interference can be formulated as a hypersafety property [6, 1, 5]. Conceptually,
this can be done by comparing all pairs of executions, where the initial values of secret
variables are different but public values are equal. Then, non-interference for a variable x
holds if the final values of x are equal regardless of the initial values of the secret variables.
The authors of [5, 7] suggest to use self-compositions of programs to analyze hypersafety
properties, which represent all pairs of possible executions of the corresponding program.

∗This paper describes joint work with Máté Kovacs and Helmut Seidl.

An Analysis of Universal Information Flow based on
Self-Compositions

187

Our approach works in two phases: First, a self-composition of the program is con-
structed using the approach from [5, 7]. Then, we analyze this self-composition using an
abstract weakest precondition calculus.

Example 2. Consider again the program from Example 1. One possible self-composition
could be:

[y ← y + 1, y ← y + 1];
if(secret = 0, secret = 0) {

[x ← y , x ← y]; [y ← y + 1 , y ← y + 1];
} else if(¬secret = 0, secret = 0) {

[x ← y , x ← y]; [skip, y ← y + 1];
} else if(secret = 0,¬secret = 0) {

[x ← y , x ← y]; [y ← y + 1 , skip];
} else {

[x ← y , x ← y];
}

In a self-composition, all operations are pairs of operations of the original program (written
in square brackets) with each one operating on its respective copy of the original program
state. In our approach, a pair of operations consists either of identical operations, or
an operation and a skip instruction. A pair of identical operations carry out the same
transformation on the pair of states. To achieve a quality self-composition, we try to align
similar or identical parts of the program with each other so that equivalent transformations
of the state are executed synchronously.

Now, the value of a pair of conditionals may be different on a pair of states. Thus,
aligned conditional statements contain all four possible alignments of the two bodies of the
original statement. Similarly, aligned iterative statements are split so that it is possible
to modify only one of the states, depending on the evaluation of the conditional.

Using the self-composition from Example 2, the reader can easily check that in all
branches, x will be assigned the same value in both copies of the state. Thus, the value of
x at program exit will be equal in both copies regardless of the initial value of secret.

To analyze these self-compositions, we propose an abstract weakest precondition cal-
culus WP# which is shown in Figure 1. The result of applying WP# to a self-composition of
a program p (written WP#Jp, pK(x)) is a conjunction of atomic assertions y which denote
“both copies of y have the same value”. This conjunction is then a necessary precondition
for x to have the same final value in both copies of the state.

Here, mod is used to mean the set of variables that are potentially modified (i.e.
assigned to) by a statement. vars means the set of variables occurring in an expression.
We only specify WP# with a single variable as parameter. However, all right-hand sides
distribute over conjunctions and thus WP#Jp, pK(∧ yi) =

∧
WP#Jp, pK(yi). All preconditions

are conjunctions of either atomic assertions, structurally recursive calls, or (in the case
of an iterative statement) a monotonic fixpoint iteration. Thus, WP#Jp, pK(x) can be
computed in polynomial time.

Example 3. Consider p used in Example 1 with [p, p] from Example 2. Then WP#Jp, pK(x)
is computed as shown in Figure 2.

We have proven the correctness of WP# by relating the rules of the calculus to a Hoare
calculus on self-compositions.

Frontiers of Formal Methods 2015

188

WP#Jy ← e, y ← eKx =

{
x if x 6= y∧

vars(e) otherwise

WP#Jskip, stKx = WP#Jst, skipKx =

{
ff x ∈ mod(st)

x otherwise

WP#Js1 . . . sm, s′1 . . . s′nKx = WP#Jt1, t′1K(. . . (WP#Jtk, t′kKx) . . .)
where [s1 . . . sm, s

′
1 . . . s

′
n] = [t1, t

′
1] . . . [tk, t

′
k]

WP#

u
wwv

if (b,b) { [p, p′]; }
else if (¬b, b) { [q, p′]; }
else if (b,¬b) { [p, q′]; }
else { [q, q′];}

}
��~x =

WP#Jp, p′Kx ∧ WP#Jq, q′Kx ∧∧
vars(c)

if one of WP#Jp, p′Kx, WP#Jq, q′Kx,
WP#Jp, q′Kx or WP#Jq, p′Kx equals ff

WP#Jp, q′Kx ∧ WP#Jq, p′Kx
otherwise

WP#

u
v

while (b,b) { [p, p′]; }
while (¬b, b) { [skip, p′]; }
while (b,¬b) { [p, skip]; }

}
~x =

{
x if x 6∈ mod(p) ∪mod(p′)

WP#Jp, p′K∗(∧ vars(c) ∧ x) otherwise

Figure 1: Conjunctive definition of WP#.

Theorem 1. Assume that WP#Jp, p′Kϕ = ψ for program fragments p and p′. Then ψ is a
precondition for ϕ, i.e. whenever ψ holds in the initial states of p and p′, ϕ holds in the
final states.

Using WP#, we now have a means to calculate the set of variables on which the final
value of a variable x may depend. We can use this method to build an analysis of
information flow. As stated earlier, noninterference holds iff the final values of a variable
x are always equal regardless of the initial values of secret variables. Thus, we can encode
noninterference in the following way: Suppose for a program p that we have a partition
of the set of variables into H (the secret variables) and L (the public variables). Then
noninterference holds for a variable x iff

∧

y∈L
y ⇒ WP#Jp, pK(x)

Example 4. Continuing Example 3, suppose we have H = {secret} and L = {x, y}. As
we have seen, WP#Jp, pKx = y. Thus, noninterference holds for x.

We can also consider a more general formulation of information flow. Here, we do
not consider a specific partition of the variables into sets H and L, but rather arbitrarily
many confidentiality levels (an arbitrary security lattice). As shown in [4], information
flow properties for any given security lattice can be proven by analyzing if noninterference
holds for all possible partitions of variables into two sets H and L. This is called universal
information flow analysis.

There are exponentially many possible partitions of the set of variables. However,
since WP# distributes over conjunctions, we can compute the results WP#Jp, pK(x) for every
variable x in p and combine the results to find results for a specific partition. This means

An Analysis of Universal Information Flow based on
Self-Compositions

189

WP#Jy ← y + 1, y ← y + 1K(

WP#

u
wwwwwwwwwwwwv

if(secret = 0, secret = 0) {
[x ← y , x ← y]; [y ← y + 1 , y ← y + 1];

} else if(¬secret = 0, secret = 0) {
[x ← y , x ← y]; [skip, y ← y + 1];

} else if(secret = 0,¬secret = 0) {
[x ← y , x ← y]; [y ← y + 1 , skip];

} else {
[x ← y , x ← y];

}

}
������������~

(x)

)

where:

WP#Jx← y, x← yK(WP#Jy ← y + 1, y ← y + 1K(x)) = y
WP#Jx← y, x← yK(x) = y
WP#Jx← y, x← yK(WP#Jy ← y + 1, skipK(x)) = y
WP#Jx← y, x← yK(WP#Jskip, y ← y + 1K(x)) = y

therefore: WP#Jy ← y + 1, y ← y + 1K(y ∧ y)
= WP#Jy ← y + 1, y ← y + 1K(y)
= y

Figure 2: Example computation of WP#.

we only need a polynomial amount of WP# computations to find results for all possible
security lattices. Thus, our approach realizes an analysis of universal information flow
that can be computed in polynomial time in the size of the self-composition of the program
and its amount of variables.

3 Comparison to Type Systems

We have proven that our analysis is in all cases at least as precise as the analysis detailed
in [4, 3]. For that, we have related it to a set-based precondition calculus and proven that
our calculus will always yield results that are at least as precise.

4 Conclusion

In this paper, we have introduced an analysis of universal information flow based on an
abstract weakest precondition computation of self-compositions of programs. The results
can be computed in polynomial time and are always at least as precise as those found by
the analysis shown in [4, 3] which is based on type systems. As shown in the running
example, there are even simple cases where our analysis finds more precise results.

References

[1] Gilles Barthe, Juan Manuel Crespo, and César Kunz. “Beyond 2-Safety: Asymmetric
Product Programs for Relational Program Verification”. In: Logical Foundations of

Frontiers of Formal Methods 2015

190

Computer Science, International Symposium, (LFCS). Ed. by Sergei N. Artëmov and
Anil Nerode. 2013, pp. 29–43.

[2] Dorothy E. Denning and Peter J. Denning. “Certification of Programs for Secure
Information Flow”. In: Commun. ACM 20.7 (1977), pp. 504–513.

[3] Sebastian Hunt and David Sands. “From Exponential to Polynomial-Time Security
Typing via Principal Types”. In: Programming Languages and Systems - 20th Euro-
pean Symposium on Programming, (ESOP). Ed. by Gilles Barthe. 2011, pp. 297–316.
doi: 10.1007/978-3-642-19718-5_16.

[4] Sebastian Hunt and David Sands. “On flow-sensitive security types”. In: Proceed-
ings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, (POPL). Ed. by J. Gregory Morrisett and Simon L. Peyton Jones. 2006,
pp. 79–90.

[5] Máté Kovács, Helmut Seidl, and Bernd Finkbeiner. “Relational abstract interpreta-
tion for the verification of 2-hypersafety properties”. In: ACM Conference on Com-
puter and Communications Security, (CCS). Ed. by Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung. ACM, 2013, pp. 211–222. isbn: 978-1-4503-2477-9.

[6] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. “Dependent Type The-
ory for Verification of Information Flow and Access Control Policies”. In: ACM Trans.
Program. Lang. Syst. 35.2 (2013), p. 6.

[7] Helmut Seidl and Máté Kovács. “Interprocedural Information Flow Analysis of XML
Processors”. In: Language and Automata Theory and Applications - 8th International
Conference, (LATA). Ed. by Adrian Horia Dediu et al. 2014, pp. 34–61.

An Analysis of Universal Information Flow based on
Self-Compositions

191

Frontiers of Formal Methods 2015

192

Are Good-for-games Automata Good for Probabilistic
Model Checking?

David Müller
joint work with Joachim Klein, Christel Baier and Sascha Klüppelholz[5]

(david.mueller@tcs.inf.tu-dresden.de)

Research Training Group 1763 “Quantitative Logics and Automata”

1 Introduction
The growing complexity and dependence on computational systems in our every day life
requires formal methods for verification to ensure liveness and safety. Classical model
checking analyzes whether a system satisfies certain properties. In the standard approach
transitions system are considered as systems. For property specification there exist several
logics such as linear temporal logic (LTL) and computation tree logic. A formula in
linear temporal logic can be translated to an equivalent nondeterministic Büchi automaton
(NBA) which can cause an exponential blowup in the size of the LTL formula. Then the
analysis of the system can be carried out in the product of the transition system and the
NBA.

Randomized algorithms provide an elegant way for solving problems like leader elec-
tion, avoiding deadlocks or consensus problems. Analyzing a randomized algorithm can be
done via probabilistic model checking (PMC). A basic representation of purely probabilis-
tic behavior is a Markov chain. Adding the concept of nondeterminism yields the notion
of a Markov decision process (MDP). As in the classical setting, one can employ LTL
for property specification, but for probabilistic systems, the nondeterminism of an equiv-
alent NBA does not allow a direct use. Therefore determinization is necessary. Various
determinization procedures exists, Safra’s determinization [9] being the most prominent.

For certain scenarios the circumvention of determinization has been developed. Hen-
zinger and Piterman [4] defined the notion of good-for-games (GFG) restricting the non-
deterministic choices. The key idea is, that for every finite prefix w of an accepted word,
one can give an according finite path π in the automaton, such that π can be completed
to an accepting infinite path, if w is completed to an accepting infinite word. Additionally
a translation algorithm, called HP-algorithm here, for NBA to GFG parity automata has
been proposed, which is amenable to symbolic computation. We will analyze how we can
employ GFG automata for probabilistic model checking. On a theoretic level, we will show
a GFG-based method to calculate minimal or maximal probabilities for ω-regular proper-
ties given by a GFG automaton in finite-state Markov decision processes. Afterwards we
evaluate the HP-algorithm based on our symbolic implementation and the GFG-based
MDP analysis based on a PRISM extension. Details can be found in our main paper [5].

Are Good-for-games Automata Good for Probabilistic
Model Checking?

193

2 GFG based analysis of Markov decision processes
We turn to computing minimal or maximal probabilities in an MDP M for a given ω-
regular language imposed by a nondeterministic ω-automaton A. As formal syntax for
an MDP we use M = (S, Act, P, s0, AP, ℓ), where S is the set of states, Act is the set
of actions, P is the transition probability function, s0 is the initial state, AP the set
of atomic propositions, and ℓ the state labeling function. For building a product MDP
M ⊗ A, we redefine the standard notion (see e.g. [1]) of a product MDP As actions we
now take pairs ⟨α, q⟩ consisting of an action α of the original MDP and an automaton
state q. The precise definition for M ⊗ A given a MDP M = (S,Act, P, s0, AP, ℓ) and a
complete nondeterministic automaton A = (Q, q0, Σ, δ, Acc) is as follows:

M ⊗ A = (S × Q,Act × Q,P ′, ⟨s0, q0⟩ , AP, ℓ′)

where the transition probability distribution is P ′(⟨s, q⟩ , ⟨α, p⟩ , ⟨s′, q′⟩) = P (s, α, s′) if
p = q′ ∈ δ(q, ℓ(s)) holds, and P ′(⟨s, q⟩ , ⟨α, p⟩ , ⟨s′, q′⟩) = 0 otherwise. The labels function
is given by the projection to the second component ℓ(⟨s, q⟩) = q. Thus, traces of M ⊗ A
are infinite words over the alphabet Q. Therefore we can treat Acc as property over the
paths in M ⊗ A.

Theorem 1 (GFG based analysis of MDP) For each MDP M and nondeterministic
ω-automaton A as above:

(a) Prmax
M⊗A

(
Acc

)
≤ Prmax

M
(
A

)

(b) If A is good-for-games then: Prmax
M⊗A

(
Acc

)
= Prmax

M
(
A

)

From Theorem 1 we know that the methods known from the quantitative analysis
of MDPs against deterministic ω-automata specifications are also applicable for GFG
automata provided a slight modification of the product MDP.

Kupferman et al. [7, 6] have shown a double exponential blowup as lower bound in
the worst case for the size of deterministic automata equivalent to an LTL formula. This
proof can be adopted to GFG automata yielding a double exponential lower bound as
well.

We implemented three heuristics. The first one concerns the state space. As proposed
in [4] we loosened a constraint on the state space. This loosening yields more states but
smaller BDD sizes. We refer to this variant as loose variant. Furthermore we implemented
the suggested early stop of the construction, if the automaton already satisfies the GFG
property. To check whether an automaton is GFG we used an own game-based approach.
We refer to this heuristic as iterative variant. At last we used the fact, that the GFG
property is preserved by the standard product construction for the union. We refer to
this variant as union construction.

3 Implementation and Experiments
We investigate on our implementation of the HP-algorithm LTL2GFG in comparison with
LTL2DSTAR. Both implementations start with an LTL formula φ and employ LTL2BA to
transform φ into an (explicitly represented) NBA. According to the HP-algorithm LTL2GFG
creates a symbolically represented GFG automaton, whereas LTL2DSTAR creates an deter-
ministic Rabin automaton according to Safra’s algorithm, which is then converted to a
symbolic representation.

Frontiers of Formal Methods 2015

194

We report here on formulas known from [3, 10, 2]. All our experiments were carried
out on a computer with 2 Intel E5-2680 8-core CPUs at 2.70 GHz with 384 GB of RAM
running Linux. We set a memory limit of 10 GB and a time limit of 30 minutes for each
formula.

Table 1: Statistics for the automata Aφ constructed for the 94 benchmark formulas.
Number of Aφ constructed within a given timeframe and a given range of BDD sizes.

Aφ with constr. time Aφ with BDD size
aborted <1s <10s <1m <30m <10 <102 <103 <104 <105 ≥105

LTL2DSTAR std. 0 90 91 92 94 4 65 87 90 91 3
no opt. 0 90 90 92 94 3 48 78 89 90 4

LTL2GFG std. 39 40 47 48 55 3 6 19 26 36 19
std., dynamic 45 34 36 48 49 5 8 19 36 39 10

loose, dynamic 34 43 49 56 60 5 14 31 47 56 4
lo., union, dyn. 29 52 59 61 65 4 13 35 54 60 5

lo., iterative 20 74 74 74 74 3 19 39 60 74 0
lo., it., un., dyn. 18 70 72 74 76 4 32 63 70 76 0

Table 1 gives an impression how many automata could be constructed within a given
time frame. Whereas LTL2DSTAR could generate all automata within 30 minutes, the most
of them in a few seconds, LTL2GFG was only able to generate around 60% of the automata
with its standard HP algorithm, increasing to 80% for the best variant. The loose variant
by itself had a mixed effect, but in conjunction with dynamic reordering was generally
beneficial. Our iterative heuristic was successful as well in obtaining smaller automata,
because one or two iterations were already sufficient for around 72% of the formulas. For
disjunctive formulas the union construction was also very beneficial. Table 2 lists the sizes
of the automata in terms of the number of reachable states for some selected formulas.
Missing entries means a time-out. The GFG automaton for the formula □♢a → □♢b could
not be constructed by the standard HP-algorithm. For the loose variant, the automaton
has 3.3 · 109 states. With the union heuristics, the size of the automaton shrinks to 5329
states. Table 3 lists the size of the automata in terms of the according BDD size for the
transition function.

Both Table 2 and Table 3 were generated with dynamic reordering of the variable
order activated.

Table 2: Detailed statistics for example formulas: number of reachable states
Formula LTL2GFG LTL2DSTARstandard loose union, loose it., loose union, it., loose

true 3 3 3 3 3 2
a 6 8 8 4 4 3

a → b 6 8 50 4 10 3
♢a 16 46 46 6 6 2

□♢a 33 73 73 9 9 2
□♢a → □♢b − 2.2 · 109 3358 − 414 4

aUb 16 46 46 6 6 3
□(a → ♢b) 33 73 73 9 9 4

Are Good-for-games Automata Good for Probabilistic
Model Checking?

195

Table 3: Detailed statistics for example formulas: size of the transition function BDD
Formula LTL2GFG LTL2DSTARstandard loose union, loose it., loose union, it., loose

true 7 7 7 7 7 3
a 59 46 46 17 17 11

a → b 78 48 90 18 32 13
♢a 123 85 85 22 22 6

□♢a 136 70 70 27 27 5
□♢a → □♢b − 12710 149 − 107 8

aUb 132 102 102 23 23 15
□(a → ♢b) 182 97 97 31 31 13

For our PRISM experiment we took a PRISM model [8] from the PRISM benchmark
suite. We evaluate the performance using the hand-shaking routine of the or WLAN
carrier sense protocoll of IEEE 802.11. We checked six LTL formulas concerning the
correct behavior of the Wifi stations even if collisions occurs, that means even if two
stations send a message at the same time.

In all experiments the GFG automata generation time was less than a second. This
allows a fair comparison of the standard PRISM approach using DRA.

Table 4: Results for model checking with PRISM and different variants of LTL2GFG
std. loose dyn.,loose un.,loose it.,loose it.,loose,dyn. it.,un.,loose

tGFG < 3 · tSTD 0 1 1 0 0 0 5
tGFG < 7 · tSTD 5 5 5 10 9 7 11
tGFG < 20 · tSTD 15 15 14 19 21 18 22

tGFG ≤ 30 min 34 31 33 35 35 35 36

Aborted 2 5 3 1 1 1 0

Table 4 gives a summary for the time consumption we measured. We refer to the
baseline time spent using the standard approach in PRISM as tSTD and to the time spent
using the GFG approach (when there was no timeout) as tGFG. For example, if we consider
the loose variant with active iterative approach, in 9 of the 36 cases the running time of
PRISM with the GFG approach was within the time spent by the standard PRISM approach
multiplied by the factor 7. As can be seen, the variant with loose, union and iterative
heuristics fared well in general.

Interestingly, the automata generated with active dynamic reordering in some cases
fared significantly worse than those using the initial variable ordering. As PRISM does
not support a reordering of the variables, the BDD representation of the GFG automaton
is optimized by the dynamic reordering in LTL2GFG for the stand-alone representation.
Clearly, this variable ordering may not be optimal for the product with the MDP.

4 Conclusion
We have shown that GFG automata can replace deterministic automata for the quantita-
tive analysis of MDPs against ω-regular specifications without increasing the asymptotic
worst-case time complexity. Our experimental results are a bit disappointing, as the
generated GFG automata were often larger than DRA generated by the implementation

Frontiers of Formal Methods 2015

196

of Safra’s algorithm in LTL2DSTAR, both in the number of states and in the symbolic
BDD-based representations.

Thus, our empirical results are in contrast to the expectation that the HP-algorithm
yields GFG automata that are better suited for symbolic approaches than DRA generated
by Safra’s algorithm.

In the context of probabilistic model checking, the GFG-based approach consumed
more time and memory than the approach with deterministic automata.

Our negative empirical results might be an artifact of the HP-algorithm, which is –
to the best of our knowledge – the only known algorithm for the generation of GFG
automata that are not deterministic. Future directions are the design of other algorithms
for the construction of succinct GFG automata.

References
[1] C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.
[2] M. Dwyer, G. Avrunin, and J. Corbett. “Patterns in Property Specifications for Finite-

State Verification”. In: ICSE’99. ACM, 1999, pp. 411–420.
[3] K. Etessami and G. Holzmann. “Optimizing Büchi Automata”. In: CONCUR’00. Vol. 1877.

LNCS. Springer, 2000, pp. 153–167.
[4] T. Henzinger and N. Piterman. “Solving games without determinization”. In: CSL’06.

Vol. 4207. LNCS. Springer, 2006, pp. 395–410.
[5] J. Klein et al. “Are Good-for-Games Automata Good for Probabilistic Model Checking?”

In: LATA’14. Vol. 8370. LNCS. Springer, 2014, pp. 453–465.
[6] O. Kupferman and A. Rosenberg. “The blowup in translating LTL to deterministic au-

tomata”. In: MoChArt’11. Vol. 6572. LNCS. Springer, 2011, pp. 85–94.
[7] O. Kupferman and M. Vardi. “From linear time to branching time”. In: ACM Transactions

on Computational Logic 6.2 (2005), pp. 273–294.
[8] M. Kwiatkowska, G. Norman, and J. Sproston. “Probabilistic Model Checking of the

IEEE 802.11 Wireless Local Area Network Protocol”. In: PAPM-PROBMIV’02. Vol. 2399.
LNCS. Springer, 2002, pp. 169–187.

[9] S. Safra. “On the complexity of ω-automata”. In: FOCS’88. IEEE, 1988, pp. 319–327.
[10] F. Somenzi and R. Bloem. “Efficient Büchi Automata from LTL Formulae”. In: CAV’00.

Vol. 1855. LNCS. Springer, 2000, pp. 248–263.

Are Good-for-games Automata Good for Probabilistic
Model Checking?

197

Frontiers of Formal Methods 2015

198

A verified LTL model checker – An overview

René Neumann (rene.neumann@in.tum.de)

Technische Universität München

When confronted with the question whether a particular software is free of bugs, only
a minority of developers would answer “Yes!”. This holds even more for high-performance
software, where highly complicated algorithms and non-trivial data structures are used.

A measure to counter this problem is to prove the correctness of the particular program1.
There exist projects like seL4 [7] which go that way even for complex systems. But in
general this is not feasible for each and every program. Therefore other approaches can
be used, which at least increase confidence or ensure some critical properties to hold. An
example for such an approach are model checkers. Due to their role as a trust-multiplier
their verdict must not be wrong. Now the recursion begins – or as [17] puts it: “Quis
custodiet ipsos custodes?” – “Who will watch the watchmen?”

Again, this can be solved in different ways, and Gava et al. [4] give an overview. One
particular way has been chosen by us in a previous paper [2]: Let’s verify a model checker!
We presented a reference implementation of an LTL model checker for finite-state systems
à la SPIN [6], going by the name of CAVA. For its development and verification we use the
interactive theorem prover Isabelle/HOL [15]. This allows us to formalize our algorithms
and their intended properties in the logic HOL, and also prove that the properties actually
hold on those algorithms. Furthermore, Isabelle/HOL has a builtin code-generator [5]
which allows exporting our algorithm definitions into a set of target languages (e. g., ML,
OCaml, Haskell, Scala) while preserving the correctness properties. Hence, as the final
product we receive an executable program.

Our model checker CAVA follows the well-known automata-theoretic approach [20]:
Given a finite-state program P and a formula φ, two Büchi automata are constructed that
recognize the executions of P , and all potential executions of P that violate φ, respectively.
Then the product of the two automata is computed and tested on-the-fly for emptiness.
This thereby touches multiple fields: We have automata theory, temporal logic (LTL),
parsers and compilers (for the modeling of P), and, for the result should be somewhat
efficient, efficient data-structures.

Even though we did not reinvent everything from scratch (the incorporation of efficient
data structures is, for example, taken care of by the Isabelle Collections Framework [10]),
the project spawned multiple results besides the model checker itself: One of particular
importance is the development of a refinement framework [12]. This framework allows to
specify and reason about an abstract algorithm which can then be refined to more efficient
variants while carrying over the properties – the development approach used throughout
the whole project. Other results include automata formalizations [8], algorithms for the
emptiness check [9], and the translation of LTL formulas into Büchi automata [16].

1We are not going to hinder ourselves here by reflecting on how correctness can be actually specified.

A verified LTL model checker

199

My results, which will be described in the following, cover mostly two fields: Easing
development and verification of algorithms involving depth-first search [13, 11], and using
the same modeling language as SPIN: Promela [14].

As it turned out, most algorithms for on-the-fly emptiness checking are based on
depth-first search (DFS) and are very similar to each other (see for example Zhao et
al. [22]). In order to reduce the verification work, the goal to develop a general framework
for (most) depth-first algorithms evolved. A first approach to this was presented in [13], a
second improved version is presented in [11].

The overall idea for such a framework is to distinguish between a general skeleton DFS
algorithm (descend through the graph in a, well, depth-first manner), and the specific
behavior. The latter is implemented by parametrizing the general algorithm with different
hooks specifying the actions to take on different occasions (e. g., reaching a node, finishing
a node, aborting condition). To this structure, we add data: The algorithm passes around
a state which contains anything deemed useful (set of visited nodes, set of finished nodes,
timestamps for both actions, different sets of edges, etc.). Additionally, some opaque
extension is added which can be used by the implementation for its own purposes and is the
only part of the state which can be changed by the hooks. The final DFS implementation
is then represented by its set of hooks.

While such a framework urges a developer to press the algorithm into a corset, it
has quite some advantages: A large amount of properties about DFS (e. g., Parenthesis
Theorem, White-Path-Theorem) are independent of the specific implementation and thus
can be shown beforehand, instead of having to be re-done for each implementation. For
simple algorithms, like a cyclicity checker, this results in the complete correctness proof
needing only a couple of lines (see [11] for details). Additionally, the structure of the
framework allows the author to prove the properties step-by-step. This is an advantage,
for one would typically create a large invariant that has to hold throughout the algorithm
and would comprise all the different necessary properties. To then prove the validity of
this invariant would result in a very large proof, where all the different properties are
intertwined.

A further advantage of such a framework is its assistance in generating efficient code for
the algorithm. While the support is provided by Isabelle/HOL itself [5], not all definitions
are exportable – and even when they are, their performance may be far below par (e. g.,
when using sets). Using the Isabelle Refinement and Collections Frameworks [12, 10] it
was made easier to refine from abstract to concrete level and even automatically replace
data structure by more efficient counter-parts, but this still involves some setup and often
non-trivial proofs. Especially a recursive algorithm like DFS can be tricky. Using the
framework’s inherent seperation of concerns is therefore a great help for the developer:
For the general skeleton algorithm different optimizations exist (e. g., whether to use a
recursive or a tail-recursive style), from which the developer simply has to choose. The
effort can thus be focused on the hooks. With [11] we further gained the ability to reduce
the content of the DFS state when transfering from the abstract to the concrete level, so
that information can be used in the proof which does not need to be collected in the final
exported code – this was a great improvement over [13], where each additional field in the
state resulted in a performance penalty.

With the help of the framework, we were able to formalize different algorithms involving
DFS, from simple cyclicity checkers, over counter-example searches and nested DFS to

Frontiers of Formal Methods 2015

200

complex algorithms like Tarjan’s algorithm for finding the SCCs of a graph [19].

My second larger contribution to the verified model-checker is a formalization of
Promela, as described in [14]: Promela [1] is a modeling language, which is mainly used
in the model checker SPIN [6]. As SPIN is the explicit state LTL model-checker we
compare ourselves with, our aim is to gain as much compatibility to it as possible. This,
of course, involves supporting the same input, as otherwise runtimes and even results are
not necessarily comparable.

The challenge when adding the support for Promela to CAVA is its lack of proper
documentation: While documents exist that detail the semantics of constructs, they are
targeted for the modeling audience, i. e., they are quite often rather vague. The existing
formal work on Promela (e. g., [21, 3, 18]) is not sufficient, partly because some is outdated,
but mainly because there is no guarantee of it being semantically identical to SPIN. Hence,
they enhance the understanding, but do not make up for the lack of (official) semantics.
For those reasons, some semantic properties had to be determined using SPIN as a black
box: Pass the same input to SPIN and CAVA and examine the generated automata. This,
of course, still does not guarantee the semantics to match, but, as they generate something
executable, can be tested, at least.

Also, as SPIN translates the model to a C program, some semantics are designed to fit
C (e. g., var and var[0] are identical, or the range of types is defined by the C-compiler
and not by the language specification) and sometimes hard or impossible to model in a
functional language (e. g., printf). Furthermore, some semantics in Promela are rather
exotic: For example, starting a new process is not a statement but an expression – with
the additional restriction that the expression must not be too complex. Because of this,
only a subset of Promela could be implemented, but this turned out to be enough to work
with 252 of 306 tests of a benchmark suite and it was taken care to bail out on models
where the semantics of SPIN and CAVA differ.

Using those benchmarks, we could do the first runtime comparison of CAVA and SPIN
on the same models (in [2], the models where given as a Boolean Program for CAVA),
showing that CAVA is about 20 times slower than an unoptimized SPIN – a very good
result for a verified and automatically generated model checker. One also needs to keep in
mind that SPIN generates an explicit program for each model, while CAVA interpretes it
at runtime. Hence, one can conclude that we indeed have a very usable result.

References

[1] Promela manual pages. http://spinroot.com/spin/Man/promela.html. Accessed:
2013-02-07.

[2] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J.-G. Smaus. A
fully verified executable LTL model checker. In N. Sharygina and H. Veith, editors,
CAV, volume 8044 of LNCS, pages 463–478. Springer, 2013.

[3] M. d. M. Gallardo, P. Merino, and E. Pimentel. A generalized semantics of PROMELA
for abstract model checking. Formal Aspects of Computing, 16(3):166–193, 2004.

A verified LTL model checker

201

[4] F. Gava, J. Fortin, and M. Guedj. Deductive verification of state-space algorithms.
In E. B. Johnsen and L. Petre, editors, IFM, volume 7940 of LNCS, pages 124–138.
Springer, 2013.

[5] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In
M. Blume, N. Kobayashi, and G. Vidal, editors, FLOPS, volume 6009 of LNCS, pages
103–117. Springer, 2010.

[6] G. J. Holzmann. The Spin Model Checker — Primer and Reference Manual. Addison-
Wesley, 2003.

[7] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
formal verification of an OS kernel. In J. N. Matthews and T. E. Anderson, editors,
Proc. ACM Symp. Operating Systems Principles, pages 207–220. ACM, 2009.

[8] P. Lammich. The CAVA automata library. In Isabelle Workshop 2014, 2014.

[9] P. Lammich. Verified efficient implementation of Gabow’s strongly connected compo-
nent algorithm. In G. Klein and R. Gamboa, editors, ITP, volume 8558 of LNCS,
pages 325–340. Springer, 2014.

[10] P. Lammich and A. Lochbihler. The Isabelle Collections Framework. In M. Kaufmann
and L. C. Paulson, editors, ITP, volume 6172 of LNCS, pages 339–354. Springer,
2010.

[11] P. Lammich and R. Neumann. A framework for verifying depth-first search algorithms.
In CPP, pages 137–146. ACM, 2015.

[12] P. Lammich and T. Tuerk. Applying data refinement for monadic programs to
Hopcroft’s algorithm. In L. Beringer and A. Felty, editors, ITP, volume 7406 of LNCS,
pages 166–182. Springer, 2012.

[13] R. Neumann. A framework for verified depth-first algorithms. In A. McIver and
P. Höfner, editors, Proc. of the Workshop on Automated Theory Exploration (ATX
2012), pages 36–45. EasyChair, 2012.

[14] R. Neumann. Using Promela in a fully verified executable LTL model checker. In
D. Giannakopoulou and D. Kroening, editors, VSTTE, volume 8471 of LNCS, pages
105–114. Springer, 2014.

[15] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[16] A. Schimpf and J. Smaus. Büchi automata optimisations formalised in Isabelle/HOL.
In M. Banerjee and K. S., editors, ICLA, volume 8923 of LNCS, pages 158–169.
Springer, 2015.

[17] N. Shankar. Trust and automation in verification tools. In S. Cha, J.-Y. Choi,
M. Kim, I. Lee, and M. Viswanathan, editors, ATVA, volume 5311 of LNCS, pages
4–17. Springer, 2008.

Frontiers of Formal Methods 2015

202

[18] A. Sharma. A refinement calculus for Promela. In ICECCS, pages 75–84. IEEE, 2013.

[19] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1(2):146–160, 1972.

[20] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In LICS, pages 332–344. IEEE Computer Society, 1986.

[21] C. Weise. An incremental formal semantics for PROMELA. In Proceedings of the 3rd
International SPIN Workshop, 1997.

[22] L. Zhao, J. Zhang, and J. Yang. Advances in on-the-fly emptiness checking algorithms
for Büchi automata. In ICACI, pages 113–118. IEEE, 2012.

A verified LTL model checker

203

Frontiers of Formal Methods 2015

204

Strategy Logic: a Powerful Tool for Game Theoretic

Issues

Giuseppe Perelli∗(giuseppe.perelli@unina.it)

1 Extended Abstract

In open-system verification, a fundamental area of research is the study of modal logics for
strategic reasoning [1]. An important contribution in this field has been the development
of Alternating-Time Temporal Logic (ATL?, for short), introduced by Alur, Henzinger,
and Kupferman [1]. Formally, it is obtained as a generalization of the logic CTL?, where
the path quantifiers there exists “E” and for all “A” are replaced with strategic modali-
ties of the form “〈〈A〉〉” and “[[A]]”, for a set A of agents. These modalities are used to
express cooperation and competition among agents in order to achieve a temporal goal.
Several decision problems have been investigated about ATL?; both its model-checking
and satisfiability problems are decidable in 2ExpTime [2], just like they are for CTL?.
Despite its powerful expressiveness, ATL? suffers from two strong limitations: 1) strate-
gies are treated only implicitly through modalities that refer to games between competing
coalitions and 2) strategic modalities represent coupled ∃∀ and ∀∃ quantifications over
strategies. To overcome this problem, Chatterjee, Henzinger, and Piterman introduced
Strategy Logic (CHP-SL, for short) [3],which treats strategies in two-player turn-based
games as first-order objects. The explicit treatment of strategies makes this logic very
useful and more expressive than ATL?, however, it still suffers from severe limitations. In
particular, it is limited to two-player turn-based games and does not allow different players
to share the same strategy, suggesting that strategies have yet to become truly first-class
objects in this logic. For example, it is impossible to describe the classic strategy-stealing
argument of many real-life combinatorial games.

These considerations has led us to introduce and investigate a new Strategy Logic,
denoted SL, as a more general framework than CHP-SL, for explicit reasoning about
strategies in multi-agent concurrent games [4]. Syntactically, SL extends the logic LTL
by means of strategy quantifiers, the existential 〈〈x〉〉 and the universal [[x]], as well as
agent binding (a, x), where a is an agent and x a variable. Intuitively, these elements
can be read as “there exists a strategy x”, “for all strategies x”, and “bind agent a to the
strategy associated with x”, respectively. The price that one has to pay for the expres-
siveness of SL w.r.t. ATL? is the lack of important model-theoretic properties and an
increased complexity of related decision problems. In particular, in [5, 4], it was shown
that SL does not have the bounded-tree model property and the satisfiability problem is
highly undecidable. Moreover, in [6, 5], it was shown that the model checking problem is

∗Joint works with Orna Kupferman, Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi

Strategy Logic

205

nonelementary-complete (we recall that also for CHP-SL it is known to be nonelemen-
tary, while it is open the question whether it is nonelementary-hard).

The negative complexity results on the decision problems of SL with respect to ATL?,
provide motivations for an investigation of decidable fragments of SL, strictly subsuming
ATL?, with a better complexity. In particular, by means of these sublogics, one may
understand why SL is computationally more difficult than ATL?. The main fragments
we have investigated and studied are Nested-Goal, Boolean-Goal, and One-Goal Strategy
Logic, respectively denoted by SL[ng], SL[bg], and SL[1g]. They encompass formulas
in a special prenex normal form having nested temporal goals, Boolean combinations of
goals, and a single goal at a time, respectively. For goal we mean an SL formula of the
type [ψ, where [is a binding prefix of the form (α1, x1), . . . , (αn, xn) containing all the
involved agents and ψ is an agent-full formula. In SL[1g], each temporal formula ψ is
prefixed by a quantification-binding prefix ℘[that quantifies over a tuple of strategies and
binds them to all agents.

As main results about these fragments, we have proved that the satisfiability and
model-checking problems for SL[1g] are 2ExpTime-complete, thus not harder than the
one for ATL?. On the contrary, for SL[ng], the model checking problem is nonelementary
and the satisfiability is undecidable. Finally, we observe that SL[bg] includes CHP-SL,
the relative model-checking problem relies between 2ExpTime and NonElementary,
while the satisfiability problem is undecidable.

To achieve all positive results about SL[1g], we use a fundamental property of the se-
mantics of this logic, called behavioral, which allows us to strongly simplify the reasoning
about strategies by reducing it to a step-by-step reasoning about which action to perform.
This intrinsic characteristic of SL[1g], which unfortunately is not shared by the other two
fragments, asserts that, in a determined history of the play, the value of an existential
quantified strategy depends only on the values of strategies, from which the first depends,
on the same history. This means that, to choose an existential strategy, we do not need to
know the entire structure of universal strategies, as for SL, but only their values on the
histories of interest. By means of behavioral, we can solve the SL[1g] decision problems
via alternating tree automata in such a way that we avoid the projection operations by
using a dedicated automaton that makes an action quantification for each node of the tree
model. As this automaton is only exponential in the size of the formula (and independent
from its alternation number) and its nonemptiness can be computed in exponential time,
we get that both model-checking and satisfiability for SL[1g] are 2ExpTime. Clearly,
the behavioral property also holds for ATL?, as it is included in SL[1g]. In particular,
although it has not been explicitly stated, this property is crucial for most of the results
achieved in literature about ATL? by means of automata.

All the results reported in this paper come from [4, 5, 6, 7]. The interested reader can
refer to these works to find more motivations, examples and related material.

1.1 Informal definitions and examples

Due to lack of space, we report here only the informal definitions of the syntax and the
semantic framework of Strategy Logic. For a complete and more precise treatment, we
strongly recommend to refer to [5].

SL syntactically extends LTL by means of two strategy quantifiers, the existential

Frontiers of Formal Methods 2015

206

〈〈x〉〉 and the universal [[x]], and agent binding (a, x), where a is an agent and x is a variable.
Intuitively, these new elements can be respectively read as “there exists a strategy x”, “for
all strategies x”, and “bind agent a to the strategy associated with the variable x”. SL
formulas are built inductively from the sets of atomic propositions AP, variables Vr, and
agents Ag, by using the following grammar, where p ∈ AP, x ∈ Vr, and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ.

SL denotes the infinite set of formulas generated by the above rules.
In order to practice with the syntax of our logic and express game-theoretic concepts

through formulas, we describe two examples of important properties that are possible to
write in SL. The first concept we introduce is the well-known deterministic concurrent
multi-player Nash equilibrium for Boolean valued payoffs.

Example 1.1 (Nash Equilibrium) Consider the n agents α1, . . . , αn of a game, each
of them having, respectively, a possibly different temporal goal described by one of the LTL
formulas ψ1,. . ., ψn. Then, we can express the existence of a strategy profile (x, . . . , xn)
that is a Nash equilibrium (NE, for short) for α1, . . . , αn w.r.t. ψ1, . . . , ψn by using the SL
sentence ϕNE , 〈〈x〉〉(α1, x) · · · 〈〈xn〉〉(αn, xn) ψNE, where ψNE ,

∧n
i=1(〈〈y〉〉(αi, y)ψi) → ψi.

Informally, this asserts that every agent αi has xi as one of the best strategy w.r.t. the goal
ψi, once all the other strategies of the remaining agents αj, with j 6= i, have been fixed to
xj. Note that here we are only considering equilibria under deterministic strategies.

Example 1.2 (Rational Synthesis) Rational Synthesis [8, 7] is a generalization of the
classical problem of synthesis in which the environment is supposed to be composed by a
set of agents, each of them having their own temporal goal. For a given solution concept,
e.g., dominant strategy, Nash Equilibrium, the system has to satisfy its goal according to
the rational behavior of the environment agents. For a given set of temporal goals and a
solution concept, there are two variants of rational synthesis. The first one, called cooper-
ative, asks for a strategy profile satisfying the system goal and such that the environment
agents are in the solution concept equilibrium. The second, called non-cooperative, asks
for a system strategy satisfying the system goal, no matter which is the strategy profile
for the environment that is in the solution concept equilibrium. It is easy to see that, for
a solution concept γ that is representable in SL by means of Φγ, we can formulate the
rational synthesis problems as follows:

• Cooperative: ϕC := 〈〈x〉〉〈〈x〉〉 . . . 〈〈xk〉〉(ϕγ ∧ ψ0);

• Non-Cooperative: ϕN := 〈〈x〉〉[[x]] . . . [[xk]](ϕγ → ψ0).

As semantic framework for our logic language, we use a graph-based model for multi-
player games named concurrent game structure [1]. Intuitively, this mathematical formal-
ism provides a generalization of Kripke structures and labeled transition systems, modeling
multi-agent systems viewed as games, in which players perform concurrent actions chosen
strategically as a function on the history of the play.

A concurrent game structure (CGS , for short) is a tuple G , 〈AP,Ag,Ac, St, tr,
ap, s〉, where we respectively have that AP and Ag are finite non-empty sets of atomic
propositions and agents, Ac and St are enumerable non-empty sets of actions and states,

Strategy Logic

207

s ∈ St is a designated initial state, and L : St → 2AP is a labeling function that maps
each state to the set of atomic propositions true in that state. Let Dc , AcAg be the set
of decisions, i.e., functions from Ag to Ac representing the choices of an action for each
agent. Then, tr : St × Dc → St is a transition function mapping a pair of a state and a
decision to a state.

A track (resp., path) in a CGS G is a finite (resp., an infinite) sequence of states
ρ ∈ St+ (resp., π ∈ Stω) such that, for all i ∈ [0, |ρ| − 1[(resp., i ∈ N), there exists a
decision dc ∈ Dc such that (ρ)i+1 = tr((ρ)i, dc) (resp., (π)i+1 = tr((π)i, dc)).

1 The set
Trk ⊆ St+ (resp., Pth ⊆ Stω) contains all tracks (resp., paths). Moreover, Trk(s) (resp.,
Pth(s)) indicates the subsets of tracks (resp., paths) starting at a state s ∈ St.

A strategy in a CGS G is a function σ : Trk→ Ac that maps each track to an action.
The set of all strategies is denoted by Str.

An assignment in a CGS G is a function χ : Vr ∪ Ag → Str that maps variables in a
given set Vr and agents to the set of strategies. The set of assignments over a certain set
of variables Vr is denoted by Asg(Vr).

Given a CGS G, for all SL formulas ϕ, states s ∈ St, and assignments χ ∈ Asg(Vr),
with Vr be the set of variables occurring in ϕ, the modeling relation G, χ, s |= ϕ is
inductively defined as follows.

1. If ϕ is an atomic proposition or its principal scope is a Boolean or temporal operator,
the semantic is defined as usual in LTL.

2. For a variable x ∈ Vr and a formula ϕ, it holds that:

(a) G, χ, s |= 〈〈x〉〉ϕ if there exists a strategy σ ∈ Str such that G, χx 7→σ 2, s |= ϕ;

(b) G, χ, s |= [[x]]ϕ if for all strategies σ ∈ Str it holds that G, χx 7→σ, s |= ϕ.

3. For an agent a ∈ Ag, a variable x ∈ Vr, and a formula ϕ, it holds that G, χ, s |=
(a, x)ϕ if G, χa7→χ(x), s |= ϕ.

Intuitively, at Items 2a and 2b, respectively, we evaluate the existential 〈〈x〉〉 and universal
[[x]] quantifiers over strategies, by associating them to the variable x. Moreover, at Item 3,
by means of an agent binding (a, x), we commit the agent a to a strategy associated with
the variable x.

Finally, we say that a CGS G is a model of an SL sentence ϕ, in symbols G |= ϕ, if
G, χ, s |= ϕ for all assignments χ. An SL sentence ϕ is satisfiable if there is a model for
it.

1.2 Work in Progress and Future Directions

In [4], Strategy Logic has been introduced as a new powerful formalism for reasoning about
strategies. There, it has been shown that the satisfiability problem is undecidable. In
[5], fragments of SL have been introduced and investigated as far as the model-checking
problem is concerned. In particular, it turns out that while for SL the model-checking is
NonElementary-complete, it is 2ExpTime-complete for SL[1g] (thus not harder

1The notation (w)i ∈ Σ indicates the element of index i ∈ [0, |w|[of a non-empty sequence w ∈ Σ∞.
2By χx 7→σ we are denoting the assignment obtained from χ by substituting only the value of χ(x)

with σ.

Frontiers of Formal Methods 2015

208

than that for ATL?). The question about SL[bg] is open. In [6], the satisfiability problem
for the fragments we have introduced in [6] has been investigated. It turns out that this
problem is undecidable for SL[bg] while it remains 2ExpTime-complete for SL[1g] (as
for ATL?).

Out of the above picture, SL[1g] is the biggest known decidable fragment of SL,
strictly subsuming ATL?. On the other side, the bigger (but undecidable) logic SL[bg] is
of major interest. Indeed, it can describe several interesting properties non expressible in
SL[1g] such as Nash equilibrium, strong Nash equilibrium, sub-game perfect equilibrium,
coalition proof Nash equilibrium, etc. For these reasons, it is our intention to keep investi-
gating SL[bg]. It is worth noting that SL[bg] is strictly more expressive than CHP-SL,
for which the exact complexity of the model-checking problem is still open. So, solving
the model-checking problem for SL[bg] would solve the problem for CHP-SL as well. A
possible way to attack the model-checking problem is to proceed by steps, introducing
some new fragment of SL[bg] (subsuming SL[1g]) and solving their model-checking prob-
lem. In this direction, Mogavero, Murano, and Sauro have defined in [9] a fragment in
which it is allowed only the conjunction of goals, while the disjunction is avoided This
logic is called Strategy Logic Conjunctive Goal. They also proved that such a fragment
has the behavioral property and then, by applying the procedure explained in [4], its
model-checking problem is 2ExpTime-complete.

References

[1] R. Alur, T. Henzinger, and O. Kupferman, “Alternating-Time Temporal Logic.”
JACM, vol. 49, no. 5, pp. 672–713, 2002.

[2] S. Schewe, “ATL* Satisfiability is 2ExpTime-Complete.” in ICALP’08, ser. LNCS
5126. Springer, 2008, pp. 373–385.

[3] K. Chatterjee, T. Henzinger, and N. Piterman, “Strategy Logic.” IC, vol. 208, no. 6,
pp. 677–693, 2010.

[4] F. Mogavero, A. Murano, and M. Vardi, “Reasoning About Strategies.” in
FSTTCS’10, ser. LIPIcs 8, 2010, pp. 133–144.

[5] F. Mogavero, A. Murano, G. Perelli, and M. Vardi, “Reasoning About Strategies: On
the Model-Checking Problem.” TOCL, vol. 15, no. 4, 2014, doi:10.1145/2631917.

[6] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi, “What Makes ATL* Decidable?
A Decidable Fragment of Strategy Logic.” in CONCUR’12, ser. LNCS, vol. 7454, 2012,
pp. 193–208.

[7] O. Kupferman, G. Perelli, and M. Y. Vardi, “Synthesis with Rational Environments.”

[8] D. Fisman, O. Kupferman, and Y. Lustig, “Rational Synthesis.” in TACAS’10, ser.
LNCS 6015. Springer, 2010, pp. 190–204.

[9] F. Mogavero, A. Murano, and L. Sauro, “On the Boundary of Behavioral Strategies.”
in LICS’13. IEEE Computer Society, 2013, pp. 263–272.

Strategy Logic

209

Frontiers of Formal Methods 2015

210

Decomposition of Weighted Timed Automata∗

Vitaly Perevoshchikov (perev@informatik.uni-leipzig.de)

Institute of Computer Science, Leipzig University, Germany

Timed automata introduced by Alur and Dill [1] are a prominent model for real-
time systems. Timed automata form finite representations of infinite-state automata
for which various fundamental results from the theory of finite-state automata can be
transferred to the timed setting. Although time has a quantitative nature, the questions
asked in the theory of timed automata are of a qualitative kind. On the other side,
quantitative aspects of systems, e.g., costs, probabilities and energy consumption can
be modelled using weighted automata, i.e., classical nondeterministic automata with a
transition weight function. The behaviors of weighted automata can be considered as
quantitative languages (also known as formal power series) where every word carries a
value. Semiring-weighted automata have been extensively studied in the literature (cf.
the handbook of weighted automata [6] for surveys).

Weighted extensions of timed automata are of much interest for the real-time com-
munity, since weighted timed automata (WTA) can model continuous time-dependent
consumption of resources, e.g., memory, power or financial resources. They accept quan-
titative timed languages where every timed word is mapped to a value, e.g., a real number.
In the literature, various models of WTA were considered, e.g., linearly priced timed au-
tomata [2], multi-weighted timed automata with knapsack-problem objective [14], and
WTA with measures like average, reward-cost ratio [3] and discounting [11]. In [16],
WTA over semirings were studied with respect to the classical automata-theoretic ques-
tions. However, various models, e.g., WTA with average and discounting measures as
well as multi-weighted automata cannot be defined using semirings. For the latter situa-
tions, several algorithmic problems were handled. But for several results known from the
theories of timed and weighted automata the question whether they also hold for WTA
remains open. Moreover, there is no unified framework for WTA.

The main goal of this work is to build a bridge between the theories of WTA and timed
automata. First, we develop a general model of timed valuation monoids for WTA. Recall
that Nivat’s decomposition theorem [15] is one of the fundamental characterizations of
rational transductions and establishes a connection between rational transductions and
rational languages. Our first main result is an extension of Nivat’s theorem to WTA over
timed valuation monoids. By Nivat’s theorem for semiring-weighted automata described
recently in [7], recognizable quantitative languages are exactly those which can be con-
structed from recognizable languages using operations like morphisms and intersections.
The proof of this result requires the fact that finite automata are determinizable. However,
timed automata do not enjoy this property. Nevertheless, for idempotent timed valuation
monoids which model all mentioned examples of WTA, we do not need determinization.

∗Supported by DFG Graduiertenkolleg 1763 (QuantLA)

Decomposition of Weighted Timed Automata

211

In this case, our Nivat theorem for WTA is similar to the one for weighted automata. In
the non-idempotent case, we give an example showing that this statement does not hold
true. But in this case we can establish a connection between recognizable quantitative
timed languages and sequentially, deterministically or unambiguously recognizable timed
languages.

As a corollary from the established Nivat theorem for WTA, we obtain a connection
between recognizable and unambiguously recognizable quantitative timed languages by
means of morphism-like mappings. This result could be interesting, since unambiguous
automata can have better algorithmic properties than their ambiguous counterparts. For
instance, for untimed max-plus automata, the equivalence problem is undecidable [13].
But this problem is decidable for unambiguous max-plus automata [12].

As an application of our Nivat theorem, we provide a characterization of recognizable
quantitative timed languages by means of quantitative logics. The classical Büchi-Elgot
theorem [4] was extended to both weighted [5, 8] and timed settings [17]. In [16], a
semiring-weighted extension of Wilke’s relative distance logic [17] was considered. Here,
we develop a different weighted version of relative distance logic based on our notion of
timed valuation monoids. In our second main result, we show that this logic and WTA
have the same expressive power. For the proof of this result, we use a new proof technique
and our Nivat theorem to derive our result from the corresponding result for unweighted
logic [17]. Since the proof of our Nivat theorem is constructive, the translation process
from weighted relative distance logic to WTA and vice versa is constructive. This leads
to decidability results for weighted relative distance logic. In particular, we show the
decidability of several weighted extensions of the satisfiability problem for our logic.

Joint work with Manfred Droste [9].

References

[1] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2). 183–235 (1994)

[2] Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
In: HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

[3] Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In:
HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer, Heidelberg (2004)

[4] Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik und
Grundl. Math. 6, 66-92 (1960)

[5] Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoret. Comp. Sci.
380(1-2), 69–86 (2007)

[6] Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS
Monographs on Theoretical Computer Science. Springer (2009)

[7] Droste, M., Kuske, D.: Weighted automata. In: Pin, J.-E. (ed.) Handbook: ”Au-
tomata: from Mathematics to Applications”, European Mathematical Society, to
appear.

Frontiers of Formal Methods 2015

212

[8] Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 220-221, 44–59 (2012)

[9] Droste, M., Perevoshchikov, V.: A Nivat theorem for weighted timed automata and
relative distance logic. In: ICALP 2014. LNCS, vol. 8573, pp. 171–182. Springer
(2014)

[10] Eilenberg, S.: Automata, Languages and Machines, volume A. Academic Press, New
York (1974)

[11] Fahrenberg, U., Larsen, K.G.: Discount-optimal infinite runs in priced timed au-
tomata. Electr. Notes Theor. Comput. Sci. 239, 179–191 (2009)

[12] Hashiguchi, K., Ishiguro, K., Jimbo, S.: Decidability of the equivalence problem for
finitely ambiguous finance automata. Int. Journal of Algebra and Computation 12(3),
(2002)

[13] Krob, D.: The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. International Journal of Algebra and Computation 4(3),
405–425 (1994)

[14] Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced
timed automata. In: FOSSACS 2005. LNCS, vol. 3441, pp. 234–249. Springer, Hei-
delberg (2005)

[15] Nivat, M.: Transductions des langages de Chomsky. Ann. de lInst. Fourier, 18, 339–
456 (1968)

[16] Quaas, K.: MSO Logics for weighted timed automata. Formal Methods in System
Design 38(3), 193–222 (2011)

[17] Wilke, T.:Specifying timed state sequences in powerful decidable logics and timed
automata. In: Formal Techniques in Real-Time and Fault-Tolerant Systems 1994.
LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)

Decomposition of Weighted Timed Automata

213

Frontiers of Formal Methods 2015

214

Games with Window Quantitative Objectives

Mickael Randour? (mickael.randour@lsv.ens-cachan.fr)

LSV, CNRS & ENS Cachan, France

Abstract based on publications with K. Chatterjee, L. Doyen and J.-F. Raskin [8, 9].

1 Mean-payoff and total-payoff games

Two-player games on graphs. We consider games on finite weighted directed graphs (every
edge has an integer weight) with two types of vertices: in player-1 vertices, player 1 chooses
the successor vertex from the set of outgoing edges; in player-2 vertices, player 2 does likewise.
The game results in an infinite path through the graph, called a play. Players choose their
moves according to strategies, mapping from histories to successor states: we consider only
deterministic ones (no randomness) and are particularly interested in memory requirements.
Payoffs. The mean-payoff (resp. total-payoff) value of a play is the long-run average (resp.
sum) of the edge-weights along the path. Since the limit value does not need to exist for arbitrary
plays, two variants are usually considered for each payoff: supremum and infimum variants,
respectively considering the sup. and inf. limit values. While traditionally games on graphs
with ω-regular objectives have been studied for system analysis, research efforts have recently
focused on quantitative extensions to model resource constraints of embedded systems, such
as power consumption, or buffer size [5]. Quantitative games, such as mean-payoff games, are
crucial for the formal analysis of resource-constrained reactive systems, e.g., [2, 20, 3, 4]. For
the analysis of systems with multiple resources, multi-dimension games, where edge weights
are integer vectors, provide the appropriate framework [7, 22, 11].
Decision problems. The threshold problem for mean-payoff and total-payoff games asks, given
a starting vertex, whether player 1 has a strategy that against all strategies of the opponent
ensures a play with payoff value at least equal to zero. For both objectives, memoryless winning
strategies exist for both players (where a memoryless strategy is independent of the past and
depends only on the current state) [12, 14]. This ensures that the decision problems belong
to NP ∩ coNP as corresponding one-player games are solvable in polynomial time [16, 23].
Furthermore, they belong to the intriguing class of problems that are in NP ∩ coNP but whether
they are in P (deterministic polynomial time) are long-standing open questions. The study of
mean-payoff games has also been extended to multiple dimensions1 where the problem is shown
to be coNP-complete [7, 22]. While for one dimension all the results for mean-payoff and
total-payoff coincide, our first contribution shows that quite unexpectedly (in contrast to multi-
dimensional mean-payoff games) the multi-dimensional total-payoff games are undecidable.
We prove it by reduction from the halting problem for two-counter machines [19].

?Author supported by European project CASSTING (FP7-ICT-601148).
1The limit is taken component-wise and compared to a threshold vector.

Games with Window Quantitative Objectives

215

2 Window objectives

Concept. On the one hand, the complexity of single-dimensional mean-payoff and total-payoff
games is a long-standing open problem, and on the other hand, the multi-dimensional problem is
undecidable for total-payoff games. We propose alternative objectives named bounded window
mean-payoff and fixed window mean-payoff objectives.

In a bounded window mean-payoff objective, instead of the long-run average along the
whole play, we consider payoffs over a local bounded window sliding along a play, and the
objective is that the average weight must be at least zero over every bounded window from
some point on. This objective can be seen as a strengthening of the mean-payoff objective
(resp. of the total-payoff objective if we require that the window objective is satisfied from the
beginning of the play rather than from some point on, which we call the direct variant), i.e.,
winning for the bounded window mean-payoff objective implies winning for the mean-payoff
objective. In the fixed window objective the window length is fixed and given as a parameter.
Winning for the fixed window objective implies winning for the bounded window objective. We
depict the operation of the direct fixed window mean-payoff on a hypothetical play in Fig. 1.

Attractive features for window objectives. First, they are a strengthening of the mean-payoff
objectives and hence provide conservative approximations. Second, the window variant is very
natural. Mean-payoff objectives require the average to satisfy a certain threshold in the long-
run (or in the limit of the infinite path), whereas the window objectives provide guarantee on
the average, not in the limit, but within a bounded time, and thus provide better time guaran-
tee than the mean-payoff objectives. Third, the window parameter provides flexibility: it can
be adjusted specific to applications requirement of strong or weak time guarantee for system
behaviors. Finally, we will establish that our variant in the single dimension is more computa-
tionally tractable, which makes it an attractive alternative to mean-payoff objectives.

Applicability. In the context of ω-regular objectives, the traditional infinitary notion of live-
ness has been strengthened to finitary liveness [1], where instead of requiring that good events
happen eventually, they are required to happen within a finite time bound. Finitary parity games
were studied in [10]. The notion has also been extended to prompt setting where the good events
are required to happen as promptly as possible [17]. Our work extends the study of such finite
time frames in the setting of quantitative objectives, and our window objectives can be viewed
as an extension of finitary conditions for mean-payoff and total-payoff objectives.

Our window variants provide a natural framework to reason about quantitative properties
under local finite horizons. Consider a classical example of application with mean-payoff as-
pects, as presented by Bohy et al. in the context of synthesis from LTL specifications enriched
with mean-payoff objectives [3]. Consider the synthesis of a controller for a computer server
having to grant requests to different types of clients. The LTL specification can express that
all grants should eventually be granted. Adding quantities and a mean-payoff objective helps
in defining priorities between requests and associating costs to the delays between requests and
grants, depending of the relative priority of the request. Window objectives are useful for mod-
eling such applications. Indeed, in a desired controller, requests should not be placed on hold
for an arbitrary long time. Similarly, if we have two types of requests, with different priorities,
and we want to ensure guarantees on the mean waiting time per type of request, it seems natural
that an adequate balance between the two types should be observable within reasonable time
frames (which can be defined as part of the specification with our new objectives) instead of
possible great variations that are allowed by the classical mean-payoff objective.

Frontiers of Formal Methods 2015

216

Sum

Time

(a) The maximal window is placed over the initial
state.

Sum

Time

(b) The window of size 1 is good so the maximal
window slides to the next state.

Sum

Time

(c) Again, the first window is good and the maxi-
mal window slides.

Sum

Time

(d) Window size 1 does not suffice: we enlarge the
tested window to size 2.

Sum

Time

(e) Still a bad window for size 2. But size 3 is still
less than lmax = 4, so we enlarge again.

Sum

Time

(f) Finally, a non-negative mean-payoff is ob-
served. The maximal window can resume sliding.

Figure 1: Illustration of the direct fixed window objective for maximal window size lmax = 4
and threshold zero: the maximal window (orange) slides along the play from its starting state
and a good window (green) should be found at each step. A window is good if the mean-payoff
inside it is non-negative. Bad windows are in red. The tested window is enlarged incrementally
up to the maximal window if necessary.

3 Main results
The main contributions of our work (along with the undecidability of multi-dimensional total-
payoff games) are summarized in Table 1: our results are in bold fonts. For all decidable
problems, we also characterize the memory needs.
Single dimension. We present a recursive algorithm for the fixed window problem that is
polynomial in the size of the graph times the length of the binary encoding of weights times the
size of the fixed window. Thus for polynomial windows, we have a polynomial-time algorithm.

For the bounded window, we show that the decision problem is in NP ∩ coNP, and at least
as hard as solving mean-payoff games. However, winning for mean-payoff does not imply
winning for the bounded window mean-payoff, i.e., the winning sets for mean-payoff games and
bounded window mean-payoff games do not coincide. Moreover, winning strategies are also

Games with Window Quantitative Objectives

217

one-dimension k-dimension
complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP∩ coNP memoryless coNP-c. / NP∩ coNP infinite memoryless
TP / TP NP∩ coNP memoryless undec. - -

WMP: fixed
P-c.

mem. req.
≤ linear(|S| · lmax)

PSPACE-h.

exponential
polynomial window EXP-easy

WMP: fixed
P(|S|,V, lmax) EXP-c.

arbitrary window
WMP: bounded

NP∩ coNP memoryless infinite NPR-h. - -
window problem

Table 1: Complexity of deciding the winner and memory required, with |S| the number of
vertices, V the length of the binary encoding of weights, and lmax the window size. New results
in bold (h. for hard and c. for complete). Infimum (resp. supremum) variants of the mean-payoff
(resp. total-payoff) are denoted by MP, MP, TP and TP.

very different, e.g., in mean-payoff games both players have memoryless winning strategies, but
in bounded window mean-payoff games we show that player 2 requires infinite memory. This
is an interesting reversal of the situation for classical quantitative objectives where player 2 is
usually memoryless, even in multi-dimension games or conjunctions with parity (e.g., [11]).

We also show that if player 1 wins the bounded window mean-payoff objective, then a
window of size (|S|−1) · (|S| ·W +1) is sufficient where S is the state space (the set of vertices
of the graph), and W is the largest absolute weight value. Finally, we show that (i) a winning
strategy for the bounded window mean-payoff objective ensures that the mean-payoff is at least
zero regardless of the strategy of the opponent, and (ii) a strategy that ensures that the mean-
payoff is strictly greater than zero is winning for the bounded window mean-payoff objective.
Multiple dimensions. For the fixed window, we give several results. For arbitrary window
sizes, we prove the problem to be EXPTIME-complete. Membership follows from a reduction
to exponentially larger co-Büchi games. Hardness is proved in two settings: arbitrary dimen-
sions and weights in {−1,0,1} via a reduction from the membership problem in alternating
polynomial-space Turing machines [6], and only two dimensions with arbitrary weights by re-
duction from countdown games [15]. For polynomial windows, we get PSPACE-hardness via
generalized reachability games [13].

Unfortunately, we prove that bounded window games are at least non-primitive-recursive
by reduction from the termination problem in reset nets [21, 18]. Decidability remains open.
Wrap-up. The fixed window problem provides an attractive approximation of mean-payoff and
total-payoff games that has better algorithmic complexity. In contrast to the long-standing open
problem of mean-payoff games, the one-dimension fixed window problem with polynomial
window size can be solved in polynomial time; and in contrast to the undecidability of multi-
dimensional total-payoff games, the multi-dimension fixed window problem is EXPTIME-
complete. In terms of complexity, the problem stands in an interesting middle ground between
mean-payoff and total-payoff objectives. For the specific case of polynomial windows, there
remains a gap between our exponential-time algorithm and the PSPACE lower bound. Whether
we can obtain PSPACE-membership or EXPTIME-hardness for the fixed polynomial window
problem in multi-dimension games is an open question. We also established a prohibitive lower
bound on the complexity of multi-dimension bounded window games: they are at least non-
primitive-recursive-hard. It would still be of theoretical interest to know if those games are
decidable or not. Techniques used for the undecidability proof of multi-dimension total-payoff
games cannot be extended easily to the bounded window setting.

Frontiers of Formal Methods 2015

218

References
[1] R. Alur and T.A. Henzinger. Finitary fairness. ACM Trans. Program. Lang. Syst., 20(6):1171–1194, 1998.

[2] R. Bloem, K. Chatterjee, T.A. Henzinger, and B. Jobstmann. Better quality in synthesis through quantitative
objectives. In Proc. of CAV, LNCS 5643, pages 140–156. Springer, 2009.

[3] A. Bohy, V. Bruyère, E. Filiot, and J.-F. Raskin. Synthesis from LTL specifications with mean-payoff objec-
tives. In Proc. of TACAS, LNCS 7795, pages 169–184. Springer, 2013.

[4] V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin. Meet your expectations with guarantees: Beyond worst-
case synthesis in quantitative games. In Proc. of STACS, LIPIcs 25, pages 199–213. Schloss Dagstuhl - LZI,
2014.

[5] A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Resource interfaces. In Proc. of EMSOFT,
LNCS 2855, pages 117–133. Springer, 2003.

[6] A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.

[7] K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Generalized mean-payoff and energy games. In
Proc. of FSTTCS, LIPIcs 8, pages 505–516. Schloss Dagstuhl - LZI, 2010.

[8] K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-payoff and total-payoff through
windows. In Proc. of ATVA, LNCS 8172, pages 118–132. Springer, 2013.

[9] K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-payoff and total-payoff through
windows. Information and Computation, 2015. To appear.

[10] K. Chatterjee and T.A. Henzinger. Finitary winning in omega-regular games. In Proc. of TACAS, LNCS
3920, pages 257–271. Springer, 2006.

[11] K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional quantitative objectives.
Acta Informatica, 51(3-4):129–163, 2014.

[12] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. Int. J. of Game Theory,
8(2):109–113, 1979.

[13] N. Fijalkow and F. Horn. The surprizing complexity of generalized reachability games. CoRR,
abs/1010.2420:1–15, 2010.

[14] H. Gimbert and W. Zielonka. When can you play positionally? In Proc. of MFCS, LNCS 3153, pages
686–697. Springer, 2004.

[15] M. Jurdziński, J. Sproston, and F. Laroussinie. Model checking probabilistic timed automata with one or two
clocks. Logical Methods in Computer Science, 4(3):1–28, 2008.

[16] A.V. Karzanov and V.N. Lebedev. Cyclical games with prohibitions. Math. Program., 60:277–293, 1993.

[17] O. Kupferman, N. Piterman, and M.Y. Vardi. From liveness to promptness. Formal Methods in System
Design, 34(2):83–103, 2009.

[18] R. Lazic, T. Newcomb, J. Ouaknine, A.W. Roscoe, and J. Worrell. Nets with tokens which carry data.
Fundam. Inform., 88(3):251–274, 2008.

[19] M.L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing ma-
chines. The Annals of Mathematics, 74(3):437–455, 1961.

[20] M. Randour. Automated synthesis of reliable and efficient systems through game theory: A case study. In
Proc. of ECCS 2012, Springer Proceedings in Complexity XVII, pages 731–738. Springer, 2013.

[21] P. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity. Inf. Process. Lett.,
83(5):251–261, 2002.

[22] Y. Velner and A. Rabinovich. Church synthesis problem for noisy input. In Proc. of FOSSACS, LNCS 6604,
pages 275–289. Springer, 2011.

[23] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor. Comp. Science, 158:343–
359, 1996.

Games with Window Quantitative Objectives

219

Frontiers of Formal Methods 2015

220

Automatic Structures with Parameters∗

Frederic Reinhardt (reinhardt@logic.rwth-aachen.de)

Mathematical Foundations of Computer Science, AlgoSyn, RWTH
Aachen, Germany

1 From Automatic Structures to Automatic Struc-

tures with Parameters...

1.1 Automatic Structures

A structure (A,R1, . . . , Rn) is called automatic presentable if there is an encoding of its
elements as syntactic objects (e.g. finite words, ω-words, trees or ω-trees) in such a way
that the structure’s domain A and relations R1, . . . , Rn become thereby recognizable by
finite (synchronous, multi-tape) automata reading these objects.

Automatic presentations make it possible to handle infinite structures such as infinite
graphs or infinite arithmetical structures as finite objects represented by automata in
computations. Remarkably, there is an algorithm that, given a first-order logic formula
and an automatic presentation, computes an automaton that recognizes the codes of the
elements that satisfy the formula. As a consequence the following problems reduce to
a membership/emptyness test for the automaton and are decidable for first-order logic
(FO) formulae over any automatic structure:

Model-Checking: Given a formula ϕ(x) and presentations of A and a tuple a of elements
from A, decide whether A |= ϕ(a) holds.

Query-Evaluation: Given a formula ϕ(x) and a presentation of A , compute a presen-
tation of ϕA = {a |A |= ϕ(a)}

In particular the first-order theory of any automatic presentable structure is decidable,
which originally motivated and continues to motivate a research program into the algo-
rithmic model theory of structures that admit an automatic presentation.

Example Probably the most prominent example of a first-order theory that’s decidable
with this method is the Presburger arithmetic, i.e. the first-order theory of the struc-
ture (N,+), which has an automatic presentation as follows: Encode each number n by
its shortest binary representation b0b1 . . . bl ∈ (0 + 1)∗1 + 0, such that (b0b1 . . . bl)2 :=∑

i≤l bi2
i = n. There is a finite automaton AN recognizing the domain (0 + 1)∗1 + 0.

∗The author thanks the DFG Research Training Group 1298 AlgoSyn for their support.

Automatic Structures with Parameters

221

The +-relation on natural numbers {(n,m, p) |n + m = p} can be recognized by a syn-
chronous 3-tape NFA A+ with two states 0, 1 in which it saves the carry of a binary
addition it performs with the transition relation ∆ = {(i, (a, b, c), j) | a+ b+ i = c+ 2j}.
d(N,+) = (AN,A+) thus constitutes an automatic presentation of the structure (N,+).

Automatic presentations were introduced by Khoussainov and Nerode [3] to extend the
field of finite model theory to infinite structures in such a way that interesting deci-
sion problems remain solvable. Coming from the field of recursive model theory, which
is concerned with structures that have recursive predicates (Turing-machine presentable
structures), on which FO-model-checking however is not in general decidable, they found
with finite automaton presentable structures a good trade-off between algorithmic com-
plexity and structural complexity. In [2] the concept was lifted from automata on finite
words to automata that read trees as well as their infinite counter parts. For an overview
we refer the reader to [4].

1.2 Automatic Structures with Parameters

1.2.1 Automata with Advice

Recently it was suggested in [1] to extend the research program of automatic structures
to structures that are presentable by advice automata. Advice automata are a variant
of finite automata. The infinite input tape of an advice automaton contains on each
cell an “advice” letter from a finite alphabet Γ. The input tape is thus initially not
filled with blanks, but with an ω-word α ∈ Γω as a parameter which the automaton
reads in parallel with its input word. The languages that are recognizable by an advice
automaton can be characterized in terms of monadic-second order logic (MSO) definable
languages. According to Büchi’s theorem([5]) ω-regular languages are those, which are
MSO-definable in the “blank” ω-word structure (N, suc). Languages that are recognizable
by an ω-automaton with an infinite advice string α are those MSO-definable on the
ω-word structure (N, suc, (Pa)a∈Γ), where each Pa ⊆ N contains the occurences of the
symbol a ∈ Γ in the ω-word α. Analogously, following Rabin’s powerful generalization
of Büchi’s theorem, the ω-tree regular languages with advice correspond to those ω-
tree languages that are MSO-definable on the infinite binary tree with two successor
relations expanded by monadic predicates ({0, 1}∗, suc0, suc1, (Pa)a∈Γ). Like the ω-regular
languages, ω-regular languages with advice are thus also effectively closed under first-
order operations (union, complement, negation, existential quantification, cylindrification
and permutation of variables) and the emptyness problem for an advice automaton can
be translated into an MSO-sentence over the advice. Model-checking of FO on an advice
automatic presentation therefore remains decidable, if the MSO-theory of the advice α
is decidable, or equivalently, if the α-acceptance problem for Büchi automata ([7]) is
decidable.

1.2.2 (Q,+) and its Peculiarities

The introduction of advice automata into the context of automatic structures was moti-
vated by the long-standing open problem whether the additive group of rationals (Q,+)
has an automatic presentation, finally answered in the negative by Tsankov ([6]). What
is peculiar about (Q,+) and presumably made the problem difficult to solve is that

Frontiers of Formal Methods 2015

222

(Q,+) is in a sense “almost” automatic presentable. As a subgroup of (R,+) which
has an ω-automatic presentation via the infinitary binary representation of reals, the ad-
dition of rationals is ω-regular, but the domain becomes non-ω-regular, since in their
binary expansion the rationals are represented by the set all ultimately periodic binary
sequences, which can easily be seen to be non-ω-regular. The same remains true for
other fixed-radix representations (dldl−1 . . . d0.d−1d−2 . . .)b =

∑
i≤l dib

i (0 ≤ di < b) of
the reals. Relaxing the requirement of a fixed radix and choosing a mixed-radix rep-
resentation instead, such as the factorial base representation, it is possible to encode
rationals as finite words (d−ld−l+1 . . . d0d1 . . . dk)! =

∑
−l≤i≤−1 di

1
(|i|+1)!

+
∑

0≤i≤k di(i+ 1)!

but this time with digits from an infinite alphabet, i.e. 0 ≤ di < i + 2 (i = 0, 1, . . . , k)
and 0 ≤ d−i−1 < i + 2 (i = 0, 1, . . . , l − 1). Every rational has a representation in
this way. More generally we can choose any sequence b := (bi)i≥0 of natural num-
bers with bi ≥ 2 and use this as a mixed-radix base for the representation of rationals
(d−ld−l+1 . . . d0d1 . . . dk)b =

∑k
z=−l dz

∏
i<|z| bi

sgn(z) with 0 ≤ di < bi (i = 0, . . . , k) and

0 ≤ d−i−1 < bi (i = 0, . . . , l − 1).

The summation of two numbers (d−l0 . . . dk0)b + (d′−l1 . . . d
′
k1

)b = (s−lmax , . . . , skmax)b
in this representation can be performed digit-by-digit with carry in a similar way as for
fixed-radix representations.

The carries cz and sums sz are computed according to the following linear recursion.

• c−lmax
:= 0

• cz+1 :=

{
1 if dz + d′z + cz ≥ b|z|
0 if dz + d′z + cz < b|z|

• sz := dz + d′z + cz mod b|z| for z = −lmax, . . . , kmax, (lmax := max{l0, l1}, kmax :=
max{k0, k1})

This representation is however still not automatic. An ordinary finite automaton would
not be able to recognize when a new digit begins, since the digits can become arbitrarily
long and furthermore it would need to know the numbers bi to perform the modulo sum
and comparison operations. An automaton with advice however would be able to do it,
as was noticed for the factorial base case by [1]. In the general case the advice takes the
form bin(b0)# bin(b1)# . . ., where bin(bi) is the binary representation of bi and rationals
are encoded in the following way

bin(d0) # bin(d1) # . . . # bin(dl) # bin(dl+1) . . . # bin(dk)# � . . .
bin(d−1) # bin(d−2) # . . . # bin(d−l+1) # � � . . .
bin(b0) # bin(b1) # . . . # bin(bl) # bin(bl+1) . . . # bin(nk)# . . .

In fact for each subgroup of (Q,+) there is an appropriate base such that all and only
the elements of this subgroup are representable in this base. The subgroups of (Q,+)
correspond up to isomorphism to the torsion-free abelian groups of rank 1. This insight
leads to the following theorem.

Theorem 1.1 ([8]). Every torsion-free abelian group of rank 1 is advice automatic.

Automatic Structures with Parameters

223

1.2.3 The Limitations of Advice Automatic Structures

Motivated by the positive examples provided by (Q,+) and its subgroups, we ventured
out to seek more examples of structures that might become presentable with advice. Since
the territory of automatic structures has already been outlined in quite some detail by
other researchers we consulted their map([9]) with our advices to see whether they could
lead us to some hidden treasures. At first however, we have to report a disappointment,
though probably a pleasure for those who delight in complicated non-automaticity proofs.
The main limitations of automatic structures persist even in the presence of an advice.
Thus, most of the non-automaticity results of [9] could be repeated, often requiring dif-
ferent proof methods. The findings are as follows and constitute no deviation of the
corresponding classification theorems for adviceless automatic structures:

Theorem 1.2. • The Rado-Graph is not advice automatic. [8]

• Every advice automatic linear order has finite finite-condensation-rank. [8]

• Every advice automatic tree has finite Cantor-Bendixson-rank. [8]

• A countably infinite boolean algebra is advice automatic if and only if it is isomorphic
to the interval algebra Bωi of the ordinal ωi for some natural number i ≥ 1. ([10])

• There is no countable advice automatic structure that embeds (N, ·). In particular
no advice automatic countable torsion-free abelian group of infinite rank.[10]

2 ...to Uniformly Automatic Classes...

An observation that was made when looking at the advice automatic presentation of the
subgroups of (Q,+) is that indeed the same advice automaton suffices for all subgroups,
it merely needs different parameters, and furthermore the set of these parameters is an
ω-regular set itself. In such a situation the FO-theory of the whole class and not merely
its individual members is decidable as well, i.e. we can check whether a FO-sentence
holds in every member of the class. We call a class of structures that is representable in
this manner uniformly automatic. For infinite classes of structures it also makes sense to
consider automatic presentations of finite structures and thereby get an automata based
decision procedure for their theories. We summarize some of our findings:

Theorem 2.1 ([10]). • The class of torsion-free abelian groups of rank 1 is uniformly
automatic.

• The class V D2 of countabe scattered linear orders with V D-rank 2 is uniformly
automatic.

• The class of all finite abelian groups is uniformly automatic.

• The class of all abelian groups up to elementary equivalence is uniformly tree-
automatic.

• The class of all finite groups which have a direct sum decomposition in which the size
of the largest non-abelian factor is bounded by a constant is uniformly automatic.

A further consequence is that FO-model-checking on classes of finite structures that are
uniformly automatic (with finite parameters) becomes fixed parameter tractable (FPT),

Frontiers of Formal Methods 2015

224

i.e. when treating the time required to construct the corresponding automaton to a
formula as a constant (needs to be computed only once in practical scenarios anyway),
as well as the time required to compute a parameter of the member of the class (can for
all our classes be done in polynomial time), then FO-model-checking on that class is only
linear in the size of the advice. [[10]]

Theorem 2.2 (Abu Zaid,[10]). FO-Model-Checking is FPT on the class of finite abelian
groups and the class of finite groups.

In [11, Open Question 8.2] the author asks on which classes of finite groups,rings, and
fields FO-model-checking is FPT. To the authors knowledge, our results are the first FPT
results for FO-model-checking on algebraic structures in the literature.

References

[1] Alex Kruckman, Sasha Rubin, John Sheridan, and Ben Zax. “A myhill-nerode theorem
for automata with advice.” In GandALF’12, pages 238–246, 2012.

[2] Achim Blumensath and Erich Grädel. “Finite Presentations of Infinite Structures:
Automata and Interpretations.” In Theory of Computing Systems, volume 37, pages
641–674, 2004

[3] B. Khoussainov and A. Nerode. “Automatic presentations of structures”. Selected Pa-
pers from the International Workshop on Logical and Computational Complexity,LCC
’94, pages 367–392, 1995.

[4] Sasha Rubin. “Automata Presenting Structures: A survey of the finite string case”.
Bulletin of Symbolic Logic, volume 14, number 2, pages 169-209, year 2008.

[5] J.R. Büchi. “On a decision method in restricted second order arithmetic”. In Logic,
Methodology and Philosophy of science, Proc. 1960 Internat. Congr., pages 3-23, 1962.

[6] Todor Tsankov. “The additive group of the rationals does not have an automatic
presentation”. In Journal of Symbolic Logic, volume 76, number 4, 2011.

[7] Alexander Rabinovich and Wolfgang Thomas. “Decidable theories of the ordering of
natural numbers with unary predicates”. Proceedings of Computer Science Logic (CSL
’06), pages 562–574, 2006.

[8] Frederic Reinhardt. “Automatic structures with parameters”, diploma thesis, RWTH
Aachen, 2013.

[9] B. Khoussainov and S.Rubin et al “Automatic Structures: Richness and Limitations”.
In Proc. of the 19TH IEEE Symposium on Logic in Computer Science, pages 44–53,
2004.

[10] F.A.Zaid, E. Grädel and F.Reinhardt “Advice Automatic Structures and Uniformly
Automatic Classes” soon to be published (with proofs)

[11] Martin Grohe. Logic, Graphs, and Algorithms, Electronic Colloquium on Computa-
tional Complexity (ECCC), volume 14, number 91, 2007

Automatic Structures with Parameters

225

Frontiers of Formal Methods 2015

226

Extensible Support for Specification Patterns in
GR(1) Synthesis – Work in Progress∗

Jan Oliver Ringert†(ringert@post.tau.ac.il)

School of Computer Science
Tel Aviv University

Synthesis is an automated procedure to obtain a correct-by-construction reactive sys-
tem from a given specification, if one exists. The time complexity for synthesis of a
reactive system from a linear temporal logic (LTL) formula is double exponential in the
length of the formula [3]. However, limited fragments of LTL and symbolic implementa-
tions exhibit more practical time complexities. One such fragment is General Reactivity
of rank 1 (GR(1)), where synthesis is possible using a polynomial symbolic algorithm [1].

The availability of efficient synthesis algorithms, as in the case of GR(1), and the guar-
antee of implementations being correct by construction motivates application in software
engineering. One obstacle for engineers is however the difficulty of expressing complete
and correct specifications in LTL respectively its limited fragment supported by a syn-
thesis algorithm. For GR(1) this fragment consist of constraints for initial states, safety
propositions over the current and successor state, and justice constraints.

We are investigating higher-level and more friendly language constructs extending LTL
specifications for synthesis. Our goal is to provide a rich, extensible specification language
that benefits from efficient GR(1) synthesis.

Forklift Specification Example: Consider the forklift shown Fig. 1. It has a sensor
to determine whether it is at a station and two distance sensors to detect obstacles. It
has three motors to turn the left and right wheel and to lift the fork. Values read by the
sensors are provided as inputs to component ForkliftController and its outputs
are commands controlling the motors.

An engineer specifies the behavior of the forklift controller to synthesize an imple-
mentation. For example, the forklift has to leave the pick-up station between lifting and
dropping cargo. The engineer expresses this in Spec. (1).

Occurs (!atStation) between (lift=LIFT) and (lift=DROP) (1)

From LTL Patterns to GR(1): Spec. (1) uses the LTL specification pattern
Spec. (2) as identified by Dwyer et al. [2]. Most LTL patterns from this catalog, including
the above, are not directly supported by GR(1).

Occurs p between q and r := �(q ∧ ¬r → (¬r U ((p & ¬r) ∨�¬r))) (2)

∗The presented ideas are joint work with Shahar Maoz.
†J. O. Ringert acknowledges support from a postdoctoral Minerva Fellowship.

Extensible Support for Specification Patterns in GR(1)
Synthesis – Work in Progress

227

ForkliftController

boolean

atStation

Distance

obstacle

Distance

cargo

MotorCmd

left

MotorCmd

right

LiftCmd

lift

S1

S2

r | p | !q

!r & !p & q

!r & !p

!r & p

S1

S2

Figure 1: A forklift, component ForkliftController, and DBW for LTL of Spec. (2)

Our approach to support this and other patterns is to translate the LTL formula to a
deterministic Büchi automaton (DBW), if one exists. We then express (1) the statespace
of the DBW using auxiliary variables, (2) the transitions of the initial state as initial
assignments, (3) all transitions as safety specifications over current and next state, and
(4) the accepting states as justice goals. The resulting translation is in GR(1). A DBW
computed for the general LTL expression of Spec. (2) is shown in Fig. 1. Its translation
instantiated according to Spec. (1) is shown in List. 1. The pattern describes a safety
property (all states of the DBW are accepting) and thus we could omit line 12 in List. 1.

1 VAR // (1) a u x i l i a r y v a r i a b l e s : s t a t e s o f DBW
2 s : {S1, S2};
3 INIT // (2) i n i t i a l a s s i gnment s : i n i t i a l t r a n s i t i o n s o f DBW
4 s=S1 & (lift =DROP | !atStation | lift!=LIFT) |
5 s=S1 & (lift!=DROP & atStation & lift =LIFT);
6 LTLSPEC // (3) s a f e t y t h i s and next s t a t e : t r a n s i t i o n s o f DBW
7 []((s=S1 & ((lift =DROP | !atStation | lift!=LIFT) & X s=S1 |
8 (lift!=DROP & atStation & lift =LIFT) & X s=S2)) |
9 (s=S2 & ((lift!=DROP & atStation) & X s=S2 |

10 (lift!=DROP & !atStation) & X s=S1)));
11 LTLSPEC // (4) j u s t i c e pa r t : a c c e p t i n g s t a t e s o f DBW
12 []<> (s=S1 | s=S2);

Listing 1: Translation of Spec. (1) in GR(1)

Critical to the usefulness of our approach is that the costly translation of LTL to
DBW is done only once for every pattern from the catalog or every new pattern a user
might wish to add to her library. This works because patterns are only instantiated with
propositions (not with nested temporal operators). In case no DBW exists the pattern
cannot be added to the specification language.

We are working on providing an engineering friendly, high-level specification language
that benefits from efficient GR(1) synthesis, is extensible, and is correct by construction
due to the automated translation sketched above. Early investigation shows that many
LTL patterns from [2] can be supported.

Frontiers of Formal Methods 2015

228

References

[1] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
Synthesis of Reactive(1) Designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

[2] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE’ 99, pages 411–420. ACM, 1999.

[3] Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. In POPL’89,
pages 179–190. ACM Press, 1989.

Extensible Support for Specification Patterns in GR(1)
Synthesis – Work in Progress

229

Frontiers of Formal Methods 2015

230

Inter-procedural Two-Variable Herbrand Equalities
are in PTIME

Stefan Schulze Frielinghaus (schulzef@in.tum.de)

PUMA, Technische Universität München, Germany

Inferring invariants in programs which make use of complex operators as e.g. taking the
square root or if the meaning of operators is even unknown, obvious methods for instance
based on linear algebra fail. However, a true Herbrand equality holds irrespectively of the
meaning of the occurring operator symbols. Hence, for a Herbrand equality to hold, the
terms on the left- and right-hand side must be syntactically equivalent up to occurring
program variables. Such an interpretation then enables us to infer invariants even if
complex operators are used.

The problem of inferring Herbrand equalities is known since the 70s where it was
introduced by Cocke and Schwartz [1] as the global value numbering problem. Since
then algorithms have been developed in order to infer all valid intra-procedural Herbrand
equalities. However, in presence of recursive procedures very little is known. Seidl et
al. [6] showed that the intra-procedural techniques can be extended to programs with
procedures and local but no global variables. Furthermore, the presented techniques are
strong enough to infer all valid Herbrand constants for programs with recursive procedures
possibly containing local and global variables, i.e., invariants of the form x .= t, where t is
ground. Another feasible case of invariants is obtained if only assignments are taken into
account where the right-hand side contains at most one program variable. That means an
assignment as e.g. x := f(5,y) is considered while assignments as x := f(y,y) or even
x := f(y, z) are ruled out. Petter [7] shows that for such programs all inter-procedurally
valid Herbrand equalities can be inferred.

For programs only with assignments where the right-hand side contains at most one
program variable but possibly multiple times, we showed in a recently accepted paper
[9] (joint work with Michael Petter and Helmut Seidl) that all inter-procedurally valid
two-variable Herbrand equalities can be effectively inferred (the long version is given in
[8]). The methods there are based on monoidal techniques which have been established by
Gulwani and Tiwari [3]. They showed that if only assignments using unary operators are
taken into account, then all inter-procedurally valid Herbrand equalities can be inferred.
The novel result of our paper is that a program variable might occur several times in
the right-hand side of an assignment as for example in x := f(g(y), 5,y). That means
our approach is not limited to strings but general terms containing at most one variable
but possibly multiple times. In order to arrive at an effective algorithm we establish an
approximate notion of subsumption and compactness which are strong enough in order to
infer all inter-procedurally valid two-variable Herbrand equalities. In our case, approximate
means that we may not always detect that an equality is subsumed but we fail only finitely
many times.

Inter-procedural Two-Variable Herbrand Equalities are in
PTIME

231

The analysis is based on procedure summaries representing the weakest pre-conditions
of finitely many generic post-conditions which contain template variables. A template
variable is nothing else than a second-order variable which gets instantiated by an arbitrary
term containing no program variable but a dedicated place holder for the argument of it.
That means, in our case we demand that the argument of a second-order variable occurs
at least one time in the resulting term. Deciding subsumption between conjunctions of
equalities which contain second-order variables is subtly related to second-order unification
which is in general undecidable [2] and even undecidable in the case if only one unary
second-order variable is considered which was shown by Levy and Veanes [4]. Though
the latter result is not immediately applicable to our problem, since we consider only
terms with at most one program variable while Levy and Veanes allow arbitrary many
variables. Hence, the problem of second-order unification of our restricted case is still open
to the best of our knowledge. Yet in order to decide subsumption and arrive at effective
representations for all occurring weakest pre-conditions, we showed for almost all values
possibly computed at run-time, that they can be uniquely factorized into tree patterns
and a terminating ground term. Moreover, we introduced an approximate notion of
subsumption which is effectively decidable and ensures that finite conjunctions of equalities
may not grow infinitely. Based on these technical results, we realized an effective fixpoint
iteration to infer all inter-procedurally valid Herbrand equalities for programs where each
right-hand side of an assignment contains at most one program variable but possibly
multiple times.

Here we study the complexity of our algorithm and show that it is in PTIME. For that
we first note that the terms occurring during the computation might be exponentially large
in the size of the program. Hence, we need a compact representation for all occurring terms
which supports all basic term operations as e.g. prefix/suffix computation in polynomial
time. Ongoing we examine the algorithm with respect to terms which are represented
in such a compact form. We will observe that one of the main parts of the subsumption
algorithm is a generalization of Euclidians algorithm which has logarithmic complexity in
the smaller input. Altogether with our compactness result from previous work we finally
show that our algorithm has polynomial time complexity.

1 Two-Variable Herbrand Equalities
In the following we consider only imperative programs with assignments where each
right-hand side contains at most one program variable which might occur several times.
Furthermore, the program model makes use of non-deterministic branching and recursive
functions. In order to infer all invariants for such programs, we summarize the effect of
procedures for multiple, but finitely many, generic post-conditions only. A two-variable
generic post-condition is of the form Ax .= By where A,B are template variables, i.e.,
variables which range over arbitrary terms not containing program variables but a special
place holder (denoted as •) in which the argument gets substituted. Computing weakest
pre-conditions of a generic post-condition then operates on equalities of the form As

.= Bt
where s,t are terms possibly containing occurrences of a single program variable. In [9] we
show that for finite conjunctions of such equalities there exists an approximate notion of
subsumption which is effectively decidable. Furthermore, we show that for each occurring
conjunction of a set E of equalities there exists a finite conjunction of a subset in E which

Frontiers of Formal Methods 2015

232

is equivalent. As already mentioned in [9] we show an approximate notion of subsumption
and compactness. We obtain these results by limiting the values a template as well as a
program variable might receive to a suitable superset of values which might be computed
by the program of interest. We denote this superset of possible values by T which can be
divided into a finite set of so called small ground values S and a (possibly infinite) set of
large ground values. For the set of large ground values we show that each term can be
uniquely factorized into tree patterns, while we cannot uniquely factorize small ground
values. However, the latter ones are only finitely many. These observations then allow us
to apply monoidal techniques from [3] in order to effectively decide subsumption, or more
precisely, T -subsumption, i.e., subsumption with respect to the set T of possible ground
values only.

2 Polynomial Time Complexity
Before we examine the decision procedure for T -subsumption, we first have a look at a
program fragment consisting of procedures pn and two global program variables x and y:

pi { pi−1(); pi−1(); }
p0 { x := f(x,x); y := f(y,y); }

The weakest pre-condition of a generic post-condition Ax .= By for a procedure pn is then
given by a single equality Af 2n(x,x) .= Bf 2n(y,y) with exponentially large terms on both
sides of the equality. Hence, we immediately note that basic operations as e.g. computing
largest common prefix on such terms cannot be done in polynomial time. However we
also observe that a program itself is an implicit representation of succinct context-free
grammars. Furthermore, each context-free grammar can be transformed into Chomsky
normal form in polynomial time. A straight-line program (SLP, for short) is a context-free
grammar G in Chomsky normal form where L(G) = { w }. Since L(G) = { w }, the
grammar is non-recursive. Such a grammar then defines the word w by the derivation of
the start non-terminal. Hence, each term occurring during a WP computation can be
encoded into succinct SLPs which are linear in the size of the program. In [8] we show that
the following basic operations on terms which are represented by SLPs can be performed
in polynomial time.

Corollary. The following term operations are polynomial on SLPs:

1. The balance |w| of a term w;

2. The power wr, r ≥ 1 of a term w;

3. The largest common prefix/suffix of two terms;

4. Concatenating two terms;

5. Splitting a term w into two terms u and v such that w = uv.

Consider two distinct equalities Asix .= Btiy, i = 1, 2 such that the conjunction
of them is T -satisfiable. Assuming that the variables x,y take large values only, we
can uniquely factorize the terms. Both equalities then imply the monoidal identity

Inter-procedural Two-Variable Herbrand Equalities are in
PTIME

233

As1s
−1
2 A−1 .= Bt1t

−1
2 B−1. Let the balance |w| of a factorized term w equal the difference

of the number of positive and negative letters in w. In [9] we then come up with the
following lemma and theorem:

Lemma 1. If |u| = |u′| = 0, then the equality AuA−1 .= Bu′B−1 either is trivial, is
equivalent to an equality As .= B or an equality A .= Bs for some s or is contradictory.

Theorem 2. Two equalities AuA−1 .= Bu′B−1 and AvA−1 .= Bv′B−1 are effectively
equivalent either to one solved equation, or to a single equation or are contradictory.

By that we state our first complexity result:

Lemma 3. Deciding subsumption between two equalities AuA−1 .= Bu′B−1 and AvA−1 .=
Bv′B−1 takes polynomial time.

Proof. W.l.o.g. assume that |u| ≥ |v|, then a third equality AwA−
.= Bw′B− with

|w| = |u| mod |v| is derived. If |w| = 0, then according to Lemma 1 we can decide if an
equality is subsumed or not. Otherwise, |w| > 0, and a further iteration is performed
including the equalities AvA− .= Bv′B− and AwA− .= Bw′B− where |v| ≥ |w| holds. This
algorithm is a generalization of Euclideans algorithm which has logarithmic complexity in
the size of the smaller input [5, pp. 21–22].

In each iteration a new term w is constructed such that w = uv−r where r is maximal
in |u| ≥ r · |v|. If the term v is represented by a SLP G, then a SLP G′ which represents
the term vr can be constructed in logarithmic time with |G′| ≤ |G| + 2 · log2(r). Since
Euclidians algorithm performs at most logarithmic many iterations in the size of the
smaller input, and in each iteration we increase the grammar by a summand depending
on the size of the grammar itself, and according to Corollary 2 all basic term operations
can be performed in polynomial time, the assertion of the theorem follows.

We showed that L-subsumption, i.e., subsumption w.r.t. large values only, takes
polynomial time for equalities of the form Asx .= Bty. In [8] we additionally show that
T -subsumption takes polynomial time, too. Furthermore, we show that the same holds
for different formats of equalities (e.g. one program variable As .= Btx or no program
variable at all As .= Bt). Hence we come up with the following theorem:

Theorem 4. Approximate T -subsumption for finite conjunctions of two-variable equalities
is decidable in polynomial time.

In [9] we also showed that each occurring conjunction φ during a WP computation
is approximately T -subsumed by a conjunction with at most O(n2 ·m2) equalities in φ
where n is the number of program variables and m is the cardinality of the set of small
terms. Since the set of small terms is part of the input, we then have:

Corollary. Assume that all right-hand sides of assignments in an arbitrary program
contain at most one variable. Then all inter-procedurally valid two-variable Herbrand
equalities can be inferred in polynomial time in the size of the program.

Frontiers of Formal Methods 2015

234

3 Conclusion
Here we showed that deciding L-subsumption between equalities of the form Asx .= Bty
takes polynomial time. In [8] we show that subsumption w.r.t. small and large values takes
polynomial time, too. Additionally we show that there exist only finitely many formats
of equalities which we have to consider and that each conjunction φ of such equalities is
approximately T -subsumed by a finite conjunction of at most polynomial many equalities
in φ. Hence it immediately follows that the overall analysis is polynomial.

References
[1] J. Cocke and J. T. Schwartz. Programming Languages and Their Compilers: Pre-

liminary Notes. Courant Institute of Mathematical Sciences, New York University,
1970.

[2] W. D. Goldfarb. The undecidability of the second-order unification problem. Theoretical
Computer Science, 13(2):225–230, 1981.

[3] S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural
analysis. In R. Nicola, editor, Programming Languages and Systems, 16th European
Symposium on Programming (ESOP), pages 253–267. Springer, LNCS 4421, 2007.

[4] J. Levy and M. Veanes. On the undecidability of second-order unification. Information
and Computation, 159(1-2):125–150, 2000.

[5] R. A. Mollin. Fundamental Number Theory with Applications. Chapman & Hall/CRC,
second edition, 2008.

[6] M. Müller-Olm, H. Seidl, and B. Steffen. Interprocedural herbrand equalities. In
S. Sagiv, editor, Programming Languages and Systems, 14th European Symposium on
Programming (ESOP), pages 31–45. Springer, LNCS 3444, 2005.

[7] M. Petter. Interprocedural Polynomial Invariants. PhD thesis, Institut für Informatik,
Technische Universität München, September 2010.

[8] S. Schulze Frielinghaus, M. Petter, and H. Seidl. Inter-procedural two-variable herbrand
equalities. arXiv e-prints, 2014. http://arxiv.org/abs/1410.4416.

[9] S. Schulze Frielinghaus, M. Petter, and H. Seidl. Inter-procedural two-variable herbrand
equalities. In J. Vitek, editor, Programming Languages and Systems, 24th European
Symposium on Programming (ESOP). Springer, LNCS, 2015.

Inter-procedural Two-Variable Herbrand Equalities are in
PTIME

235

Frontiers of Formal Methods 2015

236

On Promptness in Parity Games

Loredana Sorrentino∗(loredana.sorrentino@unina.it)

1 Introduction

In this article we keep working on two-player parity games, under the prompt semantics,
over colored (vertexes) arenas with or without weights over edges. In the sequel, we refer to
the latter as colored arenas and to the former as weighted arenas. We give a clear picture
of all different extended parity conditions introduced in the literature working under
the prompt assumption. In particular, we analyze their main intrinsic peculiarities and
possibly improve the complexity class results related to the game solutions. Furthermore,
we introduce new parity conditions to work on both colored and weighted arenas and
study their relation with the known ones. As a main contribution, we introduce and study
three new parity conditions named full parity (FP), prompt parity (PP) and full-prompt
parity (FPP) condition, respectively. The full parity condition is defined over colored
arenas and, in accordance to the full semantics, it simply requires that all requests must
be responded. See Table 1 for a schematic view of this argument. We prove that the
problem of checking whether player ∃ wins under the full parity condition is in PTime [3].
The prompt parity condition, which we consider on both colored and weighted arenas,
requires that almost all requests are responded within a bounded cost, which we name
here delay. The full-prompt parity condition is defined accordingly. Observe that the main
difference between the cost parity and the prompt parity conditions is that the former is a
conjunction of two properties, in each of which a possibly different set of finite requests
can be ignored, while in the latter we indicate only one set of finite requests to be used in
two different properties. Nevertheless, since the quantifications of the winning conditions
range on co-finite sets, we are able to prove that prompt and cost parity conditions are
semantically equivalent. We also prove that the complexity of checking whether player ∃
wins the game under the prompt parity condition is UPTime ∩ CoUPTime, in the case
of weighted arenas [3]. So, the same result holds for cost parity games and this improves
the previously known results. Observe that, on colored arenas, prompt and full-prompt
parity conditions correspond to the finitary and bounded-finitary parity conditions [1],
respectively. Hence, both the corresponding games can be decided in PTime. We prove
that for full-prompt parity games the PTime complexity holds even in the case the arenas
are weighted. Finally, by means of a cubic translation to classic parity games, we prove
that bounded-cost parity over weighted arenas is in UPTime ∩ CoUPTime [3], which
also improves the previously known result about this condition. All the results reported
in this paper come from [3]. The interested reader can refer to this work to find more
motivations, examples and related material.

∗Joint work with Fabio Mogavero and Aniello Murano

On Promptness in Parity Games

237

2 Preliminaries

In this section, we give the concepts of two-player turn-based arena, payoff-arena, and
game. Furthermore we introduce some notation to formally define all addressed winning
conditions.

An arena is a tuple A , 〈Ps∃,Ps∀,Mv 〉, where Ps∃ and Ps∀ are the disjoint sets of
existential and universal positions and Mv ⊆ Ps× Ps is the left-total move relation on
Ps , Ps∃∪Ps∀. The order of A is the number |A| , |Ps| of its positions. An arena is finite
iff it has finite order. A path (resp., history) in A is an infinite (resp., finite non-empty)
sequence of vertexes π ∈ Pth ⊆ Psω (resp., ρ ∈ Hst ⊆ Ps+) compatible with the move
relation, i.e., (πi, πi+1) ∈ Mv (resp., (ρi, ρi+1) ∈ Mv), for all i ∈ N (resp., i ∈ [0, |ρ| − 1[),
where Pth (resp., Hst) denotes the set of all paths (resp., histories). Intuitively, histories
and paths are legal sequences of reachable positions that can be seen, respectively, as partial
and complete descriptions of possible outcomes obtainable by following the rules of the
game modeled by the arena. An existential (resp., universal) history in A is just a history
ρ ∈ Hst∃ ⊆ Hst (resp., ρ ∈ Hst∀ ⊆ Hst) ending in an existential (resp., universal) position,
i.e., lst(ρ) ∈ Ps∃ (resp., lst(ρ) ∈ Ps∀). An existential (resp., universal) strategy on A is a
function σ∃ ∈ Str∃ ⊆ Hst∃ → Ps (resp., σ∀ ∈ Str∀ ⊆ Hst∀ → Ps) mapping each existential
(resp., universal) history ρ ∈ Hst∃ (resp., ρ ∈ Hst∀) to a position compatible with the move
relation, i.e., (lst(ρ), σ∃(ρ)) ∈ Mv (resp., (lst(ρ), σ∀(ρ)) ∈ Mv), where Str∃ (resp., Str∀)
denotes the set of all existential (resp., universal) strategies. Intuitively, a strategy is a
high-level plan for a player to achieve his own goal, which contains the choice of moves as a
function of the histories of the current outcome. A path π ∈ Pth(v) starting at a position
v ∈ Ps is the play in A w.r.t. a pair of strategies (σ∃, σ∀) ∈ Str∃ × Str∀ (((σ∃, σ∀), v)-play,
for short) iff, for all i ∈ N, it holds that if πi ∈ Ps∃ then πi+1 = σ∃(π≤i) else πi+1 = σ∀(π≤i).
Intuitively, a play is the unique outcome of the game given by the player strategies. The
play function play : Ps× (Str∃ × Str∀)→ Pth returns, for each position v ∈ Ps and pair of
strategies (σ∃, σ∀) ∈ Str∃ × Str∀, the ((σ∃, σ∀), v)-play play(v, (σ∃, σ∀)).

A payoff arena is a tuple Â , 〈A,Pf , pf〉, where A is the underlying arena, Pf is the
non-empty set of payoff values, and pf : Pth → Pf is the payoff function mapping each
path to a value. The order of Â is the order of its underlying arena A. A payoff arena
is finite iff it has finite order. The overloading of the payoff function pf from the set of
paths to the sets of positions and pairs of existential and universal strategies induces
the function pf : Ps × (Str∃ × Str∀) → Pf mapping each position v ∈ Ps and pair of
strategies (σ∃, σ∀) ∈ Str∃× Str∀ to the payoff value pf(v, (σ∃, σ∀)) , pf(play(v, (σ∃, σ∀))) of
the corresponding ((σ∃, σ∀), v)-play.

A (extensive-form) game is a tuple a , 〈Â,Wn, v〉, where Â = 〈A,Pf , pf〉 is the
underlying payoff arena, Wn ⊆ Pf is the winning payoff set, and v ∈ Ps is the designated
initial position. The order of G is the order of its underlying payoff arena Â. A game is
finite iff it has finite order. The existential (resp., universal) player ∃ (resp., ∀) wins the
game a iff there exists a v-total existential (resp., universal) strategy σ∃ ∈ Str∃(v) (resp.,
σ∀ ∈ Str∀(v)) such that, for all v-total universal (resp., existential) strategies σ∀ ∈ Str∀(v)
(resp., σ∃ ∈ Str∀(v)), it holds that pf(v, (σ∃, σ∀)) ∈Wn (resp., pf(v, (σ∃, σ∀)) 6∈Wn).

Before continuing, we introduce some notation to formally define all winning conditions.
A colored arena is a tuple Ã , 〈A,Cl, cl〉, where A is the underlying arena, Cl ⊆ N is
the non-empty sets of colors, and cl : Ps → Cl is the coloring function mapping each

Frontiers of Formal Methods 2015

238

position to a color. Similarly, a (colored) weighted arena is a tuple A , 〈A,Cl, cl,Wg,
wg〉, where 〈A,Cl, cl〉 is the underlying colored arena, Wg ⊆ N is the non-empty sets of
weights, and wg : Mv →Wg is the weighting functions mapping each move to a weight.
The overloading of the coloring (resp., weighting) function from the set of positions (resp.,
moves) to the set of paths induces the function cl : Pth→ Clω (resp., wg : Pth→Wgω)
mapping each path π ∈ Pth to the infinite sequence of colors cl(π) ∈ Clω (resp. weights
wg(π) ∈Wgω) such that (cl(π))i = cl(πi) (resp., (wg(π))i = wg((πi, πi+1))), for all i ∈ N.

Every colored (resp., weighted) arena Ã , 〈A,Cl, cl〉 (resp., A , 〈A,Cl, cl,Wg,wg〉)
induces a canonical payoff arena Â , 〈A,Pf , pf〉, where Pf , Clω (resp., Pf , Clω×Wgω)
and pf(π) , cl(π) (resp., pf(π) , (cl(π),wg(π))).

Along a play, we interpret the occurrence of an odd priority as a “request” and the
occurrence of the first bigger even priority at a later position as a “response”. Then, we
distinguish between prompt and not-prompt requests. In the not-prompt case, a request
is responded independently from the elapsed time between its occurrence and response.
Conversely, in the prompt case, the time within a request is responded has an important
role. It is for this reason that we consider weighted arenas. So, a delay over a play is the sum
of the weights over of all the edges crossed from a request to its response. We now formalize
these concepts. Let c ∈ Clω be an infinite sequence of colors. Then, Rq(c) , {i ∈ N : ci ≡ 1
(mod 2)} denotes the set of all requests in c and rs(c, i) , min{j ∈ N : i ≤ j∧ci ≤ cj∧cj ≡ 0
(mod 2)} represents the response to the requests i ∈ Rs, where by convention we set
min ∅ , ω. Moreover, Rs(c) , {i ∈ Rq(c) : rs(c, i) < ω} denotes the subset of all
requests for which a response is provided. Now, let w ∈ Wgω be an infinite sequence
of weights. Then, dl((c, w), i) ,

∑rs(c,i)−1
k=i wk denotes the delay w.r.t. w within which a

request i ∈ Rq(c) is responded. Also, dl((c, w),R) , supi∈R dl((c, w), i) is the supremum
of all delays of the requests contained in R ⊆ Rq(c).

3 Our contribution
Wn Formal definitions

P ∀c∈Clω. c∈Wn iff
∃R ⊆ Rq(c), |R| < ω. Rq(c) \ R ⊆ Rs(c)

FP Rq(c) = Rs(c)

PP

∀(c, w)∈Clω ×Wgω.
(c, w)∈Wn iff

∃R ⊆ Rq(c), |R| < ω.
Rq(c) \ R ⊆ Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c) \ R) ≤ b

FPP
Rq(c) = Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c)) ≤ b

CP
∃R ⊆ Rq(c), |R| < ω.
∃R′ ⊆ Rq(c), |R′| < ω.

Rq(c) \ R ⊆ Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c) \ R′) ≤ b

BCP
∃R ⊆ Rq(c), |R| < ω. Rq(c) \ R ⊆ Rs(c) ∧

∃b ∈ N . dl((c, w),Rq(c)) ≤ b

Table 1: Summary of all winning condition (Wn) definitions.

In this contribution we keep working on two-player parity games, under the prompt
semantics. We give a clear picture of all different extended parity conditions introduced in
the literature working under the prompt assumption and we, also, introduce new parity
conditions.

In detail, we introduce and study three new parity conditions named full parity (FP),
prompt parity (PP) and full-prompt parity (FPP), respectively. The full parity is defined
over colored arenas and requires that all requests must be responded. See Table 1 for
a schematic view of this argument. We prove that the complexity of checking whether
player ∃ wins under the full parity condition is in PTime. This result is obtained by
a quadratic translation to classic Büchi games. The prompt parity condition, which
we consider on both colored and weighted arenas, requires that almost all requests are

On Promptness in Parity Games

239

responded within a bounded cost, which we name here delay. The full-prompt parity
condition is defined accordingly. Observe that the main difference between the cost parity
and the prompt parity conditions is that the former is a conjunction of two properties,
in each of which a possibly different set of finite requests can be ignored, while in the
latter we indicate only one set of finite requests to be used in two different properties.
Nevertheless, since the quantifications of the winning conditions range on co-finite sets, we
are able to prove that prompt and cost parity conditions are semantically equivalent.

Theorem 3.1. Let a = 〈Â,Wn, v〉 and a = 〈Â,Wn, v〉 be two games defined on

the payoff arenas Â and Â having the same underlying arena A. Then, player ∃ wins
a if it wins a under the following constraints:

• Â = Â are induced by a weighted arena A = 〈A,Cl, cl,Wg,wg〉 and

1. (Wn,Wn) = (PP,CP)

2. (Wn,Wn) = (CP,PP)

Proof. The proof of the first item is omitted as trivial. To prove the second item, we show
that if a payoff (c, w) ∈ Clω ×Wgω satisfies the CP condition then it also satisfies the PP
one. Indeed, by definition, there are a finite set R ⊆ Rq(c) such that Rq(c) \ R ⊆ Rs(c)
and a possibly different finite set R

′ ⊆ Rq(c) for which there is a bound b ∈ N such that
dl((c, w),Rq(c) \R

′
) ≤ b. Now, consider the union R

′′ , R∪R
′
. Obviously, this is a finite

set. Moreover, it is immediate to see that Rq(c)\R′′ ⊆ Rs(c) and dl((c, w),Rq(c)\R
′′
) ≤ b,

for the same bound b. So, the payoff (c, w) satisfies the PP condition, by using R
′′

in
place of R in the definition.

Successively, we also prove that the complexity of checking whether player ∃ wins the
game under the prompt parity condition is UPTime ∩ CoUPTime, in the case of weighted
arenas. So, the same result holds for cost parity games and this improves the previously
known results. The statement is obtained by a quartic translation to classic parity games.
Informally, our algorithm always reduces the original problem to a unique parity game,
which is the core of how we gain a better result w.r.t. the time complexity point of view.
Obviously, this is different from what is done in [2] as the algorithm there performs several
calls to a parity game solver. Observe that, on colored arenas prompt and full-prompt
parity conditions correspond to the finitary and bounded-finitary parity conditions [1],
respectively. Hence, both the corresponding games can be decided in PTime. Our goal is
not to make an improvement of the algorithmic complexity but, we prove that checking
the winner of a game under all investigated conditions can be done either in PTime or
in UPTime ∩ CoUPTime. We prove that for full-prompt parity games the PTime
complexity holds even in the case the arenas are weighted. Finally, by means of a cubic
translation to classic parity games, we prove that bounded-cost parity over weighted arenas
is in UPTime ∩ CoUPTime, which also improves the previously known result about this
condition. We face the computational complexity of solving FP, PP, and BCP games.
The technique we adopt is to solve a given game through the construction of a new game
over an enriched arena, on which we play with a simpler winning condition. Intuitively,
the built game encapsulates in the states of its arena some information regarding the
satisfaction of the original condition. To this aim, we introduce the concepts of transition
table and its product with an arena. A transition table is an automaton without acceptance

Frontiers of Formal Methods 2015

240

condition. It is used to represent the information of the winning condition mentioned
above. Then, the product operation allows to pass this information to the new arena. In
general, our constructions are pseudo-polynomial, but if we restrict to the case of having
only 0 and 1 as weights over the edges, then they become polynomial, due to the fact that
the threshold is bounded by the number of edges in the arena. Moreover, since a game
with arbitrary weights can be easily transformed into one with weights 0 and 1, we overall
get a polynomial reduction for all the cases. Note that to check if a value is positive or zero
is linear in the number of its bits and, therefore, it is linear in the description of its weights.

Conditions Colored Arena (Colored) Weighted arena

Parity (P) UPTime ∩ CoUPTime [4] ←↩
Full Parity (FP) PTime [3] ←↩
Prompt Parity (PP) PTime [3] UPTime ∩ CoUPTime [3]

Full Prompt Parity (FPP) ←↩ PTime [3]

Cost Parity (CP) PTime [3] UPTime ∩ CoUPTime [3]

Bounded Cost Parity (BCP) PTime [3] UPTime ∩ CoUPTime [3]

Table 2: Summary of all winning condition complexities.

Finally, Table 2 sum-
marizes the achieved re-
sults. In particular, we
use the special arrow ←↩
to indicate that the re-
sult is trivial or an easy
consequence of another one.

References

[1] K. Chatterjee, T. A. Henzinger, and F. Horn. Finitary winning in ω-regular games.
ACM Trans. Comput. Logic, 11(1), nov 2009.

[2] Nathanaël Fijalkow and Martin Zimmermann. Cost-parity and cost-streett games. In
FSTTCS’12, pages 124–135, 2012.

[3] F.Mogavero, A. Murano, and L. Sorrentino. On Promptness in Parity Games. pages
601–618, 2013.

[4] M. Jurdzinski. Deciding the winner in parity games is in up ∩ co-up. Inf. Process.
Lett., 68(3):119–124, 1998.

On Promptness in Parity Games

241

Frontiers of Formal Methods 2015

242

Transformational Termination Analysis of Programs

with Pointer Arithmetic∗

Thomas Ströder (stroeder@informatik.rwth-aachen.de)

LuFG Informatik 2 and AlgoSyn, RWTH Aachen University, Germany

1 Introduction

Traditionally, analysis and synthesis are considered contrary �elds of research. In this
paper, however, we will show that synergies between these two �elds can be exploited
to obtain a practically powerful and fully automated method to prove termination of
C programs. To this end, we synthesize simple integer transition systems (ITSs) from
C programs which capture the essence of the original program's termination behavior.
Then, existing powerful analysis techniques for this simple mathematical formalism can
be used to prove termination of real C programs automatically. As a byproduct, we also
prove memory safety of the original program during the transformation. In particular,
the presented approach can deal with explicit pointer arithmetic as commonly seen, e.g.,
in string algorithms.

For instance, the following standard C implementation of strlen [9, 15] computes the
length of the string at pointer str. In C, strings are usually represented as a pointer to
the heap, where all following memory cells up to the �rst one that contains the value 0

are allocated memory and form the value of the string.

int strlen(char* str) {char* s = str; while(*s) s++; return s-str;}

The di�culty in analyzing such algorithms for termination is that the control �ow depends
on the content of the memory and that arbitrary memory addresses can be accessed using
pointer arithmetic. Moreover, access to non-allocated memory is unde�ned behavior in C.
Thus, for a sound termination analysis, we also have to prove memory safety (i.e., absence
of accesses to non-allocated memory) of the program in question. Fortunately, this can be
proven �along the way� when transforming the original program to an integer transition
system.

Intuitively, the reason why the strlen algorithm above is memory safe and terminating
is that there is some address end ≥ str (an integer property of end and str) such that
*end is 0 (a pointer property of end) and all addresses str ≤ s ≤ end are allocated.

To improve the generality of our method and to avoid some platform-dependent intri-
cacies of C, we analyze programs in the platform-independent intermediate representation
(IR) of the LLVM compilation framework [8].

∗Supported by DFG grant GI 274/6-1 and Research Training Group 1298 (AlgoSyn).

Transformational Termination Analysis of Programs with
Pointer Arithmetic

243

Our approach consists of three stages: First, an abstract interpretation [4] of the pro-
gram over-approximating its behavior is computed. If this over-approximation does not
contain violations of memory safety, this already proves memory safety of the original
program. Second, from the integer and pointer properties found in the abstract interpre-
tation, we synthesize ITSs with the property that termination of the synthesized systems
implies termination of the over-approximation (and, thus, also of the original program).
Third, existing techniques for termination analysis of ITSs [10] are employed to prove ter-
mination of the synthesized transition systems. This approach has been implemented in
the termination prover AProVE [5], which (using the presented approach) won the termi-
nation competition (termCOMP) 2014 [13] on C programs and the termination category
of the software veri�cation competition (SV-COMP) 2015 [12].

The content of this paper is joint work with J. Giesl, M. Brockschmidt, F. Frohn,
C. Fuhs, J. Hensel, and P. Schneider-Kamp. It is a short version of [11], in which further
details can be found.

2 Approach

define i32 @strlen(i8* str) {

entry: 0: c0 = load i8* str

1: c0zero = icmp eq i8 c0, 0

2: br i1 c0zero, label done, label loop

loop: 0: olds = phi i8* [str,entry],[s,loop]

1: s = getelementptr i8* olds, i32 1

2: c = load i8* s

3: czero = icmp eq i8 c, 0

4: br i1 czero, label done, label loop

done: 0: sfin = phi i8* [str,entry],[s,loop]

1: sfinint = ptrtoint i8* sfin to i32

2: strint = ptrtoint i8* str to i32

3: size = sub i32 sfinint, strint

4: ret i32 size }

The strlen program from the previous
section is compiled by the Clang com-
piler [3] to the LLVM program on the
right. To ease readability, we wrote
variables without �%� in front (i.e., we
wrote �str� instead of �%str� as in
proper LLVM) and added line numbers.

8-bit characters have the type i8 in
LLVM. Pointer types have the su�x *,
so str has the type i8*. LLVM pro-
grams are organized by basic blocks. In
this example, we have the basic blocks
entry, loop, and done. The instruc-
tions load, icmp eq (integer compare
equal), sub (subtract), and ret (return)
have the default intuitive meaning. The instruction ptrtoint is a cast from a pointer type
to an integer. For branching depending on the truth value of a variable, the instruction br

is used. Its arguments are the boolean variable and the two labels reached if the variable
is true or false, respectively. Pointer arithmetic is performed using the getelementptr

instruction. Its �rst argument is a base pointer, its second argument is an o�set. It yields
the pointer to the base address plus the o�set. The phi instruction assigns a value to a
variable at the beginning of a basic block depending on the block that the control �ow
was in before the current block.

Intuitively, entry corresponds to the C code before the while-loop and to the �rst
check of the loop condition. The loop block corresponds to the loop body followed by
the check of the loop condition. Finally, the done block corresponds to the C code after
the while-loop.

For this LLVM program, we obtain the (simpli�ed) abstract interpretation in Fig. 1.
The components of states in this graph are �rst the program position, second the values of

Frontiers of Formal Methods 2015

244

(ε, entry, 0), {str = ustr, ...}, {alloc(ustr, vend)}, {vend ↪→ 0}A

(ε, entry, 1), {str = ustr, c0 = v1, ...}, {...}, {ustr ↪→ v1, vend ↪→ 0}

(ε, entry, 1), {str = ustr, c0 = v1, ...},
{v1 = 0, ...}, {...}

(ε, entry, 1), {str = ustr, c0 = v1, ...},
{v1 6= 0, ...}, {ustr ↪→ v1, vend ↪→ 0}

. . .
(ε, entry, 2), {str = ustr, c0zero = v2, ...}, {v2 = 0, ...}, {vend ↪→ 0, ...}

(entry, loop, 0), {str = ustr, ...}, {...}, {vend ↪→ 0, ...}

(entry, loop, 1), {str = ustr, olds = v3, ...}, {v3 = ustr, ...}, {vend ↪→ 0, ...}

(entry, loop, 2), {str = ustr, s = v4, ...}, {v4 = v3 + 1, v3 = ustr, ...}, {vend ↪→ 0, ...}

(entry, loop, 3), {str = ustr, c = v5, s = v4, ...}, {...}, {v4 ↪→ v5, vend ↪→ 0, ...}

(entry, loop, 3), {str = ustr,
c = v5, ...}, {v5 = 0, ...}, {...}

(entry, loop, 3), {str = ustr, c = v5, s = v4,
...}, {v5 6= 0, ...}, {v4 ↪→ v5, vend ↪→ 0, ...}

. . .
(entry, loop, 4), {str = ustr, czero = v6, s = v4, . . .}, {v5 6= 0, v6 = 0, ...}, {...}

(loop, loop, 0), {str = ustr, c = v5, s = v4, olds = v3, ...},
{v5 6= 0, v4 = v3 + 1, v3 = ustr, ...}, {v4 ↪→ v5, vend ↪→ 0, ...}

(loop, loop, 0), {str = vstr, c = vc, s = vs, olds = volds, ...},
{vc 6= 0, vs = volds + 1, volds ≥ vstr, vs < vend , ...}, {vs ↪→ vc, vend ↪→ 0, ...}

B

(loop, loop, 3), {str = vstr, c = wc, s = ws, olds = wolds, ...},
{ws = wolds + 1, wolds = vs, vs < vend , ...}, {ws ↪→ wc, vend ↪→ 0, ...}

C

. . .

(loop, loop, 0), {str = vstr, c = wc, s = ws, olds = wolds, ...},
{wc 6= 0, ws = wolds+1, wolds = vs, vs < vend , ...}, {ws ↪→ wc, vend ↪→ 0, ...}

D

Figure 1: Abstract interpretation for strlen

the program variables, third a set of relations known to hold in the state, and fourth known
contents of the memory. A program position consists of the previous basic block (needed
to evaluate phi instructions; ε denotes no basic block), the current basic block, and the line
number within the current basic block. We assign abstract values (so-called references)
to the program variables. Thus, we can express knowledge about these references in the
set of relations. The knowledge that at the address a we have the content c is denoted
a ↪→ c. The special predicate alloc(x, y) denotes that the memory between addresses x
and y (both inclusive) is allocated. In particular, this implies x ≤ y. The obtained graph
is always �nite and over-approximates all possible runs of the original program (which are
in�nitely many in most cases). To obtain �nite graphs, we have to �nd existing states that
subsume states reached later. To make sure that this is always possible, we also have to
generalize states. The rules used to automatically obtain such an abstract interpretation
from an LLVM program are given in [11].

The �rst state (labeled A) has the intuitive meaning that we are at the very �rst
instruction and know that the parameter str points to a string, i.e., to an address ustr,
from which an allocated memory area starts and ends at the address vend containing the
value 0.

Since this graph does not contain any state where non-allocated memory is accessed,
memory safety of strlen is proven. Now to prove termination, we only need to consider
non-trivial strongly connected components (SCCs) in the graph as each in�nite run must
eventually stay in an SCC. For each non-trivial SCC, an integer transition system is
synthesized. In this graph, there is only one non-trivial SCC from the node labeled B
over C to D and from there back to B.

The synthesis of integer transition systems works as follows. Each edge within an SCC
is translated to a transition rule. The states of the integer transition system are the states

Transformational Termination Analysis of Programs with
Pointer Arithmetic

245

of the SCC, but states with an edge back to an already existing state (so-called instance
edges) are identi�ed with the state to which they refer back. In our example, we have the
states B and C (D is identi�ed with B). The integer variables in the transition system
are the references in the states of our abstract interpretation and the conditions on the
transition rules are the relations known in the states associated with the corresponding
edge (but only those which do not contain references not assigned to any program variable
and not being a known memory address). In case of an outgoing instance edge at the
target state, we also add equations between references assigned to the same program
variable in the two states associated with the instance edge. The transition rules have the

form �state�(variables)
condition→ �state�(variables). So here we obtain the two rules:

B(vstr, vc, vs, volds, vend , ...)

vc 6= 0,
vs = volds + 1,
volds ≥ vstr,
vs < vend ,
ws = wolds + 1,
wolds = vs, ...

→ C(vstr, wc, ws, wolds, vs, vend , ...)

C(vstr, wc, ws, wolds, vs, vend , ...)

ws = wolds + 1,
wc 6= 0,
wc = vc,
ws = vs,
wolds = volds, ...

→ B(vstr, vc, vs, volds, vend , ...)

This can be simpli�ed automatically to the following one-rule system:

f(x, y)
x<y→ f(x+ 1, y)

This system captures exactly the reason why strlen terminates: There is a �current�
address x, which is increased until it reaches another address y which stays the same (and
at which the value 0 is stored, but this knowledge is irrelevant for the termination proof).
Virtually all termination provers of integer transition systems can prove termination of
the resulting system within less than a second. Thus, termination of strlen has been
proven.

3 Related Work, Experiments, and Conclusion

There exists a plethora of tools and techniques for termination analysis of imperative
programs. We refer to our competitors [2, 6, 7, 14] in the two competitions [12, 13] as
they re�ect a wide range of the most recent developments in this �eld.

In addition to these two competitions, we also conducted experiments ourselves to eval-
uate the practical power of AProVE. The results of this evaluation can be found in [1].

Apart from AProVE's success at the competitions, it is noteworthy that AProVE is the
�rst and currently one of the two only tools capable of analyzing C programs involving
pointer arithmetic for termination (including memory safety) fully automatically (the
other tool is Ultimate Automizer [6]).

Frontiers of Formal Methods 2015

246

References

[1] http://aprove.informatik.rwth-aachen.de/eval/Pointer/

[2] Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Proc. CAV '13

[3] Clang compiler: http://clang.llvm.org

[4] Cousot, P., Cousot, R.: Abstract interpretation: a uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints. In: Proc.
POPL '77

[5] Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M.,
Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving Termination
of Programs Automatically with AProVE. In: Proc. IJCAR '14

[6] Heizmann, M., Christ, J., Dietsch, D., Ermis, E., Hoenicke, J., Lindenmann, M.,
Nutz, A., Schilling, C., Podelski, A.: Ultimate Automizer with SMTInterpol. In:
Proc. TACAS '13

[7] Le T. C., Gherghina, C., Hobor, A., Chin, W.-N.: A Resource-Based Logic for
Termination and Non-Termination Proofs. Technical Report at
http://loris-7.ddns.comp.nus.edu.sg/~project/hiptnt/HipTNT.pdf

[8] Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: Proc. CGO '04

[9] http://fxr.watson.org/fxr/source/lib/libsa/strlen.c?v=OPENBSD

[10] Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Proc. VMCAI '04

[11] Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-
Kamp, P.: Proving Termination and Memory Safety for Programs with Pointer Arith-
metic. In: Proc. IJCAR '14

[12] SV-COMP at TACAS 2015 : http://sv-comp.sosy-lab.org/2015/

[13] termCOMP at VSL 2014 :
http://termination-portal.org/wiki/Termination_Competition_2014

[14] Urban, C.: The abstract domain of segmented ranking functions. In: Proc. SAS '13

[15] Wikibooks C Programming: http://en.wikibooks.org/wiki/C_Programming/

Transformational Termination Analysis of Programs with
Pointer Arithmetic

247

Frontiers of Formal Methods 2015

248

Abstraction and Mining of Traces
to Explain Concurrency Bugs [8]

Mitra Tabaei Befrouei (tabaei@forsyte.at)

Formal Methods in Systems Engineering
Vienna University of Technology, Austria

1 Introduction
While Moore’s law is still upheld by increasing the number of cores of processors,

the construction of concurrent programs that exploit the added computational capacity
has become significantly more complicated. This holds particularly true for debugging
multi-threaded shared-memory software: unexpected interactions between threads may
result in erroneous and seemingly non-deterministic program behavior whose root cause is
difficult to analyze. Therefore, concurrency bugs which are on the rise are among the most
difficult software bugs to detect and diagnose. Previous methods mostly have focused on
targeting a single type of concurrency bugs, such as data races (concurrent conflicting
accesses to the same memory location) [7] and atomicity violations (an interference
between supposedly indivisible critical regions) [2]. We propose a mining-based technique
to explain concurrency bugs that is oblivious to the nature of the specific bug, thus
providing a general framework for concurrency bug explanation. Moreover, unlike some
general techniques such as [6], our mining-based method does not rely on any given
pattern templates. We assume that we are given a set of concurrent execution traces,
each of which is classified as passed or failed. This is a reasonable assumption, as this is a
prerequisite for systematic software testing. Although the traces of concurrent programs
are lengthy sequences of events, only a small subset of these events is responsible for
the bug, thus sufficient to explain an erroneous behavior. In general, these events do
not occur consecutively in the execution trace, but rather at an arbitrary distance from
each other. Therefore, we use a data mining technique called sequential pattern mining
to isolate ordered sequences of non-contiguous events which occur frequently in failing
traces and then rank them based on the number of their occurrences in passing traces.
We consider the highly ranked sequences of events that occur frequently only in failing
traces an explanation of the system failure, as they can reveal its causes in the execution
traces. Since the scalability of sequential pattern mining is limited by the length of the
traces, we present a novel abstraction technique which reduces the length of the traces as
well as the number of events by mapping sequences of concrete events to single abstract
events. We show that this abstraction step preserves all original behaviors while reducing
the number of patterns to consider. However, as an artifact of the abstraction, spurious
patterns are produced. Spurious as well as misleading explanations are then eliminated
by a subsequent filtering step, helping the programmer to focus on likely causes of the
failure.

Abstraction and Mining of Traces to Explain Concurrency
Bugs

249

2 Preliminaries
In a multi-threaded program comprising a set of shared variables and a number of

threads, interaction between the threads is done via the read and write accesses to shared
variables. In our setting, we assume threads are sequentially correct, thus concurrency
bugs are due to problematic interactions between the threads and manifest themselves
in problematic accesses to shared variables. We therefore explain concurrency bugs by
isolating problematic accesses to shared variables from the concurrent execution traces.
A concurrent execution trace is defined as a totally ordered finite sequence of events
corresponding to some interleaving of instructions from the threads. We call executions
leading to a failure (a behavior contradicting the specification) failing or bad, and all
other executions passing or good executions. For our bug explanation purposes, we log
only the order of read and write events for shared variables. Two such events conflict if
they are issued by different threads, access the same variable, and at least one of them
is a write. Given two conflicting events, we distinguish three cases of data dependency:
(a) flow-dependence: one event reads a value written by the other, (b) anti-dependence:
one event reads a value before it is overwritten by the other, and (c) output-dependence:
both events write the same variable.

2.1 Bug Explanation Patterns
We illustrate via an example how a deviation of the accesses to and the data-dependencies

of a shared variable causes a failure. Figure 1 shows a code fragment that non-atomically
updates the balance of a bank account (stored in the shared variable balance) at locations
`1 and `2. The example does not contain a data race, since balance is protected by the lock
balance lock. In the failing execution at the very left of Figure 1 balance is overwritten
with a stale value in thread 1, “killing” the transaction of thread 2 that writes balance,
therefore the final value of this variable becomes inconsistent with its expected value.
This is reflected by the data-dependencies between the highlighted write/read events in
Failing execution
...
R1(balance)
release_lock1 ... acquire_lock2 R2(balance)
release_lock2... acquire_lock2W2(balance)
...
acquire_lock1W1(balance)
...

Passing execution
...
R1(balance)
release_lock1... acquire_lock1W1(balance)
release_lock1... acquire_lock2R2(balance)
...
acquire_lock2W2(balance)
...

Code fragment
 ...
ℓ1: bal = balance;

 pthread_mutex_unlock(balance_lock);
 if (bal + input ≤ MAX)

bal = bal + input;
 pthread_mutex_lock(balance_lock);
ℓ1: balance = bal;

 ...

Figure 1: Atomicity violation example

the failing trace. This combination of events and the corresponding dependencies do not
arise in any passing trace, since no context switch occurs between the events R1(balance)
and W1(balance). Accordingly, the sequence of events highlighted in the left trace in
Figure 1 in combination with the dependencies reveals the problematic memory accesses
to balance. We refer to this sequence as a bug explanation pattern. We emphasize that
the events belonging to this pattern do not occur consecutively inside the trace, but are
interspersed with other unrelated events. In general, events belonging to a bug explana-
tion pattern can occur at an arbitrary distance from each other due to scheduling. Our

Frontiers of Formal Methods 2015

250

explanations are therefore, in general, subsequences of execution traces.

3 Mining Bug Explanation Patterns
We use a data mining technique called sequential pattern mining to identify bug ex-

planation patterns. Given a minimum support threshold, sequential pattern mining is a
technique to extract frequent subsequences or sequential patterns from a dataset [5]. In
our setting, we are interested in subsequences occurring frequently in the sets of passing
(good) and failing (bad) execution traces, respectively. Intuitively, bug explanation pat-
terns occur more frequently in the bad dataset. To extract bug explanation patterns, we
first mine frequent subsequences with a given minimum support threshold from the bad
dataset. We then determine which of them are frequent only in the bad dataset but not
in the good dataset by computing the number of their occurrences in the good dataset.
Accordingly, we rank the patterns such that patterns which occur more frequently in the
bad dataset are ranked higher.

4 Abstracting Execution Traces
With increasing length of the execution traces and number of events, sequential pattern

mining quickly becomes intractable [1]. To alleviate this problem, we introduce macro-
events that represent events of the same thread occurring consecutively inside an execution
trace. By defining macros, we obtain a more compact representation of a set of execution
traces by mapping every trace to its corresponding macro trace. For example, for a defined
set of macros M = {m0

def
= 〈e0, e2〉,m1

def
= 〈e1, e2〉,m2

def
= 〈e3〉,m3

def
= 〈e4, e5, e6〉,m4

def
=

〈e8, e9〉,m5
def
= 〈e5, e6, e7〉} and the traces σ1 and σ2 as defined below, we obtain

σ1 = 〈
tid=1︷ ︸︸ ︷

e0, e2, e3,

tid=2︷ ︸︸ ︷
e4, e5, e6,

tid=1︷ ︸︸ ︷
e8, e9〉

σ2 = 〈e1, e2︸ ︷︷ ︸
tid=1

, e5, e6, e7︸ ︷︷ ︸
tid=2

, e3, e8, e9︸ ︷︷ ︸
tid=1

〉
macro(σ1) = 〈

tid=1︷ ︸︸ ︷
m0,m2,

tid=2︷︸︸︷
m3 ,

tid=1︷︸︸︷
m4 〉

macro(σ2) = 〈 m1︸︷︷︸
tid=1

, m5︸︷︷︸
tid=2

,m2,m4︸ ︷︷ ︸
tid=1

〉 (1)

This transformation reduces the number of events as well as the length of the traces
while preserving the context switches, but hides information about the frequency of the
original events. For the example (1), m3 and m5 occur once in macro traces, even
though the events {e5, e6} shared by them occur twice in the original traces. While
this problem can be amended by refining M by adding m6 = 〈e5, e6〉, m7 = 〈e4〉,
and m8 = 〈e6〉, for instance, this increases the length of the trace and the number of
events, countering our original intention. Instead, we introduce an abstraction func-
tion α : M → A which maps macros to a set of abstract events A according to the
events they share. The abstraction guarantees that if m1 and m2 share events, then
α(m1) = α(m2). For the example above (1), we obtain, for instance, α(m0) = α(m1) =
{m0,m1} and α(m3) = α(m5) = {m3,m5}. The corresponding abstract trace of σ1 is
then α(macro(σ1)) = 〈{m0,m1}, {m2}, {m3,m5}, {m4}〉. Since when two macros share
an event they are mapped to the same abstract event, it is guaranteed that frequency of
concrete events in the original traces is preserved. Therefore, it can be shown that the
patterns mined from abstract traces over-approximate the patterns of the corresponding
original execution traces. Note that even though the abstract pattern is significantly
shorter, the number of context switches is the same. While our abstraction preserves the
original patterns, it may introduce spurious patterns which do not occur in any original
traces. We filter spurious patterns by mapping them to the original traces.

Abstraction and Mining of Traces to Explain Concurrency
Bugs

251

Table 1: Length reduction results by abstracting the traces

Prog. Category Name |ΣB| |ΣG| Min.
Trace
Len.

Max.
Abst.
Trace
Len

Len
Red.

Synthetic
BankAccount 40 5 178 13 93%
CircularListRace 64 6 184 9 95%
WrongAccessOrder 100 100 48 20 58%

Bug Kernel

Apache-25520(Log) 100 100 114 16 86%
Moz-jsStr 70 66 404 18 95%
Moz-jsInterp 610 251 430 101 76%
Moz-txtFrame 99 91 410 57 86%

Table 2: Mining results

Program min supp #α #γ #feas #filt #rs = 1#grp
BankAccount 100% 65 13054 19 10 10 3
CircularListRace 95% 12 336 234 18 14 12
WrongAccessOrder 100% 5 8 11 1 1 1
Apache-25520(Log) 100% 160 1650 667 16 12 12
Moz-jsStr 100% 83 615056 486 90 76 4
Moz-jsInterp 100% 83 279882 49 23 23 4
Moz-txtFrame 90% 1192 5137 2314 200 32 11

Sequential pattern mining ignores the underlying semantics of the events and macros.
This has the undesirable consequences that we obtain numerous patterns that are not
explanations. Accordingly, we define a set of constraints to eliminate misleading patterns.
Patterns must contain events of at least two different threads (since we are interested in
concurrency bugs). We restrict our search to patterns with a limited number (at most
4) of context switches, since there is empirical evidence that real world concurrency bugs
involve only a small number of threads, context switches, and variables [3]. We require
that for each macro in a pattern there is a data-dependency with at least one other macro
in the pattern (by lifting the data-dependencies introduced in Section 2 to macros).

5 Experimental Evaluation
To evaluate our approach, we present 7 case studies listed in Table 1 (6 of them are

taken from [4]). The programs are bug kernels capturing the essence of bugs reported in
Mozilla and Apache, or synthetic examples created to cover a specific bug category. We
generate execution traces using the concurrency testing tool Inspect [10], which system-
atically explores all possible interleavings for a fixed program input. In Table 1, the last
column shows the length reduction (up to 95%) achieved by means of abstraction. State-
of-the-art sequential pattern mining algorithms are typically applicable to sequences of
length less than 100 [9, 5]. Therefore, the reduction of the original traces is crucial. The
results of mining for the given programs are provided in Table 2. The column labeled
min supp shows the support threshold required to obtain at least one bug explanation
pattern (lower thresholds yield more patterns). For the given value of min supp, the ta-
ble shows the number of resulting patterns after abstraction (#α), concretization (#γ),
filtering spurious patterns (#feas), and filtering misleading patterns (#filt). The number

Frontiers of Formal Methods 2015

252

of patterns which only occur in the bad dataset is given in column 7. Finally, we group
the resulting patterns according to the set of data-dependencies they contain; column
#grp shows the resulting number of groups. We verified manually that all groups which
occur only in the bad dataset are an adequate explanation of at least one concurrency
bug in the corresponding program. One pattern from these groups for Moz-jsStr case

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 120 121 122 123 124 276 277

W1-R2 totalStrings R2-W1 lengthSum

Figure 2: A bug explanation pattern: three macros, numbers represent the ids of events

study is given in Figure 2. The pattern and the data-dependencies reveal this atomic-
ity violation: the values of totalStrings and lengthSum read by thread 2 are inconsistent
due to a context switch that occurs between the updates of these two variables by thread 1.

References
[1] S. Leue and M. Tabaei-Befrouei. Counterexample explanation by anomaly detection.

In Model Checking and Software Verification (SPIN), 2012.

[2] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity violations via
access interleaving invariants. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2006.

[3] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. In ACM Sigplan
Notices, volume 43, pages 329–339. ACM, 2008.

[4] B. Lucia and L. Ceze. Finding concurrency bugs with context-aware communication
graphs. In Symposium on Microarchitecture (MICRO). ACM, 2009.

[5] Nizar R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining
algorithms. ACM Computing Surveys, 43(1):3:1–3:41, December 2010.

[6] Sangmin Park, Richard Vuduc, and Mary Jean Harrold. A unified approach for
localizing non-deadlock concurrency bugs. In Software Testing, Verification and Val-
idation (ICST), pages 51–60. IEEE, 2012.

[7] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-
derson. Eraser: A dynamic data race detector for multithreaded programs. Trans-
actions on Computer Systems (TOCS), 15(4):391–411, November 1997.

[8] M. Tabaei-Befrouei, C. Wang, and G. Weissenbacher. Abstraction and mining of
traces to explain concurrency bugs. In Runtime Verification (RV), LNCS, pages
162–177. Springer, 2014.

[9] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in large
datasets. In Proceedings of 2003 SIAM International Conference on Data Mining
(SDM’03), 2003.

[10] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby. Distributed
dynamic partial order reduction based verification of threaded software. In Model
Checking and Software Verification (SPIN), pages 58–75. LNCS, 2007.

Abstraction and Mining of Traces to Explain Concurrency
Bugs

253

Frontiers of Formal Methods 2015

254

Secretary Packing Problems∗

Andreas Tönnis (toennis@cs.rwth-aachen.de)

Department of Computer Science, RWTH Aachen University, Germany.

1 Introduction

A common problem in current applications are missing or unreliable information. At the
point in time when optimization decisions have to be made not all data is present, possibly
because it does not exist yet. This occurs in air plane overbooking, where it is unclear
at every point in time before take-off how many people that booked a ticket will actually
show up. In the assignment of students onto seminar slots or dorms, where you do not
know how many students will ask for a place and how long they will actually stay. Or
in online ad allocation. Here it is unknown to the allocator which search requests will be
typed in in the future, so he can only guess what add he should show in response to the
current query.

We analyze this type of problems through the lens of online algorithms. To be specific,
we work under the random order model. Here it is assumed that the problem instance is
generated adversarially, but the order in which the input arrives is randomly permuted.
A classical example for this model is the secretary problem. Assume you want to hire a
secretary and you have invited a dozen candidates to an interview and they are waiting
outside the door. Now furthermore assume that after each interview you have to decide
if you want to take the candidate or not. If you decline he will walk away and not be
available anymore. Now you obviously want the best candidate for the position, but you
can only hire one. The algorithm that maximizes the probability of picking the best
candidate is really simple and will be presented in section 2 as a special case. Please
note that this algorithm has a probability of 1/e to pick the best candidate and that it is
impossible to get a higher chance.

A direct generalization of the secretary problem is the online weighted bipartite match-
ing problem. Here the input is an edge-weighted bipartite graph and we optimize towards
a maximum weight matching. Remarkably we can show that the optimal algorithm for
this problem achieves the same competitive guarantee as the known optimal algorithm
for the secretary problem. In fact the algorithm is a direct generalization of the known
algorithm, but a new approach is required for the analysis.

Another even more general problem that we consider in the random order model are
linear packing programs. Here we have a (1− ε)-competitive algorithm if the space in all
constraints is large enough compared to the size of the items.

∗Supported by the DFG GRK/1298 “AlgoSyn”.

Packing Secretaries

255

Additionally to these two fundamental results we can adapt our algorithms for all kinds
of special cases. We extend the matchings towards hypermatchings and combinatorial
auctions. We consider variations of linear packing problems like the knapsack problem
or the generalized assignment problem. For all these problems we describe and analyze
online algorithms in the random order model. These algorithms all follow similar design
principles, a design framework that is described in section 2. Please note that, while the
algorithms all fit a certain framework, the analysis unfortunately is not straight forward
from one problem to the other.

2 Algorithm Framework

For all these problems we derive algorithms that work similarly to the classical secretary
algorithm. Usually there is some form of sampling to collect information in the beginning.
Then for every item that arrives online we compute an optimal solution on all items that
are known up to this point in time. We call this intermediate solution local solution. Then
we assign the current online item in them same way it is allocated in the local solution,
if this allocation is feasible with respect to the current global solution.

For online weighted bipartite matching the algorithm is practically identical to the
well-known optimal algorithm for the secretary problem [1]. One side of the bipartite
graph is known before the algorithm starts, we call this set of vertices R and the side that
arrives online L.

Algorithm 1: Bipartite online matching

Input : vertex set R and cardinality n = |L|
Output: matching M

Let L′ be the first bn/ec vertices of L; // sampling phase

M := ∅;
for each subsequent vertex ` ∈ L− L′ do // steps dn/ee to n

L′ := L′ ∪ `;
M (`) := optimal matching on G[L′ ∪R]; // e.g. by Hungarian method

Let e(`) := (`, r) be the edge assigned to ` in M (`);

if M ∪ e(`) is a matching then
add e(`) to M ;

If the known side R of the graph has cardinality 1, then the problem corresponds to
the secretary problem. We have shown that this algorithm is e-competitive for weighted
bipartite matching. This is optimal since it has been shown that there is no better
algorithm for the secretary problem either.

In the analysis we simply sum up the expected value of the online allocation made in
each round. This is straight forward after one key observation. The expected value of
the online allocation in a step is independent of the order in which those the items up
to this point arrived. This allows us to unravel the stochastic process from the last step
of the algorithm. Since the expected value in any step is independent of the order up to
this point we can simply draw one of the items that are available in this step uniformly

Frontiers of Formal Methods 2015

256

at random to be the current online item. In the analysis we do this iteratively from the
last step to the beginning. We refer to the original paper [1] for the detailed proof.

We apply similar techniques in our algorithm for online packing linear programs [2]. In
this problem there is an adversarially created linear program that only contains packing
constraints. Formely we optimize the target function max cTx such that Ax ≤ b and
0 ≤ x ≤ 1 for cj, ai,j, bi ∈ R+. In the online version that we consider, the columns are
revealed online over time in small batches. Whenever such a group of columns arrives the
algorithm can pick one of the associated variables and set it to a non-zero value. Again we
use the random order model, thus we assume that the columns do not arrive in adversarial
order, but in an order randomly permuted by an uniformly drawn random permutation.

Algorithm 2: Online packing LP

Let S be the index set of known requests, initially S := ∅;
Set y := 0;
for each arriving request j do // steps ` = 1 to n

Set S := S ∪ {j} and ` := |S|;
Let x̃(`) be an optimal solution of the LP max cTx s.t. Ax ≤ `

n
b, 0 ≤ x ≤ 1,

xj′ = 0 (∀j′ /∈ S);

Choose an option k(`) (possibly none) where option k has probability x̃
(`)
j,k;

// rand. rounding

Define x(`) with x
(`)
j′,k =

{
1, if j′ = j and k = k(`);

0, otherwise;
// tentative allocation

if A(y + x(`)) ≤ b then // feasibility check

Set y := y + x(`); // online allocation

Here the sampling phase is not as explicit as in the bipartite matching algorithm. We
start allocating value to the variables right away, but we scale down the capacities in the
packing constraints. Therefore the probability to allocate weight to the current online
variables starts out low and increases over the online process. This is crucial for our main
results on linear packing programs. We show that algorithm 2 is (1 − ε)-competitive if
the capacities on the constraints are large enough. Specifically we require the capacities
to be in Ω(log(d)

ε2
) if the weights on the variables are in [0, 1]. Here d is a sparsity measure

for the constraint matrix the maximum number of non-zero entries in any column. This
result is tight. It has been shown that there is no (1−ε)-competitive algorithm for smaller
capacities.

Furthermore we show that the algorithm does not degrade when the capacities are
smaller. Specifically the algorithm still is O(d1/(b−1))-competitive for any capacity b ≥ 2.

References

[1] Kesselheim, T., Radke, K., Tnnis, A., Vcking, B.: An optimal online algorithm for
weighted bipartite matching and extensions to combinatorial auctions. In: Algorithms
- ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France, Septem-

Packing Secretaries

257

ber 2-4, 2013. Proceedings. pp. 589-600 (2013), http://dx.doi.org/10.1007/978-3-642-
40450-4 50

[2] Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online
packing lps in the random-order model. In: Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014. pp. 303-312 (2014),
http://doi.acm.org/10.1145/2591796.2591810

Frontiers of Formal Methods 2015

258

Derivatives of WS1S Formulas

Dmitriy Traytel (traytel@in.tum.de)

Fakultät für Informatik, Technische Universität München, Germany

In his seminal work [5], Büchi envisioned weak monadic second-order logic of one successor
(WS1S) to become a “more conventional formalism [that] can be used in place of regular ex-
pressions [. . .] for formalizing conditions on the behaviour of automata”. This vision became
truth—WS1S has been used to encode decision problems in hardware verification [1], network
verification [2], synthesis [6], as well as many others.

Equivalence of WS1S formulas is decidable, although the decision procedure’s complexity
is non-elementary [9]. Nevertheless, the MONA tool [7] shows that the daunting theoretical
complexity can often be overcome in practice by employing a multitude of smart optimizations.
Similarly to Büchi, MONA’s user manual [8] calls WS1S a “simple and natural notation” for
regular languages.

Traditionally, decision procedures for WS1S do not try to benefit themselves from the con-
ventional, simple, and natural logical notation. Instead, by exploiting the logic-automaton con-
nection, formulas are translated into finite automata which are then minimized. During the
translation all the rich algebraic formula structure including binders and high-level constructs
is lost. On the other hand, the subsequent minimization might have benefited from some sim-
plifications on the formula level.

Concerning the algebraic structure, regular expressions are situated somewhere in between
of WS1S formulas and finite automata. In earlier work [15], we propose a semantics-preserving
translation of WS1S formulas into regular expressions. Thereby, equivalence of WS1S formulas
is reduced to equivalence of regular expressions. To decide equivalence of regular expressions,
we employ a coalgebraic decision procedure based on a finality test and Brzozowski deriva-
tives [4]—the coalgebra structure on regular expressions [12].

In recent work [13], we go one step further by defining a coalgebra structure directly on
WS1S formulas. The main contributions are:

• We define a symbolic derivative operation for a WS1S formula.

• We define a finality test determining if a formula holds in the empty interpretation.

• Taking the two above notions together, we obtain a decision procedure for WS1S that
operates only on formulas.

• We formalize the newly defined notions in Isabelle/HOL [10] and formally verify that the
obtained algorithm indeed decides equivalence of WS1S formulas.

The obtained decision procedure can be considered an elegant toy—implementable only
with a few hundreds lines of Standard ML [14] and teachable in class. By no means it should be
evaluated against MONA’s thousands of lines of tricky performance optimizations. On the other
hand, we are confident that symbolic decision procedures must not hide behind automata-based
ones in terms of performance in general as witnessed by several successful examples [3, 11].

Derivatives of WS1S Formulas

259

References

[1] Basin, D., Klarlund, N.: Automata based symbolic reasoning in hardware verification.
Formal Methods In System Design 13, 255–288 (1998), extended version of: “Hardware
verification using monadic second-order logic," CAV ’95, LNCS 939

[2] Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting WS1S systems to verify
parameterized networks. In: Graf, S., Schwartzbach, M.I. (eds.) TACAS 2000. LNCS, vol.
1785, pp. 188–203. Springer (2000)

[3] Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In:
Giacobazzi, R., Cousot, R. (eds.) POPL 2013. pp. 457–468. ACM (2013)

[4] Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (Oct 1964)

[5] Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik und
Grundl. Math. 6, 66–92 (1960)

[6] Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over un-
bounded domains. In: Bloem, R., Sharygina, N. (eds.) FMCAD 2010. pp. 101–109. IEEE
(2010)

[7] Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe, T., Sand-
holm, A.: MONA: Monadic second-order logic in practice. In: Brinksma, E., Cleaveland,
R., Larsen, K., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–
110. Springer (1995)

[8] Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS, Department of Com-
puter Science, Aarhus University (January 2001), notes Series NS-01-1. Available from
http://www.brics.dk/mona/. Revision of BRICS NS-98-3

[9] Meyer, A.R.: Weak monadic second order theory of succesor is not elementary-recursive.
In: Parikh, R. (ed.) Logic Colloquium. Lecture Notes in Mathematics, vol. 453, pp. 132–
154. Springer (1975)

[10] Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

[11] Pous, D.: Symbolic algorithms for language equivalence and kleene algebra with test. In:
Walker, D. (ed.) POPL 2015. pp. 357–368. ACM (2015)

[12] Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D.,
de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer (1998)

[13] Traytel, D.: A coalgebraic decision procedure for WS1S, http://www21.in.tum.de/
~traytel/papers/ws1s_derivatives/ws1s_derivatives.pdf

[14] Traytel, D.: Supplementary material associated with [13]. https://github.com/

dtraytel/WS1S (2015)

[15] Traytel, D., Nipkow, T.: Verified decision procedures for MSO on words based on deriva-
tives of regular expressions. In: Morrisett, G., Uustalu, T. (eds.) ICFP 2013. pp. 3–12.
ACM (2013)

Frontiers of Formal Methods 2015

260

Probabilistic Logic and Regular Expressions on Finite
Trees

Thomas Weidner∗(weidner@informatik@uni-leipzig.de)

Institut für Informatik, Universität Leipzig, Germany

Introduction
Probabilistic tree automata (PTA) are a well-known formalism with a wide range of
applications. A prominent use is natural language processing. In this work we connect
PTA to two other classical concepts: Monadic second order logic and regular expressions.
Both concepts enjoy vast success in nearly all fields of theoretical computer science. Our
goal is to transfer the theorem of Büchi and Elgot and the theorem of Kleene to the
setting of probabilistic tree automata. We consider the quantitative behaviour of automata,
formulas and expressions: A function mapping trees to probability values.

For the cases of finite and infinite words several similar results already exist: The
expressive equivalence between probabilistic (Muller) automata and probabilistic MSO
was shown in [4]. In [1] probabilistic regular expressions for finite words have been defined,
which have the same expressive power as probabilistic automata1. This result has been
extended to infinite words in [5].

Probabilistic Regular Expressions
Let Σ = (Σn)n≥0 be a finite rank alphabet and TΣ the set of all trees over Σ. We extend
the rank alphabet by an additional finite set of variables V and write TΣ(V) for the
set of all trees where symbols from V may appear as additional leaf labels. First, we
define the operations used in the expressions for general probabilistic tree functions: Let
f, g : TΣ(V)→ [0, 1], p ∈ [0, 1] and z ∈ V . Define

(p · f)(t) = p · f(t) (f ·z g)(t) =
∑

s∈TΣ(V)
t[posz(s)←z]=s

f(s) ·
∏

p∈posz(s)
g(t|p)

(f + g)(t) = f(t) + g(t) f∞ z(t) = lim
n→∞ f

·zn(t) ,

where t[M ← z] is the tree obtained by replacing the subtrees at every position in M by
the symbol z, and t|p is the subtree of t below p. The product operation f ·z g is the same

∗Partly supported by DFG Graduiertenkolleg 1763 (QuantLA)
1They only considered probabilistic automata where every final state is a sink state.

Probabilistic Logic and Regular Expressions on Finite Trees

261

operation as introduced for weighted tree series [3]. The “infinity-iteration” can be seen as
a deterministic variant of the Kleene-star: In the computation of the Kleene-star f ∗z there
is a choice every time a leaf labelled z occurs, whether to continue the iteration and do a
substitution at this position, or to stop the iteration. When computing f∞ z there is no
such choice, the computation has to continue doing substitutions until no leaf is labelled
by z.

Note that the resulting function of these operations may not be well-defined, i.e. attains
values outside [0, 1] or the limit does not exist at all. Therefore we do not allow arbitrary
combinations of these operations but use a restricted syntax.

The syntax of probabilistic regular tree expressions is given by

E ::= z | ∑
f∈Σ f(E, . . . , E︸ ︷︷ ︸

arity(f) times

) | pE + (1− p)E | E ·z E | E∞z .

This restricted syntax does not allow for distributivity laws to hold. Thus we additionally
close the set of expressions under the known distributivity laws. The behaviour of an
expression E is a function ‖E‖ : TΣ(V)→ [0, 1]. For expressions of the form f(E1, . . . , En)
the behaviour is given by

‖f(E1, . . . , En)‖(t) =

∏n
i=1‖Ei‖(ti) if t = f(t1, . . . , tn)

0 otherwise.

For expressions of all other forms, the behaviour directly translates to the operations given
above.

Before we state our equivalence theorem, we recall the definition of PTA: A probabilistic
(top-down) tree automaton A is a tuple (Q, δ, µ, F) where Q is a finite, non-empty set of
states, δ = ⋃

n≥1 δn, where δn : Q × Σn → ∆(Qn), is the transition probability function,
µ ∈ ∆(Q) the initial probabilities, and F ⊆ Q×Σ0 the accepting condition. The behaviour
‖A‖ of A is given by

‖A‖(t) =
∑

ρ : pos(t)→Q
(ρ(x),t(x))∈F for all x∈leaf(t)

µ(ρ(ε))
∏

x∈inner(t)
δ(ρ(x), t(x))(ρ(x 1), . . . ρ(xnx)),

where nx is the number of children of x, pos(t) is the set of all positions in t, leaf(t) the
set of all leaf positions, and inner(t) the set of all inner positions.
Theorem 1 Let f : TΣ → [0, 1]. The following statements are equivalent:

1. f = ‖A‖ for some probabilistic top-down tree automaton A

2. f = ‖E‖ for some probabilistic regular tree expression E

Both translations are effective.

Probabilistic MSO Logic
To obtain a probabilistic extension of classical MSO logic we add an additional second
order “expected value” quantifier to the logic and close under complement and conjunction.
Formally, let the syntax of a PMSO formula ϕ in BNF be given by

ϕ ::= ψ | ϕ ∧ ϕ | ¬ϕ | EpX.ϕ ,

Frontiers of Formal Methods 2015

262

where ψ is a Boolean MSO formula, p ∈ [0, 1] is a probability value, and X is a second
order variable. The semantics of PMSO formulas are defined inductively. Given a tree t
and an assignment of variables α, we define

JψK(t, α) =

1 if (t, α) |= ψ

0 otherwise
Jϕ1 ∧ ϕ2K(t, α) = Jϕ1K(t, α) · Jϕ2K(t, α)

J¬ϕK(t, α) = 1− JϕK(t, α)

JEpX.ϕK(t, α) =
∑

M⊆pos(t)
JϕK(w, α[X 7→M]) · p|M |(1− p)|pos(t)\M | .

The intuition of EpX.ϕ is as follows: For every position of the tree one tosses an unfair
coin and depending on the outcome this position is included in the set or not. That is, all
positions are independent and identically distributed. Using the so constructed probability
distribution on the subsets of positions, one computes the expected semantics of ϕ.

Unfortunately, as in the classical setting, probabilistic top-down tree automata do
not capture the whole expressive power of probabilistic MSO. Therefore, we resort to
bottom-up tree automata. We say A = (Q, δ, F) is a probabilistic bottom-up tree automata
if Q is a finite, non-empty set of states, F ⊆ Q a set of final states and δ = ⋃

n≥0 δn, with
δn : Qn × Σn → ∆(Q), is the transition probability function. Note that δ now assigns a
distribution on a single state given the states at the child nodes. The behaviour of A is
now given by

‖A‖(t) =
∑

ρ : pos(t)→[0,1]
ρ(ε)∈F

∏

x∈pos(t)
δ(ρ(x), t(x))(ρ(x 1), . . . , ρ(xnx)).

Using this automata model, we can show the desired expressive equivalence:

Theorem 2 Let f : TΣ → [0, 1]. The following statements are equivalent:

1. f = ‖A‖ for some probabilistic bottom-up tree automaton A

2. f = JϕK for some probabilistic MSO sentence ϕ

Moreover, there are effective translations between automata and logic sentences.

Conclusion
We have seen two new formalisms to describe probabilistic tree functions. Whereas prob-
abilistic regular tree expressions capture the behaviours of the well-known probabilistic
(top-down) tree automata, this automata model is not powerful enough to subsume the
semantics of all probabilistic MSO sentences over trees. Therefore, we defined probabilis-
tic bottom-up tree automata to obtain an automata model expressively equivalent to
probabilistic MSO logic.

Current research focuses on a similar result for infinite trees and probabilistic Büchi
tree automata [2]. Whereas generalising probabilistic regular tree expressions to infinite
words seems to be promising, there already are fundamental problems defining probabilistic
MSO for infinite trees.

Probabilistic Logic and Regular Expressions on Finite Trees

263

References
[1] Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. A probabilistic

kleene theorem. In Proc. of ATVA 2012, volume 7561 of LNCS, pages 400–415. Springer,
2012.

[2] Arnaud Carayol, Axel Haddad, and Olivier Serre. Randomization in automata on
infinite trees. ACM Trans. Comput. Log., 15(3):24, 2014.

[3] Manfred Droste, Christian Pech, and Heiko Vogler. A kleene theorem for weighted
tree automata. Theory Comput. Syst., 38(1):1–38, 2005.

[4] Thomas Weidner. Probabilistic automata and probabilistic logic. In Proc. of MFCS
2012, volume 7464 of LNCS, pages 813–824. Springer, 2012.

[5] Thomas Weidner. Probabilistic ω-regular expressions. In Proc. of LATA 2014, volume
8370 of LNCS, pages 588–600. Springer, 2014.

Frontiers of Formal Methods 2015

264

Uniformization of Automatic Tree Relations by
Top-down Tree Transducers

Sarah Winter (winter@automata.rwth-aachen.de)

Lehrstuhl für Informatik 7, RWTH Aachen, Germany

1 Introduction

The synthesis problem asks, given a specification that relates possible inputs to allowed
outputs, whether there is a program realizing the specification, and if so, construct one.
A related notion is the one of uniformization of a (binary) relation, which is a function
that selects for each element of the domain of the relation an element in its image. The
synthesis problem asks for effective uniformization by functions that can be implemented
in a specific way.

Specifications are usually written in some logical formalism, while the uniformization,
in particular in the synthesis setting, is required to be implemented by some kind of
device. Since many logics can be translated into automata, which can also serve as
implementations of a uniformization, it is natural to study uniformization problems in
automata theory. Relations (or specifications) can be defined using automata with two
input tapes, and uniformizations can be realized by transducers, that is, automata with
output.

A first uniformization result in such a setting has been obtained by Büchi and Landwe-
ber in [1], who showed that for specifications over infinite words in monadic second-order
logic, it is decidable whether they have a uniformization by a synchronous transducer
(that outputs one symbol for each input letter). The specifications considered in [1] can
be translated into finite automata that read the two input words synchronously. Such
relations are referred to as automatic relations over finite words, and as ω-automatic
relations over infinite words.

The result of Büchi and Landweber has been extended to transducers with delay, that
is, transducers that have the possibility to produce empty output in some transitions. For
a bounded delay decidability was shown in [5], and for an unbounded delay in [4]. In the
case of finite words, it was shown in [2] that it is decidable whether an automatic relation
has a uniformization by a deterministic subsequential transducer, that is, a transducer
that can output finite words on each transition.

Our aim is to study these uniformization questions for relations over trees. Tree
automata are used in many fields, for example as tool for analyzing and manipulating
rewrite systems or XML Schema languages (see [3]). Tree transformations that are realized
by finite tree transducers thus become interesting in the setting of translations from one
document scheme into another [7]. For a class C of tree relations and a class F of functions
over trees, we are interested in a procedure that decides whether a given relation from C
has a uniformization in F .

Uniformization of Automatic Tree Relations by Top-down
Tree Transducers

265

2 Contribution

In [6], we focused on uniformization of automatic tree relations over finite trees by deter-
ministic top-down tree transducers. In particular, we considered automatic tree specifica-
tion that are deterministic top-down tree automaton-definable. We distinguish between
two variants of uniformization. In the first setting, we do not require that a transducer
validates whether an input tree is part of the domain of the given specification. We al-
low a transducer to behave arbitrarily on invalid input trees. In the second setting, the
desired transducer has to reject invalid input trees. We speak of uniformization without
respectively with input validation.

For uniformization without input validation, we consider the case that the transducer
defining a uniformization has no restrictions. In particular the transducer is allowed to
skip an unbounded number of output symbols thereby introducing delay. We showed
that it is decidable whether a given relation has a uniformization by a top-down tree
transducer, and if possible construct one. The question whether such a uniformization
exists, is reduced to the existence of winning strategies in a safety game. The game is
played between Player Input and Player Output, or short Player In and Player Out, where
Player In can follow any path from the root to a leaf in an input tree such that Player In
plays one input symbol at a time. Player Out can either react with an output symbol, or
delay the output (a bounded number of times) and react with a direction in which Player
In should continue with his input sequence. The winning condition expresses that Player
Out loses the game if the input can be extended, but no valid output can be produced.
However, in general it is necessary to skip the output an unbounded number of times.
The key is that if the output delay exceeds a certain bound, then we can decide whether
the uniformization is possible.

For uniformization with input validation, it turns out that this variant is more complex
than uniformization without input validation. The reason for this is that in the employed
transducer model it is not possible to verify the input without producing output. As a
first result, we showed decidability in case that a transducer realizing a uniformization,
synchronously produces one output symbol per read input symbol.

3 Outlook

For future research, we want to investigate whether a given tree automatic relation, i.e.,
a general non-deterministic tree-automaton-definable relation, has a uniformization by
a deterministic top-down tree transducer. Furthermore, it is also of interest to study
uniformization questions for different classes of relations and functions as presented here,
as there are many models of tree transducers, see e.g. [3].

References

[1] J. Büchi and L. Landweber. Solving sequential conditions by finite-state strategies.
Transactions of the American Mathematical Society, 1969.

[2] A. Carayol and C. Löding. Uniformization in Automata Theory. To appear in: Logic,
Methodology and Philosophy of Science. Proceedings of the Fourteenth International

Frontiers of Formal Methods 2015

266

congress. P. Schroeder-Heister, G. Heinzmann, W. Hodges, P. Edouard Bour, eds.,
London: College Publications, 2012.

[3] Hu. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree Automata Techniques and Applications, 2007. Release
October, 12th 2007.

[4] M. Holtmann, L. Kaiser, and W. Thomas. Degrees of lookahead in regular infinite
games. In Foundations of Software Science and Computational Structures, pages 252–
266. Springer, 2010.

[5] F. Hosch and L. Landweber. Finite delay solutions for sequential conditions. In
ICALP, pages 45–60, 1972.

[6] C. Löding and S. Winter. Synthesis of deterministic top-down tree transducers from
automatic tree relations. In Proceedings Fifth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2014, Verona, Italy, September
10-12, 2014., pages 88–101, 2014.

[7] T. Milo, D. Suciu, and V. Vianu. Typechecking for xml transformers. J. Comput.
Syst. Sci., 66(1):66–97, 2003.

Uniformization of Automatic Tree Relations by Top-down
Tree Transducers

267

Frontiers of Formal Methods 2015

268

Weight Monitoring with Linear Temporal Logic∗

Sascha Wunderlich (wunder@tcs.inf.tu-dresden.de)

Institute for Theoretical Computer Science
Technische Universität Dresden, Germany

Joint work with Christel Baier, Joachim Klein and Sascha Klüppelholz [2].

1 Introduction
In many application scenarios weight accumulation occurs rather naturally. One example
is the total win or loss of a share at the stock market over one day. However, not only fixed
periods of time are of interest. Formalizing more general time spans is often necessary, for
example when considering the average CPU load within a specific computation phase. Many
performance and reliability measures can be formalized using automata models with weight
functions for the states or transitions. Resource requirements (e.g., bandwidth, energy
consumption) and other quantitative system properties (e.g., the number of service-level
violations) are then formally modeled as accumulated weights of path fragments.

We introduce a framework based on linear temporal logic (LTL) with the standard
future and past temporal modalities and two new operators and . The latter impose
constraints on the accumulated weight of path fragments π satisfying a given regular
condition formalized by a deterministic finite automaton (DFA) A. Side constraints
formalized by nested formulae for the first and last position π are possible. Formulae
are interpreted over the paths of weighted structures. We consider finite-state weighted
Markov decision processes (WMDPs). This includes weighted Markov chains (WMCs) and
weighted transition systems (WTSs) as their degenerate forms without nondeterminism or
probabilism, respectively.

Contribution Besides the presentation of the syntax and semantics of linear temporal
logic with weight assertions, we provide a reduction of its model-checking problem with
bounded accumulation on weighted MDPs to the standard case of LTL model checking on
MDPs. We also give decidability results for the unbounded case.

The main paper [2] contains details on the former approaches. It gives a more refined
picture on the border of decidability and establishes sharp complexity bounds for different
sublogics of our logic. Furthermore, it shows the relation of our logic to many recently
proposed formalisms (e.g., [3], [4] and [8]) and finds some computationally easy patterns
within the logic.

∗The authors are supported by the DFG through the collaborative research centre HAEC (SFB 912),
the cluster of excellence cfAED (center for Advancing Electronics Dresden), the Graduiertenkolleg 1763
(QuantLA), and the DFG/NWO-project ROCKS, the ESF young researcher groups IMData (100098198)
and SREX (100111037), and the EU-FP-7 grant 295261 (MEALS).

Weight Monitoring with Linear Temporal Logic

269

(ζ, k) |= a iff a ∈ L(ζ[k]) (ζ, k) |= tt

(ζ, k) |= ¬ϕ iff (ζ, k) 6|= ϕ

(ζ, k) |= ϕ1 ∧ ϕ2 iff (ζ, k) |= ϕ1 and (ζ, k) |= ϕ2

(ζ, k) |= ϕ1Uϕ2 iff there exists h ≥ k s.t. (ζ, h) |= ϕ2 and (ζ, i) |= ϕ1 for k ≤ i ≤ h
(ζ, k) |= ϕ1 Sϕ2 iff there exists h ≤ k s.t. (ζ, h) |= ϕ2 and (ζ, i) |= ϕ1 for k ≥ i ≥ h
(ζ, k) |= A(ϕ1; constr;ϕ2) iff there exists h ≥ k s.t. trace(ζ[k . . . h]) ∈ L(A), ζ[k . . . h] |= constr

and (ζ, k) |= ϕ1 and (ζ, h) |= ϕ2

(ζ, k) |= A(ϕ1; constr;ϕ2) iff there exists h ≤ k s.t. trace(ζ[h . . . k]) ∈ L(A), ζ[h . . . k] |= constr

and (ζ, h) |= ϕ1 and (ζ, k) |= ϕ2

Figure 1: Semantics of LTL[, : AUT] over infinite paths ζ and position k ∈ N

2 LTL with monitored weight assertions
For brevity we leave out some of the preliminary concepts. They can be found in the main
paper [2], further details are available, e.g., in [1].

2.1 Syntax

To define a linear temporal logic with monitored weight constraints, we fix a signature
consisting of finitely many weight symbols wgt1, . . . ,wgtd, a finite set AP of atomic
propositions and a class AUT consisting of deterministic finite automata (DFA) over the
alphabet 2AP. The logic LTL[, : AUT] extends LTL by two new modalities and to
formalize constraints on the accumulated weight of path fragments. Formally, the syntax
of LTL[, : AUT]-formulae ϕ is defined as

ϕ ::= tt | a | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 Uϕ2 | ϕ1 Sϕ2 |
A(ϕ1; constr;ϕ2) | A(ϕ1; constr;ϕ2)

where constr is a boolean combination of basic weight constraints expr ./ c for c ∈ Q and
./ ∈ {<,>,≤,≥}. A weight expression expr is a linear combination of weight symbols
wgti, i.e. for ai ∈ Q:

expr =
d∑

i=1

ai · wgti (1)

We also introduce the notation PL[: AUT] for the propositional fragment of LTL[, : AUT].
The temporal operators U and S are disallowed here, the modality is unnecessary. Fur-
thermore we denote the class of acyclic DFA by Acyc and the class of all DFA by All.

2.2 Semantics

Formulae are interpreted over directed graphs equipped with a d-dimensional rational
weight function wgt = (wgt1, . . . ,wgtd) and a labeling function L : S → AP for a

Frontiers of Formal Methods 2015

270

set of nodes S and atomic propositions AP. In particular, we deal with the MDP-
semantics of LTL[, : AUT] and interpret formulae over the infinite paths of a WMDP
M = (S,Act, P,AP, L,wgt), where Act is a set of action names and P : S×Act→ Dist(S)
assigns to each state-action pair a probability distribution for its successor states. Here,
the weight functions are of the type S × Act→ Q.

The interpretation of LTL[, : AUT]-formulae is defined over pairs (ζ, k) of infinite
paths ζ = s0act0s1act1 · · · ∈ (S × Act)ω inM and positions k ∈ N. As shown in Fig. 1,
the semantics of the LTL-fragment are as usual. For (ζ, k) observing A(ϕ1; constr;ϕ2),
there needs to be a position h ≥ k such that the trace of the path fragment ζ[k . . . h] is
accepted by the automaton A, the formulae ϕ1 and ϕ2 hold in its first position k and
last position h, and the weight constraint constr is met. To determine this, each weight
expression expr is evaluated over the path fragment, i.e., for expr as in Equation 1

ζ[k . . . h] |= expr ./ c iff
d∑

i=1

ai ·
h∑

j=k

wgti(sj, actj) ./ c

The satisfaction relation for finite paths and weight constraints is now defined in the
obvious way, i.e., as a Boolean combination of basic weight constraints.

2.3 Examples

To illustrate the expressiveness and usefulness of our formalism we provide some examples.
The used shorthand notations are defined in the obvious way, the operator � is the usual
LTL always operator derived by �ϕ = ¬(ttU¬ϕ).

The following formula specifies that after each request a utility value of at least c is
guaranteed during some computation formalized by A:

�(request→ A(utility ≥ c))

To specify that the load during a some computation is between c− and c+, we can use the
formula

� A(c− ≤ load ≤ c+)

More complex situations can be specified using nesting. The formula

Ainit(tt; energy < ce;
Awork(utility ≥ cu))

stands for the requirement that there is an initialization process which uses not more than
ce energy and is followed by a working phase which in turn generates at least cu utility.
The phases are formalized by Ainit and Awork respectively.

2.4 Model-checking Problem

In the following we consider the complexity and decidability of the model-checking problem.
For a LTL[, : AUT]-formula ϕ, the (qualitative) probabilistic model-checking (PMC)
problem for weighted Markovian modelsM asks whether the (maximal) probabilty for ϕ
from an initial state si is positive. Similarly, the (existential) model-checking problem for
WTS asks whether there exists a path from a state si fulfilling ϕ.

Weight Monitoring with Linear Temporal Logic

271

3 Model Checking LTL[, : Acyc]

3.1 Reduction to the LTL-PMC problem

The goal is to provide a reduction of the LTL[, : Acyc]-PMC problem to the LTL-PMC
problem. Given an LTL[, : Acyc]-formula ϕ and a WMDPM the idea is to replace all
weight assertions A(ϕ1; constr;ϕ2) and A(ϕ1; constr;ϕ2) by an until or since formula,
while adding information on the possible runs of A for the path fragments inM. To that
end, we enhance each state s with a partial function f for each occurring automaton A.
The function tracks all the states q the automaton A can possibly be in after reading the
trace of a path fragment ending in s, along with a vector w of the accumulated weights
along this fragment.

This transformation generates an MDP which is polynomial in the size of the WMDP
M, but (single) exponential in the size of the LTL[, : Acyc]-formula ϕ. The according
rewriting of ϕ into an LTL-formula is polynomial. The details of this construction as well
as a proof of its soundness and its complexity can be found in the main paper [2].

3.2 Complexity

We now discuss the complexity of the model-checking problem for LTL[, : Acyc] over
WMDPs, WMCs and WTSs. The model-checking problem for standard LTL is known
to be 2EXPTIME-complete for MDPs and PSPACE-complete for Markov chains and
transition systems. These lower bounds obviously carry over to our logic, which is a
superset of LTL. Using the reduction in the last section together with the automata-based
approach of [9] for the LTL-PMC problem we obtain a 2EXPTIME algorithm for WMPDs.
Furthermore, an adaptation of the approaches in [5] and [7] yields PSPACE bounds for
WTSs and WMCs. Hence:

Theorem 1 The model-checking problem for LTL[, : Acyc] is 2EXPTIME-complete
for WMDPs and PSPACE-complete for WMCs and WTSs.

4 Unbounded Weight Assertions

So far, we studied the model-checking problem for LTL[, : Acyc]. The accepted languages
of acyclic DFA are bounded in length, so we restricted the accumulation to path fragments
of bounded length. Dropping this restriction leads to undecidability. This is well known
and a direct consequence of undecidability results from the literature, e.g., in [3] for LTL
with prefix-accumulation, which can be seen as a sublogic of LTL[, : All]. However, if
we restrict ourselves to a single non-negative weight function, we get decidability even for
the full logic:

Theorem 2 The LTL[, : All]-PMC problem is decidable for WMDPs with a single
non-negative weight function.

Frontiers of Formal Methods 2015

272

General 1-dim. non-negative wgt
function

PL[: Acyc] NP-complete (see [2])

LTL[, : Acyc]
WTS, WMC: PSPACE-complete (Thm. 1)

WMDP: 2EXPTIME-complete (Thm. 1)
PL[: All] undecidable (see [2]) decidable

LTL[, : All] undecidable decidable (Thm. 2)

Table 1: Decidability and complexity of the model-checking problem.

5 Conclusions
We established sharp complexity bounds and investigated the border of decidability for
the model-checking problem of our new logics. Our main results are depicted in Table
1, where we distinguish the general case with arbitrary rational weight functions from
the case of a single non-negative weight function. Both restrictions are necessary for the
latter case. The NP-completeness for PL[: Acyc] and the undecidability for PL[: All]
are taken from the main paper [2].

Even though the stated complexity bounds seem to make practical applications un-
feasible, there are many techniques to make LTL model checking for MDPs applicable to
real-world scenarios. Such methods are already in use by popular model-checking tools,
e.g., an evaluation for PRISM can be found in [6].

References
[1] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
[2] C. Baier, J. Klein, S. Klüppelholz, and S. Wunderlich. “Weight Monitoring with Linear

Temporal Logic: Complexity and Decidability”. In: CSL-LICS’14. ACM, 2014, 11:1–11:10.
[3] U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. “Temporal Specifications with

Accumulative Values”. In: LICS’11. IEEE Press, 2011, pp. 43–52.
[4] K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. “Looking at Mean-Payoff and

Total-Payoff through Windows”. In: ATVA’13. 2013, pp. 118–132.
[5] C. Courcoubetis and M. Yannakakis. “The Complexity of Probabilistic Verification”. In:

Journal of the ACM 42.4 (1995), pp. 857–907.
[6] M. Kwiatkowska, G. Norman, and D. Parker. “Advances and Challenges of Probabilistic Model

Checking”. In: Annual Allerton Conference on Communication, Control and Computing’10.
IEEE Press, 2010, pp. 1691–1698.

[7] A. P. Sistla and E. M. Clarke. “The Complexity of Propositional Linear Temporal Logics”.
In: Journal of the ACM 32.3 (1985), pp. 733–749.

[8] T. Tomita, S. Hiura, S. Hagihara, and N. Yonezaki. “A Temporal Logic with Mean-Payoff
Constraints”. In: ICFEM’12. Vol. 7635. Lecture Notes in Computer Science. Springer, 2012,
pp. 249–265.

[9] M. Vardi and P. Wolper. “An automata-theoretic approach to automatic program verification
(preliminary report)”. In: LICS’86. IEEE Press, 1986, pp. 332–344.

Weight Monitoring with Linear Temporal Logic

273

Frontiers of Formal Methods 2015

274

Former AIB Technical Reports

Aachener Informatik-Berichte

This list contains all technical reports published during the

past three years. A complete list of reports dating back to

1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your

request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056

Aachen,

Email: biblio@informatik.rwth-aachen.de

2012-01 Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe:

MontiArc - Architectural Modeling of Interactive Dis-

tributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Com-

plexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter

Schneider-Kamp, and Carsten Fuhs: Automated Com-

plexity Analysis for Prolog by Term Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto,

Jürgen Giesl: Automated Termination Proofs for Java

Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer:

Hackers in Your Pocket: A Survey of Smartphone Secu-

rity Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov De-

cision Processes

275

http://aib.informatik.rwth-aachen.de/
biblio@informatik.rwth-aachen.de

Frontiers of Formal Methods 2015

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and

Martin R. Neuhäußer: Quantitative Timed Analysis of

Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differ-

entiation of Numerical Methods: Tangent-Linear and

Adjoint Direct Solvers for Systems of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp,

Fabian Emmes, and Carsten Fuhs: Symbolic Evaluation

Graphs and Term Rewriting — A General Methodology

for Analyzing Logic Programs

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and

Markus Towara: Algorithmic Differentiation of Numer-

ical Methods: Tangent-Linear and Adjoint Solvers for

Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A

Framework for Secure Multi-Party Computation on

MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using

Formal Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler

Steuerungssysteme in Klein- und mittelständischen Un-

ternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint

Model for OpenFOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Jo-

hannes Lotz, and Klaus Leppkes: Algorithmic Differen-

tiation of a Complex C++ Code with Underlying Li-

braries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems

Engineering Essentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs:

Better termination proving through cooperation

276

Former AIB Technical Reports

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheit-

skonzept für die extrakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and

Erika brahám: On Gröbner Bases in the Context of

Satisfiability-Modulo-Theories Solving over the Real

Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen,

Dirk Seifert, and Hao Wu: Performance Analysis of

Computing Servers using Stochastic Petri Nets and

Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke,

Carsten Fuhs, and Jürgen Giesl: Alternating Runtime

and Size Complexity Analysis of Integer Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars

Hermerschmidt, René Hummen, Daniel Kerpen, An-

tonio Navarro Pérez, Bernhard Rumpe, Dirk Thißen,

and Klaus Wehrle: SensorCloud: Towards the Interdis-

ciplinary Development of a Trustworthy Platform for

Globally Interconnected Sensors and Actuators

2013-14 Jörg Brauer: Automatic Abstraction for Bit-Vectors us-

ing Decision Procedures

2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Sup-

port for error tolerance in the Real-Time Transport Pro-

tocol

2013-20 Jacob Palczynski: Time-Continuous Behaviour Com-

parison Based on Abstract Models

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014

2014-02 Daniel Merschen: Integration und Analyse von Arte-

fakten in der modellbasierten Entwicklung eingebetteter

Software

2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz:

dco/c++ User Guide

277

Frontiers of Formal Methods 2015

2014-04 Namit Chaturvedi: Languages of Infinite Traces and De-

terministic Asynchronous Automata

2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt,

Florian Frohn, Carsten Fuhs, Jera Hensel, and Peter

Schneider-Kamp: Automated Termination Analysis for

Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frin-

trop, and Bastian Leibe: Sequence Level Salient Object

Proposals for Generic Object Detection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann:

Algorithmic Differentiation of Numerical Methods:

Second-Order Tangent and Adjoint Solvers for Systems

of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Gen-

erating Inductive Predicates for Symbolic Execution of

Pointer-Manipulating Programs

2014-09 Thomas Ströder and Terrance Swift (Editors): Pro-

ceedings of the International Joint Workshop on Imple-

mentation of Constraint and Logic Programming Sys-

tems and Logic-based Methods in Programming Envi-

ronments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and

Klaus Wehrle: HotBox: Testing Temperature Effects in

Sensor Networks

2014-15 Dominique Gückel: Synthesis of State Space Generators

for Model Checking Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Al-

gorithms and Complexity Results

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015

2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius

Aschermann, and Thomas Ströder: Inferring Lower

Bounds for Runtime Complexity

278

Former AIB Technical Reports

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain

copies.

279

biblio@informatik.rwth-aachen.de

	Preface
	Program Committee
	Invited Speakers
	Moshe Vardi (Houston): The Rise and Fall of Linear Temporal Logic
	Bernd Finkbeiner (Saarbrücken): Distributed Synthesis
	Jean-Francois Raskin (Brussels): Variations on the Stochastic Shortest Path Problem
	Azadeh Farzan (Toronto): Succinct Proofs of Concurrent Programs
	Eric Bodden (Darmstadt): SPLlift: Statically Analyzing Software Product Lines in Minutes instead of Years
	Joel Ouaknine (Oxford): Termination of Linear Loops: Algorithmic Advances and Challenges

	Contributions
	Mohamed Abdelaal: Fuzzy Compression Reï¬†nement via Curvature Tracking
	Parvaneh Babari: A Nivat Theorem for Weighted Picture Automata and Weighted MSO Logics
	Stephan Barth: Deciding Monadic Second Order Logic over omega-words by Specialized Finite Automata
	Félix Baschenis: From sweeping transducers to one way transducers
	Benedikt Brütsch: Synthesizing Structured Reactive Programs via Deterministic Tree Automata
	Claudia Carapelle: Satisfiability of ECTL* with constraints
	Pierre Carlier: Composition of Stochastic Timed Automata
	Florian Corzilius: SMT-RAT: An SMT-Compliant Nonlinear Real and Integer Arithmetic Toolbox
	Christian Dehnert: Fast Debugging of PRISM Models
	Manuel Eberl: A Verified Compiler for Probability Density Functions
	Andreas Ecke: Relaxing Description Logics Queries using Similarity Measures
	Björn Engelmann: Formally Verifying Dynamically-typed Programs like Statically-typed Ones â•ﬁ A different perspective
	Shiguang Feng: Path-Checking for MTL and TPTL over Data Words
	Oliver Fernández Gil: Threshold Concepts in a Lightweight Description Logic
	Nils Erik Flick: Derivation Languages of Graph Grammars and Correctness
	Yang Gao: Decision Procedure for Stochastic Satisfiability Modulo Theories with Continuous Domain
	Manuel Gieseking: Trace Refinement of pi-Calculus Processes
	Friedrich Gretz: Conditioning in Probabilistic Programming
	Dennis Guck: Markov Reward Automata in Railway Engineering
	Doreen Heusel: Weighted Unranked Tree Automata over Tree Valuation Monoids
	Philipp Hoffmann: Negotiations as a concurrency primitive: Summaries and Games
	Johannes Hölzl: Probability Theory and Markov Processes in Isabelle/HOL
	Fabian Immler: Continuous Systems Reachability using Adaptive Runge-Kutta Methods - Formally Verified
	Christina Jansen: Generating Abstract Graph-Based Procedure Summaries for Pointer Programs
	Nils Jansen: A Greedy Approach for the Efficient Repair of Stochastic Models
	Benjamin Lucien Kaminski: Analyzing Expected Outcomes and (Positive) Almost-Sure Termination of Probabilistic Programs is Hard
	Edon Kelmendi: Two-player shift-invariant and submixing stochastic games are half-positional
	Saifullah Khan: Trafï¬†c Data Dissemination in Realistic Urban VANETs Environment
	Veronika Loitzenbauer: A Hierarchical Sparsification Technique for Faster Algorithms in Graphs and Game Graphs
	Bogdan Mihaila: Synthesizing Predicates from Abstract Domain Losses
	Suvam Mukherjee: Efficient Shape Analysis of Multithreaded Programs
	Christian Müller: An Analysis of Universal Information Flow based on Self-Compositions
	David Müller: Are Good-for-games Automata Good for Probabilistic Model Checking?
	RenÃ© Neumann: A verified LTL model checker
	Giuseppe Perelli: Strategy Logic
	Vitaly Perevoshchikov: Decomposition of Weighted Timed Automata
	Mickael Randour: Games with Window Quantitative Objectives
	Frederic Reinhardt: Automatic Structures with Parameters
	Jan Oliver Ringert: Extensible Support for Specification Patterns in GR(1) Synthesis – Work in Progress
	Stefan Schulze Frielinghaus: Inter-procedural Two-Variable Herbrand Equalities are inPTIME
	Loredana Sorrentino: On Promptness in Parity Games
	Thomas Ströder: Transformational Termination Analysis of Programs with Pointer Arithmetic
	Mitra Tabaei Befrouei: Abstraction and Mining of Traces to Explain Concurrency Bugs
	Andreas Tönnis: Packing Secretaries
	Dmitriy Traytel: Derivatives of WS1SFormulas
	Thomas Weidner: Probabilistic Logic and Regular Expressions on Finite Trees
	Sarah Winter: Uniformization of Automatic Tree Relations by Top-down Tree Transducers
	Sascha Wunderlich: Weight Monitoring with Linear Temporal Logic
	Aachener Informatik-Berichte

