
Aachen
Department of Computer Science

Technical Report

Algorithmic Differentiation

of Numerical Methods:

Second-Order Tangent and Adjoint

Solvers for Systems of Parametrized

Nonlinear Equations

Niloofar Safiran, Johannes Lotz, Uwe Naumann

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2014-07

RWTH Aachen · Department of Computer Science · Nov. 2014 (revised version)

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Algorithmic Differentiation of Numerical Methods:

Second-Order Tangent and Adjoint Solvers for

Systems of Parametrized Nonlinear Equations

Niloofar Safiran, Johannes Lotz, Uwe Naumann

LuFG Informatik 12: Software and Tools for Computational Engineering,
RWTH Aachen University, Germany.

Email: {safiran, lotz, naumann}@stce.rwth-aachen.de

Abstract. Forward and reverse modes of algorithmic differentiation (AD) trans-
form implementations of multivariate vector functions F : IRn → IRm as com-
puter programs into tangent and adjoint code, respectively. The reapplication
of the same ideas yields higher derivative code. In particular, second derivatives
play an important role in nonlinear programming. Second-order methods based
on Newton’s algorithm promise faster convergence in the neighbourhood of the
minimum by taking into account second derivative information. The adjoint mode
is of particular interest in large-scale gradient-based nonlinear optimization due
to the independence of its computational cost on the number of free variables.
Solvers for parametrized systems of n equations embedded into the evaluation of
the objective function for a (without loss of generality) unconstrained nonlinear
optimization problem require the Hessian of the objective with respect to the free
variables implying the need for second derivatives of the nonlinear solver. The lo-
cal computational overhead as well as the additional memory requirement for the
computation of second-order tangents or second-order adjoints of the solution
vector with respect to parameters by a fully algorithmic method (derived by AD)
can quickly become prohibitive for large values of n. Both can be reduced signifi-
cantly by the second-order symbolic approach to differentiation of the underlying
numerical method to be discussed in this paper.

1 Introduction and Summary of the Results

This paper builds on [NLLT12], in which the first-order algorithmic differenti-
ation (AD) [GW08,Nau12] of solvers for systems of nonlinear equations is dis-
cussed. In this paper we consider two alternative approaches for evaluating the
second derivatives of numerical simulation programs which contain calls to solvers
for parameterized systems of n nonlinear equations. The first approach is the al-
gorithmic version (derived by AD) of computing second derivatives in which the
local computational overhead as well as the additional memory requirement for
the computation of second-order tangents or second-order adjoints of the solution
vector with respect to the parameters can quickly become prohibitive for large
values of n. The second approach is differentiation of the underlying mathemati-
cal formulation (symbolic version) which computes the derivatives of the solution
under the assumption that the exact solution has been reached. Therefore the
accuracy of the calculated derivatives depends on the accuracy of the solution,
but it reduces the computational complexity by orders of magnitude.

With forward and reverse modes of AD as the two fundamental approaches
to the computation of truncation-free first derivatives, there are 4 combina-
tions yielding second derivatives, namely forward over forward (FoF), forward

over reverse (FoR), reverse over forward (RoF) and reverse over reverse (RoR)
[GW08,Nau12]. In this paper we focus on FoF and FoR for reasons laid out later
in this work.

The run time and memory overhead for algorithmic and symbolic approaches
to the differentiation of an iterative (e.g. Newton-type) method for the solution
of nonlinear systems is shown in Table 1.

Symbolic Algorithmic

FoF FoR FoF FoR

Memory O(n2) O(n2) O(n2) ν ·O(n3)
Run Time O(n3) O(n3) ν · O(n3) ν ·O(n3)

Table 1. Computational complexity and memory requirement of one projection with second-
order algorithmic and symbolic tangent and adjoint modes of differentiation for ν (e.g. Newton)
iterations applied to systems of n nonlinear equations.

Computing the second derivatives by a fully algorithmic method corresponds
to a straight application of AD without taking into account any mathematical
properties of the numerical method. It turns out to be the worst approach in
terms of computational efficiency. The performance of the different approaches
depends on the number of the iterations ν performed by the nonlinear solver
(e.g. Newton steps) and on the problem size n. Any nonlinear solver with a
direct linear solver called in each step, which approaches to solution of the non-
linear system, will do the same (e.g. SIMPLE). We do not really rely on Newton
as the nonlinear solver. In this paper we refer to Newton’s algorithm for param-
eterized systems of nonlinear equations as an example to show the complexities
in algorithmic mode (see Sections 4.1 and 5.1).

2 Foundations

In this section we recall some aspects from [NLLT12]. We consider the compu-
tation of second-order tangents (directional derivatives) x(1,2) ∈ IRn as well as

second-order adjoints λ
(2)
(1) ∈ IRm for solvers of parametrized systems of nonlinear

equations described by the residual

r = F (x,λ) : IRn × IRm → IRn. (1)

For a given λ ∈ IRm, a vector x ∈ IRn is sought such that F (x,λ) = 0.

Without loss of generality, the nonlinear solver is assumed to be embedded
into the unconstrained convex nonlinear programming problem (NLP)

min
z∈IRq

f(z)

for a given objective function f : IRq → IR. In the context of second-order
derivative-based methods (e.g. Newton) the gradient and the Hessian of y =

4

f(z) ∈ IR with respect to z ∈ IRq need to be computed, which involves the sec-
ond derivative of the nonlinear solver itself.

As in [NLLT12], f is decomposed as

y = f(z) = p(S(x0, P (z))), (2)

where P : IRq → IRm denotes the part of the computation that precedes the
nonlinear solver S : IRn × IRm → IRn and where p : IRn → IR maps the result x
onto the scalar objective y.

Most of our arguments will be based on the following algorithmic description
of Equation (2)

λ = P (z) (3)

x̃ = S(x0,λ) (4)

y = p(x̃). (5)

The parameters λ ∈ IRm are computed as functions of z ∈ IRq by the given
implementation of P. They enter the nonlinear solver S as arguments as well as
the given initial estimate x0 ∈ IRn of the solution x ∈ IRn. Finally, the computed
approximation x̃ of the solution x is reduced to a scalar objective value y ∈ IR
by the given implementation of p. In this paper, P is called the preprocessor, S
is called the nonlinear solver and p is called the postprocessor.

As an example for a nonlinear solver we consider Newton’s method. A basic
version of Newton’s algorithm for parameterized systems of nonlinear equations
F (x,λ) = 0 yields

for i = 0, . . . , ν

A := F ′(xi,λ) ≡
∂F

∂x
(xi,λ) (6)

b := −F (xi,λ)

s := L(A,b) (⇒ A · s = b) (7)

xi+1 := xi + s. (8)

While the symbolic approach does not rely on a specific method for the
solution of the nonlinear system, the algorithmic version requires insight into the
individual algorithmic steps performed by the nonlinear solver.

3 First- and Higher-Order Algorithmic Differentiation

Wemention some significant elements of AD described in further detail in [GW08,Nau12].
Without loss of generality, the following discussion will be based on the resid-
ual function in Equation (1). In the following we use the notation from [Nau12]
which is partially inspired by the notation used in [GW08]. Let therefore be

u ≡

(
x
λ

)

∈ IRh

5

and h = n + m. AD yields semantical transformations of the given implemen-
tation of F : IRh → IRn as a computer program into first and potentially also
higher (k-th order) derivative code. For this purpose F is assumed to be k times
symbolically differentiable for k = 1, 2,

For AD to become applicable, the given implementation of F is assumed to
decompose into a single assignment code (SAC) as follows

for j = h, . . . , h+ q + n− 1

vj = ϕj(vi)i≺j ,

where i ≺ j denotes a direct dependence of vj on vi. The result of each intrin-
sic function1 ϕj is assigned to a unique auxiliary variable vj . The h indepen-
dent inputs ui = vi, for i = 0, . . . , h − 1, are mapped onto n dependent outputs
rj = vh+q+j, for j = 0, . . . , n − 1. The values of q intermediate variables vk are
computed for k = h, . . . , h+ q − 1.

The SAC induces a directed acyclic graph (DAG) G = (V,E) with integer
vertices V = {0, . . . , h + q + n − 1} and edges E = {(i, j)|i ≺ j}. The vertices
are sorted topologically with respect to variable dependence inducing a partial
order according to ∀i, j ∈ V : (i, j) ∈ E ⇒ i < j.

The intrinsic functions ϕj are assumed to posses jointly symbolic partial
derivatives with respect to their arguments. Association of the local partial
derivatives with their corresponding edges in the DAG yields a linearized DAG.
The linearized DAG of our reference objective is shown in Fig. 1 (a) with (high-
level) intrinsic functions P, S, and p.

By the chain rule of differential calculus, the entries of the Jacobian A =
(ai,j) ≡ ∇F (u) can be computed as

ai,j =
∑

π∈[i→h+q+j]

∏

(k,l)∈π

cl,k, (9)

where

cl,k ≡
∂ϕl

∂vk
(vw)w≺l

and where [i → h+q+j] denotes the set of all paths that connect the independent
vertex i with the dependent vertex h+ q+ j [Bau74]. For example, according to
Fig. 1 (a)

∂f

∂z
≡

∂y

∂z
=

∂p

∂x
·
∂S

∂λ
·
∂P

∂z
=

∂y

∂x
·
∂x

∂λ
·
∂λ

∂z
.

1 Intrinsic functions can range from fundamental arithmetic operations (+, ∗, . . .) and built-in
(into the used programming language) functions (sin, exp, . . .) to potentially highly complex
numerical algorithms such as routines for interpolation, numerical integration, or the solution
of systems of linear or nonlinear equations. In its basic form, AD is defined for the arithmetic
operators and built-in functions. A formal extension of this concept to higher-level intrinsics
turns out to be reasonably straight forward. For a complex algorithm to become an intrinsic
function all we require is the existence of and knowledge about the partial derivatives of its
results with respect to its arguments.

6

z

x0 λ

x

y

[∂λ
∂z

]

[∂x
∂λ

]

[∂y
∂x

]

s

z

x0 λ

x

y

[z(1)]

[∂λ
∂z

]

[∂x
∂λ

]

[∂y
∂x

]

z

x0 λ

x

y

t

[∂λ
∂z

]

[∂x
∂λ

]

[∂y
∂x

]

[y(1)]

(a) (b) (c)

Fig. 1. Reference Problem: (a) Linearized DAG; (b) Tangent Extension; (c) Adjoint Extension

3.1 First-Order Tangent Model

The Jacobian ∇F = ∇F (u) of a multivariate vector function r = F (u), F :
IRh → IRn, induces a linear mapping IRh → IRn , where h = n+m, defined by

u(1) 7→< ∇F,u(1) >≡ ∇F (u) · u(1) .

A first-order tangent projection of ∇F in direction u(1) ∈ IRh is defined as
the usual matrix-vector product ∇F (u) · u(1). Alternatively, we use the inner
product notation < ∇F,u(1) > as introduced in [Nau12].

The function F (1) : IRh × IRh → IRn , defined as

r(1) = F (1)(u,u(1)) =< ∇F,u(1) > (10)

is referred to as the tangent model of F . Let [∇F]k,j = ∂[r]k
∂[u]j

∈ IRn×h with

k = 0, ..., n − 1 and j = 0, ..., h − 1 be a 2-tensor (a matrix). Hence, Equation
(10) yields

[r(1)]k =< [∇F]k,∗,u
(1) >≡

h−1∑

j=0

[∇F]k,j · [u
(1)]j ,

for k = 0, ..., n − 1. The kth row of ∇F is denoted by [∇F]k,∗. The expression
< [∇Fk,∗],u

(1) > denotes the usual scalar product of two vectors in IRh. This
tensor notation will be required for the discussion of higher derivative models in
Section 3.3 and the following.

The directional derivatives r(1) can be regarded as the partial derivative of r
with respect to an auxiliary scalar variable s, where initially

u(1) ≡
∂u

∂s
.

7

Interpretation of chain rule on the corresponding linearized DAG (the tangent
extension of the original linearized DAG) yields

r(1) ≡
∂r

∂s
=

∂r

∂u
·
∂u

∂s
=< ∇F,u(1) > .

For example, in Figure 1(b) the tangent extension of the linearized DAG of our
reference objective is shown. Equation (9) yields y(1) = ∂y

∂z
· z(1) =< ∂y

∂z
, z(1) >.

Note that ∂y
∂z

∈ IR1×q.

Tangent (also: forward) mode software tools for AD transform a given imple-
mentation

1 F(u , r)

of Equation r = F (u) with input u=̂u and output r =̂r into the (algorithmic)
tangent subroutine

1 t1 F (u , t1 u , r , t 1 r)

where t1 u =̂u(1) and t1 r =̂r(1). A prefix t1 marks 1st-order tangent mode.
The Jacobian of the residual with respect to u can be accumulated by letting
t1 u range over the Cartesian basis vectors in IRh. The individual columns of
the Jacobian are returned in t1 r while r contains the value of the residual. The
complexity of this model for evaluating the whole Jacobian is O(h) · Cost(F).

3.2 First-Order Adjoint Model

The adjoint of a linear operator is its transpose [DS88], since

< u(1),u(1) >=< u(1),∇F T (u) · r(1) >=< r(1), r(1) >=< ∇F (u) · u(1), r(1) > .

Consequently, the transposed Jacobian ∇F T = ∇F (u)T of a multivariate
vector function r = F (u), F : IRh → IRn, induces a linear mapping IRn → IRh

defined by

r(1) 7→< r(1),∇F (u) >≡ ∇F (u)T · r(1) .

A first-order adjoint projection of ∇F in direction r(1) is defined as the usual

matrix-vector product ∇F (u)T ·r(1). Alternatively, we use the inner product no-
tation < r(1),∇F (u) > as introduced in [Nau12].

The function F(1) : IR
h × IRn → IRh , defined as

u(1) = F(1)(u, r(1)) =< r(1),∇F (u) > (11)

is referred to as the adjoint model of F. Let ∇F = [∇F]k,j =
∂[r]k
∂[u]j

∈ IRn×h with

k = 0, ..., n − 1 and j = 0, ..., h − 1 be a 2-tensor (a matrix). Hence, Equation
(11) yields

[u(1)]j =< r(1), [∇F]∗,j >≡

n−1∑

k=0

[∇F]k,j · [r(1)]k ,

8

for j = 0, ..., h− 1. The jth column of ∇F is denoted by [∇F]∗,j. The expression
< r(1), [∇F]∗,j > denotes the usual scalar product of two vectors in IRn.

Adjoints can be regarded as partial derivatives of an auxiliary scalar variable
t with respect to r and u, where

r(1) ≡

(
∂t

∂r

)T

and u(1) ≡

(
∂t

∂u

)T

.

By the chain rule, we get

u(1) ≡

(
∂t

∂u

)T

=

(
∂r

∂u

)T

·

(
∂t

∂r

)T

= ∇F T · r(1) .

For example, in Figure 1(c) the adjoint extension of the linearized DAG of our

reference objective is shown. Equation (9) yields z(1) =
∂y
∂z

T
· y(1) =< y(1),

∂y
∂z

>.

Adjoint (also: reverse) mode software tools for AD transform a given imple-
mentation

1 F(u , r)

of Equation r = F (u) with u=̂u and r =̂r into the (algorithmic) adjoint subrou-
tine

1 a1 F (u , a1 u , r , a1 r)

where a1 u =̂u(1) and a1 r =̂r(1). A prefix a1 marks 1st-order adjoint mode.
The Jacobian of the residual with respect to u can be accumulated by letting
a1 r range over the Cartesian basis vectors in IRn while setting a1 u=0. The
individual rows of the Jacobian are returned in a1 u. The output argument r
contains the value of the residual. The complexity of this model for evaluating
the whole Jacobian is O(n) · Cost(F).

3.3 Second-Order Tangent Model

The Hessian ∇2F = ∇2F (u) of a multivariate vector function r = F (u), F :
IRh → IRn, induces a bilinear mapping IRh × IRh → IRn defined by

(u(1),u(2)) 7→< ∇2F,u(1),u(2) >=<< ∇2F,u(1) >,u(2) > .

A second-order tangent projection < ∇2F,u(1),u(2) > of a symmetric 3-tensor
∇2F , where

∇2F = [∇2F]k,i,j =
∂[r]k

∂[u]i∂[u]j

for k = 0, ..., n − 1 and i, j = 0, ..., h − 1 with [∇2F]k,i,j = [∇2F]k,j,i for i, j =
0, ..., h − 1, in directions u(1),u(2) ∈ IRh is a first-order tangent projection in di-
rection u(2) of the first-order tangent projection of ∇2F in direction u(1), which
is << ∇2F,u(1) >,u(2) >.

The function F (1,2) : IRh × IRh × IRh → IRn , which is defined as

r(1,2) = F (1,2)(u,u(1),u(2)) ≡< ∇2F,u(1),u(2) > (12)

9

is referred to as the second-order tangent model of F. The Hessian tensor (∇2F)
is projected along its two domain dimensions (of size h) in directions u(1) and
u(2).

Let ∇2F be a symmetric 3-tensor as defined above and

B =< ∇2F,u(1) >∈ IRn×h ,

r(1,2) =< B,u(2) >=< ∇2F,u(1),u(2) >∈ IRn .

Then,

bk,j =

h−1∑

i=0

[∇2F]k,j,i · [u
(1)]i

for j = 0, ..., h − 1 and k = 0, ..., n − 1. Hence, Equation (12) yields

[r(1,2)]k =

h−1∑

j=0

bk,j · [u
(2)]j =

h−1∑

j=0

h−1∑

i=0

[∇2F]k,j,i · [u
(1)]i · [u

(2)]j ,

for k = 0, ..., n − 1.

Application of tangent mode to the tangent model

r(1) = F (1)(u,u(1)) ≡< ∇2F,u(1) >

yields

r(1,2) =< ∇F,u(1,2) > + < ∇2F,u(1),u(2) > ,

where u(2) ≡ ∂u
∂s

and u(1,2) ≡ ∂u(1)

∂s
. Thus, for u(1,2) = 0, Equation (12) follows.

Second-order tangent (also: forward-over-forward) mode software tools for
AD transform a given implementation

1 F(u , r)

of Equation r = F (u) with u =̂u and r =̂r into the (algorithmic) second-order
tangent subroutine

1 t2 t1 F (u , t2 u , t1 u , t 2 t 1 u , r , t 2 r , t 1 r , t 2 t 1 r)

where additionally t1 u =̂u(1), t2 u =̂u(2), t2 t1 u =̂u(1,2), t1 r =̂r(1), t2 r =̂r(2),
and t2 t1 r =̂r(1,2). The prefix tm marks tangent versions of program variables
(and of F itself) generated by the mth application of forward mode AD. The
Hessian at point u can be accumulated by setting u(1,2) = 0 initially and by
letting u(1) and u(2) range independently over Cartesian basis vectors in IRh .
The individual columns of the Hessian are returned in t2 t1 r while t1 r and t2 r
contain the individual columns of the Jacobian and r contains the value of the
residual. This model yields a computational complexity of O(h2) · Cost(F) for
the accumulation of the whole Hessian.

10

3.4 Second-Order Adjoint Model

With tangent and adjoint as the two basic modes of AD there are three combina-
tions remaining, each of them involving at least one application of adjoint mode.
In [Nau12] we show the mathematical equivalence of the various incarnations of
second-order adjoint mode (that is, forward-over-reverse, reverse-over-forward,
and reverse-over-reverse) due to symmetry within the Hessian of twice sym-
bolically differentiable multivariate vector functions. All three variants compute
projections of the Hessian tensor in the image dimension (of size n) and the do-
main dimension (of size h) with potentially varying computational costs due to
implementation issues; see [Nau12]. In the following forward-over-reverse mode
AD is explained.

The Hessian ∇2F = ∇2F (u) of a multivariate vector function r = F (u),
F : IRh → IRn, induces a bilinear mapping IRn × IRh → IRh defined by

(r(1),u
(2)) 7→< r(1),∇

2F,u(2) >=<< r(1),∇
2F >,u(2) > .

A second-order adjoint projection < r(1),∇
2F,u(2) > of a symmetric 3-tensor

∇2F , where

∇2F = [∇2F]k,i,j =
∂[r]k

∂[u]i∂[u]j

for k = 0, ..., n − 1 and i, j = 0, ..., h − 1 with [∇2F]k,i,j = [∇2F]k,j,i for i, j =
0, ..., h − 1, in directions r(1) ∈ IRn and u(2) ∈ IRh is a first-order tangent pro-

jection in direction u(2) of the first-order adjoint projection of ∇2F in direction
r(1), which is << r(1),∇

2F >,u(2) >.

The function F
(2)
(1) : IRh × IRn × IRh → IRh , which is

u
(2)
(1) = F

(2)
(1) (u, r(1),u

(2)) ≡< r(1),∇
2F (x),u(2) > (13)

is referred to as the second-order adjoint model of F . The Hessian tensor (∇2F)
is projected in directions r(1) ∈ IRn and u(2) ∈ IRh .

Let ∇2F be a symmetric 3-tensor as defined above and

B =< r(1),∇
2F >∈ IRh×h ,

u
(2)
(1) =< B,u(2) >=< r(1),∇

2F,u(2) >∈ IRh .

Then,

bi,j =
∑n−1

k=0 [r(1)]k · [∇
2F]k,i,j

for i, j = 0, ..., h − 1. Hence, Equation (13) yields

[u
(2)
(1)]i =

h−1∑

j=0

bi,j · [u
(2)]j =

h−1∑

j=0

n−1∑

k=0

[r(1)]k · [∇
2F]k,i,j · [u

(2)]j ,

for i = 0, ..., h − 1.

Application of tangent mode to the adjoint model

11

u(1) = F(1)(u, r(1)) =< r(1),∇F (u) >

yields

u
(2)
(1) =< r

(2)
(1),∇F (x) > + < r(1),∇

2F (x),u(2) > ,

where u(2) ≡ ∂u
∂s

and r
(2)
(1) ≡

∂r(1)
∂s

. Thus, for r
(2)
(1) = 0 Equation (13).

Second-order adjoint (also: forward-over-reverse) mode software tools for AD
transform a given implementation

1 F(u , r)

of Equation r = F (u) with u =̂u and r =̂r into the (algorithmic) second-order
adjoint subroutine

1 t2 a1 F (u , t2 u , a1 u , t2 a1 u , r , t 2 r , a1 r , t 2 a 1 r)

Subscripts of second-order adjoint subroutine and variable names are replaced

with the prefixes a1 and t2 ; for example, a1 u =̂u(1), t2 u =̂u(2), t2 a1 u =̂u
(2)
(1),

a1 r =̂r(1), t2 r =̂r(2), and t2 a1 r =̂r
(2)
(1). The computation of a projection of the

Hessian in directions u(2) and r(1) requires r
(2)
(1) = 0 initially. The entire Hessian

can be accumulated by letting u(2) and r(1) range over Cartesian basis vectors

in IRh and IRn respectively. The individual rows of the Hessian are returned in
t2 a1 u while a1 u contains the individual rows of the Jacobian and r contains
the value of the residual. This model yields the computational complexity of
O(h · n) · Cost(F) for the accumulation of the whole Hessian.

3.5 Third-Order Tangent Model

The third derivative tensor ∇3F = ∇3F (u) ∈ IRn × IRh × IRh × IRh of a mul-
tivariate vector function r = F (u), F : IRh 7→ IRn induces a trilinear mapping
IRh × IRh × IRh → IRn defined by

(u(1),u(2),u(3)) →< ∇3F,u(1),u(2),u(3) >=<<< ∇3F,u(1) >,u(2) >,u(3) > .

A third-order tangent projection < ∇3F,u(1),u(2),u(3) > of a symmetric
4-tensor ∇3F , where

∇3F = [∇3F]k,i,j,l =
∂[r]k

[∂u]i[∂u]j [∂u]l

for k = 0, ..., n − 1 and i, j, l = 0, ..., h − 1 with [∇3F]k,i,j,l = [∇3F]k,π(i,j,l) for

any permutation π of i, j, l, in directions u(1),u(2),u(3) ∈ IRh is a first-order
tangent projection in direction u(3) of a second-order tangent projection of ∇3F
in directions u(1) and u(2), which is << ∇3F,u(1),u(2) >,u(3) >. It is a first-
order tangent projection in direction u(3) of a first-order tangent projection in
direction u(2) of a first-order tangent projection of ∇3F in direction u(1), i.e.
<<< ∇3F,u(1) >,u(2) >,u(3) >.

12

The function F (1,2,3) : IRh × IRh × IRh × IRh → IRn, defined as

r(1,2,3) = F (1,2,3)(u,u(1),u(2),u(3)) ≡< ∇3F (u),u(1),u(2),u(3) > (14)

is referred to as the third-order tangent model of F . The 4-tensor ∇3F is pro-
jected along its three domain dimensions (of size h) in directions u(1),u(2) and
u(3).

Let ∇3F be a symmetric 4-tensor as defined above and

B =< ∇3F,u(1) >∈ IRn × IRh × IRh , that is

bk,i,j =
h−1∑

l=0

[∇3F]k,i,j,l · [u
(1)]l ,

for k = 0, ..., n − 1 and i, j = 0, ..., h − 1. Moreover,

C =< B,u(2) >=<< ∇3F,u(1) >,u(2) >∈ IRn × IRh , that is

ck,i =

h−1∑

j=0

bk,i,j · [u
(2)]j =

h−1∑

j=0

h−1∑

l=0

[∇3F]k,i,j,l · [u
(1)]l · [u

(2)]j ,

for k = 0, ..., n − 1 and i = 0, ..., h − 1. Then we have

r(1,2,3) =< C,u(3) >=<<< ∇3F,u(1) >,u(2) >,u(3) >∈ IRn , that is

[r(1,2,3)]k =
h−1∑

i=0

ck,i · [u
(3)]i =

h−1∑

i=0

h−1∑

j=0

h−1∑

l=0

[∇3F]k,i,j,l · [u
(1)]l · [u

(2)]j · [u
(3)]i ,

for k = 0, ..., n − 1.

Application of tangent mode to the second-order tangent model

r(1,2) =< ∇2F,u(1),u(2) >

yields

r(1,2,3) =< ∇2F (u),u(1,3),u(2) > + < ∇2F (u),u(1),u(2,3) > + < ∇3F (u),u(1),u(2),u(3) >,

where ∂u
∂s

= u(3), ∂u
(1)

∂s
= u(1,3) and ∂u(2)

∂s
= u(2,3). Thus, for u(1,3) = u(2,3) = 0,

Equation (14) follows.

Third-order tangent (also: forward-over-forward-over-forward) mode software
tools for AD transform a given implementation

1 F(u , r)

of Equation r = F (u) with u =̂u and r =̂r into the (algorithmic) second-order
tangent subroutine

13

1 t 3 t 2 t 1 F (u , t3 u , t2 u , t3 t2 u , t1 u , t3 t1 u , t2 t1 u , t 3 t 2 t 1 u ,
2 r , t 3 r , t 2 r , t 3 t 2 r , t 1 r , t 3 t 1 r , t 2 t 1 r , t 3 t 2 t 1 r)

where t1 u =̂u(1), t2 u =̂u(2),t3 u =̂u(3), t2 t1 u =̂u(1,2), t3 t1 u =̂u(1,3), t3 t2 u
=̂u(2,3), t3 t2 t1 u =̂u(1,2,3), t1 r =̂r(1),t2 r =̂r(2),t3 r =̂r(3), t2 t1 r =̂r(1,2), t3 t1 r
=̂r(1,3), t3 t2 r =̂r(2,3) and t3 t2 t1 r =̂r(1,2,3) . First-order projection of ∇3F in
directions u(1),u(2) and u(3) are returned in t1 r, t2 r and t3 r by letting u(1),u(2)

and u(3) range independently over Cartesian basis vector in IRh. Corresponding
second-order projections are returned in t2 t1 r, t3 t2 r and t3 t1 r. The third
derivatives are returned in t3 t2 t1 r. This model yields the computational com-
plexity of O(h3) · Cost(F) for evaluating the whole third derivative tensor.

3.6 Third-Order Adjoint Model

Due to issues in implementation, the preferred approach to the computation of
higher derivatives of multivariate scalar functions is the repeated application of
forward mode AD to the first-order adjoint code.

The third derivative tensor ∇3F = ∇3F (u) ∈ IRn × IRh × IRh × IRh of a
multivariate vector function r = F (u), F : IRh 7→ IRn induces a trilinear mapping
IRn × IRh × IRh → IRh defined by

(r(1),u
(2),u(3)) →< r(1),∇

3F,u(2),u(3) >=<<< r(1),∇
3F >,u(2) >,u(3) > .

A third-order adjoint projection < r(1),∇
3F,u(2),u(3) > of a symmetric 4-tensor

∇3F , where

∇3F = [∇3F]k,i,j,l =
∂[r]k

[∂u]i[∂u]j [∂u]l

for k = 0, ..., n − 1 and i, j, l = 0, ..., h − 1 with [∇3F]k,i,j,l = [∇3F]k,π(i,j,l) for

any permutation π of i, j, l, in directions r(1) ∈ IRn and u(2),u(3) ∈ IRh is a first-

order tangent projection in direction u(3) of the second-order adjoint projection
of ∇3F in directions r(1) and u(2), that is << r(1),∇

3F,u(2) >,u(3) >. It is a

first-order tangent projection in direction u(3) of the first-order tangent projec-
tion in direction u(2) of the first-order adjoint projection of ∇3F in direction r(1),

i.e. << r(1),∇
3F >,u(2) >,u(3) >.

The function F
(2,3)
(1) : IRh × IRn × IRh × IRh → IRh, defined as

u
(2,3)
(1)

= F
(2,3)
(1)

(u, r(1),u
(2),u(3)) ≡< r(1),∇

3F (u),u(2),u(3) > (15)

is referred to as the third-order adjoint model of F . The 4-tensor ∇3F is projected
in directions r(1) ∈ IRn and u(2),u(3) ∈ IRh.

Let ∇3F be a symmetric 4-tensor as defined above and

B =< r(1),∇
3F >∈ IRh × IRh × IRh , that is

bi,j,l =
n−1∑

k=0

[r(1)]k · [∇
3F]k,i,j,l ,

14

for i, j, l = 0, ..., h − 1. Moreover,

C =< B,u(2) >=<< r(1),∇
3F >,u(2) >∈ IRh × IRh , that is

ci,j =
h−1∑

l=0

bi,j,l · [u
(2)]l =

h−1∑

l=0

n−1∑

k=0

[r(1)]k · [∇
3F]k,i,j,l · [u

(2)]l ,

for i, j = 0, ..., h − 1. Then we have

u
(2,3)
(1) =< C,u(3) >=<<< r(1),∇

3F >,u(2) >,u(3) >∈ IRh , that is

[u
(2,3)
(1)]i =

h−1∑

j=0

ci,j · [u
(3)]j =

h−1∑

j=0

h−1∑

l=0

n−1∑

k=0

[r(1)]k · [∇
3F]k,i,j,l · [u

(2)]l · [u
(3)]j ,

for i = 0, ..., h − 1.

Application of tangent mode to the second-order adjoint model

u
(2)
(1) =< r(1),∇

2F (u),u(2) >

yields

u
(2,3)
(1) =< r

(3)
(1),∇

2F (u),u(2) >< r(1),∇
2F (u),u(2,3) > + < r(1),∇

3F (u),u(2),u(3) >,

where ∂u
∂s

= u(3),
∂r(1)
∂s

= r
(3)
(1) and ∂u(2)

∂s
= u(2,3). Thus, for r

(3)
(1) = u(2,3) = 0,

Equation (15) follows.

Third-order adjoint (also: forward-over-forward-over-reverse) mode software
tools for AD transform a given implementation

1 F(u , r)

of Equation r = F (u) with u =̂u and r =̂r into the (algorithmic) second-order
tangent subroutine

1 t3 t2 a1 F (u , t3 u , t2 u , t3 t2 u , a1 u , t3 a1 u , t2 a1 u , t3 t2 a1 u ,
2 r , t 3 r , t 2 r , t 3 t 2 r , a1 r , t 3 a1 r , t 2 a1 r , t 3 t 2 a 1 r)

where a1 u =̂u(1), t2 u =̂u(2), t3 u =̂u(3), t2 a1 u =̂u
(2)
(1), t3 a1 u =̂u

(3)
(1),t3 t2 u

=̂u(2,3), t3 t2 t1 u =̂u
(2,3)
(1) , a1 r =̂r(1), t2 r =̂r(2), t3 r =̂r(3), t2 a1 r =̂r

(2)
(1), t3 a1 r

=̂r
(3)
(1), t3 t2 r =̂r(2,3) and t3 t2 a1 r =̂r

(2,3)
(1) . The computation of the projection

of tensor ∇3F in directions u(2),u(3) and r(1) requires u(2,3) = 0 and r
(3)
(1) = 0

initially. The entire tensor can be accumulated by letting u(2),u(3) and r(1) range

over Cartesian basis vectors in IRh, IRh and IRn respectively. The third partial
derivatives are returned in t3 t2 a1 u. This model yields the computational com-
plexity of O(n · h2) · Cost(F) for evaluating the whole third derivative tensor.

The application of forward or reverse mode AD to any of the third derivative
models yields fourth derivative information and so forth.

15

The derivative code that is generated by AD can compute projections of
derivative tensors of arbitrary order, for example, (transposed) Jacobian-vector
products in the first-order case, Hessian-vector products in the scalar second-
order case, and so forth. Sums of the projections of tensors of various orders are
returned by higher derivative code. AD users need to understand the effects of
choosing certain directions for these projections (the seeding of the derivative
code) in order to be able to retrieve (harvest) the desired results. For more
information refer to [GW08,Nau12].

4 Second-Order Tangent Nonlinear Solver

We distinguish between two alternative approaches to the generation of second-
order tangent solvers for systems of nonlinear equations. A algorithmic second-
order tangent version of the solver computes second-order directional derivatives
of the approximation of the solution, which is actually computed by the algo-
rithm. Second-order AD is applied to the individual statements of the given
implementation yielding an increase of roughly four in memory requirement as
well as operations count.

A second-order symbolic tangent version of the solver computes the second
directional derivatives of the solution under the assumption that the exact solu-
tion x∗ has been reached. The nonlinear system F (x,λ) = 0 can be differentiated
symbolically in this case. In symbolic tangent mode, the computation of second-
order directional derivatives amounts to the solution of a linear system based on
the Jacobian of F with respect to x∗, which results in a significant reduction of
the computational overhead in comparison with the algorithmic tangent version.
The discrepancies in the results computed by second-order algorithmic and sym-
bolic tangent nonlinear solvers depend on the accuracy of the approximation of
the primal solution.

4.1 Algorithmic Mode

As an example for a nonlinear solver we solve the nonlinear system in Equation
(1) with Newton’s algorithm. The latter uses the Jacobian of the nonlinear system
(∇F (xi)) at the current iterate xi to determine the next Newton step.

A first-order tangent version of Newton’s algorithm requires second direc-
tional derivatives of the residual. Consequently, second-order tangent version of
the Newton’s algorithm requires third directional derivatives of the given imple-
mentation of F .

As shown in [NLLT12], the first-order algorithmic tangent version of the
given objective with Newton’s algorithm used for the solution of the embedded
parametrized system of nonlinear equations results from the straight application
of tangent mode AD to Equations (6)–(8) as follows

For i = 0, . . . , ν :

A =
∂F

∂x
(xi,λ) (16)

16

A(1) =<
∂2F

∂x∂(x,λ)
(xi,λ),

(
xi (1)

λ
(1)

)

>

b = −F (xi,λ)

b(1) = − <
∂F

∂(x,λ)
(xi,λ),

(
xi (1)

λ
(1)

)

>

s = L(A,b)

s(1) =<
∂L

∂(A,b)
(A,b),

(
A(1)

b(1)

)

>

xi+1 = xi + s

xi+1 (1) = xi (1) + s(1) (17)

The linear solver (L) is augmented at the statement-level with local tangent
models, thus roughly duplicating the required memory as well as the number of
operations performed.

Reapplication of tangent AD to Equations (16)–(17) yields

for i = 0, . . . , ν :

A =
∂F

∂x
(xi,λ) =<

∂F

∂x
, In >=<

∂F

∂(x,λ)
,

(∈IR(n+m)×n)
(
In
0m

)

> (18)

A(2) =<
∂2F

∂x∂(x,λ)
,

(
xi (2)

λ
(2)

)

>=<
∂2F

∂(x,λ)2
,

(
In
0m

)

,

(
xi (2)

λ
(2)

)

>

A(1) =<
∂2F

∂x∂(x,λ)
,

(
xi (1)

λ
(1)

)

>=<
∂2F

∂(x,λ)2
,

(
In
0m

)

,

(
xi (1)

λ
(1)

)

>

A(1,2) =<
∂2F

∂x∂(x,λ)
,

(
xi (1,2)

λ
(1,2)

)

> + <
∂3F

∂x∂(x,λ)2
,

(
xi (1)

λ
(1)

)

,

(
xi (2)

λ
(2)

)

>

=<
∂2F

∂x∂(x,λ)
, In,

(
xi (1,2)

λ
(1,2)

)

> + <
∂3F

∂x∂(x,λ)2
, In,

(
xi (1)

λ
(1)

)

,

(
xi (2)

λ
(2)

)

>

=<
∂2F

∂(x,λ)2
,

(
In
0m

)

,

(
xi (1,2)

λ
(1,2)

)

> + <
∂3F

∂(x,λ)3
,

(
In
0m

)

,

(
xi (1)

λ
(1)

)

,

(
xi (2)

λ
(2)

)

>

b = −F (xi,λ)

b(2) = − <
∂F

∂(x,λ)
,

(
xi (2)

λ
(2)

)

>

b(1) = − <
∂F

∂(x,λ)
,

(
xi (1)

λ
(1)

)

>

b(1,2) = − <
∂F

∂(x,λ)
,

(
xi (1,2)

λ
(1,2)

)

> − <
∂2F

∂(x,λ)2
,

(
xi (1)

λ
(1)

)

,

(
xi (2)

λ
(2)

)

>

s = L(A,b)

s(2) =<
∂L

∂(A,b)
(A,b),

(
A(2)

b(2)

)

>

17

s(1) =<
∂L

∂(A,b)
(A,b),

(
A(1)

b(1)

)

>

s(1,2) =<
∂L

∂(A,b)
(A,b),

(
A(1,2)

b(1,2)

)

> + <
∂2L

∂(A,b)2
(A,b),

(
A(1)

b(1)

)

,

(
A(2)

b(2)

)

>

xi+1 = xi + s

xi+1 (2) = xi (2) + s(2)

xi+1 (1) = xi (1) + s(1)

xi+1 (1,2) = xi (1,2) + s(1,2) ,

where all derivatives of F , e.g. ∂F
∂(x,λ) are evaluated at point (xi,λ).

In Equation (18), In ∈ IRn×n is the identity matrix, filled with m zero rows

yielding

(
In
0m

)

∈ IR(n+m)×n. Furthermore, the differentiation of L(A,b) ∈ IRn

with respect to (A,b) is done through serialization of (A,b), meaning that A ∈
IRn×n and b ∈ IRn, (A,b) is considered as a vector of size n2 + n. Consequently,

∂L
∂(A,b)(A,b) ∈ IRn×(n2+n) and ∂2

L

∂(A,b)2 (A, b) ∈ IRn×(n2+n)×(n2+n). Similarly we get
(
Ak

bk

)

∈ IRn2+n for k = (1), (2) or (1, 2).

In the above equations, first, second and third derivatives of F with respect
to (xi,λ) are required when computing third-order tangents of F with respect
to (xi,λ) using AD software tools, the function value as well as derivatives up
to third order are evaluated.

In this case, the required memory is four times the memory (MEM) required
by the nonlinear solver itself, i.e. MEM(L) ∼ O(n2) and the number of opera-
tions is four times the operations (OPS) performed by the nonlinear solver itself,
i.e., OPS(L) ∼ ν · O(n3).

4.2 Symbolic Mode

Lemma 1 (Differentiation of a Matrix-Vector Product).
Let G(c) =< A(c),b(c) > be a symbolic bilinear map in which A(c) ∈ IRm×n,b(c) ∈
IRn and G : IRm×n × IRn → IRm are differentiable functions. Differentiation of
G with respect to c yields

G(1)(c) =< A(1)(c),b(c) > + < A(c),b(1)(c) > .

18

Proof. Let G(1) = ∂
∂c
G(c) and G(1) ∈ IRm. Then we have

G(1) =
∂

∂c
< A(c),b(c) >

g
(1)
i =

∂

∂c





n∑

j=1

ai,j(c) · bj(c)



 =
n∑

j=1

∂

∂c
(ai,j(c) · bj(c))

=

n∑

j=1

(
∂ai,j(c)

∂c
· bj(c) + ai,j(c) ·

∂bj(c)

∂c
)

=
n∑

j=1

∂ai,j(c)

∂c
· bj(c) +

n∑

j=1

ai,j(c) ·
∂bj(c)

∂c
) ,

for i = 1, . . . ,m. Consequently,

G(1) =
∂A(c)

∂c
·b(c)+A(c) ·

∂b(c)

∂c
=< A(1)(c),b(c) > + < A(c),b(1)(c) > .

For further information refer to [Gil08].

Lemma 2. Let T ∈ IRn×(n+m)×(n+m),x(1),x(2) ∈ IRn and λ
(1),λ(2) ∈ IRm.

Then we have

< T,

(
x(1)

λ
(1)

)

,

(
x(2)

λ
(2)

)

>= < T,

(
x(1)

0m

)

,

(
0n
λ
(2)

)

> + < T,

(
x(1)

0m

)

,

(
x(2)

0m

)

>

+ < T,

(
0n
λ
(1)

)

,

(
0n
λ
(2)

)

> + < T,

(
0n
λ
(1)

)

,

(
x(2)

0m

)

>

Proof. Let a =

(
x(1)

0m

)

,b =

(
x(2)

0m

)

, c =

(
0n
λ
(1)

)

,d =

(
0n
λ
(2)

)

∈ IRn+m. There-

fore, we have

19

< T,

(
x(1)

0m

)

,

(
0n
λ
(2)

)

> + < T,

(
x(1)

0m

)

,

(
x(2)

0m

)

>

+ < T,

(
0n
λ
(1)

)

,

(
0n
λ
(2)

)

> + < T,

(
0n
λ
(1)

)

,

(
x(2)

0m

)

>

=

n+m∑

j=0

n+m∑

k=0

Tijk · ak · dj +

n+m∑

j=0

n+m∑

k=0

Tijk · ak · bj

+

n+m∑

j=0

n+m∑

k=0

Tijk · ck · dj +

n+m∑

j=0

n+m∑

k=0

Tijk · ck · bj

=

n+m∑

j=0

n+m∑

k=0

Tijk · (

(
x(1)

0m

)

·

(
0n
λ
(2)

)

+

(
x(1)

0m

)

·

(
x(2)

0m

)

+

(
0n
λ
(1)

)

·

(
0n
λ
(2)

)

+

(
0n
λ
(1)

)

·

(
x(2)

0m

)

)

=

n+m∑

j=0

n+m∑

k=0

Tijk · (

(
x(1)

0m

)

·

((
0n
λ
(2)

)

+

(
x(2)

0m

))

+

(
0n
λ
(1)

)

·

((
0n
λ
(2)

)

+

(
x(2)

0m

))

)

=

n+m∑

j=0

n+m∑

k=0

Tijk · (

(
x(1)

0m

)

·

((
x(2)

λ
(2)

))

+

(
0n
λ
(1)

)

·

((
x(2)

λ
(2)

))

)

=

n+m∑

j=0

n+m∑

k=0

Tijk · (

(
x(2)

λ
(2)

)

·

((
x(1)

0m

)

+

(
0n
λ
(1)

))

)

=
n+m∑

j=0

n+m∑

k=0

Tijk · (

(
x(2)

λ
(2)

)

·

((
x(1)

0m

)

+

(
0n
λ
(1)

))

)

=
n+m∑

j=0

n+m∑

k=0

Tijk ·

(
x(1)

λ
(1)

)

·

(
x(2)

λ
(2)

)

for i = 0, ..., n

= < T,

(
x(1)

λ
(1)

)

,

(
x(2)

λ
(2)

)

>

Theorem 1. Symbolic Second-Order Tangent Solvers of Nonlinear Equa-
tion: Let r = F (x(λ),λ) : IRn × IRm → IRn for a given λ ∈ IRm, a vector
x ∈ Rn is sought such that F (x(λ),λ) = 0. Second-order tangent differentiation
of F (x,λ) = 0 at the solution x = x∗ with respect to λ, i.e., computation of
x(1,2) ∈ IRn, amounts to the solution of the linear system

∂F

∂x
· x(1,2) =<

∂F

∂x
,x(1,2) >=− < ∇2F,

(
x(1)

λ
(1)

)

,

(
x(2)

λ
(2)

)

> . (19)

Proof (Version 1).

As shown in [NLLT12], first-order symbolic tangent differentiation of F (x(λ),λ) =
0 at the solution x = x∗ with respect to λ, i.e., computation of x(1), yields

20

∂F

∂x
(x,λ) · x(1) = −

∂F

∂λ
(x,λ) · λ(1) (20)

which is a linear system and ∂F
∂x

is the Jacobian matrix. This equation can be
written as

∂F

∂x
(x,λ) · x(1) +

∂F

∂λ
(x,λ) · λ(1) =<

∂F

∂x
(x,λ),x(1) > + <

∂F

∂λ
(x,λ),λ(1) > .

(21)
An alternative for evaluating the second directional derivatives of the solution

x = x∗ with respect to λ in F (x,λ) = 0 is to differentiate Equation (21) with
respect to λ

d

dλ

(

<
∂F

∂x
(x,λ),x(1) > + <

∂F

∂λ
(x,λ),λ(1) >

)

· λ(2) (22)

= <
d < ∂F

∂x
(x,λ),x(1) >

dλ
,λ(2) > + <

d < ∂F
∂λ

(x,λ),λ(1) >

dλ
,λ(2) > ,

where<
d< ∂F

∂x
(x,λ),x(1)>

dλ
,λ(2) > and <

d< ∂F
∂λ

(x,λ),λ(1)>

dλ
,λ(2) > are the total deriva-

tives of g1 =< ∂F
∂x

(x,λ),x(1) > and g2 =< ∂F
∂λ

(x,λ),λ(1) > with respect to λ

respectively. Because g1 and g2 depend on x as well as λ, we have

<
dg1
dλ

,λ(2) > =<
∂g1
∂λ

,λ(2) > + <
∂g1
∂x

, <
∂x

∂λ
,λ(2) >

︸ ︷︷ ︸

=x(2)

> (23)

=<
∂ < ∂F

∂x
(x,λ),x(1) >

∂λ
,λ(2) > + <

∂ < ∂F
∂x

(x,λ),x(1) >

∂x
,x(2) > ,

<
dg2
dλ

,λ(2) > =<
∂g2
∂λ

,λ(2) > + <
∂g2
∂x

, <
∂x

∂λ
,λ(2) >

︸ ︷︷ ︸

=x(2)

> (24)

=<
∂ < ∂F

∂λ
(x,λ),λ(1) >

∂λ
,λ(2) > + <

∂ < ∂F
∂λ

(x,λ),λ(1) >

∂x
,x(2) > .

According to Theorem 1, the first term on the right hand side of Equation (23)
yields

<
∂ < ∂F

∂x
,x(1) >

∂λ
,λ(2) >= <

∂2F

∂x∂λ
,x(1),λ(2) > + <

∂F

∂x
, <

∂x(1)

∂λ
,λ(2) >>

= <
∂2F

∂(x,λ)2
,

(
x(1)

0m

)

,

(
0n
λ
(2)

)

>

+ <
∂F

∂x
, <

∂x(1)

∂λ
,λ(2) >>

= < ∇2F,

(
x(1)

0m

)

,

(
0n
λ
(2)

)

> + <
∂F

∂x
,x(1,2) > .

21

Similarly, the second term on the right hand side of Equation (23) becomes

<
∂ < ∂F

∂x
,x(1) >

∂x
,x(2) > =<

∂2F

∂x2
,x(1),x(2) > + <

∂F

∂x
, <

∂x(1)

∂x
︸ ︷︷ ︸

0

,x(2) >>

=<
∂2F

∂(x,λ)2
︸ ︷︷ ︸

∇2F

,

(
x(1)

0m

)

,

(
x(2)

0m

)

> .

Applying Theorem 1, the first term on the right hand side of Equation (24) yields

<
∂ < ∂F

∂λ
,λ(1) >

∂λ
,λ(2) > =<

∂2F

∂λ2 ,λ
(1),λ(2) > + <

∂F

∂λ
, <

∂λ(1)

∂λ
︸ ︷︷ ︸

0

,λ(2) >>

=<
∂2F

∂(x,λ)2
︸ ︷︷ ︸

∇2F

,

(
0n
λ
(1)

)

,

(
0n
λ
(2)

)

> .

Similarly, the second term on the right hand side of Equation (24) becomes

<
∂ < ∂F

∂λ
(x,λ),λ(1) >

∂x
,x(2) > =<

∂2F

∂λ∂x
,λ(1),x(2) > + <

∂F

∂λ
, <

∂λ(1)

∂x
︸ ︷︷ ︸

0

,x(2) >>

=<
∂2F

∂(x,λ)2
︸ ︷︷ ︸

∇2F

,

(
0n
λ
(1)

)

,

(
x(2)

0m

)

> .

Consequently, Equation (22) yields

< ∇2F,

(
x(1)

0m

)

,

(
0n
λ
(2)

)

>+ <
∂F

∂x
,x(1,2) > + < ∇2F,

(
x(1)

0m

)

,

(
x(2)

0m

)

>

+ < ∇2F,

(
0n
λ
(1)

)

,

(
0n
λ
(2)

)

>+ < ∇2F,

(
0n
λ
(1)

)

,

(
x(2)

0m

)

>= 0

<
∂F

∂x
,x(1,2) >=− < ∇2F,

(
x(1)

0m

)

,

(
0n
λ
(2)

)

> − < ∇2F,

(
x(1)

0m

)

,

(
x(2)

0m

)

>

− < ∇2F,

(
0n
λ
(1)

)

,

(
0n
λ
(2)

)

> − < ∇2F,

(
0n
λ
(1)

)

,

(
x(2)

0m

)

>

Therefore, according to Theorem 2,

<
∂F

∂x
,x(1,2) >=

∂F

∂x
· x(1,2) =− < ∇2F,

(
x(1)

λ
(1)

)

,

(
x(2)

λ
(2)

)

> .

22

In the above equation, the right hand side can be calculated by second-order
tangent AD. Computing the right hand side and the Jacobian matrix ∂F

∂x
with

AD, this system can be solved by using the same linear solver as applied for
computation of the first-order symbolic tangent x(1) in Equation (21), e.g. Gauss.

Proof (Version 2).

As shown in [NLLT12], the first-order symbolic tangent differentiation of
F (x(λ),λ) = 0 at the solution x = x∗ with respect to λ, i.e., the computation
of x(1), yields

∂F

∂x
(x,λ) · x(1) = −

∂F

∂λ
(x,λ) · λ(1) (25)

∂F

∂x
· x(1) = − <

∂F

∂λ
,λ(1) >

∂F

∂x∂λ
·

(
x(1)

0m

)

= − <
∂F

∂x∂λ
,

(
0n
λ
(1)

)

>

∇F ·

(
x(1)

0m

)

= − < ∇F,

(
0n
λ
(1)

)

> , (26)

which is a linear system of type Ac = b, where A = ∇F , c =

(
x(1)

0m

)

and

b = − < ∇F,

(
0n
λ
(1)

)

>.

An option to evaluate the second-order directional derivatives of the solution
x = x∗ with respect to λ in F (x,λ) = 0 is to apply the symbolic first-order
tangent version for linear solvers to Equation (26) .

As shown in [Gil08], for the linear system Ac = b we have

c = L(A,b) ,

c(1) = L(1)(A,A(1),b,b(1)) =<
∂c

∂A
,A(1) > + <

∂c

∂b
,b(1) > , (27)

where

A· <
∂c

∂A
,A(1) > = −A(1) · c , (28)

A· <
∂c

∂b
,b(1) > = b(1) . (29)

For the computation of Equation (27) the matrices A,A(1) ∈ IRn×(n+m) are as-
sumed to be serialized. Therefore, differentiation of c ∈ IRn+m with respect to
A ∈ IRn2+n·m, gives a matrix ∂c

∂A
∈ IR(n+m)×(n2+n·m). Projecting this matrix in

direction A(1) ∈ IRn2+n·m yields < ∂c
∂A

, A(1) >∈ IRn+m.

Computing A(1), b(1) and c(1) in Equation (26) yields

23

A = ∇F ,

A(1) =<
d (∇F)

dλ
,λ(2) >

=<
∂(∇F)

∂λ
,λ(2) > + <

∂(∇F)

∂x
, <

∂x

∂λ
,λ(2) >

︸ ︷︷ ︸

=x(2)

>

=<
∂(∇F)

∂x∂λ
,

(
0n
λ
(2)

)

> + <
∂(∇F)

∂x∂λ
,

(
x(2)

0m

)

>

=< ∇2F,

(
0n
λ
(2)

)

> + < ∇2F,

(
x(2)

0m

)

>

=< ∇2F,

(
x(2)

λ
(2)

)

> ,

where A,A(1) ∈ IRn×(n+m). Moreover,

b = − < ∇F,

(
0n
λ
(1)

)

> ,

b(1) =
d

dλ

(

− < ∇F,

(
0n
λ
(1)

)

>

)

· λ(2)

= − <

∂ < ∇F,

(
0n
λ
(1)

)

>

∂λ
,λ(2) > − <

∂ < ∇F,

(
0n
λ
(1)

)

>

∂x
,

=x(2)

︷ ︸︸ ︷

<
∂x

∂λ
,λ(2) > >

= − <

∂ < ∇F,

(
0n
λ
(1)

)

>

∂x∂λ
,

(
0n
λ
(2)

)

> − <

∂ < ∇F,

(
0n
λ
(1)

)

>

∂x∂λ
,

(
x(2)

0m

)

>

= − < ∇2F,

(
0n
λ
(1)

)

,

(
0n
λ
(2)

)

> − < ∇2F,

(
0n
λ
(1)

)

,

(
x(2)

0m

)

>

= − < ∇2F,

(
0n
λ
(1)

)

,

(
x(2)

λ
(2)

)

> ,

and

c =

(
x(1)

0m

)

,

c(1) =
d

dλ

(
x(1)

0m

)

· λ(2) =

∂

(
x(1)

0m

)

∂λ
· λ(2)

=

(
∂x(1)

∂λ
· λ(2)

0m

)

=

(
x(1,2)

0m

)

.

Now applying Equations (28)-(29) to the linear system in Equation (26) we have

24

∇F · <
∂c

∂A
,A(1) > = − < ∇2F,

(
x(2)

λ
(2)

)

> ·

(
x(1)

0m

)

= − < ∇2F,

(
x(2)

λ
(2)

)

,

(
x(1)

0m

)

> ,

∇F · <
∂c

∂b
,b(1) > = − < ∇2F,

(
0n
λ
(1)

)

,

(
x(2)

λ
(2)

)

> .

Consequently, Equation (27) yields

(
x(1,2)

0m

)

=− (∇F)−1· < ∇2F,

(
x(2)

λ
(2)

)

,

(
x(1)

0m

)

>

− (∇F)−1· < ∇2F,

(
0n
λ
(1)

)

,

(
x(2)

λ
(2)

)

>

∇F ·

(
x(1,2)

0m

)

=− < ∇2F,

(
x(2)

λ
(2)

)

,

(
x(1)

0m

)

> − < ∇2F,

(
0n
λ
(1)

)

,

(
x(2)

λ
(2)

)

>

∇F ·

(
x(1,2)

0m

)

=− < ∇2F,

(
x(1)

λ
(1)

)

,

(
x(2)

λ
(2)

)

>

∂F

∂x
· x(1,2) =− < ∇2F,

(
x(1)

λ
(1)

)

,

(
x(2)

λ
(2)

)

> .

Both ∂F
∂x

and the right hand side can be computed automatically by AD.

The required memory for evaluating the symbolic second-order tangent non-
linear solver is the memory required by the nonlinear solver itself (e.g. Equation
(7) in Newton’s algorithm), i.e. MEM(L) ∼ O(n2). In Equation (19) the com-
plexity of evaluating the right hand side is O(1) · Cost(F). The decomposition
of the Jacobian (∂F

∂x
) which is done in the evaluation of the first-order partial

derivatives with symbolic tangent (Equation (20) or Equation (25)) at the cost
of O(n3) can also be used in evaluating the second-order directional derivatives.
Solving the linear system (Equation (19)) e.g. with forward/backward substi-
tution at the cost of O(n2), the overall complexity of evaluating the symbolic
second-order tangent directional derivatives x(1,2) is proportional to O(n3).

5 Second-Order Adjoint Nonlinear Solver

As in Section 4 we distinguish between second-order algorithmic and symbolic
modes when deriving adjoint solvers for systems of nonlinear equations. Similar
remarks regarding numerical consistency between the primal and the adjoint
solvers apply.

5.1 Algorithmic Mode

As mentioned in the previous section, solving the nonlinear system (Equation (1))
with e.g. Newton, the nonlinear solver uses the Jacobian of the nonlinear system

25

(∇F (xi)) at the current iterate xi to determine the next Newton step. First-order
adjoint version of Newton’s algorithm requires second directional derivatives of
the residual. Consequently, second-order adjoint version of the Newton’s algo-
rithm requires the third directional derivatives of the given implementation of
F .

It should be considered that the memory requirement for the algorithmic
adjoint nonlinear solver becomes proportional to the number of operations per-
formed by the nonlinear solver. Data required within the reverse section is
recorded in the forward section. The resulting memory requirement is likely to
exceed the available resources for most real-world applications. Checkpointing
techniques can help keeping the required memory feasible at the expense of ad-
ditional function evaluations, See [GW08,Nau12] for details.

As it is shown in [NLLT12], the first-order algorithmic adjoint version of
the given objective with Newton ’ s algorithm which is used for the solution
of the embedded parametrized systems of nonlinear equations results from the
straight application of adjoint mode AD to Equations (6)–(8). The application
of (incremental) adjoint mode AD to Equations (6)–(8) (without checkpointing)
yields

for i = 0, . . . , ν

(A, τ) :=
∂F

∂x
(xi,λ) (30)

(b, τ) := −F (xi,λ)

(s, τ) := L(A,b) (31)

xi+1 := xi + s (32)

for i = ν, . . . , 0

xi
(1) := s(1) := xi+1

(1)
(
A(1)

b(1)

)

:= L(1)(s(1), τ)

(
xi
(1)

λ(1)

)

:=

(
xi
(1)

λ(1)

)

+ < b(1),
∂F

∂(x, λ)
(xi,λ) > (τ) (33)

+ < A(1),
∂2F

∂x∂(x,λ)
(xi,λ) > (τ).

Data required within the reverse section is recorded on a data structure 2 τ in
the augmented forward section (Equations (30)–(32)). The input value of λ(1)

depends on the context in which the nonlinear solver is called. In the specific
scenario given by Equations (3)–(5) it is initially equal to zero as adjoints of
intermediate (neither input nor output) variables should be; see, for example,

2 Using AD overloading tool, e.g. dco (Derivative Code by Overloading), datas required within
the reverse section will be recorded on tape, whereas by using AD source transformation
tool, e.g. dcc (Derivative Code Compiler), datas required within the reverse section will be
recorded on stack.

26

[GW08]. In Equation (33) the projections of ∂F
∂(x,λ)(x

i,λ) and ∂2F
∂x∂(x,λ)(x

i,λ) in
directions b(1) and A(1) respectively depend on τ , i.e., the projections on the
reverse section are dependent on the datas recorded on tape during the forward
section.

Both the Jacobian accumulation in Equation (30) and the linear solver in
Equation (31) are treated straightforwardly with an application of AD software.

As mensioned above, datas in the forward section are recorded on tape to be
used in the calculations on the reverse section. In the following for simplicity and
better readability we omit the τ .

Applying second-order algorithmic adjoint of AD to Equations (6)–(8) yields

for i = 0, . . . , ν

A :=
∂F

∂x
(xi,λ)

A(2) :=<
∂2F

∂x∂(x,λ)
(xi,λ),

(
xi (2)

λ
(2)

)

>

b := −F (xi,λ)

b(2) := − <
∂F

∂(x,λ)
(xi,λ),

(
xi (2)

λ
(2)

)

>

s := L(A,b)

s(2) :=<
∂L

∂(A,b)
(A,b),

(
A(2)

b(2)

)

>

xi+1 := xi + s

xi+1 (2) := xi (2) + s(2) ,

followed by

for i = ν, . . . , 0

xi
(1) := s(1) := xi+1

(1)

s
(2)
(1) := s

(2)
(1) + x

i+1(2)
(1)

x
(2)
(1) := x

(2)
(1) + x

i+1(2)
(1)

(
A(1)

b(1)

)

:=< s(1),
∂L

∂(A,b)
(A,b) >

(

A
(2)
(1)

b
(2)
(1)

)

:=

(

A
(2)
(1)

b
(2)
(1)

)

+ < s
(2)
(1),

∂L

∂(A,b)
(A,b) >

+ < s(1),
∂2L

∂(A,b)2
(A,b),

(
A(2)

b(2)

)

>

27

(
xi
(1)

λ(1)

)

:=

(
xi
(1)

λ(1)

)

+ < A(1),
∂2F

∂x∂(x,λ)
(xi,λ) > (34)

− < b(1),
∂F

∂(x,λ)
(xi,λ) >

(

x
i(2)
(1)

λ
(2)
(1)

)

:=

(

x
i(2)
(1)

λ
(2)
(1)

)

+ < A
(2)
(1),

∂2F

∂x∂(x,λ)
(xi,λ) > (35)

− < b
(2)
(1),

∂F

∂(x,λ)
(xi,λ) >

+ < A(1),
∂3F

∂x∂(x,λ)2
(xi,λ),

(
xi(2)

λ
(2)

)

>

− < b(1),
∂2F

∂(x,λ)2
(xi,λ),

(
xi(2)

λ
(2)

)

>

where all the derivatives of F , e.g. ∂F
∂(x,λ) are evaluated at point (xi,λ). The same

as previous section, the differentiation of L(A,b) ∈ IRn with respect to (A,b)
is done through serialization of (A,b), meaning that A ∈ IRn×n and b ∈ IRn,
(A,b) is considered as a vector of size n2 + n. Consequently, ∂L

∂(A,b)(A,b) ∈

IRn×(n2+n) and ∂2L

∂(A,b)2
(A,b) ∈ IRn×(n2+n)×(n2+n). The serialization is also ap-

plied for

(
A(1)

b(1)

)

,

(
A(2)

b(2)

)

and

(

A
(2)
(1)

b
(2)
(1)

)

∈ IRn2+n. Furthermore, the expressions

< A(1),
∂2F

∂x∂(x,λ)(x
i,λ) > in Equation (34) and < A

(2)
(1),

∂2F
∂x∂(x,λ)(x

i,λ) > in Equa-

tion (35) denote a projection image dimension of length n2(⇐ n × n) of the
first derivative of the Jacobian ∂F

∂x
(xi,λ) with respect to x and λ (the Hes-

sian ∂2F
∂x∂(x,λ)(x

i,λ)) in the direction obtained by a corresponding serialization of

A(1) and A
(2)
(1) respectively. The expression < A(1),

∂3F
∂x∂(x,λ)2

(xi,λ),

(
xi(2)

λ
(2)

)

> in

Equation (35) denotes a projection image dimension of length n2(⇐ n × n) of
the second derivative of the Jacobian ∂F

∂x
(xi,λ) with respect to x and λ (the 4-

tensor ∂3F
∂x∂(x,λ)2 (x

i,λ)) in the direction obtained by a corresponding serialization

of A(1) and in direction

(
xi(2)

λ
(2)

)

.

In the above equations, first, second and third derivatives of F with respect
to (xi,λ) are required when computing third-order adjoints of F with respect to
(xi,λ) using AD software tools, the function value as well as derivatives up to
third-order are evaluated.

In this case, the number of operations is four times the operations (OPS)
performed by the nonlinear solver itself, i.e., ν ·O(n3). The required memory in
this case is proportional to the number of operations, i.e., ν · O(n3). All these
computations can be done automatically using AD software tools.

5.2 Symbolic Mode

Theorem 2. Symbolic Second-Order Adjoint Solvers of Nonlinear Equa-
tion: Let r = F (x(λ),λ) : IRn×IRm → IRn for a given λ ∈ IRm, a vector x ∈ Rn

is sought such that F (x(λ),λ) = 0. Let z ∈ IRn and

28

∂F

∂x

T

(x,λ) · z = −x(1) . (36)

Furthermore, let z(2) =< ∂z
∂λ

,λ(2) > , z(2) ∈ IRn and

∂F

∂x

T

· z(2) = − < z,∇2F,

(
x(2)

λ
(2)

)

> −x
(2)
(1)

.

Second-order adjoint differentiation of F (x,λ) = 0 at the solution x = x∗

with respect to λ, i.e., computation of λ
(2)
(1) ∈ IRm, yields

(

0n

λ
(2)
(1)

)

+ =< z,∇2F,

(
x(2)

λ
(2)

)

> + < z(2),∇F > . (37)

Proof (Version 1). As shown in [NLLT12], first-order symbolic adjoint differ-
entiation of F (x(λ),λ) = 0 at the solution x = x∗ with respect to λ, i.e.,
computation of λ(1), yields

< z,
∂F

∂x
(x,λ) >= −x(1) , (38)

λ(1)+ =< z,
∂F

∂λ
(x,λ) > , (39)

where Equation (38) is a linear system based on transposed Jacobian of F with
respect to x, followed by Equation (39) for computing λ(1).

An alternative for evaluating the second directional derivatives of the solution
x = x∗ with respect to λ in F (x,λ) = 0 is to differentiate Equations (38)–(39)
with respect to λ. Differentiating Equation (38) yields

d

dλ
< z,

∂F

∂x
(x,λ) > ·λ(2) =

d

dλ
(−x(1)) · λ

(2) .

Applying Theorem 1 to the above equation yields

<
d

dλ
(z) · λ(2),

∂F

∂x
> + < z,

d

dλ
(
∂F

∂x
) · λ(2) >= −

∂x(1)

∂λ
· λ(2)

<<
∂z

∂λ
,λ(2) >,

∂F

∂x
> + < z,

∂2F

∂x∂λ
,λ(2) > + < z,

∂2F

∂x2
, <

∂x

∂λ
,λ(2) >>

= − <
∂x(1)

∂λ
,λ(2) >

< z(2),
∂F

∂x
> + < z,

∂2F

∂x∂λ
,λ(2) > + < z,

∂2F

∂x2
,x(2) >= −x

(2)
(1)

and hence

∂F

∂x

T

· z(2) = − < z,
∂2F

∂x∂λ
,λ(2) > − < z,

∂2F

∂x2
,x(2) > −x

(2)
(1) (40)

29

∇TF · z(2) = − < z,∇2F,

(
0n
λ
(2)

)

> − < z,∇2F,

(
x(2)

0m

)

> −

(

x
(2)
(1)

0m

)

= − < z,∇2F,

(
x(2)

λ
(2)

)

> −

(

x
(2)
(1)

0m

)

, (41)

which is a linear system that can be solved by using a linear solver in order to
evaluate z(2) ∈ IRn. The right hand side can be evaluated in AD by projection

of the Hessian (∇2F) in directions z and

(
x(2)

λ
(2)

)

. Furthermore, x
(2)
(1) can also be

calculated in AD.

Differentiation of Equation (39) with respect to λ yields

d

dλ
(λ(1)) · λ

(2)+ =
d

dλ
< z,

∂F

∂λ
> ·λ(2) (42)

dλ(1)

dλ
· λ(2)+ = <

d

dλ
(z) · λ(2),

∂F

∂λ
> + < z,

d

dλ
(
∂F

∂λ
) · λ(2) >

<
∂λ(1)

∂λ
,λ(2) > + = <<

∂z

∂λ
,λ(2) >,

∂F

∂λ
> + < z, <

∂2F

∂λ2 ,λ
(2) >>

+ < z,
∂2F

∂λ∂x
, <

∂x

∂λ
,λ(2) >>

λ
(2)
(1)+ = < z(2),

∂F

∂λ
> + < z,

∂2F

∂λ2 ,λ
(2) > + < z,

∂2F

∂λ∂x
,x(2) >

(

0n

λ
(2)
(1)

)

+ = < z(2),
∂F

∂(x,λ)
> + < z,∇2F,

(
0n
λ
(2)

)

> + < z,∇2F,

(
x(2)

0m

)

>

(

0n

λ
(2)
(1)

)

+ = < z(2),∇F > + < z,∇2F,

(
x(2)

λ
(2)

)

> . (43)

Evaluation of the above equation can also be done in AD by projection of the

Jacobian (∇F) in direction z(2). The < z,∇2F,

(
x(2)

λ
(2)

)

> projection is already

computed in Equation (41).

Proof (Version 2).

As shown in [NLLT12], first-order symbolic adjoint differentiation of F (x(λ),λ) =
0 at the solution x = x∗ with respect to λ, i.e., the computation of λ(1), yields

< z,
∂F

∂x
(x,λ) >= −x(1) , (44)

λ(1)+ =< z,
∂F

∂λ
(x,λ) > . (45)

Equation (44) becomes

∂F

∂x

T

(x,λ) · z = −x(1)

30

∂F

∂x∂λ

T

· z = −

(
x(1)

0m

)

∇F T · z = −

(
x(1)

0m

)

, (46)

which is a linear system of type Ac = b, with A = ∇F T , c = z and b = −

(
x(1)

0m

)

.

An option to evaluate the second derivative of the solution x = x∗ with respect
to λ in F (x,λ) = 0 is to apply the first-order tangent symbolic version for linear
solvers to Equation (44) (or Equation (46)) and then differentiate the Equation
(45) with respect to λ.

As shown in [NL12], for the linear system Ac = b we have

c = L(A,b) ,

c(1) = L(1)(A,A(1),b,b(1)) =<
∂c

∂A
,A(1) > + <

∂c

∂b
,b(1) > , (47)

where

A· <
∂c

∂A
,A(1) > = −A(1) · c , (48)

A· <
∂c

∂b
,b(1) > = b(1) . (49)

The same as before, for the computation of Equation (47) the matrices A,A(1) ∈
IRn×(n+m) are assumed to be serialized. Therefore, differentiation of c ∈ IRn+m

with respect to A ∈ IRn2+n·m, gives a matrix ∂c
∂A

∈ IR(n+m)×(n2+n·m). Projecting

this matrix in direction A(1) ∈ IRn2+n·m yields < ∂c
∂A

, A(1) >∈ IRn+m.

In this case A = ∇F T and c = z, therefore A(1) · c yields

A(1) · c = (
d

dλ
(∇F T) · λ(2)) · z

=< z,
∂(∇F T)

∂λ
,λ(2) > + < z,

∂(∇F T)

∂x
,

=x
(2)

︷ ︸︸ ︷

<
∂x

∂λ
,λ(2) > >

=< z,∇2F,

(
0n
λ
(2)

)

> + < z,∇2F,

(
x(2)

0m

)

>

=< z,∇2F,

(
x(2)

λ
(2)

)

> .

Hence, Equation (48) yields

∇F T · <
∂c

∂A
,A(1) >= − < z,∇2F,

(
x(2)

λ
(2)

)

> .

In this case b = −

(
x(1)

0m

)

, therefore b(1) yields

31

b(1) =
d

dλ
(−

(
x(1)

0m

)

) · λ(2) = −

(
∂x(1)

∂λ
· λ(2)

0m

)

= −

(

x
(2)
(1)

0m

)

.

Consequently, Equation (49) yields

∇F T · <
∂c

∂b
,b(1) >= −

(

x
(2)
(1)

0m

)

.

In this case c = z, therefore c(1) yields

c(1) =
d

dλ
(z) · λ(2) =

∂z

∂λ
· λ(2) =<

∂z

∂λ
,λ(2) >= z(2) .

Consequently, Equation (47) becomes

z(2) = (∇F)−T ·

(

− < z,∇2F,

(
x(2)

λ
(2)

)

>

)

− (∇F)−T ·

(

x
(2)
(1)

0m

)

∇F T · z(2) = − < z,∇2F,

(
x(2)

λ
(2)

)

> −

(

x
(2)
(1)

0m

)

. (50)

Both ∂F
∂x

and the right hand side can be computed automatically by AD. The

linear system can be solved by using a linear solver in order to evaluate z(2).

The differentiation of Equation (45) with respect to λ is similar to proof 1 Equa-
tions (42)–(43). As a result we have

(

0n

λ
(2)
(1)

)

+ =< z(2),∇F > + < z,∇2F,

(
x(2)

λ
(2)

)

> .

The required memory for evaluating the symbolic second-order adjoint non-
linear solver is the memory required by the nonlinear solver itself (e.g. Equa-
tion (7) in Newton’s algorithm), i.e. MEM(L) ∼ O(n2). In Equation (37), the
complexity of evaluating the right hand side is O(1) · Cost(F). The decompo-
sition of the Jacobian which is done in Equation (36) for the evaluation of z
at the cost of O(n3) can also be used in evaluating the second-order directional
derivatives. Solving the linear system Equation (41) (or Equation (50)) e.g. with
forward/backward substitution at the cost of O(n2), the overall complexity of

evaluating the symbolic second-order adjoint directional derivatives λ
(2)
(1) is pro-

portional to O(n3).

6 IMPLEMENTATION

One can differentiate a system of numerical simulation by applying AD tools. If
the simulation system contains a nonlinear solver, the preferable way is to differ-
entiate the nonlinear system symbolically, for example, in our system (Equations
(3)–(5)), differentiating Equation (3) and Equation (5) with algorithmic mode

32

(AD tools) and evaluating the derivatives of Equation (4) theoretically. This
means that the theoretical results should be integrated into the existing software,
which is not straightforward. For this purpose, we define an initiative generic API
3, which facilitates the exploitation of mathematical and structural knowledge
inside of often highly complex tangent and adjoint numerical simulations.

Similar to [NLLT12], as a representative case study for the implementation
of higher-level (user-defined) intrinsics in the context of overloading AD tools we
consider the solver {S(n,x,lbd)} for systems of n nonlinear equations with inputs
x=x0 and {lbd}=λ and output x=x∗. More generically, the proposed approach
allows users of AD tools to treat arbitrary parts of the primal code as exter-
nal functions. The latter yield gaps in the tape due to their passive evaluation
within the forward section of the adjoint code. These gaps need to be filled by
corresponding user-defined adjoint functions to be called by the tape interpreter
within the reverse section of the adjoint code. This concept is part of the over-
loading AD tool dco [NLL14].

In the following we focus on the external function interface of dco/c++ in
the context of second-order tangent and adjoint modes. The preferred method
of implementation of second-order tangent external functions is through replace-
ment of the overloaded primal function with a user-defined version. One should
not expect to be presented with the method for filling gaps in the data flow of
second-order tangent or adjoint numerical simulations. There are always several
alternatives that implement mathematically equivalent functions. The particular
choice made for dco/c++ is meant to be both intuitive and easy to maintain.
The overloading AD tool ADOL-C [GJU96] features a similar, but less generic
external function concept.

Our simulation system (Equations (3)–(5)) yields

1 template <typename TYPE>
2 inl ine TYPE cos t fun c t i on (int n , std : : vector<TYPE> &z) {
3 std : : vector<TYPE> lambda (n) , x (n , 0) , r e s i d u a l (n) ;
4 int i t e r = 0 ;
5 p r ep r o c e s s o r (n , z , lambda) ;
6 i f (Alg)
7 i t e r = Alg S (n , x , lambda) ;
8 else

9 i t e r = Symb S(n , x , lambda) ;
10 std : : vector<double> x a (n) ;
11 generate measurements (n , x a) ;
12 TYPE J = pos tp r o c e s s o r (n , x , x a) ;
13 return J ;
14 }

In the above implementation, λ is initialized by calling preprocessor function.
After initializing λ the nonlinear solver is called, in which λ is input and x is input
as well as output. There are two alternative implementations for the nonlinear
solver. If the differentiation is done algorithmically, Alg S function should be
called, otherwise, if the differentiation is done symbolically, Symb S function
should be called. At last, the optimization function (postprocessor) is called,
which optimizes the inputs (λ) with respect to the real measurements (x a).

3 Application Programming Interface

33

6.1 Algorithmic Approach

The primal nonlinear solver function S is made generic with respect to the
floating-point data type {FT} yielding

1 template <class FT>
2 void S(int n , std : : vector<FT> &x , std : : vector<FT> &lbd) ;

Thus it can be instantiated with the dco/c++ data type {dco:: t2s t1s :: type} and
dco/c++ data type {dco:: t2s a1s :: type} , which implement second-order tangent
and adjoint modes respectively.

1 template <class T>
2 int Alg S (int n , std : : vector<T> &x , std : : vector<T> &lambda)
3 { return S(n , x , lambda) ; }

In adjoint mode, a tape of the entire computation is generated and interpreted
as discussed in Section 5.1. Therefore, there is no gap in tape.

6.2 Symbolic Approach

In the following, we focus on the symbolic second-order tangent and adjoint
modes for nonlinear solvers discussed in Sections 4.2 and 5.2 respectively.

Based on Fig.2 in [NLLT12], Fig. 2 in the following is the linearized DAG for
second-order tangent mode of our simulation system.

In Listing 1.1, the computation of both first- and second-order tangent mode
of the nonlinear solver is shown. As mentioned in Section 4.2, the first-order
symbolic tangent differentiation of a nonlinear system F (x(λ),λ) = 0 at the
solution x = x∗ with respect to λ, i.e., computation of x(1), yields

∂F

∂x
(x,λ) · x(1) = − <

∂F

∂λ
(x,λ),λ(1) > . (51)

Differentiating the first-order tangent mode of the nonlinear solver results the
second-order tangent mode of it, i.e.

∂F

∂x
· x(1,2) = − < ∇2F,

(
x(1)

λ
(1)

)

,

(
x(2)

λ
(2)

)

> . (52)

The computation of x(1) and x(1,2) amount to the solution of linear systems
which are based on the Jacobian matrix ∂F

∂x
.

A specialization of the generic primal solver S for dco’s scalar second-order
tangent type {dco:: t2s t1s :: type} is shown in Listing 1.1.

1 int Symb S(int n , std : : vector<dco : : t 2 s t 1 s : : type> &x , std : : vector<
dco : : t 2 s t 1 s : : type> &lambda)

2 {
3 std : : vector<dco : : t 2 s t 1 s : : type> r e s i d u a l (n) ;
4 std : : vector<double> px(n) , plambda (n) , p r e s i dua l (n) , t1lambda (n)

, t2lambda (n) , tu1 (n) , tu2 (n) , b1 (n) , b2 (n) , out1 (n) , rhs (n) ,
t 2 s t 1 s u (n) ;

5 std : : vector<std : : vector<double> > J dr dx (n , vector<double>(n)) ;
6 int ∗∗ P;

34

z

z(1)

z(2)

z(1,2)

x0

x0(1)

x0(2)

x0(1,2)

λ = P (z)

λ
(1)=< ∂P

∂z
,z(1)>

λ
(2) =< ∂P

∂z
, z(2) >

λ
(1,2) =< ∂2P

∂z2
, z(1), z(2) > + < ∂P

∂z
, z(1,2) >

x = S(x0,λ)

x(1) =< ∂S
∂λ

,λ(1) >

x(2) =< ∂S
∂λ

,λ(2) >

x(1,2) =< ∂2S

∂λ2 ,λ
(1),λ(2) > + < ∂S

∂λ
,λ(1,2) >

y = p(x)

y(1) =< ∂p

∂x
,x(1) >

y(2) =< ∂p

∂x
,x(2) >

y(1,2) =< ∂2p

∂x2 ,x
(1),x(2) > + < ∂p

∂x
,x(1,2) >

Fig. 2. Implementation of second-order tangent mode NLS: Solid lines represent the computa-
tion of derivatives in algorithmic mode. Dotted lines denote the computation of derivatives in
symbolic mode. In the given example, we have x0(1) = x0(2) = x0(1,2) = 0, therefore they are
not mentioned in the proceeding computations.

7 dco : : t 2 s t 1 s : : get (x , px) ;
8 dco : : t 2 s t 1 s : : get (lambda , plambda) ;
9 int i t e r = S(n , px , plambda) ;

10 dco : : t 2 s t 1 s : : get (lambda , t1lambda , 1) ;
11 dco : : t 2 s t 1 s : : get (lambda , t2lambda , 0 , 2) ;
12 dco : : t 2 s t 1 s : : s e t (lambda , plambda) ;
13 for (int i =0; i<n ; i++)
14 x [i] = px [i] ;
15 F(n , x , lambda , r e s i d u a l) ;
16 dco : : t 2 s t 1 s : : get (r e s i dua l , b1 , 1) ;
17 dco : : t 2 s t 1 s : : get (r e s i dua l , b2 , 2) ;
18 for (int i i = 0 ; i i < n ; i i ++) {
19 b1 [i i] ∗= −1;
20 b2 [i i] ∗= −1;
21 }
22 d r dx t g l (n , px , plambda , p re s idua l , J dr dx) ;
23 P = LUDecomp(n , J dr dx) ;
24 FBsolve (n , P, J dr dx , b1 , tu1) ;
25 FBsolve (n , P, J dr dx , b2 , tu2) ;
26 dco : : t 2 s t 1 s : : s e t (x , tu1 , 1) ;
27 dco : : t 2 s t 1 s : : s e t (x , tu2 , 2) ;
28 dco : : t 2 s t 1 s : : s e t (lambda , plambda) ;
29 dco : : t 2 s t 1 s : : s e t (x , px) ;

35

30 F(n , x , lambda , r e s i d u a l) ;
31 dco : : t 2 s t 1 s : : get (r e s i dua l , out1 , 1 , 2) ;
32 for (int i =0; i<n ; i++)
33 rhs [i]= (−1)∗ out1 [i] ;
34 FBsolve (n , P, J dr dx , rhs , t 2 s t 1 s u) ;
35 dco : : t 2 s t 1 s : : s e t (x , t 2 s t 1 s u , 1 , 2) ;
36 return i t e r ;
37 }

Listing 1.1. External function for symbolic second-order tangent mode of S

In Listing 1.1, λ(1) and λ(2) are evaluated in lines 10 and 11 respectively. The
function F is the nonlinear problem. Having λ(1) and λ(2), b1=< ∂F

∂λ
(x,λ),λ(1) >

and b2=< ∂F
∂λ

(x,λ),λ(2) > are evaluated in lines 16 and 17 respectively. The Ja-
cobian matrix(J dr dx) is computed using the algorithmic tangent mode in line
22 and in line 23 it is decomposed. In lines 24 and 25 the linear systems for x(1)

and x(2) in Equation (51) are solved respectively. In line 26, tu1 is set to x(1) and
in line 27, tu2 is set to x(2). Up to this point, the first-order tangent derivatives
are evaluated. The right hand side of Equation (52) is computed in line 33. The
linear system in Equation (52) is solved in line 34 using the already decomposed
Jacobian matrix. Finally, t2s t1s u is set to x(1,2) in line 35.

Based on Fig.2 in [NLLT12], Fig. 3 in the following is the linearized DAG for
second-order adjoint mode of our simulation system.

z

z(2)

x0

x0(2)

λ = P (z)

λ
(2) =< ∂P

∂z
, z(2) >

x = S(x0,λ)

x(2) =< ∂S
∂λ

,λ(2) >

y = p(x)

y(2) =< ∂p

∂x
,x(2) >

z(1) =< λ(1),
∂P
∂z

>

z
(2)
(1) =< λ

(2)
(1),

∂P
∂z

> + < λ(1),
∂2P
∂z2

, z(2) >

λ(1) =< x(1),
∂S
∂λ

>

λ
(2)
(1) =< x

(2)
(1),

∂S
∂λ

> + < x(1),
∂2S
∂λ2 ,λ

(2) >

x(1) =< y(1),
∂p

∂x
>

x
(2)
(1) =< y

(2)
(1) ,

∂p

∂x
> + < y(1),

∂2p

∂x2 ,x
(2) >

y(1)

y
(2)
(1)

(a) (b)

Fig. 3. Mind the gap in the tape – Implementation of second-order adjoint symbolic NLS mode:
Solid lines represent the generation (in the forward section of the tangent and adjoint code shown
in (a)) and interpretation (in the reverse section of the first- and second-order adjoint code
shown in (b)) of the tape. Dotted lines denote gaps in the tape to be filled by a corresponding
user-defined adjoint function. In the given example, we have x0(2) = 0, therefore x0(2) is not
mentioned in the proceeding computations.

36

In the following implementations, the computation of both first- and second-
order adjoint mode of the nonlinear solver is shown. As mentioned in Section 5.2,
the first-order symbolic adjoint differentiation of a nonlinear system F (x(λ), λ) =
0 at the solution x = x∗ with respect to λ, i.e., computation of λ(1), yields:

λ(1)+ =< z,
∂F

∂λ
(x,λ) >, where

∂F

∂x
(x,λ)T · z = −x(1) . (53)

Differentiating the first-order adjoint mode of the nonlinear solver results the

second-order adjoint mode of it, i.e., computation of λ
(2)
(1), which yields

(

0n

λ
(2)
(1)

)

+ =< z,∇2F,

(
x(2)

λ
(2)

)

> + < z(2),∇F > , (54)

where,

∂F

∂x

T

· z(2) = − < z,∇2F,

(
x(2)

λ
(2)

)

> −x
(2)
(1) . (55)

A specialization of the generic primal solver S for dco’s scalar second-order
adjoint type {dco:: t2s a1s :: type} marks the gap in the tape, records data that
is required for filling the gap during interpretation, and runs the primal solver
passively (without taping); see Listing 1.2.

1 typedef dco : : t 2 s a1 s : : type : :VALUETYPE base type ;
2 typedef base type : :VALUETYPE base base type ;
3 typedef dco : : t 2 s a1 s : : e x t e rn a l f un c t i on da t a ex t data S ;
4 void t 2 s a1 s S (dco : : t 2 s a1 s : : e x t e rn a l f un c t i on da t a ∗ data) ;
5

6 int Symb S(int n , std : : vector<dco : : t 2 s a1 s : : type> &x , std : : vector<
dco : : t 2 s a1 s : : type> &lambda)

7 {
8 ex t data S ∗data= dco : : t 2 s a1 s : : g l oba l tape−>c r e a t e ex t f cn da t a

<ext data S >(t 2 s a1 s S) ;
9 std : : vector<base type> plambda (n) , px (n) ;

10 std : : vector<base base type> pplambda (n) , ppx (n) , b2 (n) ,
p r e s i dua l (n) , d x d l t g l (n) , t2lambda (n) ;

11 std : : vector<std : : vector< base base type> > J dr dx (n , vector<
base base type> (n)) ;

12 std : : vector<dco : : t 2 s a1 s : : type> r e s i d u a l (n) ;
13 data−>r e g i s t e r i n p u t (lambda , plambda) ;
14 dco : : t 2 s a1 s : : get (x , ppx) ;
15 dco : : t 2 s a1 s : : get (lambda , pplambda) ;
16 int i t s = S(n , ppx , pplambda) ;
17 dco : : t 2 s a1 s : : get (lambda , t2lambda , 0 , 2) ;
18 dco : : t 1 s : : s e t (plambda , pplambda) ;
19 for (int i =0; i<n ; i++)
20 x [i] = ppx [i] ;
21 F(n , x , lambda , r e s i d u a l) ;
22 dco : : t 2 s a1 s : : get (r e s i dua l , b2 , 0 , 2) ;
23 for (int i = 0 ; i < n ; i++) b2 [i] ∗= −1;
24 d r dx t g l (n , ppx , pplambda , p re s idua l , J dr dx) ;
25 int ∗∗P = LUDecomp(n , J dr dx) ;
26 FBsolve (n , P, J dr dx , b2 , d x d l t g l) ;
27 for (int i =0; i<n ; i++){
28 px [i] = ppx [i] ;

37

29 plambda [i] = pplambda [i] ; }
30 dco : : t 1 s : : s e t (px , dxd l tg l , 1) ;
31 dco : : t 1 s : : s e t (plambda , t2lambda , 1) ;
32 data−>wr i t e t o ch e ckpo in t (n) ;
33 data−>wr i t e t o ch e ckpo in t (plambda) ;
34 data−>wr i t e t o ch e ckpo in t (px) ;
35 data−>r e g i s t e r o u t p u t (px , x) ;
36 return i t s ;
37 }

Listing 1.2. External function for symbolic second-order adjoint mode of S

In Listing 1.2, data type base type is used for overloaded first-order solu-
tion and data type base base type is used for explicit second-order solution. The
passive evaluation of primal and tangent mode of the solver augmented with
recording of data required by t2 a1 S. There is a forward declaration of t2 a1 S
in line 4. In function Symb S, the first-order tangent mode of the primal nonlin-
ear solver (S) is computed (see Equation (51)). For this purpose, the evaluation
of the Jacobian matrix is required, which is done by algorithmic tangent mode
in line 24 and is decomposed in line 25. The evaluation of b1=< ∂F

∂λ
(x,λ),λ(1) >

is done in line 22. The linear system in Equation (51) is solved in line 26. In
lines 30 and 31, dxdl tgl is set to x(1) and t2lambda is set to λ

(1) respectively. At
the end, the required datas for backward interpretation are written to checkpoint.

The tape interpreter fills the gap between the tapes of P and p by calling

the function {t2s a1s S} which implements the λ(1) and λ
(2)
(1) symbolically, see

Listing 1.3. Refer to Fig. 3 for graphical illustration.

39 void t 2 s a1 s S (dco : : t 2 s a1 s : : e x t e rn a l f un c t i on da t a ∗ data)
40 {
41 int n ;
42 data−>r ead f rom checkpo in t (n) ;
43 std : : vector<double> lambda (n) , x (n) , a1 x (n) , min a1 x (n) ,

t2lambda (n) , z (n) , r (n) , d z d l (n) , t 2 a1 x (n) , dxdl (n , 0) ,
a 1 s l (n , 0) , a1s x (n , 0) , d x d l t g l (n) , rhs1 (n) , r e s1 (n) ,
d fd l mu l t d zd l (n , 0) ;

44 std : : vector<base type> xb(n) ;
45 std : : vector<dco : : t 2 s a1 s : : type> alambda (n) , alambda 1 (n) , ax (n) ,

ax 1 (n) , a r e s (n) , a r e s 1 (n) ;
46 int ∗∗P;
47 std : : vector<std : : vector<double> > J dr dx (n , vector<double>(n)) ;
48 data−>ge t ou tpu t ad j o i n t (xb) ;
49 dco : : t 1 s : : get (xb , a1 x) ;
50 dco : : t 1 s : : get (xb , t2 a1 x , 1) ;
51 std : : vector<base type> plambda (n) , px (n) , output (n) ;
52 data−>r ead f rom checkpo in t (plambda) ;
53 data−>r ead f rom checkpo in t (px) ;
54 dco : : t 1 s : : get (px , dxd l tg l , 1) ;
55 dco : : t 1 s : : get (plambda , t2lambda , 1) ;
56 dco : : t 1 s : : get (px , x) ;
57 dco : : t 1 s : : get (plambda , lambda) ;
58 dr dx ad j (n , x , lambda , r , J dr dx) ;
59 P = LUDecomp(n , J dr dx) ;
60 for (int i =0; i<n ; i++) min a1 x [i]=(−1)∗ a1 x [i] ;
61 FBsolveT (n , P, J dr dx , min a1 x , z) ;
62 dco : : t 2 s a1 s : : tape : : i t e r a t o r pos1 = dco : : t 2 s a1 s : : g l oba l tape−>

g e t p o s i t i o n () ;

38

63 for (int i =0; i<n ; i++) {
64 alambda [i] = lambda [i] ;
65 ax [i] = x [i] ; }
66 dco : : t 2 s a1 s : : s e t (alambda , t2lambda , 0 , 2) ;
67 dco : : t 2 s a1 s : : g l oba l tape−>r e g i s t e r v a r i a b l e (alambda) ;
68 dco : : t 2 s a1 s : : s e t (ax , dxd l tg l , 0 , 2) ;
69 dco : : t 2 s a1 s : : g l oba l tape−>r e g i s t e r v a r i a b l e (ax) ;
70 dco : : t 2 s a1 s : : tape : : i t e r a t o r pos2 = dco : : t 2 s a1 s : : g l oba l tape−>

g e t p o s i t i o n () ;
71 F(n , ax , alambda , are s) ;
72 dco : : t 2 s a1 s : : s e t (ares , z , −1) ;
73 dco : : t 2 s a1 s : : g l oba l tape−>i n t e r p r e t a d j o i n t t o (pos2) ;
74 dco : : t 2 s a1 s : : get (alambda , dxdl , −1) ;
75 dco : : t 1 s : : s e t (output , dxdl) ;
76 dco : : t 2 s a1 s : : get (alambda , a1 s l , −1, 2) ;
77 dco : : t 2 s a1 s : : get (ax , a1s x , −1, 2) ;
78 dco : : t 2 s a1 s : : g l oba l tape−>r e s e t t o (pos1) ;
79 for (int i =0; i<n ; i++)
80 rhs1 [i] = (−1) ∗(a1s x [i]+ t2 a1 x [i]) ;
81 FBsolveT (n , P, J dr dx , rhs1 , dz d l) ;
82 for (int i =0; i<n ; i++) {
83 alambda 1 [i] = lambda [i] ;
84 ax 1 [i] = x [i] ; }
85 dco : : t 2 s a1 s : : g l oba l tape−>r e g i s t e r v a r i a b l e (alambda 1) ;
86 dco : : t 2 s a1 s : : tape : : i t e r a t o r pos3 = dco : : t 2 s a1 s : : g l oba l tape−>

g e t p o s i t i o n () ;
87 F(n , ax 1 , alambda 1 , a r e s 1) ;
88 dco : : t 2 s a1 s : : s e t (a r e s 1 , dz d l , −1) ;
89 dco : : t 2 s a1 s : : g l oba l tape−>i n t e r p r e t a d j o i n t t o (pos3) ;
90 dco : : t 2 s a1 s : : get (alambda 1 , d fd l mu l t dzd l , −1) ;
91 dco : : t 2 s a1 s : : g l oba l tape−>r e s e t t o (pos1) ;
92 for (int i =0; i<n ; i++) {
93 r e s1 [i] = a1 s l [i] + d fd l mu l t d zd l [i] ;
94 dco : : t 1 s : : s e t (output [i] , r e s1 [i] , 1) ;
95 data−>i n c r emen t i npu t ad j o i n t (output [i]) ;
96 }
97 }

Listing 1.3. Adjoint function t2s a1s S

In Listing 1.3, the datas that were written to checkpoint will be read. In line
48 the adjoint of the output, i.e. x(1), is evaluated and it is set to a1 x in the

next line. In line 50, x
(2)
(1) is set to t2 a1 x. The evaluations of the x(1) and λ

(1)

that were done in Listing 1.2 in lines 30 and 31 will be read here in lines 54
and 55 respectively. The Jacobian matrix is computed with algorithmic adjoint
mode in line 58 and is decomposed in the next line. In line 61 the linear system
in Equation (53) is solved for computing z with transposed Jacobian matrix. In
line 74, the first-order symbolic adjoint dxdl=λ(1) in Equation (53) is evaluated.
The right hand side of Equation (55) is computed in line 80 and the linear system
for z(2) with transposed Jacobian is solved in the next line. The right hand side
of Equation (54) is computed in line 93. The variable output was set in line 75

to λ(1), therefore, in line 94 output(1) = λ
(2)
(1) =res1. At the end, the output is

incremented in line 95.

The benefit of this approach is two-fold. First, taping of the nonlinear solver
is avoided yielding a substantial reduction in memory requirement of the over-

39

loading based adjoint. Second, the actual adjoint mappings can be implemented
in t2s a1s S more efficiently than by interpretation of a corresponding tape. As
a general approach the external function feature can/should be applied when-
ever a similar reduction in memory requirement / computational cost can be
expected. Users of dco/c++ are encouraged to extend the run time library with
user-defined intrinsics for (domain-specific) numerical kernels such as, for exam-
ple, turbulence models in computational fluid dynamics or pay off functions in
mathematical finance.

The external function interface of dco/c++ facilitates a hybrid overloading /
source transformation approach to AD. Currently, none of the available source
transformation tools covers the entire latest C++ or Fortran standards. More-
over, these tools can be expected to struggle keeping up with the evolution of the
programming languages for the foreseeable future. Mature source transformation
AD tools such as Tapenade [HP13] can handle (considerable subsets of) C and/or
Fortran 95. They can (and should) be applied to suitable selected parts of the
given C++XX or Fortran 20XX code. Integration into an enclosing overloading
AD solution via the external function interface is typically rather straight for-
ward. The hybrid approach to AD promises further improvements in terms of
robustness and computational efficiency.

7 Case Studies

In this section we consider a case study for one dimensional and another case
study for two dimensional nonlinear system. We optimize the case studies using
a second-order derivative-based method, in which the derivatives are computed
with both symbolic and algorithmic tangent and adjoint modes. Furthermore,
the run-time overhead as well as the memory requirement of various methods of
evaluating second-order directional derivatives are compared.

7.1 One Dimensional Eliptic PDE

As a case study we solve the one dimensional nonlinear differential equation

∇2(z · u∗) + u∗ · ∇(z · u∗) = 0 on Ω = (0, 1)

u∗ = 10 and z = 1 for x = 0

u∗ = 20 and z = 1 for x = 1

with parameters z(x). For given measurements um(x) we state the following
parameter fitting problem for z

z∗ = argmin
z∈IR

J(z)

with
J(z) = ‖u(x, z) − um(x)‖22 . (59)

The measurements um(x) are generated by a given set of parameters (the “real”
parameter distribution z∗(x))4. With an equidistant central finite difference dis-
cretization we get for a given u (discretized and, hence, vector-valued variables

4 Here we do not have the real datas, so we apply a small perturbation to our results and
suppose that these are the real ones.

40

are written as bold letters) the residual function

[r]i =
1

h2
· ([z]i−1[u]i−1 − 2[z]i[u]i + [z]i+1[u]i+1)

+[u]i ·
1

2h
· ([z]i+1[u]i+1 − [z]i−1[u]i−1)

with h = 1/n and n the number of discretization points yielding a system of n
nonlinear equations

r(u, z) = 0 , u ∈ IRn, z ∈ IRn , (62)

which is solved by Newton’s method yielding in the i-th Newton iteration the
linear system

∇r|u=ui
·∆u = −r|u=ui .

The vector ui is updated with the Newton step

ui+1 = ui +∆u .

In order to solve the parameter fitting problem, we apply a Newton’s method in
optimization algorithm which includes a small step size α > 0 to the algorithmic
objective J(z)

zk+1 = zk − α · ∇2J(zk)
−1

· ∇J(zk) ,

where the computation of the Jacobian and Hessian of J at the current iterate
zk includes the differentiation of the nonlinear solver for u∗, i.e., differentiation
of the solver for Equation (62).

According to the Equations (3)–(5), the preprocessor λ = P (z) is the identity,
while the nonlinear problem is the one dimensional nonlinear function (Equation
(60)–(61)) which is solved by a nonlinear solver (e.g. Newton’s algorithm) and
the postprocessor p(u) computes the cost functional J(z) (Equation (59)).

The goal is to apply Newton’s method in optimization algorithm (Equation
(63)) in order to minimize the postprocessor J and optimize the initial values
zi (the inputs) in the preprocessor. For this purpose the computation of the Ja-
cobian and Hessian of J at the current iterate zk is required, this includes the
evaluation of the Jacobian and Hessian of the postprocessor, nonlinear solver and
preprocessor.

In the following the algorithmic FoF (forward over forward) is the evalu-
ation of the first- and second-order directional derivatives with the first- and
second-order tangent mode of AD (Section 3.1 and Section 3.3) respectively. The
algorithmic FoR (forward over reverse) is the evaluation of the first- and second-
order directional derivatives with the first- and second-order adjoint mode of
AD (Section 3.2 and Section 3.4) respectively. The symbolic FoF is the evalu-
ation of first- and second-order directional derivatives with symbolic first- and
second-order tangent mode as Equation (20) and Equation (19) respectively. The
symbolic FoR is the evaluation of first- and second-order directional derivatives

41

with symbolic first- and second-order adjoint mode as Equation (39) and Equa-
tion (37) respectively.

A straightforward approach for approximating derivatives involves the use
of finite differences. Finite difference approximation (FD) for the derivatives are
derived by truncating the Taylor series expansion of the function g = f(x) about
a point x. The accuracy of the approximations critically depends on the step size
h. More specifically, finite difference approximations for the derivatives can be
inaccurate because of truncation or condition errors.

The evaluation of the second-order directional derivatives with finite differ-
ence in several variables yields

∂2f
∂x∂y

≈ f(x+h1,y+h2)−f(x+h1,y−h2)−f(x−h1,y+h2)+f(x−h1,y−h2)
4h1h2

.

The discrepancy of evaluating the second-order directional derivatives of the
postprocessor J with respect to the initial values in preprocessor zi with finite
difference (Equation 7.1) and algorithmic FoF in the first iteration of the opti-
mization yields

Discrepancy = ‖
∂2J

∂z2 FD
−

∂2J

∂z2 Algorithmic
‖ .

Setting n = 10 and the accuracy of the nonlinear solver δ = 10−6, the dis-
crepancy for different step sizes of finite difference h = h1 = h2 is shown in Table
2.

h Discrepancy

10−1 16.67
10−2 0.15
10−3 0.001
10−4 0.0001
10−5 0.019
10−6 1.92

Table 2. Discrepancy of the evaluation of second-order directional derivatives with finite dif-
ference and algorithmic for different step sizes of finite difference.

The discrepancy of the results will be very small by setting h = h1 = h2 =
10−4, however this step size is not the smallest one. Therefore finding a suitable
step size in finite difference approximation is very crucial.

One should also notice that for the same conditions, i.e., n = 10 and δ = 10−6,
the discrepancy of the second-order directional derivatives computed by algorith-
mic and symbolic is proportional to zero (see Figure 6).

The fully algorithmic part of the derivative computation is done by the soft-
ware tool dco/c++ [LLN11], implementing AD by overloading in C++. The im-
plementation of symbolic tangent over tangent and tangent over adjoint methods

42

is supported by a custom user interface (see Section 6). For the symbolic part of
the derivative computation, the evaluation of the directional derivatives of the
preprocessor and the postprocessor will be done by algorithmic mode and only
the first- and second-order directional derivatives of the nonlinear solver will be
evaluated symbolically.

In the following we compare run time of the optimization of postprocessor
(J) with respect to the preprocessor (initial values zi) by Equation (63) for var-
ious differentiated versions of the nonlinear solver. In this paper we set ǫ as
the accuracy of the postprocessor (J(z) < ǫ), which computes the costfunctional
(Equation (59)) and δ would be the accuracy of our nonlinear solver (r(u, z) < δ).

Symbolic Algorithmic Finite

n FoF FoR FoF FoR Diff.

10 0.1 0.05 0.47 0.09 0.3
20 0.99 0.1 4.25 0.35 2.54
30 4.59 0.28 21.92 1.27 16.18
40 14.58 0.6 73.23 3.4 41.17
50 36.99 1.16 186.87 7.4 -
80 277.55 4.84 1475.36 41.26 -
100 813.47 10.88 - 106.39 -
150 - 44.0 - 560.11 -
200 - 127.69 - 1726.65 -
250 - 307.53 - - -

101 101.2 101.4 101.6 101.8 102 102.2
10−3

10−2

10−1

100

101

102

problem dimension n

ru
n
ti
m
e
in

se
co
n
d
s

Symbolic FoF

Symbolic FoR

Algorithmic FoF

Algorithmic FoR

Finite Difference

Fig. 4. Run time (in seconds) overhead comparison of optimizing our 1D sample problem with
different differentiation methods. The (-) sign implies no convergence after 2000 seconds.

In Fig. 4 we observe the expected behaviour for the computational overhead
induced by the various differentiation methods for optimizing the postprocessor
J with respect to the initial values in preprocessor z. In this example the accu-
racy of the nonlinear solver (Newton) for solving the nonlinear system (Equation
(62)) is set to δ = 1e−6 and the accuracy of the optimization in postprocessor is
set to ǫ = 1e− 6. We observe that in both cases of symbolic and algorithmic, the
complexity is less if the derivatives be calculated by the adjoint mode. Optimiza-
tion using symbolic first- and second-order adjoint mode for calculation of the
directional derivatives requires less duration, however, the optimization spends
the most time by applying algorithmic first- and second-order tangent for eval-
uating the derivatives. Optimization using finite difference with h1 = h2 = 10−5

spends less time than algorithmic second-order tangent, but for (n >= 50) it
does not converge and it is not as accurate as other differentiation methods in-
troduced in this paper.

In our test case, for second-order algorithmic adjoint, the first- and second-
order directional derivatives of preprocessing, nonlinear solver and postprocessing
are calculated with adjoint AD, this means the storage of some variables in tape
and then use the stored variables in tape for backward propagation of derivative
values. In this case the checkpoints are not needed. However, for second-order
symbolic adjoint, the directional derivatives of preprocessing and postprocessing

43

are calculated by algorithmic adjoint, in which some variables are also stored
in tape in order to be used for backward propagation of derivative values. But
the directional derivatives of nonlinear solver are computed with symbolic first-
and second-order adjoint, in which the required variables for computing the di-
rectional derivatives will not be stored in tape, but in checkpoints. The memory
requirement of second-order algorithmic adjoint contains the memory occupied
by tape, however for symbolic version the memory requirement is the memory
occupied by tape and checkpoint.

Memory Requirement (ν = 5)

n
Symbolic Algorithmic

FoR FoR

10 0.006 0.92
20 0.01 4.38
30 0.02 11.46
40 0.02 23.21
50 0.03 40.71
60 0.03 65.02
80 0.04 138.37
100 0.05 251.8
150 0.08 766.79
200 0.11 1719.2
300 0.16 5470.3
500 0.27 24096.1

Table 3. Memory Requirement for evaluating the second-order adjoint mode of the nonlinear
solver (Newton) for our 1D sample problem in MB for different Problem-Dimensions.

Table 3 illustrates the memory requirement for evaluating the second-order
symbolic and algorithmic adjoint mode of the nonlinear solver (Newton) for our
1D sample problem with constant number of nonlinear solver’s (Newton) itera-
tions (ν = 5) and different problem sizes (n). It shows that, the memory require-
ment in second-order algorithmic adjoint mode is considerably higher than in the
symbolic one, but for both cases it is proportional to the size of the problem.

Table 4 illustrates the memory requirement for evaluating the second-order
symbolic and algorithmic adjoint mode of the nonlinear solver (Newton) for our
1D sample problem with constant problem dimension n = 40 and different non-
linear solver’s (Newton) iterations (ν). In the symbolic mode the differentiation
is done symbolically after the computation of the exact solution of the nonlinear
system. It means that the memory is just needed to register the solutions of
the nonlinear solver (here x̃) and not the intermediate values of the nonlinear
solver’s algorithm. Therefore by setting the problem size (n) constant, it remains
unchanged by varying the number of nonlinear solver’s iterations (ν). However,
in the algorithmic mode for calculation of the derivatives we should go through
the algorithm (line-by-line differentiation) ν times, so the memory requirement
is proportional to the number of iterations.

44

Memory Requirement (n = 40)

ν
Symbolic Algorithmic

FoR FoR

1 0.02 4.49
2 0.02 9.02
3 0.02 13.75
4 0.02 18.48
5 0.02 23.21
6 0.02 27.94
10 0.02 46.85
15 0.02 70.49
20 0.02 94.14
30 0.02 141.42
50 0.02 236.0
100 0.02 472.43
300 0.02 1418.16
500 0.02 2363.88
1000 0.02 4728.2
2000 0.02 9456.84

Table 4. Memory Requirement for evaluating the second-order adjoint mode of the nonlinear
solver (Newton) for our 1D sample problem in MB for different number of Newton’s iterations.

7.2 Two Dimensional Eliptic PDE

As a two dimensional case study, we consider the two-dimensional Solid Fuel
Ignition problem (also known as the Bratu problem) from the MINPACK-2 test
problem collection [ACM91] which is given by the elliptic partial differential
equation

∆x− z · ex = 0 , (64)

where x = x(q0, q1) is computed over some bounded domain Ω (IR2 with
boundary Γ (IR2 and Dirichlet boundary conditions x(q0, q1) = g(q0, q1) for
(q0, q1) ∈ Γ. For simplicity, we focus on the unit square Ω = [0, 1]2 and we set

g(q0, q1) =

{

1 if q0 = 1

0 otherwise
.

We use finite differences as a basic discretization method. Its aim is to replace
the differential

∆x ≡
∂2

∂q20
+

∂2

∂q21

with a set of algebraic equations, thus transforming Equation (64) into a system
of nonlinear equations that can be solved by nonlinear solvers.

According to [Nau12] the system of nonlinear equations to be solved is

−4 · xi,j + xi+1,j + xi−1,j + xi,j+1 + xi,j−1 = h2 · zi,j · e
xi,j , (65)

for i, j = 1, . . . , n − 1. Discretization of the boundary conditions yields xn,j = 1
and xi,0 = x0,j = xi,n = 0 for i, j = 1, . . . , n− 1.

45

According to the Equations (3)–(5), the preprocessor is the identity λi,j =
zi,j , the solution process is the two dimensional nonlinear function (Equation
(65)) which is solved by a nonlinear solvers (e.g. Newton’s algorithm). Consid-
ering xm

i,j as real datas5 the postprocessor computes the cost functional which
is

J(z) = ‖x∗(z)− xm‖22 . (66)

The goal is to apply Newton’s method in optimization algorithm (Equation
(63)) in order to minimize the postprocessor J and optimize the initial values
(the inputs) zi,j in the preprocessor. For this purpose the computation of the
Jacobian and Hessian of J at the current iterate zk is required, this includes the
evaluation of the Jacobian and Hessian of the postprocessor, nonlinear solver and
preprocessor.

The fully algorithmic part of the derivative computation is done by the soft-
ware tool dco/c++ [LLN11], implementing AD by overloading in C++. The im-
plementation of symbolic tangent over tangent and tangent over adjoint methods
is supported by a custom user interface. For the symbolic part of the derivative
computation, the evaluation of the directional derivatives of the preprocessor
and the postprocessor will be done by algorithmic mode and only the first- and
second-order directional derivatives of the nonlinear solver will be evaluated sym-
bolically.

In the following, we set ǫ as the accuracy of the postprocessor (J(z) < ǫ),
which computes the costfunctional (see Equation (66)) and δ would be the ac-
curacy of our nonlinear solver (Newton) to solve the nonlinear system Equation
(65).

In this section we compare run time of the optimization of postprocessor (J)
with respect to the preprocessor (initial values zi,j) by Equation (63) for various
differentiated versions of the nonlinear solver.

In Fig. 5 we observe the expected behaviour for the computational overhead
induced by the various differentiation methods for optimizing the postprocessor
J with respect to the initial values in preprocessor z. In this example the accu-
racy of the nonlinear solver for solving the nonlinear problem (e.g. with Newton)
is set to δ = 1e − 12 and the accuracy of the optimization is set to ǫ = 1e − 2.
It shows that in both cases of symbolic and algorithmic, the complexity is less if
the derivatives be calculated by the adjoint mode. Optimization using symbolic
first- and second-order adjoint mode for calculation of directional derivatives re-
quires less duration, however, the optimization spends the most time by applying
algorithmic first- and second-order tangent for evaluating the derivatives.

5 Here again we do not have the real datas, so we apply a small perturbation to our results
and suppose that these are the real ones.

46

Symbolic Algorithmic

n FoF FoR FoF FoR

4 × 4 0.05 0.01 0.17 0.03
6 × 6 0.84 0.05 3.92 0.29
8 × 8 11.32 0.35 64.67 2.54
10 × 10 89.59 1.39 573.51 14.67
11 × 11 218.59 2.62 1454.23 31.95
12 × 12 495.53 4.83 - 74.17
15 × 15 - 25.46 - 485.43
20 × 20 - 277.36 - -

101.4 101.6 101.8 102 102.2 102.4 102.6
10−2

10−1

100

101

102

103

problem dimension n

ru
n
ti
m
e
in

s

Symbolic FoF

Symbolic FoR

Algorithmic FoF

Algorithmic FoR

Fig. 5. Run time (in seconds) overhead comparison of optimizing our 2D sample problem with
different differentiation methods. The (-) sign implies no convergence after 2000 seconds.

One should also consider that, as mentioned before, the memory requirement
of second-order algorithmic contains the memory occupied by tape, however for
symbolic version the memory requirement is the memory occupied by tape and
checkpoint.

Memory Requirement (ν = 8)

n
Symbolic Algorithmic

FoR FoR

3 × 3 0.003 0.15
4× 4 0.005 0.83
5× 5 0.007 3.1
6× 6 0.01 9.16

10× 10 0.03 201.21
15× 15 0.06 2438.57
20 × 20 0.11 14401.5
25 × 25 0.17 56988.3
30 × 30 0.24 -

Table 5. Memory Requirement for evaluating the second-order adjoint mode of the nonlinear
solver (Newton) for our 2D sample problem in MB for different Problem-Dimensions. The (-)
sign implies that the memory is full on a machine with 128 GB RAM.

Table 5 illustrates the memory requirement for evaluating the second-order
symbolic and algorithmic adjoint mode of the nonlinear solver (Newton) for our
2D sample problem with constant number of nonlinear solver’s (Newton) iter-
ations (ν = 8) and different problem sizes (n) of nonlinear system for adjoint
second-order algorithmic and symbolic. It shows that the memory requirement
of algorithmic adjoint mode is considerably higher than the symbolic one, but
the memory requirement is proportional to the size of the problem for both cases.
In the algorithmic mode, the memory was full for n >= (30 × 30) on a machine
(Heisenberg) with 128 GB RAM.

Table 6 illustrates the memory requirement for evaluating the second-order
symbolic and algorithmic adjoint mode of the nonlinear solver (Newton) for our

47

Memory Requirement (n = 10× 10)

ν
Symbolic Algorithmic

FoR FoR

1 0.03 22.94
2 0.03 48.41
3 0.03 73.88
4 0.03 99.34
5 0.03 124.81
6 0.03 150.28
8 0.03 201.21
10 0.03 252.14
15 0.03 379.47
20 0.03 506.8
30 0.03 761.47
50 0.03 1270.79
100 0.03 2544.1
200 0.03 5090.73
500 0.03 12730.6
1000 0.03 25463.8

Table 6. Memory Requirement for evaluating the second-order adjoint mode of the nonlinear
solver (Newton) for our 2D sample problem in MB for different number of Newton’s iterations.

1D sample problem with constant problem dimension n = 10× 10 and different
number of nonlinear solver’s (Newton) iterations (ν). In the symbolic mode the
differentiation is done symbolically after the computation of the exact solution
of the nonlinear system. It means that the memory is just needed to register the
solutions of the nonlinear solver (here x̃) and not the intermediate values of the
nonlinear solver’s algorithm. Therefore by setting the problem size (n) constant,
it remains unchanged by varying the number of nonlinear solver’s iterations (ν).
However, in the algorithmic mode for calculation of the derivatives we should
go through the algorithm (line-by-line differentiation) ν times, so the memory
requirement is proportional to the number of iterations.

In the solution process the directional derivatives of the solution are com-
puted by a symbolic version of the solver under the assumption that the exact
solution x∗ has been reached. F (x, z) = 0 can be differentiated symbolically in
this case. However, for computing the derivatives with algorithmic modes of AD,
the whole algorithm would be differentiated. For example, suppose F (x, z) < δ.
The discrepancies in the results computed by second-order algorithmic and sym-
bolic nonlinear solvers depend on the accuracy (δ) of the approximation of the
primal solution process. In the following we compare the directional derivatives of
the postprocessor J (Equation 66) with respect to the initial values in preproces-
sor zi,j computed with symbolic FoF and algorithmic FoF for different nonlinear
solver accuracies (δ) in the first iteration of the optimization’s algorithm

Q = ‖
∂2J

∂z2 Symbolic
−

∂2J

∂z2 Algorithmic
‖.

As it is shown in the Fig. 6, for n = (6× 6) in our 2D test case, by increasing
the δ in Newton algorithm (our nonlinear solver) the discrepancies in the results

48

10−4 10−3 10−2 10−1

10−5

10−4

10−3

10−2

10−1

100

δ

Q

Fig. 6. The Discrepancies in the Derivatives Computed by Second-Order Algorithmic and Sym-
bolic for different Nonlinear Solver Accuracies (δ).

computed by second-order algorithmic and symbolic will be larger. Therefore, in
order to have a more exact derivative evaluation in symbolic computation of the
derivatives of nonlinear systems, the accuracy of the nonlinear solver (δ) should
tend to zero.

8 Conclusion

In this paper we discussed second-order algorithmic and symbolic direct solvers
for systems of nonlinear equations. Mathematical insight yields a reduction of
the computational overhead for evaluating second-order directional derivatives.
Computing derivatives by a fully algorithmic method corresponding to a straight
application of AD without taking into account any mathematical or structural
properties of the numerical method turns out to be the worst approach in terms
of computational efficiency. The performance of the different approaches depends
on the number of (Newton) iterations ν and on the problem size n. As an al-
ternative we considered the symbolic second-order differentiation of numerical
simulation programs which contain calls to solvers for parameterized systems of
n nonlinear equations and compared them with the algorithmic version (AD)
of computing second derivatives. In Fig. 4 for 1D- and in Fig. 5 for 2D-eliptic
partial differential equation (PDE) we observe that in both cases of second-order
symbolic and algorithmic, the complexity of the optimization is less if the deriva-
tives be calculated by the adjoint mode. Optimization using symbolic first- and
second-order adjoint mode for evaluation of the directional derivatives requires
less time, however, applying algorithmic first- and second-order tangent for the
evaluation of the directional derivatives spends the most time.

Directional derivatives of the solution are computed by a symbolic tangent
and adjoint version of the solver under the assumption that the exact solution
x∗ has been reached. F (x,λ) = 0 can be differentiated symbolically in this
case, however algorithmic tangent and adjoint versions of the solver compute
directional derivatives of the approximation of the solution which are actually
computed by the algorithm. This yields the discrepancies in the results computed

49

by algorithmic and symbolic tangent and adjoint. In Fig. 6 it is shown that by
increasing the accuracy of the nonlinear solver (δ) the discrepancies in the results
computed by second-order algorithmic and symbolic will be larger.

Furthermore, the memory requirement of adjoint second-order symbolic is the
memory which is used by tape and checkpoint and it depends on the size of the
problem (refer to Table 3 and Table 5 for 1D- and 2D-eliptic PDE respectively),
whereas in algorithmic version it is the memory which is used by tape and it
depends on the size of the problem and on the number of iterations performed
by the nonlinear solver’s algorithm (refer to Table 4 and Table 6 for 1D- and
2D-eliptic PDE respectively).

50

1D Case Study

In the following, the implementation of our 1-dim nonlinear problem, i.e. 1-dim
case study in Section 7.1, as well as the nonlinear solver (here, Newton’s al-
gorithm) are presented. The complete codes of the second-order symbolic and
algorithmic tangent and adjoint modes of the nonlinear solver are illustrated in
Section 6. At the end, the implementation of the main functions for second-order
tangent, adjoint and finite difference of the nonlinear solver are exposed.

Nonlinear Problem

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Function . hpp ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
2 template <typename TYPE>
3 inl ine void p r ep r o c e s s o r (int n , std : : vector<TYPE> &z , std : : vector<

TYPE> &lambda)
4 {
5 for (int i =0; i<n ; i++)
6 lambda [i] = z [i] ;
7 }
8

9 template <typename TYPE2>
10 inl ine TYPE2 F(int n , std : : vector<TYPE2> &x , std : : vector<TYPE2> &

lambda , std : : vector<TYPE2> &r e s i d u a l) {
11 TYPE2 de l t a = (TYPE2) (1 . 0 / n) ;
12 TYPE2 norm res = (TYPE2) (0) ;
13 TYPE2 l e f t , r i gh t ;
14

15 for (int i = 0 ; i < n ; i++) {
16 i f (i == 0)
17 l e f t = 10 ;
18 else

19 l e f t = (TYPE2) lambda [i −1]∗x [i −1] ;
20 i f (i == n−1)
21 r i gh t = 20 ;
22 else

23 r i gh t = (TYPE2) lambda [i +1]∗x [i +1] ;
24 r e s i d u a l [i] = (r i gh t + l e f t − 2∗(TYPE2) lambda [i]∗ x [i]) /
25 (d e l t a ∗ de l t a) + x [i] ∗ (r i gh t− l e f t) /(2∗ de l t a) ;
26 norm res += pow(r e s i d u a l [i] , 2) ;
27 }
28 norm res = sq r t (norm res) ;
29 return norm res ;
30 }
31

32 template <typename TYPE>
33 inl ine TYPE pos tp r o c e s s o r (int n , std : : vector<TYPE> &x , std : : vector<

double> &x a) {
34

35 TYPE J = (TYPE) 0 . ;
36 for (int i =0; i<n ; i++)
37 J += pow(x a [i] − x [i] , 2) ; // x a are r e a l measurements .
38 J /= (TYPE) (n) ;
39 return J ;
40 }

Newton’s Solver for Nonlinear Equations

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Newton . hpp ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

51

2 template <class T>
3 int S(int n , std : : vector<T> &x , std : : vector<T> &lambda)
4 {
5 std : : vector<T> dx (n) , r (n) , x o r i g (n) ;
6 std : : vector<T> r e s i d u a l (n) , rph (n) , rmh(n) , xph(n) , xmh(n) ;
7

8 // compute Jacobian o f F wi th r e sp e c t to x
9 vector<vector<T> > Jacobian (n , vector<T>(n)) ;

10 T norm res idua l ;
11 int n r i t e r a t i o n s ;
12 int i t e r =0;
13

14 for (n r i t e r a t i o n s =0; ; n r i t e r a t i o n s++) {
15 // compute Jacobian and r e s i d u a l us ing f i n i t e d i f f e r e n c e
16 for (int i =0; i<n ; i++)
17 x o r i g [i]=x [i] ;
18 double hh=1e−8;
19 for (int i =0; i<n ; i++) {
20 for (int j =0; j<n ; j++) {
21 x [j] = (T) x o r i g [j] ;
22 xph [j] = (T) x o r i g [j] ;
23 xmh[j] = (T) x o r i g [j] ; }
24 F(n , x , lambda , r) ;
25 xph [i] = xph [i] + hh ;
26 F(n , xph , lambda , rph) ;
27 xmh[i] = xmh[i] − hh ;
28 F(n ,xmh, lambda , rmh) ;
29 for (int j =0; j<n ; j++) {
30 T der iv = (rph [j]−rmh [j]) /(2∗hh) ;
31 T de r i v a t i v e = (T) 0 . ;
32 d e r i v a t i v e = der iv ;
33 r e s i d u a l [j]= r [j] ;
34 Jacobian [j] [i] = d e r i v a t i v e ;
35 } // j
36 } // i
37 // s o l v e Newton system by LU−decomposi t ion o f Jacobian
38 // negate r e s i d u a l
39 for (int i =0; i<n ; i++)
40 r e s i d u a l [i] = −r e s i d u a l [i] ;
41 int ∗∗P = LUDecomp(n , Jacobian) ;
42 FBsolve (n , P, Jacobian , r e s i dua l , dx) ;
43 // update x and eva l ua t e new r e s i d u a l
44 for (int i =0; i<n ; i++) x [i]+=dx [i] ;
45 norm res idua l=F(n , x , lambda , r) ;
46 for (int j =0; j<n ; j++) r e s i d u a l [j] = r [j] ;
47 i t e r++;
48 i f (norm res idual<=newton eps) break ;
49 }
50 return i t e r ;
51 }

main Functions:
Second-Order Tangent Mode

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ main t2s t1s . cpp ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
2 #include <iostream>

3 #include <s t d l i b . h>
4 #include <fenv . h>
5 #include <vector>
6

52

7 bool Disc ;
8 bool Cont ;
9 const double newton eps = 1e−6;

10 const double eps = 1e−6;
11

12 #include ”dco . hpp”
13 DCO DEFINE GLOBAL TAPE POINTER
14

15 #include ”Function . hpp”
16 #include ”Newton . hpp”
17

18 using namespace std ;
19

20 int main (int argc , char ∗argv []) {
21 Disc = fa l se ;
22 Cont = true ;
23 int n=10;
24 i f (argc >= 2)
25 n = ato i (argv [1]) ;
26 i f (argc >= 3)
27 Disc = true ;
28 std : : vector<double> xv(n) , z (n , 1 . 1) , dJ dz (n , 0) ;
29 std : : vector<std : : vector<double> > H dJ dz (n , std : : vector<double

>(n)) ;
30 std : : vector<dco : : t 2 s t 1 s : : type> az (n) ;
31 for (int i =0; i<n ; i++)
32 for (int j =0; j<n ; j++)
33 H dJ dz [i] [j] = 0 . ;
34 // Newton Optimizat ion
35 int i t e r = 0 ;
36 double norm dJ = 10 ;
37 double J ;
38 double sum = 0 ;
39 while (norm dJ > eps) {
40 ++i t e r ;
41 for (int i i =0; i i <n ; i i ++) {
42 for (int j j =0; j j<n ; j j++) {
43 for (int i = 0 ; i < n ; i++) az [i] = z [i] ;
44 dco : : t 2 s t 1 s : : s e t (az [i i] , 1 . 0 , 0 , 2) ;
45 dco : : t 2 s t 1 s : : s e t (az [j j] , 1 . 0 , 1) ;
46 dco : : t 2 s t 1 s : : type aJ = co s t fun c t i on (n , az) ;
47 dco : : t 2 s t 1 s : : get (aJ , J) ;
48 dco : : t 2 s t 1 s : : get (aJ , dJ dz [j j] , 1) ;
49 dco : : t 2 s t 1 s : : get (aJ , H dJ dz [i i] [j j] , 1 , 2) ;
50 sum += H dJ dz [i i] [j j]∗H dJ dz [i i] [j j] ;
51 } // j j
52

53 } // i i
54

55 Gauss (n , H dJ dz , dJ dz , xv) ;
56 double alpha = 1 . ;
57 double tJ = J+1;
58 while (tJ > J) {
59 for (int i =0; i<n ; i++) {
60 double val ;
61 dco : : t 2 s t 1 s : : get (az [i] , va l) ;
62 z [i] = val − alpha∗xv [i] ;
63 }
64 tJ = co s t fun c t i on (n , z) ;

53

65 alpha /= 2 . 0 ;
66 } // wh i l e (tJ > J)
67 J = tJ ;
68 norm dJ = 0 ;
69 for (int i =0; i<n ; i++) {
70 norm dJ += dJ dz [i]∗ dJ dz [i] ;
71 }
72 norm dJ = sq r t (norm dJ) ;
73 } // wh i l e (norm J > eps)
74

75 cout << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” << end l ;
76 cout << ”J= ” << J << end l ;
77 cout << ”Norm of second d e r i v a t i v e i s : ” << s q r t (sum) << end l ;
78 return 0 ;
79 }

Second-Order Adjoint Mode

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ main t2s a1s . cpp ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
2 #include <iostream>

3 #include <s t d l i b . h>
4 #include <fenv . h>
5 #include <vector>
6

7 bool Disc ;
8 bool Cont ;
9 const double newton eps = 1e−6;

10 const double eps = 1e−6;
11

12 #include ”dco . hpp”
13 DCO DEFINE GLOBAL TAPE POINTER
14

15 #include ”Function . hpp”
16 #include ”Newton . hpp”
17

18 using namespace std ;
19

20 int main (int argc , char ∗argv []) {
21 Disc = fa l se ;
22 Cont = true ;
23 int n=10;
24 i f (argc >= 2)
25 n = ato i (argv [1]) ;
26 i f (argc >= 3)
27 Disc = true ;
28 std : : vector<double> xv (n) , z (n , 1 . 1) , dJ dz (n , 0) ;
29 std : : vector<std : : vector<double> > H dJ dz (n , std : : vector<double>

(n)) ;
30 std : : vector<dco : : t 2 s a1 s : : type> az (n) ;
31 for (int i =0; i<n ; i++)
32 for (int j =0; j<n ; j++)
33 H dJ dz [i] [j] = 0 . ;
34 // take chunk tape
35 dco : : t 2 s a1 s : : g l ob a l t ap e = dco : : t 2 s a1 s : : tape : : c r e a t e () ;
36

37 // Newton Optimizat ion
38 int i t e r = 0 ;
39 double norm dJ = 10 ;
40 double J ;
41 double sum = 0 ;

54

42 while (norm dJ > eps) {
43 ++i t e r ;
44 for (int i i =0; i i <n ; i i ++) {
45 for (int i =0; i<n ; i++) az [i] = z [i] ;
46 dco : : t 2 s a1 s : : s e t (az [i i] , 1 . 0 , 0 , 2) ;
47 for (int i =0; i<n ; i++)
48 dco : : t 2 s a1 s : : g l oba l tape−>r e g i s t e r v a r i a b l e (az [i]) ;
49 dco : : t 2 s a1 s : : tape : : i t e r a t o r p o s i t i o n = dco : : t 2 s a1 s : :

g l oba l tape−>g e t p o s i t i o n () ;
50 dco : : t 2 s a1 s : : g l oba l tape−>z e r o ad j o i n t s () ;
51 for (int i =0; i<n ; i++) dco : : t 2 s a1 s : : s e t (az [i] , z [i]) ;
52 dco : : t 2 s a1 s : : type aJ = co s t fun c t i on (n , az) ;
53 double mem tape = dco : : t 2 s a1 s : : g l oba l tape−>

get tape memory s i z e () ;
54 double mem checkpoint = dco : : t 2 s a1 s : : g l oba l tape−>

get checkpo in t memory s i z e () ;
55 cout << ”mem tape : ” << mem tape << end l ;
56 cout << ”mem checkpoint : ” << mem checkpoint << end l ;
57 dco : : t 2 s a1 s : : s e t (aJ , 1 . , −1) ;
58 dco : : t 2 s a1 s : : get (aJ , J) ;
59 dco : : t 2 s a1 s : : g l oba l tape−>

i n t e r p r e t a n d r e s e t a d j o i n t t o (p o s i t i o n) ;
60 for (int i =0; i<n ; i++) {
61 dco : : t 2 s a1 s : : get (az [i] , dJ dz [i] , −1) ;
62 dco : : t 2 s a1 s : : get (az [i] , H dJ dz [i] [i i] , −1, 2) ;
63 sum += H dJ dz [i] [i i]∗H dJ dz [i] [i i] ;
64 }
65

66 } // i i
67

68 Gauss (n , H dJ dz , dJ dz , xv) ;
69 double alpha = 1 . ;
70 double tJ = J+1;
71 while (tJ > J) {
72 for (int i =0; i<n ; i++) {
73 double val ;
74 dco : : t 2 s a1 s : : get (az [i] , va l) ;
75 z [i] = val − alpha∗xv [i] ;
76 }
77 tJ = co s t fun c t i on (n , z) ;
78 alpha /= 2 . 0 ;
79 } // wh i l e (tJ > J)
80 J = tJ ;
81 norm dJ = 0 ;
82 for (int i =0; i<n ; i++) {
83 norm dJ += dJ dz [i]∗ dJ dz [i] ;
84 }
85 norm dJ = sq r t (norm dJ) ;
86 } // wh i l e (norm J > eps)
87 cout << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” << end l ;
88 cout << ”J= ” << J << end l ;
89 cout << ”Norm of second d e r i v a t i v e i s : ” << s q r t (sum) << end l ;
90 return 0 ;
91 }

Second-Order Finite Difference

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ main fd . cpp ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
2 #include <iostream>

3 #include <s t d l i b . h>

55

4 #include <fenv . h>
5 #include <vector>
6

7 double pa s s i v e t ime ;
8 double forward t ime ;
9

10 const double newton eps = 1e−6;
11 const double eps = 1e−6;
12

13 #include ”dco . hpp”
14

15 #include ”Function FD . hpp”
16 #include ”Newton . hpp”
17

18 using namespace std ;
19

20 int main (int argc , char ∗argv []) {
21

22 int n=10;
23 i f (argc >= 2)
24 n = ato i (argv [1]) ;
25

26 std : : vector<double> xv (n) , z (n , 1 . 1) , z f d (n) , dJ dz (n , 0) ;
27 std : : vector<std : : vector<double> > H dJ dz (n , std : : vector<double>

(n)) ;
28 for (int i =0; i<n ; i++)
29 for (int j =0; j<n ; j++)
30 H dJ dz [i] [j] = 0 . ;
31

32 // Newton Optimizat ion
33 int i t e r = 0 ;
34 double norm dJ = 10 ;
35 double J ;
36 double sum = 0 ;
37

38 double h1 = 1e−05;
39 double h2 = 1e−05;
40

41 while (norm dJ > eps) {
42

43 // computing the Jacobian wi th F i n i t e D i f f e r ence
44 for (int i i =0; i i <n ; i i ++) {
45 for (int i = 0 ; i < n ; i++)
46 z fd [i] = z [i] ;
47 z fd [i i] += h1 ;
48 double Jph = co s t fun c t i on (n , z fd) ;
49 z fd [i i] −= 2∗h1 ;
50 double Jmh = cos t fun c t i on (n , z fd) ;
51 dJ dz [i i] = (Jph−Jmh) / (2∗h1) ;
52 }
53 // computing the Hessian wi th F i n i t e D i f f e r ence
54 for (int i i =0; i i <n ; i i ++) {
55 for (int j j =0; j j<n ; j j++) {
56 for (int i = 0 ; i < n ; i++)
57 z fd [i] = z [i] ;
58 z fd [i i] += h1 ;
59 z fd [j j] += h2 ;
60 double J 1 = co s t fun c t i on (n , z fd) ;
61 z fd [j j] −= 2∗h2 ;

56

62 double J 2 = co s t fun c t i on (n , z fd) ;
63 z fd [i i] −= 2∗h1 ;
64 double J 4 = co s t fun c t i on (n , z fd) ;
65 z fd [j j] += 2∗h2 ;
66 double J 3 = co s t fun c t i on (n , z fd) ;
67 H dJ dz [i i] [j j] = (J 1 − J 2 − J 3 + J 4) / (4∗h1∗h2

) ;
68 sum += H dJ dz [i i] [j j]∗H dJ dz [i i] [j j] ;
69 } // j j
70 } // i i
71

72 J = co s t fun c t i on (n , z) ;
73 Gauss (n , H dJ dz , dJ dz , xv) ;
74 double alpha = 1 . ;
75 double tJ = J+1;
76 while (tJ > J) {
77 for (int i =0; i<n ; i++) {
78 double val = z [i] ;
79 z [i] = val − alpha∗xv [i] ;
80 }
81 tJ = co s t fun c t i on (n , z) ;
82 alpha /= 2 . 0 ;
83 } // wh i l e (tJ > J)
84

85 J = tJ ;
86 norm dJ = 0 ;
87 for (int i =0; i<n ; i++)
88 norm dJ += dJ dz [i]∗ dJ dz [i] ;
89 norm dJ = sq r t (norm dJ) ;
90

91 } // wh i l e (norm J > eps)
92 cout << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” << end l ;
93 cout << ”J= ” << J << end l ;
94 cout << ”Norm of second d e r i v a t i v e i s : ” << s q r t (sum) << end l ;
95 return 0 ;
96 }

References

[ACM91] B. Averik, R. Carter, and J. Moré. The Minpack-2 test problem collection (prelimi-
nary version). Technical Report 150, Mathematical and Computer Science Division,
Argonne National Laboratory, Argonne, IL, 1991.

[Bau74] F. Bauer. Computational graphs and rounding error. SIAM Journal on Numerical
Analysis, 11:87–96, 1974.

[DS88] N. Dunford and J. T. Schwartz. Linear Operators, Part 1, General Theory. Wiley,
1988.

[Gil08] M. B. Giles. Collected matrix derivative results for forward and reverse mode algorith-
mic differentiation. In C. H. Bischof, H. M. Bücker, P. D. Hovland, U. Naumann, and
J. Utke, editors, Advances in Automatic Differentiation, volume 64 of Lecture Notes
in Computational Science and Engineering, pages 35–44. Springer, Berlin, 2008.

[GJU96] A. Griewank, D. Juedes, and J. Utke. ADOL-C, a package for the Automatic Dif-
ferentiation of algorithms written in C/C++. ACM Transactions on Mathematical
Software, 22:131–167, 1996.

[GW08] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Number 105 in Other Titles in Applied Mathematics.
SIAM, Philadelphia, PA, 2nd edition, 2008.

[HP13] L. Hascoet and V. Pascual. The Tapenade automatic differentiation tool: principles,
model, and specification. ACM Transactions on Mathematical Software, 39(3):20,
2013.

57

[LLN11] K. Leppkes, J. Lotz, and U. Naumann. dco/c++ – derivative code by overloading in
C++. Technical Report AIB-2011-05, RWTH Aachen, June 2011.

[Nau12] U. Naumann. The Art of Differentiating Computer Programs. An Introduction to
Algorithmic differentiation. Number 24 in Software, Environments, and Tools. SIAM,
Philadelphia, PA, 2012.

[NL12] U. Naumann and J. Lotz. Algorithmic differentiation of numerical methods: Tangent-
linear and adjoint direct solvers for systems of linear equations. Technical Report
AIB-2012-10, LuFG Informatik 12: Software and Tools for Computational Engineer-
ing, RWTH Aachen, June 2012. Submitted.

[NLL14] U. Naumann, K. Leppkes, and J. Lotz. dco/c++ user guide. Technical Report AIB-
2014-03, RWTH Aachen University, January 2014.

[NLLT12] U. Naumann, J. Lotz, K. Leppkes, and M. Towara. Algorithmic differentiation of
numerical methods: Tangent-linear and adjoint solvers for systems of nonlinear equa-
tions. Technical Report AIB-2012-15, Software and Tools for Computational Engi-
neering, RWTH Aachen University LuFG Informatik 12, 2012.

58

Aachener Informatik-Berichte

This is the list of all technical reports since 1987. To obtain copies of reports

please consult

http://aib.informatik.rwth-aachen.de/

or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

59

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

60

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

61

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

62

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

63

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

64

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

65

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

66

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

67

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, BernhardWestfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

68

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

69

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nachWestfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, BernhardWestfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-03 D. Jäger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for

Building Graph-Based Software Engineering Tools

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

70

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

71

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th InternationalWorkshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

72

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

73

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

74

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: AModular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007/2008

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

75

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems

2009-01 ∗ Fachgruppe Informatik: Jahresbericht 2009

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded & Real-Time

Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

76

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-

tive Code by Overloading in C++

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

77

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-17 Carsten Fuhs: SAT Encodings: From Constraint-Based Termination

Analysis to Circuit Synthesis

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-BoundAlgorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on

Probabilistic Automata

2012-01 Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Auto-

mated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

78

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:

Algorithmic Differentiation of Numerical Methods: Tangent-Linear and

Adjoint Solvers for Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for Se-

cure Multi-Party Computation on MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-

teme in Klein- und mittelständischen Unternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering Es-

sentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination

proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-

trakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Ábrahám: On

Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solving

over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and

Hao Wu: Performance Analysis of Computing Servers using Stochastic

Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and

Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of In-

teger Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,

René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard

Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud: Towards the In-

terdisciplinary Development of a Trustworthy Platform for Globally In-

terconnected Sensors and Actuators

2013-14 Jörg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-

cedures

2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error tol-

erance in the Real-Time Transport Protocol

2013-20 Jacob Palczynski: Time-Continuous Behaviour Comparison Based on

Abstract Models

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014

2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-

ellbasierten Entwicklung eingebetteter Software

2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-

chronous Automata

2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-

mination Analysis for Programs with Pointer Arithmetic

79

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frintrop, and Bastian

Leibe: Sequence Level Salient Object Proposals for Generic Object De-

tection in Video

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

80

