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T. Ströder1, F. Emmes1, P. Schneider-Kamp2, J. Giesl1, and C. Fuhs1

1 LuFG Informatik 2, RWTH Aachen University, Germany
{stroeder,emmes,giesl,fuhs}@informatik.rwth-aachen.de

2 IMADA, University of Southern Denmark, Denmark
petersk@imada.sdu.dk

Abstract. We present a new operational semantics for Prolog which
covers all constructs in the corresponding ISO standard (including “non-
logical” concepts like cuts, meta-programming, “all solution” predicates,
dynamic predicates, and exception handling). In contrast to the classical
operational semantics for logic programming, our semantics is linear and
not based on search trees. This has the advantage that it is particularly
suitable for automated program analyses such as termination and com-
plexity analysis. We prove that our new semantics is equivalent to the
ISO Prolog semantics, i.e., it computes the same answer substitutions
and the derivations in both semantics have essentially the same length.

1 Introduction

We introduce a new state-based semantics for Prolog. Any query Q corresponds
to an initial state sQ and we define a set of inference rules which transform a
state s into another state s′ (denoted s s′). The evaluation of Q is modeled by
repeatedly applying inference rules to sQ (i.e., by the derivation sQ  s1  s2  
. . .). Essentially, our states s represent the list of those goals that still have to be
proved. But in contrast to most other semantics for Prolog, our semantics is linear
(or local), since each state contains all information needed for the next evaluation
step. So to extend a derivation s0  . . . si, one only has to consider the last
state si. Thus, even the effect of cuts and other built-in predicates becomes local.

This is in contrast to the standard semantics of Prolog (as specified in the ISO
standard [11, 14]), which is defined using a search tree built by SLD resolution
with a depth-first left-to-right strategy. To construct the next node of the tree,
it is not sufficient to regard the node that was constructed last, but due to
backtracking, one may have to continue with ancestor goals that occurred much
“earlier” in the tree. Advanced features like cuts or exceptions require even
more sophisticated analyses of the current search tree. Even worse, “all solution”
predicates like findall result in several search trees and the coordination of these
trees is highly non-trivial, in particular in the presence of exceptions.

We show that our linear semantics is equivalent to the standard ISO seman-

⋆ Supported by DFG grant GI 274/5-3, DFG Research Training Group 1298 (Algo-
Syn), G.I.F. grant 966-116.6, and the Danish Natural Science Research Council.



tics of Prolog. It does not only yield the same answer substitutions, but we also
obtain the same termination behavior and even the same complexity (i.e., the
length of the derivations in our semantics corresponds to the number of unifi-
cations performed in the standard semantics). Hence, instead of analyzing the
termination or complexity of a Prolog program w.r.t. the standard semantics,
one can also analyze it w.r.t. our semantics.

Compared to the ISO semantics, our semantics is much more suitable for
such (possibly automated) analyses. In particular, our semantics can also be
used for symbolic evaluation of abstract states (where the goals contain abstract
variables representing arbitrary terms). Such abstract states can be generalized
(“widened”) and instantiated, and under certain conditions one may even split
up the lists of goals in states [20, 21]. In this way, one can represent all possi-
ble evaluations of a program by a finite graph, which can then be used as the
basis for e.g. termination analysis. In the standard Prolog semantics, such an ab-
straction of a query in a search tree would be problematic, since the remaining
computation does not only depend on this query, but on the whole search tree.

In [20, 21] we already used a preliminary version of our semantics for termi-
nation analysis of a subset of Prolog containing definite logic programming and
cuts. Most previous approaches for termination (or complexity [9]) analysis were
restricted to definite programs. Our semantics was a key contribution to extend
termination analysis to programs with cuts. The corresponding implementation
in the prover AProVE resulted in the most powerful tool for automated termina-
tion analysis of logic programming so far, as shown at the International Termi-
nation Competition.3 These experimental results are the main motivation for our
work, since they indicate that such a semantics is indeed suitable for automated
termination analysis. However, it was unclear how to extend the semantics of
[20, 21] to full Prolog and how to prove that this semantics is really equivalent
to the ISO semantics. These are the contributions of the current paper.

Hence, this paper forms the basis which will allow the extension of automated
termination techniques to full Prolog. Moreover, many termination techniques
can be adapted to infer upper bounds on the complexity [12, 19, 22]. Thus, the
current paper is also the basis in order to adapt termination techniques such
that they can be used for automated complexity analysis of full Prolog.

There exist several other alternative semantics for Prolog. However, most of
them (e.g., [2, 4–8, 15, 16, 18]) only handle subsets of Prolog and it is not clear
how to extend these semantics in a straightforward way to full Prolog.

Alternative semantics for full Prolog were proposed in [3, 10, 17]. However,
these semantics seem less suitable for automated termination and complexity
analysis than ours: The states used in [3] are considerably more complex than
ours and it is unclear how to abstract the states of [3] for automated termination
analysis as in [20, 21]. Moreover, [3] does not investigate whether their semantics
also yields the same complexity as the ISO standard. The approach in [10] is close
to the ISO standard and thus, it has similar drawbacks as the ISO semantics,
since it also works on search trees. Finally, [17] specifies standard Prolog in

3 See http://www.termination-portal.org/wiki/Termination_Competition.
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rewriting logic. Similar to us, [17] uses a list representation for states. However,
their approach cannot be used for complexity analysis, since their derivations
can be substantially longer than the number of unifications needed to evaluate
the query. Since [17] does not use explicit markers for the scope of constructs like
the cut, it is also unclear how to use their approach for automated termination
analysis, where one would have to abstract and to split states.

The full set of all inference rules of our semantics (for all 112 built-in predi-
cates of ISO Prolog) can be found in Appendix B. In the main part of the paper
we restrict ourselves to the inference rules for the most representative predicates.
Sect. 2 shows the rules needed for definite logic programs. Sect. 3 extends them
for predicates like the cut, negation-as-failure, and call. In Sect. 4 we handle “all
solution” predicates and Sect. 5 shows how to deal with dynamic predicates like
assertz and retract. Sect. 6 extends our semantics to handle exceptions (using
catch and throw). Finally, Sect. 7 contains our theorems on the equivalence of
our semantics to the ISO semantics. All proofs can be found in Appendix 7.

2 Definite Logic Programming

See e.g. [1] for the basics of logic programming. As in ISO Prolog, we do not
distinguish between predicate and function symbols. For a term t = f(t1, . . . , tn),
let root(t) = f . A query is a sequence of terms, where � denotes the empty query.
A clause is a pair h :−B where the head h is a term and the body B is a query.
If B is empty, then one writes just “h” instead of “h :−�”.4 A Prolog program
P is a finite sequence of clauses.5

We often denote the application of a substitution σ by tσ instead of σ(t).
A substitution σ is the most general unifier (mgu) of s and t iff sσ = tσ and,
whenever sγ = tγ for some other unifier γ, there is a δ with Xγ = Xσδ for
all X ∈ V(s) ∪ V(t).6 As usual, “σδ” is the composition of σ and δ, where
Xσδ = (Xσ)δ. If s and t have no mgu σ, we write mgu(s, t) = fail .

A Prolog program without built-in predicates is called a definite logic pro-
gram. Our aim is to define a linear operational semantics where each state
contains all information needed for backtracking steps. In addition, a state also
contains a list of all answer substitutions that were found up to now. So a state
has the form 〈G1 | . . . | Gn ; δ1 | . . . | δm〉 where G1 | . . . | Gn is a sequence of
goals and δ1 | . . . | δm is a sequence of answer substitutions. We do not include
the clauses from P in the state since they remain static during the evaluation.

Essentially, a goal is just a query, i.e., a sequence of terms. However, to
compute answer substitutions, a goalG is labeled by a substitution which collects

4 In ISO Prolog, whenever an empty query � is reached, this is replaced by the built-in
predicate true. However, we also allow empty queries to ease the presentation.

5 More precisely, P are just the program clauses for static predicates. In addition to
P, a Prolog program may also contain clauses for dynamic predicates and directives

to specify which predicates are dynamic. As explained in Sect. 5, these directives
and the clauses for dynamic predicates are treated separately by our semantics.

6 While the ISO standard uses unification with occurs check, our semantics could also
be defined in an analogous way when using unification without occurs check.
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�δ | S ; A

S ; A | δ
(Success)

(t, Q)δ | S ; A

(t, Q)c1δ | · · · | (t, Q)caδ | S ; A
(Case)

if definedP(t) and
SliceP(t) =
(c1, . . . , ca)

(t, Q)h :-B
δ | S ; A

(Bσ,Qσ)δσ | S ; A
(Eval)

if
σ =
mgu(t, h)

(t, Q)h :-B
δ | S ; A

S ; A
(Backtrack)

if
mgu(t, h) =
fail .

Fig. 1. Inference Rules for Definite Logic Programs

the effects of the unifiers that were used during the evaluation up to now. So if
(t1, . . . , tk) is a query, then a goal has the form (t1, . . . , tk)δ for a substitution δ.
In addition, a goal can also be labeled by a clause c, where the goal (t1, . . . , tk)

c
δ

means that the next resolution step has to be performed using the clause c.

The initial state for a query (t1, . . . , tk) is 〈(t1, . . . , tk)∅ ; ε〉, i.e., the query is
labeled by the identity substitution ∅ and the current list of answer substitutions
is ε (i.e., it is empty). This initial state can be transformed by inference rules
repeatedly. The inference rules needed for definite logic programs are given in
Fig. 1. Here, Q is a query, S stands for a sequence of goals, A is a list of answer
substitutions, and we omitted the delimiters “〈” and “〉” for readability.

To illustrate these rules, we use the following program where member(t1, t2)
holds whenever t1 unifies with any member of the list t2. Consider the query
member(U, [1]).7 Then the corresponding initial state is 〈member(U, [1])∅ ; ε〉.

member(X, [X| ]). (1) member(X, [ |XS ]) :− member(X,XS ). (2)

When evaluating a goal (t, Q)δ where root(t) = p, one tries all clauses h :−B
with root(h) = p in the order they are given in the program. Let definedP(t)
indicate that root(t) is a user-defined predicate and let SliceP(t) be the list of
all clauses from P whose head has the same root symbol as t. However, in the
clauses returned by SliceP(t), all occurring variables are renamed to fresh ones.
Thus, if definedP(t) and SliceP(t) = (c1, . . . , ca), then we use a (Case) rule which
replaces the current goal (t, Q)δ by the new list of goals (t, Q)c1δ | . . . | (t, Q)caδ .
As mentioned, the label ci in such a goal means that the next resolution step
has to be performed using the clause ci. So in our example, member(U, [1])∅ is

replaced by the list member(U, [1])
(1)′

∅
| member(U, [1])

(2)′

∅
, where (1)′ and (2)′

are freshly renamed variants of the clauses (1) and (2).

To evaluate a goal (t, Q)h :-B
δ , one has to check whether there is a σ =

mgu(t, h). In this case, the (Eval) rule replaces t by B and σ is applied to the
whole goal. Moreover, σ will contribute to the answer substitution, i.e., we re-
place δ by δσ. Otherwise, if t and h are not unifiable, then the goal (t, Q)h :-B

δ is
removed from the state and the next goal is tried (Backtrack). An empty goal
�δ corresponds to a successful leaf in the SLD tree. Thus, the (Success) rule
removes such an empty goal and adds the substitution δ to the list A of answer
substitutions (we denote this by “A | δ”). Fig. 2 shows the full evaluation of
the initial state 〈member(U, [1])∅ ; ε〉. Here, (1)′ and (1)′′ (resp. (2)′ and (2)′′)

7 As usual, [t1, . . . , tn] abbreviates .(t1, .(. . . , .(tn, [ ]) . . . )) and [t | ts] stands for .(t, ts).
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member(U, [1])∅ ; ε

Case member(U, [1])
(1)′

∅
| member(U, [1])

(2)′

∅
; ε

Eval �{U/1, X′/1} | member(U, [1])
(2)′

∅
; ε

Success member(U, [1])
(2)′

∅
; {U/1, X ′/1}

Eval member(U, [ ]){X′/U,XS ′/[ ]} ; {U/1, X ′/1}

Case member(U, [ ])
(1)′′

{X′/U,XS ′/[ ]} | member(U, [ ])
(2)′′

{X′/U,XS ′/[ ]} ; {U/1, X ′/1}

Backtrack member(U, [ ])
(2)′′

{X′/U,XS ′/[ ]} ; {U/1, X ′/1}

Backtrack ε ; {U/1, X ′/1}

Fig. 2. Evaluation for the Query member(U, [1])

are fresh variants of (1) (resp. (2)) that are pairwise variable disjoint. So for
example, X and XS were renamed to X ′ and XS ′ in (2)′.

3 Logic and Control

In Fig. 3, we present inference rules to handle some of the most commonly
used pre-defined predicates of Prolog: the cut (!), negation-as-failure (\+), the
predicates call, true, and fail, and the Boolean connectives Conn for conjunction
(′,′), disjunction (′;′), and implication (′->′).8 As in the ISO standard, we require
that in any clause h :−B, the term h and the terms in B may not contain
variables at predication positions. A position is a predication position iff the only
function symbols that may occur above it are the Boolean connectives from
Conn. So instead of a clause q(X) :−X one would have to use q(X) :− call(X).

The effect of the cut is to remove certain backtracking possibilities. When
a cut in a clause h :−B1, !, B2 with root(h) = p is reached, then one does not
backtrack to the remaining clauses of the predicate p. Moreover, the remaining
backtracking possibilities for the terms inB1 are also disregarded. As an example,
we consider a modified member program.

member(X, [X| ]) :− !. (3) member(X, [ |XS ]) :− member(X,XS ). (4)

In our semantics, the elimination of backtracking steps due to a cut is ac-
complished by removing goals from the state. Thus, we re-define the (Case) rule
in Fig. 3. To evaluate p(. . .), one again considers all program clauses h :−B where
root(h) = p. However, every cut in B is labeled by a fresh natural number m.
For any clause c, let c[!/!m] result from c by replacing all (possibly labeled) cuts
! on predication positions by !m. Moreover, we add a scope delimiter ?m to make
the end of their scope explicit. As the initial query Q might also contain cuts, we
also label them and construct the corresponding initial state 〈(Q [!/!0])∅ | ?0 ; ε〉.

In our example, consider the query member(U, [1, 1]). Its corresponding ini-
tial state is 〈member(U, [1, 1])∅ | ?0 ; ε〉. Now the (Case) rule replaces the goal

8 The inference rules for true and the connectives from Conn are straightforward and
thus, we only present the rule for ′,′ in Fig. 3. See App. B for the set of all rules.
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(t, Q)δ | S ; A

(t, Q)
c1[!/!m]
δ | · · · | (t, Q)

ca[!/!m]
δ | ?m | S ; A

(Case) if definedP(t), SliceP(t) =
(c1, . . . , ca), and m is fresh

(!m, Q)δ | S
′ | ?m | S ; A

Qδ | ?m | S ; A
(Cut)

(′,′ (t1, t2), Q)δ | S ; A

(t1, t2, Q)δ | S ; A
(Conj)

?m | S ; A

S ; A
(Failure)

(call(t), Q)δ | S ; A

(t[V/call(V), !/!m], Q)δ | ?m | S ; A
(Call)

if t /∈ V
and m is
fresh.

(fail, Q)δ | S ; A

S ; A
(Fail)

(\+(t), Q)δ | S ; A

(call(t), !m, fail)δ | Qδ | ?m | S ; A
(Not) where m is

fresh.

Fig. 3. Inference Rules for Programs with Pre-defined Predicates for Logic and Control

member(U, [1, 1])∅ by member(U, [1, 1])
(3)′[!/!1]
∅

| member(U, [1, 1])
(4)′[!/!1]
∅

| ?1.
Here, (3)′ is a fresh variant of the rule (3) and (3)′[!/!1] results from (3)′ by
labeling all cuts with 1, i.e., (3)′[!/!1] is the rule member(X ′, [X ′| ]) :− !1.

Whenever a cut !m is evaluated in the current goal, the (Cut) rule removes
all backtracking goals up to the delimiter ?m from the state. The delimiter itself
must not be removed, since the current goal might still contain more occurrences

of !m. So after evaluating the goal member(U, [1, 1])
(3)′[!/!1]
∅

to (!1){U/1, X′/1}, the
(Cut) rule removes all remaining goals in the list up to ?1.

When a predicate has been evaluated completely (i.e., when ?m becomes the
current goal), then this delimiter is removed. This corresponds to a failure in
the evaluation, since it only occurs when all solutions have been computed. Fig.
4 shows the full evaluation of the initial state 〈member(U, [1, 1])∅ | ?0 ; ε〉.

The built-in predicate call allows meta-programming. To evaluate a term
call(t) (where t /∈ V, but t may contain connectives from Conn), the (Call)
rule replaces call(t) by t[V/call(V), !/!m]. Here, t[V/call(V), !/!m] results from t
by replacing all variables X on predication positions by call(X) and all (possibly
labeled) cuts on predication positions by !m. Moreover, a delimiter ?m is added
to mark the scope of the cuts in t.

Another simple built-in predicate is fail, whose effect is to remove the current
goal. By the cut, call, and fail, we can now also handle the “negation-as-failure”

member(U, [1, 1])∅ | ?0 ; ε

Case member(U, [1, 1])
(3)′[!/!1]
∅

| member(U, [1, 1])
(4)′[!/!1]
∅

| ?1 | ?0 ; ε

Eval (!1){U/1, X′/1} | member(U, [1, 1])
(4)′[!/!1]
∅

| ?1 | ?0 ; ε

Cut �{U/1, X′/1} | ?1 | ?0 ; ε

Success ?1 | ?0 ; {U/1, X ′/1}

Failure ?0 ; {U/1, X ′/1}

Failure ε ; {U/1, X ′/1}

Fig. 4. Evaluation for the Query member(U, [1, 1])
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\+(′,′ (a, !))∅ |?0 ; ε

Not (call(′,′ (a, !)), !1, fail)∅ |?1 |?0 ; ε

Call (′,′ (a, !2), !1, fail)∅ |?2 |?1 |?0 ; ε

Conj (a, !2, !1, fail)∅ |?2 |?1 |?0 ; ε

Case (a, !2, !1, fail)
a
∅ | (a, !2, !1, fail)

a :- a
∅ |?2 |?1 |?0 ; ε

Eval (!2, !1, fail)∅ | (a, !2, !1, fail)
a :- a
∅ |?2 |?1 |?0 ; ε

Cut (!1, fail)∅ |?2 |?1 |?0 ; ε

Cut fail∅ |?1 |?0 ; ε

Fail ?1 |?0 ; ε

Failure ?0 ; ε

Failure ε ; ε

Fig. 5. Evaluation for the Query \+(′,′ (a, !))

operator \+: the (Not)

rule replaces the goal
(\+(t), Q)δ by the list
(call(t), !m, fail)δ | Qδ |
?m. Thus, Qδ is only
executed if call(t) fails.

As an example,
consider a program
with the fact a and
the rule a :− a.
We regard the query
\+(′,′ (a, !)). The eval-
uation in Fig. 5 shows
that the query termi-
nates and fails (since
we do not obtain any
answer substitution).

4 “All Solution” Predicates

We now consider the unification predicate = and the predicates findall, bagof,
setof, which enumerate all solutions to a query. Fig. 6 gives the inference rules
for = and findall (bagof and setof can be modeled in a similar way, cf. App. B.3).

We extend our semantics in such a way that the collection process of such
“all solution” predicates is performed just like ordinary evaluation steps of a
program. Moreover, we modify our concept of states as little as possible.

A call of findall(r, t, s) executes the query call(t). If σ1, . . . , σn are the resulting
answer substitutions, then finally the list [rσ1, . . . , rσn] is unified with s.

We model this behavior by replacing a goal (findall(r, t, s), Q)δ with the list

call(t) | %
r,[ ],s
Q,δ . Here, %r,ℓ,s

Q,δ is a findall-suspension which marks the “scope” of
findall-statements, similar to the markers ?m for cuts in Sect. 3. The findall-
suspension fulfills two tasks: it collects all answer terms (r instantiated with an

(findall(r, t, s), Q)δ | S ; A

call(t)∅ | %
r,[ ],s
Q,δ | S ; A

(Findall)
%r,ℓ,s

Q,δ | S ; A

(ℓ=s,Q)δ | S ; A
(FoundAll)

�θ | S
′ | %r,ℓ,s

Q,δ | S ; A

S′ | %
r,ℓ|rθ,s
Q,δ | S ; A

(FindNext) if S
′ contains no

findall-suspensions

(t1 = t2, Q)δ | S ; A

(Qσ)δσ | S ; A
(UnifySuccess) if σ = mgu(t1, t2)

(t1 = t2, Q)δ | S ; A

S ; A
(UnifyFail)

if
mgu(t1, t2) =
fail

�δ | S ; A

S ; A | δ
(Success)

if S con-
tains no
findall-
suspensions

Fig. 6. Additional Inference Rules for Prolog Programs with findall
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findall(U,member(U, [1]), L)∅ | ?0 ; ε

Findall call(member(U, [1]))∅ | %
U,[ ],L
�,∅ | ?0 ; ε

Call member(U, [1])∅ | ?1 | %
U,[ ],L
�,∅ | ?0 ; ε

Case member(U, [1])
(3)′[!/!2]
∅

| member(U, [1])
(4)′[!/!2]
∅

| ?2 | ?1 | %
U,[ ],L
�,∅ | ?0 ; ε

Eval (!2){U/1, X′/1} | member(U, [1])
(4)′[!/!2]
∅

| ?2 | ?1 | %
U,[ ],L
�,∅ | ?0 ; ε

Cut �{U/1, X′/1} | ?2 | ?1 | %
U,[ ],L
�,∅ | ?0 ; ε

FindNext ?2 | ?1 | %
U,[1],L
�,∅ | ?0 ; ε

Failure ?1 | %
U,[1],L
�,∅ | ?0 ; ε

Failure %
U,[1],L
�,∅ | ?0 ; ε

FoundAll ([1]=L)∅ | ?0 ; ε

UnifySuccess �{L/[1]} | ?0 ; ε

Success ?0 ; {L/[1]}

Failure ε ; {L/[1]}

Fig. 7. Evaluation for the Query findall(U,member(U, [1]), L)

answer substitution of t) in its list ℓ and it contains all information needed to
continue the execution of the program after all solutions have been found.

If a goal is evaluated to �θ, its substitution θ would usually be added to the
list of answer substitutions of the state. However, if the goals contain a findall-
suspension %r,ℓ,s

Q,δ , we instead insert rθ at the end of the list of answers ℓ using the

(FindNext) rule (denoted by “ℓ | rθ”).9 To avoid overlapping inference rules, we
modify the (Success) rule such that it is only applicable if (FindNext) is not.

When call(t) has been fully evaluated, the first element of the list of goals is a

findall-suspension %r,ℓ,s
Q,δ . Before continuing the evaluation of Q, we unify the list

of collected solutions ℓ with the expected list s (using the built-in predicate =).
As an example, for the Prolog program defined by the clauses (3) and (4), an

evaluation of the query findall(U,member(U, [1]), L) is given in Fig. 7.

5 Dynamic Predicates

Now we also consider built-in predicates which modify the program clauses for
some predicate p at runtime. This is only possible for “new” predicates which
were not defined in the program and for predicates where the program contains
a dynamic directive before their first clause (e.g., “:− dynamic p/1”). Thus, we
consider a program to consist of two parts: a static part P containing all pro-
gram clauses for static predicates and a dynamic part, which can be modified at
runtime and initially contains all program clauses for dynamic predicates.

Therefore, we extend our states by a list D which stores all clauses of dynamic
predicates, where each of these clauses is labeled by a natural number. We now
denote a state as 〈S ; D ; A〉 where S is a list of goals and A is a list of answer

9 As there may be nested findall calls, we use the first findall-suspension in the list.
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(t, Q)δ | S ; D ; A

(t, Q)
c1[!/!m]
δ | · · · | (t, Q)

ca[!/!m]
δ | ?m | S ; D ; A

(Case)

if definedP(t),
Slice(P|D)(t) = (c1, . . . , ca),

D is D without clause labels,
and m is fresh

(asserta(c), Q)δ | S ; D ; A

Qδ | S ; (c,m) | D ; A
(AssA) if m∈ N

is fresh

(assertz(c), Q)δ | S ; D ; A

Qδ | S ; D | (c,m) ; A
(AssZ) if m∈ N

is fresh

(retract(c), Q)δ | S ; D ; A

6:−
c,(c1,m1)
Q,δ | · · · | 6:−

c,(ca,ma)
Q,δ | S ; D ; A

(Retract) if SliceD(c) =
((c1,m1), . . . , (ca,ma))

6:−
c,(c′,m)
Q,δ

| S ; D ; A

(Qσ)δσ | S ; D \ (c
′

,m) ; A
(RetSuc) if σ =

mgu(c, c′)

6:−
c,(c′,m)
Q,δ

| S ; D ; A

S ; D ; A
(RetFail)

if
mgu(c, c′)
= fail

Fig. 8. Additional Inference Rules for Prolog Programs with Dynamic Predicates

substitutions. The inference rules for the built-in predicates asserta, assertz, and
retract in Fig. 8 modify the list D.10 Of course, the (Case) rule also needs to
be adapted to take the clauses from D into account (here, “P | D” stands for
appending the lists P and D). All other previous inference rules do not depend
on the new component D of the states.

For a clause11 c, the effect of asserta(c) resp. assertz(c) is modeled by inserting
(c,m) at the beginning resp. the end of the list D, where m is a fresh number, cf.
the rules (AssA) and (AssZ). The labels in D are needed to uniquely identify
each clause as demonstrated by the following query for a dynamic predicate p.

assertz(p(a)), assertz(p(b)), retract(p(X)), X= a, retract(p(b)), assertz(p(b)), fail
︸ ︷︷ ︸

Q

So first the two clauses p(a) and p(b) are asserted, i.e., D contains (p(a), 1)
and (p(b), 2). When retract(p(X)) is executed, one collects all p-clauses from D,
since these are the only clauses which might be removed by this retract-statement.

To this end, we extend the function Slice such that SliceD(c) returns fresh
variants of all labeled clauses c′ from D where root(head(c)) = root(head(c′)).
An execution of (retract(c), Q)δ then creates a new retract marker for every
clause in SliceD(c) = ((c1,m1), . . . , (ca,ma)), cf. the (Retract) inference rule

in Fig. 8. Such a retract marker 6:−
c,(ci,mi)
Q,δ denotes that the clause with label mi

should be removed from D if c unifies with ci by some mgu σ. Moreover, then
the computation continues with the goal (Qσ)δσ, cf. (RetSuc). If c does not
unify with ci, then the retract marker is simply dropped by the rule (RetFail).

So in our example, we create the two retract markers 6:−
p(X),(p(a),1)
Q,∅ and

6:−
p(X),(p(b),2)
Q,∅ , where Q are the last four terms of the query. Since p(X) unifies

10 The inference rules for the related predicate abolish are analogous, cf. Appendix B.4.
11 For asserta(c), assertz(c), and retract(c), we require that the body of the clause c

may not be empty (i.e., instead of a fact p(X) one would have to use p(X) :− true).
Moreover, c may not have variables on predication positions.
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(assertz(p(a)), assertz(p(b)), retract(p(X)), Q)∅ | ?0 ; ε ; ε

AssZ (assertz(p(b)), retract(p(X)), Q)∅ | ?0 ; (p(a), 1) ; ε

AssZ (retract(p(X)), Q)∅ | ?0 ; (p(a), 1) | (p(b), 2) ; ε

Retract 6:−
p(X),(p(a),1)
Q,∅ | 6:−

p(X),(p(b),2)
Q,∅ | ?0 ; (p(a), 1) | (p(b), 2) ; ε

RetSuc (Q[X/a]){X/a} | 6:−
p(X),(p(b),2)
Q,∅ | ?0 ; (p(b), 2) ; ε

...

RetSuc (assertz(p(b)), fail){X/a} | 6:−
p(X),(p(b),2)
Q,∅ | ?0 ; ε ; ε

AssZ fail{X/a} | 6:−
p(X),(p(b),2)
Q,∅ | ?0 ; (p(b), 3) ; ε

Fail 6:−
p(X),(p(b),2)
Q,∅ | ?0 ; (p(b), 3) ; ε

RetSuc (Q[X/b]){X/b} | ?0 ; (p(b), 3) ; ε
...

Failure ε ; (p(b), 3) ; ε

Fig. 9. Evaluation for a Query using assertz and retract

with p(a), the first clause (p(a), 1) is retracted from D. Due to the unifier {X/a},
the term (X=a)[X/a] is satisfied. Hence, retract(p(b)) and assertz(p(b)) are ex-
ecuted, i.e., the clause (p(b), 2) is removed from D and a new clause (p(b), 3) is
added to D. When backtracking due to the term fail at the end of the query, the
execution of retract(p(X)) is again successful, i.e., the retraction described by the

marker 6:−
p(X),(p(b),2)
Q,∅ succeeds since p(X) also unifies with the clause (p(b), 2).

However, this retract-statement does not modify D anymore, since (p(b), 2) is no
longer contained in D. Due to the unifier {X/b}, the next term (X= a)[X/b] is
not satisfiable and the whole query fails. However, then D still contains (p(b), 3).
Hence, afterwards a query like p(X) would yield the answer substitution {X/b}.
See Fig. 9 for the evaluation of this example using our inference rules.

6 Exception Handling

Prolog provides an exception handling mechanism by means of two built-in pred-
icates throw and catch. The unary predicate throw is used to “throw” exception
terms and the predicate catch can react on thrown exceptions.

When reaching a term catch(t, c, r), the term t is called. During this call, an
exception term e might be thrown. If e and c unify with the mgu σ, the recover
term r is instantiated by σ and called. Otherwise, the effect of the catch-call is
the same as a call to throw(e). If no exception is thrown during the execution of
call(t), the catch has no other effect than this call.

To model the behavior of catch and throw, we augment each goal in our states
by context information for every catch-term that led to this goal. Such a catch-
context is a 5-tuple (m, c, r,Q, δ), consisting of a natural number m which marks
the scope of the corresponding catch-term, a catcher term c describing which
exception terms to catch, a recover term r which is evaluated in case of a caught

10



(catch(t, c, r), Q)δ,C | S ; D ; A

call(t)∅, C|(m,c,r,Q,δ) | ?m | S ; D ; A
(Catch) where m is fresh

(throw(e), Q)θ, C|(m,c,r,Q′,δ) | S
′ | ?m | S ; D ; A

(call(rσ), Q′σ)δσ, C | S ; D ; A
(ThrowSuccess)

if e /∈ V and σ =
mgu(c, e′) for a
fresh variant e′ of e

(throw(e), Q)θ, C|(m,c,r,Q′,δ) | S
′ | ?m | S ; D ; A

(throw(e), Q)θ, C | S ; D ; A
(ThrowNext)

if e /∈ V and
mgu(c, e′) = fail
for a fresh variant
e′ of e

(throw(e), Q)θ,ε |S ; D ; A

ERROR
(ThrowErr) ife /∈ V

�θ,ε |S ; D ; A

S ; D ; A |θ
(Success)

if S contains
no findall-
suspensions

�θ, C|(m,c,r,Q,δ) | S
′ | ?m | S ; D ; A

(Qθ)δθ, C | S
′ | ?m | S ; D ; A

(CatchNext) if S′ contains no
findall-suspensions

�θ,C | S
′ | %r,ℓ,s

Q′,δ′,C′ | S ; D ; A

S′ | %
r,ℓ|rθ,s

Q′,δ′,C′ | S ; D ; A
(FindNext)

if S′ contains no findall-suspensions and

(C is either empty or else its last element

is (m, c, r,Q, δ) and S′ contains no ?m )

Fig. 10. Additional Inference Rules for Prolog Programs with Error Handling

exception, as well as a query Q and a substitution δ describing the remainder of
the goal after the catch-term. In general, we denote a list of catch-contexts by C
and write Qδ,C for a goal with the query Q and the annotations δ and C.

To evaluate (catch(t, c, r), Q)δ,C , we append the catch-context (m, c, r,Q, δ)
(where m is a fresh number) to C (denoted by “C | (m, c, r,Q, δ)”) and replace
the catch-term by call(t), cf. (Catch) in Fig. 10. To identify the part of the list
of goals that is caused by the evaluation of this call, we add a scope marker ?m.

When a goal (throw(e), Q)θ, C|(m,c,r,Q′,δ) is reached, we drop all goals up to the
marker ?m. If c unifies with a fresh variant e′ of e using an mgu σ, we replace
the current goal by the instantiated recover goal (call(rσ), Q′σ)δσ, C using the
rule (ThrowSuccess). Otherwise, in the rule (ThrowNext), we just drop the
last catch-context and continue with the goal (throw(e), Q)θ,C . If an exception
is thrown without a catch-context, then this corresponds to a program error. To
this end, we extend the set of states by an additional element ERROR.

Since we extended goals by a list of catch-contexts, we also need to adapt all
previous inference rules slightly. Except for (Success) and (FindNext), this
is straightforward12 since the previous rules neither use nor modify the catch-
contexts. As catch-contexts can be converted into goals, findall-suspensions %
and retract-markers 6:− have to be annotated with lists of catch-contexts, too.

An interesting aspect is the interplay of nested catch- and findall-calls. When

12 However, several built-in predicates (e.g., call and findall) impose “error conditions”.
If their arguments do not have the required form, an exception is thrown. Thus, the
rules for these predicates must also be extended appropriately, cf. Appendix B.
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catch(catch(findall(X, p(X), L), a, fail), b, true)∅,ε | ?0

Catch call(catch(findall(X, p(X), L), a, fail)∅, (1,b,true,�,∅) | ?1 | ?0

Call catch(findall(X, p(X), L), a, fail)∅, (1,b,true,�,∅) | ?2 | ?1 | ?0

Catch call(findall(X, p(X), L))∅,C | ?3 | ?2 | ?1 | ?0

Call findall(X, p(X), L)∅,C | ?4 | ?3 | ?2 | ?1 | ?0

Findall call(p(X))∅,C | %
X,[ ],L
�,∅,C | ?4 | ?3 | ?2 | ?1 | ?0

Call p(X)∅,C | %
X,[ ],L
�,∅,C | ?5 | ?4 | ?3 | ?2 | ?1 | ?0

Case p(X)
p(a)
∅,C | p(X)

p(Y ) :- throw(b)
∅,C | ?6 | %

X,[ ],L
�,∅,C | ?5 | ?4 | ?3 | ?2 | ?1 | ?0

Eval �{X/a}, C | p(X)
p(Y ) :- throw(b)
∅,C | ?6 | %

X,[ ],L
�,∅,C | ?5 | ?4 | ?3 | ?2 | ?1 | ?0

FindNext p(X)
p(Y ) :- throw(b)
∅,C | ?6 | %

X,[a],L
�,∅,C | ?5 | ?4 | ?3 | ?2 | ?1 | ?0

Eval throw(b){Y/X}, C | ?6 | %
X,[a],L
�,∅,C | ?5 | ?4 | ?3 | ?2 | ?1 | ?0

ThrowNext throw(b){Y/X}, (1,b,true,�,∅) | ?2 | ?1 | ?0

ThrowSuccess call(true){Y/X}, ε | ?0
...

Fig. 11. Evaluation for a Query of Nested catch- and findall-Calls

reaching a goal �θ, C|(m,c,r,Q,δ) which results from the evaluation of a catch-term,
it is not necessarily correct to continue the evaluation with the goal (Qθ)δθ, C as
in the rule (CatchNext). This is because the evaluation of the catch-term may
have led to a findall-call and the current “success” goal �θ, C|(m,c,r,Q,δ) resulted
from this findall-call. Then one first has to compute the remaining solutions to
this findall-call and one has to keep the catch-context (m, c, r,Q, δ) since these
computations may still lead to exceptions that have to be caught by this context.
Thus, then we only add the computed answer substitution θ to its corresponding
findall-suspension, cf. the modified (FindNext) rule.

For the program with the fact p(a) and the rule p(Y ) :− throw(b), an eval-
uation of a query with catch and findall is given in Fig. 11. Here, the clauses D
for dynamic predicates and the list A of answer substitutions were omitted for
readability. Moreover, C stands for the list (1, b, true,�,∅) | (3, a, fail,�,∅).

7 Equivalence to the ISO Semantics

In this section, we formally define our new semantics for Prolog and show that it
is equivalent to the semantics defined in the ISO standard [11, 14]. All definitions
and theorems refer to the full set of inference rules (handling full Prolog). As
mentioned, all inference rules and all proofs can be found in the appendix.

Theorem 1 (“Mutual Exclusion” of Inference Rules). For each state,
there is at most one inference rule applicable and the result of applying this rule
is unique up to renaming of variables and of fresh numbers used for markers.

Let s0  s1 denote that the state s0 was transformed to the state s1 by one
of our inference rules. Any finite or infinite sequence s0  s1  s2  . . . is
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called a derivation of s0. Thm. 1 implies that any state has a unique maximal
derivation (which may be infinite). Now we can define our semantics for Prolog.

Definition 2 (Linear Semantics for Prolog). Consider a Prolog program
with the clauses P for static predicates and the clauses D for dynamic predicates.
Let D result from D by labeling each clause in D by a fresh natural number. Let
Q be a query and let sQ = 〈SQ;D; ε〉 be the corresponding initial state, where
SQ = (Q[!/!0])∅,ε | ?0.

(a) We say that the execution of Q has length ℓ ∈ N ∪ {∞} iff the maximal
derivation of sQ has length ℓ. In particular, Q is called terminating iff ℓ 6=∞.

(b) We say that Q leads to a program error iff the maximal derivation of sQ is
finite and ends with the state ERROR.

(c) We say that Q leads to the (finite or infinite) list of answer substitutions
A iff either the maximal derivation of sQ is finite and ends with a state
〈ε;D′;A〉, or the maximal derivation of sQ is infinite and for every finite
prefix A′ of A, there exists some S and D′ with sQ  

∗ 〈S;D′, A′〉. As usual,
 
∗ denotes the transitive and reflexive closure of  .

In contrast to Def. 2, the ISO standard [11, 14] defines the semantics of Prolog
using search trees. These search trees are constructed by a depth-first search from
left to right, where of course one avoids the construction of parts of the tree that
are not needed (e.g., because of cuts). In the ISO semantics, we have the following
for a Prolog program P and a query Q:13

(a) The execution of Q has length k ∈ N ∪ {∞} iff k unifications are needed to
construct the search tree (where the execution of a built-in predicate also
counts as at least one unification step).14 Of course, here every unification
attempt is counted, no matter whether it succeeds or not. So in the program
with the fact p(a), the execution of the query p(b) has length 1, since there
is one (failing) unification attempt.

(b) Q leads to a program error iff during the construction of the search tree one
reaches a goal (throw(e), Q) and the thrown exception is not caught.

(c) Q leads to the list of answer substitutions A iff Q does not lead to a program
error and A is the list of answer substitutions obtained when traversing the
(possibly infinite) search tree by depth-first search from left to right.

Thm. 3 (a) shows that our semantics and the ISO semantics result in the
same termination behavior. Moreover, the computations according to the ISO
semantics and our maximal derivations have the same length up to a constant
factor. Thus, our semantics can be used for termination and complexity analysis
of Prolog. Thm. 3 (b) states that our semantics and the ISO semantics lead to
the same program errors and in (c), we show that the two semantics compute

13 See Appendix C for a more formal definition.
14 In other words, even for built-in predicates p, the evaluation of an atom p(t1, . . . , tn)

counts as at least one unification step. For example, this is needed to ensure that
the execution of queries like “repeat, fail” has length ∞.
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the same answer substitutions (up to variable renaming).15

Theorem 3 (Equivalence of Our Semantics and the ISO Semantics).
Consider a a Prolog program and a query Q.

(a) Let ℓ be the length of Q’s execution according to our semantics in Def. 2 and
let k be the length of Q’s execution according to the ISO semantics. Then
we have k ≤ ℓ ≤ 3 · k + 1. So in particular we also obtain ℓ = ∞ iff k = ∞
(i.e., the two semantics have the same termination behavior).

(b) Q leads to a program error according to our semantics in Def. 2 iff Q leads
to a program error according to the ISO semantics.

(c) Q leads to a (finite or infinite) list of answer substitutions δ0, δ1, . . . accord-
ing to our semantics in Def. 2 iff Q leads to a list of answer substitutions
θ0, θ1, . . . according to the ISO semantics, where the two lists have the same
length n ∈ N ∪ {∞} and for each i < n, there exists a variable renaming τi
such that for all variables X in the query Q, we have Xθi = Xδi τi.

(p(b))∅ |?0

Case (p(b))
p(a)
∅

|?1 |?0

Backtrack ?1 |?0

Failure ?0

Failure ε

Fig. 12. Evaluation for p(b)

To see why we do not have ℓ = k in Thm.
3(a), consider again the program with the fact p(a)
and the query p(b). While the ISO semantics only
needs k = 1 unification attempt, our semantics
uses 3 steps to model the failure of this proof.
Moreover, in the end we need one additional step
to remove the marker ?0 constructed in the initial
state. The evaluation is shown in Fig. 12, where
we omitted the catch-contexts and the components for dynamic predicates and
answer substitutions for readability. So in this example, we have ℓ = 3 ·k+1 = 4.

8 Conclusion

We have presented a new operational semantics for full Prolog (as defined in the
corresponding ISO standard [11, 14]) including the cut, “all solution” predicates
like findall, dynamic predicates, and exception handling. Our semantics is modu-
lar (i.e., easy to adapt to subsets of Prolog) and linear resp. local (i.e., derivations
are lists instead of trees and even the cut and exceptions are local operations
where the next state in a derivation only depends on the previous state).

We have proved that our semantics is equivalent to the semantics based on
search trees defined in the ISO standard w.r.t. both termination behavior and
computed answer substitutions. Furthermore, the number of derivation steps in
our semantics is equal to the number of unifications needed for the ISO semantics
(up to a constant factor). Hence, our semantics is suitable for (possibly auto-
mated) analysis of Prolog programs, for example for static analysis of termination
and complexity using an abstraction of the states in our semantics as in [20, 21].

In [20, 21], we already successfully used a subset of our new semantics for
automated termination analysis of definite logic programs with cuts. In future

15 Moreover, the semantics are also equivalent w.r.t. the side effects of a program (like
the changes of the dynamic clauses, input and output, etc.).
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work, we will extend termination analysis to deal with all our inference rules in
order to handle full Prolog as well as to use the new semantics for asymptotic
worst-case complexity analysis. We further plan to investigate uses of our se-
mantics for debugging and tracing applications exploiting linearity and locality.
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20. P. Schneider-Kamp, J. Giesl, T. Ströder, A. Serebrenik, and R. Thiemann. Auto-

mated termination analysis for logic programs with cut. In ICLP ’10, Theory and

Practice of Logic Programming, 10(4-6):365–381, 2010.
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Appendices

Appendix A introduces all further notions and notations needed to define our
semantics. Then the set of all inference rules with all features of full Prolog is
given in Appendix B. These rules are grouped according to the classification of
built-in predicates in [11]. In Appendix C, we briefly recapitulate the operational
semantics of Prolog according to the ISO standard in [11] and then prove the
equivalence between our semantics and the ISO semantics.

A Further Notions and Notations

To handle full Prolog, we extend our states by two additional components: an
environment E and a finite set of user-defined predicate indicators PI. Most
components of the states are only needed for very specific inference rules. Hence,
to increase readability, we now denote a state as 〈S ; M〉 where S is a sequence
of goals and M is a 4-tuple (D, E ,PI, A). Furthermore, we add a special state
HALT to our set of states to indicate that a halting predicate (halt/0 or halt/1)
was executed.

Moreover, we use some further notations and concepts established in the ISO
standard for Prolog. For further details we refer to [11, 14]. We denote the set
of integers by I and the set of floats by F. A number is either an integer or a
float. A constant is either a number or an atom, where the latter corresponds
to the name of a function symbol (which is not a number). The ISO standard
also defines several character sets from which atoms can be built. If only one
character forms an atom, it is also called a one-char atom. Characters itself
cannot be arguments of terms in Prolog. Therefore, one-char atoms are often
used for character processing. Additionally, each one-char atom is assigned an
integer as its atom code. For characters, the same assignment is made (i.e., the
character code of a character is the same as the atom code for the one-char
atom formed by that character). A list is a term .(t1, .(t2, . . . .(tn, [ ]) . . . )), often
written as [t1, t2, . . . , tn]. A partial list is a term .(t1, .(t2, . . . .(tn, X) . . . )) where
X is a variable, often written as [t1, t2, . . . , tn | X]. A term is callable if it is
no variable and does not have a number at a predication position. A clause can
either be private or public. All dynamic clauses must be public while the static
clauses are private by default. However, they can be defined being public by the
directive public/1. As we do not consider the preparation of a Prolog program
for execution, but assume to be given an already prepared program, we only use
an additional set Ppublic ⊆ P to mark those static predicates which are public.
As this set remains unchanged during execution, we do not add it to our states,
but treat it analogously to the set of static clauses P. The evaluate function
is used to evaluate arithmetic operations and is defined according to [11, 13,
14]. In particular, it leaves the order of argument evaluations implementation-
defined. If the arithmetic evaluation results in an error, the function evaluate
returns a special error value which is not in I, F, or {true, false}. Thus, the
rules for built-in predicates for arithmetic comparisons are only applicable if the
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arithmetic evaluation does not lead to an error. The term precedes relation is
used to specify an order between terms in Prolog and is defined according to [11,
14]. In particular, it leaves the order of variables implementation-defined.

The environment E contains the operator table, the character conversion ta-
ble, the Prolog flags, and the input and output streams. We refrain from repeating
all details about the environment and the side effects performed for the built-in
predicates dealing with it. Instead, we refer to [11, 14] and only mention in our
rules for these predicates that they perform the same side effects. However, in
order to consider all error conditions for built-in predicates, we sometimes refer
to some parts and concepts of the environment. For each stream there is an
implementation-dependent stream-term associated with the stream. Moreover,
there might also be other terms denoting this stream as alias terms. We con-
sider both kinds of such terms as “terms denoting a stream”. A stream has two
special positions, namely the end-of-stream position and the past-end-of-stream
position. These positions are used in some conditions for our rules.

A predicate indicator is an expression p/a where p is an atom and a is an
integer with 0 ≤ a ≤ maxarity , the latter being an implementation-defined inte-
ger denoting the maximal arity a function symbol may have. The set PI stores
all predicate indicators of user-defined predicates. In the initial state, it contains
all predicate indicators of the heads of the program clauses (both dynamic and
static). Every time a clause is asserted, the corresponding predicate indicator is
added to the set PI. However, retracting does not cause any alterations of this
set, since it is possible to have no clauses for a predicate, but Prolog still con-
siders it as a known user-defined predicate. Only abolishing the corresponding
predicate indicator removes it from the set PI.

According to the extensions introduced in this appendix, the initial state for
a query Q and a program with static clauses P and dynamic clauses D is now
defined as 〈Q[!/!0] | ?0 ; (D ; E ; {root(h) | h :−B ∈ P | D} ; ε) 〉 where D
results from D by labeling all clauses in D with pairwise different fresh natural
numbers and E is the implementation-dependent initial environment.

As an additional notation, we sometimes write s ∼ t if s and t are two terms
which are unifiable, but we are not interested in a particular unifier.

B Full Rule Set

B.1 Definite Logic Programming

(t, Q)δ,C | S ; (D, E ,PI, A)

(t, Q)
c1[!/!m]
δ,C | · · · | (t, Q)

ca[!/!m]
δ,C | ?m | S ; (D, E ,PI, A)

(Case)

if root(t) ∈ PI, Slice(P|D)(t) = (c1, . . . , ca) with a ≥ 0, D is D without clause
labels, and m is fresh
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�δ,ε | S ; (D, E ,PI, A)

S ; (D, E ,PI, A | δ)
(Success)

if S does not contain any findall-suspension of the form %r,ℓ,s
Q,δ′,C

?m | S ; M

S ; M
(Failure)

(t, Q)h :-B
δ,C | S ; M

S ; M
(Backtrack) if mgu(t, h) = fail

(t, Q)h :-B
δ,C | S ; M

(Bσ,Qσ)δσ,C | S ; M
(Eval) if σ = mgu(t, h)

(t, Q)δ,C | S ; M

S ; M
(UnknownFailure)

if root(t) is neither a built-in predicate nor belongs to the set PI and the flag
unknown has the value failure

(t, Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(UnknownWarning)

if root(t) is neither a built-in predicate nor belongs to the set PI, the flag
unknown has the value warning, and E ′ results from E according to the side

effects described in [11, 14]

B.2 Logic and Control

(call(t), Q)δ,C | S ; M

(t[V/call(V), !/!m], Q)δ,C | ?m | S ; M
(Call) if t is callable

and m is fresh

(catch(t, c, r), Q)δ,C | S ; M

call(t)∅,C|(m,c,r,Q,δ) | ?m | S ; M
(Catch) if m is fresh and

t is callable

�θ,C|(m,c,r,Q,δ) | S
′ | ?m | S ; M

(Qθ)δθ,C | S
′ | ?m | S ; M

(CatchNext) if S′ contains no
findall-suspensions

(′,′ (t1, t2), Q)δ,C | S ; M

(t1, t2, Q)δ,C | S ; M
(Conj)

(!m, Q)δ,C | S
′ | ?m | S ; M

Qδ,C | ?m | S ; M
(Cut)

(′;′ (t1, t2), Q)δ,C | S ; M

(t1, Q)δ,C | (t2, Q)δ,C | S ; M
(Disj) if root(t1) 6= ->/2
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(t, Q)δ,C | S ; M

(throw(e), Q)δ,C | S ; M
(Error)

if t satisfies at least one error condition according to [11, 14] and e is the
corresponding error term

(fail, Q)δ,C | S ; M

S ; M
(Fail)

(halt, Q)δ,C | S ; M

HALT
(Halt)

(halt(t), Q)δ,C | S ; M

HALT
(Halt1) if t ∈ I

(′->′(t1, t2), Q)δ,C | S ; M

(call(t1), !m, t2, Q)δ,C | ?m | S ; M
(IfThen) if m ∈ N is fresh

(′;′ (′->′(t1, t2), t3), Q)δ,C | S ; M

(call(t1), !m, t2, Q)δ,C | t3, Q)δ,C | ?m | S ; M
(IfThenElse) if m ∈ N is fresh

(\+(t), Q)δ,C | S ; M

(call(t), !m, fail)δ,C | Q δ,C | ?m | S ; M
(Not) if t is callable and

m ∈ N fresh

(once(t), Q)δ,C | S ; M

(call(′,′ (t, !)), Q)δ,C | S ; M
(Once) if t is callable

(repeat, Q)δ,C | S ; M

Q δ,C | (repeat, Q)δ,C | S ; M
(Repeat)

(throw(e), Q)θ,C|(m,c,r,Q′,δ) | S
′ | ?m | S ; M

(throw(e), Q)θ,C | S ; M
(ThrowNext)

if e /∈ V and mgu(c, e′) = fail for a fresh variant e′ of e

(throw(e), Q)θ,C|(m,c,r,Q′,δ) | S
′ | ?m | S ; M

(call(rσ), Q′σ)δσ,C | S ; M
(ThrowSuccess)

if e /∈ V and σ = mgu(c, e′) for a fresh variant e′ of e

(throw(e), Q)θ,ε | S ; M

ERROR
(ThrowErr) if e /∈ V

(true, Q)δ,C | S ; M

Q δ,C | S ; M
(True)
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B.3 All Solutions

(findall(r, t, s), Q)δ,C | S ; M

call(t)∅,C | %
r,[ ],s
Q,δ,C | S ; M

(Findall)
if t is callable, and s is either
a variable, a partial list, or a
list

%r,ℓ,s
Q,δ,C | S ; M

(ℓ=s,Q)δ,C | S ; M
(FoundAll)

�θ,C | S
′ | %r,ℓ,s

Q,δ,C′ | S ; M

S′ | %
r,ℓ|rθ,s
Q,δ,C′ | S ; M

(FindNext)

if S′ contains no findall-suspensions and

(C is either empty or else its last element
is (m, c, r,Q, δ) and S′ contains no ?m )

(bagof(r, b, ℓ), Q)δ,C | S ; M

findall([f(X1, . . . , Xn), r], t, Y )∅,C | $
ℓ
Q,δ,C | S ; M

(Bagof)

if b = ∧(t1,
∧(t2,

∧(. . . , ∧(tm, t) . . . ))) for some m ≥ 0 and root(t) 6= ∧/2,
V(t) \ (

⋃m
i=1 V(ti)) = {X1, . . . , Xn}, Y ∈ V is fresh, t is callable, and ℓ is either

a variable, a partial list, or a list

%r,ℓ,s
�,∅,C | $

ℓ′

Q,δ,C | S ; M

$ℓ
′,sσ
Q,δ,C | S ; M

(FoundBag) if σ = mgu(ℓ, s)

$ℓ,sQ,δ,C | S ; M

(ℓσ = ℓ′, Qσ)δσ,C | $
ℓ,s′

Q,δ,C | S ; M
(NextBag)

if [w, t] is some element16 of s and the sublist s′′ of s consists of all elements
[w′, t′] of s such that w and w′ are variants (the order of these elements in s′′ is
the same as in s), the substitution σ is the mgu of all w′ such that there is some
[w′, t′] in s′′, the list ℓ′ consists of all terms t′σ such that there is some [w′, t′]
in s′′ (the order of the elements in ℓ′ corresponds to the order of the elements
in s′′), and s′ is the list resulting from removing all elements in s′′ from s

$
ℓ,[ ]
Q,δ,C | S ; M

S ; M
(EmptyBag)

(setof(r, b, ℓ), Q)δ,C | S ; M

findall([f(X1, . . . , Xn), r], t, Y )∅,C | &
ℓ
Q,δ,C | S ; M

(Setof)

if b = ∧(t1,
∧(t2,

∧(. . . , ∧(tm, t) . . . ))) for some m ≥ 0 and root(t) 6= ∧/2,
V(t) \ (

⋃m
i=1 V(ti)) = {X1, . . . , Xn}, Y ∈ V is fresh, t is callable, and ℓ is either

a variable, a partial list, or a list

16 The choice is undefined according to [11, 14].
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%r,ℓ,s
�,∅,C | &

ℓ′

Q,δ,C | S ; M

&ℓ′,sσ
Q,δ,C | S ; M

(FoundSet) if σ = mgu(ℓ, s)

&ℓ,s
Q,δ,C | S ; M

(ℓσ = ℓ′, Qσ)δσ,C | &
ℓ,s′

Q,δ,C | S ; M
(NextSet)

if [w, t] is some element17 of s and the sublist s′′ of s consists of all elements
[w′, t′] of s such that w and w′ are variants where duplicates are removed from
s′′ and s′′ is ordered according to the term precedes order, the substitution σ is
the mgu of all w′ such that there is some [w′, t′] in s′′, the list ℓ′ consists of all
terms t′σ such that there is some [w′, t′] in s′′ (the order of the elements in ℓ′

corresponds to the order of the elements in s′′), and s′ is the list resulting from
removing all elements in s′′ from s

&
ℓ,[ ]
Q,δ,C | S ; M

S ; M
(EmptySet)

B.4 Clause Creation and Destruction

(abolish(p/a), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D′, E ,PI \ {p/a}, A)
(Abolish)

if p is an atom, a is an integer with 0 ≤ a ≤ maxarity , p/a is not a static
predicate, and D′ results from D by removing all clauses whose heads have the

root symbol p/a

(asserta(c), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; ((h :−B′,m) | D, E ,PI ∪ {root(h)}, A)
(AssA)

if ((root(c) = :−/2 and c = h :−B) or (root(c) 6= :−/2, h = c and B = true)),
m ∈ N is fresh, h and B′ := B[V/call(V)] are callable, and root(h) is not a

static predicate. Here, we assume that root(h) also returns the arity of h’s root
symbol.

(assertz(c), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D | (h :−B′,m), E ,PI ∪ {root(h)}, A)
(AssZ)

if ((root(c) = :−/2 and c = h :−B) or (root(c) 6= :−/2, h = c and B = true)),
m ∈ N is fresh, h and B′ := B[V/call(V)] are callable, and root(h) is not a

static predicate. Here, we assume that root(h) also returns the arity of h’s root
symbol.

17 The choice is undefined according to [11, 14].
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(retract(c), Q)δ,C | S ; M

6:−
h :-B,(c1,m1)
Q,δ,C | · · · | 6:−

h :-B,(ca,ma)
Q,δ,C | S ; M

(Retract)

if ((root(c) = :−/2 and c = h :−B) or (root(c) 6= :−/2, h = c and B = true)), h
is callable, root(h) is not a static predicate, and

SliceD(h) = ((c1,m1), . . . , (ca,ma))

6:−
c,(c′,m)
Q,δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D \ (c′,m), E ,PI, A)
(RetSuc) if σ = mgu(c, c′)

6:−
c,(c′,m)
Q,δ,C | S ; M

S ; M
(RetFail) if mgu(c, c′) = fail

B.5 Arithmetic Comparison

(′⊲′(t1, t2), Q)δ,C | S ; M

Q δ,C | S ; M
(ArithCompSuc)

if evaluate(′⊲′(t1, t2)) = true, ⊲ ∈ {=:=,=\=, >,>=, <,=<}.

(′⊲′(t1, t2), Q)δ,C | S ; M

S ; M
(ArithCompFail)

if evaluate(′⊲′(t1, t2)) = false, ⊲ ∈ {=:=,=\=, >,>=, <,=<}.

B.6 Arithmetic Evaluation

(is(t1, t2), Q)δ,C | S ; M

S ; M
(IsFail)

if evaluate(t2) = v ∈ I ∪ F and
mgu(t1, v) = fail

(is(t1, t2), Q)δ,C | S ; M

Qσ δσ,C | S ; M
(IsSuccess)

if evaluate(t2) = v ∈ I ∪ F and
mgu(t1, v) = σ

B.7 Atomic Term Processing

(atom chars(t1, t2), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(AtomCharsSuc)

if (t1 is an atom, ℓ is the list of one-char atoms identical to the sequence of
characters of the name of t1, and σ = mgu(ℓ, t2)) or (t1 ∈ V, t2 is a list of
one-char atoms, a is the atom whose name is the sequence of the one-char

atoms in t2, and σ = {t1/a})
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(atom chars(t1, t2), Q)δ,C | S ; M

S ; M
(AtomCharsFail)

if t1 is an atom, ℓ is the list of one-char atoms identical to the sequence of
characters of the name of t1, and mgu(ℓ, t2) = fail

(atom codes(t1, t2), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(AtomCodesSuc)

if (t1 is an atom, ℓ is the list of atom codes whose corresponding one-char
atoms form the name of t1, and σ = mgu(ℓ, t2)) or (t1 ∈ V, t2 is a list of atom
codes, a is the atom whose name is the sequence of the one-char atoms whose

atom codes are in t2, and σ = {t1/a})

(atom codes(t1, t2), Q)δ,C | S ; M

S ; M
(AtomCodesFail)

if t1 is an atom, ℓ is the list of atom codes whose corresponding one-char atoms
form the name of t1, and mgu(ℓ, t2) = fail

(atom concat(t1, t2, t3), Q)δ,C | S ; M

(s1 = r,Q)δ,C | . . . | (sn = r,Q)δ,C | S ; M
(AtomConcat)

if (t3 is an atom, t1 and t2 are variables or atoms, there are n pairs of atoms
(ai, bi) such that the characters forming t3 are the characters forming ai
followed by the characters forming bi, r = (t1, t2), and si = (ai, bi) for all

i ∈ {1, . . . , n}) or (t3 is a variable, t1 and t2 are atoms, n = 1, r = t3, and s1 is
the atom formed by the characters forming t1 followed by the characters

forming t2)

(atom length(t1, t2), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(AtomLengthSuc)

if t1 is an atom, t2 is a variable or a non-negative integer, n is the number of
characters forming t1, and σ = mgu(n, t2)

(atom length(t1, t2), Q)δ,C | S ; M

S ; M
(AtomLengthFail)

if t1 is an atom, t2 is a non-negative integer, n is the number of characters
forming t1, and mgu(n, t2) = fail

(char code(t1, t2), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(CharCodeSuc)

if (t1 is a one-char atom, t2 is a variable or an integer corresponding to a
character code, n is the character code for t1, and σ = mgu(n, t2)) or (t1 is a
variable, t2 is an integer corresponding to a character code, a is the character

corresponding to t2, and σ = {t1/a})
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(char code(t1, t2), Q)δ,C | S ; M

S ; M
(CharCodeFail)

if t1 is an atom, t2 is an integer corresponding to a character code, n is the
character code for t1, and mgu(n, t2) = fail

(number chars(t1, t2), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(NumberCharsSuc)

if (t2 is a list of one-char atoms which is parsable as the number n, t2 is a
variable or a number, and σ = mgu(n, t2)) or (t2 is not a list of one-char atoms,
t1 is a number, ℓ is the list corresponding to the characters being output by

write canonical(t1), and σ = mgu(ℓ, t2))

(number chars(t1, t2), Q)δ,C | S ; M

S ; M
(NumberCharsFail)

if (t2 is a list of one-char atoms which is parsable as the number n, t2 is a
number, and mgu(n, t2) = fail) or (t2 is not a list of one-char atoms, t1 is a

number, ℓ is the list corresponding to the characters being output by
write canonical(t1), and mgu(ℓ, t2) = fail)

(number codes(t1, t2), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(NumberCodesSuc)

if (t2 is a list of character codes whose corresponding characters are parsable as
the number n, t2 is a variable or a number, and σ = mgu(n, t2)) or (t2 is not a

list of character codes, t1 is a number, ℓ is the list of character codes
corresponding to the characters being output by write canonical(t1), and

σ = mgu(ℓ, t2))

(number codes(t1, t2), Q)δ,C | S ; M

S ; M
(NumberCodesFail)

if (t2 is a list of character codes whose corresponding characters are parsable as
the number n, t2 is a number, and mgu(n, t2) = fail) or (t2 is not a list of

character codes, t1 is a number, ℓ is the list of character codes corresponding to
the characters being output by write canonical(t1), and mgu(ℓ, t2) = fail)

(sub atom(t, b, ℓ, a, s), Q)δ,C | S ; M

((b1, ℓ1, a1, s1) = (b, ℓ, a, s), Q)δ,C | . . . |
((bn, ℓn, an, sn) = (b, ℓ, a, s), Q)δ,C | S ; M

(SubAtom)

if t is an atom, b, ℓ and a are non-negative integers or variables, s is an atom or
a variable, (b1, ℓ1, a1, s1), . . . , (bn, ℓn, an, sn) is the sorted list (according to the

term precedes relation) of all tuples (bi, ℓi, ai, si) such that si is an atom
formed by ℓi characters and there are atoms t1i and t2i consisting of bi and ai

characters with t formed by the characters of t1i followed by the characters of si
and then followed by the characters of t2i
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B.8 Byte Input/Output

(get byte(t), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(GetByte1Suc)

if s is the current input stream with appropriate properties according to [11,
14], t is a variable or a byte or −1, E ′ results from E according to the side

effects described in [11, 14], b is the next byte to be input from s or −1 in case
that s is at the end-of-stream position, and σ = mgu(b, t)

(get byte(t), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(GetByte1Fail)

if s is the current input stream with appropriate properties according to [11,
14], t is a byte or −1, E ′ results from E according to the side effects described
in [11, 14], b is the next byte to be input from s or −1 in case that s is at the

end-of-stream position, and mgu(b, t) = fail

(get byte(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S(D, E
′,PI, A)

(GetByte2Suc)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is a variable or a byte or −1, E ′ results from E according to the side
effects described in [11, 14], b is the next byte to be input from s or −1 in case

that s is at the end-of-stream position, and σ = mgu(b, t2)

(get byte(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(GetByte2Fail)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is a byte or −1, E ′ results from E according to the side effects

described in [11, 14], b is the next byte to be input from s or −1 in case that s
is at the end-of-stream position, and mgu(b, t2) = fail

(peek byte(t), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(PeekByte1Suc)

if s is the current input stream with appropriate properties according to [11,
14], t is a variable or a byte or −1, E ′ results from E according to the side

effects described in [11, 14], b is the next byte to be input from s or −1 in case
that s is at the end-of-stream position, and σ = mgu(b, t)

(peek byte(t), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(PeekByte1Fail)

if s is the current input stream with appropriate properties according to [11,
14], t is a byte or −1, E ′ results from E according to the side effects described
in [11, 14], b is the next byte to be input from s or −1 in case that s is at the

end-of-stream position, and mgu(b, t) = fail
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(peek byte(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(PeekByte2Suc)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is a variable or a byte or −1, E ′ results from E according to the side
effects described in [11, 14], b is the next byte to be input from s or −1 in case

that s is at the end-of-stream position, and σ = mgu(b, t2)

(peek byte(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(PeekByte2Fail)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is a byte or −1, E ′ results from E according to the side effects

described in [11, 14], b is the next byte to be input from s or −1 in case that s
is at the end-of-stream position, and mgu(b, t2) = fail

(put byte(t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(PutByte1)

if the current output stream has appropriate properties according to [11, 14], t
is a byte, and E ′ results from E according to the side effects described in [11, 14]

(put byte(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(PutByte2)

if t1 is a term denoting a stream with appropriate properties according to [11,
14], t2 is a byte, and E ′ results from E according to the side effects described in

[11, 14]

B.9 Character Input/Output

(get char(t), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(GetChar1Suc)

if s is the current input stream with appropriate properties according to [11,
14], t is a variable or a one-char atom or the atom end of file, E ′ results from E
according to the side effects described in [11, 14], c is a one-char atom formed
by the next character to be input from s or end of file in case that s is at the

end-of-stream position, and σ = mgu(c, t2)

(get char(t), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(GetChar1Fail)

if s is the current input stream with appropriate properties according to [11,
14], t is a one-char atom or the atom end of file, E ′ results from E according to
the side effects described in [11, 14], c is a one-char atom formed by the next

character to be input from s or end of file in case that s is at the end-of-stream
position, and mgu(c, t) = fail
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(get char(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(GetChar2Suc)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is a variable or a one-char atom or the atom end of file, E ′ results
from E according to the side effects described in [11, 14], c is a one-char atom
formed by the next character to be input from s or end of file in case that s is

at the end-of-stream position, and σ = mgu(c, t2)

(get char(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(GetChar2Fail)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is a one-char atom or the atom end of file, E ′ results from E

according to the side effects described in [11, 14], c is a one-char atom formed
by the next character to be input from s or end of file in case that s is at the

end-of-stream position, and mgu(c, t2) = fail

(get code(t), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(GetCode1Suc)

if s is the current input stream with appropriate properties according to [11,
14], t is a variable or an integer corresponding to a character code or −1, E ′

results from E according to the side effects described in [11, 14], c is the
character code of the next character to be input from s or −1 in case that s is

at the end-of-stream position, and σ = mgu(c, t2)

(get code(t), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(GetCode1Fail)

if s is the current input stream with appropriate properties according to [11,
14], t is an integer corresponding to a character code or −1, E ′ results from E
according to the side effects described in [11, 14], c is the character code of the
next character to be input from s or −1 in case that s is at the end-of-stream

position, and mgu(c, t) = fail

(get code(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(GetCode2Suc)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is a variable or an integer corresponding to a character code or −1,
E ′ results from E according to the side effects described in [11, 14], c is the

character code of the next character to be input from s or −1 in case that s is
at the end-of-stream position, and σ = mgu(c, t2)
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(get code(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(GetCode2Fail)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is an integer corresponding to a character code or −1, E ′ results

from E according to the side effects described in [11, 14], c is the character code
of the next character to be input from s or −1 in case that s is at the

end-of-stream position, and mgu(c, t2) = fail

(peek char(t), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(PeekChar1Suc)

if s is the current input stream with appropriate properties according to [11,
14], t is a variable or a one-char atom or the atom end of file, E ′ results from E
according to the side effects described in [11, 14], c is a one-char atom formed
by the next character to be input from s or end of file in case that s is at the

end-of-stream position, and σ = mgu(c, t2)

(peek char(t), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(PeekChar1Fail)

if s is the current input stream with appropriate properties according to [11,
14], t is a one-char atom or the atom end of file, E ′ results from E according to
the side effects described in [11, 14], c is a one-char atom formed by the next

character to be input from s or end of file in case that s is at the end-of-stream
position, and mgu(c, t) = fail

(peek char(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(PeekChar2Suc)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is a variable or a one-char atom or the atom end of file, E ′ results
from E according to the side effects described in [11, 14], c is a one-char atom
formed by the next character to be input from s or end of file in case that s is

at the end-of-stream position, and σ = mgu(c, t2)

(peek char(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(PeekChar2Fail)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is a one-char atom or the atom end of file, E ′ results from E

according to the side effects described in [11, 14], c is a one-char atom formed
by the next character to be input from s or end of file in case that s is at the

end-of-stream position, and mgu(c, t2) = fail
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(peek code(t), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(PeekCode1Suc)

if s is the current input stream with appropriate properties according to [11,
14], t is a variable or an integer corresponding to a character code or −1, E ′

results from E according to the side effects described in [11, 14], c is the
character code of the next character to be input from s or −1 in case that s is

at the end-of-stream position, and σ = mgu(c, t2)

(peek code(t), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(PeekCode1Fail)

if s is the current input stream with appropriate properties according to [11,
14], t is an integer corresponding to a character code or −1, E ′ results from E
according to the side effects described in [11, 14], c is the character code of the
next character to be input from s or −1 in case that s is at the end-of-stream

position, and mgu(c, t) = fail

(peek code(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(PeekCode2Suc)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is a variable or an integer corresponding to a character code or −1,
E ′ results from E according to the side effects described in [11, 14], c is the

character code of the next character to be input from s or −1 in case that s is
at the end-of-stream position, and σ = mgu(c, t2)

(peek code(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(PeekCode2Fail)

if t1 is a term denoting a stream s with appropriate properties according to
[11, 14], t2 is an integer corresponding to a character code or −1, E ′ results

from E according to the side effects described in [11, 14], c is the character code
of the next character to be input from s or −1 in case that s is at the

end-of-stream position, and mgu(c, t2) = fail

(put char(t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(PutChar1)

if the current output stream has appropriate properties according to [11, 14], t
is a one-char atom representing a character, and E ′ results from E according to

the side effects described in [11, 14]
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(put char(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(PutChar2)

if t1 is a term denoting a stream with appropriate properties according to [11,
14], t2 is a one-char atom representing a character, and E ′ results from E

according to the side effects described in [11, 14]

(put code(t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(PutCode1)

if the current output stream has appropriate properties according to [11, 14], t
is an integer corresponding to a character code, and E ′ results from E

according to the side effects described in [11, 14]

(put code(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(PutCode2)

if t1 is a term denoting a stream with appropriate properties according to [11,
14], t2 is an integer corresponding to a character code, and E ′ results from E

according to the side effects described in [11, 14]

(nl, Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(Newline)

if the current output stream has appropriate properties according to [11, 14]
and E ′ results from E according to the side effects described in [11, 14]

(nl(t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(Newline1)

if t is a term denoting a stream with appropriate properties according to [11,
14] and E ′ results from E according to the side effects described in [11, 14]

B.10 Clause Retrieval and Information

(clause(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

((t1, t2) = (h1, B1), Q)δ,C | . . . |
((t1, t2) = (hn, Bn), Q)δ,C | S ; (D, E ,PI, A)

(Clause)

if t1 is a callable term, t2 is a variable or a callable term, and
Slice(Ppublic |D)(t1) = (h1 :−B1, . . . , hn :−Bn)

(current predicate(t), Q)δ,C | S ; (D, E ,PI, A)

(t = p1/a1, Q)δ,C | . . . |
(t = pn/an, Q)δ,C | S ; (D, E ,PI, A)

(CurrentPredicate)

if t is a variable or t = p/a with p being an atom and a being an integer with
0 ≤ a ≤ maxarity , and PI = {p1/a1, . . . , pn/an}

18

18 The order of the pi/ai is implementation-defined according to [11, 14].
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B.11 Flag Updates

(current prolog flag(t1, t2), Q)δ,C | S ; M

((t1, t2) = (f1, v1), Q)δ,C | . . . |
((t1, t2) = (fn, vn), Q)δ,C | S ; M

(CurrentFlag)

if t1 is a variable or an atom and the environment contains the flags f1, . . . , fn
with associated values v1, . . . , vn

19

(set prolog flag(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(SetFlag)

if t1 is an atom denoting a valid modifiable flag according to [11, 14], t2 is an
appropriate value for the flag t1 (in particular, it is no variable), and E ′ results

from E according to the side effects described in [11, 14]

B.12 Stream Selection and Control

(at end of stream, Q)δ,C | S ; M

Qδ,C | S ; M
(EOSSuc)

if the current input stream is at the stream position end of stream or
past end of stream

(at end of stream, Q)δ,C | S ; M

S ; M
(EOSFail)

if the current input stream is not at the stream position end of stream or
past end of stream

(at end of stream(t), Q)δ,C | S ; M

Qδ,C | S ; M
(EOS1Suc)

if t is a term denoting a stream which is at the stream position end of stream
or past end of stream

(at end of stream(t), Q)δ,C | S ; M

S ; M
(EOS1Fail)

if t is a term denoting a stream which is not at the stream position
end of stream or past end of stream

(close(s), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(Close1)

if s is a term denoting a stream with appropriate properties according to [11,
14] and E ′ results from E according to the side effects described in [11, 14]

19 The order of the flags is implementation-dependent according to [11, 14].
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(close(s, [o1, . . . , on]), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(Close2)

if s is a term denoting a stream with appropriate properties according to [11,
14], n ≥ 0, oi is an appropriate close-option according to [11, 14] for all

i ∈ {1, . . . , n}, and E ′ results from E according to the side effects described in
[11, 14]

(current input(t), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(CurrentInputSuc)

if t is a variable or a term denoting a stream according to [11, 14], s is the
stream-term of the current input stream, and σ = mgu(s, t)

(current input(t), Q)δ,C | S ; M

S ; M
(CurrentInputFail)

if t is a term denoting a stream according to [11, 14], s is the stream-term of
the current input stream, and mgu(s, t) = fail

(current output(t), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(CurrentOutputSuc)

if t is a variable or a term denoting a stream according to [11, 14], s is the
stream-term of the current output stream, and σ = mgu(s, t)

(current output(t), Q)δ,C | S ; M

S ; M
(CurrentOutputFail)

if t is a term denoting a stream according to [11, 14], s is the stream-term of
the current output stream, and mgu(s, t) = fail

(flush output, Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(FlushOutput)

if the current output stream has appropriate properties according to [11, 14]
and E ′ results from E according to the side effects described in [11, 14]

(flush output(t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(FlushOutput1)

if t is a term denoting a stream with appropriate properties according to [11,
14] and E ′ results from E according to the side effects described in [11, 14]

(open(s,m,X), Q)δ,C | S ; (D, E ,PI, A)

(Q{X/t})δ{X/t},C | S ; (D, E ′,PI, A)
(Open3)

if s is a source or sink with appropriate properties according to [11, 14], m is an
atom denoting an appropriate mode, X is a variable, t is the stream-term

which is to be associated with the stream for s, and E ′ results from E according
to the side effects described in [11, 14]
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(open(s,m,X, [o1, . . . , on]), Q)δ,C | S ; (D, E ,PI, A)

(Q{X/t})δ{X/t},C | S ; (D, E ′,PI, A)
(Open4)

if s is a source or sink with appropriate properties according to [11, 14], m is an
atom denoting an appropriate mode, X is a variable, n ≥ 0, oi is an

appropriate stream-option according to [11, 14] for all i ∈ {1, . . . , n}, t is the
stream-term which is to be associated with the stream for s, and E ′ results

from E according to the side effects described in [11, 14]

(set input(t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(SetInput)

if t is a term denoting a stream with appropriate properties according to [11,
14] and E ′ results from E according to the side effects described in [11, 14]

(set output(t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(SetOutput)

if t is a term denoting a stream with appropriate properties according to [11,
14] and E ′ results from E according to the side effects described in [11, 14]

(set stream position(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(SetStreamPos)

if t1 is a term denoting a stream with appropriate properties according to [11,
14], t2 is an appropriate stream position according to [11, 14], and E ′ results

from E according to the side effects described in [11, 14]

(stream property(t1, t2), Q)δ,C | S ; M

((t1, t2) = (s1, p1), Q)δ,C | . . . |
((t1, t2) = (sn, pn), Q)δ,C | S ; M

(StreamProperty)

if t1 is a stream-term according to [11, 14], t2 is a stream property according to
[11, 14], and {(s1, p1), . . . , (sn, pn)} is the set of all pairs such that si is a
currently open stream which has the property pi for all i ∈ {1, . . . , n}

20

B.13 Term Comparison

(′⊲′(t1, t2), Q)α,C | S ; M

Q α,C | S ; M
(TermCompSuc)

and if ⊲ ∈ {@>,@>=,==,@<,@=<, \==} and the condition Cond holds
according to Table 1.

(′⊲′(t1, t2), Q)α,C | S ; M

S ; M
(TermCompFail)

and if ⊲ ∈ {@>,@>=,==,@<,@=<, \==} and the condition Cond does not
hold according to Table 1.

20 The order of the pairs (si, pi) is implementation-dependent according to [11, 14].
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⊲ Cond

@> term precedes(t2, t1)

@>= term precedes(t2, t1) ∨ t1 = t2

== t1 = t2

@< term precedes(t1, t2)

@=< term precedes(t1, t2) ∨ t1 = t2

\== t1 6= t2

Table 1. Term Comparison Predicates (′ ⊲′ (t1, t2))

B.14 Term Creation and Decomposition

(arg(n, f(t1, . . . , tk), t), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(ArgSuc)

if n is an integer
with 0 < n ≤ k and
σ = mgu(tn, t)

(arg(n, f(t1, . . . , tk), t), Q)δ,C | S ; M

S ; M
(ArgFail)

if n is an integer
with (0 < n ≤
k and mgu(tn, t) =
fail) or n = 0 or
n > k

(copy term(t1, t2), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(CopyTermSuc)

if t′1 is a
fresh vari-
ant of t1 and
σ = mgu(t′1, t2)

(copy term(t1, t2), Q)δ,C | S ; M

S ; M
(CopyTermFail)

if t′1 is a
fresh vari-
ant of t1 and
mgu(t′1, t2) =
fail

(functor(t, p, n), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(FunctorSuc)

if (t = f(t1, . . . , tk) with k ≥ 0 and σ = mgu(p/n, f/k)) or (t is a variable, p is
a constant, n is an integer with 0 ≤ n ≤ maxarity , n = 0 if p is a number, and
σ = {t/p(X1, . . . , Xn)} where X1, . . . , Xn are pairwise different fresh variables)

(functor(f(t1, . . . , tk), p, n), Q)δ,C | S ; M

S ; M
(FunctorFail)

if k ≥ 0 and
mgu(p/n, f/k) =
fail
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(′= ..′(t, ℓ), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(UnivSuc)

if (t = f(t1, . . . , tk) with k ≥ 0, ℓ is a variable, partial list, or a list whose first
element is a variable or a constant (where this first element must be an atom if
the list has a length greater than 1), and σ = mgu([f, t1, . . . , tk], ℓ)) or (t is a
variable, ℓ = [f, a1, . . . , an] with f being an atomic term (an atom if n > 0),

0 ≤ n ≤ maxarity , and σ = {t/f(a1, . . . , an)})

(= ..(f(t1, . . . , tk), ℓ), Q)δ,C | S ; M

S ; M
(UnivFail)

if k ≥ 0, ℓ is a partial list or a list whose first element is a variable or an atomic
term (an atom if the list has a length greater than 1), and

mgu([f, t1, . . . , tk], ℓ) = fail

B.15 Term Unification

(′\=
′
(t1, t2), Q)δ,C | S ; M

Qδ,C | S ; M
(NoUnifySuccess) if mgu(t1, t2) = fail

(′\=
′
(t1, t2), Q)δ,C | S ; M

S ; M
(NoUnifyFail) if t1 ∼ t2

(′=′(t1, t2), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(UnifySuccess) if σ = mgu(t1, t2)

(′=′(t1, t2), Q)δ,C | S ; M

S ; M
(UnifyFail) if mgu(t1, t2) = fail

(unify with occurs check(t1, t2), Q)δ,C | S ; M

(Qσ)δσ,C | S ; M
(UnifyOccurSuc)

if
σ =
mgu(t1, t2)

(unify with occurs check(t1, t2), Q)δ,C | S ; M

S ; M
(UnifyOccurFail)

if
mgu(t1, t2) =
fail

21

21 The ISO standard [11, 14] does not define unification in cases where it makes a differ-
ence whether or not the occurs check is performed. Hence, unify with occurs check/2
behaves identical to =/2. In case one adapts our semantics to use unification without
occurs check in general, the predicate unify with occurs check/2 then still performs
unification with occurs check. However, in the presence of rational terms which may
be constructed due to unification without occurs check, one has also to define how
such terms are handled by this predicate. SWI-Prolog does not terminate when it
calls this predicate on two identical infinite rational terms, for example.
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B.16 Type Testing

ttpred Cond

atom t is an atom

atomic t is a constant

compound t is no constant and no variable

float t ∈ F

integer t ∈ I

nonvar t /∈ V

number t ∈ I ∪ F

var t ∈ V

Table 2. Type Testing Predicates (ttpred(t))

(ttpred(t), Q)δ,C | S ; M

Qδ,C | S ; M
(TypeTestSuc)

if ttpred ∈ {atom, atomic, compound, float, integer, nonvar, number, var} and the
condition Cond holds according to Table 2.

(ttpred(t), Q)δ,C | S ; M

S ; M
(TypeTestFail)

if ttpred ∈ {atom, atomic, compound, float, integer, nonvar, number, var} and the
condition Cond does not hold according to Table 2.

B.17 Term Input/Output

(char conversion(t1, t2), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(CharConv)

if t1 and t2 are one-char atoms and E ′ results from E according to the side
effects described in [11, 14]

(current char conversion(t1, t2), Q)δ,C | S ; M

((t1, t2) = (i1, o1), Q)δ,C | . . . |
((t1, t2) = (in, on), Q)δ,C | S ; M

(CurrentCharConv)
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if t1 and t2 are variables or one-char atoms and {(i1, o1), . . . , (in, on)} is the set
of all current character conversions in the character conversion table according

to [11, 14]22

(current op(m, s, t), Q)δ,C | S ; M

((m, s, t) = (m1, s1, t1), Q)δ,C | . . . |
((m, s, t) = (mn, sn, tn), Q)δ,C | S ; M

(CurrentOp)

if m is an integer between 0 and 1200 (inclusive), s is an atom denoting a valid
operator specifier according to [11, 14], t is an atom, and

{(m1, s1, t1), . . . , (mn, sn, tn)} is the set of all current operator entries in the
operator table

(op(m, s, t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(Op)

if m is an integer between 0 and 1200 (inclusive), s is an atom denoting a valid
operator specifier according to [11, 14], t is an atom or a list of atoms not being
or containing the atom ′,′ and not leading to an invalid operator table, and E ′

results from E according to the side effects described in [11, 14]

(read(t), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(Read1Suc)

if the current input stream s has appropriate properties according to [11, 14], r
is the read-term being input from s, σ = mgu(t, r), and E ′ results from E

according to the side effects described in [11, 14]

(read(t), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(Read1Fail)

if the current input stream s has appropriate properties according to [11, 14], r
is the read-term being input from s, mgu(t, r) = fail , and E ′ results from E

according to the side effects described in [11, 14]

(read(s, t), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(Read2Suc)

if s is a term denoting a stream with appropriate properties according to [11,
14], r is the read-term being input from s, σ = mgu(t, r), and E ′ results from E

according to the side effects described in [11, 14]

22 The order of the pairs (ij , oj) is implementation-dependent according to [11, 14].
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(read(s, t), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(Read2Fail)

if s is a term denoting a stream with appropriate properties according to [11,
14], r is the read-term being input from s, mgu(t, r) = fail , and E ′ results from

E according to the side effects described in [11, 14]

(read term(t, [o1, . . . , on]), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(ReadTerm2Suc)

if the current input stream s has appropriate properties according to [11, 14],
n ≥ 0, oi is an appropriate read-option according to [11, 14] for all

i ∈ {1, . . . , n}, r is the read-term being input from s, θ = mgu(t, r), µ is the
substitution instantiating the read-options o1, . . . , on according to [11, 14],

σ = θµ, and E ′ results from E according to the side effects described in [11, 14]

(read term(t, [o1, . . . , on]), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(ReadTerm2Fail)

if the current input stream s has appropriate properties according to [11, 14],
n ≥ 0, oi is an appropriate read-option according to [11, 14] for all

i ∈ {1, . . . , n}, r is the read-term being input from s, mgu(t, r) = fail , and E ′

results from E according to the side effects described in [11, 14]

(read term(s, t, [o1, . . . , on]), Q)δ,C | S ; (D, E ,PI, A)

(Qσ)δσ,C | S ; (D, E ′,PI, A)
(ReadTerm3Suc)

if s is a term denoting a stream with appropriate properties according to [11,
14], n ≥ 0, oi is an appropriate read-option according to [11, 14] for all

i ∈ {1, . . . , n}, r is the read-term being input from s, θ = mgu(t, r), µ is the
substitution instantiating the read-options o1, . . . , on according to [11, 14],

σ = θµ, and E ′ results from E according to the side effects described in [11, 14]

(read term(s, t, [o1, . . . , on]), Q)δ,C | S ; (D, E ,PI, A)

S ; (D, E ′,PI, A)
(ReadTerm3Fail)

if s is a term denoting a stream with appropriate properties according to [11,
14], n ≥ 0, oi is an appropriate read-option according to [11, 14] for all

i ∈ {1, . . . , n}, r is the read-term being input from s, mgu(t, r) = fail , and E ′

results from E according to the side effects described in [11, 14]

(write(t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(Write1)

if the current output stream s has appropriate properties according to [11, 14]
and E ′ results from E according to the side effects described in [11, 14]
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(write(s, t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(Write2)

if s is a term denoting a stream with appropriate properties according to [11,
14] and E ′ results from E according to the side effects described in [11, 14]

(write canonical(t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(WriteCanonical1)

if the current output stream s has appropriate properties according to [11, 14]
and E ′ results from E according to the side effects described in [11, 14]

(write canonical(s, t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(WriteCanonical2)

if s is a term denoting a stream with appropriate properties according to [11,
14] and E ′ results from E according to the side effects described in [11, 14]

(write term(t, [o1, . . . , on]), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(WriteTerm2)

if the current output stream s has appropriate properties according to [11, 14],
n ≥ 0, oi is an appropriate write-option according to [11, 14] for all

i ∈ {1, . . . , n}, and E ′ results from E according to the side effects described in
[11, 14]

(write term(s, t, [o1, . . . , on]), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(WriteTerm3)

if s is a term denoting a stream with appropriate properties according to [11,
14], n ≥ 0, oi is an appropriate write-option according to [11, 14] for all

i ∈ {1, . . . , n}, and E ′ results from E according to the side effects described in
[11, 14]

(writeq(t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(Writeq1)

if the current output stream s has appropriate properties according to [11, 14]
and E ′ results from E according to the side effects described in [11, 14]

(writeq(s, t), Q)δ,C | S ; (D, E ,PI, A)

Qδ,C | S ; (D, E ′,PI, A)
(Writeq2)

if s is a term denoting a stream with appropriate properties according to [11,
14] and E ′ results from E according to the side effects described in [11, 14]
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C Equivalence to the ISO Semantics

We now prove the theorems of Sect. 7 in the main part of the paper. For the
definition of our semantics to be deterministic, we need Thm. 1.

Theorem 1 (“Mutual Exclusion” of Inference Rules). For each state,
there is at most one inference rule applicable and the result of applying this rule
is unique up to renaming of variables and of fresh numbers used for markers.

Proof. For each pair of different inference rules one of the following two condi-
tions holds:

– The first goal in the states for which the rules are applicable must have
different shapes.

– The conditions of the two rules exclude each other.

Note that the first condition is also true for the (Case) rule compared to any
rule for built-in predicates as it must not have a built-in predicate at the “first”
predication position in the first goal.

Note that the result of applying an inference rule is always uniquely deter-
mined. ⊓⊔

The ISO standard for Prolog [11, 14] defines the operational semantics of Pro-
log programs in terms of Prolog search trees. These trees represent the computa-
tion according to the standard. Therefore, we first recapitulate the definition of
Prolog search trees as given in [11] using the notations established in the current
paper.

Definition 4 (Prolog Search Tree [11]). A Prolog search tree is a tree whose
nodes have two labels. The first label is a query from T (Σ,V)∗ and the second
label is a substitution (called the local substitution). Additionally, the tree has a
set of unvisited nodes which is a subset of the nodes in the tree. If the tree is
finished, it has no current node and no unvisited nodes. Otherwise it has exactly
one current node which belongs to the tree, but not to the set of unvisited nodes.

The ISO standard describes the operational semantics of Prolog by an algo-
rithm combining the construction and the traversal of Prolog search trees during
the execution of a Prolog program w.r.t. a query. Such a Prolog search tree also
incorporates the execution of built-in predicates. We recapitulate this algorithm
in the following definition.

Definition 5 (Search Tree Construction and Traversal Algorithm [11]).
Given a Prolog program P | D and a query Q, the search tree construction and
traversal algorithm works as follows:

1. Start from the root as current node, labeled by the initial query Q and by the
empty substitution as local substitution.
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2. If the query Q of the current node is true then backtrack to the first unvisited
node n w.r.t. the depth-first, left-to-right ordering of the nodes in the Prolog

search tree and continue with Step 2 where the current node is n and n is
dropped from the set of unvisited nodes. If there are no unvisited nodes, the
execution of the initial query is finished.

3. Otherwise let t be the first term in Q.

4. If t is true delete it, and proceed to Step 2 with the new current query being
the tail of the sequence Q.

5. If t corresponds to a user-defined predicate which exists in the data base:

(a) If no renamed clause in P | D has a head which unifies with t then
backtrack to the first unvisited node n w.r.t. the depth-first, left-to-right
ordering of the nodes in the Prolog search tree and continue with Step 2
where the current node is n and n is dropped from the set of unvisited
nodes.

(b) Otherwise add to the current node as many children as there are freshly
renamed clauses H :−B ∈ P | D whose head is unifiable with t. The
order of the children corresponds to the order of the clauses in P | D. The
child nodes are labeled with a local substitution σ = mgu(t,H) (H :−B
being the corresponding freshly renamed clause), and the query Q′ which
is Qσ in which t has been previously replaced by B. The current node
becomes the first child and we proceed to Step 2.

6. Otherwise, if t corresponds to a built-in predicate: The specific side effects
for the built-in predicate described in [11] are performed and the execution
continues at Step 2 with or without preceding backtracking or generates an
error according to the description of the built-in predicate in [11].

7. Otherwise t does not correspond to any existing predicate and the action
depends on the value of the flag unknown.

– If this value is error then an error is generated whose effect corresponds
to executing the built-in predicate throw(existence error(procedure,PI )) at
the same node where PI is the predicate indicator of t.

– If this value is warning then an implementation-dependent warning is
generated and the current query fails, i.e., we backtrack to the first un-
visited node n w.r.t. the depth-first, left-to-right ordering of the nodes in
the Prolog search tree and continue with Step 2 where the current node
is n and n is dropped from the set of unvisited nodes. If there are no
unvisited nodes, then the execution of the initial query is finished.

– If this value is failure then the current query fails, i.e., we backtrack to
the first unvisited node n w.r.t. the depth-first, left-to-right ordering of
the nodes in the Prolog search tree and continue with Step 2 where the
current node is n and n is dropped from the set of unvisited nodes. If there
are no unvisited nodes, the execution of the initial query is finished.

What happens after the execution of the initial query is finished, is implemen-
tation-defined. However, the standard does define answer substitutions for Prolog
search trees.
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Definition 6 (Answer Substitution [11]). Given a Prolog search tree, an
answer substitution for the initial query of that tree is the composition of all
local substitutions along a path from the root node to a success node (i.e., a
node which is labeled with true and some local substitution). The list of answer
substitutions computed by the execution of a query is obtained by gathering the
answer substitutions in the Prolog search tree in a depth-first, left-to-right search.

Definition 7 (Complexity of the Search Tree Construction and Traver-
sal Algorithm). For the complexity of the search tree construction and traversal
algorithm, we count the number of necessary unification tests where the execution
of a built-in predicate without any unification test counts as one unification test.
A necessary unification test occurs whenever we test whether two terms unify,
unless the corresponding node in the constructed Prolog search tree will be deleted
due to a cut, a halting predicate, or an error being thrown (assuming that we
would also add nodes for the failing unifications).

We now prove the central theorem of this paper.

Theorem 3 (Equivalence of Our Semantics and the ISO Semantics).
Consider a Prolog program and a query Q.

(a) Let ℓ be the length of Q’s derivation according to our semantics in Def. 2
and let k be the length of Q’s execution according to the ISO semantics.
Then we have k ≤ ℓ ≤ 3 · k + 1. So in particular we also obtain ℓ = ∞ iff
k =∞ (i.e., the two semantics have the same termination behavior).

(b) Q leads to a program error according to our semantics in Def. 2 iff Q leads
to a program error according to the ISO semantics.

(c) Q leads to a (finite or infinite) list of answer substitutions δ0, δ1, . . . accord-
ing to our semantics in Def. 2 iff Q leads to a list of answer substitutions
θ0, θ1, . . . according to the ISO semantics, where the two lists have the same
length n ∈ N ∪ {∞} and for each i < n, there exists a variable renaming τi
such that for all variables X in the query Q, we have Xθi = Xδi τi.

Proof. We show the theorem by the following two propositions: First, if the exe-
cution of Q is finished after k unification tests (i.e., the execution is terminating),
then the following holds.

(a) For the length ℓ of Q’s maximal derivation according to our semantics in Def.
2, we have k + 1 ≤ ℓ ≤ 3 · k + 1 if the execution does not lead to a program
error or the evaluation of a halting predicate (halt/0 or halt/1). Otherwise,
we have k ≤ ℓ ≤ 3 · k + 1.

(b) Q leads to a program error according to our semantics in Def. 2 iff Q leads
to a program error according to the ISO standard.

(c) Q leads to a finite list of answer substitutions [δ1, . . . , δn] according to our
semantics in Def. 2 iff Q leads to a list of answer substitutions [θ1, . . . , θn]
according to the ISO standard, where the two lists have the same length
n ∈ N and for each 1 ≤ i ≤ n, there exists a variable renaming τi such that
Xθi = Xδi τi for all variables X ∈ V(Q).
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(d) If the execution does not lead to a program error or the evaluation of a
halting predicate, then after the execution of Q, the obtained sets of dynamic
clauses in our semantics and in the ISO semantics are the same up to variable
renaming.

(e) Both the ISO semantics and our semantics cause the same side effects w.r.t.
the environment for any query Q.

Second, if the execution of Q does not terminate, then we have that there is a
finite prefix of the ISO execution obtaining the answer substitutions θ1, . . . , θn
iff there is a corresponding derivation reaching a state 〈S ; (D ; E ; PI ; δ1 |
. . . | δn)〉 such that there are variable renamings τ1, . . . , τn with Xθi = Xδiτi for
all i ∈ {1, . . . , n} and variables X ∈ V(Q).
Clearly, the theorem is implied by these two propositions.

We show the first proposition by induction over the number k of unification
tests w.r.t. the operational semantics of the ISO standard. Part (e) of the first
proposition is trivially true since we use the same environment as in the ISO
semantics and did not modify any operations on it.

If k = 1, the algorithm is finished after the first unification test. If the ini-
tial goal is true, then the Prolog search tree just consists of the root node with
the empty local substitution. The corresponding derivation consists of one ap-
plication of the (True) rule followed by one application of the (Success) rule
and it finishes by one application of the (Failure) rule leading to the empty
list of goals with the empty substitution as the only answer substitution. The
derivation has, thus, the length ℓ = 3. Hence, the proposition holds in this case.
Otherwise the initial goal has the form (t, Q) where root(t) is no user-defined
predicate (otherwise we would have at least one more unification step). If root(t)
is the built-in predicate throw/1, then the execution leads to a program error.
The derivation consists of one application of the (ThrowErr) rule and, thus,
also results in an error and has the length ℓ = 1. Hence, the proposition holds in
this case. If root(t) is the built-in predicate halt/0 or halt/1, then the execution
is finished directly after its execution. The corresponding derivation consists of
one application of the (Halt) or (Halt1) rule, respectively, and is also finished
directly. Since we have k = ℓ = 1 for the length ℓ of the derivation, the propo-
sition holds in this case. If root(t) is the built-in predicate atom concat/3, then
we have t = atom concat(t1, t2,

′′ ) with t1 and t2 being variables or atoms and
mgu( (t1, t2) , (

′′,′′ ) ) = fail . Here, ′′ is the null -atom in Prolog. The correspond-
ing derivation consists of one application of the (AtomConcat) rule followed
by one application of the (UnifyFail) rule and finally one application of the
(Failure) rule. Thus, the derivation has the length ℓ = 3 and the proposition
holds in this case. If root(t) is another built-in predicate, then its evaluation must
fail (otherwise we would perform at least one more unification test in both suc-
cess and error case for each built-in predicate). Then the execution is finished
as there are no unvisited nodes left. The corresponding derivation consists of
one application of the particular failing inference rule for the respective built-in
predicate followed by one application of the (Failure) rule. The list of answer
substitutions is empty in both the ISO execution and the derivation and we have
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ℓ = 2 for the length of the derivation. Thus, the proposition holds in this case.
Finally, if root(t) is no built-in predicate, then there is at most one clause in the
program whose head has the same root symbol as t. If there is such a clause
with head h, then we must have mgu(t, h) = fail (otherwise we would have
more than one unification test). Then the execution is finished as there are no
unvisited nodes left. The corresponding derivation consists of one application
of the (Case) rule followed by one application of the (Backtrack) rule and
finally two applications of the (Failure) rule leading to the empty list of goals
with the empty list of answer substitutions. Since the length of the derivation
is ℓ = 4, the proposition holds in this case. If root(t) does not belong to the set
PI and it is no built-in predicate, then the flag unknown must be set to either
warning or failure, because otherwise we would have one more unification test.
The Prolog search tree just consists of the root node with the empty local sub-
stitution, while the corresponding derivation consists of one application of the
(UnknownWarning) or (UnknownFailure) rule followed by one application
of the (Failure) rule leading to the empty list of goals with no answer substi-
tutions. The length ℓ of the derivation is again ℓ = 2. Hence, the proposition
holds in this case. If root(t) ∈ PI, but Slice(P|D)(t) is empty, then the execution

fails. The corresponding derivation consists of one application of the (Case) rule
followed by two applications of the (Failure) rule. The length of the derivation
is ℓ = 3 and, thus, the proposition holds in this case.

If k > 1, we can assume that the proposition holds for all executions with
k′ < k unification tests. The initial goal has the form (t, Q) for a term t and
a (possibly empty) sequence of terms Q. We perform a case analysis over the
shape of t.

– If root(t) neither belongs to the set PI nor to the built-in predicates, then
the flag unknownmust be set to error, because k > 1. The execution continues
by evaluating the throw/1 predicate leading to a program error, while the
corresponding derivation consists of one application of the (Error) rule
followed by one application of the (ThrowErr) rule also leading to an error.
Since we have k = ℓ = 2 for the length ℓ of the derivation, the proposition
holds.

– If root(t) is a user-defined predicate, then we have Slice(P|D)(t) = (c1, . . . , cn)
with n > 0. Thus, the first j ≤ n unification tests are the necessary unifica-
tion tests for the clauses in Slice(P|D)(t) where j ∈ {1, . . . , n} is the smallest
index such that cj introduces a cut which will be reached during the re-
maining execution, or the execution of (Bσ,Qσ) where cj = h :−B and
mgu(t, h) = σ leads to an error which is not caught, ends with the execution
of a halting predicate, or evaluates a cut from the initial query. If no such j
exists, we have j = n. The corresponding derivation starts with an applica-

tion of the (Case) rule resulting in the state 〈(t′, Q′)
c′1
∅,ε | . . . | (t

′, Q′)
c′n
∅,ε |

?m | ?0 ; D ; E ; PI ; ε〉 where t′ = t[!/!0], Q
′ = Q[!/!0], and c′a = ca[!/!m]

for all a ∈ {1, . . . , n}. Let i ∈ {1, . . . , n} be the smallest index such that

the (Eval) rule is applicable to the state 〈(t′, Q′)
c′i
∅,ε | . . . | (t

′, Q′)
c′n
∅,ε | ?m |

?0 ; D ; E ; PI ; ε〉. If no such i exists then we must have j = n and all n
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unification tests for t and some clause heads in P | D fail. Then the execution
is finished since there is no unvisited node left. The corresponding derivation
continues with n applications of the (Backtrack) rule followed by two ap-
plications of the (Failure) rule resulting in the state 〈ε ; D ; E ; PI ; ε〉
such that the derivation is finished, too. As we have k = n unification tests
and a derivation of length ℓ = n+ 3, we obtain

k + 1 = n+ 1 < n+ 3 = ℓ
n>0
≤ 3 · n+ 1 = 3 · k + 1.

Thus, the proposition holds in this case. If an index i as described above
exists, we have i ≤ j, because a cut, a halting predicate, or an error can
only be reached if the corresponding unification test succeeds. The execution
performs i−1 failing unification tests before executing the first successful one
and creates a new child for the current node labeled with (Bσ,Qσ) and the
local substitution σ where ci = h :−B and mgu(t, h) = σ. The corresponding
derivation continues with i−1 applications of the (Backtrack) rule followed
by one application of the (Eval) rule resulting in the state 〈(B′σ,Q′σ)σ,ε |

(t′, Q′)
c′i+1

∅,ε | . . . | (t
′, Q′)

c′n
∅,ε | ?m | ?0 ; D ; E ; PI ; ε〉 where c′i = h′ :−B′ (as

the mgu is unique modulo variable renaming, we can w.l.o.g. assume that
both execution and derivation use the samemgu). Now consider an execution
for the goal (Bσ,Qσ). Since this goal is part of the current execution (where
at least one unification test has been performed before), it must have k′

unification tests with k′ < k and, hence, we can use the induction hypothesis
to obtain a derivation of length ℓ′ simulating the execution. Moreover, we
have ℓ′ ≤ 3 · k′ + 1 and k′ + 1 ≤ ℓ′ if the execution of (Bσ,Qσ) does not
result in a program error or terminates by a halting predicate. Otherwise we
still have k′ ≤ ℓ′. We perform a case analysis over the side effects occurring
during the execution of the subgoal.
• If the ISO execution reaches a cut which was already at a predication
position in the goal (Bσ,Qσ), but does not result in an error or evaluates
a halting predicate, so does the derivation. Then we have i = j. From the
derivation obtained by the induction hypothesis (i.e., 〈(Bσ,Qσ)[!/!0]∅,ε |

?0 ; D ; E ; PI ; ε〉  ℓ′ 〈ε ; D′ ; E ′ ; PI ′ ; A〉) we construct a

derivation from the state 〈(B′σ,Q′σ)σ,ε | (t
′, Q′)

c′i+1

∅,ε | . . . | (t′, Q′)
c′n
∅,ε |

?m | ?0 ; D ; E ; PI ; ε〉 to the state 〈?0 ; D′ ; E ′ ; PI ′ ; A′〉 where
D′ is the dynamic part of the program in the last state of the obtained
derivation, E ′ is the environment in that state, PI ′ is the corresponding
set of user-defined predicate indicators, and A′ is constructed from the
list of answer substitutions A in that last state by replacing every δ ∈ A
by σδ. This new derivation is constructed by first replacing all answer
substitutions and candidate answer substitutions δ in the derivation by
σδ. Then we replace all those !0 by !m which have been at some position in
(Bσ,Qσ) where there is a !m at the same position in (B′σ,Q′σ). W.l.o.g.
we assume that the scope m is not used within the derivation obtained

by the induction hypothesis. Then we add the goals (t′, Q′)
c′i+1

∅,ε | . . . |
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(t′, Q′)
c′n
∅,ε | ?m before the initial scope marker ?0 in every state up to the

first state where a cut with the initial scope !0 or with the scope m is
executed (inclusive). If the evaluated cut has the scope m, we add the
goal ?m before the initial scope marker to all other states up to the first
one where a cut with the initial scope is executed (to all other states if
no such state exists). Note that these changes do not modify the length
of the derivation. If a cut with the initial scope was evaluated, we drop
the last application of the (Failure) rule from the obtained derivation.
Now we have reached the state 〈?0 ; D′ ; E ′ ; PI ′ ; A′〉. Note that
the execution can be finished after k = i + k′ unification tests as all
remaining unvisited nodes have been deleted due to the cut. Now the
constructed derivation is finished by applying the (Failure) rule and
has, thus, a length of ℓ = i + ℓ′ + 1 in case a cut with the initial scope
was evaluated. As we have i > 0, we obtain

k + 1 = i+ k′ + 1 ≤ i+ ℓ′ < i+ ℓ′ + 1 = ℓ

and

ℓ = i+ ℓ′ + 1 ≤ i+ 3 · k′ + 2
i>0
< 3 · i+ 3 · k′ + 1 = 3 · k + 1.

Hence, the proposition holds in this case. If only a cut with the scope m
was evaluated, the corresponding derivation has the length ℓ = i+ ℓ′+2.
Thus, we obtain

k + 1 = i+ k′ + 1 ≤ i+ ℓ′ < i+ ℓ′ + 2 = ℓ

and

ℓ = i+ ℓ′ + 2 ≤ i+ 3 · k′ + 3
i>0
≤ 3 · i+ 3 · k′ + 1 = 3 · k + 1.

Hence, the proposition holds in this case.
• If the ISO execution raises an error which is not caught or evaluates a
halting predicate, so does the derivation. Then we again have i = j.
From the derivation obtained by the induction hypothesis we construct
the corresponding derivation for the initial goal continuing from the state

〈(B′σ,Q′σ)σ,ε | (t
′, Q′)

c′i+1

∅,ε | . . . | (t′, Q′)
c′n
∅,ε | ?m | ?0 ; D ; E ; PI ; ε〉

by first replacing all answer substitutions and candidate answer substi-
tutions δ in the obtained derivation by σδ. Then we replace all those
!0 by !m which have been at some position in (Bσ,Qσ) where there
is a !m at the same position in (B′σ,Q′σ) (again assuming that the
scope m is not used within the derivation). Afterwards we add the goals

(t′, Q′)
c′i+1

∅,ε | . . . | (t′, Q′)
c′n
∅,ε | ?m before the initial scope marker in ev-

ery state up to the first state where a cut with the initial scope or the
scope m is executed. If the evaluated cut has the scope m, then we add
the goal ?m before the initial scope marker to all other states up to the
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first one where a cut with the initial scope is evaluated. Note that these
changes do not modify the length of the obtained derivation. Also note
that the execution is finished after i + k′ unification tests as the exe-
cution is terminated by the error or the halting predicate (due to our
assumptions). Since the constructed derivation is also finished, it has the
length ℓ = i+ ℓ′ + 1. As we have i > 0, we obtain

k = i+ k′ ≤ i+ ℓ′ < i+ ℓ′ + 1 = ℓ

and

ℓ = i+ ℓ′ + 1 ≤ i+ 3 · k′ + 2
i>0
< 3 · i+ 3 · k′ + 1 = 3 · k + 1.

The derivation leads to an error iff the ISO execution does. Thus, the
proposition holds in this case.

• If the ISO execution neither reaches a cut as described above nor raises an
uncaught error or evaluates a halting predicate, so does the derivation.
From the derivation obtained by the induction hypothesis we construct

a derivation from the state 〈(B′σ,Q′σ)σ,ε | (t
′, Q′)

c′i+1

∅,ε | . . . | (t
′, Q′)

c′n
∅,ε |

?m | ?0 ; D ; E ; PI ; ε〉 to a state 〈(t′, Q′)
c′i+1

∅,ε | . . . | (t′, Q′)
c′n
∅,ε |

?m | ?0 ; D′ ; E ′ ; PI ′ ; A′〉 where D′ is the dynamic part of the
program, E ′ is the environment, PI ′ is the set of user-defined predi-
cate indicators in the last state of the obtained derivation, and A′ is
constructed from the list of answer substitutions A in that last state
by replacing every δ ∈ A by σδ. This new derivation is constructed
by first replacing all answer substitutions and candidate answer substi-
tutions δ in the obtained derivation by σδ. Then we replace all those
!0 by !m which have been at some position in (Bσ,Qσ) where there
is a !m at the same position in (B′σ,Q′σ) (again assuming that the
scope m is not used within the derivation). Afterwards we add the

goals (t′, Q′)
c′i+1

∅,ε | . . . | (t′, Q′)
c′n
∅,ε | ?m before the initial scope marker

to every state. Finally, we drop the last application of the (Failure)
rule from the derivation. Thus, the length of the derivation to the state

〈(t′, Q′)
c′i+1

∅,ε | . . . | (t
′, Q′)

c′n
∅,ε | ?m | ?0 ; D′ ; E ′ ; PI ′ ; A′〉 is reduced by

one compared to the derivation obtained by the induction hypothesis.
The execution took i + k′ steps up to this point, while the constructed
derivation so far has the length i+ ℓ′. Now we have reached a situation
which is similar to the one before executing the first unification test. But
we have one child node less to consider in the execution and at least one
goal less in the derivation. Hence, we can again use the same reasoning.
The only additional change in the continuation of the derivation is that
the already existing answer substitutions in A′ are added to the new an-
swer substitution list without any changes in the beginning of that list.
This reasoning cannot be repeated more often than n times. The exe-
cution takes k = n′ + Σn′′

a=1ka unification tests where n′ is the number
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of necessary unification tests for the execution of t, n′′ is the number of
successful necessary unification tests for the execution of t and ka is the
number of unification tests performed for the initial node’s child nodes
for all a ∈ {1, . . . , n′′} (with k′ = k1). If the ISO execution results in
an error, so does the corresponding derivation. Then the length of the
corresponding derivation is ℓ = 2 + n′ + Σn′′

a=1(ℓa − 1) where ℓa is the
length of the corresponding derivation for the ka unification tests for each
a ∈ {1, . . . , n′′}. The reason for this length is that for each sub-derivation
the last application of the (Failure) rule is dropped except for the last
sub-derivation. Together with the initial application of the (Case) rule
and the n′ applications of the (Eval) and (Backtrack) rules, this
yields the described length. Moreover, we have ka + 1 ≤ ℓa ≤ 3 · ka + 1
for each a ∈ {1, . . . , n′′ − 1} and kn′′ ≤ ℓn′′ ≤ 3 · kn′′ +1. Now we obtain

k = n′ +Σn′′

a=1ka

≤ 1 + n′ +Σn′′

a=1(ℓa − 1)

< 2 + n′ +Σn′′

a=1(ℓa − 1)

= ℓ

and

ℓ = 2 + n′ +Σn′′

a=1(ℓa − 1)

≤ 2 + n′ +Σn′′

a=13 · ka
n′>0
< 1 + 3 · n′ +Σn′′

a=13 · ka

= 3 · k + 1.

Hence, the proposition holds in this case. If a halting predicate is evalu-
ated, we use the same construction and obtain the same length and, thus,
the proposition holds again in this case. Otherwise there are two cases
depending on whether a cut with the initial scope has been evaluated.
If this is the case we finally reach the state 〈?0 ; D′′ ; E ′′ ; PI ′′ ; A′′〉
for the dynamic part D′′ of the program, the environment E ′′, the user-
defined predicate indicator set PI ′′, and the list of answer substitu-
tions A′′ obtained by the complete execution. The derivation can be
finished by one final application of the (Failure) rule. Then we have
ℓ = 2 + n′ +Σn′′

a=1(ℓa − 1) again. We obtain

k + 1 = 1 + n′ +Σn′′

a=1ka

≤ 2 + n′ +Σn′′

a=1(ℓa − 1)

= ℓ
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and

ℓ = 2 + n′ +Σn′′

a=1(ℓa − 1)

≤ 2 + n′ +Σn′′

a=13 · ka
n′>0
< 1 + 3 · n′ +Σn′′

a=13 · ka

= 3 · k + 1.

Hence, the proposition holds in this case. If no cut with the initial scope
was evaluated, we finally reach the state 〈?m | ?0 ; D′′ ; E ′′ ; PI ′′ ; A′′〉.
The derivation can be finished by two final applications of the (Failure)
rule. Then we have ℓ = 3 + n′ +Σn′′

a=1(ℓa − 1). Thus, we obtain

k + 1 = 1 + n′ +Σn′′

a=1ka

≤ 2 + n′ +Σn′′

a=1(ℓa − 1)

< 3 + n′ +Σn′′

a=1(ℓa − 1)

= ℓ

and

ℓ = 3 + n′ +Σn′′

a=1(ℓa − 1)

≤ 3 + n′ +Σn′′

a=13 · ka
n′>0
≤ 1 + 3 · n′ +Σn′′

a=13 · ka

= 3 · k + 1.

Hence, the proposition also holds in this case.
– If root(t) is a built-in predicate raising an error, then the ISO execution con-

tinues by evaluating the built-in predicate throw/1 leading to a program er-
ror. The corresponding derivation consists of one application of the (Error)
rule followed by one application of the (ThrowErr) rule. Since we have
k = ℓ = 2 for the length ℓ of the derivation, the proposition holds in this
case. For all further cases, we can, thus, assume that the respective built-in
predicate does not raise an error itself.

– If root(t) is the built-in predicate =/2, then we have t = ′=′(t1, t2) and
the first unification test is performed between t1 and t2. Moreover, we have
t1 ∼ t2, because the execution takes more than one unification test. Let
mgu(t1, t2) = σ. The execution creates a new node labeled with Qσ and σ
which is the new current node. The derivation starts with one application of
the (UnifySuccess) rule reaching the state 〈(Qσ)σ,ε | ?0 ; D ; E ; PI ; ε〉.
For the execution of the goal Qσ, we can use the induction hypothesis to
obtain a corresponding derivation, because the execution of that goal takes
k′ < k unification tests. If the execution results in an error, so does the
derivation and we obtain k′ ≤ ℓ′ ≤ 3 · k′+1 for the length ℓ′ of the obtained
derivation. We construct a derivation for the initial goal by replacing every
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answer substitution or candidate answer substitution δ with σδ in the ob-
tained derivation, and appending this derivation to the first application of
the (UnifySuccess) rule. The ISO execution takes k = k′ + 1 unification
tests while the length of the derivation is ℓ = ℓ′ + 1. Thus, we have

k = k′ + 1 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. Otherwise we have k′ + 1 ≤ ℓ′ ≤ 3 · k′ + 1
and obtain the corresponding derivation for the initial goal in the same way.
Dropping the last application of the (Failure) rule is not necessary since it
is also applied in the derivation for the initial goal. Thus, we have ℓ = ℓ′+1
and obtain

k + 1 = k′ + 2 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case.
– If root(t) is the built-in predicate atom chars/2, atom codes/2, atom length/2,

char code/2, number chars/2, number codes/2, get byte/2, get byte/1,
peek byte/2, peek byte/1, number codes/2, get char/2, get char/1,
get code/2, get code/1, peek char/2, peek char/1, peek code/2, peek code/1,
at end of stream/1, at end of stream/0, current input/1, current output/1,
arg/3, copy term/2, functor/3, =../2, \=/2, unify with occurs check/2, ==/2,
\==/2, @>/2, @>=/2, @</2, @=</2, atom/1, atomic/1, compound/1,
float/1, integer/1, nonvar/1, number/1, var/1, read term/3, read term/2,
read/2, or read/1, then the proof is analogous to the case for =/2.

– If root(t) is the built-in predicate is/2, then we have t = is(t1, t2) and the uni-
fication test is performed between t1 and evaluate(t2) where evaluate(t2) ∈
F ∪ I. Moreover, we have t1 ∼ evaluate(t2) since otherwise the execution
would only take one unification test. Let mgu(t1, evaluate(t2)) = σ. The ex-
ecution creates a new node labeled with Qσ and σ which is the new current
node. The derivation starts with one application of the (IsSuccess) rule
reaching the state 〈(Qσ)σ,ε | ?0 ; D ; E ; PI ; ε〉. For the execution of
the goal Qσ, we can use the induction hypothesis to obtain a corresponding
derivation, because the execution of the goal takes k′ < k unification tests. If
the execution of Qσ results in an error, so does the derivation and we obtain
k′ ≤ ℓ′ ≤ 3 · k′ + 1 for the length ℓ′ of the obtained derivation. We con-
struct a derivation for the initial goal by replacing every answer substitution
or candidate answer substitution δ with σδ in the obtained derivation, and
appending this derivation to the first application of the (IsSuccess) rule.
The ISO execution takes k = k′ + 1 unification tests while the length of the
derivation is ℓ = ℓ′ + 1. Thus, we have

k = k′ + 1 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case. If the ISO execution evaluates a
halting predicate, the proof is analogous. If no error occurs and no halting
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predicate is evaluated, then we have k′ + 1 ≤ ℓ′ ≤ 3 · k′ + 1 and obtain the
corresponding derivation for the initial goal in the same way. Dropping the
last application of the (Failure) rule is not necessary since it is also applied
in the derivation for the initial goal. Thus, we have ℓ = ℓ′ + 1 and obtain

k + 1 = k′ + 2 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case.
– If root(t) is the built-in predicate asserta/1, then we have t = asserta(c).

If root(c) = :− /2, then we have c = h′ :−B′ and define h = h′ and
B = B′[V/call(V)]. Otherwise let h = c and B = true. Then we have that h
is no variable, root(h) is not a static predicate and B is a well-formed query.
The clause h :−B is inserted before all other clauses for the same predicate
in the program and the execution continues with the query Q and the empty
local substitution. Since this ISO execution takes k′ < k unification tests, we
can use the induction hypothesis to obtain a corresponding derivation for
this execution of the length ℓ′. We construct the corresponding derivation
for the initial goal by appending the obtained derivation to one application
of the (AssA) rule where h :−B is added to D before all other clauses
(and, thus, definitely before all other clauses for the same predicate) and the
predicate indicator PI of h is added to the set PI. Then the execution takes
k = k′+1 steps and the derivation has the length ℓ = ℓ′+1. If the execution
results in an error, so does the derivation and we have k′ ≤ ℓ′ ≤ 3 · k′ + 1.
Thus, we obtain

k = k′ + 1 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. Otherwise we have k′ + 1 ≤ ℓ′ ≤ 3 · k′ + 1
and obtain

k + 1 = k′ + 2 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Again, the proposition holds in this case.
– If root(t) is the built-in predicate assertz/1, then the proof is analogous to

the case for asserta/1.
– If root(t) is the built-in predicate retract/1, then we have t = retract(c). If

root(c) = :− /2, then we have c = h :−B. Otherwise let h = c and B = true.
Moreover, we have that h is no variable, root(h) is not a static predicate, and
there is at least one clause in the program for root(h). The unification test
is performed between h :−B and the first clause for root(h) in the program.
If there is only one clause h′ :−B′ for root(h) in the program, then we must
have h :−B ∼ h′ :−B′, because we have k > 1. Let σ = mgu(h :−B, h′

:−B′). Then the ISO execution creates a new node labeled withQσ and σ and
removes the clause h′ :−B′ from the program. As the execution of Qσ takes
k′ = k− 1 unification tests, we can use the induction hypothesis to obtain a
corresponding derivation for this execution. If it results in an error, so does
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the derivation and for its length ℓ′ we have k′ ≤ ℓ′ ≤ 3 · k′ + 1. We obtain
the derivation for the initial goal by replacing every answer substitution or
candidate answer substitution δ in the obtained derivation with σδ and by
appending this derivation to the first two applications of the (Retract)
and (RetSuc) rules. Then the derivation for the initial goal has the length
ℓ = ℓ′ + 2. Thus, we obtain

k = k′ + 1 ≤ ℓ′ + 1 < ℓ′ + 2 = ℓ ≤ 3 · k′ + 3 < 3 · k′ + 4 = 3 · k + 1.

Since the program after applying the (RetSuc) rule is the same as for the
execution after evaluating the retract predicate, the proposition holds in this
case. If the execution evaluates a halting predicate, the proof is analogous. If
no error occurs and no halting predicate is evaluated, then we have k′+1 ≤
ℓ′ ≤ 3 · k′ + 1 and obtain the corresponding derivation in the same way as
before. We obtain

k + 1 = k′ + 2 ≤ ℓ′ + 1 < ℓ′ + 2 = ℓ ≤ 3 · k′ + 3 < 3 · k′ + 4 = 3 · k + 1

and, thus, the proposition holds in this case, too. If there is more than
one clause for root(h) in the program, then let SliceD(t) = (h1 :−B1, . . . ,
hn :−Bn). The corresponding derivation starts with one application of the
(Retract) rule. Let i ∈ {1, . . . , n} be the first index such that h :−B ∼
hi :−Bi. If no such index exists, then the ISO execution consists of n fail-
ing unification tests and is finished afterwards. The corresponding derivation
continues with n applications of the (RetFail) rule followed by one appli-
cation of the (Failure) rule reaching the empty list of goals with the empty
list of answer substitutions. The execution takes k = n unification tests while
the derivation has the length ℓ = n+ 2. We obtain

k + 1 = n+ 1 < n+ 2 = ℓ
n>1
< 3 · n+ 1 = 3 · k + 1

and, thus, the proposition holds in this case. If an index i as described above
exists, then the execution starts with i − 1 failing unification tests followed
by one succeeding unification test leading to a new node labeled with Qσi

and σi where mgu(h :−B, hi :−Bi) = σi. Furthermore, the clause hi :−Bi is
removed from the program yielding the dynamic part D′ of the program. The
corresponding derivation continues with i− 1 applications of the (RetFail)
rule followed by one application of the (RetSuc) rule reaching the state

〈(Qσi)σi,ε | 6:−
h :-B,Q,∅
(ci+1,mi+1)

| · · · | 6:− h :-B,Q,∅
(cn,mn)

| ?0 ; D′ ; E ; PI ; ε〉. For

the execution of Qσi we can use the induction hypothesis to obtain a cor-
responding derivation as this execution takes k1 < k unification tests. If
this execution leads to a program error, so does the derivation. Then we
have k1 ≤ ℓ1 ≤ 3 · k1 + 1 for the length ℓ1 of the obtained derivation.
Then the ISO execution is finished due to the error. We construct the cor-
responding derivation for the initial goal by replacing every answer sub-
stitution and candidate answer substitution δ in the obtained derivation
by σiδ. Then we add the goals 6:− h :-B,Q,∅

(ci+1,mi+1)
| · · · | 6:− h :-B,Q,∅

(cn,mn)
before the
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initial scope marker to every state in the obtained derivation up to the
first state where a cut with the initial scope is evaluated. Finally, we ap-
pend this derivation to the first i + 1 rule applications leading to the state
〈(Qσi)σi,ε | 6:−

h :-B,Q,∅
(ci+1,mi+1)

| · · · | 6:− h :-B,Q,∅
(cn,mn)

| ?0 ; D′ ; E ; PI ; ε〉. Both

execution and derivation result in an error and reach the same program.
Moreover, the derivation for the initial goal has the length ℓ = ℓ1 + i + 1
while the execution takes k = k1 + i unification tests and, thus, we obtain

k = k1 + i ≤ ℓ1 + i < ℓ1 + i+ 1 = ℓ

and

ℓ = ℓ1 + i+ 1 ≤ 3 · k1 + i+ 2
i>0
< 3 · k1 + 3 · i+ 1 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If no error occurs and no halting predicate
is evaluated during the execution of Qσi, we have k1 + 1 ≤ ℓ1 ≤ 3 · k1 + 1.
If a cut with the initial scope is evaluated during the execution of Qσi, then
the execution of the initial goal is also finished as all unvisited nodes have
been deleted due to the cut. We construct the derivation for the initial goal
in the same way as before and, thus, obtain

k + 1 = k1 + i+ 1 ≤ ℓ1 + i < ℓ1 + i+ 1 = ℓ

and

ℓ = ℓ1 + i+ 1 ≤ 3 · k1 + i+ 2
i>0
< 3 · k1 + 3 · i+ 1 = 3 · k + 1.

Hence, the proposition holds in this case. If no error occurs, no halting
predicate is evaluated, and no cut with the initial scope is evaluated during
the execution of Qσi, then we continue the derivation for the initial goal
in the same way as before except that we drop the last application of the
(Failure) rule from the derivation obtained for the execution of Qσi. Hence,
the length of the derivation up to this point is ℓ1+ i while the ISO execution
takes k1 + i unification tests so far. Now we have reached a situation which
is similar to the one before executing the first unification test. But we have
one child node less to consider in the execution and at least one goal less
in the derivation. Hence, we can again use the same reasoning. There are
three additional changes in the continuation of the derivation. First, the
already existing answer substitutions in A′ are added to the new answer
substitution list without any changes in the beginning of that list. Second,
the remaining execution may also have only one unification test. Third, the
clauses which have to be removed from the program eventually may already
be removed from the program (this is also true if another identical clause
has been inserted afterwards, such that there exists an identical clause in the
program). If the respective clause has already been removed before, neither
the re-execution of retract, nor the evaluation of the (RetSuc) rule change

53



the current program. This reasoning cannot be repeated more often than n
times. The ISO execution takes k = n′+Σn′′

a=1ka unification tests where n′ is
the number of necessary unification tests for the execution of retract(c), n′′

is the number of successful necessary unification tests for this execution, and
ka is the number of unification tests performed for the initial node’s child
nodes for all a ∈ {1, . . . , n′′}. If the execution results in an error, so does the
corresponding derivation. Then the length of the corresponding derivation is
ℓ = 2+n′+Σn′′

a=1(ℓa−1) where ℓa is the length of the corresponding derivation
for the ka unification tests for each a ∈ {1, . . . , n′′}. The reason for this
length is that for each sub-derivation, the last application of the (Failure)
rule is dropped except for the last sub-derivation. Together with the initial
application of the (Retract) rule and the n′ applications of the (RetSuc)
and (RetFail) rules, this yields the described length. Moreover, we have
ka+1 ≤ ℓa ≤ 3·ka+1 for each a ∈ {1, . . . , n′′−1} and kn′′ ≤ ℓn′′ ≤ 3·kn′′+1.
Now we obtain

k = n′ +Σn′′

a=1ka

≤ 1 + n′ +Σn′′

a=1(ℓa − 1)

< 2 + n′ +Σn′′

a=1(ℓa − 1)

= ℓ

and

ℓ = 2 + n′ +Σn′′

a=1(ℓa − 1)

≤ 2 + n′ +Σn′′

a=13 · ka
n′>0
< 1 + 3 · n′ +Σn′′

a=13 · ka

= 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halt-
ing predicate, the proof is analogous. Otherwise we finally reach the state
〈?0 ; D′′ ; E ′′ ; PI ′′ ; A′′〉 for the dynamic part D′′ of the program, the envi-
ronment E ′′, the set of user-defined predicate indicators PI ′′, and the list of
answer substitutions A′′ obtained by the complete execution. The derivation
can be finished by one final application of the (Failure) rule. Then we have
ℓ = 2 + n′ +Σn′′

a=1(ℓa − 1) again. We obtain

k + 1 = 1 + n′ +Σn′′

a=1ka

≤ 2 + n′ +Σn′′

a=1(ℓa − 1)

= ℓ
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and

ℓ = 2 + n′ +Σn′′

a=1(ℓa − 1)

≤ 2 + n′ +Σn′′

a=13 · ka
n′>0
< 1 + 3 · n′ +Σn′′

a=13 · ka

= 3 · k + 1.

Hence, the proposition holds in this case.
– If root(t) is the built-in predicate findall/3, then we have t = findall(r, g, s)

where g is callable and s is a variable, partial list, or a list. The execution
continues with the sub-computation of the goal call(g). By the induction
hypothesis we obtain a corresponding derivation for this sub-computation
as it will take k′ < k unification tests. Let ℓ′ be the length of the obtained
derivation. If the sub-computation results in an error, so does the deriva-
tion. Then we have k′ ≤ ℓ′ ≤ 3 · k′ + 1. We construct a derivation for the
initial goal by adding the goal %

r,[ ],s
Q,∅,ε before the initial scope marker ?0 to

all states in that derivation up to the first application of the (Success) rule.
This application is replaced by an application of the (FindNext) rule and

in all following states we add the goal %
r,[rδ],s
Q,∅,ε before the initial scope marker

where δ is the answer substitution obtained for the first success. We repeat
this construction for all applications of the (Success) rule. Finally, we ap-
pend this derivation to the first application of the (Findall) rule. Since the
execution takes k = k′+1 unification tests and the derivation has the length
ℓ = ℓ′ + 1, we obtain

k = k′ + 1 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If the sub-computation neither results in
an error nor evaluates a halting predicate, then we have k′+1 ≤ ℓ′ ≤ 3·k′+1.
After the sub-computation is done with answer substitutions δ1, . . . , δm for
some m ≥ 0, the execution continues with a unification test of s and the
list [rδ1, . . . , rδm]. We construct a derivation for the initial goal by starting
with one application of the (Findall) rule reaching the state 〈call(g)∅,ε |

%
r,[ ],s
Q,∅,ε | ?0 ; D ; E ; PI ; ε〉. Then we take the derivation obtained for

the sub-computation of call(g) and add the goal element %
r,[ ],s
Q,∅,ε before the

initial scope marker to all states in that derivation up to the first applica-
tion of the (Success) rule. This application is replaced by an application

of the (FindNext) rule and in all following states we add the goal %
r,[rδ],s
Q,∅,ε

before the initial scope marker where δ is the answer substitution obtained
for the first success. We repeat this construction for all applications of the
(Success) rule. Finally, we drop the last application of the (Failure) rule.
As the derivation for the sub-computation has the same answer substitu-
tions as the ISO execution, the constructed derivation ends in the state

〈%
r,[rδ1,...,rδm],s
Q,∅,ε | ?0 ; D′ ; E ′ ; PI ′ ; ε〉 where D′ is the dynamic part

55



of the program, E ′ is the environment, and PI ′ is the set of user-defined
predicate indicators after the execution of the sub-computation. Then we
apply the (FoundAll) rule and reach the state 〈([rδ1, . . . , rδm] = s,Q)∅,ε |
?0 ; D′ ; E ′ ; PI ′ ; ε〉. If mgu(s, [rδ1, . . . , rδm]) = fail , then the execution is
finished since the set of unvisited nodes is empty. The corresponding deriva-
tion continues with one application of the (UnifyFail) rule followed by one
application of the (Failure) rule reaching the state 〈ε ; D′ ; E ′ ; PI ′ ; ε〉
where the derivation is also finished and has, thus, the length ℓ = ℓ′+3 while
the number of unification tests is k = k′ + 2. Now we obtain

k = k′ + 2 ≤ ℓ′ + 1 < ℓ′ + 3 = ℓ ≤ 3 · k′ + 4 < 3 · k′ + 7 = 3 · k + 1.

Hence, the proposition holds in this case. If s ∼ [rδ1, . . . , rδm], let
mgu(s, [rδ1, . . . , rδm]) = σ. The execution continues by creating a new node
labeled with Qσ and σ which is the new current node. The derivation con-
tinues with one application of the (UnifySuccess) rule reaching the state
〈(Qσ)σ,ε | ?0 ; D′ ; E ′ ; PI ′ ; ε〉. For the execution of the goal Qσ, we can
use the induction hypothesis to obtain a corresponding derivation, because
the ISO execution of the goal takes k′′ < k unification tests. Let ℓ′′ be the
length of the corresponding derivation for the execution of Qσ. The whole
execution now takes k = k′+ k′′+2 unification tests. If the execution of Qσ
results in an error, we have k′′ ≤ ℓ′′ ≤ 3 · k′′+1 and the derivation results in
an error, too. We continue the construction of the derivation for the initial
goal by replacing every answer substitution or candidate answer substitution
δ in the obtained derivation for Qσ with σδ and appending this derivation
to the application of the (UnifySuccess) rule for [rδ1, . . . , rδm] = s. Then
the length of the derivation is ℓ = ℓ′ + ℓ′′ + 2. Thus, we have

k = k′ + k′′ + 2 ≤ ℓ′ + ℓ′′ + 1 < ℓ′ + ℓ′′ + 2 = ℓ

and

ℓ = ℓ′ + ℓ′′ + 2 ≤ 3 · k′ + 3 · k′′ + 4 < 3 · k′ + 3 · k′′ + 7 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If no error occurs and no halting predicate
is evaluated during the execution, we obtain the derivation for the initial goal
in the same way as before since we do not have to drop the final application
of the (Failure) rule. Thus, we have ℓ = ℓ′+ ℓ′′+2 again, but this time we
also have k′′ + 1 ≤ ℓ′′ ≤ 3 · k′′ + 1. We obtain

k + 1 = k′ + k′′ + 3 ≤ ℓ′ + ℓ′′ + 1 < ℓ′ + ℓ′′ + 2 = ℓ

and

ℓ = ℓ′ + ℓ′′ + 2 ≤ 3 · k′ + 3 · k′′ + 4 < 3 · k′ + 3 · k′′ + 7 = 3 · k + 1.

Hence, the proposition holds in this case.
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– If root(t) is the built-in predicate bagof/3, then we have t = bagof(r, b, s)
where b = ∧(t1,

∧(t2,
∧(. . . , ∧(tm, g) . . . ))) for some m ≥ 0, root(g) 6= ∧/2,

g is a callable term, and s is a variable, a list, or a partial list. The execution
continues with the computation of the goal findall([f(X1, . . . , Xn), f ], g, Y )
where V(g) \ (

⋃m
i=1 V(ti)) = {X1, . . . , Xn}, f/n ∈ Σ is fresh, and Y ∈ V is

fresh. The execution further continues with the sub-computation of the goal
call(g). By the induction hypothesis we obtain a corresponding derivation for
this sub-computation as it will take k′ < k unification tests. The obtained
derivation has the length ℓ′. If the sub-computation results in an error, so
does the derivation and we have k′ ≤ ℓ′ ≤ 3 · k′ + 1. Then we construct a
derivation for the initial goal by adding the goals %

[f(X1,...,Xn),r],[ ],Y
�,∅,ε | $sQ,∅,ε

before the initial scope marker to all states in that derivation up to the
first application of the (Success) rule. This application is replaced by an
application of the (FindNext) rule and in all following states we add the

goals %
[f(X1,...,Xn),r],[[f(X1,...,Xn),r]δ],Y
�,∅,ε | $sQ,∅,ε before the initial scope marker

where δ is the answer substitution obtained for the first success. We repeat
this construction for all applications of the (Success) rule while we leave
the last (error) state unchanged. We append this derivation to the first two
applications of the (Bagof) and (Findall) rules. Since the execution takes
k = k′ + 2 steps and the derivation has the length ℓ = ℓ′ + 2, we obtain

k = k′ + 2 ≤ ℓ′ + 2 = ℓ ≤ 3 · k′ + 3 < 3 · k′ + 7 = 3 · k + 1.

So the proposition holds in this case. If the execution evaluates a halt-
ing predicate, the proof is analogous. Otherwise we have k′ + 1 ≤ ℓ′ ≤
3 · k′ + 1. After the sub-computation is done, a unification test between
Y and a list [[w1, r1], . . . , [wm, rm]] for some m ≥ 0 is performed. Since
Y is fresh, this test succeeds. We construct the corresponding derivation

for the initial goal by adding the goals %
[f(X1,...,Xn),r],[ ],Y
�,∅,ε | $sQ,∅,ε before

the initial scope marker to all states in that derivation up to the first
application of the (Success) rule. This application is replaced by an ap-
plication of the (FindNext) rule and in all following states we add the

goals %
[f(X1,...,Xn),r],[[f(X1,...,Xn),r]δ],Y
�,∅,ε | $sQ,∅,ε before the initial scope marker

where δ is the answer substitution obtained for the first success. We repeat
this construction for all applications of the (Success) rule. We append this
derivation to the first two applications of the (Bagof) and (Findall) rules
and drop the last application of the (Failure) rule. Then the derivation
continues with one application of the (FoundBag) rule reaching the state

〈$
s,[[w1,r1],...,[wm,rm]]
Q,∅,ε | ?0 ; D′ ; E ′ ; PI ′ ; ε〉 for the dynamic part D′ of the

program, the environment E ′, and the set PI ′ of user-defined predicate indi-
cators reached after the sub-computation. If [[w1, r1], . . . , [wm, rm]] is empty,
the computation is finished since the set of unvisited nodes is empty. The cor-
responding derivation continues with one application of the (EmptyBag)
rule followed by one application of the (Failure) rule reaching the state
〈ε ; D′ ; E ′ ; PI ′ ; ε〉 where the derivation is finished, too. The execution
takes k = k′+3 unification tests and the derivation has the length ℓ = ℓ′+4.
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We obtain

k + 1 = k′ + 4 ≤ ℓ′ + 3 < ℓ′ + 4 = ℓ ≤ 3 · k′ + 5 < 3 · k′ + 10 = 3 · k + 1.

Hence, the proposition holds in this case. Otherwise the execution contin-
ues by choosing one element [w, q] in [[w1, r1], . . . , [wm, rm]] (which one is
implementation-defined) which has not been used yet. Then let s′ be the list
of all elements [w′, q′] in [[w1, r1], . . . , [wm, rm]] where w′ is a variant of w
(the order of the elements in s′ is the same as in n [[w1, r1], . . . , [wm, rm]].
Then the next unification test is a unification test between sσ and s′′ where
s′′ is the list of all q′σ such that there is some w′ where [w′, q′] is an element
of s′ and σ is the mgu of all w′ such that there is some q′ where [w′, q′]
is an element of s′. The order of the elements in s′′ is the same as in s′.
If mgu(sσ, s′′) = fail , then another element from the list s′′′ is chosen and
we repeat the construction of a sublist of s′ and a corresponding unifica-
tion test where s′′′ is the list [[w1, r1], . . . , [rm, rm]] from which we removed
all elements of s′. The corresponding derivation continues with one applica-
tion of the (NextBag) rule followed by one application of the (UnifyFail)
rule. Otherwise, if sσ ∼ s′′, then the execution continues with a new node
labeled with Qσσ′ and local substitution σσ′ where mgu(sσ, s′′) = σ′. For
the further execution of this node we can again use the induction hypoth-
esis to obtain a corresponding derivation since the execution takes k1 < k
unification tests. Let ℓ1 be the length of the obtained derivation. We con-
tinue the derivation for the initial goal by one application of the (NextBag)

rule reaching the state 〈(sσ = s′′, Qσ)σ,ε | $
s,s′′′

Q,∅,ε | ?0 ; D′ ; E ′ ; PI ′ ; ε〉.
Then we apply the (UnifySuccess) rule and reach the state 〈(Qσσ′)σσ′,ε |

$s,s
′′′

Q,∅,ε | ?0 ; D′ ; E ′ ; PI ′ ; ε〉. Finally, we append the derivation obtained

for the execution of Qσσ′ where we added the goal $s,s
′′′

Q,∅,ε before the initial
scope marker to all states in that derivation up to the first one where a cut
with the initial scope is evaluated. If no such state exists, we add the goal
to all states except the last one. If the execution of Qσσ′ results in an error,
evaluates a halting predicate, or evaluates a cut with the initial scope, we
are done. Then the execution takes k = k′ + k1 + 4 unification tests while
the derivation has the length ℓ = ℓ′ + ℓ1 + 4. If the execution results in an
error, we have k1 ≤ ℓ1 ≤ 3 · k1 + 1. Thus, we obtain

k = k′ + k1 + 4 ≤ ℓ′ + ℓ1 + 3 < ℓ′ + ℓ1 + 4 = ℓ

and

ℓ = ℓ′ + ℓ1 + 4 ≤ 3 · k′ + 3 · k1 + 6 < 3 · k′ + 3 · k1 + 13 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If no error occurred and no halting pred-
icate is evaluated so far, but we evaluated a cut with the initial scope, we
have k1 + 1 ≤ ℓ1 ≤ 3 · k1 + 1. Thus, we obtain

k + 1 = k′ + k1 + 5 ≤ ℓ′ + ℓ1 + 3 < ℓ′ + ℓ1 + 4 = ℓ
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and

ℓ = ℓ′ + ℓ1 + 4 ≤ 3 · k′ + 3 · k1 + 6 < 3 · k′ + 3 · k1 + 13 = 3 · k + 1.

Hence, the proposition holds in this case, too. If neither an error occurs
nor a halting predicate or a cut with the initial scope is evaluated, then
we drop the last application of the (Failure) rule. Up to this point the
ISO execution takes k′ + k1 + 4 unification tests while the derivation has
a length of ℓ′ + ℓ1 + 3 and s′′′ contains exactly the unused elements of s′.
Moreover, we have k1+1 ≤ ℓ1 ≤ 3 ·k1+1. We continue this construction for
all re-executions of bagof(r, b, s) as long as no error occurs and no halting
predicate or a cut with initial scope is evaluated. Then the execution takes
k = k′ + n + 3 + Σn′

i=1ki unification tests where n is the number of unifica-
tion tests for the (re-)executions of bagof(r, b, s) after executing the query
findall([f(X1, . . . , Xn), r], g, Y ), n′ is the number of successful such unifica-
tion tests, and ki is the number of unification tests performed for the respec-
tive child nodes of bagof(r, b, s) for all i ∈ {1, . . . , n′}. If the execution results
in an error or evaluates a halting predicate or a cut with the initial scope, the
corresponding derivation has the length ℓ = ℓ′+2 ·n−n′+3+Σn′

i=1ℓi where
ℓi is the length of the derivation obtained for the execution of the i-th child
of the node bagof(r, b, s) for all i ∈ {1, . . . , n′} (the derivation for the first
findall execution plus two rule applications to reach it minus one dropped
(Failure) rule plus one to reach the further execution of bagof, two rule
applications for each unification test in the (re-)execution of bagof, dropping
the last (Failure) rule for the executions after all successful unifications
except the last one and the derivations for the children of the bagof node).
Moreover, we have ki + 1 ≤ ℓi ≤ 3 · ki + 1 for all i ∈ {1, . . . , n′ − 1} and
kn′ ≤ ℓn′ ≤ 3 · kn′ + 1. Thus, we obtain

k = k′ + n+ 3 +Σn′

i=1ki

≤ ℓ′ + n− n′ + 3 +Σn′

i=1ℓi

< ℓ′ + 2 · n− n′ + 3 +Σn′

i=1ℓi

= ℓ

and

ℓ = ℓ′ + 2 · n− n′ + 3 +Σn′

i=1ℓi

≤ 3 · k′ + 2 · n+ 4 + 3 ·Σn′

i=1ki

< 3 · k′ + 3 · n+ 10 + 3 ·Σn′

i=1ki

= 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If neither an error occurs nor a halting
predicate is evaluated, but a cut with the initial scope is evaluated, we have
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kn′ + 1 ≤ ℓn′ ≤ 3 · kn′ + 1 instead of kn′ ≤ ℓn′ ≤ 3 · kn′ + 1 and obtain

k + 1 = k′ + n+ 4 +Σn′

i=1ki

≤ ℓ′ + n− n′ + 4 +Σn′

i=1ℓi
n>0
< ℓ′ + 2 · n− n′ + 3 +Σn′

i=1ℓi

= ℓ.

Again, the proposition holds in this case. If neither an error occurs nor
a halting predicate or a cut with the initial scope is evaluated, then the
corresponding derivation is finished by two applications of the (EmptyBag)
rule and the (Failure) rule. The length of the corresponding derivation is
ℓ = ℓ′ + 2 · n − n′ + 4 + Σn′

i=1ℓi and we have ki + 1 ≤ ℓi ≤ 3 · ki + 1 for all
i ∈ {1, . . . , n′}. Thus, we obtain

k = k′ + n+ 3 +Σn′

i=1ki

≤ ℓ′ + n− n′ + 2 +Σn′

i=1ℓi

< ℓ′ + 2 · n− n′ + 4 +Σn′

i=1ℓi

= ℓ

and

ℓ = ℓ′ + 2 · n− n′ + 4 +Σn′

i=1ℓi

≤ 3 · k′ + 2 · n+ 5 + 3 ·Σn′

i=1ki

< 3 · k′ + 3 · n+ 10 + 3 ·Σn′

i=1ki

= 3 · k + 1.

Hence, the proposition holds in this case.
– If root(t) is the built-in predicate setof/3, then the proof is analogous to

the case for bagof/3. The only difference is the order of the elements in the
computed lists and that duplicates are removed.

– If root(t) is the built-in predicate =:=/2, then we have t = ′=:=′(t1, t2)
and evaluate(t1 = t2) = true. The execution continues with the goal Q and
the empty local substitution. Since this ISO execution takes k′ < k unifica-
tion tests, we can use the induction hypothesis to obtain a corresponding
derivation for this execution of the length ℓ′. We construct the correspond-
ing derivation for the initial goal by appending the obtained derivation to
one application of the (ArithCompSuc) rule. Thus, we have k = k′+1 and
ℓ = ℓ′+1. If the execution of Q results in an error, we have k′ ≤ ℓ′ ≤ 3 ·k′+1
and the derivation also leads to an error. Then we obtain

k = k′ + 1 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If the execution neither results in an error
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nor evaluates a halting predicate, then we have k′ + 1 ≤ ℓ′ ≤ 3 · k′ + 1 and
we obtain

k = k′ + 1 ≤ ℓ′ < ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Thus, the proposition holds in this case.
– If root(t) is the built-in predicate >/2, </2, >=/2, =</2, or =\=/2, then

the proof is analogous to the case for =:=/2.
– If root(t) is the built-in predicate call/1, then we have t = call(t′) where t′

is a callable term. The execution continues at a new node with the query
(t′[V/call(V)], Q) and the empty local substitution where the scope of all cuts
in t′ is limited to this new node. As the execution of this new node takes k′ <
k unification tests, we can use the induction hypothesis to obtain a derivation
for this execution of the length ℓ′. We construct the corresponding derivation
for the initial query by appending the obtained derivation to one application
of the (Call) rule. Then the execution takes k = k′+1 unification tests and
the length of the derivation is ℓ = ℓ′+1. If the execution of the second node
results in an error, so does the derivation and we have k′ ≤ ℓ′ ≤ 3 · k′ + 1.
Thus, we obtain

k = k′ + 1 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If no error occurs and no halting predicate
is evaluated, we have k′ + 1 ≤ ℓ′ ≤ 3 · k′ + 1 and obtain

k + 1 = k′ + 2 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Thus, the proposition holds in this case.
– If root(t) is the built-in predicate abolish/1, !/0, ,/2, once/1, true/0,

put byte/2, put byte/1, put char/2, put char/1, put code/2, put code/1, nl/1,
nl/0, set prolog flag/2, close/2, close/1, set input/1, set output/1, open/4,
open/3, flush output/1, flush output/0, set stream position/2, write term/3,
write term/2, write/2, write/1, writeq/2, writeq/1, write canonical/2,
write canonical/1, op/3, or char conversion/2, then the proof is analogous
to the case for call/1.

– If root(t) is the built-in predicate ;/2, then we have t = ′;′(t1, t2) where both
t1 and t2 are callable terms. If root(t1) 6= ->/2, the execution continues by
creating a new node with the query (t1, Q) and the empty local substitution.
For the execution of the query (t1, Q) we can use the induction hypothesis
as this ISO execution takes k′ < k unification tests. Hence, we obtain a
derivation for this query of the length ℓ′. Likewise, we obtain a derivation
of the length ℓ′′ for the query (t2, Q) as the execution of this query takes
k′′ < k unification tests if it is reached. We construct the corresponding
derivation for the initial query by starting with one application of the (Disj)
rule. Then we append the derivation for the query (t1, Q) where we add the
query (t2, Q) before the initial scope marker to all states in that derivation
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up to the first state where a cut with the initial scope is evaluated. If the
execution of (t1, Q) results in an error or evaluates a halting predicate or
cut with the initial scope, we are done. Then the execution takes k = k′ + 1
unification tests and the derivation has the length ℓ = ℓ′ + 1. If an error
occurs, we have k′ ≤ ℓ′ ≤ 3 ·k′+1 and the derivation also results in an error.
Thus, we obtain

k = k′ + 1 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1

and the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If no error occurs and no halting predicate
is evaluated, but a cut with initial scope is evaluated, we have k′ + 1 ≤ ℓ′ ≤
3 · k′ + 1 and obtain

k + 1 = k′ + 2 ≤ ℓ′ + 1 = ℓ ≤ 3 · k′ + 2 < 3 · k′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case. If no error occurs and no halting
predicate and no cut with the initial scope is evaluated, we drop the last
application of the (Failure) rule from the derivation for (t1, Q) and further
append the derivation for the query (t2, Q). Then the execution takes k =
k′+k′′+1 unification tests while the derivation has the length ℓ = ℓ′+ℓ′′+1.
If the ISO execution of (t2, Q) results in an error, so does the derivation and
we have k′′ ≤ ℓ′′ ≤ 3 · k′′ + 1. Thus, we obtain

k = k′ + k′′ + 1 ≤ ℓ′ + ℓ′′ < ℓ′ + ℓ′′ + 1 = ℓ

and

ℓ = ℓ′ + ℓ′′ + 1 ≤ 3 · k′ + 3 · k′′ + 3 < 3 · k′ + 3 · k′′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If the execution does not raise an error or
evaluates a halting predicate, we have k′′ + 1 ≤ ℓ′′ ≤ 3 · k′′ + 1. Thus, we
obtain

k + 1 = k′ + k′′ + 2 ≤ ℓ′ + ℓ′′ < ℓ′ + ℓ′′ + 1 = ℓ

and

ℓ = ℓ′ + ℓ′′ + 1 ≤ 3 · k′ + 3 · k′′ + 3 < 3 · k′ + 3 · k′′ + 4 = 3 · k + 1.

Again, the proposition holds in this case. If we have t1 = ->(t3, t4), then the
execution continues by creating two new nodes with the queries (call(t3), !, t4,
Q) and (t2, Q) and the empty local substitution. For the execution of the
query (call(t3), !, t4, Q) we can use the induction hypothesis as this ISO exe-
cution takes k′′′ < k unification tests. Hence, we obtain a derivation for this
query with the length ℓ′′′. We construct the corresponding derivation for
the initial query by starting with one application of the (IfThenElse) rule
reaching the state 〈(call(t3), !m, t4, Q)∅,ε | (t2, Q)∅,ε | ?m | ?0 ; D ; E ; PI ;
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ε〉. Then we append the derivation for the query (call(t3), !, t4, Q) where we
replaced all !0 on positions outside Q by !m and then add the list of goals
(t2, Q)∅,ε |?m before the initial scope marker (w.l.o.g. assuming that the
scope m is not used within the obtained derivation) to all states in that
derivation up to the first state where a cut with the initial scope or the
scope m is evaluated. If a cut with scope m was evaluated in this state we
further add the goal ?m before the initial scope marker to all remaining states
in that derivation up to the first state where a cut with the initial scope is
evaluated. If the execution of call(t3), !, t4, Q leads to an error, evaluates a
halting predicate or evaluates a cut with the initial scope, we are done. Then
the ISO execution takes k = k′′′ + 1 unification tests and the derivation has
the length ℓ = ℓ′′′+1. If an error occurs, we further have k′′′ ≤ ℓ′′′ ≤ 3·k′′′+1
and the derivation also results in an error. Thus, we obtain

k = k′′′ + 1 ≤ ℓ′′′ + 1 = ℓ ≤ 3 · k′′′ + 2 < 3 · k′′′ + 4 = 3 · k + 1

and the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If no error occurs and no halting predicate
is evaluated, but a cut with the initial scope is evaluated, we have k′′′ +1 ≤
ℓ′′′ ≤ 3 · k′′′ + 1 and obtain

k + 1 = k′′′ + 2 ≤ ℓ′′′ + 1 = ℓ ≤ 3 · k′′′ + 2 < 3 · k′′′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case, too. If neither an error occurs
nor a halting predicate or a cut with the initial scope is evaluated, then we
drop the last application of the (Failure) rule from the derivation. If a cut
with the scope m has been evaluated, then the constructed derivation so far
ends in the state 〈?m | ?0 ; D′ ; E ′ ; PI ′ ; A〉 for the dynamic part D′

of the program, the environment E ′, the set PI ′ of user-defined predicate
indicators, and list of answer substitutions A reached after executing the
query (call(t3), !, t4, Q). The derivation can be finished by two applications
of the (Failure) rule and has, thus, the length ℓ = ℓ′′′+2 while the execution
still takes k = k′′′ + 1 unification tests. Moreover, we have k′′′ + 1 ≤ ℓ′′′ ≤
3 · k′′′ + 1. We obtain

k = k′′′ + 1 ≤ ℓ′′′ < ℓ′′′ + 2 = ℓ ≤ 3 · k′′′ + 3 < 3 · k′′′ + 4 = 3 · k + 1

and the proposition holds in this case. If no cut with the scope m has
been evaluated, then the constructed derivation so far ends in the state
〈(t2, Q)∅,ε | ?m | ?0 ; D′ ; E ′ ; PI ′ ; A〉 and the execution takes k =
k′′′+k′′+1 unification tests. We append the derivation for the query (t2, Q)
where we added the goal ?m before the initial scope marker to all states in
that derivation up to the first state where a cut with the initial scope is
evaluated (except the last state). If the execution of (t2, Q) leads to an error
or evaluates a halting predicate or a cut with the initial scope, we are done
and the derivation has the length ℓ = ℓ′′′ + ℓ′′. If an error occurs, we further
have k′′ ≤ ℓ′′ ≤ 3 · k′′ + 1 and the derivation also results in an error. Thus,

63



we obtain
k = k′′′ + k′′ + 1 ≤ ℓ′′′ + ℓ′′ = ℓ

and

ℓ = ℓ′′′ + ℓ′′ ≤ 3 · k′′′ + 3 · k′′ + 2 < 3 · k′′′ + 3 · k′′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution evaluates a halting
predicate, the proof is analogous. If no error occurs and no halting predicate
is evaluated, but a cut with the initial scope is evaluated, we have k′′ + 1 ≤
ℓ′′ ≤ 3 · k′′ + 1 and obtain

k + 1 = k′′′ + k′′ + 2 ≤ ℓ′′′ + ℓ′′ = ℓ

and

ℓ = ℓ′′′ + ℓ′′ ≤ 3 · k′′′ + 3 · k′′ + 2 < 3 · k′′′ + 3 · k′′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case. If neither an error occurs nor
a halting predicate or a cut with the initial scope is evaluated, then we
additionally change the last state of the constructed derivation so far from
〈ε ; D′′ ; E ′′ ; PI ′′ ; A′〉 to 〈?0 ; D′′ ; E ′′ ; PI ′′ ; A′〉 and finish the
derivation with one further application of the (Failure) rule. Thus, the
derivation has the length ℓ = ℓ′′′+ℓ′′+1 and we have k′′+1 ≤ ℓ′′ ≤ 3 ·k′′+1.
We obtain

k + 1 = k′′′ + k′′ + 2 ≤ ℓ′′′ + ℓ′′ < ℓ′′′ + ℓ′′ + 1 = ℓ

and

ℓ = ℓ′′′ + ℓ′′ + 1 ≤ 3 · k′′′ + 3 · k′′ + 3 < 3 · k′′′ + 3 · k′′ + 4 = 3 · k + 1.

Hence, the proposition holds in this case.
– If root(t) is the built-in predicate ->/2, repeat/0, or not/1, then the proof is

analogous to the case for ;/2.
– If root(t) is the built-in predicate catch/3, then we have t = catch(g, c, r)

where g is callable. The execution continues by creating a new node with
the query (call(g), Q) and the empty local substitution. The correspond-
ing derivation starts with one application of the (Catch) rule reaching the
state 〈(call(g))∅,(m,c,r,Q,∅) | ?m | ?0 ; D ; E ; PI ; ε〉. For the sub-query
(call(g), Q) we can use the induction hypothesis to obtain a derivation of
length ℓ′ since its ISO execution takes k′ < k unification tests. However, in
the execution of the initial query, every successful execution of call(g) is fol-
lowed by an inactivation of the catcher c, which we have to count as one unifi-
cation test. Let n be the number of inactivations for the successful executions
of call(g) within the execution of the initial query. If no uncaught error occurs
during the execution of (call(g), Q), then the execution is finished and takes
k = k′+n+1 unification tests. The corresponding derivation is constructed
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as follows. First, we add the goal ?m before the initial scope marker to every
state up to the first state where a cut with the initial scope is evaluated.
Then every goal (Q′, Q)θ,ε where the evaluation of Q was not reached be-
fore for this goal is replaced by Q′θ,(m,c,r,Q,∅). Moreover, every catch-context

(m′, c′, r′, (Q′, Q), δ′) is replaced by (m′, c′, r′, Q′, δ′) while the catch-context
(m, c, r,Q,∅) is added in the beginning of the list of catch-contexts in the
respective goal (but only once for each goal, i.e., the replacement of several
catch-contexts within one goal does not add several catch-contexts in the be-
ginning of the respective list of catch-contexts). After this replacement, there
are n states in the derivation starting with the goal �θi,Ci|(m,c,r,Q,∅) where
θi is a substitution and Ci is a list of catch-contexts for all i ∈ {1, . . . , n}.
At each such state, an application of the (CatchNext) rule is inserted. If
the execution evaluates a halting predicate, then we know k′ ≤ ℓ′ ≤ 3 ·k′+1
and the derivation is finished with the length ℓ = ℓ′+n+1. Thus, we obtain

k = k′ + n+ 1 ≤ ℓ′ + n+ 1 = ℓ

and

ℓ = ℓ′ + n+ 1 ≤ 3 · k′ + n+ 2 < 3 · k′ + 3 · n+ 4 = 3 · k + 1.

Hence, the proposition holds in this case. If no halting predicate, but a cut
with the initial scope is evaluated, then the construction is the same, but we
have k′ + 1 ≤ ℓ′ ≤ 3 · k′ + 1 and obtain

k + 1 = k′ + n+ 2 ≤ ℓ′ + n+ 1 = ℓ

and

ℓ = ℓ′ + n+ 1 ≤ 3 · k′ + n+ 2 < 3 · k′ + 3 · n+ 4 = 3 · k + 1.

Hence, the proposition holds in this case. If no halting predicate and no
cut with the initial scope is evaluated, then we finish the derivation by one
further application of the (Failure) rule. Thus, the length of the derivation
is ℓ = ℓ′ + n+ 2 and we have k′ + 1 ≤ ℓ′ ≤ 3 · k′ + 1. We obtain

k + 1 = k′ + n+ 2 ≤ ℓ′ + n+ 1 < ℓ′ + n+ 2 = ℓ

and

ℓ = ℓ′ + n+ 2 ≤ 3 · k′ + n+ 2 < 3 · k′ + 3 · n+ 4 = 3 · k + 1.

Hence, the proposition holds in this case. If the ISO execution of (call(g), Q)
leads to an error, we have to consider the error term e which is thrown by
the built-in predicate throw/1 and whether the execution of call(g) is still in
progress. If mgu(e′, c) = fail for a fresh variant e′ of e or the execution of
call(g) is already achieved in the current goal, then the construction is the
same as for the evaluation of a halting predicate. If the execution of call(g) is
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not yet finished, we insert one application of the (ThrowNext) rule before
the final application of the (ThrowErr) rule in the constructed derivation.
Both ISO execution and derivation lead to a program error and we have
k′ ≤ ℓ′ ≤ 3 · k′ + 1. If the execution of call(g) was already finished, then the
execution takes k = k′ + n + 1 unification tests and the derivation has the
length ℓ = ℓ′ + n+ 1, yielding an analogous proof as for the evaluation of a
halting predicate. Otherwise the execution takes k = k′ + n + 2 unification
tests and the derivation has the length ℓ = ℓ′ + n+ 2. Thus, we obtain

k = k′ + n+ 2 ≤ ℓ′ + n+ 2 = ℓ

and

ℓ = ℓ′ + n+ 2 ≤ 3 · k′ + n+ 2 < 3 · k′ + 3 · n+ 4 = 3 · k + 1.

Hence, the proposition holds in this case. If e′ ∼ c for a fresh variant e′

of e and the execution of call(g) is not yet achieved in the current goal,
then let σ = mgu(e′, c). The execution continues by performing the unifi-
cation test between e′ and c instead of reaching a program error and then
creates a new node with the query (call(rσ), Qσ) and local substitution σ.
The derivation is first constructed in the same way as for the evaluation
of a halting predicate, but the last application of the (ThrowErr) rule
is replaced by one application of the (ThrowSuccess) rule leading to the
state 〈(call(rσ), Qσ)σ,ε | ?0 ; D′ ; E ′ ; PI ′ ; A〉 for the dynamic part D′

of the program, the environment E ′, the set PI ′ of user-defined predicate
indicators, and list of answer substitutions A reached after the execution of
(call(g), Q) (just before raising the error). For the query call(rσ), Qσ we can
again use the induction hypothesis as its execution takes k′′ < k unification
tests. Thus, we obtain a derivation of length ℓ′′ for this ISO execution. The
corresponding derivation for the initial goal continues by appending the ob-
tained derivation where we replaced all answer substitutions and candidate
answer substitutions δ by σδ. If the execution of (call(rσ), Qσ) leads to an
error or evaluates a halting predicate, then we have k′′ ≤ ℓ′′ ≤ 3 · k′′ + 1
and the derivation leads to an error iff the ISO execution does. The execu-
tion for the initial goal takes k = k′ + k′′ + n+ 1 unification tests while the
corresponding derivation has the length ℓ = ℓ′+ ℓ′′+n+1. Hence, we obtain

k = k′ + k′′ + n+ 1 ≤ ℓ′ + ℓ′′ + n+ 1 = ℓ

and

ℓ = ℓ′+ ℓ′′+n+1 ≤ 3 ·k′+3 ·k′′+n+3 < 3 ·k′+3 ·k′′+3 ·n+4 = 3 ·k+1.

Thus, the proposition holds in this case. If the execution of (call(rσ), Qσ)
neither results in an error nor evaluates a halting predicate, we have k′′+1 ≤
ℓ′′ ≤ 3 · k′′ + 1. We obtain

k = k′ + k′′ + n+ 1 ≤ ℓ′ + ℓ′′ + n < ℓ′ + ℓ′′ + n+ 1 = ℓ
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and

ℓ = ℓ′+ ℓ′′+n+1 ≤ 3 ·k′+3 ·k′′+n+3 < 3 ·k′+3 ·k′′+3 ·n+4 = 3 ·k+1.

Hence, the proposition holds in this case.
– If root(t) is the built-in predicate atom concat/3, then we have

t = atom concat(t1, t2, t3) where either t3 is an atom and t1 and t2 are atoms
or variables or t3 is a variable and both t1 and t2 are atoms. The correspond-
ing derivation starts with one application of the (AtomConcat) rule. If t3
is an atom, then let n be the number of characters forming t3. There are n+1
pairs of atoms (ai, bi) such that t3 is formed by the characters of ai followed
by the characters of bi. The second state of the derivation is 〈((t1, t2) =
(a1, b1), Q)∅,ε | . . . | ((t1, t2) = (an+1, bn+1), Q)∅,ε ; D ; E ; PI ; ε〉. Let
1 ≤ i ≤ n+ 1 be the smallest index such that (t1, t2) ∼ (ai, bi). If no such i
exists, the execution performs k = n+ 1 failing unification tests with n > 0
and is finished then. The corresponding derivation continues by n+1 appli-
cations of the (UnifyFail) rule followed by one application of the (Failure)
rule and has, thus, the length ℓ = n+ 3. We obtain

k + 1 = n+ 2 < n+ 3 = ℓ < 3 · n+ 4 = 3 · k + 1

and, hence, the proposition holds in this case. If an index i as described above
exists, then the execution starts with i − 1 failing unification tests followed
by one successful unification test creating a new node with the query Qσ and
local substitution σ wheremgu((t1, t2), (ai, bi)) = σ. For the ISO execution of
Qσ we can use the induction hypothesis as it takes k1 < k unification tests.
Thus, we obtain a derivation of length ℓ′ for this execution. If the execution of
Qσ results in an error or evaluates a halting predicate, so does the derivation
and we have k1 ≤ ℓ′ ≤ 3 · k1 + 1. We construct the derivation for the initial
goal by adding the goals ((t1, t2) = (ai+1, bi+1), Q)∅,ε | . . . | ((t1, t2) =
(an+1, bn+1), Q)∅,ε before the initial scope marker in the obtained derivation
up to the first state where a cut with the initial scope is evaluated. Then we
append this derivation to the first application of the (AtomConcat) rule.
The execution takes k = k1 + i unification tests while the derivation has the
length ℓ = ℓ′ + i+ 1. Thus, we obtain

k = k1 + i ≤ ℓ′ + i < ℓ′ + i+ 1 = ℓ

and

ℓ = ℓ′ + i+ 1 ≤ 3 · k1 + i+ 2
i>0
< 3 · k1 + 3 · i+ 1 = 3 · k + 1.

Hence, the proposition holds in this case. If the execution of Qσ neither
results in an error nor evaluates a halting predicate, then we have k1 + 1 ≤
ℓ′ ≤ 3 · k1 +1. If a cut with the initial scope is evaluated, then the execution
also takes k = k1 + i unification tests and the construction of the derivation
for the initial goal is the same yielding a derivation of length ℓ = ℓ′ + i+ 1.
Thus, we obtain

k + 1 = k1 + i+ 1 ≤ ℓ′ + i < ℓ′ + i+ 1 = ℓ
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and

ℓ = ℓ′ + i+ 1 ≤ 3 · k1 + i+ 2
i>0
< 3 · k1 + 3 · i+ 1 = 3 · k + 1.

Hence, the proposition holds in this case. If no cut with the initial scope is
evaluated, then the construction of the derivation is the same except that we
drop the last application of the (Failure) rule. The execution takes k1 + i
unification tests up to this point and the derivation has the length ℓ′+i. Now
the situation is similar to the beginning except that we have one child node
of the initial node less for the execution and at least one goal less for the
derivation. Thus, we can use the same reasoning again and this cannot be
repeated more than n+1 times. Let n′ be the number of necessary unification
tests for the atom concat predicate and n′′ be the number of successful such
unification tests. Then the execution takes k = n′+Σn′′

j=1kj unification tests

while the derivation has the length ℓ = n′ + 1 +Σn′′

j=1(ℓ
′ − 1). If the overall

execution results in an error or evaluates a halting predicate, we have kj+1 ≤
ℓj ≤ 3 · kj + 1 for all j ∈ {1, . . . , n′′ − 1} and kn′′ ≤ ℓn′′ ≤ 3 · kn′′ + 1. We
obtain

k = n′ +Σn′′

j=1kj

≤ n′ + 1 +Σn′′

j=1(ℓj − 1)

= ℓ

and

ℓ = n′ + 1 +Σn′′

j=1(ℓj − 1)

≤ n′ + 1 + 3 ·Σn′′

j=1kj

< 3 · n′ + 1 + 3 ·Σn′′

j=1kj

= 3 · k + 1.

Thus, the proposition holds in this case. If no error occurs and no halting
predicate is evaluated, we have kj +1 ≤ ℓj ≤ 3 ·kj +1 for all j ∈ {1, . . . , n′′}.
We obtain

k + 1 = n′ + 1 +Σn′′

j=1kj

≤ n′ + 1 +Σn′′

j=1(ℓj − 1)

= ℓ

and

ℓ = n′ + 1 +Σn′′

j=1(ℓj − 1)

≤ n′ + 1 + 3 ·Σn′′

j=1kj

< 3 · n′ + 1 + 3 ·Σn′′

j=1kj

= 3 · k + 1.

Hence, the proposition holds in this case.
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– If root(t) is the built-in predicate sub atom/5, clause/2, current predicate/1,
current flag/2 stream property/2, current op/3, or current char conversion/2,
then the proof is analogous to the case for atom concat/3.

Since the proposition holds in all cases, the first proposition is shown.

We show the second proposition by induction over the number k of unification
tests performed during the finite prefix of the execution w.r.t. the operational
semantics of the ISO standard.

If k = 0, then the proposition trivially holds as for the initial query there are
no answer substitutions and the initial states for our derivations also have an
empty list of answer substitutions.

If k > 0, we can assume that the proposition holds for all finite prefixes
of infinite executions with k′ < k unification tests. Moreover, we can already
use the first proposition as its proof does not rely on the proof for the second
proposition. The initial query has the form (t, Q) for a term t and a (possibly
empty) sequence of terms Q. We perform a case analysis over the shape of t
where we already know that root(t) must be a user-defined or built-in predicate,
because the execution is infinite.

– If root(t) is a user-defined predicate, then we have Slice(P|D)(t) = (c1, . . . , cn)
with n > 0. The corresponding derivation starts with an application of

the (Case) rule resulting in the state 〈(t′, Q′)
c′1
∅,ε | . . . | (t

′, Q′)
c′n
∅,ε | ?m |

?0 ; D ; E ; PI ; ε〉 where t′ = t[!/!0], Q
′ = Q[!/!0], and c′a = c′a[!/!m]

for all a ∈ {1, . . . , n}. Let i ∈ {1, . . . , n} be the smallest index such that

the (Eval) rule is applicable to the state 〈(t′, Q′)
c′i
∅,ε | . . . | (t

′, Q′)cn
∅,ε | ?m |

?0 ; D ; E ; PI ; ε〉. There must be such an i, because otherwise the
execution would be finite. The execution performs i − 1 failing unification
tests before executing the first successful one and creates a new child for
the current node labeled with (Bσ,Qσ) and the local substitution σ where
ci = h :−B and mgu(t, h) = σ. As the mgu is unique modulo variable renam-
ing, we can w.l.o.g. assume that we have the same mgu in both ISO execution
and derivation. The corresponding derivation continues with i − 1 applica-
tions of the (Backtrack) rule followed by one application of the (Eval)
rule resulting in the state 〈(B′σ,Q′σ)σ,ε | (t

′, Q′)
ci+1

∅,ε | . . . | (t
′, Q′)cn

∅,ε | ?m |
?0 ; D ; E ; PI ; ε〉 where c′i = h′ :−B′. If k ≤ i, the proposition holds
as there are no answer substitutions in both the execution and derivation.
Otherwise consider the execution of the query (Bσ,Qσ). First, we consider
the case that this execution is infinite. Then we obtain a derivation with
the same answer substitutions modulo variable renaming by the induction
hypothesis as the last k′ = k− i unification tests of the prefix belong to this
execution. We construct the derivation for the initial goal in the same way
as in the proof for the first proposition. Thus, for each answer substitution
δ in the derivation for (Bσ,Qσ) we now have σδ as answer substitution for
the initial goal. Hence, the proposition holds in this case. Now we consider
the case that the execution of (Bσ,Qσ) is finite, i.e., it takes k′ unification
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tests. If i+ k′ ≥ k, we consider the prefix of i+ k′ unification tests. For the
execution of (Bσ,Qσ) we obtain the corresponding derivation with the same
answer substitutions modulo variable renaming by the first proposition. Let
A be the list of answer substitutions for the execution of (Bσ,Qσ). Then for
the initial goal we have all answer substitutions σδ such that δ ∈ A in the
same order as in A. According to the construction used in the proof for the
first proposition, all answer substitutions δ from the obtained derivation are
replaced by σδ in the corresponding derivation for the initial goal. Thus, the
proposition holds in this case. If i+k′ < k, then we obtain a derivation with
the same answer substitutions modulo variable renaming for the execution
of (Bσ,Qσ) by the first proposition. We append this derivation to the first
application of the (Case) rule in the same way as in the proof for the first
proposition. Now we are in a similar situation as in the beginning, but with-
out the first child node of the initial node and with at least one goal less in
the state reached by the derivation. Thus, we can apply the same construc-
tion again. This construction cannot be repeated more than n times. Hence,
the proposition holds in this case.

– If root(t) is the built-in predicate =/2, then we have t = ′=′(t1, t2) and
the first unification test is performed between t1 and t2. Moreover, we have
t1 ∼ t2, because the execution takes more than one unification test. Let
mgu(t1, t2) = σ. The ISO execution creates a new node labeled with Qσ and
σ which is the new current node. The derivation starts with one application of
the (UnifySuccess) rule reaching the state 〈(Qσ)σ,ε | ?0 ; D ; E ; PI ; ε〉
(w.l.o.g. we can assume to use the same unifier in both ISO execution and
derivation as an mgu is unique up to variable renaming). For the execution of
the query Qσ, we can use the induction hypothesis to obtain a corresponding
derivation, because the execution of that query must be infinite and have
a finite prefix of k′ < k unification tests up to the point where the prefix
of k unification tests for the initial query ends. We construct the derivation
for the initial query by replacing every answer substitution or candidate
answer substitution δ with σδ in the obtained derivation, and appending
this derivation to the first application of the (UnifySuccess) rule. Thus,
the proposition holds in this case.

– If root(t) is the built-in predicate atom chars/2, atom codes/2, atom length/2,
char code/2, number chars/2, number codes/2, get byte/2, get byte/1,
peek byte/2, peek byte/1, number codes/2, get char/2, get char/1,
get code/2, get code/1, peek char/2, peek char/1, peek code/2, peek code/1,
at end of stream/1, at end of stream/0, current input/1, current output/1,
arg/3, copy term/2, functor/3, =../2, \=/2, unify with occurs check/2, ==/2,
\==/2, @>/2, @>=/2, @</2, @=</2, atom/1, atomic/1, compound/1,
float/1, integer/1, nonvar/1, number/1, var/1, is/2, >/2, >=/2, </2, =</2,
=:=/2, =\=/2, read term/3, read term/2, read/2, or read/1, then the proof
is analogous to the case for =/2.

– If root(t) is the built-in predicate call/1, then we have t = call(t′) where t′

is a callable term. The execution continues at a new node with the query
(t′[V/call(V)], Q) and empty local substitution where the scope of all cuts in
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t′ is limited to this new node. As the execution of this new node must be
infinite and the last k′ < k unification tests or the finite prefix for the initial
goal belong to this execution, we can use the induction hypothesis to obtain
a derivation for this execution. We construct the corresponding derivation
for the initial goal by appending the obtained derivation to one application
of the (Call) rule. As there are no changes to the answer substitutions, the
proposition holds in this case.

– If root(t) is the built-in predicate abolish/1, asserta/1, assertz/1, !/0, ,/2,
once/1, true/0, put byte/2, put byte/1, put char/2, put char/1, put code/2,
put code/1, nl/1, nl/0, set prolog flag/2, close/2, close/1, set input/1,
set output/1, open/4, open/3, flush output/1, flush output/0,
set stream position/2, write term/3, write term/2, write/2, write/1, writeq/2,
writeq/1, write canonical/2, write canonical/1, op/3, or char conversion/2, then
the proof is analogous to the case for call/1.

– If root(t) is the built-in predicate retract/1, then we have t = retract(c).
If root(c) = :− /2, then we have c = h :−B. Otherwise let h = c and
B = true. Moreover, we have that h is no variable, root(h) is not a static
predicate, and there is at least one clause in the program for root(h). The
first unification test is performed between h :−B and the first clause for
root(h) in the program. Let SliceD(t) = (h1 :−B1, . . . , hn :−Bn). The
corresponding derivation starts with one application of the (Retract) rule.
Let i ∈ {1, . . . , n} be the first index such that h :−B ∼ hi :−Bi and
the execution of Qσi with mgu(h :−B, hi :−Bi) = σi is infinite (such an
index must exist). Moreover, let i1, . . . , im be all indices such that ij < i and
mgu(h :−B, hj :−Bj) = σj for all j ∈ {1, . . . ,m}. If k is smaller than the
number of unification tests needed to reach the goal Qσi, then we consider
the longer prefix up to that point. For all finite executions of the goals Qσj

we can use the first proposition to obtain corresponding derivations. The
construction of the derivation for the initial goal is the same as the one used
in the proof of the first proposition. Finally, for the goal Qσi we can use
the induction hypothesis and complete the construction of the derivation for
the initial goal with the derivation obtained for Qσi. Hence, the proposition
holds in this case.

– If root(t) is the built-in predicate ->/2, repeat/0, not/1, ;/2, atom concat/3,
sub atom/5, clause/2, current predicate/1, current flag/2 stream property/2,
current op/3, or current char conversion/2, then the proof is analogous to the
case for retract/1.

– If root(t) is the built-in predicate findall/3, then we have t = findall(r, g, s)
where g is callable and s is a variable, partial list or a list. The execution con-
tinues with the sub-computation of the query call(g). If this sub-computation
is infinite, we obtain a corresponding derivation by the induction hypothesis
which we can use to construct a derivation for the initial query in the same
way as in the proof of the first proposition. Thus, the proposition holds in
this case. If the sub-computation is finite, the execution continues by uni-
fying s with the list of answer substitutions applied to r (by the mgu σ)
and then executes the goal Qσ. We can use the first proposition to obtain
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a corresponding derivation for the sub-computation of call(g). If the prefix
takes less unification tests than this sub-computation and the following uni-
fication, we consider the longer prefix up to this point. By the induction
hypothesis we obtain a corresponding derivation for this prefix and we con-
struct the derivation for the initial query in the same way as in the proof of
the first proposition. Hence, the proposition holds in this case.

– If root(t) is the built-in predicate bagof/3, then we have t = bagof(r, b, s)
where b = ∧(t1,

∧(t2,
∧(. . . , ∧(tm, g) . . . ))) for some m ≥ 0, root(g) 6= ∧/2,

g is a callable term, and s is a variable, a list, or a partial list. The execution
continues with the computation of the query findall([f(X1, . . . , Xn), r], g, Y )
where V(g) \ (

⋃m
i=1 V(ti)) = {X1, . . . , Xn}, f/n ∈ Σ is fresh, and Y ∈ V

is fresh. If this computation is infinite, we obtain the corresponding deriva-
tion by the induction hypothesis and append it to the first application of
the (Bagof) rule. Thus, the proposition holds in this case. Otherwise the
computation is finite and we obtain the corresponding derivation by the first
proposition. The ISO execution then creates a number of child nodes of the
initial node. Except for the last one, all executions of these child nodes must
be finite and, hence, we obtain corresponding derivations for their executions
by the first proposition. The execution of the last created child node of the
initial node must be infinite. If the execution takes more than k unification
tests before reaching the execution of that last child node, we consider the
longer prefix up to that point. By the induction hypothesis we obtain a cor-
responding derivation for this last child node and construct the derivation
for the initial goal in the same way as in the proof of the first proposition.
Hence, the proposition holds in this case.

– If root(t) is the built-in predicate setof/3, then the proof is analogous to
the case for bagof/3. The only difference is the order of the elements in the
computed lists and that duplicates are removed.

– If root(t) is the built-in predicate catch/3, then we have t = catch(g, c, r)
where g is callable. The execution starts by creating a new node with the
query (call(g), Q) and the empty local substitution. The corresponding deri-
vation starts with one application of the (Catch) rule. If the execution of
the query (call(g), Q) does not result in an error, then it must be infinite
and we obtain a corresponding derivation by the induction hypothesis. The
derivation for the initial query is constructed in the same way as in the
proof of the first proposition and, thus, the second proposition holds in this
case. Otherwise the execution of (call(g), Q) results in an error after finitely
many unification tests, the catcher in the initial node is still active, and a
fresh variant e′ of the error term e being thrown unifies with c by the mgu σ.
Hence, the execution continues with the query (call(rσ), Qσ). This execution
must be infinite. If the execution takes more than k unification tests up to
this point, we consider the longer prefix up to this point. Therefore, we can
use the first proposition to obtain a derivation for the query (call(g), Q) and
the induction hypothesis to obtain a derivation for the query (call(rσ), Qσ).
We construct the derivation for the initial goal in the same way as in the
proof of the first proposition and the second proposition holds in this case.
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Since the proposition holds in all cases, the second proposition is also shown. ⊓⊔
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brenik, René Thiemann: Automated Termination Analysis for Logic

Programs with Cut

2010-11 Martin Zimmermann: Parametric LTL Games
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