
Aachen
Department of Computer Science

Technical Report

Derandomizing Non-uniform

Color-Coding I

Joachim Kneis, Alexander Langer, Peter Rossmanith

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-07

RWTH Aachen · Department of Computer Science · March 2009

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Derandomizing Non-uniform Color-Coding I⋆

Joachim Kneis, Alexander Langer, Peter Rossmanith

Theoretical Computer Science Group
RWTH Aachen University, Germany

Email: {kneis,langer,rossmani}@cs.rwth-aachen.de

Abstract. Color-coding, as introduced by Alon, Yuster, and Zwick, is a well-
known tool for algorithm design and can often be efficiently derandomized us-
ing universal hash functions. In the special case of only two colors, one can use
(n, k)-universal sets for the derandomization. In this paper, we introduce (n, k, l)-
universal sets that are typically smaller and can be constructed faster. Neverthe-
less, for some problems they are still sufficient for derandomization and faster
deterministic algorithms can be obtained. This particularly works well when the
color-coding does not use a uniform probability distribution. To exemplify the
concept, we present an algorithm for the Unique Coverage problem introduced
by Demaine, Feige, Hajiaghayi, and Salavatipour. The example also shows how
to extend the concept to multiple colors.

1 Introduction

The principle of randomization is well-established in the field of algorithm design.
Due to the sometimes non-intuitive, even surprising laws of probability theory
(cf., the birthday paradoxon), randomized algorithms often can find correct so-
lutions faster than any known deterministic algorithm.

Consider, for example, the popular 3-SAT problem, which can be solved
in time bounded by O∗(1.324n) using a randomized algorithm with constant
error probability [10, 17], but only in time bounded by O∗(1.473n) when a purely
deterministic approach is used [6, 2].

Even worse, it can be shown that there are problems, for which every de-
terministic approach has a certain worst-case lower bound, while a randomized
algorithm typically runs much faster. Suppose, for example, that there are 100
boxes and exactly half of them contain a present. How long does it take to find
one? Every deterministic algorithm can be forced to look into at least 51 boxes
before finding a present. However, a randomized algorithm repeatedly choos-
ing an arbitrary box with uniform probability 1/100 until finding a present is
expected to guess only two times. Here, the worst- and average-case coincide,
which explains the large gap between deterministic and randomized bounds.

Similarly, there are examples that are not so näıve, yet surprising: Let’s say,
we are are given an array of n integers, and we know that either the array is
sorted, or it is not sorted and you have to delete at least n/10 elements to obtain
a sorted array. The goal is to design an algorithm that decides which of the two
cases holds. Intuitively, one could argue you always have to compare all pairs
of subsequent elements, and in fact deterministically Ω(n) elements have to be
examined. Surprisingly, there is a randomized algorithm that runs in O(log n)
time [8].

⋆ Supported by the DFG under grant RO 927/8

Randomized algorithms are algorithms that have access to true random bits.
They can be classified into Monte Carlo and Las Vegas algorithms: Monte Carlo
algorithms have a fixed running time, but the outcome has to be correct with a
probability of at least, say, 2/3. Las Vegas algorithms always return the correct
result, but their running time depends on the random bits. In this paper, we
consider Monte Carlo algorithms.

Often you can turn a randomized algorithm into a deterministic one by tech-
niques commonly referred to as derandomization. One possibility is to repeatedly
feed the algorithm several bit strings of length n instead of n random bits. Usu-
ally, however, a randomized algorithm requires random bits that are independent,
i.e., for n random bits, every combination occurs with equal probability 2−n. One
possibility to derandomize such an algorithm is therefore to run it 2n times with
every possible bit string of length n, which is usually too slow to be of practical
interest.

Sometimes, though, algorithms do not require n independent random bits.
Sometimes, it suffices if only every subset of k < n bits is independent. A set
of n-bit vectors with this property is called (n, k)-independent. Such randomized
algorithms that only require (n, k)-independent bits can often be derandomized
with the help of (n, k)-universal sets.

Definition 1. Let n and k be integers. An (n, k)-universal set is a set Ω of bit
strings b = b0 . . . bn−1 ∈ {0, 1}n, such that for all distinct positions i1, . . . , ik ∈ Zn

and all patterns x = x1 . . . xk ∈ {0, 1}k there is some b = b0 . . . bn−1 ∈ Ω with
bij = xj for all 1 ≤ j ≤ k.

Naor, Schulman, and Srinivasan [15] showed how to construct (n, k)-universal

sets of size 2k+O(log2 k) log n in linear time. This is nearly optimal, because there
is a lower bound of Ω(2k log n) on the size of (n, k)-universal sets [11].

Algorithms that can often be derandomized using (n, k)-universal sets are
those that use the so called color-coding technique [1], the random separation
technique [3], and those that use the randomized divide-and-conquer (also called
divide-and-color) [4, 5, 12] approach. In Section 2.1, we illustrate the random
separation technique in further detail on the problem Exact Partial Vertex

Cover: Given a graph and two integers k and t, is there a set C of k nodes
adjacent to exactly t edges? In short, the algorithm randomly partitions the
nodes into two sets colored 0 and 1, and then uses dynamic programming to find
a solution C that is colored with color 1 and whose neighborhood is colored with
color 0. This coloring step succeeds with a probability of at least 2−k−t when
uniform probabilities for the two colors are used.1 Furthermore, (n, k)-universal
sets can be used to obtain a deterministic algorithm with a running time of
2k+t+O(log2(k+t))poly(n).

Sometimes, however, it is not optimal to choose the colors with uniform
probabilities. This is, for example, the case, when much fewer elements shall
receive the color 0 than shall receive the color 1. Assume, for instance, that an

1 Note that a randomized algorithm with running time t(n) and success probability 2−x can
easily be turned into a randomized algorithm with constant success probability arbitrarily
close to one and a running time of O(2xt(n)). This standard technique is called probability
amplification (see, e.g., [14]). Whenever we compare randomized algorithms with determin-
istic algorithms, we mean the randomized algorithm with constant success probability.

4

instance of Exact Partial Vertex Cover is such that t = k2, and therefore
k2 nodes shall be colored with 0, but only k nodes with 1. Then the randomized
algorithm’s success probability is only 2−k2−k when using uniform probabilities,
but can be improved to

(1/k)k(1 − 1/k)k
2

∼ e−k lnk−k+1/2

by using probabilities 1/k for the color 1 and 1 − 1/k for the color 0. See Sec-
tion 2.2 for details. If we now simply use (n, k2 + k)-universal sets for the deran-
domization, we still only obtain a deterministic algorithm with running time of
2k2+k+O(log k)poly(n), which is much slower than the corresponding randomized
algorithm.

Please note, however, that here we do not need the whole power of (n, k2+k)-
universal sets: We do not need to find all possible subpatterns, but only those
having k ones. To capture this concept, we introduce (n, k, l)-universal sets2:

Definition 2. Let n ≥ k ≥ l be integers. An (n, k, l)-universal set is a set Ω of bit
strings b = b0 . . . bn−1 ∈ {0, 1}n, such that for all distinct positions i1, . . . , ik ∈ Zn

and all patterns x = x1 . . . xk ∈ {0, 1}k with Hamming weight at most l, there is
some b = b0 . . . bn−1 ∈ Ω with bij = xj for all 1 ≤ j ≤ k.

Using (n, k2 + k, k)-universal sets, we can get a better deterministic time
bound if we are able to construct (n, k2 + k, k)-universal sets much faster than
(n, k2 +k)-universal sets. The main result of this paper are (n, k, l)-universal sets
of size 2nk2l that can be constructed in time O(n2k2l+2).

1.1 Outline

In this paper, we present a construction of (n, k, l)-universal sets, which is self-
contained, very simple, and can easily be implemented, but has two drawbacks:

1. The size of the sets is not the smallest possible.

2. The method works well for l ≪ k, but is not optimal for l = Θ(k), in partic-
ular for l = k/2.

These issues will be addressed in the second part, where we will present a more
complicated technique, which allows for better constants and is useful for all
combinations of k and l.

This paper is organized as follows: In Section 2.1 we introduce the concept of
random separation with uniform probabilities using the example of the Exact

Partial Vertex Cover problem. In Section 2.2, we show how the running time
can be improved when certain conditions are met and motivate the introduction
of (n, k, l)-universal sets. Our construction of (n, k, l)-universal sets is presented in
Section 3. Another application is shown in Section 4, which contains the currently
fastest parameterized algorithm for the Unique Coverage problem introduced
by Demaine, Feige, Hajiaghayi, and Salavatipour [7].

2 Please do not confuse those with (n, k, l)-splitters [15], which are k-universal hash functions
on l colors, i.e., a (n, k, 2)-splitter is also an (n, k)-universal set.

5

2 Random Separation

The random separation technique has been introduced recently by Cai, Chan,
and Chan [3]. In this section, we want to illustrate their technique using the
problem Exact Partial Vertex Cover, which is defined as follows.

Exact Partial Vertex Cover

Input: An undirected graph G = (V,E), positive integers k, t
Question: Is there a set C ⊆ V , |C| ≤ k, such that exactly t edges are

adjacent to a node in C?

We also say that such a set C covers t edges and call C a partial vertex
cover or t-vertex cover. The basic idea of the random separation technique is to
randomly assign colors 0 and 1 to the nodes in V , such that a solution can be
built from 1-colored components in G. If a solution exists at all, it can be shown
that a random coloring is successful with a certain probability (here, 2−k−t). This
already determines the success probability of the whole algorithm.

Therefore, let c : V → {0, 1} be a mapping (called a coloring). A set of nodes
U ⊆ V is called a c-1-component if U is a connected component of G[c−1(1)].

2.1 Coloring with uniform probabilities

We first study the general case, where we use uniform probabilities for the two
colors.

Lemma 1 (Cai, Chan, Chan [3]). Let G = (V,E), and let C ⊆ V be a t-
vertex-cover of size k. If a coloring c : V → {0, 1} is chosen randomly, such that
each node is colored 1 or 0 independently with uniform probability 1/2, then with
probability at least 2−k−t, C consists of c-1-components.

Proof. C contains k nodes, and since C is a t-vertex cover, exactly t edges are
adjacent to C. In particular, there are at most t nodes in N(C) :=

⋃

v∈C N(v)\C.
Thus, with probability 2−k all k nodes in C are colored 1, and with probability
at least 2−t all nodes in N(C) are colored 0. Components of G[C] are therefore
c-1-components of G with probability at least 2−k−t. ⊓⊔

Once a coloring c has been chosen, further computation is required to find
c-1-components that actually yield a t-vertex cover. This computation can easily
be done in polynomial time using the standard dynamic programming approach
for the classical Subset Sum problem. For further details, please see [3].

Note that the proof does not require that all nodes, but only that up to k + t
of them are colored independently. Therefore, the above algorithm can easily
be derandomized using (n, k + t)-universal sets. The corresponding deterministic
algorithm then has a running time bounded by

2k+t+O(log2(k+t))poly(n).

2.2 Coloring with non-uniform probabilities

Now assume that the instance of Exact Partial Vertex Cover is such that
t = k2. Without modifications, the above randomized approach then yields a suc-
cess probability of only 2−k−k2

. However, the probability can easily be improved
by choosing non-uniform probabilities for 0 and 1:

6

Lemma 2. Let G = (V,E), and let C ⊆ V be a t-vertex-cover of size k. If a
coloring c : V → {0, 1} is chosen randomly, such that each node is colored in-
dependently and receives the color 1 with probability 1/k and the color 0 with
probability 1− 1/k, then C can be partitioned into c-1-components with a proba-
bility of at least k−ke−k+1/2(1 + O(k−1)) = e−k lnk−k+1/2(1 + O(k−1)).

Proof. First note, that by the Taylor expansion of ln(1 + z),

k2 ln
(

1 −
1

k

)

= k2
(

−
1

k
+

1

2k2
+ O(k−3)

)

= −k +
1

2
+ O(k−1). (1)

Now, again k nodes in C must be colored 1 and up to t = k2 nodes in N(C)
must be colored 0. Hence, the probability that C and N(C) are colored correctly
is at least

(1

k

)k(

1 −
1

k

)k2

= k−k exp
[

k2 ln
(

1 −
1

k

)]

(1)
= k−k exp

[

−k + 1/2 + O
(1

k

)]

= e−k ln k−k+1/2
[

1 + O
(1

k

)]

. (2)

⊓⊔

Unfortunately, if we derandomize this algorithm using (n, k2 + k)-universal
sets, we obtain a running time of

2k+k2+O(log2(k+k2))poly(n) = 2k+k2+O(log2 k)poly(n), (3)

which is much slower than its corresponding randomized algorithm.
However, we can use (n, k2+k, k)-universal sets instead, because only k nodes

must be colored with color 1. In the next section, we will introduce (n, k, l)-
universal sets for arbitrary l ≤ k that can be constructed in time O(n2k2l+2).
Therefore, the randomized algorithm using non-uniform probabilities can be de-
randomized faster and a deterministic running time of

(k2 + k)2k+2poly(n) = k4k+4(1 + 1/k)2k+2poly(n)

= k4k+4poly(n) = e4k lnkpoly(n)

can be achieved (here, note that (1 + 1/k)k ≤ e and k4 is hidden in poly(n)),
which is dramatically faster than (3).

3 A simple construction of (n, k, l)-universal sets

In this section, we show how to construct (n, k, l)-universal sets. The style of
presentation is inspired by [4].

Let Zn := {0, . . . , n − 1}. For all n, k, z ∈ N, let

gn,k,z : Zn → Zk2 , a 7→ (az mod q0) mod k2,

where q0 is the smallest prime larger than or equal to n.

Proposition 1 (Fredman, Komlos, and Szemerédi [9]).
Let n ≤ k ≤ l be integers and let q0 be the smallest prime larger than or equal

to n. Then, for all S ⊆ Zn with |S| ≤ k there is z ≤ q0 such that gn,k,z restricted
to S is injective.

7

Lemma 3. Let n ≥ k ≥ l be integers. There is an (n, k, l)-universal set of size
at most nl that can be constructed in time O(nl+1).

Proof. There are
(n

i

)

many possibilities to place i ones into a bit string of length n
and therefore

l
∑

i=0

(

n

i

)

≤ nl

possibilities to place up to i ones into such a bit string. ⊓⊔

Theorem 1. Let n ≥ k ≥ l be integers. There is an (n, k, l)-universal set of size
at most 2nk2l that can be constructed in time O(n2k2l+2).

Proof. By the Bertrand-Chebyshev Theorem (see, e.g., [16]), there is a prime q0

with n ≤ q0 ≤ 2n. Let Ω′ be a (k2, k, l)-universal set. We define our (n, k, l)-
universal set Ω as follows:

Ω :=
{

bgn,k,z(0) . . . bgn,k,z(n−1)

∣

∣

∣
0 ≤ z ≤ q0, b0 . . . bk2−1 ∈ Ω′

}

Since q0 ≤ 2n and, by Lemma 3, |Ω′| ≤ k2l, we easily conclude |Ω| ≤ 2nk2l. To see
that Ω is (n, k, l)-universal, let x = x1 . . . xk ∈ {0, 1}k such that

∑k
i=1 xi ≤ l be a

bit string and let i1, . . . , ik ∈ Zn be positions. We have to show that Ω contains
a bit string c0 . . . cn−1 with cij = xj for all 1 ≤ j ≤ k. By Proposition 1, we can
choose a z ≤ q0 such that gn,k,z : Zn → Zk2 is injective when restricted to the
set {i1, . . . , ik}. Let i′j := gn,k,z(ij). Because it is (k2, k, l)-universal, Ω′ contains

some b ∈ {0, 1}k2

with bi′j
= xj for all 1 ≤ j ≤ k. Since cij = bgn,k,z(ij) = bi′j

= xj ,

Ω is (n, k, l)-universal.
The desired running time follows from the size of Ω′, 0 ≤ z ≤ q0 ≤ 2n, and

each ω ∈ Ω having length n. ⊓⊔

Corollary 1. Let n ≥ k and d be integers. There is an (n, kd, k)-universal set
of size at most 2nk2dk that can be constructed in time O(n2k2(k+1)d).

4 Unique Coverage

The Unique Coverage problem was introduced by Demaine, Feige, Hajiaghayi,
and Salavatipour [7] and is defined as follows:

Unique Coverage

Input: A universe U, a collection S ⊆ 2U of subsets of U, and k ∈ N
Parameter: k
Question: Is there a subcollection S ′ ⊆ S that covers at least k elements

from U uniquely, i.e., each occurs in exactly one set of S ′.

Moser, Raman, and Sikdar [13] showed that Unique Coverage is fixed
parameter tractable by bounding the size of S by 4k. Since testing subfamilies of S
that contain up to k elements is sufficient, the running time required to solve the
problem is bounded by O(4k2

poly(n)). Using color-coding and derandomization,
we can improve the bound as follows: We first prove that Algorithm 1, which uses
non-uniform color-coding, has a success probability of at least e−2k lnk−k+1/2(1+
O(k−1)). We then show how to efficiently derandomize the color-coding using

8

Algorithm 1 Solving Unique Coverage on inputs U , S ∈ 2U and k ∈ N

0. If S contains a set S with |S| ≥ k, answer “yes”.
1. For all u ∈ U (independently) assign u the color A with probability 1/k and the color 0

with probability 1 − 1/k.
2. Delete all u ∈ U colored with color 0.
3. For all remaining u ∈ U , color u uniformly and independently with the colors 1, . . . , k.
4. Delete all S ∈ S that contain two elements of different colors.
5. For all i = 1, . . . , k, choose an Si of maximal cardinality among all remaining S ∈ S that

contain elements of color i. If no such set exists, let Si := ∅.
6. If |S1| + · · · + |Sk| ≥ k, then answer “yes” else answer “no”.

(n, k, l)-universal sets. This yields a deterministic algorithm deciding Unique

Coverage within a run time bound of O(k4kckpoly(n)).

We first explain how the algorithm works: In step 1, a first color-coding
assigns the color A to those elements that are possibly covered uniquely in some
solution. Elements, that are not of interest in some solution are supposed to
receive the color 0, and since they do not contribute to the solution further, we
delete them afterwards. In step 3, a second color-coding then colors all remaining
elements with a unique color i indicating the set Si that is supposed to cover
them uniquely. In a final step, it is then sufficient to pick the sets with the highest
cardinality among those of the same color.

Theorem 2. The Unique Coverage problem can be solved by a polynomial
time, randomized algorithm with a success probability of at least e−2k ln k−k+1/2(1+
O(k−1)).

Proof. Without loss of generality, we can assume that |S| < k for all S ∈ S. Let
S ′ ⊆ S be a solution that covers the elements u1, . . . , uk uniquely. Without loss
of generality, we may furthermore assume each S ∈ S ′ covers at least one element
uniquely, and hence S ′ contains at most k sets. This implies that US′ :=

⋃

S∈S′ S
contains less than k2 elements. Now let S1, . . . , Sl be the l ≤ k sets that cover
the elements u1, . . . , uk uniquely.

It is easy to see that Algorithm 1 answers “yes” when in step 1 the elements
u1, . . . , uk are being assigned the color A but all the elements in US′ \{u1, . . . , uk}
are colored with 0, and in the subsequent step 3 each ui is being assigned the
color j of its respective Sj it is covered by. It is therefore sufficient to estimate the
probability of these two events, which then determines the success probability of
Algorithm 1.

Hence, let X be the event that the algorithm answers “yes”, let X0A be the
event that the algorithm correctly colors each of the (less than k2) elements in
US′ with colors 0 and A, and let finally be X1···k be the event that each ui receives
the color j of its container Sj.

We easily obtain Pr(X1···k | X0A) ≥ (1/k)k = k−k and

Pr(X0A) ≥ (1/k)k(1 − 1/k)k
2−k ≥ (1/k)k(1 − 1/k)k

2

(2)
= e−k ln k−k+1/2

[

1 + O
(1

k

)]

.

9

Therefore, the overall success probability is

Pr(X) = Pr(X0A) · Pr(X1···k | X0A)

≥ e−k lnk−k+1/2
[

1 + O
(1

k

)]

· k−k

= e−2k ln k−k+1/2
[

1 + O
(1

k

)]

.

⊓⊔

We immediately conclude:

Theorem 3. There is a deterministic algorithm deciding the Unique Cover-

age problem in time bounded by O(k4kckpoly(n)) (c being some constant).

Proof. Note that only the k elements u1, . . . , uk must be colored with A, the
remaining k2 − k elements are to be colored by 0. This calls for an (n, k2, k)-
universal set Ω as introduced in the previous section. For each coloring ω ∈
Ω we can then use k-universal hash functions [1] to derandomize the second
random coloring, which can be done in time ck log n for some constant c. By
Theorem 1, the running time of the derandomized algorithm is therefore bounded
by O(k4kckpoly(n)) (again, k4 is hidden in poly(n)). ⊓⊔

It is easy to see that a variant of Algorithm 1, which uses the classic pseudo-
polynomial Knapsack dynamic programming algorithm in steps 5 and 6, solves
the following weighted version of the Unique Coverage within the same time
bounds.

Budgeted Unique Coverage [7]
Input: A universe U, a collection S ⊆ 2U , a cost function c : S → N,

a profit function p : U → N, integers B and P
Parameter: P
Question: Is there a subcollection S ′ ⊆ S that covers elements u1, . . . , uk

uniquely, such that c(S ′) ≤ B and p(u1) + · · · + p(uk) ≥ P?

References

1. N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):844–856, 1995.
2. T. Brüggemann and W. Kern. An improved deterministic local search algorithm for 3-sat.

Theoretical Computer Science, 329(1-3):303–313, 2004.
3. L. Cai, S. M. Chan, and S. O. Chan. Random separation: A new method for solving

fixed-cardinality optimization problems. In Proceedings of the 2nd International Workshop
on Parameterized and Exact Computation (IWPEC), number 4169 in Lecture Notes in
Computer Science, pages 239–250. Springer-Verlag, 2006.

4. J. Chen, J. Kneis, S. Lu, D. Mölle, S. Richter, P. Rossmanith, S. Sze, and F. Zhang.
Randomized divide-and-conquer: Improved path, matching, and packing algorithms. SIAM
Journal on Computing, 2009. to appear.

5. J. Chen, S. Lu, S.-H. Sze, and F. Zhang. Improved algorithms for path, matching, and pack-
ing problems. In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 298–307, 2007.

6. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Ragha-
van, and U. Schöning. A deterministic (2 − 2/(k + 1))n algorithm for k-sat based on local
search. Theoretical Computer Science, 289(1):69–83, 2002.

7. E. D. Demaine, U. Feige, M. T. Hajiaghayi, and M. R. Salavatipour. Combination can
be hard: Approximability of the unique coverage problem. SIAM Journal on Computing,
2009. to appear.

10

8. F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Vishwanthan. Spot-checkers.
Journal of Computer and System Sciences, 60:717–751, 2000.

9. M. Fredman, J. Komlos, and E. Szemerédi. Storing a sparse table with O(1) worst case
access time. Journal of the ACM, 31:538–544, 1984.

10. K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In Proceedings of the 15th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 328–328, 2004.

11. D. J. Kleitman and J. Spencer. Families of k-independent sets. Discrete Mathematics,
6:255–262, 1973.

12. J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Divide-and-color. In Proceedings of the
32nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
number 4271 in Lecture Notes in Computer Science, pages 58–67. Springer-Verlag, 2006.

13. H. Moser, V. Raman, and S. Sikdar. The parameterized complexity of the unique coverage
problem. In Proceedings of the 18th International Symposium on Algorithms and Com-
putation (ISAAC), number 4835 in Lecture Notes in Computer Science, pages 621–631.
Springer-Verlag, 2007.

14. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
15. M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-optimal derandomization.

In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 182–190, 1995.

16. S. Ramanujan. A proof of Bertrand’s Postulate. Journal of the Indian Mathematical
Society, XI:181–182, 1919.

17. U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In
Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 410–414, 1999.

11

12

Aachener Informatik-Berichte

This list contains all technical reports published during the past five

years. A complete list of reports dating back to 1987 is available from

http://aib.informatik.rwth-aachen.de/. To obtain copies consult the above

URL or send your request to: Informatik-Bibliothek, RWTH Aachen, Ahorn-

str. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

13

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

14

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

15

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

16

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

17

