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Abstract. MeDUSA (Method for UML2-based Construction of Embedded & Real-Time
Software) is a model-based software construction method targeting the domain of small
embedded & real-time software. MeDUSA was developed by the Research Group Soft-
ware Construction of the RWTH Aachen University in close cooperation with the German
ABB Corporate Research Centre in Ladenburg. It incorporates various practical experi-
ences gained during the industrial development of embedded software in ABB Business
Unit Instrumentation.

Being Use Case-driven, MeDUSA systematically covers the software construction lifecy-
cle phase from the early requirements up to implementation. Models are successively de-
veloped and employed throughout all activities. By enforcing a class-based rather than an
object-oriented design (compare classification according to [Weg87]), a smooth transition
of the resulting design model towards an implementation in a procedural programming
language is facilitated. This is essential, as procedural programming languages as the C
language are still state-of-the-art in the domain of small embedded & real-time software.
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1 Introduction

1.1 Changes from First Edition to Second Edition

Having been initially published in May 2007 [NL07a], the method has since undergone
several changes to incorporate further experiences and lessons learned. As this did not
only comprise minor bug fixes and corrections, but indeed affected the overall design
of the method, it thus seems to be a natural approach to publish a second revision of
the method’s reference document at this point.

The first obvious change to the method is a change in the interpretation of the
acronym MeDUSA. From its initial meaning Method for UML2-based Design of Em-
bedded Software Application it was altered to MethoD for UML2-based Construc-
tion of Embedded & Real-Time Software. This reinterpretation was done to emphasize
mainly two aspects.

The first one is a change in the denomination of the method as a construction
method rather than a design method, to indicate that now, all constructive activities of
the software development lifecycle are indeed covered (and not only the design related
ones). While a seamless transition of the detailed design to source code was already
formulated as a central goal for the first edition of MeDUSA, this was actually not
intensively reflected by the method. In its second revision, MeDUSA was therefore
enhanced by an Implementation discipline and a respective phase to explicitly reflect
this.

The second is a reformulation of the target domain from Embedded Software Ap-
plications into Embedded & Real-Time Software, to indicate a broader scope of the
method. That is, not only application software, but also system software is regarded to
be in the scope of MeDUSA (in fact, in the domain of embedded & real-time software,
one often focuses a mixture of both). The extension of Embedded into Embedded &
Real-Time may be first and foremost understood as a clarification of terminology (in-
deed real-time systems were already addressed before. However, this also emphasizes
that the method now explicitly addresses real-time related constraints by performing
a continuous real-time analysis throughout the Requirements, Analysis, and Architec-
tural Design phases. The corresponding tasks have been grouped into a new Real-Time
Analysis Discipline to denote that they are closely related to each other.

Besides these, a major change incorporated into the current method definition is
related to the detailed design of subsystems and the consolidation of active objects
(tasks). While version 1.0 of the method subsumed the consolidation of passive (anal-
ysis) objects under the Detailed Subsystem Design task, being performed by the Sub-
system Designer during the Detailed Design Modeling phase, and thus split it concep-
tually from the consolidation of active objects, which was performed by the System
Architect as part of Task Modeling, these two tasks are now merged into a single Sub-
system Consolidation task, performed by the System Architect during Architectural
Design Modeling.

There are two major reasons for this. The first is that the very late consolidation
of passive objects - while somehow emphasizing the distributed aspect of the method
- seemed to be overall unpractical and overloaded. In fact, most of the consolidation
process is done successively after having identified the subsystems during Subsystem
Identification, and before modeling the overall system architecture in terms of Struc-
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tural System Architecture Modeling and Behavioral Architecture Modeling. The sec-
ond reason is related to Task Modeling, which comprised not only the consolidation of
active objects, but also a real-time analysis. As these two aspects should logically be
split into two tasks, and because the consolidation of active objects after the conception
of the overall system architecture would always cause a revision of the architecture,
merging the consolidation of active and passive objects together seemed to be logical
(the former splitting seemed to be artificial).

Besides these major novelties, the current revision of course incorporates several
bug fixes, corrections, and improvements in its text and figures. This also comprises
some research results, gathered since the first publication of the method, that we in-
corporated into the method, in particular related to the modeling of use cases in the
context of embedded & real-time systems [NL07b] as well as on modeling narrative
use case descriptions [WNHL08].

Additionally, the report now also covers a detailed specification of the structure
of the employed MeDUSA UML models (instances), an outline of MeDUSA UML
profiles, which cover MeDUSA’s taxonomies, as well as a code generation schema to
generate ANSI-C code from a MeDUSA Design UML-Model (compare Appendixes
A to C).

Last, the new method definition has been updated to be based on the current SPEM
2.0 Beta Specification [OMG07a]. It also has been translated to American English, as
this seems to be more of a standard, internationally seen.

1.2 Characterization of the Application Area

Regarding its applicability, the domain covered by MeDUSA can be characterized
as software development of small embedded & real-time software. However, as this
application domain is rather broad - and even if we think that MeDUSA would be
applicable to quite a lot of its different sub domains - understanding the method and its
characteristics can be best achieved by taking into consideration the application area,
MeDUSA was initially developed for, namely that of software development for field
devices as they can be found in the industrial automation.

Field devices are rather small embedded real-time systems that are integrated into
an often large process automation plant. They are used across various industries such as
food, chemicals, water and waste water, oil and gas, pharmaceutical, and others. Most
of them occur in many different variants. Measurement devices for example, which are
one category of field devices, occur in different product variants concerning the phys-
ical quantity they measure (temperature, pressure, flow), the measurement principle
applied, the communication capabilities offered, as well as the safety and reliability
constraints accomplished.

1.3 MeDUSA Example System

To enhance the understandability of the report, a continuous example seems to be quite
helpful. The system we will consider as a running example is of course a field device.
To be more concrete, it is a small electromagnetic flow meter that is used to measure
the flow rate of a liquid floating through a pipe. The physical measurement principle of
such a device is rather simple. It is based upon the principle that an electric conductor,
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Fig. 1: Physical measurement principle of an electromagnetic flow meter (taken from [GHH+04])

being moved through a magnetic field, induces a voltage orthogonal to the direction of
the magnetic field and the direction of its movement. The electromagnetic flow meter
makes use of this law of induction, as it creates an electromagnetic field around the
pipe, through which the measured liquid will flow, like shown in Figure 1. In case the
liquid is a electric conductor, the induced voltage can be measured by electrodes. From
the measured induced voltage, which is referred to as the raw flow velocity, the flow
velocity (in m/s), and - having knowledge about the diameter of the pipe - the flow
rate (in l/s) of the liquid can be computed.

Fig. 2: MeDUSA example device’s hardware

From a hardware viewpoint, the example measurement device was designed to be
split into three distinct boards, as shown in Figure 2. The first board, the so called
sensor board, is responsible of driving the coils which create the electromagnetic field
needed for the measurement. It also measures the raw flow velocity with the help of
two electrodes, connected to an ADC (analog digital converter). The main board is
responsible of performing the signal processing, that is computing flow velocity and
flow rate from the raw flow velocity provided by the sensor board. It controls the
HMI (human machine interface), realized in form of some interaction keys and a small
display, which is used to output the measured flow rate as well as alarms, which may
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occur during the measurement or signal processing, on an operator frame. The HMI is
further used for viewing and editing configuration parameters relevant to the device.
Last two digital outputs, the device is equipped with, are controlled by the main board.
They are responsible of transferring the measured flow rate (digital output 1) as well as
alarms (digital output 2). Besides those two digital outputs the device is also equipped
with an analog current output. It outputs either the measured flow rate or the most
severe pending alarm in form of an electric current, which is generated by a PWM
(pulse width modulation). The current output itself is not realized on the main board
but instead on an output board equipped with an own microcontroller.

From a software viewpoint, the software fractions running on the three distinct
boards are indeed three software systems. We will concentrate on the software system
running on the main board as the running example of this report. We will refer to it in
the following as the MeDUSA example (software) system.

1.4 Requirements and Objectives

All field devices do have in common that they can be characterized by rather strong re-
source constraints regarding memory, power consumption, and computing time. Thus,
object-oriented programming languages are not yet the first choice and the procedu-
ral C-language is still the main implementation language in the regarded application
domain. Any design method being applicable to the domain should therefore allow a
smooth and rather direct transition from a detailed design into a procedural implemen-
tation in the C-language 1.

Besides those strong technical constraints that have to be addressed, a second basic
requirement posed on any method targeting the regarded application domain is, to
properly address the organizational and economical constraints that are faced in the
domain. One aspect related to this is that the notation employed is not proprietary but
best based on an industry standard - or at least de facto standard. There are several
reasons for this. First the development of software for safety critical application areas
requires the application of standards wherever possible. Second, the application of a
standard best enables the communication in a distributed development organization,
as training of developers can be easily achieved. Last, a large number of standard-
conformant tools is available from which a selection can be made when assembling a
tooling infrastructure. Another aspect is that the method has to be practically applicable
by the people responsible of software development in the respective domain, who do
not always have to be educated software engineers.

Having all that in mind, our intention was to develop a method that fulfils all those
requirements. As we had already gained practical experience with the application of
the object-oriented COMET method [Gom00] in the domain [NMSL04], we took it
as a starting point to develop MeDUSA. Since its initial publication in 2007 [NL07a]
however, MeDUSA can be regarded as a fully self-contained method. The changes
incorporated into this revision may be taken as another indication on our ambition to
make the method best applicable and understandable.

1 While this was not covered in its initial publication [NL07a], the current revision of MeDUSA docu-
mented herein was enriched by an Implementation discipline and phase respectively, thus documenting
that MeDUSA is not a mere design method but indeed has to be understood as a construction method
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1.5 Characteristics of MeDUSA

Acting on the maxim that model-based software development for small embedded
& real-time systems should allow a seamless transition from the design model to an
implementation in the C-language, MeDUSA is - unlike COMET - designed to be a
class-based rather than an object-oriented method. That is, the application of object-
oriented concepts as inheritance and polymorphism is not enforced during all steps of
the method. Therefore those concepts may even be omitted during detailed design to
allow a straightforward implementation of the detailed design model in a procedural
implementation language as C.

Taking into consideration that the run-time structure of software systems in the re-
garded domain is mostly rather small - being comprised of only a few subsystems and
a manageable amount of objects - MeDUSA was designed to be an instance-driven
method. That is, during all steps of the method, from the early analysis up to the late
detailed design, the modeling of objects (or more precise classifier instances) rather
than the modeling of classifiers is enforced. This allows the architectural design of
the system to be directly captured in terms of the system’s run-time structure rather
in an abstracted classifier-based view on it and does - according to our practical ex-
perience - accommodate the intuitive understanding of the application designers and
developers. To offer the flexibility and customizability, which is not least needed, be-
cause MeDUSA is embedded into a larger system engineering process and thus has
to be aligned with hardware development, the method was furthermore designed to be
iterative.

Due to the fact that the main focus of the method resides on modeling the run-
time structure of the system rather than modeling the static classifier structure, the
enhancements and additions the UML introduced with its new standard version 2 are
quite beneficial [NLS+05]. The newly introduced composite structure diagrams for
example are very well suited to cover the run-time structure of a system’s subsystems.
Because of this - and because of the tool landscape which is currently shifting to the
new standard release - MeDUSA was conceptually designed to employ the latest UML
version as its notation.

1.6 Applied Notation - SPEM 2.0

The MeDUSA method definition is structured according to the current SPEM 2.0 Beta
Specification [OMG07a], which is OMG’s upcoming standard for method/process def-
initions. The main characteristic of SPEM 2.0 is the division of a method/process def-
inition into so called Method Content and Process, as illustrated by Figure 3.

The Method Content defines the static content of a method or process, basically
in terms of Task Definitions, Role Definitions, and Work Product Definitions. The rela-
tionships between those content elements are defined as depicted by Figure 4, i.e. tasks
are performed by roles. They produce work products as outputs and may rely on other
work products as inputs. While a task may be performed by multiple roles, of whom
one may be identified as the primary performer, a role might perform multiple tasks.
The responsibility for a single work product however lies within a single role.

Grouping of related Method Content elements is supported by so called Categories,
which are referred to as Disciplines, Role Sets, or Domains, dependent on whether they
group related Task Definitions, Role Definitions, or Work Product Definitions.
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Fig. 3: SPEM Terminology Overview (taken from [OMG07a])

Fig. 4: SPEM method content concepts (based on [Hau06])

The Method Content does however not specify how the defined tasks are executed
over time. This is defined by the Process, as depicted by Figure 5, in terms of a break-
down structure, consisting of Task Uses, referencing the Task Definitions of the Method
Content, and Activities, which may be arbitrarily nested, so that hierarchical structures
can be build.

Fig. 5: UMA process concepts (copied from [Hau06])

SPEM supports Activities of different kinds, namely Iterations, and Phases, as
well as Process Patterns and Delivery Processes. While Process Patterns are reusable
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process building blocks, which can be used to build up more complex structures, a
Delivery Process is understood to be a full end-to-end lifecycle process.

SPEM further offers to specify Guidances, which play some hybrid role, belong-
ing neither directly to the Method Content nor to Process, as indicated by their ex-
posed representation in Figure 3. Guidances of several different kinds are supported by
SPEM, namely Templates, Estimation Considerations, Examples, Checklists, Guide-
lines, Concepts, Estimates, Practices, Term Definitions, Reports, Tool Mentors, Sup-
porting Materials, and Whitepaper.

Table 1 lists the important SPEM elements, being used in this report, together with
their iconified representations.

Method Content

Role Definition

Task Definition

Work Product Definition

Guidance

Process

Role Use

Task Use

Work Product Use

Iteration

Phase

Process Pattern

Delivery Process

Table 1: SPEM Terminological Legend

1.7 Outline

Based on the central division into method content and process, this report is split into
two major parts. In chapter 2, the method content is defined, structuring the covered
task definitions into six Disciplines (i.e. categories). Adjacent, chapter 3 defines the
Process in terms of five Process Patterns (referred to as MeDUSA Workflow Patterns
in the following), which specify how the Task Definitions of the Method Content are
executed in the different constructive lifecycle phases of development. The MeDUSA
Workflow is then defined in terms of a Delivery Process consisting of five Phases,
where each Phase specifies a set of Iterations of the respective Workflow Pattern for the
respective lifecylce phase, as well as re-iterations of earlier ones. Chapter 4 provides a
short summary and conclusion.
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2 Method Content

The MeDUSA Method Content is basically defined in terms of six disciplines, namely
Requirements Modeling, Analysis Modeling, Architectural Design Modeling, Detailed
Design Modeling, Implementation, as well as Real-Time Analysis, which group strongly
related Task Definitions. They are briefly introduced in the following, giving an ini-
tial impression on the covered Task Definitions together with related Role Definitions,
serving as task performers. For each discipline, all subsumed Task Definitions are then
subsequently described in detail, covering their related (i.e. produced) Work Product
Definitions and specific supporting Guidelines. While SPEM supports a multiplicity
of different guidance kinds, for the sake of simplicity, only Guidelines will be denoted
here. All other Guidances may be inferred from the electronic method definition pro-
vided on the MeDUSA project site [MeD].

It has to be pointed out that, as MeDUSA is characterized to be based on the UML
notation, most Task Definitions are defined to produce UML-related artifacts, which
are first and foremost UML diagrams. However, it has to be clear that a UML dia-
gram can only be consistently defined if being related to a consistent underlying UML
model. And while the diagrams produced by the different Task Definition of a disci-
pline are often not directly related to each other, the underlying UML models indeed
are. In fact, all Task Definitions grouped into a respective discipline are understood
to contribute a fraction to an overall integrated model, which is being shared between
the respective tasks, to guarantee that all contributed modeling artifacts are consistent
to each other. The work products of a task are therefore not only defined in terms of
the UML diagrams being developed, but in terms of the model fraction being implic-
itly contributed to the overall integrated model. To refer to the entirety of all work
products being produced by the tasks of the five constructive disciplines (i.e. Require-
ments Modeling, Analysis Modeling, Architectural Design Modeling, Detailed Design
Modeling, and Implementation) the terms Requirements Model, Analysis Model, De-
sign Model, and Implementation Model will be used respectively 2, including UML
diagrams, underlying UML model, and other models and documents respectively.

Before we give detailed information on the defined disciplines in the following
chapters, we will briefly sketch their purpose and structure in the following.

Requirements Modeling discipline

The Requirements Modeling discipline is concerned with understanding and captur-
ing the functional requirements of the system under development, as well as the non-
functional timing and concurrency concerns that constrain them. As MeDUSA is use

2 indeed the Design Model is shared between the Architectural Design Modeling and Detailed Design
Modeling disciplines
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case-driven, the Requirements Model is established in form of a UML use case model
as well as a narrative model, specifying detailed narrative descriptions for the identi-
fied use cases. Both tasks of the Requirements Modeling discipline are performed by
the Requirements Engineer, which is also responsible for all work products produced.

Analysis Modeling discipline

The Analysis Modeling discipline deals with understanding the problem domain. That
is, it is modeled in terms of analysis objects, who collaboratively perform the scenar-
ios, being subsumed by the use cases captured in the Requirements Model. All tasks
comprised by the Analysis Modeling discipline are performed by the System Analyst,
who is also responsible for the produced work products.

Architectural Design Modeling discipline

The Architectural Design Modeling discipline is concerned with the specification of
the software architecture. That is, based on the analysis objects captured in the Anal-
ysis Model, a system architecture is defined in terms of subsystems, which are gained
by grouping together (analysis) objects and by subsequently consolidating the resul-
tant initial set of subsystems under design considerations. The system architecture is
not only defined from a structural viewpoint, specifying how the subsystems are struc-
turally interconnected via their visible interfaces, but also from a behavioral viewpoint,
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specifying the inter-subsystem communication. All tasks in the Architectural Design
Modeling discipline are performed by the System Architect, who is also responsible for
all work products being produced.

Detailed Design Modeling discipline

The Detailed Design Modeling discipline is concerned with developing the detailed
design for the internal decomposition of each identified subsystem. While the exter-
nally visible interfaces of all subsystems (together with the involved data types) are
defined already as part of the software architecture, a detailed structural and behav-
ioral design has to be developed for those objects, being internally contained by the
subsystems. Detailed Design Modeling is thus performed individually for each sub-
system by a responsible Subsystem Designer.

Implementation discipline

The Implementation discipline groups those tasks that perform the transformation of
the detailed design into source code and of supplementing it with all needed code de-
tails to gain a complete implementation model (i.e. source code). The tasks comprised
by the Implementation discipline are performed by the Subsystem Implementer and the
System Integrator, dependent on whether the code is related to a single subsystem or
whether the integration of subsystems is concerned.

Real-Time Analysis discipline
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As real-time requirements (timing and concurrency) are of outstanding impor-
tance, a real-time analysis is continuously performed. All tasks related to such an
analysis, which is performed based on the information captured in the Requirements
Model, Analysis Model, or Design Model respectively, are subsumed by this disci-
pline. While each analysis gains increased precision and yields more resilient results
with respect to the details level of each respective input model, all tasks are basically
performed applying the same techniques of real-time scheduling theory. They are thus
all performed by a respective Real-Time Analyst, that has to be educated accordingly.

19



2.1 Requirements Modeling Discipline

The Requirements Modeling discipline groups those Task Definitions concerned with
eliciting and understanding the functional requirements of the software system under
development by capturing them in a Requirements Model. It has to be pointed out that
in the domain of real-time systems besides functional requirements also non-functional
requirements (timing and concurrency constraints) play an outstandingly important
role, as they may have severe impact on the later overall system design. This is why
in the context of real-time systems Requirements Modeling has to deal with capturing
those non-functional constraints as well.

The Requirements Model is developed in terms of use cases and detailed (UML
or textual) use case descriptions. This is why the Requirements Modeling discipline is
broken down into the following tasks:

1. Use Case Modeling: Develop one or more use case diagrams to depict the essential
use cases of the software system under development and to understand how the
system interacts with its environment to fulfill those.

2. Use Case Details Modeling: Document the details of each use case by using addi-
tional behavior diagrams or by describing them in narrative use case descriptions,
to capture the detailed flow of events of each use case and to document pre- and
post-conditions as well as other valuable information.

20



2.1.1 Use Case Modeling

Use Case Modeling deals with the development of a use case model in terms of
actors, use cases, and their relationships. Use cases describe sequences of interaction
between the software system under development and the specified actors. They have
the objective of accomplishing a certain goal, which is usually of value to one of the
external actors. Actors trigger the execution of use cases inside the system (primary
actor) and take part in the interaction with the system (secondary actor). The software
system is treated as a black-box in this context, meaning that no assumptions about
the internal structure of the software system are made. As use case modeling is a quite
common technique of software engineering, we will skip to give a detailed introduction
here. The reader may refer to [JCJv92], [Coc01], or [Wal07] to get a basic introduction
into use case modeling.

As already anticipated, in the domain of real-time systems not only functional
requirements have to be regarded, but non-functional timing and concurrency concerns
are of major importance. They have severe impact on the design of the software system
under development and therefore have to be investigated and understood as early as
possible. That is why we want to address them very explicitly already during use case
modeling.

Fig. 6: MeDUSA Actor Taxonomy

To be able to capture those non-functional timing and concurrency concerns apart
from functional requirements normally captured in a use case model, we propose to
use timer and eventer actors. These actors represent sources of either periodic (timer
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actor) or aperiodic (eventer actor) events and occur as triggers for the execution of use
cases. In fact, we cast timer and eventer actors to be the only primary actors (those
triggering the execution of a use case) and consider all interface actors to be secondary
ones, thus uncoupling any timing and concurrency concerns from them.

The complete MeDUSA Actor Taxonomy is defined as shown in Figure 6. Accord-
ing to this besides the classification of trigger actors into timer and eventer actors,
which was motivated before, interface actors are also further divided into device ac-
tors (representing an external hardware device) and protocol actors (representing an
external software system).

That is, if an external hardware device or software system does also trigger the exe-
cution of the use case, it should be represented by two actors, a device or protocol actor
representing the communication interface and a timer or eventer actor representing the
event source triggering the use case execution. If for example an external input device
delivers data to the system in an aperiodic manner and notifies the system about the
arrival of such data by using a hardware interrupt or any other mechanism, we propose
to introduce two actors to the use case model; one eventer actor representing the event
source (i.e. the hardware interrupt) and one device actor representing the interface used
to obtain data from the device. Using such timer and eventer actors, concurrent execu-
tion of use cases can then be explicitly expressed by associating use cases to different
timer or eventer actors, dependent on whether the use cases are performed in a periodic
or aperiodic manner.

A user actor may be used to depict that a human user is the communication partner
of the device. However, as a human user never directly interacts with an embedded
software system, but only indirectly via another software system or hardware device,
such a user actor will not be directly attached to a use case but will specify a depen-
dency to the respective trigger or interface actor, which serves as direct communication
partner of the system (compare [NL07b] for a detailed discussion on this).

One may notice that in such a setting, it may occur, that the concurrent execution of
a use case is indeed not triggered by a periodic or aperiodic event source from outside
the system but from inside it. This is most likely the case if a use case is periodically
executed from within the system and does not correspond directly to a periodic event
source that resides outside the system. Although Jacobson and Overgaard ([JCJv92])
state that “the essential thing is that actors constitute anything that is external to the
system we are to develop” we propose to model internal timer and eventer actors to
capture such a situation, as detailedly outlined in [NL07b].

To determine the use cases in a systematic manner, it might be reasonable to start
with identifying the external actors. As stated above, they may represent external hard-
ware devices and external software systems, as well as external timers or eventers. Af-
ter having identified the actors, the next step is to regard what behavior the primary
actors (those who trigger execution of use cases) initiate in the system. This leads to a
first set of use cases directly associated with the primary actors. Analyzing those use
cases in terms of similar interaction sequences might lead to the identification of new
use cases encapsulating that behavior. New use cases and relationships between use
cases are successively identified this way. Regarding timing and concurrency concerns
of the identified use cases might lead to extracting further interactions into own use
cases (if they are executed concurrently) and might also lead to the identification of
further (internal) actors.
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WORK PRODUCTS

– Use Case Diagram The results of the use case modeling task are captured in a use
case diagram. An example is shown in Figure 7.

Fig. 7: Example: Use Case Diagram (excerpt)

It captures the functional and the non-functional timing constraints in terms of
• the system boundary,
• the use cases (inside the system boundary)
• the internal and external timer and eventer actors
• external (hardware) device, (software) protocol, or (human) user actors,
• relationships between use cases (generalization, include, extend),
• relationships between actors (generalization), and
• relationships between use cases and actors (associations)

– Global System States Diagram In case the system shows global system states (e.g.
different operation modes), it is helpful to capture them explicitly by means of a
Global System States Diagram rather than implicitly within the use cases and their
detailed descriptions. A Global System States Diagram is realized as a UML state
machine diagram. An example is depicted by Figure 8.

GUIDELINES

– Introduce packages to reduce complexity: If the use case granularity is satisfactory
and still a large number of use cases occur, packages may be introduced to group
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Fig. 8: Example: Global System State Diagram

use cases. This might also be helpful in use case models having a smaller amount
of use cases, to group use cases according to certain aspects, e.g. if they can be
accounted among the real-time related tasks of the system.

– Model concurrency rather than functionality: As timing and concurrency concerns
are of outstanding importance, we propose to model them with the help of trigger
actors as documented in detail in [NL07b]. As timing and concurrency constraints
are thus modeled apart from the functional requirements using timer and eventer
actors, a question might arise on whether two use cases which are functionally
related but executed concurrently are modeled independently, being associated to
different internal timer or eventer actors or related to each other using include or
extend relationships. We propose to give precedence to the concurrency concerns
in such a case, as timing and concurrency are of outstanding importance for real-
time systems and are thus heavier weighted than the functional dependencies that
might be identified.

– Model interfaces on all relevant level of abstraction From our lessons learned, a
major modeling problem one often has to deal with is that an actor has interfaces
to the system on different layers of abstraction (compare [NL07b]). This might for
example be the case if communication to another software system is established
via a hardware communication interface or via an underlying software interface
(if for example the communication service is provided by an underlying operat-
ing system). In such a case, the software under development has interfaces to its
surrounding environment on different levels of abstraction.
Consider as a concrete example that the PWM (pulse width modulation) needed
for the analog current output is realized on a separate output board, which is ac-
cessed from the software system under development via an asynchronous UART
communication interface. The question that arises is whether the software protocol
on the higher level of abstraction (which we will refer to as PWM protocol), the
underlying UART device interface (or the respective operating system communi-
cation protocol), or both should be reflected in the use case model. If indeed, the
UART device actor (and UART interrupt eventer actor) or the operating system
communication protocol actor would be omitted, the underlying direct commu-
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nication interfaces, the software system under development has to interface with,
would not be represented. Indeed, in case of the software system having to control
the UART device directly, the concurrency needed to react to the UART interrupt
would also not be reflected in such a case, which would have a significant impact
on the later task design.
The UML does not provide sufficient support to model such a scenario with in-
terfaces on different levels of abstraction. Our advice to deal with this modeling
problem is to use the respective modeling pattern we introduced in [NL07b]. The
pattern proposes to model all interfaces as actors, and to group use cases of equal
abstraction level into packages. Synchronization events between use cases on dif-
ferent levels of abstraction can be denoted via internal eventer actors. In the ex-
ample of our analog PWM output protocol, being exchanged over a UART hard-
ware device, the situation could thus be modeled as denoted in the example pre-
sented in Figure 7 in terms of the Analog Output and PWM Output UART
Receive/Transmituse cases and the related Analog Output Data Ready
and respective PWM Output, PWM Output UART, and PWM Output UART
Interrupt actors.
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2.1.2 Use Case Details Modeling

Based on the use case model, a detailed description of each identified use case has
to be developed. This way details about the interaction sequences (main interaction
sequence, alternative sequences) as well as other valuable information like pre- or
post-conditions, which cannot be captured graphically, can be recorded.

While the UML offers several behavior diagrams (activity, sequence) that can be
used to describe the details of a use case, narrative textual descriptions seem to be
widely used and accepted. Where a UML behavior diagram is not better suited, we
therefore propose to capture the details of a use case in a textual narrative form, as
proposed in [Wal07] and [WNHL08].

The respective notation proposed was designed to capture narrative use case de-
scriptions in a concise and understandable form that remains in line with the semantics
of use cases as defined by the UML. It has been inspired by the notation presented in
[BS02], making use of a concept denoted as “flow of events”. Each use case is un-
derstood as one or more flow of events, where an event represents an atomic part of a
system-actor interaction. Besides the main flow of events, a concrete use case should
always have (either directly or indirectly by inheriting it from a general use case), a
use case may also have alternative flows of events to capture exceptional behavior or
error handling. Inclusion and extension of other use cases is also expressed in terms of
dependencies between their respective flows of events. Even generalization between
use cases may be transferred into the domain of flows, where generalization is under-
stood in terms of generalization between flows. Taking the flow as the central concept
around which textual use case descriptions are defined, a consistent and understand-
able notation of use cases can be created, which is very much in line with the common
understanding of use cases as interaction sequences. Another advantage of the rather
semi-formal notation is, that consistency with the UML use case model can be easily
validated. To gain further understanding and a detailed introduction into the developed
notation, we propose to refer to [WNHL08].
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WORK PRODUCTS

– Use Case Details Diagram: Where appropriate, a UML behavior diagram (se-
quence, activity) may be employed to document the details of a use case, as exem-
plarily depicted by Figure 9.

Fig. 9: Example: Use Case Details Diagram

– Narrative Use Case Description: Where a UML behavior diagram is not regarded
to be better suited, a detailed narrative description should be developed for each
use case, as exemplarily shown in Figure 10 for some of the use cases depicted in
Figure 7, based on the notation presented in [WNHL08].

GUIDELINES

– Determine the right granularity: Finding the right granularity is often difficult
when identifying and modeling use cases. If use cases are modeled too fine-grained,
a lot of trivial use cases are the result. In such a situation, a lot of associations, in-
clude, exclude, and generalization relationships are also modeled in consequence,
so that the overall use case model gets rather complex. If use cases are modeled
too course-grained, they tend to be internally complex (lots of instructions and
alternative branches) what makes their narrative descriptions difficult to handle.
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Use Case Current Output
Main Flow
Start
1 Alternative Extension Point : Choose Between simulation and calculation
2 Specialization Extension Point : Calculate actual current
3 Alternative Extension Point : Current stored
4 Validate that current does not exceed span limits.
5 Alternative Extension Point : Current validated
6 Calculate PWM output signal.
7 Normalize.
8 Include Use Case PWM Output.
9 Alternative Extension Point: End
End

Alternative Flow Simulate Current
Start At Choose Between simulation and calculation, if simulation mode has been set
1 Use simulation current as actual value.
End Continue at Current stored

Alternative Flow Raise ”Limits exceeded” alarm.
Start At Current validated, if the current exceeds span limits
1 Raise ”Limits exceeded” alarm.
End Continue at End

Use Case Alarm Current Output
Specialization Flow Calculate alarm current
Start At Calculate actual current
1 Calculate actual current from alarm value.

Use Case Process Value Current Output
Specialization Flow Calculate flow rate current
Start At Calculate actual current
1 Calculate actual current from flow rate value.

Use Case Perform Calculation And Output Chain
Main Flow
1 Include Use Case Flow Rate Calculation
2 Validate that no alarm has been raised
3 Alternative Extension Point : Alarm state validated
4 Include Use Case Flow Rate Current Output
5 Alternative Extension Point: End

Alternative Flow Output Alarm.
Start At Alarm state validated, if any kind of alarm has been raised
1 Include Use Case Alarm Current Output.
End Continue at End

Fig. 10: Example: Narrative Use Case Descriptions

We propose to consult the narrative use case descriptions as a guidance for deter-
mining the right granularity of use cases, as the internal flow of events captured
in a narrative use case description does support the appraisal of a use case’s com-
plexity far more than what can be inferred from the use case diagram. We noticed
that beginners tend to often model too fine-grained. Often use cases that represent
just single steps are modeled. Sequences of such “single instruction” use cases are
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then combined together by including them by another use case, which represents
no own functionality but mere control logic.
Good guidance to determine the right granularity of a use case can be taken from
the narrative description developed for it. If the narrative description of a use
case does consist of only one or two steps this might indicate that the use case
is modeled too fine-grained. If the description gets rather complex (lots of steps
and branches) this is a good indicator that the use case model is indeed to coarse-
grained. For the application domain regarded, a rule of thumb might be that a good
granularity is achieved if a narrative use case description consists of about 5 to 15
steps.
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2.2 Analysis Modeling Discipline

The Analysis Modeling discipline is concerned with the development of an Analysis
Model that helps to understand the problem domain in terms of objects, whose col-
laborative behavior performs the use cases identified beforehand. Construction of the
Analysis Model can conceptually be broken down into three main objectives:

– Identifying all objects needed to perform the use cases.
– Capturing the inter-object behavior of the identified objects.
– Capturing the intra-object behavior of the identified objects.

Identifying objects is of course a quite complicated task that has to be broken
down into manageable units to get manageable. MeDUSA addresses the identification
of objects successively during three activities of the Analysis Modeling discipline by
regarding objects of different categories during each task.

The categories used to support the identification process are defined by the MeDUSA
Object Taxonomy. It was designed following the analysis object taxonomy of the
COMET [Gom00] and is shown in Figure 11.

Fig. 11: MeDUSA Object Taxonomy

According to it, analysis objects can be classified into trigger, interface, entity,
control, and application-logic objects.

– trigger objects represent periodic or aperiodic sources of events, by which any
concurrent system behavior is stimulated.

– interface objects represent hardware or software interfaces towards the external
environment of the software system under development.

– entity objects represent long-living data, the software system under development
has to keep track of.

– control objects represent control-flow logic needed to coordinate between other
objects or to encapsulate state-dependent behavior.

– application-logic objects represent self-encapsulated pieces of application-logic
like an algorithm or an application-domain specific functionality (which is neither
control-flow and is therefore not encapsulated into a control object, nor function-
ality related to the long-living data of a single entity object and is therefore not
encapsulated into the respective entity object).

The different tasks of the Analysis Modeling discipline aim at identifying objects
of different categories each.
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– Context Modeling supports the identification of interface and trigger objects by
questioning which interfaces from the software system under development towards
its external environment have to exist, and to which external event sources the
system under development has to respond.

– Information Modeling helps to identify entity objects, which are needed to store
long-living data that has to be handled by the system.

– Inter-Object Collaboration Modeling takes into consideration the use cases iden-
tified during Requirements Modeling. It supports the identification of objects that
make up application-logic or control-flow by questioning, which additional ob-
jects are needed to perform each use case. It combines the identification of the
application-logic and control objects with the capturing of inter-object behavior
that results from performing each use case.

– Intra-Object Behavior Modeling deals with specifying the intra-object behavior by
synthesizing the partial behavior each identified object shows in the collaborations
it participates in.
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2.2.1 Context Modeling

During Context Modeling all hardware and software interfaces of the software sys-
tem under development towards its surrounding environment, as well as all sources of
periodic and aperiodic events, the system has to deal with, are regarded. A Context
Diagram is developed to capture the gathered information in terms of a UML object
diagram, which captures the respective trigger and interface objects:

– Trigger objects are modeled if the software system under development needs to
keep track of time or has to react to aperiodic events. Trigger objects are catego-
rized as shown in Figure 12 depending on whether they represent a periodic or
aperiodic event source. While periodic event sources are represented by timer ob-
jects, aperiodic event sources are represented by eventer objects. That is trigger
objects are directly inferred from the trigger actors captured in the requirements
model.

Fig. 12: MeDUSA Trigger Object Taxonomy

– Interface objects serve as interaction points for incoming or outgoing communica-
tion of the system under development towards its external environment. As shown
in Figure 13, interface objects are further categorized into hardware and software
interfaces.

Fig. 13: MeDUSA Interface Object Taxonomy
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Identifying interface and trigger objects is done by inferring them from respective
actors of the Requirements Model. While trigger actors are directly mapped to trigger
objects, interface actors will normally lead to corresponding interface objects. It may
however be the case that an interface actor leads to multiple interface objects if they
are categorized under different aspects.

WORK PRODUCTS

– Context Diagram: The results of context modeling are captured in a Context Dia-
gram, which is developed in form of a UML object diagram as depicted in Figure
14.

Fig. 14: Example: Context Diagram

It shows the composed interface objects, which are used to interact with the ex-
ternal environment of the software system, as well as trigger objects represent-
ing sources of periodic or aperiodic events. Depending on the characteristics of
the identified objects they are categorized (by using stereotypes) into one of the
following categories as specified by the MeDUSA Interface Object Taxonomy
shown in Figure 13. Trigger objects are stereotyped accordingly as specified by
the MeDUSA Trigger Object Taxonomy shown in Figure 12.
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2.2.2 Information Modeling

Information Modeling is done to capture the data-intensive objects of the problem
domain - the so called entity objects - as well as relationships between them. Entity
objects store data that is long lasting and often accessed by several use cases. They
may represent measured physical quantities, real world objects, abstract concepts or
any other data as constraints, configuration, or calibration information.

WORK PRODUCTS

– Information Diagram: The results of the Information Modeling task should be cap-
tured in an Information Diagram, which is developed in form of a UML object
diagram as shown exemplarily by Figure 15.

Fig. 15: Example: Information Diagram (excerpt)

It shows the entity objects linked to each other using links or just dependencies
(less formal). If supported by the tool, modeling n-ary links or dependencies relat-
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ing on other dependencies may be useful in some cases, e.g. when an value entity
is calculated from another using the information stored in a third data entity.

GUIDELINES

– Investigate entities processed in real-time, first: As the domain covered by MeDUSA
is much focused on value processing, identifying the relevant entity objects is most
easily done by first identifying the relevant physical quantities involved in the real-
time tasks of the device, e.g. the flowVelocity or volumeFlow. As those
entities are often intertwined (they most often get calculated from each other),
other entities may be identified next, as they are needed for the translation/calcu-
lation steps. For example, the density of the medium, floating through the device,
is needed to calculate the mass flow, leading to an entity object called medium
having a property/slot of name density.
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2.2.3 Inter-Object Collaboration Modeling

Collaboration of objects now have to be identified, which collaboratively perform
the scenarios, subsumed by the identified use cases. As a starting point to identify the
respective object collaborations, the objects initiating the execution of the respective
scenarios have to be first identified. Indeed, unless the use case is included by another
use case or extends another use case, this always has to be one of the trigger objects
identified during the Context Modeling task, as these are the objects that are directly
inferred from the actors identified during Requirements Modeling (they, together with
the interface objects, are indeed the only objects that manifest interactions with the
external environment of the software system). In case the use case is included by an-
other use case or it extends another use case, the object triggering the use case will be
one belonging to the collaboration performing the including respectively extended use
case (most likely it will be a control object).

Next, the interface and entity objects involved in the use case, which were identi-
fied during Context Modeling and Information Modeling have to be identified. Having
found them, the main flow of events of the use case has to be investigated and addi-
tional control and application-logic objects have to be identified, which are needed in
addition to perform the use case:

– Application logic objects encapsulate functionality relevant to the regarded appli-
cation domain. This may for example be an algorithm or some business-logic that
accesses more than one entity object or is likely to be changed and is therefore
encapsulated into an own object.

– Control objects are meant to encapsulate control logic. As prescribed by the MeDUSA
Control Object Taxonomy shown in Figure 16, control objects can be further classi-
fied into coordinator and state-dependent-control objects. While state-dependent-

Fig. 16: MeDUSA Control Object Taxonomy

control objects encapsulate state-dependent behavior, coordinator objects encap-
sulate the non-state-dependent coordination of objects.
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Having identified the necessary control and application-logic objects, the main
flow of events of the use case can be described in terms of messages between the iden-
tified objects. This helps to gain an understanding on how the collaborative interplay
of the identified objects performs the main flow. Last, alternative flow of events have
to be considered. This may lead to identification of additional control and application-
logic objects, it may also just lead to additional messages, being sent between already
identified objects.

After Inter-Object Collaboration Modeling has been performed, all necessary ob-
jects should be identified and it should be understood how these objects collaboratively
work together to perform the use cases identified during Requirements Modeling.

WORK PRODUCTS

– Inter-Object Collaboration Diagram: The results of Inter-Object Collaboration
Modeling should be captured in one or more Inter-Object Collaboration Dia-
gram(s). Those Inter-Object Collaboration Diagrams, are developed in form of
UML communication or sequence diagrams as exemplarily depicted by Figure 17
and 18. The decision whether to use a communication diagram or a sequence di-
agram to depict the collaborative behavior depends on whether the emphasis is
placed more on showing the objects and their structural relationships (communi-
cation diagram) or on the flow of messages (sequence diagram).

Fig. 17: Example: Inter-Object Collaboration Diagram (Communication)

We propose to model at least the main flow of the use case in a communication
diagram that shows all objects participating in the collaboration (also those not
involved in the main sequence) to show the identified objects and their structural
relationships. All alternative flows of the use cases should in our eyes be modeled
by an additional sequence diagram, as it better supports the modeling of optional
or alternative messages by the use of interaction fragments. It may however be
reasonable to just have a single communication diagram (if there are no alternative
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flows or if they are trivial) or just a single sequence diagram, if the number of
objects is quite low.
It may not always be necessary or reasonable to have Inter-Object Collaboration
Diagrams for each individual use case identified during Requirements Modeling.
If for example a use case is included by another use case, it might be reasonable
to integrate the collaboration for the included use case into the Inter-Object Col-
laboration Diagram of the including one. It may however - even in such a case -
be reasonable to have separate diagrams for both use cases (if for example the in-
cluded use case is also included by another use case or if the number of objects or
messages grows too large when combining the two). The same holds for a use case
extending another use case. Also in this case, it might be reasonable to handle the
extending use case within the Inter-Object Collaboration Diagram of the extended
one.

GUIDELINES

– Develop consolidated collaboration diagram: As it might be rather hard to retrieve
information about functional coupling of the objects from the communication and
sequence diagrams developed during Collaboration Modeling (as an object often
participates in more than one collaboration and also a single collaboration is often
modeled in several diagrams to show all alternative flows), it may be reasonable to
develop a consolidated communication diagram to support the succeeding activi-
ties. This is basically done by merging all communication and sequence diagrams
of the identified use case collaborations together. More information can be found
in [Go00] in chapter 12.4 (Consolidated Collaboration Diagrams).

– Determine the right functional abstraction: One question that often arises when
identifying application-logic objects, is whether a business-specific function or
control-logic is best modeled by an application-logic object, and when it is just
a function of an entity object (i.e. it is modeled as simple message). According to
[Gom00] the question can be best answered by looking at how many entity objects
would have to be accessed by the control or application-logic objects to execute. If
more than one entity object is involved, encapsulating the function or algorithm by
an application-logic object is the better choice. If just one entity object is involved
it might usually be better to use a simple function in the respective entity object.
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2.2.4 Intra-Object Behavior Modeling

After having identified all needed application objects (trigger, interface, entity,
control and application-logic), and after having modeled how these objects collabo-
ratively perform the identified use cases, the internal behavior of all objects has to be
modeled, where it is not trivial.

For all state-dependent control objects, which were identified during modeling of
the system collaborations, the state-dependent behavior has to be documented by a
state machine diagram. If the state-dependent control object takes part in more than one
of the collaborations, the state-dependent behavior of that object has to be synthesized
from the partial use case based behavior of the object in all collaborations it participates
in.

Similar to specifying the behavior of the identified control objects, it may be rea-
sonable to also describe the behavior of the identified application-logic objects, if the
algorithm or business-logic encapsulated is rather complex. We propose to use an ac-
tivity or state machine diagram for such a case.

WORK PRODUCTS

– Intra-Object Behavior Diagram: As shown exemplarily in Figure 19, the internal
behavior of each non-trivial object should be captured by an Intra-Object Behavior
Diagram.

Fig. 19: Example: Intra-Object Behavior Diagram - ActualCurrentDetermination
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In case of a state-dependent application object this is done in the form of a state-
machine diagram. The internal behavior of application-logic objects will most
likely be best captured by using an activity diagram. However, other diagrams
may be employed if applicable.

GUIDELINES

– Develop partial behavior diagrams: If the synthesizing of the partial state depen-
dent behaviors of a state-dependent control object gets too complex to be managed,
the process of synthesizing may be supported - if necessary - by developing a sep-
arate state machine diagram for the partial state dependent behaviors of the object
in all collaborations first, which can then be used as input for the synthesizing.
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2.3 Architectural Design Modeling Discipline

While the Analysis Modeling discipline deals with breaking down the problem domain,
Architectural Design Modeling can be seen as the first step of composing a solution.
The central goal of the tasks comprised by the Architectural Design Modeling disci-
pline is to develop the software architecture, which specifies subsystems, as well as the
structural and behavioral relationships between them.

In detail, the Architectural Design Modeling discipline is comprised of the follow-
ing tasks:

– Subsystem Identification is done by grouping together the objects of the Analysis
Model into groups of objects, denoted as subsystems, to reduce the overall com-
plexity. Each subsystem should show a high internal cohesion of the composed
objects, while the overall system partition should establish a loose coupling be-
tween the identified subsystems.

– Subsystem Consolidation is done by consolidating the initial subsystem design,
which has been gathered by a division of the analysis objects, under design con-
siderations. In particular active objects have to be investigated under performance
aspects and have to be clustered together (e.g. two timers can be merged, if having
a related period). Passive objects have to be investigated from a design aspect as
well (i.e. they may be merged together or split apart, if this would be feasible under
design considerations).

– Structural System Architecture Modeling is performed to constitute the structural
software architecture by specifying the structural relationships between the identi-
fied subsystems, established via their required and provided interfaces.

– Behavioral System Architecture Modeling is done by regarding, how the system
behavior is performed by the collaborative behavior of the identified subsystems.
Communication between subsystems can of course only be established via the
structural relationships defined previously.
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2.3.1 Subsystem Identification

Subsystem Identification is the first Architectural Design Modeling task. It is con-
cerned with grouping the identified trigger, interface, entity, control and application-
logic (analysis) objects into subsystems. According to Jacobson ([Ja92]), “the task of
subsystems is to package objects in order to reduce the complexity.”

Jacobson denotes two major principles that should be regarded during division of
objects into subsystems (compare [Ja92]):

– Locality in changes: “If the system is to undergo a minor change, this change
should concern no more than one subsystem. This means that the most important
criterion for this subsystem division is predicting what the system changes will
look like, and then making the division on the basis of this assumption.”

– Functional coupling: “The division into subsystems should also be based on the
functionality of the system. All objects which have a strong mutual functional
coupling will be placed in the same subsystem [. . .].”

We want to extend the list by adding the following two major principles that will
also have to be regarded:

– Task coupling: Jacobson also states that “another criterion for the division is that
there should be as little communication between different subsystems as possible”.
We want to go further and want to emphasize that in the domain being targeted, not
only the pure amount of communication between different subsystems may be a
criterion for the division, but also how the message sequences originating from the
trigger objects - the tasks - are allocated to the subsystems. A central guide should
therefore be that the allocation of trigger objects is done, so that as few tasks as
possible span subsystem boundaries. It should also be a general goal to reduce the
synchronization overhead, which arises from subsystems being affected by more
than one task.

– Reusability: Another criterion that should be taken into consideration is the reusabil-
ity of already existing subsystems. Analysis objects might be grouped together so
that the comprised functionality matches that of an already existing subsystem
(maybe smaller changes have to be implemented), so that no new subsystem has to
be developed but the already existing can be integrated instead. This may be most
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likely the case for basic service subsystems that do not provide domain-specific
application-logic but deliver system-level services, like network communication
management or storage management.

After a group of objects has been decided to form a subsystem, the interaction
points of the subsystem towards its surrounding environment have to be defined. They
can be determined by looking at the behavioral inter-object relationships of the analysis
objects. Where communication between objects partitioned into different subsystems
takes place, this communication has to enter or leave the subsystem via a defined in-
teraction point, which is referred to as a port. Further, by differentiating on whether
a message enters or leaves the subsystem, and by grouping respective messages to-
gether, required and provided interfaces can be derived, which allow to specify the in-
teraction, established via each port, in detail. Note that all interfaces, provided as well
as required, are always described from the viewpoint of each respective subsystem
to sustain its self-encapsulation. In particular, required interfaces are always specified
from the viewpoint of the requiring subsystem, explicitly not referencing any provided
interface of another subsystem.

WORK PRODUCTS

– Initial Structural Subsystem Design Diagram: The internal structure of each sub-
system, which is obtained by grouping together related objects from the analysis
model, is captured in a corresponding Initial Structural Subsystem Design Dia-
gram. An example is shown in Figure 20.

Fig. 20: Example: Initial Structural Subsystem Design Diagram

It is developed in terms of a UML2 composite structure diagram having the sub-
system as the structured classifier with ports defining the interaction points of the
subsystem towards its external environment. The provided and required interfaces
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aggregated by each port may be (optionally) denoted by the so called ball and
socket notation, which shows the interface in a symbolized form of a ball or a
socket depending on whether it is a provided or required interface. The internal
decomposition of the subsystem is modeled in terms of parts, representing the
trigger, interface, entity, control and application-logic objects partitioned into it.
Relationships between the objects are modeled using assembly connectors. Where
objects do have relationships to external objects (which are partitioned into other
subsystems) delegation connectors can be modeled to the port of the subsystem
that encapsulates the interaction point towards this other subsystem. The diagram
is denoted as initial, as the internal structure is obtained by just partitioning the
analysis objects and by inferring the structural relationships from the analysis
model, and consolidation of it is not regarded by this task. Indeed such a con-
solidation of the internal subsystem decomposition is addressed by the Subsystem
Consolidation task. It therefore may also be decided to now draw a respective Ini-
tial Structural Subsystem Design Diagram but to directly construct a Consolidated
Structural Subsystem Diagram by merging the Subsystem Identification and Sub-
system Consolidation tasks together.

– Initial Structural Subsystem Interface Design Diagram As the Initial Structural
Subsystem Design Diagram, which shows the external interaction points only in
terms of ports, an initial version of the externally visible provided and required
interfaces’ signatures has to be defined in an Initial Structural Subsystem Interface
Design Diagram. Such a diagram is developed in form of a UML class diagram
showing the required and provided interfaces, grouping the messages entering and
leaving the subsystem in the form of simple methods without return or call param-
eters, and the port types, establishing usage or interface realization relationships
to the required and provided interfaces respectively. Note that the port’s classes
implement all methods of the required as well as the provided interfaces. This is,
because they may forward all method calls, either to the internal decomposition
of the subsystem, in case of method subsumed by a provided interface, or to the
external environment, in case of a required interface.

– Initial Behavioral Subsystem Design Diagram: The internal communications in-
side each subsystem has to be documented in one or more Initial Behavioral Sub-
system Design Diagrams, as it is exemplarily denoted by Figure 22.
It is developed in terms of a UML2 sequence diagram showing message-based
communication between the ports and parts composed by the subsystem (as mod-
eled in the Initial Subsystem Design Diagram). It may be possible to denote several
scenarios by a single Initial Behavioral Subsystem Design Diagram, using interac-
tion fragments, most often however, several behavioral diagrams will be used for
purposes of clarity and readability.
As in case of the Initial Structural Subsystem Design Diagram, the Initial Behav-
ioral Subsystem Design Diagram will be consolidated during Subsystem Consol-
idation. Therefore it is possible - as in the latter case - to drop this diagram and
directly build a Consolidated Behavioral Subsystem Design Diagram if the Sub-
system Identification and Subsystem Consolidation tasks are merged together.

– Initial Behavioral Subsystem Interface Design Diagram: To describe the interac-
tion possibilities offered by the subsystem via its ports from a behavioral perspec-
tive, thus describing possible dependencies between the offered methods as well
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Fig. 21: Example: Initial Structural Subsystem Interface Design Diagram

as pre- and post-conditions, one or more Initial Behavioral Subsystem Interface
Design Diagram(s) should be developed in the form of a UML state machine dia-
gram (as protocol state machine). Why it is regarded to be mandatory to develop
at least one Initial Behavioral Subsystem Interface Diagram to show global de-
pendencies between methods offered by the different ports of the subsystem, as
exemplarily denoted by Figure 23, as respective diagram may also be developed
for an individual port, or even interface.
Here, in case of all former working products developed by this task, the Initial
Behavioral Subsystem Interface Design Diagram will be consolidated during Sub-
system Consolidation. Therefore it may as well be an option in this case to drop this
diagram and directly build a Consolidated Behavioral Subsystem Interface Design
Diagram instead.

GUIDELINES

– Apply common principles to deal with functional coupling: Additional to the major
design principles, Jacobson mentions some more concrete guidelines that can be
applied to decide whether to place two objects into the same subsystem or not. For
example, the following questions can be considered (compare [JCJv92]):

• Will changes of one object lead to changes in the other object?
• Do they communicate with the same actor?
• Are both of them dependent on a third object, such as an interface or entity

object?
• Does one object perform several operations on the other?

Generally, our advice is to begin by placing a trigger or control object in a subsys-
tem, and then place strongly coupled interface, application-logic and entity objects
in the same subsystem.

– Use metrics to quantify functional dependencies: It may also be reasonable to be
guided by metrics to determine the coupling between objects (and cohesion of
object clusters) during Subsystem Consolidation. The number and frequency of
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Fig. 23: Example: Initial Behavioral Subsystem Interface Design Diagram

messages exchanged between two objects could for example be an indicator to
decide if those objects should reside inside one subsystem or could be separated
into distinct ones. Other metrics are imaginable.

– Apply domain-specific design criteria and experiences: Further guidance to sup-
port the identification of subsystems may be inferred from domain-specific design
principles. It may for example be common practice to introduce a central coordi-
nator subsystem that takes care of coordinating the subsystems contributing to the
most severe real-time tasks. Or it may be reasonable to group all objects handling
the user interface together into a single user interface subsystem. Besides such
common practices a standard architecture defined for the application-domain may
be taken as a guidance for grouping objects into a predefined scheme. Reuse of ex-
isting subsystems may be named as a further source for inferring domain-specific
design-criteria.

– Introduce components to reduce complexity: If an identified subsystem seems to be
quite complex and it is reasonable not to split it into several smaller subsystems,
its internal decomposition should be designed in a hierarchical form. That is the
internal decomposition is described in terms of component instances rather than
objects. The components forming the subsystem decomposition are in turn formed
by grouping together functionally related subclusters of the analysis objects parti-
tioned into the subsystem.
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2.3.2 Subsystem Consolidation

After the active and passive analysis objects have been partitioned into subsystems
according to certain criteria, the resulting subsystems have to be consolidated under
design considerations.

In detail, all active objects have to be evaluated on whether they can be clustered
together in order to reduce the overall number of tasks and thereby the inherent task
overhead. Timer objects can for example by clustered together if they have the same
period (or periods with a greatest common divisor greater than one). Eventer objects
may be clustered together if the events are indeed not truly concurrent events but occur
in a sequential or mutually exclusive manner. We propose to refer to the task clustering
criteria described in [Gom00] to get an inspiration on optimization potentials.

As an example consider that the Calculation Chain Timer (100ms) ac-
tor and the Digital Output Timer (200µs) actor shown in the Use Case Di-
agram in Figure 7 have been transferred into respective calculationChainTimer
and digitalOutputTimer analysis objects, who have been partitioned into two
different subsystems. The digitalOutputTimer was of course partitioned into
the digitalOutput subsystem, which is responsible of putting out the calculated
process value or any pending alarms on the two digital outputs. The calculation-
ChainTimer was put into the secondaryCalculations subsystem, which is
responsible of calculating a process value from the raw value delivered by the measure-
ment subsystem. As the periods of the two timers have a greatest common divisor
greater than one, and as the output of the digital process value depends of course on
the calculation of the process value done by the secondaryCalculations sub-
system, the decision could be taken to merge these two timer objects together into a
calculationAndOutputChainTimer, which resides in a third subsystem that
coordinates the execution of the process value calculation and output. This way the task
switching and synchronization overhead necessary for the two tasks could be econo-
mized and the overall performance could be improved.

The passive objects also have to be consolidated, as they were identified from an
analysis viewpoint (they were just partitioned) and not from a design viewpoint. In de-
tail, during consolidation it should be checked, if the objects have to be removed from
the internal subsystem decomposition, or if they have to be split or merged together.
Removing an object from the internal subsystem decomposition may be reasonable
when for example an entity object is indeed not decided to be stored inside the subsys-
tem but is just passed into it, out of it or between two objects of its’ internal decom-
position as a mere parameter. Splitting an object may be appropriate where a weak
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cohesion of the resulting class is likely. Merging objects may be necessary, where a
very strong cohesion between the resulting classes would result.

Last, the interaction points of each subsystem, the ports and their respective pro-
vided and required interfaces have to be consolidated (they may be grouped under cer-
tain aspects) and the detailed class design of all classes being exchanged as parameters
over those interfaces has to be developed.

WORK PRODUCTS

– Consolidated Structural Subsystem Design Diagram: A Consolidated Structural
Subsystem Design Diagram has to be developed for each subsystem, which is an
advancement to the Initial Subsystem Design Diagram developed during Subsys-
tem Identification. Like the Initial Subsystem Design Diagram it is developed in
form of a UML composite structure diagram, showing the subsystem as the struc-
tured classifier having ports aggregating the required and provided interfaces, via
which communication with the external environment is established, and having
an internal structure in terms of interconnected parts representing the composed
objects.

Fig. 24: Example: Consolidated Structural Subsystem Design Diagram
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– Consolidated Structural Subsystem Interface Design Diagram: Further, for each
subsystem, the signature of the provided (and required) interfaces has to be de-
fined in a Subsystem Interface Design Diagram, as shown in Figure 25. It is an
advancement to the Initial Subsystem Interface Design Diagram, developed dur-
ing Subsystem Identification, where method parameters and their data types are
additionally defined.

Fig. 25: Example: Consolidated Structural Subsystem Interface Design Diagram

It has to be pointed out that - even if we want to perform detailed class design as
late as possible - for those classes and data types occurring in the signatures of
the interfaces, detailed class design has indeed to be done here. This is necessary,
as distributed development of subsystems can only be done against well-defined
interfaces.
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– Consolidated Behavioral Subsystem Design Diagram: Changes to the structural
subsystem design will imply changes to its behavioral design as well. Therefore,
one or more Consolidated Behavioral Subsystem Design Diagrams should be de-
veloped as advancements to the Initial Behavioral Subsystem Design Diagrams
created during Subsystem Identification. Furthermore, the messages should now
be equipped with arguments to denote the parameter objects being passed (while
parameter types are not yet regarded). An example for a Consolidated Behavioral
Subsystem Design Diagram is shown in Figure 26.
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– Consolidated Behavioral Subsystem Interface Design Diagram: Changes to the
structural interface design likely affect the behavioral interface design as well.
Therefore, the Initial Behavioral Subsystem Interface Design Diagram has to be
consolidated to reflect the changes. It also has to be detailed, as now, method sig-
nature and guards can be specified on a more fine-grained level than in the Initial
Behavioral Subsystem Interface Design Diagram. An example for a Consolidated
Behavioral Subsystem Interface Design Diagram is denoted by Figure 27. It does
not show significant changes towards the initial diagram version as the changes
did not have great impact. Yet, the detail level was slightly enhanced to reflect the
introduced method signatures.

Fig. 27: Example: Consolidated Behavioral Subsystem Interface Design Diagram
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2.3.3 Structural System Architecture Modeling

After having identified subsystems by grouping together and consolidating the
analysis objects, and after having defined interaction points (ports) with required and
provided interfaces, the next step is to describe how the subsystems are structurally
related via those interfaces, to denote that the subsystems structurally fit together.

WORK PRODUCTS

– Structural System Architecture Diagram: The results of this task should be cap-
tured in a Structural System Architecture Diagram, which is developed in terms of
UML composite structure diagrams, showing the subsystem (instances), their pro-
vided and required interfaces and the structural relationships established via those
interfaces. An example is shown in Figure 28.

Fig. 28: Example: Structural System Architecture Diagram

55



2.3.4 Behavioral System Architecture Modeling

After having integrated the subsystems structurally, it is necessary to describe,
how system-wide behavior (that is affecting more than one subsystem) does affect the
subsystems via their provided/required interfaces. This is done by investigating, how
the system behavior is collaboratively performed by the subsystems (i.e. taking all use
cases into account, that span more than one subsystem).

WORK PRODUCTS

– Behavioral System Architecture Diagram: The results of the Behavioral System
Architecture Modeling task are captured in a couple of Behavioral System Archi-
tecture Diagrams, which are realized as UML sequence diagrams. As an example,
Figure 29 shows a combined Behavioral System Architecture Diagram for the use
cases FlowRateCurrentOutput and AlarmCurrentOutput.

56



Fi
g.

29
:E

xa
m

pl
e:

B
eh

av
io

ra
lS

ys
te

m
A

rc
hi

te
ct

ur
e

D
ia

gr
am

57



2.4 Detailed Design Modeling Discipline

While the externally visible interfaces of each subsystem have already been completely
defined in terms of ports offering provided and required interfaces (including a detailed
class design for all involved parameter types), a detailed design for the internal decom-
position of each subsystem has to be developed, so detailed that it can be taken as direct
input for the successive implementation.

As Jacobson states, “Subsystems may also be used as handling units in the orga-
nization”. Taking this statement literally, it has to be pointed out that while the tasks
of all prior disciplines are indeed performed within the scope of the overall system,
Detailed Design Modeling is performed distinctly for each subsystem, thus allowing
an independent and potentially concurrent processing of each.
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2.4.1 Detailed Structural Design Modeling

After the internal decomposition of the subsystem has been consolidated, the de-
tailed class design for all design objects (modeled as parts) composed by the subsystem
has to be developed. That is, classes have to be designed to type each composed part,
having attributes corresponding to the slots of the objects and operations correspond-
ing to the messages the object may receive (that is, it has to implement those methods
that the external ports forward to it, captured in its provided interfaces, or which it
may receive from other composed parts). Where parts are connected to each other by
an assembly connector, or to a respective port via a delegation connector, associations
have to be designed on the class level, which are used to type the respective connector.

WORK PRODUCTS

– Structural Detailed Design Diagram: The results of the Detailed Structural De-
sign Modeling should be documented in UML class diagrams. It has to capture
all relevant classes and associations, which are used as types for all parts, ports
and connectors captured in the Consolidated Structural Subsystem Design Dia-
gram respectively. All classes should be modeled with their respective attributes
and operations, so that the class design can be taken as a detailed building plan for
the succeeding implementation, meaning that attribute types, as well as the types
and names of operation parameters are included. An example for the detailed class
design is shown in Figure 30.
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GUIDELINES

– Omit inheritance to ensure a smooth transition towards procedural implementa-
tion: As the implementation languages of the regarded application domain are pro-
cedural languages (C-language or one of its derivates) MeDUSA aims at develop-
ing a design model that can be easily transferred to such a procedural implementa-
tion model (probably tool-supported). This is why the method was designed to be
class-based rather than object-oriented; the instance-driven nature of the method
causes that inheritance and related polymorphism mechanisms are not regarded,
as instances (objects) rather than classes were modeled. Therefore we propose to
omit the application of inheritance and related polymorphism concepts also during
this last step. However, if it seems reasonable to apply inheritance mechanisms
during detailed class design modeling, this can be done. The only thing we want to
emphasize is that all mappings from object-oriented design models to procedural
implementation languages tend to cause the source code to be not adequately read-
able and also tend to harden traceability between the design model and the source
code.

– Apply domain-specific libraries where appropriate: As the class design is most
often developed in a distributed manner - and rather late - it may happen that cer-
tain functionality, which is needed inside several subsystems is designed plural
and would therefore also be implemented plural. If this affects objects that are ex-
changed between subsystems (i.e. the object is exchanged via provided/required
interfaces of the subsystem) synchronization has in either case to be guaranteed to
ensure that subsystems may be interconnected. If it affects objects that are not visi-
ble to other subsystems, this is not necessarily to be ensured. However, it would be
desirable to reuse such functionality regarding detailed class design as well as im-
plementation. In either case, from the experience gained, such multiple occurrence
of functionality is most often the case for such objects that are rather application-
domain specific than device-specific, like e.g. in case of physical quantities. There-
fore, we propose to build up a class library to achieve best reuse in such a situation.

2.4.2 Detailed Behavioral Design Modeling

While a structural specification for those design objects, being composed by a sub-
system, are developed in terms of classes during Detailed Structural Design Modeling,
a behavioral specification has to be developed as well. Based on the structural features
defined by the developed classes, the internal behavior of each design object is cap-
tured during Detailed Behavioral Design Modeling. That is, the internal behavior, as it
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has been specified during Intra-Object Behavior Modeling has to be updated to reflect
the changes made during Subsystem Consolidation (merging or splitting of objects). It
further has to be enriched with additional detail, so that it can serve as direct input to
the subsequent implementation.

It has to be pointed out that - as the effort related to the developed of the detailed
behavioral design is not to be ignored - this should only be performed for those design
objects, which do not have trivial behavior, and where the internal behavior cannot be
directly inferred from other behavioral specifications developed during Architectural
Design Modeling. Most often, Detailed Behavioral Design Modeling will thus only
be applied to specify the detailed behavior of state-dependent control and application-
logic objects, as the behavior of trigger, interface, and entity objects is mostly trivial,
and as the behavior of coordinator objects can normally be directly inferred from the
Behavioral Subsystem Design Diagrams, being developed during Subsystem Consoli-
dation.

WORK PRODUCTS

– Behavioral Detailed Design Diagram: A Behavioral Detailed Design Diagram is
developed for each design object, which does not have trivial or obvious behavior
(to be precise, it is developed for the class of the design object, which is developed
during Detailed Structural Design Modeling). Dependent on which behavioral for-
malism is best suited, a UML state machine diagram, as exemplarily outlined by
Figure 31, or a UML activity diagram may be employed for this purpose. If not
being affected by major changes during Subsystem Consolidation, the developed
diagram will most likely be detailed versions of the Intra-Object Behavior Dia-
grams developed during Analysis Modeling.
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2.5 Implementation Discipline

The Implementation discipline is concerned with transferring the detailed design into
running source code, so it comprises the following tasks:

– Code Generation deals with transferring all elements captured in the detailed de-
sign into respective source code equivalents (skeleton code). While most of the
code will of course reflect the structural design aspects, behavioral code may as
well be transferred. Most likely, this task will predominantly be performed auto-
matically by a respective code generation tool.

– Implementation is concerned with adding coding details to the skeleton code gen-
erated during Code Generation to obtain fully running source code for each sub-
system.

– Integration is concerned with adding glue code to integrate the code fragments for
the individual subsystems into a valid source code base for the overall system.
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2.5.1 Code Generation

Code Generation is concerned with transferring the information captured in the De-
sign Model into their respective source code equivalents. In most cases, all structural
aspects captured in MeDUSA Design Model can be automatically transferred into their
ANSI-C equivalents, as has been demonstrated in [Fun06] by an approach transferring
each modeled classifier (i.e. class, interface, association, data type) into a respective C
translation unit. Even while this approach does not guarantee best performant and low-
est resource-consuming source code and leaves much potential for optimization (e.g.
related to the internal wiring of parts and ports inside each subsystem), it shows that a
seamless transition of the respective design concepts is achievable (something that was
especially enforced by the instance-driven and object-based nature of the method).

The behavioral aspects captured in the design models are a bit more challenging
and usually require manual interaction. This is, because the behavioral system aspects
do affect the method bodies and can not be simply mapped to structural source code
constructs. As the complete generation of method bodies is normally not possible due
to missing details, what is often the case when transferring inter-object behavior, as
here only the messages between objects are specified, but not the behavior occuring
between those message sending events. As demonstrated in [Kev07], code for intra-
object behavior can however be most often automatically generated by a respective
tool. Where this is not possible, it is therefore often regarded to be clearer and more
straight-forward to not generate any method body detail at all and leave the respective
mapping to the subsystem implementer.

Even if all information captured in the Design Model is transferred into corre-
sponding source code, it has to be clear that the resultant source code is by nature
not complete, and that implementation details are missing. The source code produced
by this task is therefore denoted as Code Skeletons to emphasize that implementation
details have to be added by a successive task.

WORKING RESULTS

– Skeleton Code: The result of the Code Generation task is source code that is pro-
duced by transferring the structural and behavioral information captured in the De-
sign Model into respective code equivalents. Examples can be found in Appendix
C, where a general transformation for MeDUSA UML models is provided.
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2.5.2 Implementing

While Code Generation is concerned with the direct (potentially automated) trans-
ferring of design information into source code, Implementing is about adding all im-
plementation details, which are necessary to obtain fully running source code for a
subsystem. This comprises implementation of all method bodies, which could not be
automatically inferred from already specified behavior in the design models, as well
as platform dependent (i.e. hardware dependent) code that was not captured in the
Design Model. It is performed by the Subsystem Implementer for each respective sub-
system, and has to be performed in close cooperation with the Integration task, being
performed by the System Integrator.

WORK PRODUCTS

– Details Code: As the Skeleton Code produced by the Code Generation task is
naturally missing details, it has to be enriched to form a fully running source code
basis. The code fragments that are missing to reach this goal are as a whole referred
to as the Details Code.
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2.5.3 Integrating

While adding source code details to the code bases of the individual subsystems, as
performed during Implementing, the implementation of the glue code needed to inte-
grate the different code fragments, belonging to the subsystems, to an overall running
source code base, is performed once for the overall system. The System Integrator is
not only responsible of implementing the respective integration code, but indeed also
of system wide implementation aspects, as for example related to the startup and ini-
tialization.

WORK PRODUCTS

– Glue Code: All code details, which may not be attributed to the source code base
of an individual subsystem, are globally referred to as Glue Code. This comprises
the actual integration code, needed to combine the subsystem specific code frag-
ments, as well as source code needed for system-wide aspects as the startup and
initialization.

67



2.6 Real-Time Analysis Discipline

As non-functional real-time requirements play an outstandingly important role in the
context of embedded & real-time software, they have to be regarded intensely. The
Real-Time Analysis discipline thus comprises real-time analysis tasks that can be per-
formed based on the different models that are produced by the constructive disciplines.
In detail, the following tasks make up the Real-Time Analysis Discipline:

– Preliminary Real-Time Analysis: Analyzes the use case model (i.e. use cases and
their detailed descriptions) regarding timing and concurrency constraints to gain a
first impression on feasibility and to identify potential problems.

– Interim Real-Time Analysis: Is a real-time analysis similar to the Preliminary Real-
Time Analysis, just that it is performed based on the Analysis Model. As the Anal-
ysis Model is more detailed than the use case model, real-time analysis can now
also be performed in a more detailed fashion. Estimations can e.g. be broken down
to message communication between objects rather than whole use cases.

– Conclusive Real-Time Analysis: Based on the Design Model, the Conclusive Real-
Time Analysis can take into consideration all changes implied by design consol-
idation. It is thus even more detailed and precise and is used as the concluding
analysis of the system’s schedulability and performance.
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2.6.1 Preliminary Real-Time Analysis

As timing and concurrency concerns are of outstanding importance for real-time
systems, they have to be investigated intensely and as early as possible. As briefly
sketched in [NL07b], the application of the MeDUSA Actor Taxonomy offers the pos-
sibility of an early real-time analysis based on the use case model. While such an anal-
ysis might not give the resilient guarantee to proof the schedulability of the software
system under construction, it might give valuable insight in terms of potential perfor-
mance problems and might as well help to detect a non-feasible hardware architecture
at an early development stage (MeDUSA assumes that the hardware development has
some sort of precedence and is performed with a slight temporal advance).

Real-time analysis is started by annotating timer periods or respective worst-case
interarrival times to timer and eventer actors. Those constraints can usually be directly
inferred from the non-functional requirements. Each concurrently executed scenario
- referred to as a task candidate 3 in the following, has to be estimated regarding its
execution time. That is, the worst case scenario being implied (in terms of required
computation time) has to be identified and its respective CPU utilization has to be
estimated.

Having gained an estimation for the CPU utilization and the period of each task
candidate, it can be inferred if each task candidate is able to hold its individual dead-
line and if the overall system would be schedulable by applying real-time scheduling
theory or event sequence analysis. We propose to refer to [Gom00] to get additional
information of practices that are applicable.

WORK PRODUCTS

– Initial Task Report: The results of the initial real-time analysis task should be cap-
tured in an Initial Task Report. It should list for each task candidate the following
information:
• the periodic and aperiodic event source (actor), from which the task candidate

originates
• the task candidate’s frequency (timer period or worst case interarrival time, in

case of eventer)
• a description of the purpose of the respective task candidate (derived from the

purposes of the involved use cases)

3 we refer to them as task candidates and not tasks, as the final task design cannot be defined before the
system architecture has been defined
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• an estimation of the task candidate’s CPU consumption time (i.e. the execution
time of the worst-case scenario)

• the CPU utilization, computed from the task candidate’s frequency and the
CPU consumption

• a target priority the task candidate should be assigned
An example of an Initial Task Report can be seen in Figure 32.

Task Report
# Trigger Scenario Frequency

(Ti)
CPU consumption
(Ci)

Utilization
(Ui)

Priority
(Pi)

t1 sensorADCInterrupt Collect and preprocess
ADC samples from
sensor

25 µs 5 µs 0.2 HIGH
(1)

t2 measurementTimer Calculate Raw Flow
Velocity from ADC
samples

500µs 70 µs 0.14 HIGH
(2)

t3 calculationChainTimer Calculate Flow Veloc-
ity, Volume and Mass
Flow from Raw Flow
Velocity and output
them by PWM

100 ms 14.5ms 0.145 MED
(4)

t4 digitalOutputTimer Output Process Value
on Digital Output

200µs 3µs 0.015 HIGH
(3)

. . . . . . . . . . . . . . . . . . . . .

Fig. 32: Example: Initial Task Report (excerpt)

– Initial Schedulability Report: The results of the schedulability analysis that has to
be performed based on the estimations of the task candidate’s frequency and CPU
consumption should be captured in an Initial Schedulability Report. The form of
the report depends on the concrete type of selected schedulability analysis, which
is not prescribed by MeDUSA. However, independent of the applied technique,
the Initial Schedulability Report should provide an estimation for the individual
task candidates and the overall system schedulability. We will elaborate this on
our running example based on the Generalized Utilization Bound Theorem as
introduced in [Gom00]. A detailed introduction into the applied principles of real-
time scheduling theory and event sequence analysis can be found in chapter 17
of [Gom00] and will be omitted here due to lack of space.
Let us assume that an example system consists of only the four tasks candidates
listed in Figure 32. The overall CPU utilization can be computed as the sum of
the individual CPU utilizations to 0.2 + 0.14 + 0.145 + 0.015 = 0.5, which is
well below the worst-case utilization bound of 0.69, which is the upper utiliza-
tion bound for a unrestricted number of tasks (compare [Gom00]). The priori-
ties assigned to the task candidates were not based on rate monotonic scheduling
(i.e. the task priorities were not assigned inversively to the task periods), as the
measurementTimer task candidate was decided to get a higher priority than
the digitalOutputTimer task candidate, although it has the longer period.
Therefore, each task candidate has to be analyzed individually.
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Initial Schedulability Report

• Task t1 is an aperiodic, interrupt-driven task with a worst case interarrival time of T1 = 25µs and a CPU
consumption time of C1 = 5µs. It has the highest priority.

1. Preemption time by higher priority tasks with periods less than t1. There are no tasks with periods less
than t1.

2. Execution time C1 for task t1. Execution time is 5µs, leading to a utilization of 5µs
25µs

= 0.2.
3. Preemption by higher priority tasks with longer periods. No tasks fall into this category.
4. Blocking time by lower priority tasks. Task t2 may block task t1 because it accesses the ADC samples

collected by task t1. We assume that the blocking time (needed to read out the ADC samples) can be
estimated to 4µs, which leads to a blocking utilization during period T1 of 4µs

T1
= 4µs

25µs
= 0.16.

The worst case utilization of task t1 can thereby be computed as execution utilization + blocking utilization =
0.2 + 0.16 = 0.36, which is well below the utilization bound of 0.69, so task t1 will meet its deadline.

• Task t2 is a periodic task with a period of T2 = 500µs and a CPU consumption time of C2 = 70µs. It has the
second highest priority.

1. Preemption time by higher priority tasks with periods less than t1. Task t2 could be preempted by task
t1, which has a shorter period but a higher priority. The preemption utilization of task t2 is 0.2

2. Execution time C2 for task t2. Task t2 has an execution time of 70µs, which leads to a CPU utilization
of 0.14.

3. Preemption by higher priority tasks with longer periods. No tasks fall into this category.
4. Blocking time by lower priority tasks. Task t3 may block task t2 because it accesses the raw flow velocity

calculated by task t2. We assume that the blocking time (needed to access the flow velocity) can be estimated
as 3µs, which leads to a blocking utilization during period T2 of 3µs

T2
= 3µs

500µs
= 0.006.

The worst case utilization of task t2 can thereby be computed as 0.2 + 0.14 + 0.006 = 0.346 which is below
the utilization bound of 0.69, so task t2 will also meet its deadline.

• Task t3 is a periodic task with a period of T3 = 100ms and a CPU consumption time of C3 = 14.5ms. It has
the lowest priority of the four regarded tasks.

1. Preemption time by higher priority tasks with periods less than t3. Task t3 could be preempted by tasks
t1, t2 and t4, which all have a shorter period and a higher priority. The summarized preemption utilization
of these tasks is 0.355

2. Execution time C3 for task t3. Task t3 has an execution time of 14.5µs, which leads to a CPU utilization
of 0.145.

3. Preemption by higher priority tasks with longer periods. No tasks fall into this category.
4. Blocking time by lower priority tasks. Task t3 has the lowest priority of the regarded tasks, so no tasks

fall in this category.
The worst case utilization of task t3 can be computed as 0.355 + 0.145 = 0.5, which is below the utilization
bound of 0.69, so task t3 will also meet its deadline.

• Task t4 is a periodic task with a period of T4 = 200µs and a CPU consumption time of C4 = 3µs. It has the
third highest priority of the regarded tasks.

1. Preemption time by higher priority tasks with periods less than t4. Task t3 could be preempted by task
t1, which has a shorter period and a higher priority. The preemption utilization of task t1 is 0.2.

2. Execution time C4 for task t4. Task t4 has an execution time of 3µs, which leads to a CPU utilization of
0.015.

3. Preemption by higher priority tasks with longer periods. Task t4 can be preempted by task t2, which
has a higher priority and a longer period. Preemption utilization of task t2 is C2

T4
= 70µs

200µs
= 0.35.

4. Blocking time by lower priority tasks. Task t4 may be blocked by lower priority task t3 when it tries to
obtain the next process value to be outputted on the digital output. As t3 does need to block the process
value for exclusive write access, we assume that blocking time will be around 5µs, so a blocking utilization
during period T4 of 5µs/T4 = 5µs/200µs = 0.025 does result.

The worst case utilization of task t4 can therefore be computed to 0.2 + 0.015 + 0.35 + 0.025 = 0.59, which
is below the utilization bound of 0.69, so also task candidate t4 will meet its deadline.

Fig. 33: Example Initial Schedulability Report
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GUIDELINES

– Use expert knowledge and approved techniques for estimation: To analyze the
schedulability of individual task candidates and the overall system, the CPU uti-
lization of the task candidates has to be estimated. Without a good estimation of the
CPU utilization, a significant statement about the schedulability of an individual
task candidate or even the overall system can not be achieved in most cases.
To obtain a meaningful estimation of the CPU utilization of each task candidate,
expert knowledge of experienced designers is one of the most valuable input. An-
other possibility that can also be taken into consideration, is the development of a
rapid prototype to measure the execution time of functions or algorithms that are
hard to estimate. Also some theoretical approaches to estimate the CPU utiliza-
tion based on formal reasoning have been developed by the research community.
However, as neither of those has been able to prove its practical applicability yet,
we propose to stick to use expert knowledge and rapid prototypes to obtain valid
estimation data.
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2.6.2 Interim Real-Time Analysis

Having identified the sources of concurrent behavior during early Use Case Mod-
eling by using trigger actors and having identified during Inter-Object Collaboration
Modeling how each such concurrent behavior is established in terms of messages be-
tween objects, participating in the collaborations identified for each use case, a more
detailed real-time analysis on whether each respective task candidate is able to hold
its deadline and on whether the overall system is at all schedulable can be performed.
That is, because estimating the CPU consumption of a respective task candidate can
now be broken down to estimating the time required for the processing of all mes-
sages exchanged by the respective object-collaboration performing the task candidate,
adding an additional overhead for the message communication itself.

It has to be emphasized again that even if the overall task design is not established
yet, valuable information can already be inferred from such an early performance anal-
ysis, as potential problems can be inferred about individual task candidates likely to
miss their deadline as well as on the overall system performance. Further, valuable
information can be inferred to may be taken into account in the Subsystem Identifica-
tion task, as one major criteria for partitioning of objects into subsystems is the task
allocation.

WORK PRODUCTS

– Unconsolidated Task Report: The results of the Interim Real-Time Analysis is cap-
tured in a respective Unconsolidated Task Report. It is comparable to the Initial
Task Report produced during Preliminary Real-Time Analysis, just that now trig-
ger objects rather than actors are regarded to be the initiators of a task candidate
and that the estimations can be performed much more fine-grained based on the
level of inter-object message communication and involved intra-object behavior.

– Unconsolidated Schedulability Report: The detailed outcome of the performed
schedulability analysis has to be captured in a respective schedulability report. It is
a refinement of the schedulability report produced during Preliminary Real-Time
Analysis, now being based on the data captured in the Unconsolidated Task Report.
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2.6.3 Conclusive Real-Time Analysis

While the introduction of subsystems may have affected the performance and schedu-
lability of the system in a negative way (inter-subsystem communication is usually
more expensive than intra-subsystem communication), the consolidation of active ob-
jects had a corrective effect. To assess the consequences of both on the overall perfor-
mance and schedulability, a conclusive real-time analysis has to be performed. This is
done using the same techniques as in the Interim Real-Time Analysis task of the Analy-
sis Modeling discipline, being now however based on an actual task design rather than
on task candidates.

WORK PRODUCTS

– Consolidated Task Report: The results of the conclusive real-time analysis should
be captured in a Consolidated Task Report, which is identical to the Unconsoli-
dated Task Report produced during Interim Real-Time Analysis with the exception
that it now indeed lists the tasks (gathered by consolidating active objects) and no
longer task candidates.

– Consolidated Schedulability Report: Besides the Consolidated Task Report, which
captures the individual tasks inherent to the system, a Consolidated Schedulability
Report has to be developed, which demonstrates the overall schedulability of the
system and indeed specifies a potential schedule. Its format is the same as that
of the Unconsolidated Schedulability Report produced during Interim Real-Time
Analysis.
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3 Process

As outlined before, the Process part of a method definition specifies how the Method
Content elements are employed over time. This is done in terms of Task Uses, Iter-
ations, Phases, Process Patterns, and Delivery Processes. The MeDUSA definition
makes use of those SPEM concepts by defining five Process Patterns (referred to as
workflow patterns in the following), which group all Task Uses related to a respective
lifecycle phase. The workflow patterns are thus referred to as Requirements, Analy-
sis, Architectural Design, Detailed Design, and Implementation respectively. They are
outlined in detail in the following.

The MeDUSA workflow, defined as a Delivery Process, is then introduced. It con-
sists of five Phases, namely Requirements Phase, Analysis Phase, Architectural Design
Phase, Detailed Design Phase, and Implementation Phase, where each phase com-
prises a set of Iterations of the homonymous workflow pattern, as well as all workflow
patterns related to earlier lifecycle phases, in case reiterations are needed.
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3.1 Requirements Workflow Pattern

The Requirements workflow pattern is concerned with the construction (and anal-
ysis) of the Requirements Model. As Requirements UML-Model and Narrative Model,
the two major fractions of the Requirements Model, have to be consistent to each other
and as either of them may serve as valuable input for the construction of the other -
e.g. when trying to determine the right granularity - the two tasks concerned with the
construction of the two model fractions are executed more or less in parallel. Often,
one starts to construct the UML use case by constructing an initial version of a Use
Case Diagram first. Then, use case details for each initially identified use case may be
developed, which may lead in turn to modifications inside the Use Case Diagram(s)
(respectively the Requirements UML-Model), as additional use cases or relationships
between use cases may be identified. This way, both model fractions are developed in
parallel, until they are consistent to each other and their quality is satisfying.

As non-functional timing and concurrency concerns are of outstanding importance,
an early preliminary real-time analysis is subsequently performed on the Requirements
Model to identify potential performance problems as early as possible.

It has to be pointed out that MeDUSA is a use case driven method, meaning that the
use cases identified during Requirements Modeling play a very central role throughout
all following activities of the method. From the identification of analysis objects during
Analysis Modeling, up to the Architectural Design Modeling, use cases are the central
artefacts around which the activities of the method are organized.

Therefore, the tasks subsumed by the Requirements workflow pattern are very es-
sential and have to be performed very thoroughly. Defects and misunderstandings not
resolved here can cause costly fixes in later activities. Especially misunderstandings
and mistakes related to the concurrency concerns, which are of major interest already
during these early activities, may have severe impact on the later on developed Anal-
ysis Model and Architectural Design Model if not regarded thoroughly. It has to be
pointed out therefore that even if the regarded domain is already well understood or
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similar products have already been developed, it is essential to perform this step in the
described detail.
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3.2 Analysis Workflow Pattern

Based on the functional and non-functional (timing and concurrency) require-
ments, captured in the Requirements Model, the Analysis workflow pattern is con-
cerned with gathering a thorough understanding of the problem domain. Therefore,
an Analysis Model is constructed, which is done in detail by modeling an object col-
laboration for each identified use case. The starting point for the identification of the
objects that collaboratively perform the identified use cases is the identification of trig-
ger, interface and entity objects during Context Modeling and Information Modeling.
As both tasks are concerned with different types of objects, they can be performed very
much in parallel. After trigger, interface and entity objects have been defined, the re-
maining tasks are executed to identify additional control and application-logic objects
needed to execute the use cases, and to specify their internal behavior (in case it is not
trivial). Last, a more detailed impression on the capability of the software system to
meet its performance constraints has to be gained by performing an Interim Real-Time
Analysis.
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3.3 Architectural Design Workflow Pattern

The objective of the Architectural Design workflow pattern is the specification of
the software architecture. That is, subsystems have to be identified during Subsystem
Identification by grouping together objects of the Analysis Model. An initial version
of each subsystems’ required and provided interfaces also has to be inferred from the
messages being exchanged between objects, partitioned into different subsystems. Af-
ter the initial partitioning of objects, a consolidation of the subsystem design has to be
performed. That is, the active and passive analysis objects, as well as the provided and
required interfaces of each subsystem have to be investigated under design considera-
tions. In detail, active objects may be clustered together in order to improve the overall
system performance and the provided and required interfaces have to be detailed re-
garding the data types, which are used as parameter types in their signatures. Both
tasks, Subsystem Identification and Subsystem Consolidation are of course strongly re-
lated and may also be merged together (i.e. partitioning and consolidation are done in
one step).

After consolidation, the structural and behavioral relationships between the iden-
tified subsystems can be designed. This is done during Structural System Architecture
Modeling and Behavioral System Architecture Modeling. The definition of structural
and behavioral relationships is strongly intertwined. Of course, one might start with
defining an initial version of the structural relationships first, as the behavioral rela-
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tionships have to reside on them. However, while modeling the behavioral relation-
ships, changes to the structural relationships are likely to occur, so that from the initial
definition of the structural relationships onwards both activities will be executed very
much in parallel.

After the system architecture in terms of subsystems and their structural and behav-
ioral relationships has been defined, the overall system performance has to be reflected
in terms of a Conclusive Real-Time Analysis. In detail, the changes implied by the in-
troduction of subsystems and by their consolidation have to be investigated in terms of
the overall system schedulability.
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3.4 Detailed Design Workflow Pattern

After having performed the Architectural Design, all externally visible required
and provided interfaces of the identified subsystems are clearly specified and the sys-
tem behavior that occurs over these interfaces is well understood. Also, the internal
subsystem decomposition in terms of active and passive (design) objects has been de-
fined.

Now, Detailed Structural Design Modeling can be applied to create a class design
for each subsystem, which can then in turn be seamlessly transferred into source code
skeletons by the succeeding implementation activities. Further, Detailed Behavioral
Design Modeling may be performed to reflect the internal behavior of those design
objects, where is it neither trivially clear, nor can be inferred from those behavior
diagrams, being developed during Architectural Design Modeling.
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3.5 Implementation Workflow Pattern

The objective of the Implementation workflow pattern is the development of the
system’s source code based on the detailed system design. First, the detailed system
design being captured in the Design Model has to be transferred into resultant source
code, as subsumed by the Code Generation task of the respective Implementation dis-
cipline. The detailed system design does of course not reach down to the level of
abstraction offered by the final running source code. Therefore, the source code being
(automatically) generated from the detailed design models is regarded to be skeleton
code, which has to be completed by all respective details that are needed to transform
it into a complete source code base. This is done during Implementing for the code
affecting a respective subsystem, as well as during Integrating, as far as subsystem
integration related source code is concerned.
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3.6 The MeDUSA Workflow

The definition of the MeDUSA Workflow is based on the five already introduced work-
flow patterns that define the sequencing of the tasks belonging to the six disciplines
(five modeling disciplines plus the additional real-time analysis discipline) of the Method
Content. In detail, the workflow is defined in terms of five Phases, namely Require-
ments Phase, Analysis Phase, Architectural Design Phase, Detailed Design Phase, and
Implementation Phase, as shown in Figure 34.

Fig. 34: MeDUSA Delivery Process

Each phase is self-contained unit, concerned primarily with the iterative execution
of the homonymous Requirements, Analysis, Architectural Design, Detailed Design,
and Implementation workflow pattern, as well as with re-iterations of workflow pat-
terns, primarily executed in prior phases. The goal of each phase is to develop a concise
model (i.e. a Requirements Model at the end of the Requirements Phase, an Analysis
Model at the end of the Analysis Phase and so on), which is indicated by a respective
Milestone at the end of each Phase.

Requirements Phase

The Requirements Phase is concerned with the iterative execution of the Requirements
workflow pattern to develop a concise and consistent Requirements Model.

Analysis Phase
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The Analysis Phase is concerned with producing a concise Analysis Model. Here the
activities defined by the Analysis workflow pattern are executed iteratively. What has
to be pointed out is that especially Analysis does have a very iterative nature. That is,
several iterations through all of its activities will be needed to develop an appropriate
Analysis Model. Often, entity objects are not directly identified during Information
Modeling but not earlier than during Inter-Object Collaboration Modeling, when the
object collaborations performing the use cases are developed. It may also be the case
that during the activities of the Analysis interface or trigger objects are identified that
were not already determined during Requirements Modeling. Therefore the Analysis
Phase allows to reiterate the Requirements workflow pattern.

When reaching the concluding milestone, all relevant interface, trigger, entity, con-
trol and application-logic objects should be identified and their collaborating behavior
for each of the use cases identified during the Requirements Phase should have been
captured. Also, the internal behavior of each non-trivial object should be captured.
That is, with the end of Analysis Phase, a thorough understanding of the problem
domain has been achieved, so that in the following Architectural Design Phase the
composition of a solution can be started.

Architectural Design Phase

The Architectural Design Phase deals with the specification of the software archi-
tecture. That is, the Architectural Design workflow pattern is iteratively executed to
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construct a concise Design Model, defining the software architecture in terms of struc-
turally and behaviorally interrelated subsystems. It has to be pointed out that Archi-
tectural Design is rather iterative, first in itself, as the activities may have to be gone
through in several iterations until a feasible software architecture has been specified.
Second in a sense that most likely changes to the Analysis Model will be noticed while
developing the Architectural Design Model. An example provided by Jacobson might
help to demonstrate this (compare [JCJv92]): “ When the division into subsystems is
made, in some cases it may also be desirable to modify the analysis objects also. This
may be the case, for instance, when an entity [or application-logic] object has separate
behavior that is functionally related to more than one subsystem. If this behavior is
extracted, it may be easier to place the entity object in a subsystem.” As changes to the
Analysis Model or even the Requirements Model may therefore be likely, reiterations
of the Analysis and Requirements workflow patterns are covered accordingly.

Detailed Design Phase

The Detailed Design Phase is concerned with adding additional detail to the Design
Model, so that it can be taken as input for the implementation.In distinction to the
previous phases, the tasks subsumed by the Detailed Design workflow pattern are not
executed once for the overall system, but individually for each subsystem. Therefore,
if changes to the Architectural Design Model (or even Analysis Model or Requirements
Model) are determined, the Architectural Design (and possibly Analysis and Require-
ments) workflow pattern may be reiterated again to incorporate these changes.

Implementation Phase
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The Implementation Phase forms the last phase of the MeDUSA Workflow. Its objective
is to develop fully running source code. This is achieved by iterating the Implementa-
tion workflow pattern. As with the other phases, reiterations of previous patterns are
possible.
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4 Summary & Conclusion

Having started as a mere advancement to the COMET method, following the goal
to overcome the shortcomings, the COMET method showed during its practical ap-
plication, MeDUSA had successively grown into a self-contained method, initially
published as a technical report [NL07a].

As we stated in the introduction, MeDUSA was initially designed having in mind
the major goal to provide a continuous, breachless approach, covering all respective
construction activities and further, to reflect the special technical, organizational, and
economical constraints that can be faced in the domain of small embedded & real-time
software.

MeDUSA in particular faces the first objective by its class-based and instance-
driven nature. As class design is done quite late, a seamless transition into a procedural
implementation language like C can be easily achieved. This is explicitly covered in
terms of the Implementation phase (and discipline).

The second objective is addressed by investigating non-functional timing and con-
currency constraints right from the beginning, to identify performance problems as
early as possible and to thus explicitly consider the strong technical constraints. It is
further addressed by choosing the UML as the underlying notation, as the selection
of a standardized notation has several organizational and economical advantages, as
well as by the iterative nature of the method, which offers increased flexibility and
customizability.

As already stated before, MeDUSA was not designed “in the open countryside”
of university research but in close cooperation with industrial practitioners. Therefore,
development of MeDUSA does not stop with the publishing of this report. As more
and more experience from its practical application can be gained, it will likely change
in the future - as it has done in the past. We will therefore publish updates to the
method - as well as to this report - on the MeDUSA project web page [MeD], which
also contains a hypertext documentation of the method as well as further supporting
material.
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A MeDUSA UML-Models - Instance Specifications

While the definition of the tasks, as it is provided in Chapter 2, concentrates very much
on the detailed specification of the UML diagram work products, a deep understand-
ing of each task requires that the underlying UML-model contribution is also clearly
defined. This is done in the following by illustrating the underlying model artefacts,
being contributed by each example UML diagram, which is provided in Chapter 2.

We employ the notation of UML object diagrams to do so, using InstanceSpeci-
fications to represent the individual contributed model artefacts (which are instances
of UML meta classes) and using Links to denote relationships between them (thus
representing instances of associations, being defined between the UML meta classes).

As it is not practical to list all contributed model artefacts, we will restrict our-
selves to a subset of typical model artefact representatives, to enhance readability and
accessibility. Therefore each model instance specification is advanced by a modified
version of the related UML example diagram, where those diagram artefacts, which
are represented in the model instance specification, are highlighted. Where model arte-
facts were contributed by earlier developed diagrams, and not directly by the related
UML example diagram, the respective instance specification diagram will show those
artefacts grayed out.
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A.1 Requirements UML-Model

The major contributions to the Requirements UML-Model are made via the Use Case
Diagram(s) in terms of a system Component, Use Cases, owned by the system, as well
as internal (i.e. owned) and external Actors. Relationships between the use cases and
actors are manifested in terms of Includes, Extends, Generalizations, and Associations,
as well as Dependencies, as depicted by Figure 36.

Fig. 35: Requirements UML-Model and related UML diagrams

As outlined by Figure 35, further artefacts are contributed via the Global System
States Diagram and several Use Case Details Diagrams. While the basic contribution
added by the Global System States Diagram is a State Machine owned by the system
Component, the artefacts contributed via the Use Case Details Diagrams are owned
Behaviors in the form of Activities, or Interactions and related nested elements, de-
pendent on the respective behavioral formalism. Figure 38 depicts the contribution in
case an activity diagram is employed.
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A.2 Analysis UML-Model

The contributions added to the Analysis UML-Model via the Context Diagram(s) and
Information Diagram(s) are Instance Specifications used to represent analysis objects,
as well as Links and Dependencies to denote relationships between them.

Fig. 39: Analysis UML-Model and related UML diagrams

As outlined by Figure 39 additional contributions are made via the Inter-Object
Collaboration Diagrams, as well as Intra-Object Behavior Diagrams. Independent
on whether a sequence or communication diagram is used, the major contribution
of a Inter-Object Collaboration Diagram, is an Interaction, together with its nested
Lifelines (used to represent the analysis objects) and Messages, being exchanged be-
tween them. For the Intra-Object Behavior Diagrams, different Behaviors may be con-
tributed, dependent on the concrete behavioral formalism that is applied (i.e. activity or
state machine diagram). In all cases, it has to be pointed out that all Behaviors, being
contributed by the Inter-Object Collaboration Diagrams as well as the Intra-Object
Behavior Diagrams, are directly contained in the Model, as no Classifiers are mod-
eled yet and Instance Specifications and Lifelines, which are used to represent analysis
objects in the different employed diagram types, do not support owned Behaviors.
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A.3 Design UML-Model

The structural system architecture is basically manifested in terms of a system Compo-
nent and subsystem Components. The aggregation of subsystems by the system com-
ponent is realized in form of a composite structure, as contributed by the Structural
System Architecture Diagram in terms of parts (i.e. Properties, being typed by the sub-
system Components, being owned by the system Component and respective assembly
connectors established between the parts (respectively their ports). The structural in-
terfaces of each subsystem are modeled in terms of Ports, owned by the subsystem
Component, as well as required and provided Interfaces, as defined via the Initial and
Consolidated Structural Subsystem Design Interface Diagrams, the internal decompo-
sition, as contributed via the Initial and Consolidated Structural System Design Dia-
grams, is manifested in terms of owned Properties (i.e. parts), representing the aggre-
gated design objects, which are related to each other and to the Ports of the subsystem
via assembly respectively delegation Connectors.

The behavioral system architecture in turn is defined in terms of (protocol) State
Machines, defined for the Ports of the subsystems, or for the subsystem Component
itself, added via the Initial and Consolidated Behavioral Subsystem Interface Design
Diagrams, as well as Interactions, depicting the inter-subsystem communication in
terms of Lifelines, representing subsystem (instances), as well as Messages, being ex-
changed between them.

Fig. 45: Design UML-Model and related UML diagrams

As depicted by Figure 45, the final contribution to the Design UML-Model is added
via the Class Design Diagrams in terms of classes , designed as types of the Properties,
composed by the subsystem Component, as well as Associations, used to type the
Connectors, which are as well composed.
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B MeDUSA UML-Profiles

The Actor Taxonomy and Object Taxonomy introduced in Sections 2.1 and 2.2 are
very essential for MeDUSA, as they support the identification of Actors and Objects
during Requirements Modeling and Analysis Modeling. Their use thus has to be prop-
erly reflected within the Requirements and Analysis UML-Model, and of course within
the Design UML-Model as well (as analysis objects are transferred into corresponding
design objects).

It is thus necessary to enrich the UML with the needed expressiveness. This can be
done by means of the built-in Profile extension mechanism (compare [OMG07b]). We
thus define three Profiles, as outlined by Figures 58, 59, and 60, one for each MeDUSA
UML model, offering respective Stereotypes, which may be applied to standard UML
model elements to denote their classification according to the MeDUSA taxonomies.

Fig. 58: MeDUSA Requirements UML-Profile
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Fig. 59: MeDUSA Analysis UML-Profile

Fig. 60: MeDUSA Design UML-Profile
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C MeDUSA ANSI-C Code Generation Schema

What has already been stressed by the fact that MeDUSA was explicitly denoted to be
a construction rather than a mere design method is that a seamless transition between
Architectural Design and Implementation is regarded to be of outstanding importance.

As a matter of fact, this documentation has to include a detailed specification on
how ANSI-C conformant source code may be generated from MeDUSA Design UML-
Models. A general applicable transformation strategy to transform arbitrary UML mod-
els into ANSI-C code would be - because of the complexity of the UML - hard
to achieve and rather impractical to apply. Based on the detailed specification of a
MeDUSA Design UML-Model, as it is provided in Appendix A, a customized and
tailored code generation strategy may however be provided.

Such a generation may be conceptually and technically split into two parts. The
first is the generation of a folder structure to match the coarse-grained structure of a
Design UML-Model, which manifests itself in the subsystem Components being com-
prised. This is pretty much straight-forward and will thus not be covered here. The
second is a transformation, which is basically oriented along the analogy between the
Classifier concept of the UML and the corresponding type concept in the ANSI-C
language. That is, UML Classifiers are transformed into corresponding ANSI-C types
(and related functions). The concrete transformation in this context depends on the
type of Classifier being transformed (i.e. Class, State Machine, Activity, ...) as well
as on the concrete usage of the Classifier with a MeDUSA Design UML-Model (i.e. a
Class may be differently transformed if being used as type of a Part within the internal
decomposition of a subsystem, or if it is used as type of a Port). As a starting point, it
will thus be outlined in the following, which Classifiers of the UML are used within a
MeDUSA Design UML-Model and in which concrete usage scenarios. Subsequently,
general aspects of the transformation are addressed before the transformation is then
outlined for each individual Classifier in each respective situation it is employed in.

C.1 Usage of Classifiers within a MeDUSA Design UML-Model

Figure 61 outlines the hierarchy of Classifiers, as it is defined by the UML 4. The
picture further highlights those Classifiers, which are used in the context of a MeDUSA
Design UML-Model.

4 It also shows all merge increments of the respective Classifiers. They are a result of the Package
Merge mechanism, used within the definition of the UML Superstructure [OMG07b]. As stated there,
a ”package merge is a directed relationship between two packages that indicates that the contents of
the two packages are to be combined. It is very similar to Generalization in the sense that the source
element conceptually adds the characteristics of the target element to its own characteristics resulting
in an element that combines the characteristics of both. [...] Conceptually, a package merge can be
viewed as an operation that takes the contents of two packages and produces a new package that
combines the contents of the packages involved in the merge. In terms of model semantics, there is no
difference between a model with explicit package merges, and a model in which all the merges have
been performed.”
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Out of these Classifiers, the concrete i.e. non abstract ones, which actually have to
be transferred into respective ANSI-C equivalents, are the ones listed in Table 2. The
table further outlines their respective usages within a MeDUSA Design UML-Model.

Component – Specification of the system, singleton Structured and Encapsulated Clas-
sifier with internal structure and explicit external interfaces, directly con-
tained by the system model fragment

– Specification of a subsystem, singleton Structured and Encapsulated Clas-
sifier with internal structure and explicit external interfaces, directly con-
tained by the subsystem model fragment, and as Type of a Part, representing
a subsystem (instance) in the internal decomposition of the system Compo-
nent

(Kernel) Class – Type of a Part, representing an object in the internal decomposition of a
subsystem Component

– Type of Port, to specify (part of) the external interface of a subsystem Com-
ponent

– Type of an Attribute or a Operation Parameter

Interface – Exposed required or provided Interface of a Port, i.e. realized or used inter-
face of a Port’s typing (Kernel) Class

Association – Type of a Connector in the internal decomposition of a subsystem Com-
ponent, i.e. between (Kernel) Classes used as types of internally composed
Parts and Ports

– Type of a Connector in the decomposition of the system Component

Primitive Type, Enumera-
tion, Data Type

– Type of an Attribute or a Operation Parameter

Protocol State Machine – Owned Behavior of a subsystem Component or a Port’s typing (Kernel)
Class, as behavioral specification of (parts of) the externally visible inter-
faces of a subsystem Component

Interaction – Owned Behavior of a system or subsystem Component, as behavioral spec-
ification of its decomposition

State Machine, Activity – Owned Behavior of a Part’s typing Class, as specification of (internal) ob-
ject behavior.

Opaque Behavior – Effect of a Transition in the State Machine based specification of (part of
the) object behavior.

– Behavior of Call Behavior Action in the Activity based specification of
(part of the) object behavior.

Table 2: Usage of Classifiers within MeDUSA Design UML-Model
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C.2 General Transformation Strategy

The transformation strategy, provided in the following, is based on the transforma-
tion of those Classifiers presented in Table 2. That is, all Classifiers within a Design
UML-Model are transferred into respective ANSI-C types, based on the different usage
scenarios they are employed in.

That is, all UML Classifiers are transferred into a respective ANSI-C type, which
is usually a struct, and a set of related functions. The declarations and implementations
are accordingly generated into a corresponding header and source file, which are cre-
ated for each individual Classifier, as outlined by Figure 62. For technical reasons (the
struct declaration may need to refer to recursively refer to itself), an additional forward
declaration header file is also generated, as depicted by Figure 62.

Fig. 62: General Transformation of Classifiers into Translation Units

The concrete file contents of course depends on the individual Classifier, begin
transformed, and its respective usage scenario. It will be sketched in the following
section. While such a transformation strategy would normally have to be formally
defined by means of transformation rules between the UML and the ANSI-C language,
here, for the sake of simplicity, the transformation will instead be described with the
help of some meaningful examples (similar to as it is done with the specification of the
MeDUSA UML model structure, provided in Appendix A).
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C.3 Transformation of Classifiers

While all Classifiers are transformed into a respective ANSI-C type, Primitive types are
handled somewhat outstanding. While both languages, UML as well as ANSI-C, sup-
port the concept of primitive types, the concrete realization differs in both languages.
The UML only differentiates between the four different Primitive Types, namely In-
teger, Boolean, String, and Unlimited Natural, which are used within the definition of
the UML meta model. The ANSI-C language standard on the other hand offers a broad
set of build-in primitive types. As proposed by the UML specification, we thus advice
to not use the UML Primitive Types within a MeDUSA Design UML-Model, and to
instead use the modeling library of ANSI-C primitive types, depicted by Figure 63,
during Architectural and Detailed Design Modeling.

Fig. 63: ANSI-C Primitive Types UML-Library

As they are built-in into the ANSI-C language, those Primitive Types defined by
the respective library do then not have to be transferred into respective ANSI-C types.
Instead, their name just has to be used within the declaration of those ANSI-C variables
and function parameters matching the UML Typed Elements of the input model.

Besides Primitive Types, which are thus not covered by subsequently provided
transformation schema for above outlined reasons, Activities and Interactions are fur-
ther not covered.

The reason, Activities do not get transferred into ANSI-C code is that they are
used to specify the behavior of Operations within a Design UML-Model, but usually
not at an abstraction level that is sufficiently detailed to generate the complete cor-
responding implementation of a function (i.e. its body). Even while the UML would
actually allow to model activities in such a fine grained manner, the effort is regarded
to be inappropriately high, so within a MeDUSA Design UML-Model this is gener-
ally not employed. Generating only fragments of ANSI-C code into a function body is
however rather impractical, as - to guarantee robustness of the generated code against
re-generation runs - it would have to be anticipated, where a Subsystem Implementer
has to manually add code, as those sections would have to be protected by guards from
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being overwritten during re-generation runs (compare [Fun06] for details)), causing
the resulting code to be only hard to read and maintain.

The same holds for Interactions, which are developed within a MeDUSA Design
UML-Model as specification of the collaborative behavior within the internal decom-
position of the system or a subsystem. While it would for example be possible to gen-
erate ANSI-C code for coordinator objects from the external behavior that is depicted
by those Interactions that were developed to specify the behavior within the internal
decomposition of a subsystem, the resultant code would rather be incomplete. The or-
der between messages, being modeled within different Interactions (there are usually
several Consolidated Behavioral Subsystem Design Diagrams), can for example not
be derived from the Design UML-Model.

Interactions are thus regarded to rather serve as some sort of proof of concept to
depict that the collaborative behavior corresponds to the respective structural specifica-
tions. They are meant as a specification and documentation of the respective behavior
and can thus serve as direct input to the manual implementation, which is performed
by the respective System or Subsystem Implementer.

All other Classifiers are transformed as outlined above. They are covered in de-
tail in the following, by means of examples. For the different Classifiers and scenarios
being covered, an instance specification is first provided by means of a UML object
diagram, depicting an example structure, as it would occur within the Design UML-
Model. This is then followed by the source code, which would be generated accord-
ingly for the Classifier within the respective scenario.
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(a) Instance Specification

/*************************************************************
* File: ProcessValueOutputMode.h

*************************************************************/
...

/* Enumeration Declaration */
enum CurrentOutput_ProcessValueOutputMode {
4-20-Mode,
4-12-20-Mode

};
...

(b) Generated Code

Fig. 64: Transformation of Enumeration
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(a) Example Instance Specification

Fig. 65: General Transformation of Data Type and (Kernel) Class
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/*************************************************************
* File: Coordinator_fdef.h

*************************************************************/
...

/* Classifier Struct Forward Declaration */
struct _CurrentOutput_Coordinator;

#define Example_System_CurrentOutput_Coordinator \
struct _CurrentOutput_Coordinator

...

/*************************************************************
* File: Coordinator.h

*************************************************************/
...

/* Classifier Struct Declaration */
struct _CurrentOutput_Coordinator {
/* Owned Attributes */
PhysicalQuantities_ElectricCurrent actualCurrent[1];
...

};

/* Constructors */
void CurrentOutput_Coordinator_create(CurrentOutput_Coordinator* self);

/* Destructors */
void CurrentOutput_Coordinator_destroy(CurrentOutput_Coordinator* self);
...

/* Owned Attributes Selectors */
PhysicalQuantities_ElectricCurrent*
CurrentOutput_Coordinator_actualCurrrent(CurrentOutput_Coordinator* self);

...

/* Owned Operations */
ERROR_CODE CurrentOutput_Coordinator_outputProcessValue(
CurrentOutput_Coordinator* self,
PhysicalQuantities_PercentageFlow inPercentageFlow);

ERROR_CODE CurrentOutput_Coordinator_outputAlarm(
CurrentOutput_Coordinator* self,
Diagnostics_Alarm inAlarm);

...

/*************************************************************
* File: Coordinator.c

*************************************************************/
...

void CurrentOutput_Coordinator_create(CurrentOutput_Coordinator* self) {
...

}

void CurrentOutput_Coordinator_destroy(CurrentOutput_Coordinator* self) {
...

}
...

/* Owned Attributes Selectors Implementation*/
PhysicalQuantities_ElectricCurrent*
CurrentOutput_Coordinator_actualCurrent(CurrentOutput_Coordinator* self) {
return *self->actualCurrent;

}
...

/* Owned Operations Implementation */
ERROR_CODE CurrentOutput_Coordinator_outputProcessValue(
CurrentOutput_Coordinator* self,
PhysicalQuantities_PercentageFlow inPercentageFlow) {
...

}

ERROR_CODE CurrentOutput_Coordinator_outputAlarm(
CurrentOutput_Coordinator* self,
Diagnostics_Alarm inAlarm) {
...

}

...

(b) Generated Code - Declaration of Struct and Constructors/Destructors

Fig. 65: General Transformation of Data Type and (Kernel) Class
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(a) Instance Specification: A Class typing a Part (Subsystem Decomposition)

/*************************************************************
* File: Coordinator.h

*************************************************************/
...

/* Classifier Struct Declaration */
struct _CurrentOutput_Coordinator {
...
/* Association Ends */
CurrentOutput_ProcessValueOutputPort processValueOutputPort[1];
CurrentOutput_ActualCurrentDetermination actualCurrentDetermination[1];
...
};

...

(b) Generated Code: Member Declarations corresponding to Association Ends

Fig. 66: Additions for Transformation of (Kernel) Class typing Part - Transformation of Association Ends

145



(a) Instance Specification: Class typing Port (Provided Interface)

/*************************************************************
* File: ProcessValueOutputPort.c

*************************************************************/
...

ERROR_CODE CurrentOutput_ProcessValueOutputPort_outputProcessValue(
CurrentOutput_ProcessValueOutputPort* self,
PhysicalQuantities_PercentageFlow* inPercentageFlow){
return CurrentOuput_Coordinator_outputProcessValue(self->coordinator, inPercentageFlow);

}

...

(b) Generated Code: Function Declarations corresponding to Provided Interfaces

Fig. 67: Additions for Transformation of (Kernel) Class typing Port (Provided Interface)
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(a) Instance Specification: Instance Specification: Class typing Port (Required Interface)

/*************************************************************
* File: PWMOutputPort.h

*************************************************************/
...

/* Classifier Struct Declaration */
struct _CurrentOutput_PWMOutputPort {
...
/* Required Interfaces */
void* iPWMOutput;
ERROR_CODE (* iPWMOutput_outputPWMSignal)(void* iPWMOutput, PhysicalQuantities_ElectricCurrent

inCurrent);
...

};

...

/*************************************************************
* File: PWMOutputPort.c

*************************************************************/
...

ERROR_CODE CurrentOutput_PWMOutputPort_outputPWMSignal(
CurrentOutput_PWMOutputPort* self,
PhysicalQuantities_ElectricCurrent* inCurrent){
return (self->iPWMOutput_outputPWMSignal)(self->iPWMOutput, inCurrent);

}

...

(b) Generated Code: Function Pointer and Struct Pointer Member Declarations corresponding to Required
Interfaces

Fig. 68: Additions for Transformation of (Kernel) Class typing Port (Required Interface)
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(a) Instance Specification: Subsystem Component

/*************************************************************
* File: CurrentOutput.h

*************************************************************/
...

/* Classifier Struct Declaration */
struct _CurrentOutput {
/* Parts */
CurrentOutput_Coordinator coordinator[1];
...
/* Ports */
CurrentOutput_ProcessValueOutputPort processValueOutputPort[1];
...

};

...

/*************************************************************
* File: CurrentOutput.c

*************************************************************/
...

void CurrentOutput_create(CurrentOutput_Coordinator* self) {
/* Create Parts */
CREATE_CurrentOutput_Coordinator(&self->coordinator[0]);
...
/* Create Ports */
CREATE_CurrentOutput_ProcessValueOutputPort(&self->processValueOutputPort[0]);
...
/* Wiring */
self->coordinator[0].processValueOutputPort[0] = &self->processValueOutputPort[0];
self->processValueOutputPort[0].coordinator[0] = &self->coordinator[0];
...

}

...

(b) Generated Code: Struct Member Declarations for Parts and Ports, Wiring

Fig. 69: Transformation of subsystem Component
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/*************************************************************
* File: ExampleSystem.h

*************************************************************/
...

/* Classifier Struct Declaration */
struct _ExampleSystem {
/* Parts (Subsystems) */
CurrentOutput currentOutput[1];
MSPCommunicationInterface mspCommunicationInterface[1];
...
};

...

/*************************************************************
* File: ExampleSystem.c

*************************************************************/
...

void ExampleSystem_create(ExampleSystem* self) {
/* Create Parts (Subsystems) */
CREATE_CurrentOutput(&self->currentOutput[0]);
CREATE_MSPCommunicationInterface(&self->mspCommunicationInterface[0]);
...

/* Wiring (Required Interfaces) */
self->currentOutput[0].pwmOutputPort[0].iPWMOutputPort =
&self->mspCommunicationInterface[0].outputPort[0];

self->currentOutput[0].pwmOutputPort[0].iPWMOutputPort_outputPWMSignal =
&MSPCommunicationInterface_OutputPort_outputPWMSignal();

...
}

...

(b) Generated Code: Struct Member Declarations for Parts, Wiring of Parts within Constructor Implemen-
tation

Fig. 70: Transformation of system Component
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(a) Instance Specification: State Machine

/*************************************************************
* File: ActualCurrentDetermination_InternalBehavior.h

*************************************************************/

/* (Flattened) States */
#define CurrentOutput_ActualCurrentDetermination_InternalBehavior_\

STATE_Initialized_UseProcessValueOrAlarmCurrent 0x001
#define CurrentOutput_ActualCurrentDetermination_InternalBehavior_\

STATE_Initialized_UseSimulatedCurrent 0x002
...

/* Events */
#define CurrentOutput_ActualCurrentDetermination_InternalBehavior_\

RECEIVE_setSimulationModeEnabled 0x001
#define CurrentOutput_ActualCurrentDetermination_InternalBehavior_\

RECEIVE_setSimulationCurrent 0x002
...

/* Classifier Struct Declaration */
struct _CurrentOutput_ActualCurrentDetermination_InternalBehavior{
/* Current State */
int state;
...

}

ERROR_CODE CurrentOutput_ActualCurrentDetermination_InternalBehavior_onEvent(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self,
int event,
void* parameters[]);

(b) Generated Code: Macro Definitions corresponding to States and Events, Corresponding Struct Decla-
ration

Fig. 71: General Transformation of State Machine
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/*************************************************************
* File: ActualCurrentDetermination_InternalBehavior.c

*************************************************************/

/* Guards */
ERROR_CODE GUARD_1(void* parameters[]){
// inEnabled == TRUE
...

}
...

/* Effects */
ERROR_CODE EFFECT_1(void* parameters[]){
// simulated current = inCurrent;
...

}
...

/* Transitions */
ERROR_CODE TRANSITION_1(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self, void* parameters[]){
/* Check Guard */
// no guard

/* Execute Effect */
EFFECT_1(parameters);

/* Change State */
//no state change

return EVENT_CONSUMED;
}
...

ERROR_CODE TRANSITION_5(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self, void* parameters[]){
/* Check Guard */
if(!GUARD_1(parameters))
return GUARD_NOT_PASSED;

/* Execute Effect */
// no effect

/* Change State */
self->state =
CurrentOutput_ActualCurrentDetermination_InternalBehavior_STATE_Initialized_UseSimulatedCurrent;

return EVENT_CONSUMED;
}
...

/* Transition Table */
ERROR_CODE (* transitions)(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self,
void* parameters[]) [NUM_STATES][NUM_EVENTS] = {
{ TRANSITION_1, TRANSITION_2, TRANSITION_3, TRANSITION_4},
{ TRANSITION_5, TRANSITION_6, TRANSITION_7, TRANSITION_8}

}

void CurrentOutput_ActualCurrentDetermination_InternalBehavior_create(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self){
self->state =
CurrentOutput_ActualCurrentDetermination_InternalBehavior_STATE_Initialized_UseProcessValueOrAlarmCurrent

;
}

ERROR_CODE CurrentOutput_ActualCurrentDetermination_InternalBehavior_onEvent(
CurrentOutput_ActualCurrentDetermination_InternalBehavior* self,
int event, void* parameters[]){
if(transitions[self->actualState][event] != NULL){
return transitions[self->actualState][event](self, parameters);

}
else{
return NO_TRANSITION;

}
}
...

(c) Generated Code: Function Implementations corresponding to Guards, Effects, and Transitions, Dec-
laration of State-Transition Table as Function Pointer Array and Declaration of State Transition Function

Fig. 71: General Transformation of State Machine
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(a) Instance Specification: State Machine as Internal Behavior

/*************************************************************
* File: ActualCurrentDetermination.h

*************************************************************/
...

/* Classifier Struct Declaration */
struct _CurrentOutput_ActualCurrentDetermination {
...
/* Owned Behavior */
CurrentOutput_ActualCurrentDetermination_InternalBehavior ownedBehavior[1];

}
...

/*************************************************************
* File: ActualCurrentDetermination.c

*************************************************************/
...

void CurrentOutput_ActualCurrentDetermination_create(
CurrentOutput_ActualCurrentDetermination* self){
...

/* Initialize Owned Behavior */
CurrentOutput_ActualCurrentDetermination_InternalBehavior_create(&self->ownedBehavior[0]);

}

ERROR_CODE CurrentOutput_ActualCurrentDetermination_setSimulationCurrent(
CurrentOutput_ActualCurrentDetermination* self,
PhysicalQuantities_ElectricCurrent* inCurrent){

/* Call Owned Behavior */
void* parameters[1];
... // allocate
parameters[0] = inCurrent;

CurrentOutput_ActualCurrentDetermination_InternalBehavior_onEvent(
self->ownedBehavior[0],
CurrentOutput_ActualCurrentDetermination_InternalBehavior_RECEIVE_setSimulationCurrent,
parameters);

}

...

(b) Generated Code: Struct Member Declaration and Function Implementation within Owning Behaviored
Classifier

Fig. 72: Additions for Transformation of a State Machine as Internal Behavior Specification
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(a) Instance Specification: Protocol State Machine as Interaction Protocol

/*************************************************************
* File: ProcessValueOutputPort.h

*************************************************************/
...

/* Classifier Struct Declaration */
struct _CurrentOutput_ProcessValueOutputPort {
...
CurrentOutput_InteractionProtocol protocol[1];

};

...

/*************************************************************
* File: ProcessValueOutputPort.c

*************************************************************/
...

ERROR_CODE CurrentOutput_ProcessValueOutputPort_outputProcessValue(
CurrentOutput_ProcessValueOutputPort* self,
PhysicalQuantities_PercentageFlow* inPercentageFlow){

/* Check Protocol State Machine */
void* parameters[1];
... // allocate
parameters[0] = inPercentageFlow;

int protocolConformance = CurrentOutput_InteractionProtocol_onEvent(
self->protocol[0], CurrentOutput_InteractionProtocol_RECEIVE_outputProcessValue, parameters);

/* Delegate Call */
if(protocolConformance == EVENT_CONSUMED){
return CurrentOuput_Coordinator_outputProcessValue(self->coordinator, inPercentageFlow);

}
else{
return protocolConformance;

}
}

...

(b) Generated Code: Struct Member Declaration and Function Implementations within Port’s Type

Fig. 73: Additions for Transformation of a State Machine as Interaction Protocol Specification
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