
Aachen
Department of Computer Science

Technical Report

MeDUSA -

MethoD for UML2-based Design
of Embedded Software
Applications

Alexander Nyßen and Horst Lichter

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-07

RWTH Aachen · Department of Computer Science · May 2007

The publications of the Department of Computer Science of RWTH Aachen University
are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

MeDUSA
MethoD for UML2-based Design of Embedded Software Applications

Alexander Nyßen und Horst Lichter

Research Group Software Construction
RWTH Aachen University, Germany

Email: {any, lichter}@cs.rwth-aachen.de

Abstract. MeDUSA (Method for UML2-based Design of Embedded Software Applica-
tions) is a model-driven software design method targeting the domain of small embedded
systems, especially field devices.
Being Use Case-driven, MeDUSA systematically covers the software development life-
cycle from the early requirements up to the late detailed design modelling. Models are
successivly developed and employed throughout all activities.
By enforcing an object-based rather than an object-oriented design, a smooth transition of
the resulting detailed design model towards an implementation in a procedural program-
ming language is facilitated. This is essential, as procedural programming languages as
the C language are still state-of-the-art in the regarded domain.
By leading to a component-based architectural design, MeDUSA explicitly addresses the
reuse of components, something that is the prerequisite for the application of the method
in a product-line setting. This has gained significant importance to the industrial practice
in the last years.
MeDUSA was developed by the Research Group Software Construction of the RWTH
Aachen University in close cooperation with the German ABB Research Centre in Laden-
burg. It incorporates various practical experiences gained during the industrial develop-
ment of embedded software in ABB Business Unit Instrumentation.

1 Introduction

1.1 Characterization of the Application Domain

Regarding its applicability, the domain covered by MeDUSA can be characterized as
software development of small embedded devices. However, as this application do-
main is rather broad - and even if we think that MeDUSA would be applicable to quite
a lot of its different sub domains - understanding the method and its characteristics
can be best achieved by taking into consideration the domain MeDUSA was initially
developed for, namely that of software development for field devices.

Field devices are rather small embedded systems that are integrated into an often
large process automation plant. They are used across various industries such as food,
chemicals, water and waste water, oil and gas, pharmaceutical, and others. Most of
them occur in many different variants. Measurement devices for example, which are
one sub category of field devices, occur in different product variants concerning the
physical quantity they measure (temperature, pressure, flow), the measure principle
applied, the communication capabilities offered, as well as the safety and reliability
constraints accomplished.

1.2 Requirements and Objectives

All field devices do have in common that they can be characterized by rather strong re-
source constraints regarding memory, power consumption, and computing time. Thus,
object-oriented programming languages are not yet the first choice and C is still the
main implementation language in the regarded application domain. Any design method
being applicable to the domain should therefore allow a smooth and rather direct tran-
sition from a detailed design into a procedural implementation in the C-language.

The large extent of variety, field devices occur in, does precipitate that the de-
velopment of them is done - or is at least intended to be done - in a product line
approach. The software of most measurement devices is for example developed on
top of a common - product unspecific - platform covering basic services and hard-
ware interfaces, into which product specific components regarding the measurement
task, which is strongly dependent on the physical quantity to measure as well as on
the measurement principle applied, have to be integrated. A method supporting the
development of software for such devices should therefore be capable of supporting
distributed development of software components, so that platform as well as product
specific components can be developed in a distributed manner and can then be easily
integrated.

The last basic requirement posed on any method targeting the regarded application
domain is, that the notation employed is not proprietary but best based on an industry
standard - or at least de facto standard. There are several reasons for this. First the
development of software for safety critical application areas requires the application
of standards wherever possible. Second, the application of a standard best enables the
communication in a distributed development organization, as training of developers
can be easily achieved. Last, a large number of standard-conformant tools is available
from which a selection can be made when assembling a tooling infrastructure.

Having all that in mind, our intention was to develop a design method that fulfils
all those requirements while also considering the expectations and practical experience

4

of application developers. Having already gained practical experience with the appli-
cation of the object-oriented COMET method [Gom00] in the domain [NMSL04],
we regarded it to be an adequate starting point. Thus MeDUSA tries to transfer all
of COMET’s advantages to the regarded application domain while trying to expunge
most of its shortcomings identified during its practical application.

In detail, COMET

– does not reflect the rather manageable complexity of the regarded devices’ soft-
ware, which allows to model the run-time structure directly in terms of objects
rather than indirectly in terms of classes.

– facilitates an object-oriented design, what deteriorates the transformation to a non
object-oriented implementation in the C language.

– does not facilitate reuse of artifacts from prior development projects, as a system-
atic selection and integration of reusable components is not addressed.

– does not support UML2 notation, which is the current standard implemented by
state-of-the-art modeling tools.

Further COMET introduces some overhead by dealing with aspects that are not appli-
cable to all extend in the regarded application domain.

1.3 Characteristics of MeDUSA

Acting on the maxim that model-driven development for small embedded systems
should allow a seamless transition from the design model to an implementation in the
C-language MeDUSA was - unlike COMET - designed to be an object-based rather
than an object-oriented method. That is inheritance and polymorphism are disregarded
until the late detailed design, as the conception of classifiers is done not earlier than
during this step (to be precise this holds for all objects forming the internal decomposi-
tion of a subsystem, as stated above). The application of generalization/specialization
concepts is not enforced during earlier steps of the method. Therefore those concepts
may even be omitted during detailed design to allow a more straightforward imple-
mentation of the detailed design model.

Taking into consideration that the run-time structure of software systems in the
regarded domain is mostly rather small - being comprised of only a few subsystems
and a manageable amount of objects - MeDUSA was designed to be an instance-driven
method. That is, during all steps of the method, from the early analysis up to the late
detailed design, the modeling of objects (or more precise classifier instances) rather
than the modeling of classifiers is enforced. This allows the architectural design of the
system to be directly captured in terms of the system’s run-time structure rather in an
abstracted classifier-based view on it and does - according to our practical experience -
accommodate the intuitive understanding of the application designers and developers.

Due to the fact that the main focus of the method resides on modeling the run-time
structure of the system rather than modeling the static classifier structure, the enhance-
ments and additions the UML introduced with its new standard version 2 are quite
beneficial [NL05]. The newly introduced composite structure diagrams for example
are very well suited to cover the run-time structure of a system’s subsystems. Because
of this - and because of the tool landscape which is currently shifting to the new stan-
dard release - MeDUSA was conceptually designed to employ the latest UML version
as its notation.

5

1.4 Applied Notation - Meta Model

The MeDUSA method definition is structured according to the UMA (Unified Method
Architecture) meta model developed by IBM [Hau06]. UMA is an advancement to
the OMG Standard SPEM 1.1 (Software Process Engineering Metamodel [SPE05]),
which has found broad acceptance in practice. UMA is also IBM’s and other OMG
partners’ candidate for the SPEM 2.0 standard of the OMG. As, at the time of this
report’s publication, the SPEM 2.0 standard has already reached the state of a Draft
Adopted Specification ([SPE06]), we regard it as likely that the MeDUSA specifica-
tion documented herein will conform - incorporating smaller corrections - to the new
upcoming version of the standard.

Fig. 1. UMA Terminology Overview (taken from [Hau05])

The main characteristic of the UMA (as well as SPEM) is the division of a method
definition into (method) content and process, as denoted by Figure 1. The method
content defines tasks, roles performing those tasks, work products serving as input or
output of tasks as well as guidances, but does mask out how these tasks are executed
over time. This is indeed specified by the process, which defines how the artefacts of
the method content are employed in activities, iterations, phases, and processes. By
its clear separation into method content - what to do - and process - when to do it
- the UMA terminology does support the reuse of content for different processes, so
that customized processes may be defined for each usage scenario and organizational
setting.

1.5 MeDUSA Example System

To enhance the understandability of the report, a continuous example seems to be quite
helpful. The system we will consider as a running example is of course a field device.
To be more concrete, it is a small electromagnetic flow meter that is used to measure
the flow rate of a liquid floating through a pipe. The physical measurement principle of
such a device is rather simple. It is based upon the principle that an electric conductor,

6

Fig. 2. Physical measurement principle of an electromagnetic flow meter (taken from [GHH+04])

being moved through a magnetic field, induces a voltage orthogonal to the direction of
the magnetic field and the direction of its movement. The electromagnetic flow meter
makes use of this law of induction, as it creates an electromagnetic field around the
pipe, through which the measured liquid will flow, like shown in Figure 2. In case the
liquid is a electric conductor, the induced voltage can be measured by electrodes. From
the measured induced voltage, which is referred to as the raw flow velocity, the flow
velocity (in m/s), and - having knowledge about the diameter of the pipe - the flow
rate (in l/s) of the liquid can be computed.

Fig. 3. MeDUSA example device’s hardware

From a hardware viewpoint, the example measurement device was designed to be
split into three distinct boards, as shown in Figure 3. The first board, the so called
sensor board, is responsible of driving the coils which create the electromagnetic field
needed for the measurement. It also measures the raw flow velocity with the help of
two electrodes, connected to an ADC (analog digital converter). The main board is
responsible of performing the signal processing, that is computing flow velocity and
flow rate from the raw flow velocity provided by the sensor board. It controls the
HMI (human machine interface), realized in form of some interaction keys and a small
display, which is used to output the measured flow rate as well as alarms, which may
occur during the measurment or signal processing, on an operator frame. The HMI is

7

further used for viewing and editing configuration parameters relevant to the device.
Last two digital outputs, the device is equipped with, are controlled by the main board.
They are responsible to transfer the measured flow rate (digital output 1) as well as
alarms (digital output 2). Besides those two digital outputs the device is also equipped
with an analog current output. It outputs either the measured flow rate or the most
severe pending alarm in form of an analog electric current, which is generated by a
PWM (pulse width modulation). The analog current output itself is not realized on the
main board but instead on an output board equipped with an own microcontroller.

From a software viewpoint, the software fractions running on the three disctinct
boards are indeed three software systems. We will concentrate on the software system
running on the main board as the running example of this report. We will refer to it in
the following as the MeDUSA example (software) system (MES).

1.6 Outline of report

Based on the central division into method content and process, this report is split into
two major parts. In chapter 2, the method content is defined, structuring roles, tasks,
work products, and guidelines into four disciplines. For each discipline, the definitions
of all tasks belonging to the discipline are itemized, covering the role performing the
task, work products being produced by the task, as well as guidelines that may support
the execution of the task. Adjacent, chapter 3 defines the MeDUSA process in terms of
four phases. Each phase consists of a number of iterations (being defined as capability
patterns), whose definition is itemized one by another, specifying in terms of task de-
scriptors, how the tasks of the method content are executed over time. Chapter 4 will
then give a short summary and conclusion as well as an outlook on future work.

8

2 Method Content

The MeDUSA method content is defined - as specified by the Unified Method Archi-
tecture - in terms of roles, tasks, work products, and guidances.

Fig. 4. UMA method content concepts (based on [Hau06])

As shown in Figure 4, tasks are performed by roles. They produce work products as
outputs and may rely on other work products as inputs. While a task may be performed
by multiple roles, of whom one may indeed be identified as the primary performer, a
role might perform multiple tasks. The responsiblity for a single work product however
lies within a single role.

Guidances support the execution of tasks. According to the UMA terminology
they can be devided into checklists, concepts, examples, guidelines, practices, reports,
reusable assets, roadmaps, templates, term definitions, tool mentors, and whitepapers.
Although we think that all other guidance types are important to a practical application
of the method, we concentrate to provide only guidelines within this report. Further
guidances should be included by a usable hypertext documentation of the method (see
[MeD]).

The UMA terminology supports the categorization of roles, tasks, work prod-
ucts and guidances into so called content categories, to support the structuring of the
method content definition. We make use of this concept by splitting the MeDUSA
work products into four categories (called disciplines), namely Requirements, Analy-
sis, Architectural Design, and Detailed Design.

Each discipline groups strongly related tasks (typically performed by one single
role) and the work products being produced by these tasks. As MeDUSA method is
characterized to be based on the UML notation, most work products are specified to be
UML diagrams. As those UML diagrams have to be consistent with each other, which
can only be achieved if they are based on an underlying UML model, the collaborative
work product produced by the tasks of each discipline can therefore be understood
as a model. Hence, MeDUSA defined a Requirements Model, an Analysis Model, an
Architectural Design Model, and a Detailed Design Model respectively.

Before we give detailled information on the defined disciplines in the following
chapters we briefly sketch their purpose and sturcture.

9

Requirements discipline

The Requirements discipline is concerned with understanding and capturing the func-
tional requirements of the system under development, as well as the non-functional
timing and concurrency concerns that constraint them. As MeDUSA is a use case-
driven method, the Requirements Model is established in form of a UML use case
model as well as a narrative model, specifying detailed narrative descriptions for each
use case. Both tasks of the Requirements discipline are performed by the Requirements
Engineer, which is also the single responsible for all work products produced.

Analysis discipline

The Analysis discipline deals with understanding the problem domain. That is, the
problem domain is modelled in terms of analysis objects who collaboratively perform
the use cases captured in the Requirements Model. Thereby a detailed understanding
of the problem domain is gained. Further, the concurrent tasks inherent to the system
under development are identified (indeed they can be inferred from the requirements)
and the overall schedulability of those concurrent tasks is evaluated. The tasks com-
prised by the Analysis discipline are performed by the System Analyst, who is also
responsible for the produced work products.

10

Architectural Design discipline

The Architectural Design discipline is concerned with the specification of the system
architecture. That is, based on the analysis objects captured in the Analysis Model,
a system architecture is defined in terms of subsystems, which can be understood as
groups of objects, with clearly defined interfaces. The system architecture is not only
defined from a structural viewpoint, specifying how the subsystems are structurally in-
terconnected via their interfaces, but also from a behavioural viewpoint, specifying the
inter-subsystem communication. Further the design for all data types that are needed
in the signatures of the subsystems’ interfaces as well as the overall task design have
to be specified. All tasks in the Architectural Design discipline are performed by the
System Architect, who is also responsible for all work products being produced.

Detailed Design discipline

The Detailed Design discipline groups those tasks, which are related to the design of
individual subsystems. As the externally visible interfaces of all subsystems are de-
fined already as part of the system architecture, the tasks belonging to the Detailed
Design discipline are concerned with designing the internal decomposition of each
subsystem. Further a detailed class design has to be developed here, as the produced
Detailed Design Model is the direct input for the implementation tasks. All Detailed
Design tasks are performed individually for each subsystem by the respective Sub-
system Designer. He is responsible of work products related to the subsystem he is
responsible for.

11

2.1 Requirements Discipline

The Requirements Discipline is concerned with eliciting and understanding the func-
tional requirements of the software system under development by capturing them in a
Requirements Model. It has to be pointed out that in the domain of real-time systems
besides functional requirements also non-functional requirements (timing and concur-
rency constraints) play an outstandingly important role, as they may have severe impact
on the later overall system design. This is why Requirements Modelling in the context
of real-time systems has to also deal with capturing those non-functional constraints.

The Requirements Model is developed in terms of use cases and narrative use case
descriptions. This is why the Requirements Modelling discipline is broken down into
the following two tasks:

1. Use Case Modelling: Develop one or more use case diagrams to depict the essential
use cases of the software system under development and to understand how the
system interacts with its environment to fulfil those.

2. Use Case Description Modelling: Document each use case in a narrative use case
description, to capture the detailled flow of events of each use case and to document
pre- and post-conditions as well as other valuable information.

12

Use Cases Modelling

Use Case Modelling deals with the development of a use case model in terms of
external actors, use cases, and their relationships. Use cases describe sequences of
interaction between the software system under development and the external actors.
They have the objective of accomplishing a certain goal, which is usually of value to
one of the external actors. Actors trigger the execution of use cases inside the system
(primary actor) and take part in the interaction with the system (secondary actor). The
software system is treated as a black-box in this context, meaning that no assumptions
about the internal structure of the software system are made. As use case modelling
is a quite common technique of software engineering, we will skip to give a detailed
introduction here. The reader may refer to [JCJv92], [Coc01], or [Wal07] to get a basic
introduction into use case modelling.

As already anticipated, in the domain of real-time systems not only functional
requirements have to be regarded, but non-functional timing and concurrency concerns
are of major importance. They have severe impact on the design of the software system
under development and therefore have to be investigated and understood as early as
possible. That is why we want to address them very explicitly already during use case
modelling.

Fig. 5. MeDUSA Actor Taxonomy

To be able to capture those non-functional timing and concurrency concerns apart
from functional requirements normally captured in a use case model, we propose to
use timer and eventer actors. Those actors represent sources of either periodic (timer

13

actor) or aperiodic (eventer actor) events and occur as triggers for the execution of use
cases. In fact, we cast timer and eventer actors to be the only primary actors (those
triggering the execution of a use case) and consider all other actors to be secondary ac-
tors, so called interface actors, uncoupling any timing and concurrency concerns from
them. The complete taxonomy of actors is defined as shown in Figure 5. According
to this besides the classifiction of trigger actors into timer and eventer actors, which
was motivated before, interface actors are also further devided into device actors (rep-
resenting an external hardware device) and protocol actors (representing an external
software system).

That is, if an external hardware device or software system does also trigger the exe-
cution of the use case, it should be represented by two actors, a device or protocol actor
representing the communication interface and a timer or eventer actor representing the
event source triggering the use case execution. If for example an external input device
delivers data to the system in an aperidioc manner and notifies the system about the
arrival of such data by using a hardware interrupt or any other mechanism, we propose
to introduce two actors to the use case model; one eventer actor representing the event
source (i.e. the hardware interrupt) and one device actor representing the interface used
to obtain data from the device. Using such timer and eventer actors, concurrent execu-
tion of use cases can then be explicitly expressed by associating use cases to different
timer or eventer actors, dependent on whether the use cases are performed in a periodic
or aperiodic manner.

One may notice that in such a setting, it may occur, that the concurrent execution of
a use case is indeed not triggered by a periodic or aperiodic event source from outside
the system but from inside it. This is most likely the case if a use case is periodically
executed from within the system and does not correspond directly to a periodic event
source that resides outside the system. Although Jacobson and Overgaard ([JCJv92])
state that “the essential thing is that actors constitute anything that is external to the
system we are to develop” we propose to model internal timer and eventer actors to
capture such a situation.

To determine the use cases in a systematic manner, it might be reasonable to start
with identifying the external actors. As stated above, they may represent external hard-
ware devices and external software systems, as well as external timers or eventers. We
tend to not represent human users as actors, as they communicate with the system not
directly but always indirectly via hardware and software interfaces. As in the real-time
domain those interfaces are normally no standard interfaces, the hardware or software
interface is more of interest than the user communicating over it. After having iden-
tified the actors, the next step is to regard what behaviour the primary actors (those
who trigger execution of use cases) initiate in the system. This leads to a first set of
use cases directly associated to the primary actors. Analyzing those use cases in terms
of similar interaction subsequences might lead to the identification of new use cases
encapsulating that behaviour. New use cases and relationships between use cases are
successively identified this way. Regarding timing and concurrency concerns of the
identified use cases might lead to extracting further interactions into own use cases
(if they are executed concurrently) and might also lead to the identification of further
(internal) actors.

14

WORK PRODUCTS

– Use Case Diagram The results of the use case modelling task are captured in a use
case diagram. An example is shown in Figure 6.

Fig. 6. Example: MES Use Case Diagram (excerpt)

It captures the functional and the non-functional timing constraints in terms of
• the system boundary,
• the use cases (inside the system boundary)
• the internal and external timer and trigger actors
• external (hardware) device or (software) system actors,
• relationships between use cases (generalization, include, extend),
• relationships between actors (generalization), and
• relationships between use cases and actors (associations)

GUIDELINES

– Introduce packages to reduce complexity: If the use case granularity is satisfactory
and still a large number of use cases occur, packages may be introduced to group
use cases into functional areas. It might also be helpful in use case models having
a smaller amount of use cases, to group use cases regarding certain aspects, e.g.
if they are performed cyclically and can be regarded as belonging to the real-time
related tasks of the system.

15

– Model interfaces on lowest relevant level of abstraction From our lessons learned,
a major modelling problem one often has to deal with is that an actor has interfaces
to the system on different layers of abstraction. This might for example be the
case if communication to another software system is established via a hardware
communication interface or via an underlying software interface (if for example the
communication service is provided by an underlying operation system). In such a
case, the software under development has interfaces to its surrounding environment
on different levels of abstraction.
Consider as a concrete example that the PWM (pulse width modulation) needed
for the analog current output is realized on a separate output board, which is ac-
cessed from the software system under development via an asynchronous UART
communication interface. The question that arises is whether the software protocol
on the higher level of abstraction (which we will refer to as PWM protocol), the
underlying UART device interface (or respective operating system communication
protocol), or both should be reflected in the use case model.
The UML does not provide sufficient support to model interfaces on different lev-
els of abstraction with the help of actors. Our advice to this modelling problem
is that one should indeed represent the interface(s) on the lowest relevant level of
abstraction. That is, if the software system under development is responsible of
controlling the UART device interface itself, it should be represented as a device
actor (and a corresponding eventer actor representing the interrupt source inher-
ent to the UART). If the functionality of communicating via UART is realized by
an underlying operation system, a protocol actor should indeed be introduced to
represent the operation system communication facility.
The PWM output protocol on the higher abstraction level might also be represented
(by an additional protocol actor, being linked to the underlying interface actors via
a dependency), as it is a relevant interface to the software system under develop-
ment, but it may not be the only interface represented. If indeed, the UART device
actor (and UART interrupt eventer actor) or the operating system communication
protocol actor would be omitted, the underlying direct communication interfaces
the software system under development has to interface to, would not be repre-
sented. Indeed, in case of the software system having to control the UART device
directly, the concurrency needed to react to the UART interrupt would also not be
reflected in such a case, which would have a significant impact on the later task
design.

– Model concurrency rather than functionality: As timing and concurrency concerns
are modelled apart from the functional requirements using timer and eventer ac-
tors, a question might arise on whether two use cases which are functionally re-
lated but executed concurrently are modelled independently, being associated to
different internal timer or eventer actors or related to each other using include or
extend relationships. We propose to give precedence to the concurrency concerns
in such a case, as timing and concurrency concerns are of outstanding importance
for real-time systems and are thus more heavyweight compared to the functional
dependencies that might be identified.

16

Use Case Description Modelling

Based on the use case modell a narrative description of each use case modelled has
to be developed. This way details about the interaction sequences (main interaction
sequence, alternative sequences) as well as other valuable information like pre- or
post-conditions, which cannot be captured graphically, can be recorded.

To capture the narrative description of use cases, we recommend a notation devel-
oped at the Research Group Software Construction [Wal07]. It was designed to capture
narrative use case descriptions in a concise and understandable form that remains in
line with the semantics of use cases as defined by the UML. The notation was designed
inspired by the notation presented in [BS02] around the concept of “flow of events”.
Each use case is understood as one or more flow of events, where an event represents
an atomic part of a system-actor interaction. Besides the main flow of events, a con-
crete use case should always have (either directly or indirectly by inheriting it from a
general use case), a use case may also have alternative flows of events to capture ex-
ceptual behaviour or error handling. Inclusion and extension of other use cases is also
expressed in terms of depencendies between their respective flows of events. Even gen-
eralizations between use cases is transferred into the domain of flows, as spezialization
is understood in terms of specializations between flows. Taking the flow as the central
concept around which textual use case descriptions are defined, a consistent and un-
derstandable notation of use cases can be created, which is very much in line with the
common understanding of use cases as interaction sequences. Another advantage of
the rather semi-formal notation is, that consistency with the UML use case model (like
developed in the Use Case Modelling task) can be easily validated. To gain further
understanding and a detailed introduction into the developed notation, we propose to
refer to [Wal07].

WORK PRODUCTS

– Use Case Description: A detailed narrative description for each use case should be
developed, as exemplarily shown in Figure 7 for some of the use cases graphically
modelled in Figure 6. It uses the notation presented in [Wal07].

GUIDELINES

– Determine the right granularity: Finding the right granularity is often difficult
when identifying and modelling use cases. If use cases are modelled too fine-
grained, a lot of trivial use cases are modelled. In such a situation, a lot of as-
sociations, include, exclude, and generalization relationships are also modelled in
consequence, so that the overall use case model gets rather complex. If use cases

17

Use Case Current Output
Main Flow
Start
1 Alternative Extension Point : Choose Between simulation and calculation
2 Specialization Extension Point : Calculate actual current
3 Alternative Extension Point : Current stored
4 Validate that current does not exceed span limits.
5 Alternative Extension Point : Current validated
6 Calculate PWM output signal.
7 Normalize.
8 Include Use Case Output PWM signal on MSP.
9 Alternative Extension Point: End
End

Alternative Flow Simulate Current
Start At Choose Between simulation and calculation, if simulation mode has been set
1 Store simulated current value as current value.
End Continue at Current stored

Alternative Flow Raise ”Limits exceeded” alarm.
Start At Current validated, if the current exceeds span limits
1 Raise ”Limits exceeded” alarm.
End Continue at End

Use Case Alarm Current Output
Specialization Flow Calculate alarm current
Start At Calculate actual current
1 Calculate actual current from alarm value.

Use Case Flow Rate Current Output
Specialization Flow Calculate flow rate current
Start At Calculate actual current
1 Calculate actual current from flow rate value.

Use Case Perform Calculation And Output Chain
Main Flow
1 Include Use Case Flow Rate Calculation
2 Include Use Case Flow Rate Totalizing
4 Validate that no alarm has been raised
6 Alternative Extension Point : Alarm state validated
6 Include Use Case Flow Rate Output
7 Alternative Extension Point: Analog output done
8 Include Use Case Flow Rate Digital Output

Alternative Flow Output Alarm.
Start At Alarm state validated, if any kind of alarm has been raised
1 Include Use Case Alarm Output.
End Continue at Analog output done

Fig. 7. Examples of Use Case Descriptions

are modelled too course-grained, they tend to be internally complex (lots of in-
structions and alternative branches) what makes their narrative descriptions diffi-
cult to handle.

18

We propose to consult the narrative use cases descriptions as a guidance for deter-
mining the right granularity of use cases, as the internal flow of events captured
in a narrative use case description does support the appraisal of a use case’s com-
plexity far more than what can be inferred from the use case diagram. We noticed
that beginners tend to often model too fine-grained. Often use cases that represent
just single steps are modelled. Sequences of such “single instruction” use cases are
then combined together by including them by another use case, which represents
no own functionality but mere control logic.
Good guidance to determine the right granularity of a use case can be taken from
the narrative description developed for it. If the narrative description of a use
case does consist of only one or two steps this might indicate that the use case
is modelled to fine-grained. If the description gets rather complex (lots of steps
and branches) this is a good indicator that the use case model is indeed to course-
grained. For the application domain regarded, a rule of thumb might be that a good
granularity is achieved if a narrative use case description consists of about 5 to 15
steps.

19

2.2 Analysis Discipline

The Analysis Discipline is concerned with the development of an Analysis Model that
helps to understand the problem domain in terms of objects, whose collaborative be-
haviour performs the use cases of the software system. Construction of the Analysis
Model can therefore conceptually be broken down into three main objectives:

– Identifying all objects needed to perform the use cases.
– Capturing the inter-object behaviour of the identified objects.
– Capturing the intra-object behaviour of the identified objects.

Identifying objects is of course a quite complicated task that has to be broken down
into handable units to get manageable. MeDUSA addresses the identification of objects
successively during three activities of the Analysis Modelling discipline by regarding
objects of different categories during each task.

The categories used to support the identification process are defined by the MeDUSA
object taxonomy. It was designed following the analysis object taxonomy of the COMET
[Gom00] and is shown in Figure 8.

Fig. 8. MeDUSA Object Taxonomy

According to it, analysis objects can be classified into trigger, interface, entity,
control, and application-logic objects.

– trigger objects represent periodic or aperiodic sources of events external to the
software system under development.

– interface objects represent hardware or software interfaces towards the external
environment of the software system under development.

– entity objects represent long-living data the software system under development
has to keep track of.

– control objects represent control-flow logic needed to coordinate between other
objects or to encapsulate state-dependent behaviour.

– application-logic objects represent self-encapsulated pieces of application-logic
like an algorithm or an application-domain specific functionality (which is neither
control-flow and is therefore not encapsulated into a control object, nor function-
ality related to the long-living data of a single entity object and is therefore not
encapsulated into the respective entity object).

The different tasks of the Analysis discipline aim at identifying objects of different
categories each.

20

– Context Modelling supports the identification of interface and trigger objects by
questioning what interfaces from the software system under development towards
its external environment have to exist and what external event sources the system
under development has to correspond to. Interface objects may represent interfaces
to external hardware devices, or software protocols. Trigger objects do represent
external sources of periodic and aperiodic behaviour (which might be adherent to
the interfaces).

– Information Modelling helps to identify which entity objects are needed to store
data, which has to be handled by the system.

– Inter-Object Collaboration Modelling takes into consideration the use cases iden-
tified during Requirements Modelling. It supports the identification of objects that
make up application-logic or control-flow-logic by questioning, which additional
objects are needed to perform each use case. It combines the identification of the
application-logic and control objects with the capturing of inter-object behaviour
that results from performing each use case.

– Intra-Object Behaviour Modelling deals with specifying the intra-object behaviour
by synthesizing the partial behaviour each identified object shows in the collabo-
rations it takes part in.

After all relevant analysis objects have been identified and the structural and be-
havioural relationships between them have been specified, the concurrent behaviour
sequences triggered by the active trigger objects - we refer to as task candidates - have
to be analyzed, regarding whether they are capable to meet their individual timing con-
straints. A first impression on the overall system schedulability has also to be gained.
Both is done during Task Modelling.

21

Context Modelling - Identify Interface and Trigger Objects

During Context Modelling all hardware and software interfaces of the software
system under development towards its surrounding environment as well as all sources
of periodic and aperiodic events, the system has to deal with, are regarded. A System
Context Diagram is developed that captures the gathered information in terms of a
UML object diagram that shows the software system under development as well as
interface and trigger objects aggregated by it.

– Trigger objects are modelled if the software system under development needs to
keep track of time or has to react to aperiodic events. Trigger objects are cate-
gorized as shown in Figure 9 dependent on whether they represent a periodic or
aperiodic event source. While periodic event sources are represented by timer ob-
jects, aperiodic event sources are represented by eventer objects. That is trigger
objects are directy inferred from the trigger actors captured in the requirements
model.

Fig. 9. MeDUSA Trigger Object Taxonomy

– Interface objects serve as interaction points for incoming or outgoing communica-
tion of the system under development towards its external environment. As shown
in Figure 10, interface objects are categorized into hardware and software inter-
faces.

Fig. 10. MeDUSA Interface Object Taxonomy

22

Identifying interface and trigger objects is done by inferring them from the actors
identified in the Requirements discipline. While trigger actors are directly mapped to
trigger objects, interface actors will of course lead to corresponding interface objects.
It may however be the case that an interface actor leads to multiple interface objects if
they are categorized under different aspects.

WORK PRODUCTS

– Context Diagram: The results of context modelling are captured in a Context Dia-
gram, which is developed in form of a UML object diagram as depicted in Figure
11.

Fig. 11. Example: MES System Context Diagram

It shows the software system under development as an aggregate object that com-
poses interface objects, which are used to interact with the external environment
of the software system, as well as trigger objects representing sources of periodic
or aperiodic events.
Depending on the characteristics of the identified objects they are categorized
(by using stereotypes) into one of the following categories as specified by the
MeDUSA Interface Object Taxonomy shown in Figure 10. Trigger objects are
stereotyped accordingly as specified by the MeDUSA Trigger Object Taxonomy
shown in Figure 9. The composition of the interface objects by the system aggre-
gate object is modelled using links (instances of associations, respectively aggre-
gations) or dependencies.

23

Information Modelling - Identify Entity Objects

Information Modelling is done to capture the data-intensive objects of the problem
domain - the so called entity objects - as well as relationships between them. Entity
objects store data that is long lasting and often accessed by several use cases. Entity
objects may represent measured physical quantities, real world objects, abstract con-
cepts or any other data as constraints, configuration, or calibration information. Entitiy
objects may contain slots (instances of attributes) representing the properties of the
entity. Those properties might also be physical quantities, as e.g. the bore has an
innerWidth and a nominalWidth property.

WORK PRODUCTS

– Information Diagram: The results of the information modelling task should be
captured in an Information Diagram, which is developed in form of a UML object
diagram as shown exemplarily by Figure 12.

Fig. 12. Example: Information Diagram (excerpt)

It shows the entity objects linked to each other using links or just dependencies
(less formal). If supported by the tool, modelling n-ary links or dependencies re-

24

lating on other dependencies may be useful in some cases, e.g. when an value
entity is calculated from another using the information stored in a third data entity.

GUIDELINES

– Investigate entities processed in real-time, first: As the domain od MeDUSA is
much focused on value processing, identifying the relevant entity objects is most
easily done by first identifying the relevant physical quantities involved into the
real-time tasks of the device, e.g. the flowVelocityor volumeFlow. As those
entities are often intertwined (they most often get calculated from each other),
other entities may be identified next, as they are needed for the translation/calculation
steps. For example, the density of the medium flowing through the device is needed
to calculate the mass flow, leading to an entity object called medium having a prop-
erty/slot of name density.

25

Inter-Object Collaboration Modelling - Identify Control and Application-Logic
Objects

In this step for each use case identified during requirements modelling a collabo-
ration of objects is identified, whose collaborating behaviour fulfils the goal of the use
case.

As a starting point to identify the objects performing a use case collaboratively, the
object initiating the execution of the use case behaviour has to be identified. Indeed,
unless the use case is included by another use case or extends another use case, this al-
ways has to be one of the trigger objects identified during the Context Modelling task,
as these are the objects that are directly inferred from the actors identified during Re-
quirements Modelling (they together with the interface objects also deferred from the
actors are indeed the only objects that manifest interaction with the external environ-
ment of the software system under development). In case the use case is included by
another use case or the use case extends another use case, the object triggering the use
case will be one belonging to the collaboration performing the including respectively
extended use case (most likely it will be a control object).

Next the interface and entity objects involved in the use case, which were iden-
tified during System Context Modelling and System Information Modelling have to
be identified. Having found them, the main flow of events of the use case has to be
investigated and additional control and application-logic objects have to be identified,
which are needed in addition to perform the use case:

– Application logic objects encapsulate functionality relevant to the regarded appli-
cation domain. This may for example be an algorithm or some business-logic that
accesses more than one entity object or is likely to be changed and is therefore
encapsulated into an own object.

– Control objects are meant to encapsulate control flow logic. As prescribed by the
MeDUSA Control Object Taxonomy shown in Figure 13, control objects can be fur-
ther classified into coordinator and state-dependent-control objects. While state-

Fig. 13. MeDUSA Control Object Taxonomy

26

dependent-control objects encapsulate state-dependent behaviour, coordinator ob-
jects encapsulate some non-state-dependent coordination between other objects.

Having identified the necessary control and application-logic objects, the use case
main flow of events can be described in terms of messages between the identified
objects to gain an understanding on how the collaborative interplay of the identified
objects performs the use case main flow of events. Last, alternative flow of events have
to be considered. This may lead to identification of additional control and application-
logic objects, it may also just lead to additional messages being sent between already
identified objects.

After Inter-Object Collaboration Modelling has been performed, all necessary ob-
jects should be identified and it should be understood how these objects collaboratively
work together to perform each use case identified during Requirements Modelling.

WORK PRODUCTS

– Inter-Object Collaboration Diagram: The results of Inter-Object Collaboration
Modelling should be captured in one or more Inter-Object Collaboration Dia-
gram(s) for the use cases identified during Requirements Modelling. Those Inter-
Object Collaboration Diagams, are developed in form of UML2 communication
or sequence diagrams like shown exemplarily by Figure 14 and 15. The decision
whether to use a communication diagram or a sequence diagram to depict the col-
laborative behaviour depends on whether the emphasis is placed more on showing
the objects and their structural relationships (communication diagram) or on the
flow of messages (sequence diagram).
We propose to model at least the main flow of the use case in a communication
diagram that shows all objects participating in the collaboration (also those not
involved in the main sequence) to show the identified objects and their structural
relationships. All alternative flows of the use cases should in our eyes be modelled
by an additional sequence diagram, as it better supports the modelling of optional
or alternative messages by the use of fractions. It may however be reasonable to
just have a single communication diagram (if there are no alternative flows or if
they are trivial) or just a single sequence diagram, if the number of objects is quite
low.
Even if stated so above, it may not always be necessary or reasonable to have
Inter-Object Collaboration Diagrams for each individual use case identified during
Requirements Modelling. If for example a use case is included by another use
case, it might be reasonable to integrate the collaboration for the included use
case into the Inter-Object Collaboration Diagram of the including one. It may
however - even in such a case - be reasonable to have separate diagrams for both
use cases (if for example the included use case is also included by anther use case
or if the number of objects or messages grows to large if combining the two). The
same holds for a use case extending another use case. Also in this case it might be
reasonable to handle the extending use case within the Inter-Object Collaboration
Diagram for the extended one.

27

F
ig.14.E

xam
ple:Inter-O

bjectC
ollaboration

D
iagram

(C
om

m
unication)

28

F
ig

.1
5.

E
xa

m
pl

e:
In

te
r-

O
bj

ec
tC

ol
la

bo
ra

tio
n

D
ia

gr
am

(S
eq

ue
nc

e)

29

GUIDELINES

– Develop consolidated collaboration diagram: As it might be rather hard to retrieve
information about functional coupling of the objects from the communication and
sequence diagrams developed during Collaboration Modelling (as an object often
participates in more than one collaboration and also a single collaboration is often
modelled in several diagrams to show all alternative flows), it may be reasonable
to develop a consolidated communication diagram to support the succeeding activ-
ities. This is basically done by merging all communication and sequence diagrams
of the identified use case collaborations together. More information can be found
in [Go00] in chapter 12.4 (Consolidated Collaboration Diagrams).

– Determine the right functional abstraction: One question that often arises when
identifying application-logic objects is whether a business-specific function or
control-logic is best modelled by an application-logic object and when it is just
a function of entity object (i.e. it is modelled as simple message). According to
[Gom00] the question can be best answered by looking at how many entity objects
would have to be accessed by the control or application-logic objects to execute. If
more than one entity object is envolved, encapsulating the function or algorithm by
an application-logic object is the better choice. If just one entity object is envolved
it might usually be better to use a simple function in the respective entity object.

30

Intra-Object Behaviour Modelling - Model internal object behaviour

After having identified all needed application objects (trigger, interface, entity,
control and application-logic), and having modelled how these objects collaboratively
perform the identified use cases, the internal behaviour of all objects has to be mod-
elled, where it is not trivial.

For all state-dependent control objects, which were identified during modelling of
the system collaborations, the state-dependent behaviour has to be documented by a
state machine diagram. If the state-dependent control object takes part in more than
one of the collaborations, the state-dependent behaviour of that object has to be syn-
thesized from the partial use case based behaviour of the object in all collaborations it
participates in.

It may also be useful to capture the behaviour of coordinator objects, if the be-
haviour can not be extracted easily from the communication/sequence diagrams of the
different collaborations it participates in. We propose to model a sequence diagram
showing the overall behaviour of such a coordinator object in such a case.

Similar to specifying the behaviour of the identified control objects, it may be
reasonable to also describe the behaviour of the identified application-logic objects, if
the algorithm or business-logic encapsulated is rather complex. We propose to use an
activity or state machine diagram for such a case.

WORK PRODUCTS

– Intra-Object Behaviour Diagram: As shown exemplarily in Figure 16, the inter-
nal behaviour of each non-trivial object should be captured by an Intra-Object
Behaviour Diagram.

Fig. 16. Example: Intra-Object Behaviour Diagram - ActualCurrentDetermination

31

In case of a state-dependent application object this is done in the form of a state-
machine diagram. For coordinator objects, sequence diagrams may be most appro-
priate. The internal behaviour of application-logic objects will most likely be best
captured by using an activity diagram. However, other diagrams may be employed
if applicable.
Further working products are the activity and/or state machine diagrams show-
ing the behaviour of coordinator and application logic objects with non trivial be-
haviour.

GUIDELINES

– Develop partial behaviour diagrams: If the synthesizing of the partial state depen-
dent behaviours of a state-dependent control object gets too complex to be man-
aged, the process of synthesizing may be supported - if necessary - by developing
a separate state machine diagram for the partial state dependent behaviours of the
object in all collaborations first, and using them as input for synthesizing.

32

Task Modelling

As timing and concurrency concerns are of outstanding importance for real-time
systems, identification of performance problems has to be done as soon as possible.
Having identified the sources of concurrent behaviour during early Use Case Mod-
elling by using trigger actors and having identified during Inter-Object Collaboration
Modelling how each such concurrent behaviour - referred to as a task candidate1, that
is after the system architecture has been defined - is established in terms of messages
between objects participating in collaborations identified for each use case, an early
estimation can be done, on whether each such task is able to hold its deadline, and on
whether the overall system is at all schedulable. Even if the overall task design is not
established yet, valuable information can be inferred from such an early performance
analysis, as potential problems can be inferred about individual task candidates likely
to miss their deadline as well as on the overall system performance. Further, valuable
information can be inferred to may be taken into account in the Subsystem Identifica-
tion task, as one major criteria for partitioning of objects into subsystems is the task
allocation.

Task analysis is started by identifying the period of each concurrent task candidate.
For task candidates originating from timer objects, the period can be inferred directly
from the timer period. For eventer objects a worst case assumption has to be made
about the interarrival time of two asynchronous events. Having identified the task can-
didate’s period, the CPU utilization of each task candidate has to be estimated. This
can be done by estimating the time for message processing consumed by each ob-
ject participating in the object-collaboration performing the respective task candidate,
adding an additional overhead for the message communication itself.

Having gained an estimation for the CPU utilization and the period of each task
candidate, it can be inferred if each task candidate is able to hold its individual dead-
line and if the overall system would be schedulable by applying real-time scheduling
theory or event sequence analysis. We propose to refer to [Gom00] to get additional
information of practices applicable.

1 we refer to them as task candidates and not tasks, as the final task design cannot be defined earlier than
during Task Design Consolidation

33

WORK PRODUCTS

– Intitial Task Report: The results of the task modelling should be captured in a
Initial Task Report. It should list for each task candidate the following information:
• the periodic and aperiodic event source from which the task candidate origi-

nates
• a description of the task canidate’s purpose
• the task candidate’s frequency (timer period or worst case interarrival time in

case of eventer)
• an estimation of the task candidate’s CPU consumption time
• the CPU utilization, computed from the task candidate’s frequency and the

CPU consumption
• a target priority the task candidate should be assigned

An example of an Initial Task Report can be seen in Figure 17.

Task Report
Trigger Object Description Frequency

(Ti)
CPU consumption
(Ci)

Utilization
(Ui)

Priority
(Pi)

t1 sensorADCInterrupt Collect and preprocess
ADC samples from
sensor

25 µs 5 µs 0.2 HIGH
(1)

t2 measurementTimer Calculate Raw Flow
Velocity from ADC
samples

500µs 70 µs 0.14 HIGH
(2)

t3 calculationChainTimer Calculate Flow Veloc-
ity, Volume and Mass
Flow from Raw Flow
Velocity and output
them by PWM

100 ms 14.5ms 0.145 MED
(4)

t4 digitalOutputTimer Output Process Value
on Digital Output

200µs 3µs 0.015 HIGH
(3)

. .

Fig. 17. Example: MES Initial Task Report (excerpt)

– Initial Schedulability Report: The results of the schedulability analysis that has to
be performed based on the estimations of the task candidate’s frequency and CPU
consumption should be captured in a Initial Schedulability Report. The form of the
report depends on the concrete type of selected schedulability analysis, which is
not prescribed by MeDUSA. We propose to refer to [Gom00] to get an overview
of available practically approved techniques. However, independent on the applied
technique, the Initial Schedulability Report should provide an estimation about the
individual task candidates and the overall system schedulability. We will elaborate
this on an example based on the Generalized Utilization Bound Theorem as
introduced in [Gom00]. A detailed introduction into the applied principles of real-
time scheduling theory and event sequence analysis can be found in chapter 17
of [Gom00] and will be omitted here due to lack of space.
Let us assume that an example system consists of only the four tasks candidates
listed in Figure 17. The overall CPU utilization can be computed as the sum of

34

the individual CPU utilizations to 0.2 + 0.14 + 0.145 + 0.015 = 0.5, which is
well below the worst-case utilization bound of 0.69, which is the upper utiliza-
tion bound for a unrestricted number of tasks (compare [Gom00]). The priori-
ties assigned to the task candidates were not based on rate monotonic scheduling
(i.e. the task priorities were not assigned inversively to the task periods), as the
measurementTimer task candidate was decided to get a higher priority than
the digitalOutputTimer task candidate, although if it has the longer period.
Therefore, each task candidate has to be analysed individually.

35

Schedulability Report

• Task t1 is an aperiodic, interrupt-driven task with a worst case interarrival time of T1 = 25µs and a CPU
consumption time of C1 = 5µs. It has the highest priority.

1. Preemption time by higher priority tasks with periods less than t1. There are no tasks with periods less
than t1.

2. Execution time C1 for task t1. Execution time is 5µs what leads to a utilization of 5µs/25µs = 0.2.
3. Preemption by higher priority tasks with longer periods. No tasks fall into this category.
4. Blocking time by lower priority tasks. Task t2 may block task t1 because it accesses the ADC samples

collected by task t1. We assume that the blocking time (needed to read out the ADC samples) can be
estimated to 4µs, which leads to a blocking utilization during period T1 of 4µs/T1 = 4µs/25µs = 0.16.

The worst case utilization of task t1 can thereby be computed as execution utilization + blocking utilization =
0.2 + 0.16 = 0.36, which is well below the utilization bound of 0.69, so task t1 will meet its deadline.

• Task t2 is a periodic task with a period of T2 = 500µs and a CPU consumption time of C2 = 70µs. It has the
second highest priority.

1. Preemption time by higher priority tasks with periods less than t1. Task t2 could be preempted by task
t1, which has a shorter period but a higher priority. The preemption utilization of task t2 is 0.2

2. Execution time C2 for task t2. Task t2 has an execution time of 70µs, which leads to a CPU utilization
of 0.14.

3. Preemption by higher priority tasks with longer periods. No tasks fall into this category.
4. Blocking time by lower priority tasks. Task t3 may block task t2 because it accesses the raw flow velocity

calculated by task t2. We assume that the blocking time (needed to access the flow velocity) can be estimated
as 3µs, which leads to a blocking utilization during period T2 of 3µs/T2 = 3µs/500µs = 0.006.

The worst case utilization of task t2 can thereby be computed as 0.2 + 0.14 + 0.006 = 0.346 which is below
the utilization bound of 0.69, so task t2 will also meet its deadline.

• Task t3 is a periodic task with a period of T3 = 100ms and a CPU consumption time of C3 = 14.5ms. It has
the lowest priority of the four regarded tasks.

1. Preemption time by higher priority tasks with periods less than t3. Task t3 could be preempted by tasks
t1, t2 and t4, which all have a shorter period and a higher priority. The summarized preemption utilization
of these tasks is 0.355

2. Execution time C3 for task t3. Task t3 has an execution time of 14.5µs, which leads to a CPU utilization
of 0.145.

3. Preemption by higher priority tasks with longer periods. No tasks fall into this category.
4. Blocking time by lower priority tasks. Task t3 has the lowest priority of the regarded tasks, so no tasks

fall in this category.
The worst case utilization of task t3 can be computed as 0.355 + 0.145 = 0.5, which is below the utilization
bound of 0.69, so task t3 will also meet its deadline.

• Task t4 is a periodic task with a period of T4 = 200µs and a CPU consumption time of C4 = 3µs. It has the
third highest priority of the regarded tasks.

1. Preemption time by higher priority tasks with periods less than t4. Task t3 could be preempted by task
t1, which has a shorter period and a higher priority. The preemption utilization of task t1 is 0.2.

2. Execution time C4 for task t4 . Task t4 has an execution time of 3µs, which leads to a CPU utilization of
0.015.

3. Preemption by higher priority tasks with longer periods. Task t4 can be preempted by task t2 , which
has a higher priority and a longer period. Preemption utilization of task t2 is 0.14.

4. Blocking time by lower priority tasks. Task t4 may be blocked by lower priority task t3 when it tries to
obtain the next process value to be outputted on the digital output. As t3 does need to block the process
value for exlusive write access, we assume that blocking time will be around 5µs, so a blocking utilization
during period T4 of 5µs/T4 = 5µs/200µs = 0.025 does result.

The worst case utilization of task t4 can therefore be computed to 0.2 + 0.015 + 0.14 + 0.025 = 0.38, which
is below the utilization bound of 0.69, so also task candidate t4 will meet its deadline.

Fig. 18. Example Initial Schedulability Report

36

GUIDELINES

– Use expert knowledge and approved techniques for estimation: To analyze the
schedulability of individual task candidates and the overall system, the CPU uti-
lization of the task candidates has to be estimated. Without a good estimation of the
CPU utilization, a significant statement about the schedulability of an individual
task candidate or even the overall system can not be achieved in most cases.
To obtain a meaningful estimation of the CPU utilization of each task candidate,
expert knowledge of experienced designers is one of the most valuable input. An-
other possibility that can also be taken into consideration, is the development of a
rapid prototype to measure the execution time of functions or algorithms that are
hard to estimate. Also some theoretical approaches to estimate the CPU utiliza-
tion based on formal reasoning have been developed by the research community.
However, as neither of those has been able to prove its practical applicability yet,
we propose to stick to use expert knowledge and rapid prototypes to obtain valid
estimation data.

37

2.3 Architectural Design Discipline

While the Analysis discipline emphasized on breaking down the problem domain, Ar-
chitectural Design can be seen more as composing a solution. The central goal of
the tasks comprised by the Architectural Design discipline is to develop the system
architecture, which specifies subsystems, as well as the structural and behavioural re-
lationships between them.

The internal decomposition of each identified subsystem is not regarded in detail
during Architectural Design , as this is the objective of the succeeding Detailed Design
discipline. What is done here, however, is the definition of the initial decomposition of
the subsystems in terms of objects distributed amongst them.

In detail, the Architectural Design discipline is comprised of the following tasks:

– Subsystems Identification is done by grouping together the objects of the Analysis
Model into groups of objects, denoted as subsystems to reduce the overall com-
plexity. Each subsystem should show a high internal cohesion of the composed
objects, while the overall system partition should establish a loose coupling be-
tween the identified subsystems.

– Structural System Architecture Modelling is done by defining required and pro-
vided interfaces for each subsystem, inferred them form the inter-object relation-
ships of the analysis model. The structural system architecture is then constituted
by the subsystems and the structural relationships between them, established via
their required and provided interfaces.

– Behavioural System Architecture Modelling is done by regarding, how the use
cases, which span more than one subsystem, are performed by the collaborative
behaviour of the identified subsystems. Communication between subsystems can
in this context be only established via the structural relationships identified in the
previous step.

– Task Design Consolidation is done by clustering together active objects. This task
may indeed be necessary if the overall task design, which can be inferred from the
partitioning of the active analysis objects among the subsystems, is not feasable or
its schedulability cannot be guaranteed. It is as well performed to exploit optimiza-
tion potentials, so that more leeway for the later detailed design of the identified
subsystems is gained.

38

Subsystem Identification

After having identified all application objects in the Analysis discipline and hav-
ing specified their internal and external behaviour, it is now necessary to perform the
first architectural design step, namely to group the identified trigger, interface, entity,
control and application-logic objects into subsystems. According to Jacobson ([Ja92]),
“the task of subsystems is to package objects in order to reduce the complexity.”

Jacobson denotes two major principles that should be regarded during division of
objects into subsystems (compare [Ja92]):

– Locality in changes: “If the system is to undergo a minor change, this change
should concern no more than one subsystem. This means that the most important
criterion for this subsystem division is predicting what the system changes will
look like, and then making the division on the basis of this assumption.”

– Functional coupling: “The division into subsystems should also be based on the
functionality of the system. All objects which have a strong mutual functional
coupling will be placed in the same subsystem [. . .].”

We want to extend the list by adding the following two major principles that will
also have to be regarded:

– Task coupling: Jacobson also states that “another criterion for the division is that
there should be as little communication between different subsystems as possible”.
We want to go further and want to emphasize that in the domain we are targeting,
not only the pure amount of communication between different subsystems may be
a criterion for the division, but also how the message sequences originating from
the trigger objects - the tasks - are allocated to the subsystems. A central guide
should therefore be that the allocation of tasks is done so that as few tasks as
possible span subsystem boundaries. It should also be a general goal to reduce the
synchronization overhead, which arises from a subsystem being affected by more
than one task.

– Reuse: Another criterion that should be taken into consideration is the reusability
of already existing subsystems. Analysis objects might be grouped together so that
the functionality matches that of an already existing subsystem (maybe smaller
changes have to be implemented), so that no new subsystem has to be developed
but the already existing can be integrated instead. This may be most likely the
case for basic service subsystems that do not provide domain-specific application-
logic but deliver system-level services, like network communiation management
or storage management.

39

After a group of objects has been decided to form a subsystem, the interaction
points of the subsystem to its surrounding environment have to be defined. They can
be determined by looking at the behavioural inter-object relationships of the analysis
objects. Where communication between objects partitioned into different subsystems
takes place, this communication has to enter or leave the subsystem via a defined in-
teraction point, which we refer to as a port. Further, by differentiating on whether a
message enters or leaves the subsystem, and by grouping them together, required and
provided interfaces can be derived, which allow to detail the interaction established via
each port.

WORK PRODUCTS

– Initial Structural Subsystem Design Diagram: The internal structure of each sub-
system that has been obtained by grouping together objects from the analysis
model is captured in a corresponding Initial Structural Subsystem Design Dia-
gram. An example is shown in Figure 19.

Fig. 19. Example: Intial Structural Subsystem Design Diagram

It is developed in terms of a UML2 composite structure diagram having the sub-
system as the structured classifier with ports defining the interaction points of the
subsystem towards its external evironment. The provided and required interfaces
aggregated by each port are denoted by the so called ball and socket notation,
which shows the interface in a symbolized form of a ball or a socket depending
on whether it is a provided or required interface. The internal composite structure
of the subsystem is modelled in terms of parts representing the trigger, interface,
entity, control and application-logic objects partitioned into it. Relationships be-
tween the objects are modelled using assembly connectors. Where objects do have

40

relationships to external objects (which are partitioned into other subsystems) del-
egation connectors can be modelled to the port of the subsystem that encapsulates
the interaction point towards this other subsystem. The diagram is denoted as ini-
tial, as the internal structure is obtained by just partitioning the analysis objects
and be inferring the structural relationships from the analysis model, not being re-
garded further during this task. Indeed a consolidation of the internal subsystem
design is addressed by the Detailed Design discipline.

– Initial Subsystem Interface Design Diagram As the Initial Structural Subsystem
Design Diagram, which shows the external interaction points only in terms of
ports, denoting their provided and required interfaces as stylized balls and sock-
ets, an initial version of the externally visible provided and required interfaces’
signatures has to be defined in an Initial Subsystem Interface Design Diagram. It
is developed in form of a UML class diagram showing the required and provided
interfaces grouping the messages entering and leaving the subsystem in the form
of simple methods without return or call parameters.

Fig. 20. Example: Intial Subsystem Interface Design Diagram

GUIDELINES

– Apply common principles to deal with functional coupling: Additional to the major
design principles, Jacobson mentions some more concrete guidelines that can be
applied to decide whether to place two objects into the same subsystem or not. For
example, the following questions can be considered (compare [JCJv92]):

• Will changes of one object lead to changes in the other object?
• Do they communicate with the same actor?
• Are both of them dependent on a third object, such as an interface or entity

object?
• Does one object perform several operations on the other?

41

Generally, our advice is to begin by placing a trigger or control object in a subsys-
tem, and then place strongly coupled interface, application-logic and entity objects
in the same subsystem.

– Use metrics to quantify functional dependencies: It may also be reasonable to be
guided by metrics to determine the coupling between the objects (and cohesion
of object clusters) during execution of this task. The number and frequency of
messages exchanged between two objects could for example be an indicator to
decide if those objects should reside inside one subsystem or could be separated
into distinct ones. Other metrics are imaginable.

– Apply domain-specific design criteria and experiences: Further guidance to sup-
port the identification of subsystems may be inferred from domain-specific design
principles. It may for example be common practice to introduce a central coordi-
nator subsystem that takes care of coordinating the subsystems contributing to the
most severe real-time tasks. Or it may be reasonable to group all objects handling
the user interface together into a single user interface subsystem. Besides such
common practices a standard architecture defined for the application-domain may
be taken as a guidance for grouping objects into a prefined scheme. Reuse of ex-
isting subsystems may be named as a further source for inferring domain-specific
design-criteria.

– Introduce components to reduce complexity: If an identified subsystem seems to be
quite complex and it is reasonable to not split it into several subsystems, its internal
decomposition should be designed in a hierarchical form. That is the internal de-
composition is described in terms of component instances rather than objects. The
components forming the subsystem decomposition are in turn formed by grouping
together functionally related subclusters of the analysis objects partitioned into the
subsystem.

42

Structural System Architecture Modelling

After having identified subsystems by grouping together the analysis objects, and
after having defined interaction points (ports) with the required and provided interfaces
of each subsystem, the next step is to describe how the subsystems are structurally re-
lated via those interfaces. It has be ensured that the subsystems’ interfaces are designed
so that they fit together. Therefore additional detail in form of method parameters has
to be added to the initial subsystem interface definitions that were created by the pre-
vious task.

WORK PRODUCTS

– Structural System Architecture Diagram: The results of this task should be cap-
tured in one or more Structural System Architecture Diagrams, which are devel-
oped in terms of UML composite structure diagrams showing the subsystems, their
provided and required interfaces and the structural relationships established via
those interfaces. An example is shown in Figure 21.

Fig. 21. Example: Structural System Architecture Diagram

43

– Subsystem Interface Design Diagram: Further, for each subsystem, the signature
of the provided (and required) interfaces has to be defined in a Subsystem Interface
Design Diagram, as shown in Figure 22. It is an advancement of the Initial Subsys-
tem Interface Design Diagram developed during theSubsystem Identification task,
where method parameters and their data types are additionally defined.

Fig. 22. Example: Subsystem Interface Design Diagram

It has to be pointed out that - even if we want to perform detailed class design
as late as possible - for those classes and data types occuring in the method signa-
tures, detailed class design has indeed to be done here. This is necessary, as distributed
development of subsystems can only be done against well-defined interfaces, which
includes that all data types passed via those interfaces are also well defined.

44

Behavioural System Architecture Modelling

After having the subsystems structurally integrated into the overall system archi-
tecture, it is necessary to describe, how system-wide use cases (that is affecting more
than one subsystem) affect the subsystems via their provided/required interfaces. This
is done by investigating how the use cases identified during requirements modelling
are collaboratively performed by the subsystems on a system level (i.e. taking all use
cases into account, that span more than one subsystem).

WORK PRODUCTS

– Behavioural System Architecture Diagram: The results of the Behavioural System
Architecture Modelling task are captured in a sequence diagram for each use case
identified during requirements modelling phase that is system-wide. Where include
or extend relationships exist between use cases, interaction occurrences can be
used in the including or extended use case, so that the included or extending use
case can be modelled in a separate sequence diagram. As an example, Figure 23
shows a combined Behavioural System Architecture Diagram for the use cases
FlowRateCurrentOutput and AlarmCurrentOutput.

45

F
ig.23.E

xam
ple:B

ehaviouralSystem
A

rchitecture
D

iagram

46

Task Design Consolidation - Consolidate active objects

After the system architecture has been defined in terms of subsystems and their
structural and behavioural relationships, the task architecture has to be consolidated.
That is, optimization potentials have to be identified and exploited to give more lee-
way to the subsystem designer when elaborating the detailed design of each subsystem.
That is, it has to be evaluated if trigger objects can be clustered together in order to re-
duce the overall number of tasks and thereby the inherent task overhead. Timer objects
can for example by clustered together if they have the same period (or periods with
a greatest common divisor greater than one) of it. Eventer objects may be clustered
together if the events are indeed not truly concurrent events but do occur indeed in a
sequential or mutually exlusive manner. We propose to refer to the task clustering cri-
teria described in [Gom00] to get an inspiration on optimization potentials exploitable
by clustering together trigger objects.

As an example consider that the Calculation Chain Timer (100ms) ac-
tor and the Digital Output Timer (200µs) actor shown in the Use Case Di-
agram in Figure 6 have been transferred into respective calculationChainTimer
and digitalOutputTimer analysis objects, who have been partitioned into two
different subsystems. The digitalOutputTimer was of course partitioned into
the digitalOutput subsystem, which is responsible of putting out the calculated
process value or any pending alarms on the two digital outputs. The calculation-
ChainTimer was put into the secondaryCalculations subsystem, which is
responsible of calculating a process value from the raw value delivered by the measure-
ment subsystem. As the periods of the two timers have a greatest common divisor
greater than one and as the output of the digital process value depends of course on
the calculation of the process value done by the secondaryCalculations sub-
system, the decision could be taken to merge these two timer objects together into a
calculationAndOutputChainTimerwho resides in a third subsystem that co-
ordinates the execution of the process value calculation and output. This way the task
switching and synchronization overhead necessary for the two tasks could be econo-
mized and the overall performance could be improved.

WORK PRODUCTS

– Consolidated Task Report: After consolidation of the active objects has been done,
the final task architecture can be inferred from the task candidates and the knowl-
edge about which task candidates have been clustered together for optimization
purposes. The results should be captured in a Consolidated Task Report, which is
identical to the Initial Task Report produced during Task Modelling with the ex-
ception that it now indeed lists the tasks inherent to the system and no longer task
candidates.

47

– Consolidated Schedulability Report: Besides the Consolidated Task Report cap-
turing the individual tasks inherent to the system, a Consolidated Schedulability
Report has to be developed, which demonstrates the overall schedulability of the
system and indeed specifies a potential schedule. Its format is the same as that of
the Initial Schedulability Report produced during Task Modelling.

48

2.4 Detailed Design Discipline

While the externally visible interfaces of each subsystem have been completely de-
fined and the active objects partitioned into each subsystem have been consolidated
regarding performance considerations, the intial subsystem design resulting from the
partitioning of passive objects has still to be consolidated under design considerations.
This is the first task of the Detailed Design discipline. Second, a detailed class design
has to be developed that can be taken as direct input for implementation.

As Jacobson states, “Subsystems may also be used as handling units in the organi-
zation”. Taking this statement literally, it has to be pointed out that while the tasks of
all other disciplines are indeed performed within the scope of the overall system, De-
tailed Design is performed distinctly for each subsystem, thus allowing an independent
and potentially concurrent processing of each.

Detailed Design comprises the following tasks:

– Subsystem Design Consolidation deals with the consolidation of the internal sub-
system decomposition under design considerations. That is, all passive objects (the
active ones have already been consolidated during Task Design Consolidation)
have to be examined regarding how they can be reasonably mapped to a detailed
class design. The aim is, to modify the initial object collaboration - if necessary -
so that it can serve as a reasonable basis for implementation.

– Class Design Modelling deals with developing a detailed class design for the in-
ternal subsystem decomposition, which is established in terms of objects.

49

Subsystem Design Modelling - Consolidate passive objects

The analysis objects themselves as well as the collaborations of those that were
grouped together to form subsystems during Architectural Design were of course not
identified from a design but from an analysis viewpoint. Therefore, most likely they
have to be consolidated, so that a detailed class design can be reasonably applied to
them.

In detail, during consolidation it should be checked, if the objects have to be re-
moved from the internal subsystem decomposition, or if they have to be split or merged
together. Removing an object from the internal subsystem decomposition may be rea-
sonable when for example an entity object is indeed not decided to be stored inside
the subsystem but is just passed into it, out of it or between two objects of its’ inter-
nal decomposition as a mere parameter. Splitting an object may be appropriate where a
weak cohesion of the resulting class is likely. Merging objects may be necessary where
a very strong cohesion between the resulting classes would result.

WORK PRODUCTS

– Structural Subsystem Design Diagram: A Structural Subsystem Design Diagram
has to be developed for each subsystem, which is an advancement to the Initial
Subsystem Design Diagram developed during Subsystem Identification. Like the
Initial Subsystem Design Diagram it is developed in form of a UML composite
structure diagram, showing the subsystem as the structured classifier having ports
aggregating the required and provided interfaces, via which communication with
the external environment is established, and having an internal structure in terms
of interconnected parts representing the composed objects.

Fig. 24. Example: Structural Subsystem Design Diagram

50

– Behavioural Subsystem Design Diagram: Changes to the structural subsystem de-
sign will imply changes to its behavioural design as well. Therefore, one or more
Behavioural Subsystem Design Diagrams should be developed in terms of a UML
sequence or communication diagram that show how the internal object decompo-
sition collaborative performs if either triggered internally by a trigger object or
externally via one of the ports of the subsystem. An example for a Behavioural
Subsystem Design Diagram is shown in Figure 25.

51

F
ig.25.E

xam
ple:B

ehaviouralSubsystem
D

esign
D

iagram

52

Class Design Modelling

After the object collaboration forming the subsystem has been consolidated, the
detailed class design for all objects composed by the subsystem has to be developed.
That is, classes have to be designed for the identified objects, having attributes corre-
sponding to the slots of the objects and operations corresponding to the messages the
object receives. Where objects are connected, associations have to be designed on the
class level.

WORK PRODUCTS

– Class Design Diagram: The results of the Class Design Modelling should be doc-
umented in UML class diagrams, which show the classes with their attributes and
operations as well as associations between them. The class diagram should be so
detailed that it can be taken as a building plan for implementation, meaning that at-
tribute types, as well as the types and names of operation parameters are included.
An example for the detailed class design is shown in Figure 26.

Fig. 26. Example: Class Design Diagram

53

GUIDELINES

– Omit inheritance to ensure a smooth transition towards procedural implementa-
tion: As the implementation languages of the regarded application domain are pro-
cedural languages (C-language or one of its derivates) MeDUSA aims at develop-
ing a design model that can be easily transferred to such a procedural implemen-
tation model (probably tool-supported). This is why we designed the method to be
object-based rather than object-oriented; the instance-driven nature of the method
causes that inheritance and related polymorphism mechanisms are not regarded, as
up to now instances (objects) rather than classes were modelled. Therefore we pro-
pose to omit the application of inheritance and related polymorphism concepts also
during this last step. However, if it seems reasonable to apply inheritance mech-
anisms during detailed class design modelling, this can be done. The only thing
we want to emphasize is that all mappings from object-oriented design models to
procedural implementation languages tend to cause the source code to be not ad-
equately readable and also tend to harden traceability between the design model
and the source code.

– Apply domain-specific libraries where appropriate: As the class design is most
often developed in a distributed manner - and rather late - it may happen that certain
functionality that is needed inside several subsystems is designed plural and would
therefore also be implemented plural. If this affects objects that are exchanged
between subsystems (i.e. the object is exchanged via provided/required interfaces
of the subsystem) synchronization has in either case to be guaranteed to ensure that
subsystems may be interconnected. If it affect objects that are not visible to other
subsystems, this is not necessarily to be ensured. However, it would be desirable to
reuse such functionality regarding detailed class design as well as implementation.
In either case, from the experience gained, such multiple occurrence of function-
ality is most often the case for such objects that are rather application-domain
specific than device-specific, like e.g. in case of physical quantities. We propose to
build up a class library to achieve best reuse in such a situation.

54

3 Process

Expressed in the terminology of the Unified Method Architecture, a process describes
“how the method content defined with tasks, roles, and work products is sequenced”
over time. That is, like denoted by Figure 27, it is defined at which point in time and
in which order the tasks are performed by their respective roles.

Fig. 27. UMA process concepts (copied from [Hau06])

Basically, the definition of a process is - according to UMA - based around the
concept of Activity. Activities contain references to the method content, can be nested
to define a hierarchical breakdown structure, and can be related to each other. UMA
defines two major kinds of processes, namely Capability Patterns and Delivery Pro-
cesses (which are themselves activities). A Delivery Process defines a complete and
integrated process spanning a complete project lifecycle. Capability Patterns define
processes (or process fractions) that are related to a key area of interest such as a disci-
pline or a best practice. They can be directly used but can also be employed as building
blocks to define a delivery process.

The definition of the MeDUSA process is based on four such basic capability
patterns that define the sequencing of the tasks belonging to the four disciplines of
the method content definition. We refer to them as Requirements Modelling, Analy-
sis Modelling, Architectural Design Modelling, and Detailed Design Modelling. The
MeDUSA delivery process itself is defined in terms of four phases, namely Require-
ments Modelling Phase, Analysis Modelling Phase, Architectural Design Modelling
Phase, and Detailed Design Modelling Phase as shown in Figure 28.

Fig. 28. MeDUSA Delivery Process

All phases are self-contained units, concerned primarily with the iterative execu-
tion of the activities defined by the homonymous Requirements Modelling, Analysis

55

Modelling, Architectural Design Modelling and Detailed Design Modelling capability
patterns. The goal of each phase is to develelop a consise model (i.e. a Requirements
Model at the end of the Requirements Modelling Phase, an Analysis Model at the end
of the Analysis Modelling Phase and so on). Besides the primary activities, belong-
ing to the homonymous capability pattern, each phase allows the iterative execution of
other preceeding activities if changes to previous models are needed. That is, if for ex-
ample in the Architectural Design Modelling Phase a change resulting in the Analysis
Model is noticed while performing Architectural Design Modelling, this iteration can
be skipped an the Analysis Modelling activities can be reiterated.

Requirements Modelling Phase

The Requirements Modelling Phase is indeed concerned with executing the tasks as
executed by the Requirements Modelling capability pattern. That is, all activities com-
prised by the Requirements Modelling capability pattern are executed iteratively, as
long as a thoroughly defined Requirements Model has been developed and the next
phase can be entered.

Analysis Modelling Phase

The Analysis Phase is concerned with producing a consise Analysis Model. Here the
activities defined by the Analysis Modelling capability pattern are executed iteratively.
It may happen, that by executing the Analysis Modelling activities, awareness about
weaknesses or necessary changes to the Requirements Model may arise. Therefore the
Analysis Modelling Phase allows to again iterate through the Requirements Modelling
activities as well.

56

Architectural Design Modelling Phase

The Architectural Design Phase deals with the definition of a system architecture. That
is, the Architectural Design Modelling activities are iteratively performed to construct
a consise Architectural Design Model that defines the system architecture in terms of
structurally and behaviourally related subsystems. As changes to the Analysis Model
or even the Requirements Model may be necessary, backflows to Analysis Modelling
and Requirements Modelling are permitted.

Detailed Design Modelling Phase

The Detailed Design Phase forms the last phase of the MeDUSA delivery process.
Its objective is to deliver a Detailed Design Model that can be taken as input to the
implementation. Therefore, the Detailed Design Modelling activities are performed
within it. However, in distinction to the previous phases, Detailed Design Modelling
is not performed at once for the overall system, but may be performed individually for
each subsystem identified during the previous Architectural Design Modelling Phase.
Therefore, if changes to the Architectural Design Model (or even Analysis Model or
Requirements Model) are determined, and the Architectural Design Modelling (and
possibly Analysis Modelling and Requirements Modelling) activities are performed
again to incorporate these changes, the following iteration of Detailled Design Mod-
elling has to be executed for all subsystems that are affected by those changes and
not only for the one subsystem, during whose Detailed Design Modelling the changes
were noticed.

57

3.1 Requirements Modelling

Requirements Modelling is concerned with the construction of a Requirements
Model, which is indeed a use case model that manifests itself in a UML use case
model and a narrative use case model. As UML model and narrative model have to
be consistent to each other and as either of them may serve as valuable input for the
construction of the other - e.g. when trying to determine the right granularity - the
two activities concerned with the construction of the two model fractions are executed
more or less in parallel. Often, one starts to construct the UML use case by construct-
ing an initial version of a Use Case Diagram first. Then, a Use Case Description for
each initially identified use case may be started, which may lead in turn to modifica-
tions inside the Use Case Diagram(s) or use case model respectively, as additional use
cases or relationships between use cases may be identified. This way, use case model
and narrative use case model are developed in parallel, until they are consistent to each
other and their quality is satisfying to proceed with the Analysis Modelling activities.

It has to be pointed out here again that MeDUSA is a use case driven method,
meaning that the use cases identified during Requirements Modelling play a very cen-
tral role throughout all following activities of the method. From the identification of
analysis objects during Analysis Modelling, up to the Architectural Design Modelling,
use cases are the central artefacts around which the activities of the method are orga-
nized.

Therefore Requirements Modelling is a very essential activity of the MeDUSA
method, which has to be performed very thoroughly. Defects and misunderstandings
not resolved here can cause costly fixes in later activities. Especially misunderstand-
ings and mistakes related to the concurrency concerns, which are of major interest
already during these early activities, may have severe impact on the later on developed
Analysis Model and Architectural Design Model if not regarded thoroughly. It has be
pointed out therefore that even if the regarded domain is already well understood or
similar products in the regarded domain have already been developed, it is essential to
perform this step in the described detail.

58

3.2 Analysis Modelling

After having investigated functional and the non-functional timing and concur-
rency requirements during Requirements Modelling, Analysis Modelling is concerned
with the construction of an Analysis Model. That is, a thorough understanding of the
problem domain has to be achieved by modelling an object collaboration for each use
case identified during Requirements Modelling. The starting point for the identification
of the objects that collaboratively perform the identified use cases is the identification
of trigger, interface and entity objects, which is regarded during Context Modelling
and Information Modelling. As both activities are concerned with different aspects -
the one with the interfaces to the external environment, the other with internal data -
they can be performed very much in parallel. After trigger, interface and entity objects
have been defined, the remaining activities are concerned with identifying additional
control and application-logic objects needed to execute the use cases, and to specify
their internal behaviour (in case it is not trivial). Last, a first impression on the capa-
bility of the software system to meet its performance constraints has to be gained by
an intial task schedule and schedulability report.

After having performed the last Analysis Modelling activity, all interface, trigger,
entity, control and application-logic objects that build up the Analysis Model should
be identified and their collaborating behaviour for each of the use cases identified
during Requirements Modelling should have been captured. Also, the internal behavior
of each object should be captured where it is not trivial, and the tasks (candidates)
originating from the active trigger objects should have been analyzed. That is, with the
end of Analysis Modelling activities, a thorough understanding of the problem domain
should have been achieved, so that Architectural Design can be started.

59

What has to be pointed out is that especially Analysis Modelling does have a very
iterative nature. That is, several iterations through all of its activities will be needed to
develop an appropriate Analysis Model. Often, entity objects are not directly identified
during Information Modelling but not earlier than during Inter-Object Collaboration
Modelling, when the object collaborations performing the use cases are developed. It
may also be the case that during the activities of the Analysis Modelling interface or
trigger objects are identified that were not already determined during Requirements
Modelling. This is where the iteration has to be interrupted (respectively cancelled)
and a backflow to those earlier activities is needed.

60

3.3 Architectural Design Modelling

The objective of the Architectural Design Modelling activities is the specification
of the software system’s architecture. That is, subsystems have to be identified dur-
ing Subsystem Identification by grouping together objects from the Analysis Model.
An initial version of each subsystems’ required and provided interfaces can also be
inferred from the messages exchanged between objects partitioned into different sub-
systems. After that, the structural and behavioural relationships between the identi-
fied subsystems can be designed. This is done during Structural System Architecture
Modelling and Behavioural System Architecture Modelling. The definition of struc-
tural and behavioural relationships is strongly intertwined. Of course, one might start
with defining an initial version of the structural relationships first, as the behavioural
relationships have to reside on them. However, while modelling the behavioural rela-
tionships, changes to the structural relationships are likely to occur, so that from the
initial defintion of the structural relationships onwards both activities will be executed
very much in parallel.

After the system architecture in terms of subsystems and their structural and be-
havioural relationships has been defined, the task allocation has to be reflected. That is,
during Task Design Consolidation, the distribution of the active trigger objects among
the subsystems has to be regarded to investigate optimization potential and to review
the feasibility of the chosen task allocation. After all optimization potentials have been
exploited - which might make it necessary to start over with some of the preceeding
activities - the overall schedulability of the final task design has to be proved with the
help of a consolidated task and schedulability report.

It has to be pointed out that Architectural Design Modelling is rather iterative.
First in itself, as the activities may have to be gone through in several iterations until
a feasible system architecture has been specified. Second in a sense that most likely
changes to the Analysis Model will be noticed while developing the Architectural De-

61

sign Model. An example provided by Jacobson might help to demonstrate this (com-
pare [JCJv92]): “ When the division into subsystems is made, in some cases it may also
be desirable to modify the analysis objects also. This may be the case, for instance,
when an entity [or application-logic] object has separate behavior that is functionally
related to more than one subsystem. If this behaviour is extracted, it may be easier to
place the entity object in a subsystem.”

62

3.4 Detailed Design Modelling

After having performed the Architectural Design Modelling, all externally visible
required and provided interfaces of the identified subsystems are clearly specified and
the system behaviour that occurs over these interfaces is well understood. Detailled
Design Modelling is now first of all concerned with designing the internal subsystem
decomposition, which was up to now only expressed in terms of analysis objects par-
titioned into the subsystem. After that, during Class Design Modelling, a class design
has to be created that can taken rather seamlessly as input to the succeeding implemen-
tation activities.

Of course, as with the other capability patterns, Detailed Design is an iterative
activity. That is, several iterations will be needed until the developed subsystem de-
composition will be transferrable in a feasible class design. Further, changes to the Ar-
chitectural Design Model may be necessary if the consolidation of a subsystem might
lead to the insight, that the system architecture is indeed not adequate. Severe changes
on the Architectural Design Model are rather unlikely as the externally visible inter-
faces of each subsystem have been thoroughly defined and validated during Architec-
tural Design Modelling, but are indeed not impossible. As with all other activities, the
iterative nature of the method manifests itself here, as well.

63

4 Summary & Conclusion

Having started as a mere advancement to the COMET method developed by Hassan
Gomaa ([Gom00]), following the goal to overcome those shortcomings the COMET
method showed during its practical application in ABB Business Unit Instrumentation,
MeDUSA has undergone several changes and has in the last two years grown into an
independent and self-contained design method.

As we stated in the introduction, MeDUSA was initially designed having in mind
three major design objectives resulting from the requirements of the application do-
main it was intended for, namely

– to regard the non-functional constraints related to memory and power consumption
and computing time, as well as the real-time constraints small embedded software
systems have to meet.

– to support distributed development of reusable components.
– to support a standard-based notation that allows to choose from a broad set of

market-available modelling tools.

MeDUSA faces the first objective by its object-based and instance-driven nature. That
is, as class design is done quite late, a seamless transition into C procedural imple-
mentation language can be easily achieved. Further, non-functional timing and con-
currency constraints are regarded right from the beginning, performance problems, as
well as optimization potentials are investigated as soon as possible.

The second objective is addressed by supporting the distributed development of
subsystems, which are regarded as the major reusable assets. Having split the design
activities into an Architectural Design Modelling and a Detailled Design Modelling
part, MeDUSA forces the distributed development of subsystems, while trying to en-
sure that those distributedly developed subsystems, as well as existing ones being se-
lected for reuse, can be easily and seamlessly integrated.

The last objective is met with the decision to choose the UML as the underlying
notation. This decision was in our eyes quite natural, as the UML is indeed the only
notation standard that has found an acceptance, broad enough to deserve that denomi-
nation. However, the UML notation also showed some shortcomings that resulted from
its application to the domain of embedded systems. As an example for this consider
that an adequate representation of interfaces, residing on different levels of abstraction,
cannot be modelled in use case diagrams. We will have to investigate such problems
in the future.

While the decision to use an industry standard for the notation does allow to use
market-available modelling tools to support the execution of the method, the full po-
tential of the MeDUSA method can of course only be unleashed if customized support
is delivered. This is the reason why we are currently developing a research prototype
[ViP] - named ViPER - to demonstrate the benefits of a specially customized MeDUSA
tool support.

As already stated before, MeDUSA was not designed “in the open countryside”
of university research but in close cooperation with industrial practitioners. Therefore,
development of MeDUSA does not stop with the publishing of this report. As more
and more experience from its practical application can be gained, it will likely change
in the future - as it has done in the past. We will therefore publish updates to the

64

method - as well as to this report - on the MeDUSA project web page [MeD], which
also contains a hypertext documentation (HTML) of the method as well as further
supporting material.

65

References

[BS02] Kurt Bittner and Ian Spence. Use Case Modeling. Addison Wesley, 2002.
[Coc01] Alistar Cockburn. Writing Effective Use Cases. Addison Wesley, The agile software devel-

opment series, 2001.
[Fow03] Martin Fowler. UML Distilled - Third Edition. Addison Wesley Object Technology Series,

2003.
[GHH+04] H. Grothey, C. Habersetzer, M. Hiatt, W. Hogrefe, M. Kirchner, G. Lütkepohl,

W. Marchewka, U. Mecke, M. Ohm, F. Otto, K.-H. Rackebrandt, M. Schönsee, D. Sievert,
A. Thöne, and H.-J. Wegener. Praxis der industriellen Durchflussmessung. ABB Automation
Products, Werk Göttingen, 2004.

[Gom00] Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time Applications with UML.
Addison Wesley, Object Technology Series, 2000.

[Hau05] Peter Haumer. IBM Rational Method Composer - Part 1: Key Concepts. Rational Edge,
www.ibm.com/developerworks/rational/library/dec05/haumer/index.html, 2005.

[Hau06] Peter Haumer. IBM Rational Method Composer - Part 2:
Authoring method content and processes. Rational Edge,
www.ibm.com/developerworks/rational/library/jan06/haumer/index.html, 2006.

[JCJv92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard. Object-Oriented
Software Engeneering - A Use Case Driven Approach. 1992.

[JRH+04] Mario Jeckle, Chris Rupp, J”urgen Hahn, Barbara Zengler, and Stefan Queins. UML2
glasklar. Carl Hanser Verlag, Wien, 2004.

[MeD] MeDUSA project site. http://www.medusa.sc.
[NLS+05] Alexander Nyßen, Horst Lichter, Jan Suchotzki, Peter Müller, and Andreas Stelter. UML2-

basierte Architekturmodellierung kleiner eingebetteter Systeme - Erfahrungen einer Feld-
studie. volume TUBS-SSE-2005-01, 2005.

[NMSL04] Alexander Nyßen, Peter Müller, Jan Suchotzki, and Horst Lichter. Erfahrungen bei der sys-
tematischen Entwicklung kleiner eingebetteter Systeme mit der COMET-Methode. Lecture
Notes in Informatics (LNI) Modellerierung 2004, P-45:229–234, 2004.

[SPE05] Software Process Engineering Metamodel Specification - Version 1.1.
http://www.omg.org/cgi-bin/doc?formal/2005-01-06, 2005.

[SPE06] Software & Systems Process Engineering Metamodel, OMG Draft Adopted Specification.
http://www.omg.org/cgi-bin/doc?ad/06-06-02, 2006.

[ViP] ViPER project site. http://www.viper.sc.
[Wal07] Andreas Walter. Ein Use Case-Modellierungswerkzeug für die ViPER-Plattform. diploma

thesis, RWTH Aachen University, 2007.

66

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A
complete list of reports dating back to 1987 is available from http://aib.informatik.rwth-
aachen.de/. To obtain copies consult the above URL or send your request to:
Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:
biblio@informatik.rwth-aachen.de

2001-01 ∗ Jahresbericht 2000
2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces
2001-03 Thierry Cachat: The power of one-letter rational languages
2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus
2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic
2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem
2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication
Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures
2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung
2002-01 ∗ Jahresbericht 2001
2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems
2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages
2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting
2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines
2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic
Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
2002-09 Markus Mohnen: Interfaces with Default Implementations in Java
2002-10 Martin Leucker: Logics for Mazurkiewicz traces
2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting
2003-01 ∗ Jahresbericht 2002
2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

67

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs
2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard
2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates
2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003
2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic
2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting
2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming
2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming
2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming
2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination
2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information
2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity
2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules
2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

68

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture
2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler
2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation
2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

69

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-
terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006
2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, Jan Borchers: coJIVE: A Sys-
tem to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal
2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

70

