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Abstract. In this report we study the effect of an optimizing algorithm for
straight–line code which first constructs a directed acyclic graph representing the
given program and then generates code from it. We show that this algorithm
produces optimal code with respect to the classical transformations such as Con-
stant Folding, Common Subexpression Elimination, and Dead Code Elimination.
In contrast to the former, the latter are also applicable to iterative code contain-
ing loops. We can show that the graph–based algorithm essentially corresponds
to a combination of the three classical optimizations in conjunction with Copy
Propagation. Thus, apart from its theoretical importance, this result is relevant
for practical compiler design as it allows to exploit the optimization potential of
the graph–based algorithm for non–linear code as well.

1 Introduction

Literature on optimizing compilers describes a wide variety of code transforma-
tions which aim at improving the efficiency of the generated code with respect
to different parameters. Most of them concentrate on specific aspects such as the
elimination of redundant computations or the minimization of register usage.
There are, however, also combined methods which integrate several optimization
steps in one procedure.

In this report we compare certain classical optimizing transformations for
straight–line code with a combined procedure which first constructs a directed
acyclic graph (DAG) representing the given program and then generates op-
timized code from it. The basic version of the latter has been introduced in
[ASU70], and the authors claim that it produces optimal results1 regarding the
length of the generated code. However the DAG procedure cannot directly be
applied to iterative code containing loops, which on the other hand is possible
for most of the classical transformations.

In this paper we first present a slightly modified version of the DAG algo-
rithm, denoted by TDAG , which in addition supports constant folding. We then
show that it integrates the following three classical transformations:

Constant Folding (TCF ), which corresponds to a partial evaluation of the pro-
gram with respect to a given interpretation of its constant and operation
symbols;

Common Subexpression Elimination (TCS ), which aims to decrease the execu-
tion time of the program by avoiding multiple evaluations of the same ex-
pression; and

Dead Code Elimination (TDC ), which removes computations that do not con-
tribute to the actual result of the program.

1 The optimality is given w.r.t. strong equivalence, see Sec. 2.4.



It will then turn out that these transformations are not sufficient to com-
pletely encompass the optimizing effect of the DAG algorithm. Rather a fourth
transformation, Copy Propagation, has to be added, which propagates values in
variable–copy assignments. This does not have an optimizing effect on its own but
generally enables other transformations such as Common Subexpression Elimi-
nation and Dead Code Elimination. In fact we will show that the DAG procedure
can essentially be characterized as a combination of Copy Propagation and the
first three transformations. (“Essentially” here means that some additional mi-
nor modifications are required to make the two resulting programs syntactically
equal.)

More concretely we will show that, under the above restriction, the DAG al-
gorithm corresponds to a repeated application of Common Subexpression Elimi-
nation and Copy Propagation in alternation, preceded by Constant Folding and
followed by Dead Code Elimination. Formally this relation can be depicted as
follows:

TDAG ≈ TDC ◦ (TCP ◦ TCS )∗ ◦ TCF .

Apart from its theoretical importance, this result is also relevant for practical
compiler design as it allows to exploit the optimization potential of the DAG–
based algorithm for non–linear code as well.

Our investigation will be carried out in a framework in which we develop
formal definitions for concepts such as linear programs and their semantics, (op-
timizing) program transformations, their correctness and their equivalence, etc.
These preliminaries will be presented in Sec. 2, followed by the definition of the
first three classical transformations and of the DAG–based algorithm in Sec. 3
and 4, respectively. The following Sec. 5 constitutes the main part of this report,
establishing the equivalence between the DAG procedure and the composition of
the classical transformations.

To support the experimenting with concrete examples, also a web–based
implementation of the optimizing transformations is available at the web page
[Rie05a].

2 SLC–Programs and their Properties

Straight–line code (SLC) constitutes the basic blocks of the intermediate code
of iterative programs. In particular it is contained in loop bodies whose efficient
execution is crucial.

2.1 Syntax

An SLC–program consists of a sequence of assignments using simple arithmetic
expressions without branchings or loops, a vector of input variables whose values
are initialized before program execution and a vector of output variables whose
values form the “result” of the computation after program termination.

For the formal description of the syntax of such programs we need some
preliminary definitions.

Definition 2.1 (Signature). A signature is a pair Σ = (F,C) consisting of
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– a finite set of function symbols (or: operation symbols) F :=
⋃∞

i=1 F (i) where
F (i) denotes the set of i–ary function symbols and

– a (not necessarily finite2) set of constant symbols C.

Furthermore let V := {x, y, z, ...} be the (infinite) set of all variables.

Example 2.2. Σarithm = ({+, ∗,−},
�
) with +, ∗ ∈ F (2) and − ∈ F (1) is an

example of a signature. A simplified notation for this is Σarithm = ({+(2), ∗(2),
−(1)},

�
), in which for each operator the arity is given as a superscript. Observe

that
�

in this case contains only constant symbols whose interpretation can differ
from the usual one (see also Sec. 2.2).

Now we can define the syntax of an SLC–program:

Definition 2.3 (SLC–Program). An SLC–program is a quadruple π = (Σ,
~vin, ~vout, β) with

– a signature Σ = (F,C),
– a vector of pairwise distinct input variables ~vin = (x1, ..., xs), xi ∈ V and
– a vector of pairwise distinct output variables ~vout = (y1, ..., yt), yi ∈ V , and
– a block β = α1;α2; ...;αn with instructions αi of the form x← e where x ∈ V

and e ∈ V ∪ C ∪ {f(u1, ..., ur) | f ∈ F (r) and ∀j ∈ {1, .., r} : uj ∈ V ∪ C}.
It is not allowed to assign a variable to itself directly or indirectly via other
variables (using copy instructions of the form x← y where x, y ∈ V ).

– In correspondence to ~vin and ~vout let Vin := {x1, ..., xs} and Vout := {y1, ..., yt}
denote the sets of input/output variables.

– Vin ∩ Vout = ∅ must hold3.

For an SLC–program π we introduce the following denotations:

– Cπ is the set of constant symbols occurring in π,
– Vπ the set of variables occurring in in π,
– Vα the set of the variables occurring in the instruction α and
– Ve the set of the variables in the expression e.

Finally we let SLC denote the set of all SLC–programs.

Example 2.4. Figure 1 shows a simple SLC–program with signature Σarithm′ :=
({+(2), ∗(2),−(2)},

�
). Deviating from the above definition we employed the usual

infix notation. Later we will often use infix notation when we refer to the “clas-
sical arithmetic”.

From now on we will always assume completeness for SLC–programs:

Definition 2.5 (Completeness). π ∈ SLC is called complete if every variable
is defined before being used4. Formally: let DVi ⊆ Vπ denote the defined variables
up to instruction αi. These sets can be computed as follows:

DV0 := Vin

DVi := DVi−1 ∪ {x ∈ V | αi = x← e} for i ∈ {1, ..., n}

Now the following holds: π is complete iff

2 In the program only finitely many of these can occur.
3 This is necessary for the correctness of the DAG optimization (Sec. 4.3).
4 The occurrence of a variable in ~vin/~vout corresponds to a definition/use, respectively.
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~vin : (x, y)

β : u ← 3;

v ← x− y;

w ← u + 1;

x ← x− y;

v ← w − 1;

u ← x− y;

z ← u ∗ w;

u ← 2 ∗ u;

~vout : (u, v)

Fig. 1. SLC–program π = (Σarithm′ , ~vin, ~vout, β)

– if αi = x← e then Ve ⊆ DVi−1 for all i ∈ {1, ..., n} and

– Vout ⊆ DVn.

From the definition one can construct a simple iterative algorithm for testing
completeness of SLC–programs. Only for complete programs it can be ensured
that the result depends only on the input and, thus, that the program is deter-
ministic. The completeness of the program π in Fig. 1 is obvious.

2.2 Semantics

So far we only dealt with the structure and not with the meaning of SLC–
programs. The semantics of an SLC–program depend on the domain of the vari-
ables as well as the interpretation of the operators and constant symbols.

Definition 2.6 (Interpretation). An interpretation of a signature Σ = (F,C)
is a Σ–algebra A := (A,ϕ) with domain (universe) A and interpretation function

ϕ : F ∪ C ∪A→
∞⋃

i=0

{δ | δ : Ai → A} with

ϕ(f) : Ar → A for every f ∈ F (r)

ϕ(c) ∈ A for every c ∈ C

ϕ(a) = a for every a ∈ A

Thus ϕ assigns to every function symbol f a function ϕ(f) over A and to
every constant symbol a value in A. For simplifying later notations values in A
are mapped to themselves (this is e.g. useful for constant folding; see Sec. 3.3).

Example 2.7. For instance Σarithm could be interpreted by A = (
�

, ϕ) where ϕ
assigns the operators their “usual” meaning over

�
and every constant symbol

in
�

itself as a constant value. A different interpretation could be the “Boolean
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arithmetic”:

A = ({0, 1}, ϕ) with ϕ(+)(a, b) = a ∨ b

ϕ(∗)(a, b) = a ∧ b

ϕ(−)(a) = 1− a

ϕ(z) =

{
0 if z = 0
1 else

for z ∈
�

Intuitively a program can be understood as a function that maps a vector
representing the input values (input vector) to a vector that contains the values
of the output variables (output vector).

The current state at an arbitrary program position can be expressed as a
mapping of variables to their values at this specific point. A state is therefore
representable as a valuation function σ : Vπ → A.

Definition 2.8 (State Space). The state space of an SLC–program π := (Σ,
~vin, ~vout, β) with Σ := (F,C) and interpretation A := (A,ϕ) of Σ is given by

S := {σ | σ : Vπ → A}

From the semantic point of view every instruction α determines a transforma-
tion tα : S → S of one state into another. The program semantics are inductively
based on this transformation.

Definition 2.9 (Semantics of an SLC–Program). Let π := (Σ,~vin, ~vout, β) ∈
SLC with ~vin := (x1, ..., xs), ~vout := (y1, ..., yt) and A := (A,ϕ) an interpretation
of Σ.

The input vector ~in := (in1, ..., ins) ∈ As determines the initial valuation

σ0(v) :=

{
ini if v = xi

a else

with arbitrary5 a ∈ A.
The semantics A[[π ]] of π w.r.t. A can now be inductively defined as follows:

– The semantics A[[α ]] : S → S of an instruction α are6 A[[α ]]σ := σ[x/A[[e ]]σ].
For A[[e ]]σ we distinguish the following cases:
1. e = y ∈ Vπ ⇒ A[[e ]]σ := σ(y)
2. e = c ∈ Cπ ⇒ A[[e ]]σ := ϕ(c)
3. e = f(u1, ..., ur) ⇒ A[[e ]]σ := ϕ(f)(A[[u1 ]]σ, ...,A[[ur ]]σ)

– Given a block β = α1; ...;αn we define the block semantics as7 A[[β ]] =
A[[αn ]] ◦ ... ◦ A[[α1 ]].

– The semantics A[[π ]] : As → At of π are then

A[[π ]]( ~in) = ((A[[β ]]σ0)(y1), ..., (A[[β ]]σ0)(yj)
︸ ︷︷ ︸

value of the output variable yj

, ..., (A[[β ]]σ0)(yt))

5 Because of the completeness of π non–input variables can be initialized arbitrarily.

6 [f [x/a](y) :=



a if y = x
f(y) else

is the modification of a function for an input value.

7 ◦ is the function composition (f ◦ g)(x) = f(g(x)).
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We see that the semantics are defined independent of the variable names;
only the order of the variables in the input/output vectors is relevant. Thus we
have functional semantics.

Example 2.10. Let us examine the semantics for a short example program:

πshort := (Σarithm, (x), (y, z), β) with β := y ← −x;

z ← 2 ∗ y;

We interpret the operators ∗ and − with their usual meanings on
�

. The program
semantics for in = (4) (i.e., σ0 = {x 7→ 4, y 7→ 0, z 7→ 0}) are computed as follows:

A[[β ]]σ0 = A[[z ← 2 ∗ y ]] ◦ A[[y ← −x ]]σ0

= A[[z ← 2 ∗ y ]]σ0[y/A[[−x ]]σ0]

= A[[z ← 2 ∗ y ]]σ0[y/ϕ(−)(A[[x ]]σ0)]

= A[[z ← 2 ∗ y ]]σ0[y/ϕ(−)(σ0(x))]

= A[[z ← 2 ∗ y ]]σ0[y/ϕ(−)(4)]

= A[[z ← 2 ∗ y ]]σ0[y/− 4]
︸ ︷︷ ︸

=:σ1

= σ1[z/A[[2 ∗ y ]]σ1]

= σ1[z/ϕ(∗)(A[[2 ]]σ1 ,A[[y ]]σ1)]

= σ1[z/ϕ(∗)(ϕ(2), σ1(y))]

= σ1[z/ϕ(∗)(2,−4)]

= σ1[z/− 8]

= {x 7→ 4, y 7→ −4, z 7→ −8}

= {y 7→ −4, z 7→ −8}

We obtain:

A[[πshort ]](4) = ((A[[β ]]σ0)(y), (A[[β ]]σ0)(z))(4) = (−4,−8)

Thus the “execution” of the program works “as expected”, the variables on
the left–hand side of an instruction are instantiated with the value resulting from
the evaluation of the expressions on the right–hand side. For this evaluation the
constant and function symbols of an expression have to be interpreted. Finally
the last variable valuation determines the program output.

2.3 Term Representation of SLC–Programs

The computation determining the final value of an output variable can be rep-
resented as a term. This is especially useful for proofs.

Definition 2.11. We define the set of terms TΣ(X) for a signature Σ = (F,C)
and a set of variables X ⊆ V inductively:

1. C ⊆ TΣ(X),
2. X ⊆ TΣ(X), and
3. f(t1, ..., tr) ∈ TΣ(X) if t1, ..., tr ∈ TΣ(X) and f ∈ F (r).
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A term without variables t ∈ TΣ(∅) =: TΣ is also called a ground term.

Therefore also the expressions on the right–hand side of instructions are terms
for which no nesting is allowed. For computing the term representation of an
SLC–program it seems reasonable to symbolically execute the program by back-
ward substituting the expression on the right–hand side of an assignment for the
left–hand side.

Definition 2.12. The term representation tπ(y) ∈ TΣ(Vin) of an SLC–program
π := (Σ,~vin, ~vout, β) with β := α1; ...;αn w.r.t. an output variable y ∈ Vout can
be computed as follows:

t(n)
π (y) := y

t(i−1)
π (y) := t(i)π (y)[x/e] for αi = x← e and i ∈ {1, ..., n}

tπ(y) := t(0)π (y)

Here [x/t] : TΣ(X)→ TΣ(X) denotes the substitution of every occurrence of the
variable x ∈ X with the term t ∈ TΣ(X).

During computation variables in the current term are successively replaced
until finally only input variables remain. Substituting these with the input values
yields a ground term.

Example 2.13. Now we will compute the term representation tπ(u) of the pro-
gram π from Fig. 1 w.r.t. the output variable u:

i αi t
(i)
π

0 t
(1)
π [u/3] = ∗(2,−(−(x, y), y))

1 u← 3; t
(2)
π [v/−(x, y)] = ∗(2,−(−(x, y), y))

2 v ← x− y; t
(3)
π [w/+(u, 1)] = ∗(2,−(−(x, y), y))

3 w ← u + 1; t
(4)
π [x/−(x, y)] = ∗(2,−(−(x, y), y))

4 x← x− y; t
(5)
π [v/−(w, 1)] = ∗(2,−(x, y))

5 v ← w − 1; t
(6)
π [u/−(x, y)] = ∗(2,−(x, y))

6 u← x− y; t
(7)
π [z/∗(u,w)] = ∗(2, u)

7 z ← u ∗ w; t
(8)
π [u/∗(2, u)] = ∗(2, u)

8 u← 2 ∗ u; u

Thus we obtain tπ(u) = ∗(2,−(−(x, y), y)).

Using the term representation as defined above we can give an alternate
definition of the semantics:

Lemma 2.14. Let π := (Σ,~vin, ~vout, β) ∈ SLC with Σ := (F,C), ~vin := (x1, ..., xs)
and ~vout := (y1, ..., yt). Then it holds:

A[[π ]]( ~in) = (A[[tπ(y1)[x1/in1, ..., xs/ins] ]], ...,A[[tπ(yt)[x1/in1, ..., xs/ins] ]])

where the (ground) term semantics A[[t ]] for a ground term t ∈ TΣ′ and a signa-
ture Σ′ = (F,C ∪A) are given by:

1. A[[a ]] := a for a ∈ A
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2. A[[c ]] := ϕ(c) for c ∈ C
3. A[[f(t1, ..., tr) ]] := ϕ(f)(A[[t1 ]], ...,A[[tn ]]) for ti ∈ TΣ′

One inserts simply the semantics of the term representations of π w.r.t. the
output variables into the result vector where the input variables in the terms are
replaced by the input values (this results in a term over the new signature Σ ′).
The term semantics are the successive application of the interpretations of the
operators on the particular subterms (constants are interpreted by themselves
and constant symbols mapped by ϕ). The correctness of this approach is obvious.

2.4 Equivalence

For optimizations program equivalence is of high significance since programs have
to be transformed in a way such that their semantics are preserved. Otherwise
the optimization algorithm would be incorrect.

Definition 2.15 (Equivalence). Two SLC–programs π1 and π2 over some sig-
nature Σ are called A–equivalent for an interpretation A of Σ (π1 ∼A π2) if
A[[π1 ]] = A[[π2 ]]. If this holds for all interpretations A then they are called strongly
equivalent (π1 ∼ π2).

Two equivalent programs are therefore computing the same function. It is
evident that strong equivalence is a sufficient condition for (weak) equivalence.
With the aid of the term representation we get a decidability result for strong
equivalence:

Theorem 2.16. Let πi := (Σ,~vin, ~vout, βi) ∈ SLC, i ∈ {1, 2} with8 w.l.o.g.
~vin = (x1, ..., xs) and ~vout = (y1, ..., yt). Then:

π1 ∼ π2 ⇔ ∀j ∈ {1, ..., t} : tπ1(yj) = tπ2(yj)

Proof. According to La. 2.14 the semantics of πi, i ∈ {1, 2} are:

A[[πi ]](~in) = (A[[tπi
(y1)[x1/in1, ..., xs/ins] ]], ...,A[[tπi

(yt)[x1/in1, ..., xs/ins] ]]).

If tπ1(yj) = tπ2(yj) holds for all j ∈ {1, ..., t} then also tπ1(yj)[x1/in1, ..., xs/ins] =
tπ2(yj)[x1/in1, ..., xs/ins] for all j ∈ {1, ..., t} due to the same input values for
both programs.

The application of the semantics function A[[· ]] to two identical terms thus
yields the same result (because the semantics are deterministic). ut

For weak equivalence the above theorem is not valid:

Example 2.17. Let πi := (Σ,~vin, ~vout, βi), i ∈ {1, 2} with ~vin = (x, y), ~vout = (z),
β1 = z ← x + y, and β2 = z ← y + x.

We see that the term representations of π1 and π2 w.r.t. z ∈ Vout are not
identical, but that assuming arithmetic on

�
yields the same semantics due to

the commutativity9 of + � .

8 According to Def. 2.9 the input/output vectors of the two programs must have equal length.
Thus by renaming variables one can obtain the same naming.

9 Exploiting such rules is part of algebraic optimizations that can be done during peephole
optimization [McK65,TvSS82,DF84].
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Therefore one cannot conclude that two programs with different term repre-
sentations are not equivalent. In fact for arbitrary interpretations weak equiva-
lence of SLC–programs is undecidable:

Theorem 2.18 (Undecidability of Equivalence). Given two SLC–programs
π1 and π2 over Σ and an interpretation A of Σ it is generally undecidable whether
π1 ∼A π2.

Proof. For π := (Σ, ε, (y), β) ∈ SLC with Σ := ({+, /}, {1}) where / denotes
integer division one can show that the zero equivalence problem, i.e., the question
whether A[[π ]] = 0 holds is undecidable.

This is done by reducing the problem to Hilbert’s Tenth Problem which is
undecidable [DMR76]. The detailed proof can be found in [IL80]. ut

In special cases however, like the arithmetic on
�

without division, one can
obtain a positive result:

Theorem 2.19. Let Σ := (F,
�

) with F := {+(2),−(2), ∗(2)}, A := (ϕ,
�

),
ϕ(◦) := ◦ � for ◦ ∈ F and ϕ(z) = z for all z ∈

�
. Additionally let πi :=

(Σ,~vin, ~vout, βi) ∈ SLC for i ∈ {1, 2} with ~vin = (x1, ..., xs), ~vout = (y1, ..., yt)
and Vπ1 = Vπ2. Then one can decide whether π1 ∼A π2 holds.

Proof. Both programs are transformed in a sequence of polynomials P
(i)
j :=

P
(i)
j (x1, ..., xs) for j ∈ {1, ..., t}. By converting these to a normal form and com-

paring the coefficients one can determine if the programs are equivalent.

The algorithm works in the following steps:

1. For i ∈ {1, 2} and j ∈ {1, ..., t} compute the term representation tπi
(yj) of πi

w.r.t. yj.

2. Convert tπi
(yj) for i ∈ {1, 2} and j ∈ {1, ..., t} into polynomials. For a term

t ∈ TΣ(X) we will denote the corresponding polynomial by P [t].

3. Transform P [tπi
(yj)] for all i ∈ {1, 2}, j ∈ {1, ..., t} into the normal form

P
(i)
j (x1, ..., xs) :=

n∑

k1=0

n∑

k2=0

...

n∑

ks=0

c
(i,j)
k1k2...ks

· xk1
1 · x

k2
2 · ... · x

ks
s

by multiplicative expansion. The length10 of this representation is O(ns),
i.e., it is exponential in the number of input variables. Therefore also the
transformation has at least this complexity.

4. Test if c
(1,j)
k1...ks

= c
(2,j)
k1...ks

for all j ∈ {1, ..., t}, kl ∈ {1, ..., n}, l ∈ {1, ..., s}.
If the above holds the programs are equivalent, otherwise not. ut

Because of its high complexity the algorithm is practically unusable. As per
[IM83], however, the problem is probabilistically solvable in polynomial time (this
is also the case for the arithmetic over

�
).

10 Number of summands
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2.5 Cost and Optimality

We need certain criteria for comparing programs and for assessing the quality of
an optimization.

Definition 2.20 (Cost Function). A function c : SLC →
� +

0 is called cost
function if for two SLC–programs π := (Σ,~vin, ~vout, α1; ...;αn) and π′ := (Σ,~v′in,
~v′out, αi1 ; ...;αik ) with 1 ≤ ij ≤ n and ij < ij+1 for j ∈ {1, ..., k − 1} the following
holds:

c(π′) ≤ c(π) (monotonicity)

As standard cost functions we will use cl for the number of instructions of a
program and cop for the number of operations (where copy instructions are not
counted). The monotonicity ensures that removing instructions from a program
will never increase its cost value.

Determining the cost value of an SLC–program is quite simple because SLC–
programs do not contain loops or branchings. In contrast, in iterative programs
it is generally not decidable at compile time how often a loop will be traversed
and thus the cost computation can be difficult or even impossible (depending on
the particular cost function).

When deciding whether a program π is optimal we only consider programs
that are equivalent to π:

Definition 2.21 (Optimality). π ∈ SLC is optimal w.r.t. a cost function c
and an interpretation A if all π′ ∼A π have a higher cost, i.e., c(π) ≤ c(π ′). It is
called (strongly) c–optimal if c(π) ≤ c(π ′) for every π′ ∼ π.

Thus for deciding program optimality it is necessary to decide program equiv-
alence and hence the optimality of SLC–programs is undecidable. But for the
special case of arithmetic on

�
(without division) one can decide optimality.

The idea is to enumerate all SLC–programs in the order of their cost and
then to check the equivalence. For this we need another property of cost func-
tions: |c−1(r)| < ∞, ∀r ∈

�
(for each cost value only finitely many programs

may exist11). The program length cl fulfills this property only if the number of
constant symbols |C| is finite. The cost function cop never fulfills it (one could
add infinitely many copy instructions).

It is clear that even for this special case an optimality test is practically
infeasible. Therefore we will concentrate from now on on transformations that
improve programs instead of really optimizing them. In the following we will
nevertheless call these transformations optimizations for simplicity.

3 Classical Optimizations

After discussing the formal basis we will now focus on optimization algorithms
for SLC–programs. In this section we will introduce the “classical optimizations”.
Those are algorithms that are widely known and used in today’s compilers.

Optimizations typically run in two phases:

11 Up to the renaming of variables.
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Analysis: Collection of information that are necessary for the transformation of
the program. This is accomplished by defining a starting information that is
modified for each instruction. The program remains unchanged during this
step.

Transformation: Execution of the actual optimization; the program is modified
using the analysis information of the first phase. This transformation must
preserve equivalence.

Before introducing the algorithms we define some important properties that
an optimizing transformation should satisfy:

Definition 3.1 (Program Transformation). A function T : SLC → SLC is
called an A–program transformation for an interpretation A if, for every π ∈ SLC,

– T (π) ∼A π (correctness) and

– T (T (π)) = T (π) (idempotency).

If T is correct for every interpretation, then we call it a program transformation.

Note that every (A–)program transformation is required to be a function and
is deterministic therefore.

3.1 Dead Code Elimination

Dead Code Elimination removes instructions that are dispensable because they
do not influence program semantics.12 An instruction x← e represents dead code
if x is not used until it is redefined or if it is used only in instructions which are
themselves dead code.

The transformation is based upon the Needed Variable Analysis which deter-
mines, for each instruction, those variables whose values are still required. It is a
backward analysis, i.e., starting from the set of output variables the set of needed
variables is computed for each instruction.

Definition 3.2 (Needed Variable Analysis). Let π := (Σ,~vin, ~vout, β) ∈
SLC with β = α1; ...;αn. For an instruction α = x ← e we define the trans-
fer function tα : P(Vπ)→ P(Vπ) as follows:

tα(M) :=

{
(M \ {x}) ∪ Ve if x ∈M
M else

The tαn , ..., tα1 determine, beginning with Vout, the sets of needed variables:

NVn := Vout

NVi−1 := tαi
(NVi) for i ∈ {n, ..., 2}

Using the sets of needed variables computed during the analysis step we now
can define Dead Code Elimination:

12 The term dead code is also used to denote unreachable code in iterative programs.
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Definition 3.3 (Dead Code Elimination). For π = (Σ,~vin, ~vout, β) ∈ SLC
with β = α1; ...;αn, the program transformation TDC : SLC → SLC for elimi-
nating dead code is given by:

TDC (π) := (Σ,~vin, ~vout, β
′) with β′ := tDC(α1); ...; tDC (αn)

tDC(αi = x← e) :=

{
αi if x ∈ NVi

ε else

This means all instructions x ← e for which x is not in the set of needed
variables are removed. A computation of NV0 could be used for removing dis-
pensable input variables. This would however conflict with our definition of the
program semantics (because the length of the input vector would be reduced).

Example 3.4. The application of the Dead Code Elimination to the example
program from Fig. 1 yields:

i αi NVi dead code?

1 u← 3; NV2 No
2 v ← x− y; NV3 \ {w} ∪ {u} = {u, x, y} Yes
3 w ← u + 1; NV4 \ {x} ∪ {x, y} = {w, x, y} No
4 x← x− y; NV5 \ {v} ∪ {w} = {w, x, y} No
5 v ← w − 1; NV6 \ {u} ∪ {x, y} = {v, x, y} No
6 u← x− y; NV7 No
7 z ← u ∗ w; NV7 \ {u} ∪ {u} = {u, v} Yes
8 u← 2 ∗ u; Vout = {u, v} No

Thus the instructions α2 and α6 are removed by TDC .

The Dead Code Elimination is independent of program semantics, i.e., the
interpretation has no effect on the result of the transformation.

Theorem 3.5 (Correctness). For every π ∈ SLC, π ∼ TDC (π).

Proof. We have to show that A[[TDC (π) ]] = A[[π ]] holds for every interpretation
A (alternatively a proof using Thm. 2.16 would be possible). Induction on the
number of instructions n ∈ � :

n = 0:
β = ε so trivially A[[TDC (π) ]] = A[[π ]] holds and therefore also ~vout = ε
(otherwise the completeness of π would be violated).

n→ n + 1:
Induction Hypothesis: A[[TDC (π) ]] = A[[π ]] for all π ∈ SLC with β = α1; ...;αn.

Define πn := (Σ,~vin, ~vout, βn) with βn := α1; ...;αn. Additionally let πn+1 :=
(Σ,~vin, ~vout, βn+1) ∈ SLC with βn+1 = α1; ...;αn;αn+1 and αn+1 = x← e.

Now we have two cases:

1. x /∈ Vout:
αn+1 is dead code and does not influence the semantics of πn+1. Thus we
have for πn:

A[[πn+1 ]] = A[[πn ]] =
︸︷︷︸

I.H.

A[[TDC (πn) ]] =
︸︷︷︸

def.

A[[TDC (πn+1) ]]

14



2. x ∈ Vout:
According to the induction hypothesis for πn it holds A[[TDC (πn) ]] =
A[[πn ]]. Hence it follows:

(A[[βn+1 ]]σ0)(y) = (A[[βn ]]σ0)(y) for y ∈ Vout \ {x}

(A[[βn+1 ]]σ0)(x) = (A[[e ]](A[[βn ]]σ0))(x)

The reduction of A[[TDC (πn+1) ]] to A[[TDC (πn) ]] works similarly:
It holds: Vout = NVn+1 ⇒ NVn = Vout \ {x} ∪ Ve.
In πn+1 and πn therefore the same instructions are removed. We get:

(A[[TDC (βn+1) ]]σ0)(y) = (A[[TDC (βn) ]]σ0)(y) for y ∈ Vout \ {x}

(A[[TDC (βn+1) ]]σ0)(x) = (A[[e ]](A[[TDC (βn) ]]σ0))(x)

Thus altogether A[[πn+1 ]] = A[[TDC (πn+1) ]]. ut

The second defining property of a program transformation is its idempotency.
There also exists a non–idempotent variant of Dead Code Elimination which is
based on a so–called “Live–Variable Analysis”, and which has to be applied
repeatedly to obtain optimal results. For details see e.g. [ASU86,NNH99].

Theorem 3.6 (Idempotency). For every π ∈ SLC, TDC (TDC (π)) = TDC (π).

Proof. It suffices to show that TDC does not modify the NV –sets of the in-
structions remaining after the first TDC–application. For simplicity we will only
examine the elimination of a single instruction. An inductive extension to arbi-
trarily many is possible.

Let π := (Σ,~vin, ~vout, α1; ...;αn) and π′ := TDC (π) := (Σ,~vin, ~vout, α1; ...;
αi−1;αi+1; ...;αn) and αi = x ← e with x /∈ NVi. The sets NVi+1, ..., NVn

remain unchanged because of the backward analysis. Hence for the case i = 1
nothing is left to show.

For i > 1 in the initial program π:

NVi−1 = tαi
(NVi)

=

{
NVi \ {x} ∪ Ve if x ∈ NVi

NVi else

= NVi (since x /∈ NVi)

=

{
Vout if i = n
tαi+1(NVi+1) else

For π′ we obtain the same result:

NVi−1 =

{
Vout if i− 1 = n− 1
tαi+1(NVi+1) else

Assumption: TDC also eliminates αj = x′ ← e′, i 6= j from π′.

It follows x′ /∈ NVj in π′ and x′ /∈ NVj in π. But then αj would already have
been removed from π after the first application of TDC . ut
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Because of the idempotency a single application of the Dead Code Elimination
suffices to obtain a program that is optimal13 w.r.t. TDC . Later we will see that
by using other optimizations on a TDC–optimal program it can be possible that
new dead code arises.

Thus we have proven that TDC is a program transformation. Moreover it is
clear that it improves a program with respect to both the number of instructions
and operations: c(TDC (π)) ≤ c(π) for c ∈ {cl, cop}.

3.2 Common Subexpression Elimination

Unlike Dead Code Elimination, Common Subexpression Elimination is using a
forward analysis, the Available Expressions Analysis, which computes for each
instruction the (indices of the) operation expressions whose value is still available
and whose repeated evaluation can be avoided therefore.

Definition 3.7 (Available Expressions Analysis). Let π := (Σ,~vin, ~vout,
β) ∈ SLC with β = α1; ...;αn and αi = xi ← ei for every i ∈ {1, ..., n}. An
expression e is available at position i if ej = e for some j < i and xk /∈ Ve for
every j ≤ k < i.

The transfer functions tαi
: P({1, ..., n}) → P({1, ..., n}) are given by tαi

(M) :=
killαi

◦ genαi
where genαi

, killαi
: P({1, ..., n}) → P({1, ..., n}) are defined by

genαi
(M) :=

{
M ∪ {i} if ei = f(u1, ..., ur) and ∀j ∈M : ej 6= ei

M else

killαi
(M) := M \ {j ∈M | xi ∈ Vej

}

This yields the sets of available expressions AEi ⊆ {1, ..., n} for i ∈ {1, ..., n}:

AE1 := ∅ and AEi+1 := tαi
(AEi) for i ∈ {1, ..., n}

By computing the AE–sets the available expressions for each instruction can
be found. For the subsequent program transformation, however, we need the
inverted view: given an instruction we have to determine where the corresponding
expression is repeated and available.

Definition 3.8 (Common Subexpression Elimination). For each instruc-
tion, the function vr : {1, ..., n} → P({1, ..., n}) yields the valid recurrences of
the corresponding expression: vr(i) := {j ∈ {i + 1, ...n} | i ∈ AEj, ei = ej}.

The program transformation TCS : SLC → SLC works as follows: for every
i ∈ {1, ..., n} with vr(i) 6= ∅, select ti ∈ V \ Vπ and

1. replace αi = x← e by ti ← e; x← ti and

2. replace the instructions αj = y ← e by y ← ti for all j ∈ vr(i) .

Example 3.9. Also the Common Subexpression Elimination will be illustrated
with an exemplary computation for the program from Fig. 1:

13 π ∈ SLC is called optimal w.r.t. T : SLC → SLC if T (π) = π.
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i αi AEi vr(i) new instruction(s)

1 u← 3; ∅ ∅
2 v ← x− y; ∅ {4} t2 ← x− y;

v ← t2;
3 w← u + 1; AE2 ∪ {2} = {2} ∅
4 x← x− y; AE3 ∪ {3} = {2, 3} ∅ x← tv2;
5 v ← w − 1; (AE4 ∪ {4}) \ {2, 4} = {3} ∅
6 u← x− y; AE5 ∪ {5} = {3, 5} ∅
7 z ← u ∗ w; (AE6 ∪ {6}) \ {3} = {5, 6} ∅
8 u← 2 ∗ u; AE7 ∪ {7}) = {5, 6, 7} ∅

The output program is longer than the input program. But we were able to avoid
a second evaluation of the expression x− y.

Now we have to show that the Common Subexpression Elimination is a pro-
gram transformation.

Theorem 3.10 (Correctness). For every π ∈ SLC, π ∼ TCS (π).

Proof. According to Thm. 2.16 for strong equivalence it suffices to show that the
term representation of π w.r.t. the output variables does not change, i.e., that
tπ(v) = tTCS (π)(v) for all v ∈ Vout.

Similarly to the proof of Thm. 3.6 we consider only the simplified case that
exactly one expression with one valid recurrence is optimized by TCS .

Let π := (Σ,~vin, ~vout, α1; ...;αn) and π′ := TCS (π) := (Σ,~vin, ~vout, β
′) with

β′ := α′1; ...;α
′
n+1 := α1; ...;αi−1;α

′
i;α
′′
i ;αi+1; ...;α

′
j ; ...;αn.

Thus αi = x← e and αj = y ← e with i ∈ AEj . Then α′i = ti ← e, α′′i = x← ti
and α′j = y ← ti.

Now we analyze the substitution term s ∈ TΣ(Vπ) for y at the position i in
both of the programs. In π we have s = e since e is not changed anymore due to
i ∈ AEj . In π′ we get s = ti[ti/e] = e because ti is modified nowhere, except at
position i.

If y occurs in a term during the computation of the term representation of
π for v ∈ Vout we obtain the same substitutions for both of the programs and
therefore tπ(v) = tTCS (π)(v) for all v ∈ Vout. ut

Like Dead Code Elimination also Common Subexpression Elimination is
idempotent and therefore a single application is sufficient to obtain a TCS–
optimal program:

Corollary 3.11 (Idempotency). For every π ∈ SLC, TCS (TCS (π)) = TCS (π).

Proof. Since already during the first analysis all available expressions are found
and their valid recurrences are replaced accordingly but no additional operation
expressions are added. Therefore a second application of TCS cannot effectuate
any changes. ut
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3.3 Constant Folding

Constant Folding is a partial evaluation of the input program with constant prop-
agation. It avoids the redundant evaluation of constant expressions at runtime.
In contrast to Dead Code and Common Subexpression Elimination the optimiza-
tion is incorporating the program semantics as this is necessary for evaluating
constant expressions.

During the program analysis we determine for every instruction the known
values of the variables. For this the definition of the semantics (Sec. 2.9) is ex-
tended to allow the “evaluation” of expressions with unknown variable values.

Definition 3.12 (Extended Instruction Semantics). Let π := (Σ,~vin, ~vout,
β) ∈ SLC with signature Σ := (F,C) and β := α1; ...;αn. In addition let A =
(A,ϕ) be an interpretation of Σ. Define the new state space as S̄ := {σ | σ : Vπ →
A ∪ {⊥}} where ⊥ denotes an unknown variable value. The extended semantics
Ā[[α ]] : S̄ → S̄ of an instruction α = x← e for σ ∈ S̄ are then:

Ā[[α ]]σ :=

{
A[[α ]]σ if ∀v ∈ Ve : σ(v) 6= ⊥
σ[x/⊥] else

In other words: if at least one argument of a function is an unknown variable
also the evaluation result is unknown. Special properties of operations, e.g. ∀x ∈

�
: 0 · x = 0, are ignored.

Definition 3.13 (Reaching Definition Analysis). Let π,A, S̄ be given as in
Def. 3.12. The transfer function tα : S̄ → S̄ for an instruction α is defined by

tα(σ) := Ā[[α ]]σ.

Now we obtain the variable assignment RDi ∈ S̄ for αi by successive transfor-
mation:

RD1 := σ⊥ with ∀v ∈ Vπ : σ⊥(v) := ⊥

RDi+1 := tαi
(RDi) for i ∈ {1, ..., n}

The evaluation of constant expressions potentially causes the introduction
of new constants (not contained in C). Therefore the signature of the target
program needs to be adapted.

Definition 3.14 (Constant Folding). For π = (Σ,~vin, ~vout, β) ∈ SLC, Σ =
(F,C), β = α1; ...;αn, αi = xi ← ei and A = (A,ϕ), the transformation TCF :
SLC → SLC is defined by:

TCF (π) := ((F,A), ~vin, ~vout, β
′) with β′ := x1 ← RD1(e1); ...;xn ← RDn(en)

where for σ ∈ S̄ (and c ∈ C, y ∈ V, ui ∈ V ∪ C, f ∈ F (r)):

σ̄(c) := ϕ(c)

σ̄(y) :=

{
σ(y) if σ(y) 6= ⊥
y else

σ̄(f(u1, ..., ur)) :=

{
f(σ̄(u1), ..., σ̄(ur)) if ∃i ∈ {1, ..., r} such that σ(ui) = ⊥
ϕ(f)(σ̄(u1), ..., σ̄(ur)) else
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Example 3.15. When applying TCF to the program from Fig. 1 we get the fol-
lowing computation:

i αi RDi new instruction α′i
1 u← 3; σ⊥ u← 3;
2 v ← x− y; σ⊥[u/3] =: σ1 v ← x− y;
3 w← u + 1; σ1[v/⊥] = σ1 w ← 4;
4 x← x− y; σ1[w/4] =: σ2 x← x− y;
5 v ← w − 1; σ2[x/⊥] = σ2 v ← 3;
6 u← x− y; σ2[v/3] =: σ3 u← x− y;
7 z ← u ∗ w; σ2[u/⊥] =: σ4 z ← u ∗ 4;
8 u← 2 ∗ u; σ4[z/⊥] = σ4 u← 2 ∗ u;

Constant Folding is “producing” additional Dead Code as we see in the example:
the first instruction is dispensable since u is not used anymore until its next
assignment in the 5th instruction. TCF has replaced all occurrences of u between
the first and the fifth instruction with the scalar 3.

For the correctness of Constant Folding the particular interpretation has to
be taken into account. Thus strong equivalence is generally not preserved.

Theorem 3.16 (Correctness). For every π = (Σ,~vin, ~vout, β) ∈ SLC and ev-
ery Σ–algebra A, π ∼A TCF (π).

Proof. Let π := (Σ,~vin, ~vout, β) ∈ SLC with Σ := (F,C), β := α1; ...;αn, αi :=
xi ← ei and A := (A,ϕ) an interpretation of Σ. It suffices to show that A[[ei ]] =
A[[e′i ]] holds for all i ∈ {1, .., n} where e′i = RDi(e).

Depending on the type of ei we get different cases:

1. ei = c ∈ C.
Then e′i := ϕ(c) and for a valuation σ ∈ S:

A[[ei ]]σ = ϕ(c)
def. of ϕ

= ϕ(ϕ(c)) = A[[e′i ]]σ

2. ei = y ∈ V . Two subcases:

(a) RDi(y) = ⊥ ⇒ e′i = ei, i.e., the semantics are trivially identical.

(b) RDi(y) = a ∈ A ⇒ e′i = a. In this case follows for σ ∈ S:

A[[ei ]]σ = σ(y)
︸︷︷︸

∈A

def. of ϕ
= ϕ(σ(y)) = A[[e′i ]]σ

3. ei = f(u1, ..., ur). Again two cases:

(a) ∃j ∈ {1, ..., r} such that RDi(uj) = ⊥:
e′i = f(RDi(u1), ..., RDi(un)) and we have to show:

A[[ei ]]σ = ϕ(f)(A[[u1 ]]σ, ...,A[[ur ]]σ)

= ϕ(f)(A[[RDi(u1) ]]σ, ...,A[[RD i(ur) ]]σ) = A[[e′i ]]σ

Thus we have to prove that A[[uj ]]σ = A[[RDi(uj) ]]σ for j ∈ {1, ..., r}.
Since the uj are neither variables nor constants the statement follows
already from case 1 or 2.
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(b) ∀j ∈ {1, ..., r} we have either RDi(uj) = a ∈ A or uj ∈ C.
e′i = ϕ(f)(RDi(u1), ..., RDi(un)). The only difference to subcase (a) is
the additional application of ϕ(f). But since this needs to be done nev-
ertheless when computing the semantics we get the same problem as in
(a).

The above conclusions can be applied for all ei, i ∈ {1, ..., n}, and hence the
theorem is proved. ut

Corollary 3.17 (Idempotency). For every π ∈ SLC, TCF (TCF (π)) = TCF (π).

The idempotency of Constant Folding is obvious because already the first
application substitutes all variables that have constant values with constants
and evaluates constant expressions. Therefore only “unknown” variables and
expressions that contain at least one unknown operand remain.

Constant folding does not remove instructions, hence the program length
does not change. A subsequent Dead Code Elimination, however, will shorten
the program in many cases.

4 DAG Optimization

The DAG optimization is an optimization algorithm for SLC–programs based
on the construction of a directed acyclic graph (DAG). A basic version of this
optimization has been introduced in [ASU70]. We will present a modified version
which, however, does not consider the register allocation procedure since we only
focus on intermediate code.

Definition 4.1 (DAG). A DAG is a graph G = (K,L, lab, suc) with the fol-
lowing components/properties:

– a set of nodes K,
– a set of labels L,
– a labeling function lab : K → L,
– a partially defined14 successor function suc :⊆ K × � → K and
– @k ∈ K such that ∃k1, k2, ..., kn ∈ K with k1 = k, kn = k and suc(kj , ij) =

kj+1 for ij ∈ � , j ∈ {1, ..., n − 1} (G is acyclic).

A DAG can represent the result and the operands of a functional expression
by (different) nodes that are linked by the successor function.

4.1 DAG of an SLC–Program

The DAG of an SLC–program can be seen as a graphical version of the term rep-
resentation with the difference that identical subterms are shared. Furthermore a
partial evaluation of expressions (similar to Constant Folding) is performed (ex-
tending the algorithm in [ASU70]). Hence the signature of the target program
has to be modified analogously to Constant Folding.

In addition to the DAG we need a valuation function

val :⊆ Vπ × � → K

14 f :⊆ A→ B denotes a partially defined function f from A to B.
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with val(x, i) = k iff the subgraph starting with k represents the value of the
variable x after i computation steps.

Algorithm 4.2 (DAG Construction). Let π := (Σ,~vin, ~vout, β) ∈ SLC with
Σ := (F,C), β := α1; ...;αn and A := (A,ϕ) an interpretation for Σ. The DAG
Dπ of π consists of a DAG G = (K,L, lab, suc), a valuation function val (as
above), i.e., Dπ = (G, val). We set L := F ∪Vin∪A to label nodes that represent
expressions with the corresponding function symbols (the others are labeled with
themselves).

The graph G and val are inductively constructed as follows:

1. Select K := Vin ∪ ϕ(Cπ) with lab(k) = k, ∀k ∈ K as initial nodes15 and set
val(x, 0) := x for all x ∈ Vin where

ϕ(Cπ) := {ϕ(c) | c ∈ Cπ}

2. Induction Hypothesis: Assume G and val are already constructed for α1; ...;αi

(especially16 val(x, i) ∈ K for x ∈ DVi).
Let w.l.o.g. αi+1 = x ← e. We distinguish different cases depending on the
type of the expression e:
(i) e = y ∈ V :

According to the induction hypothesis val(y, i) ∈ K is already represent-
ing the current value of y. Thus G is not extended; set

val(x, i + 1) := val(y, i)

val(x′, i + 1) := val(x′, i) for x′ 6= x

(ii) e = c ∈ C:
ϕ(c) ∈ K already exists. Therefore G remains unchanged:

val(x, i + 1) := ϕ(c)

val(x′, i + 1) := val(x′, i) for x′ 6= x

(iii) e = f(u1, ..., ur), uj ∈ V ∪C, f ∈ F (r). We get further subcases:
(a) uj ∈ C or uj ∈ V and val(uj , i) ∈ A for all j ∈ {1, ..., r}.

Let a := ϕ(f)(u′1, ..., u
′
r) ∈ A with

u′j :=

{
ϕ(uj) if uj ∈ C
val(uj , i) if uj ∈ V and val(uj , i) ∈ A

(a1) a ∈ ϕ(Cπ) : No extension of G.

val(x, i + 1) := a

val(x′, i + 1) := val(x′, i) for x′ 6= x

(a2) a /∈ ϕ(Cπ): insertion of a new node a:

K := K ∪ {a}

val(x, i + 1) := a

val(x′, i + 1) := val(x′, i) for x′ 6= x

15 One could also add the constants later “on demand”.
16 The DVi sets have been introduced in Def. 2.5.
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(b) ∃j ∈ {1, ..., r} with uj ∈ V and val(uj , i) /∈ A.

(b1) ∃k ∈ K with lab(k) = f and

suc(k, j) =

{
ϕ(uj) if uj ∈ C
val(uj , i) if uj ∈ V

No modification of G; the value of e is already represented by k.
Set:

val(x, i + 1) := k

val(x′, i + 1) := val(x′, i) for x′ 6= x

(b2) Otherwise (@k ∈ K as in (b1)): insert a node ki+1:

K := K ∪ {ki+1}

lab(ki+1) := f

suc(ki+1, j) :=

{
ϕ(uj) if uj ∈ C
val(uj , i) if uj ∈ V

val(x, i + 1) := ki+1

val(x′, i + 1) := val(x′, i) for x′ 6= x

In the following we will refer to a node k as operation node if it has a label
lab(k) ∈ F . Nodes that stand for variables or constants are called variable or
constant nodes. Nodes that do not have any successors are called leaves.

Example 4.3. Figure 2 shows the DAG belonging to the program from Fig. 1. The
square nodes are the nodes already present at the beginning of the construction.
The round nodes were created later according to the above definition.

The edges represent the suc–function, the numbering is mandatory for non–
commutative operations (like −). For better clarity the table of the val–function
only shows those entries that represent changes.

Let us now examine the construction of the graph in detail. For first Vin ∪
ϕ(Cπ) are inserted in K as initial nodes. In the example these are the nodes
{1, 2, 3, x, y}. Furthermore val(x, 0) = x and val(y, 0) = y since {x, y} = Vin.
The DAG Dπ is now constructed as follows:

1. α1 = u ← 3: no extension of the graph is necessary since ϕ(3) = 3 ∈ K.
The val–function has to be modified with val(u, 1) := 3 (all other values are
transferred from val(?, 0)).

2. α2 = v ← x− y: because {val(x, 1), val(y, 1)}∩A = ∅ and no operation node
is existing the node k2 with label lab(k2) := − is inserted. Additionally we
set suc(k2, 1) := val(x, 1) = x, suc(k2, 2) := val(y, 1) = y and val(v, 2) := k2

(the other val–values are transferred).

3. α3 = w ← u + 1 represents a function application to constant operands.
3 + ϕ(1) = 3 + 1 = 4 holds. Since the constant 4 is not yet present in the
graph a node 4 is inserted and val updated: val(w, 3) := 4.

4. α4 = x← x− y: for x− y the equivalent node k2 exists already in the graph,
the conditions of case (iii)(b1) of the algorithm are fulfilled and thus no new
node is inserted. Update: val(x, 4) := k2.
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val-Function:
i u v w x y z

0 x y
1 3
2 k2

3 4
4 k2

5 3
6 k6

7 k7

8 k8

Fig. 2. DAG Dπ for the program π from Fig. 1

5. α5 = v ← w− 1: val(w, 4) = 4 ∈ A and ϕ(1) = 1 ∈ A. Therefore we evaluate
ϕ(−)(4, 1) = 3 and set val(v, 5) := 3 because 3 is already a node in K.

6. α6 = u← x− y: due to the change of x in instruction 4 a new node k6 with
lab(k6) = −, suc(k6, 1) = k2 and suc(k6, 2) = y must be created (obviously
the arguments of − are not constant). Besides val(u, 6) := k6 is set.

7. α7 = z ← u ∗ w: since u is a non–constant operand of ∗ (val(u, 6) = k6 /∈ A)
and no node with the successors k6 and 4 and label ∗ exists yet we insert the
node k7 with lab(k7) = ∗, suc(k7, 1) = k6 and suc(k7, 2) = 4. Moreover val is
modified by val(z, 7) := k7.

8. α8 = u ← 2 ∗ u: val(u, 7) = k6 /∈ A and no matching node with the corre-
sponding successors exists. Thus we create k8 with lab(k8) = ∗, suc(k8, 1) = 2
and suc(k8, 2) = k6 and update val(u, 8) := k8.

The DAG construction incorporates aspects of Common Subexpression Elim-
ination and Constant Folding:

– For expressions that are already represented by a node in the DAG no addi-
tional operation node is created, instead a “pointer” to the equivalent node
is used (node sharing).

– The DAG construction performs a partial evaluation of expressions based
on constant information. Either we get for the whole expression one constant
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value (for instance if all the operands are constants) or the variables occurring
in the expression are replaced by constants as far as it is possible. Therefore
no node represents a constant expression.

The elimination of dead code takes place during the code generation from the
DAG and not during its construction.

4.2 Code Generation from a DAG

For defining the program transformation the input program is no longer needed,
its DAG is sufficient; this procedure we call code generation. First it has to
be determined which nodes in the graph are really necessary for generating an
equivalent output program.

Definition 4.4 (Output–Relevant Nodes). Let π := (Σ,~vin, ~vout, β) ∈ SLC
with β := α1; ...;αn and Dπ = (G, val) with G = (K,L, lab, suc) the DAG of π.
A node k ∈ K is called output relevant if

1. there exists a y ∈ Vout such that val(y, n) = k, or

2. there exists an output relevant node k ′ ∈ K and an i ∈ � with suc(k′, i) = k.

Thus all nodes that are reachable from an “output node” are output relevant.
The other nodes are dispensable and are not considered during code generation,
thus implementing Dead Code Elimination.

For code generation the nodes of the graph have to be processed in a certain
order. Before creating an instruction for a node k all the successors of k have to
be processed first for the input values to be available.

A Simple Nondeterministic Algorithm

In this section we will present a simple algorithm for code generation on the basis
of an example.

Example 4.5. Let π be the program from Fig. 1 and Dπ its DAG which is depicted
in Fig. 2. Then the code generation could be done in the following steps:

1. First we eliminate all nodes that are not output relevant, these are the nodes
k7, 4 and 1. The others are reachable from k8 except for the constant 3, for
which val(v, 8) = 3 holds. Thus the remaining nodes are {2, 3, x, y, k2 , k6, k8}.

2. Since the constants and input values are immediately available an operation
node is the first node to process. This can only be k2 because the other nodes
depend on it. For this node we generate the instruction

k2 ← x− y;

The node label determines the operation and its successors the operands. As
temporary variable name we simply use the name of the node.

3. The next node to process is k6 because k8 depends on it. For k6 the instruction

k6 ← k2 − y;

is created.
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4. For the last remaining operation node k8 the generated code looks as follows:

u← 2 ∗ k6;

Here we do not use a temporary variable but the output variable u because
this will be the final value of u. Otherwise we would have to insert a copy
instruction later on.

5. Now all the operation nodes are processed but the output variable v is yet
undefined. Therefore we have to add the instruction

v ← 3;

since val(v, 8) = 3.

Thus we get the following result:

~vin : (x, y)

β′ : k2 ← x− y;

k6 ← k2 − y;

u ← 2 ∗ k6;

v ← 3;

~vout : (u, v)

This “naive” code generation technique has several disadvantages:

– The algorithm is nondeterministic, multiple choices for the next node to pro-
cess are possible.17 Hence the output depends on the node ordering strategy.

– The idempotency is violated because the node names will change in DTDAG(π)

due to the elimination of output irrelevant nodes.
– The assignment order is different from the input program, e.g. the variable

v gets its final value before u in the input program but in the optimized
program after u. This increases the difficulty of proofs.

Extended Algorithm

Since the simple algorithm for code generation does not fulfill the desired prop-
erties (e.g. it is not an A–program transformation) we will now introduce an
extended version which, however, is more complicated.

Algorithm 4.6 (TDAG : SLC → SLC). Let π := (Σ,~vin, ~vout, β) ∈ SLC with
Σ := (F,C) and β := α1; ...;αn. Let A := (A,ϕ) be an interpretation for Σ
and Dπ = (G, val) the DAG of π with G := (K,L, lab, suc) where K w.l.o.g.
contains only output–relevant nodes. Finally we need a substitution function
δ : K → Vout ∪K, a function last : Vout → {1, ..., n} that assigns every output
variable the index of its final assignment18 and a counter variable i ∈ � with
initialization i := 0.

Generate the SLC–program TDAG(π) := ((F,A), ~vin, ~vout, β
′) as follows (an-

notations for the particular steps are given in a smaller font):

17 In our example this is not the case.
18 In the example program of Fig. 1 last = {u 7→ 8, v 7→ 5}.
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1. Set β′ := ε, δ := id, Kf := {k ∈ K | k is a leaf} and V f
out := ∅.

We start with the empty instruction sequence and the identical substitution. Kf denotes

the set of already processed nodes. Initially these are the leaves which are immediately

available without generating code for them. V f
out is the set of output variables that are

already assigned a final value and not be used for new assignments.

2. Let K ′ := {k ∈ K \Kf | @i ∈ � with suc(k, i) ∈ K \Kf}. Case distinction:
(a) If K ′ 6= ∅: choose the node kl ∈ K ′ with ∀kj ∈ K ′ : l ≤ j and increment

i := i + 1.
(b) Otherwise: continue with step 8.
K′ denotes the set of not yet processed nodes from K whose successors are already processed

(these must be operation nodes). The node kl has the smallest index of all nodes in K ′. This

preserves the computation order of the input program (since in Alg. 4.2 l is the index of the

instruction that causes the generation of kl). In addition the choice of the lowest–numbered

node guarantees the determinism because there could be multiple choices that would result

in different outputs.

3. Let V <l
out := {y ∈ Vout \ V f

out | last(y) < l} =: {yi1 , ..., yiq} with last(yij ) <

last(yik) for j < k. Set V f
out := V f

out ∪ V <l
out as well as i := i + q and create for

j = 1, ..., q respectively a new instruction:

β′ := β′ · yij ← δ(val(yij , n))

V <l
out is the set of output variables that do not yet have a final value in the target program,

but whose final values in the input program are assigned in an instruction numbered lower

than the current node. Before processing kl these must defined to maintain the computation

order of the input program.

The order of the assignments to output variables in V <l
out is corresponding to the input

program since the yij
are ordered by their last–value. The set of “used” output variables

is extended by V <l
out after creating the new instructions. The counter i is incremented by q

to represent the number of the instructions to be inserted in step 5.

4. Let V kl
out := {y ∈ Vout | val(y, n) = kl}. If V kl

out 6= ∅ select y ∈ V kl
out such that

∀y′ ∈ V kl
out : last(y) ≤ last(y′) and set:

δ : = δ[kl/y]

V f
out : = V f

out ∪ {y}

V kl
out are the output variables associated with kl out of which one is chosen. If there is more

than one we select the one with the smallest last–value (determinism, computation order

of the input program). Then the substitution δ is updated to rename the current node kl

into the newly chosen output variable y and y is inserted in the set of used output variables

V f
out.

5. If δ(kl) /∈ Vout set δ := δ[kl/vi].
If no output variable is associated with kl instead of the node name the variable vi is

used for the next assignment (change of the δ–function). This is necessary for assuring the

idempotency of the algorithm.

6. Let w.l.o.g. lab(kl) = f ∈ F (r). Extend β ′:

β′ := β′ · δ(kl)← f(δ(suc(kl, 1)), δ(suc(kl , 2)), ..., δ(suc(kl , r)));

Insertion of a new operation instruction for the current node kl. Thereby kl itself and all

successor nodes that serve as arguments for f are renamed by δ.
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7. Set Kf := Kf ∪ {kl}. Continue with step 2.

The processing of node kl is finished and therefore inserted in the set Kf .

8. Let V <∞
out := Vout \ V f

out =: {yi1 , ..., yiq} with last(yij ) < last(yik) for j < k.
For j = 1, ..., q set:

β′ := β′ · yij ← δ(val(yij , n));

Now we regard the yet unused output variables. Those have to be assigned their final values

according to val.

The algorithm processes operation nodes in the order of their generation.
Value assignments of output variables eventually have to be inserted “in be-
tween”. Thus the computation order of the original program is maintained. In
the resulting program for every assignment a new, previously undefined variable
is used, meaning that it satisfies the following normal form:

Definition 4.7 (SSA Form). A program π = (Σ,~vin, ~vout, β) ∈ SLC with
β := α1; ...;αn and αi := xi ← ei is in static single assignment (SSA) form if for
all i ∈ {1, ..., n} the following holds:

xi /∈ Vin ∪
i−1⋃

k=1

{xk}

Due to the inductive nature of the definition and the completeness of SLC–
programs it ensues that for every i also

xi /∈ Vei
∪

i−1⋃

k=1

Vαk

Example 4.8. If we apply the extended algorithm for code generation to the
example DAG of Fig. 2 we get the result:

~vin : (x, y)

β′ : v1 ← x− y;

v ← 3;

v2 ← v1 − y;

u ← 2 ∗ v2;

~vout : (u, v)

As we see, now the output variable v gets its value before u like it is in the original
program π and reapplying TDAG to the result will yield the same program.19 Thus
the idempotency holds for the example.

Note that if the number of available registers is limited the optimal code
generation from a DAG is NP–complete [AJU77]. The efficiency of the result-
ing program hereby varies depending on the node–ordering strategy. The code
generation from expression trees, however, is also in this case efficient [AJ76].

19 This can be easily tested with the web interface at [Rie05a].
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4.3 Correctness of the DAG Algorithm

In this section we will prove the correctness of the DAG optimization. Because of
the complex structure of the algorithm the proof will be done step–by–step and
be based mainly on terms. Hence for a DAG we have to generate a characterizing
term.

Definition 4.9 (Term Representation of a DAG). Let Dπ = (G, val) with
G = (K,L, lab, suc) be the DAG of the SLC–program π := (Σ,~vin, ~vout, β) with
Σ := (F,C), β := α1; ...;αn and let A := (A,ϕ) be an interpretation of Σ.
Then the term representation tDπ(y) ∈ TΣ(Vin) of Dπ w.r.t. an output variable
y ∈ Vout is defined by:

tDπ(y) := tval(y,n)

and for k ∈ K : tk :=

{
k if k ∈ A ∪ Vin

f
(
tsuc(k,1), ..., tsuc(k,r)

)
if lab(k) = f ∈ F (r)

The definition complies with the intuitive idea that all successors of a node
are representing subterms of the node term. Here the optimization effect achieved
by the sharing of nodes is lost which, however, is irrelevant for the correctness.

Example 4.10. The computation of the term representations for the DAG from
Fig. 2 yields

tDπ(u) = ∗(2,−(−(x, y), y))

tDπ(v) = 3

The term representation of the DAG for the variable v is not equal to the term
representation of π because during the DAG construction an evaluation of con-
stant expressions has been performed.

For adapting the term representation of the input program we need to eval-
uate constant subterms.

Definition 4.11 (Partial Evaluation of Terms). Let t ∈ TΣ(X) with Σ :=
(F,C) and A := (A,ϕ) an interpretation of Σ. Then A[t] ∈ T(F,A)(X) denotes

the term resulting from partial evaluation of t. For c ∈ C, x ∈ X, f ∈ F (r) and
t1, ..., tn ∈ T(F,A)(X) it is defined as:

A[c] := ϕ(c)

A[x] := x

A[f(t1, ..., tr)] :=

{
ϕ(f)(A[t1], ...,A[tr ]) if ∀i ∈ {1, ..., r} : A[ti] ∈ A
f(A[t1], ...,A[tr ]) else

The correctness proof of the DAG optimization is based on two main steps:
first we show the correctness of the DAG construction and then – based on the
correctness of the DAG construction – that the code generation algorithm is
correct. Then it only remains to show that the equality of the terms implies the
semantic equality.
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Lemma 4.12 (Correctness of the DAG Construction). For π := (Σ,~vin,
~vout, β) ∈ SLC, its DAG Dπ and an interpretation A for Σ it holds

A[tπ(y)] = tDπ(y) for all y ∈ Vout.

Proof. Let Dπ := (G, val) with G := (K,L, lab, suc) and β := α1; ...;αn with
αi := xi ← ei. Moreover let Σ := (F,C) and A := (A,ϕ). Induction on the term
structure (for y ∈ Vout):

1. A[tπ(y)] = a ∈ A. Inductive case distinction:
(a) In π there exists an instruction αk = y ← c with c ∈ C and y /∈

⋃n
i=k+1{xi}. Then

val(y, n) = val(y, k) = ϕ(c)

(b) An instruction αl = y ← z exists in π such that y /∈
⋃n

i=l+1{xi} and for
z again one of the cases (a), (b) or (c) (termination in case (a) or (c)(i))
holds with n = l − 1 and y = z. It follows:

val(y, n) = val(y, l) = val(z, l − 1)

(c) In π there is an instruction αm = y ← f(u1, ..., ur) with f ∈ F (r) such
that y /∈

⋃n
i=l+1{xi}. Additional subcases:

(i) ∀j ∈ {1, ..., r} : uj ∈ C. Then we get:

val(y, n) = val(y,m) = ϕ(f)(ϕ(u1), ..., ϕ(ur))

(ii) ∃j ∈ {1, ..., r} : uj ∈ V and for uj either (a), (b) or (c) holds with
n = m− 1 and y = uj. Result:

val(y, n) = val(y,m) = ϕ(f)(u′1, ..., u
′
r) with

u′j :=

{
val(uj ,m− 1) if uj ∈ V
ϕ(uj) if uj ∈ C

Because of the induction val(uj ,m− 1) ∈ A must hold for uj ∈ V .
We obtain val(y, n) = b ∈ A and thus tval(y,n) = b (since n < ∞ and a
termination is only possible in the subcases (a) and (c)(i)). b = a must
hold because in the above case distinction the same subterms as in A[tπ(y)]
have been evaluated, with the only difference that evaluations took place
immediately and not after the construction of an entire term. Thus:

A[tπ(y)] = a = tDπ(y)

2. A[tπ(y)] = x ∈ Vin. Similarly to the first case we inductively distinguish the
possibilities:
(a) It exists an αk = y ← z in π with y /∈

⋃n
i=k+1{xi}, z 6= x and for z either

(a) (induction: copy chain20) or (b) (termination) holds with n = k − 1
and y = z. Then:

val(y, n) = val(y, k) = val(z, k − 1)

20 A sequence of copy instructions that depend on each other is called copy chain.
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(b) In π, y = x and y /∈
⋃n

i=1{xi}. Because of Vin ∩ Vout = ∅ this case can
only occur after case (a) occurred at least once. We get:

val(y, n) = val(y, 0) = val(x, 0)

Thus val(y, n) = x and tval(y,n) = x. It follows:

A[tπ(y)] = x = tDπ(y)

3. A[tπ(y)] = f(t1, ..., tr) with tj ∈ T(F,A)(Vin) and f ∈ F (r).
Induction Hypothesis: For all j ∈ {1, ..., r} already holds

tj =

{
tval(uj ,l−1) for uj ∈ V

tϕ(uj) for uj ∈ C

An instruction αl = y ← f(u1, ..., ur) with y /∈
⋃n

i=l+1{xi} must exist in π (y
unchanged after αl).
Case distinction:
(a) ∀j ∈ {1, ...r} : tj ∈ T(F,A)

This case cannot occur since otherwise A[f(t1, ..., tr)] would be a constant.
(b) ∃j ∈ {1, ...r} : tj /∈ T(F,A)

A node k ∈ K exists with

lab(k) = f

∀j ∈ {1, ..., r} : suc(k, j) =

{
val(uj , l − 1) if uj ∈ V
ϕ(uj) if uj ∈ C

val(y, n) = k

Then:

tDπ(y) = tval(y,n)

= tk
Def
= f

(
tsuc(k,1), ..., tsuc(k,r)

)

IH
= f(t1, ..., tr)

= A[tπ(y)]

Hence for all y ∈ Vout the claim holds. ut

Now we have to show the correctness of Alg. 4.6. Also here the proof is based
on term representations.

Lemma 4.13 (Correctness of the DAG Code Generation). For π :=
(Σ,~vin, ~vout, β) ∈ SLC and its DAG Dπ it holds

tDπ(y) = tTDAG(π)(y) for all y ∈ Vout.

Proof. Let π, Dπ, Σ and A be defined as in the proof of La. 4.12. Moreover
let TDAG(π) =: ((F,A), ~vin, ~vout, β

′) with β′ := α′1; ...;α
′
m and α′i := x′i ← e′i.

Induction on the term structure (y ∈ Vout):
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1. tDπ(y) = a ∈ A:
Hence we have val(y, n) = a in Dπ. Then according to step 3 or 8 of Alg. 4.6
an assignment α′l = y ← a is created and afterwards y remains unchanged in

TDAG(π), i.e., y /∈
⋃m

i=l+1{x
′
i} (this is guaranteed by the V f

out set in which y
is inserted after the creation of α′l). For the term representation of TDAG(π)
we obtain:

tTDAG(π)(y) = t
(0)
TDAG(π)(y)

= y[x′m/e′m]...[x′l/e
′
l][x
′
l−1/e

′
l−1]...[x

′
1/e
′
1]

= y[x′m/e′m]...[y/a][x′l−1/e
′
l−1]...[x1/e

′
1]

= y[y/a][x′l−1/e
′
l−1]...[x

′
1/e
′
1] (x′i 6= y for all i > l)

= a[x′l−1/e
′
l−1]...[x

′
1/e
′
1]

= a (a is variable–free)

2. tDπ(y) = x ∈ Vin:
Then val(y, n) = x in Dπ. As in the first case an instruction α′l = y ← x
is added by step 3 or 8 of the algorithm and it holds y /∈

⋃m
i=l+1{x

′
i} and

x /∈
⋃m

i=1{x
′
i} since

⋃m
i=1{x

′
i} ⊆ Vout ∪ {vj | j ∈ � }. It ensues:

tTDAG(π)(y) = t
(0)
TDAG(π)(y)

= y[x′m/e′m]...[x′l/e
′
l][x
′
l−1/e

′
l−1]...[x

′
1/e
′
1]

= y[x′m/e′m]...[y/x][x′l−1/e
′
l−1]...[x

′
1/e
′
1]

= y[y/x][x′l−1/e
′
l−1]...[x

′
1/e
′
1] (x′i 6= y for all i > l)

= x[x′l−1/e
′
l−1]...[x

′
1/e
′
1]

= x (x′i 6= x for all i < l)

Hint: If Vin∩Vout = ∅ (Def. 2.3) would not be required it could not be guaranteed that x is
not assigned a value before αl. A counterexample for the correctness of the DAG algorithm
would then be the following program:

π := ((∅, {0}), (x), (x, y), β) /∈ SLC with β := t← x;

x← 0;

y← z;

3. tDπ(y) = f(t1, ..., tr) with ti ∈ T(F,A)(Vin) and f ∈ F (r):
Then an i ∈ {1, ...r} exists such that ti /∈ T(F,A) (otherwise the term would
have been substituted by a constant). Hence in Dπ there must be a node
k ∈ K with lab(k) = f and val(y, n) = k. Because of step 6 of Alg. 4.6 in β ′

it exists already an instruction

α′l = δ(k)← f(δ(suc(k, 1)), δ(suc(k, 2)), ..., δ(suc(k, r))),

where δ(k) ∈ Vout ∪ {vj | j ∈ � }. Let πk be the program that is obtained if
the algorithm is applied to the DAG that only contains all nodes reachable
from k. Let the set of nodes restricted by k, Kk, be given by

k ∈ Kk

k′ ∈ Kk if ∃i ∈ � , ∃k′′ ∈ Kk such that suc(k′′, i) = k′
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Induction Hypothesis: For j ∈ {1, ...r}, tj = tπsuc(k,i)
(δ(suc(k, j))) already

holds.

y ∈ V k
out must hold, i.e., val(y, n) = k. Case distinction:

(a) For all y′ ∈ V k
out : last(y) ≤ last(y′). Then according to the algorithm

(step 4) δ(k) = y and y /∈
⋃m

i=l+1{x
′
i}. It follows:

tTDAG(π)(y) = t
(0)
TDAG(π)(y)

= y[x′m/e′m]...[x′l+1/e
′
l+1][x

′
l/e
′
l][x
′
l−1/e

′
l−1]...[x

′
1/e
′
1]

= y[x′l/e
′
l][x
′
l−1/e

′
l−1]...[x

′
1/e
′
1]

= y[y/f(δ(suc(k, 1)), ..., δ(suc(k, r)))][x′l−1/e′l−1]...[x
′
1/e
′
1]

= f(δ(suc(k, 1)), ..., δ(suc(k, r)))[x′l−1/e′l−1]...[x
′
1/e
′
1]

= f(δ(suc(k, 1))[x′l−1/e
′
l−1]...[x

′
1/e
′
1]

︸ ︷︷ ︸

=tπsuc(k,1)
(δ(suc(k,1)))

, ...,

δ(suc(k, r))[x′l−1/e
′
l−1]...[x

′
1/e
′
1]

︸ ︷︷ ︸

=tπsuc(k,r)
(δ(suc(k,r)))

)

With the induction hypothesis the claim holds for this subcase.

(b) ∃z ∈ V k
out with z 6= y such that ∀z′ ∈ V k

out : last(z) ≤ last(z′). Therefore
δ(k) = z and there exists an instruction α′p = y ← z in β with p > l (step
3 or 8). Then z /∈

⋃m
i=l+1{x

′
i} as well as y /∈

⋃m
i=p+1{x

′
i} and it yields:

tTDAG(π)(y) = t
(0)
TDAG(π)(y)

= y[x′m/e′m]...[x′p+1/e
′
p+1][y/z][x′p−1/e

′
p−1]...[x

′
l/e
′
l]...[x

′
1/e
′
1]

= y[y/z][x′p−1/e
′
p−1]...[x

′
l+1/e

′
l+1][x

′
l/e
′
l][x
′
l−1/e

′
l−1]...[x

′
1/e
′
1]

= y[y/z][x′l/e
′
l][x
′
l−1/e

′
l−1]...[x

′
1/e
′
1]

= z[x′l/e
′
l][x
′
l−1/e

′
l−1]...[x

′
1/e
′
1]

= z[z/f(δ(suc(k, 1)), ..., δ(suc(k, r)))][x′l−1/e′l−1]...[x
′
1/e
′
1]

= f(δ(suc(k, 1)), ..., δ(suc(k, r)))[x′l−1/e′l−1]...[x
′
1/e
′
1]

= f(δ(suc(k, 1))[x′l−1/e
′
l−1]...[x

′
1/e
′
1], ...,

δ(suc(k, r))[x′l−1/e
′
l−1]...[x

′
1/e
′
1])

The result is identical to case (a).

Thus the claim is proven. ut

With the aid of the above lemmata the correctness of the DAG algorithm is
almost clear.

Theorem 4.14 (Correctness of the DAG Algorithm). Let π = (Σ,~vin, ~vout,
β) ∈ SLC and A be an interpretation of Σ. Then π ∼A TDAG(π).

Proof. It suffices to show that if A[tπ(y)] = tTDAG(π)(y) for all y ∈ Vout also
A[[π ]] = A[[TDAG (π) ]] holds. Then by La. 4.12 and 4.13 π and TDAG(π) are A–
equivalent.
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It is obvious that A[[t ]] = A[[A[t] ]] for t ∈ TΣ . Hence according to La. 2.14:

A[[π ]]( ~in) = (A[[tπ(y1)[x1/in1, ..., xs/ins] ]], ...,A[[tπ(yt)[x1/in1, ..., xs/ins] ]])

= (A[[A[tπ(y1)][x1/in1, ..., xs/ins] ]], ...,A[[A[tπ(yt)][x1/in1, ..., xs/ins] ]])

= (A[[tTDAG(π)(y1)[x1/in1, ..., xs/ins] ]], ...,

A[[tTDAG(π)(yt)[x1/in1, ..., xs/ins] ]])

= A[[TDAG(π) ]]( ~in)

ut

The idempotency of the extended algorithm is intuitively clear because of
its construction, for a detailed proof please refer to [Rie05b]. Thus the DAG
algorithm is a program transformation.

5 A DAG–Equivalent Composition of Simple Trans-

formations

Now after the formal introduction of the different optimizing program transfor-
mations we will analyze the relations between them. We call two optimizations
equivalent if they is optimal w.r.t. each other:

Definition 5.1. Let T1, T2 : SLC → SLC be two program transformations.

– T2 is called T1–optimal (T1 ≤ T2) if ∀π ∈ SLC : T1(T2(π)) = T2(π).

– T1 and T2 are called equivalent if T1 ≤ T2 and T2 ≤ T1.

The following lemma states an important property of the ≤ relation on pro-
gram transformations:

Lemma 5.2. Let T1, T2, U : SLC → SLC be three program transformations.
Then

T1 ≤ U ∧ T2 ≤ U ⇒ T1 ◦ T2 ≤ U

Proof.

T1 ≤ U ∧ T2 ≤ U
⇒ ∀π : T1(U(π)) = U(π) ∧ T2(U(π)) = U(π) (∗)
⇒ ∀π : (T1 ◦ T2)(U(π)) = T1(T2(U(π)))

(∗)
= T1(U(π))
(∗)
= U(π)

⇒ T1 ◦ T2 ≤ U

ut

In the following section we will see that the DAG optimization is optimal
w.r.t. the classical transformations. Later we will examine how the classical trans-
formations can influence each other when executed in a certain order.
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5.1 Optimality of the DAG Algorithm

In previous examples we have seen that the DAG algorithm had a higher “opti-
mizing potential” than the classical transformations. Now will verify this obser-
vation on a generalized basis.

Theorem 5.3. It holds TDC ≤ TDAG (TDAG is TDC –optimal).

Proof. Let π ∈ SLC with n instructions and π ′ := TDAG(π) := (Σ,~vin, ~vout, β)
with β = α1; ...;αm and αi := xi ← ei. Furthermore let Dπ = (G, val) with
G = (K,L, lab, suc) be the DAG of π. Assume that a j ∈ {1, ..,m} exists such
that xj /∈ NVj (in π′).

We have to distinguish two cases:

1. xj is not used anymore after αj (xj /∈ Vei
, i > j).

Then in Dπ a node δ−1(xj) exists21 to which no other edges point, i.e.,

∀i ∈ � and ∀k ∈ K : suc(k, i) 6= δ−1(xj)

Moreover xj is no output variable because otherwise α′j would not be dead

code. Thus no y ∈ Vout exists such that val(y, n) = δ−1(xj). Then δ−1(xj)
is not output relevant by Def. 4.4 and the instruction αj would have never
been created.

2. xj is redefined in an instruction αl with l > j (xl = xj) but xj /∈ Vei
, k <

i ≤ l.
Algorithm 4.6 generates output programs in which no variable occurs more
than once on the left–hand side of an instruction (SSA form). Therefore a
contradiction follows. ut

For the Common Subexpression Elimination we get a similar result:

Theorem 5.4. TCS ≤ TDAG .

Proof. Let π, π′ and Dπ be given as in the proof of Thm. 5.3. Similarly we will
prove the claim by contradiction:

Assumption: ∃i, j ∈ {1, ...,m} with ei = ej = f(u1, ..., ur) such that j ∈ vr(i),
i.e., ej is a valid recurrence of ei. TCS would eliminate it using a temporary
variable.

Since Alg. 4.6 creates for every operation node in the DAG exactly one in-
struction, two nodes k, k′ ∈ K must exist where suc(k, j) = suc(k ′, j) for all
j ∈ {1, ..., r} and lab(k) = lab(k′) = f ∈ F (r).

According to the DAG construction (Alg. 4.2, subcase 3(b)(b1)) however this
is impossible because after k has been created no k ′ with the above properties
would have been inserted in the DAG. Instead only the val–function would have
been updated. Thus we have a contradiction. ut

Finally we will verify the optimality of the DAG algorithm w.r.t. Constant
Folding.

Theorem 5.5. TCF ≤ TDAG .

21 Let δ be the substitution that one obtains after complete execution of Alg. 4.6.
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Proof. It suffices to show that for all i ∈ {1, ..., n} and all y ∈ Vπ:

RDi(y) ∈ A⇒ val(y, i− 1) ∈ A

Then the Constant Folding will not provoke any further change when applied
to π′ (since TDAG already utilized the full “replacement potential”). Complete
induction on i ∈ {1, ..., n}:

i = 1 : RD1(y) = σ⊥(y) = ⊥
i→ i + 1 : Case distinction for the variable y:

1. If y = xi:

RDi+1(y) = RDi[xi/Ā[[ei ]]RDi](y)

= Ā[[ei ]]RDi ∈ A

And we get:

∀z ∈ Vei
: RDi(z) ∈ A

IH
⇒ ∀z ∈ Vei

: val(z, i− 1) ∈ A

⇒ val(y, i) ∈ A (according to the DAG construction)

2. Otherwise (y 6= xi):

RDi+1(y) = RDi[xi/Ā[[ei ]]RDi](y)

= RDi(y) ∈ A
IH
⇒ val(y, i − 1) ∈ A

⇒ val(y, i) ∈ A (since y 6= xi)

Due to the induction principle the claim holds. ut

Thus the DAG algorithm is optimal w.r.t. the classical transformations. In
the following we will examine the reverse direction, that is, the question whether
the classical transformations can be applied in a certain order such that the result
is equivalent to the DAG–optimized program.

5.2 Copy Propagation

The first result is that the classical transformations do not suffice for “simulating”
the DAG optimization.

Theorem 5.6. There exists a π ∈ SLC such that π is T–optimal for every
T ∈ {TDC , TCS , TCF }, but π is not TDAG–optimal.

Proof. Consider the program depicted in Fig. 3. For this program none of the
classical optimizations will provoke any change:

– In π exists no dead code, all instructions are needed for computing the value
of the output variable y.

– All expressions in π are distinct. Hence TCS does not influence the result.
– The absence of constants implies that Constant Folding would have no effect.
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Thus π is optimal w.r.t. all three classical transformations. An application of
TDAG yields however:

v1 ← x + y;

u← x ∗ v1;

v ← u + x;

ut

~vin : (x, y)

β : u ← x;

y ← u + y;

v ← u;

u ← v ∗ y;

v ← u + v;

~vout : (u, v)

Fig. 3. π = (Σarithm, ~vin, ~vout, β) ∈ SLC with copy instructions

In the example Dead Code Elimination would be applicable (in the sense of
eliminating instructions) if one would replace e.g. the occurrences of u on the
right–hand side of the instructions 2 and 3 by x. For this problem we will now
introduce a new algorithm, Copy Propagation, which does not improve the input
program directly but is a preprocessing step enabling other optimizations.

Our version of Copy Propagation does not only substitute a variable used
after a copy instruction with its original variable but also traces back transitive
dependencies for copy chains. During the analysis step we collect the valid copies
for each instruction. These are basically pairs of variables that have the same
value at a given point (due to copy instructions). A third value – the transi-
tive depth which represents the length of a copy chain – is used to guarantee
determinism and idempotency of the transformation.

Definition 5.7 (Valid Copies). Let π := (Σ,~vin, ~vout, β) ∈ SLC with β :=
α1; ...;αn. For an instruction α = x ← e we define the transfer function tα :
V 2

π × {1, ..., n} → V 2
π × {1, ..., n} by

tx←e(M) := trans(M \ {(y, z, d) ∈M | d ∈ {1, ..., n}, x ∈ {y, z}}

∪ {(x, e, 1) | e ∈ Vπ \ {x}})

Here trans : V 2 × � → V 2 × � computes the transitive closure of the first two
arguments for an M ⊆ V 2 × � :

trans(M) := {(x, y, d) | ∃k ∈ � : ∃z1, ..., zk ∈ V, ∃d0, ..., dk ∈ � such that

{(x, z1, d0), (z1, z2, d1), ..., (zk−1, zk, dk−1), (zk, y, dk)} ⊆M}

where d :=
k∑

i=0

di
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In particular all (x, y, d) ∈ M are included in trans(M) for k = 0. Now the
analysis sets CPi ⊆ V 2

π × {1, ..., n} can be computed inductively:

CP1 := ∅

CPi+1 := tαi
(CPi) for i ∈ {1, ..., n − 1}

Based on the CP–sets we define the program transformation:

Definition 5.8 (Copy Propagation). The transformation TCP : SLC → SLC
for π = (Σ,Vin, Vout, β) ∈ SLC with β = x1 ← e1; ...;xn ← en and Σ = (F,C) is
given by

TCP (π) := (Σ,~vin, ~vout, β
′) with β′ := x1 ← CP 1(e1); ...;xn ← CP n(en)

where CP (e) with CP ⊆ V 2
π × {1, ..., n}, c ∈ C, x ∈ Vπ and f ∈ F (r) is defined

as follows:

CP (c) := c

CP (x) :=







y if ∃y ∈ V, ∃d ∈ {1, ..., n} with (x, y, d) ∈ CP
and ∀(x, y′, d′) ∈ CP : d′ ≤ d

x else

CP (f(u1, ..., ur)) := f(CP (u1), ..., CP (ur))

The selection of the tuple with the highest transitive depth for the substi-
tution ensures that the copy chains are traced back completely and that the
algorithm works deterministically. This is necessary since, due to the computa-
tion of the transitive closure, for a variable x several tuples of the form (x, y, d)
with different y and d might exist.

Example 5.9. Applying the Copy Propagation to the program of Fig. 3 yields:

i αi CPi new instruction α′i
1 u← x; ∅ u← x;
2 y ← u + y; {(u, x, 1)} y ← x + y;
3 v ← u; {(u, x, 1)} v ← x;
4 u← v ∗ y; {(u, x, 1), (v, u, 1), (v, x, 2)} u← x ∗ y;
5 v ← u + v {(v, x, 2)} v ← u + x;

In instruction 4 the tuple printed in boldface results from the computation of the
transitive closure. The transitive depth is needed to decide which substitution
to use for v in instruction 4. It is clear that on the above result Dead Code
Elimination would remove the first and the third instructions.

5.3 Execution Order

Now that we have introduced Copy Propagation we will analyze the relations
between the simple algorithms22. Particularly interesting is if, given a program
which is optimal w.r.t. an optimization T1, the application of an algorithm T2

will yield additional optimization potential for T1 afterwards.

22 With “simple” algorithms we refer to the classical transformations and Copy Propagation.
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Definition 5.10. Let Ti : SLC → SLC, i ∈ {1, 2} be two program transforma-
tions. If there exists a π ∈ SLC such that

T1(π) = π ∧ T1(T2(π)) 6= T2(π)

T2 is called T1–enabling (T2 → T1).

The enabling–relations that hold for our transformations are given in Fig. 4.
At this point we will not give a detailed proof for every combination but a short
explanation (for a detailed analysis refer to [Rie05b]):

– Dead Code Elimination does not enable any of the other transformations
because it eliminates instructions and therefore does not create any available
expressions, copy instructions or constant variables.

– Common Subexpression Elimination enables Copy Propagation due to the
insertion of copy instructions. It has no influence on Constant Folding and
Dead Code Elimination.

– We have already seen in Ex. 3.15 that Constant Folding “produces” additional
Dead Code. One can easily construct examples in which the substitution of
variables with constants creates common subexpressions.

– From Ex. 5.9 it is clear that TCP is TDC –enabling. Similarly to Constant
Folding the substitution of variables by others can create common subex-
pressions.

TDC TCS TCF TCP

TDC - - -
TCS - - →
TCF → → -
TCP → → -

Fig. 4. Influence Relations between the Simple Transformations

Between Copy Propagation and Common Subexpression Elimination there is
a mutual dependence. Thus a repeated application of both is unavoidable. The
question is if a constant amount of iterations suffices.

Theorem 5.11. There exists a sequence of SLC–programs (πn)n∈ � \{0} such that
T := TCP ◦TCS has to be applied at least n times to πn for reaching a fixed point.

Proof. Let πn := (Σ, (x), (y, z), βn) with Σ = (F, ∅) and F = {f (2)} where βn is
given by:

β1 := y ← f(x, x);

z ← f(x, x);

βn+1 := βn;

y ← f(y, x);

z ← f(z, x);

It is clear that T n+1(πn) = T n(πn) but 6 ∃i < n : T i+1(πn) = T i(πn). ut
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Thus there is no fixed constant (independent from program length) that could
restrict the number of required iterations.

Theorem 5.12. Let π := (Σ,~vin, ~vout, β) ∈ SLC with β := α1; ...;αn and αi :=
xi ← ei as well as

m :=
∣
∣
∣{i ∈ {1, ..., n} | ei = f(u1, ..., ur) for an f ∈ F (r) and uj ∈ V ∪ C}

∣
∣
∣ .

Then for T := TCS ◦ TCP :

Tm+1(π) = T (T m+1(π))

Proof. m represents the number of operation expressions in the program π. After
every application of Common Subexpression Elimination with TCS (π) 6= π the
program contains at least one operation expression less.

Since TCP is idempotent it follows that when TCS does not provoke any fur-
ther change also two subsequent applications of TCP will not create any additional
optimization potential w.r.t. TCS (this holds analogously for the symmetric case
that we obtain a TCP–optimal program first).

Thus after a maximum of m+1 iterations a fixed point of T is reached because
the first application of TCS remains possibly ineffective. ut

The above bound eventually can be further refined. Since TCS is optimizing
at least two operation expressions with every “successful” application and the
expressions assigned to the temporary variables should not have additional valid
recurrences it is presumable that

⌊
m
2

⌋
+ 1 applications of T are sufficient.

In practice it certainly is not advisable to use “blindly” worst–case iteration
number but a demand–driven method.

Definition 5.13. For π ∈ SLC and T := TCP ◦ TCS the transformation TCPCS :
SLC → SLC is be defined by:

TCPCS (π) :=

{
π if T (π) = π
TCPCS (T (π)) else

TCS and TCP are applied in alternation until a fixed point – that exists by
Thm. 5.12 – is reached.

From the previous observations, represented in Fig. 4, we now can derive an
order for the simple transformations to achieve a good optimization effect:

1. Constant Folding (cannot be enabled by the other transformations)
2. Application of Common Subexpression Elimination and Copy Propagation

in alternation (TCPCS )

3. Dead Code Elimination (enabled by TCP and TCF )

A different order would be unfavorable, e.g. executing Dead Code Elimina-
tion at the beginning would cause the dead code created by the other transfor-
mations to remain. It though seems reasonable to apply Dead Code Elimination
immediately after Constant Folding (before TCPCS ) since due to the removal of
instructions the fixed point of TCPCS could be eventually reached faster. This
would however increase the complexity especially regarding proofs.
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Definition 5.14 (Compositional Optimization). The compositional trans-
formation incorporating the classical optimizations and Copy Propagation is
given by TCOPT := TDC ◦ TCPCS ◦ TCF .

Theorem 5.15. TCOPT is an A–program transformation.

Proof. According to Def. 3.1 we have to show three properties:

1. TCOPT is correct.
Since TCOPT is constructed from correct subtransformations the composi-
tional transformation is also correct.

2. TCOPT is idempotent.
TCF cannot be enabled from any other subtransformation according to Fig. 4.
Therefore

TCF (TCOPT (π)) = TCOPT (π) (∗)

The following application of TCPCS cannot provoke further changes because of
(∗), the idempotency of TCPCS (by definition) and since neither TDC → TCS

nor TDC → TCP holds (Fig. 4). Hence we obtain:

TCPCS (TCF (TCOPT (π))) = TCOPT (π) (∗∗)

Dead Code Elimination does neither change the program (due to (∗∗) and
the idempotency of TDC ). Thus TCOPT is idempotent.

TCF (π) TCS (TCF (π)) TCP(TCS (TCF (π))) TDC (TCP(TCS (TCF (π))))

u← 3; u← 3; u← 3;
v ← x− y; t2 ← x− y; t2 ← x− y; t2 ← x− y;

v ← t2; v ← t2;
w ← 4; w ← 4; w← 4;
x← x− y; x← t2; x← t2;
v ← 3; v ← 3; v ← 3; v ← 3;
u← x− y; u← x− y; u← t2 − y; u← t2 − y;
z ← u ∗ 4; z ← u ∗ 4; z ← u ∗ 4;
u← 2 ∗ u; u← 2 ∗ u; u← 2 ∗ u; u← 2 ∗ u;

Fig. 5. Application of TCOPT to π from Fig. 1

Example 5.16. Figure 5 shows an exemplary computation of TCOPT for our ex-
ample program from Fig. 1 starting from the already TCF –optimized program
from Ex. 3.15. Already one application of TCP ◦ TCS suffices here to reach the
fixed point (this is clear because in TCP (TCS (TCF (π))) all operation expressions
are distinct).

The resulting program is identical to the DAG–optimized program from
Ex. 4.8 except for the variable naming. Also for the example from Fig. 3 we
would get the same results “modulo” variable names.23

23 For testing these results see [Rie05a].
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5.4 Simulation of the DAG Transformation

For achieving a TDAG–optimal transformation we obviously need to rename the
variables in the output program. Otherwise the DAG algorithm would change
the variable names and thus the program would not be TDAG–optimal according
to Def. 5.1.

Obtaining Static Single Assignment Form

We will use a transformation that transforms any SLC–program in static sin-
gle assignment form and uses a variable naming according to the DAG code
generation (Alg. 4.6).

Definition 5.17 (SSA Transformation). Let π := (Σ,~vin, ~vout, β) ∈ SLC
with β := α1; ...;αn and αi := xi ← ei. Define for i ∈ {0, ..., n} substitution
functions ρi : V → V :

ρ0 = id

and for i ∈ {1, ..., n}:

ρi =

{
ρi−1[xi/xi] if xi ∈ Vout and xi 6= xj for j > i
ρi−1[xi/vi] else

Here the vi are mutually distinct variables that do not occur in π. Then the
transformation TSSA : SLC → SLC is computed as follows:

TSSA(π) := (Σ,~vin, ~vout, β
′) with β′ := ρ1(x1)← ρ̄0(e1);

...

ρk(xk)← ρ̄k−1(ek);

...

ρn(xn)← ρ̄n−1(en);

ρ̄i denotes the application of the substitution ρi to expressions (as expected).

TSSA renames all left–hand side variables – except output variables in their
final assignment – in new variables subscripted with the index of the instruction
of their first appearance (analogously to the DAG code generation). Obviously
the resulting program is in SSA form.

Example 5.18. Let us demonstrate the definition by an example. For this we
use the program TCOPT (π) from Fig. 5. For the ρi we will only represent those
arguments that are not projected on themselves (remind: ~vout = (u, v)):

i TCOPT (π) ρi TSSA(TCOPT (π))

1 t2 ← x− y; {t2 7→ v1} v1 ← x− y;
2 v ← 3; {t2 7→ v1} v ← 3;
3 u← t2 − y; {t2 7→ v1, u 7→ v3} v3 ← v1 − y;
4 u← 2 ∗ u; {t2 7→ v1} u← 2 ∗ v3;

Now the result is identical to TDAG(π) (Ex. 4.8). The idempotency of the DAG
optimization implies TDAG(TSSA(TCOPT (π))) = TSSA(TCOPT (π)) for this exam-
ple program.
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We will not analyze the properties of the SSA transformation in detail. It
is clear that TSSA is a program transformation. Since the transformation has
been developed for obtaining “DAG–compatible” variable names TDAG is optimal
w.r.t. TSSA.

Also for iterative programs an SSA form is computable [AH00,CFR+91]
which is helpful for a variety of optimizations.

Weakness of Copy Propagation

Now, that we have achieved the “output compatibility” with the DAG transfor-
mation one could assume that TSSA ◦ TCOPT is equivalent to TDAG .

Theorem 5.19. TDAG 6≤ TSSA ◦ TCOPT .

Proof. Consider the following SLC–program:

π := (Σarithm, (x), (y), β) with β := t← x;

x← −x;

y ← x + t;

Applying TSSA ◦ TCOPT on π and TDAG to the result yields:

TSSA(TCOPT (π)) TDAG(TSSA(TCOPT (π)))

v1 ← x;
v2 ← −x; v1 ← −x;
y ← v2 + v1; y ← v1 + x;

Thus the claim is proven. ut

The cause of this problem is that Copy Propagation prevents further opti-
mization. t is obviously a copy of x, but because x is overwritten in the second
instruction the corresponding analysis tuple (t, x, 1) is not anymore contained in
CP2. If one would want to substitute the occurrence of t in the last instruction
a renaming of the left–hand x in the second instruction and its later occurrences
would be necessary.

This weakness of Copy Propagation can prevent further optimizations like
Dead Code Elimination which is the case in the above proof. The DAG opti-
mization avoids this problem by generating the output program from the DAG
anew using a new variable for every assignment.

Transforming the input program in SSA form before processing it with TCOPT

solves this problem. Since neither TDC nor TCS affects the SSA property TCP

receives an input–program in SSA form. If TCP is applied to a program in SSA
form tuples are never deleted from the CP–sets since no variable is redefined.

Thus we now have the following new execution order:

TCOPT ′ := TSSA ◦ TCOPT ◦ TSSA = TSSA ◦ TDC ◦ TCPCS ◦ TCF ◦ TSSA

Unremovable Copy Instructions

Even the new TCOPT ′ composition is insufficient for simulating the DAG opti-
mization.
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Theorem 5.20. TDAG 6≤ TCOPT ′ .

Proof. Consider the program π2 from the proof of Thm. 5.11. Applying TCOPT ′

to π2 and then TDAG to the result yields:

TCOPT ′(π2) TDAG(TCOPT ′(π2))

v1 ← f(x, x); v1 ← f(x, x);
v2 ← f(v1, x); y ← f(v1, x);
y ← v2;
z ← v2; z ← y;

The problem is that Common Subexpression Elimination can insert copy instruc-
tions involving output variables. These cannot be eliminated using the conven-
tional algorithms. The DAG optimization is avoiding this problem by directly
renaming output nodes with output variables. ut

Unremovable copy instructions can occur at maximum once for every output
variable and can be eliminated using a specialized algorithm. The analysis is
operating backwards:

Definition 5.21. Let π := (Σ,~vin, ~vout, β) ∈ SLC, Σ := (F,C), β := α1; ...;αn

and αi := xi ← ei. For an instruction αi and I := P((V 2
π ×{1, ..., n})∪Vπ) define

the transfer function tαi
: I → I by:

tαi
:= genαi

◦ killαi
with kill, gen : I → I and

killαi
(M) := M \ {(y, z, j) ∈M | xi = y or z ∈ Vαi

, j ∈ {1, ..., n}}

genαi
(M) := M ∪ {(y, xi, i) | ei = y ∈ V \ (M ∪ Vout) and xi ∈ Vout \M} ∪ {xi}

The tαn , ..., tα1 determine – starting from the initial set ∅ – the analysis sets:

RCn := ∅

RCi := tαi+1(RCi+1) for i ∈ {n− 1, ..., 1}

Thus the analysis set RCi of an instruction αi contains the tuple (y, x, j) it
exists an instruction αj , j > i that is an assignment of the form x ← y with
x ∈ Vout and y /∈ Vout, y is not redefined after αi, x neither appears on the left–
hand side of an instruction after αi except in αj , nor it is used between αi and
αj . The third entry j is employed to guarantee the determinism of the algorithm.

The additional “collection” of defined variables is used to simply check if a
variable is redefined later (after αj).

Algorithm 5.22 (Reverse Copy Propagation). Let π be given as in Def. 5.21
and let δ : Vπ → Vπ be a variable substitution function. Define TRC : SLC → SLC
by TRC (π) := (Σ,~vin, ~vout, β

′) where β′ is computed as follows:

1. Set δ := id and β ′ := ε.
2. For i = 1, ..., n (case distinction by the type of ei):

(a) ei = f(u1, ..., ur) for f ∈ F (r):
If a y ∈ Vout exists such that (xi, y, j) ∈ RCi (if several such y exist
choose24 the tuple with the lowest j) and set

β′ := β′ · y ← δ̄(ei)

δ := δ[xi/y]

24 Necessary for achieving determinism.
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(b) Otherwise: further cases
(i) ei = y ∈ V and δ(y) = δ(xi): no change of β ′.
(ii) Else: set β ′ := β′ · δ̄(αi).

Unlike Copy Propagation, Reverse Copy Propagation does not trace transi-
tive relations. For eliminating the problem seen in the proof of Thm. 5.20 this is
not needed.

Example 5.23. To clarify the functionality of the algorithm we will demonstrate
it using as example the TCOPT–optimized version of the program π2 from the
proof of Thm. ThmNxCPCS, i.e., π := TCOPT (π2) := (({f (2)}, ∅), (x), (y, z), β)
with

β := t1 ← f(x, x);

t4 ← f(t1, x);

y ← t4;

z ← t4;

Applying TRC we get the following computation (let π ′ := TRC (π) := (({f (2)}, ∅),
(x), (y, z), β ′)):

i β RCi δ β′

1 t1 ← f(x, x); {t4, y, z} id t1 ← f(x, x);
2 t4 ← f(t1, x); {(t4, y, 3), (t4, z, 4), y, z} id[t4/y] y ← f(t1, x);
3 y ← t4; {(t4, z, 4), z} id[t4/y]
4 z ← t4; ∅ id[t4/y] z ← y;

The application of TSSA◦TDAG to π′ yields again the same program. Thus for this
example we achieved the desired result introducing Reverse Copy Propagation.

Reverse Copy Propagation only substitutes variables that are not output
variables. This is indispensable for the completeness of the program because
otherwise the removal of an assignment to an output variable would cause an
undefined output variable.

As all the other optimizations regarded in this work also TRC satisfies the
requirements of a program transformation and the DAG algorithm is as expected
TRC –optimal [Rie05b].

Extended Compositional Composition

Now the prerequisites are met to define a new transformation that hopefully is
DAG–equivalent.

Definition 5.24 (Extended Compositional Transformation). For π ∈ SLC
the Extended Compositional Transformation TXOPT : SLC → SLC is defined by:

TXOPT := TCOPT ′ ◦ TSSA = TSSA ◦ TRC ◦ TDC ◦ (TCP ◦ TCS )?
︸ ︷︷ ︸

TCPCS

◦TCF ◦ TSSA

(The ?–notation indicates the fixed point iteration)

At this point we will not show that TXOPT fulfills the requirements of a
program transformation. The reader may find the details in [Rie05b].
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5.5 Equivalence of the DAG Algorithm and the Extended Com-

positional Transformation

Now we have to verify that the changes of TCOPT do indeed suffice to make
the Extended Compositional Transformation TXOPT equivalent to the DAG op-
timization for which we first have to show some auxiliary propositions.

Lemma 5.25. Let π be a TDC–optimal SLC–program and Dπ = (G, val) with
G = (K,L, lab, suc) its DAG. Then all k ∈ K are output relevant.

Proof. Let π =: (Σ,~vin, ~vout, β) with β = α1; ...;αn and αi = xi ← ei. xi ∈ NVi

by the assumption that π is optimal w.r.t. TDC . For x ∈ Vπ and i ∈ {1, ..., n} it
suffices to show:

x ∈ NVi ⇒ val(x, i) is output relevant

Backward induction on i ∈ {n, ..., 1}:

i = n :
x ∈ NVn = Vout ⇒ val(x, n) is output relevant according to Def. 4.4 (case 1).

i→ i− 1 :
x ∈ NVi−1 = NVi\{xi}∪Vei

since xi ∈ NVi by assumption. Case distinction:
1. x ∈ Vei

and ei = f(u1, ..., ur). Then ∃j ∈ {1, ...r} and suc(val(xi, i), j) =
val(x, i − 1). Because of the induction hypothesis and Def. 4.4 (case 2)
follows: val(x, i − 1) is output relevant.

2. x ∈ Vei
and ei = x. This is inadmissible for SLC–programs (Def. 2.3).

3. x ∈ NVi\{xi}. With the induction hypothesis follows the output relevance
of val(x, i). Due to xi 6= x, val(x, i − 1) is also output relevant according
to Alg. 4.2. ut

We will now show that the analysis information of Constant Folding is at
least as precise as the one of TDAG . For that we will prove the contrary to the
claim of Thm. 5.5.

Lemma 5.26. Let π := (Σ,~vin, ~vout, β) ∈ SLC with β := α1; ...;αn and Dπ =
(G, val) where G = (K,L, lab, suc). Then for all i ∈ {1, ..., n} and all y ∈ Vπ:

val(y, i− 1) ∈ A⇒ RDi(y) ∈ A

Proof. Induction on i ∈ {1, ..., n} :

i = 1 : RD1(y) = σ⊥(y) = ⊥
i→ i + 1 : Case distinction for the expression ei and the variable y:

1. If ei = f(u1, ..., ur) and y = xi:

val(y, i) = ϕ(f)(u′1, ..., u
′
r) ∈ A

where u′j :=

{
val(uj , i− 1) if uj ∈ V
uj if uj ∈ A

Then it follows:

∀j ∈ {1, ..., r} : u′j ∈ A
IH
⇒ ∀j ∈ {1, ..., r} : RDi(uj) ∈ A if uj ∈ V or uj ∈ A

⇒ RDi+1(y) = RDi[xi/Ā[[ei ]]RDi](y) = Ā[[ei ]]RDi ∈ A
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2. If ei = z ∈ V and y = xi:

val(y, i) = val(z, i − 1) ∈ A
IH
⇒ RDi(z) ∈ A

⇒ RDi+1(y) = RDi[xi/Ā[[ei ]]RDi](y) = Ā[[ei ]]RDi = RDi(z) ∈ A

3. If ei = a ∈ A and y = xi:

val(y, i) = a

= RDi[xi/Ā[[ei ]]RDi](y)

= RDi+1(y)

4. Otherwise (y 6= xi):

val(y, i) = val(y, i− 1) ∈ A
IA
⇒ RDi(y) ∈ A

⇒ RDi+1(y) = RDi[xi/Ā[[ei ]]RDi](y) = RDi(y) ∈ A

Thus the claim holds. ut

We also have to check if TCPCS is working optimally for an input program
in SSA form in the sense that the DAG construction for a TCPCS ◦ TCF –optimal
SLC–program causes the creation of a new node for every operation expression. If
this property would not hold, neither TXOPT ∼ TDAG would. Constant Folding
has to be executed in advance since also the DAG algorithm is performing a
partial evaluation of expressions using knowledge about variables with constant
values.

Lemma 5.27. Let π := (Σ,~vin, ~vout, β) ∈ SLC be in SSA form with Σ :=
(F,C), β := α1; ...;αn, αi := xi ← ei, TCPCS (TCF (π)) = π and let Dπ = (G, val)
the DAG of π with G := (K,L, lab, suc) and A := (A,ϕ) an interpretation of Σ.
Then for every ei /∈ V ∪A it exists a ki ∈ K.

Proof. Suppose for an l ∈ {1, ..., n} with el = f(u1, ..., ur), f ∈ F (r) no kl ∈ K
exists. Then by the DAG construction (Alg. 4.2) an l ′ < l exists such that kl′ ∈ K
with

suc(kl′ , j) =

{
val(uj , l) if uj ∈ V
uj if uj ∈ A

(∗)

After La. 5.26 val(uj , l) ∈ A cannot hold for all j ∈ {1, ..., r} with uj ∈ V since
π is optimal w.r.t. Constant Folding. Let αl′ be of the form xl′ ← f(u′1, ..., u

′
r).

Case distinction (inductively):

1. ∀j ∈ {1, ..., r} : u′j = uj ∈ A ∪ V .
Then it follows l′ ∈ AEl and l ∈ vr(l′). But then TCS (π) = π would not hold
and neither would TCPCS (TCF (π)) = π. Contradiction.

2. ∃j ∈ {1, ..., r} such that uj 6= u′j and uj, u
′
j ∈ V according to La. 5.26. Then

we have different cases:
(a) It exists a k < l with αk = uj ← z, z ∈ V and val(z, k− 1) = val(uj , l) or

val(z′, k′ − 1) = val(u′j , l
′) holds for a k′ < l′ with αk′ = u′j ← z′. Neither

is possible since Copy Propagation would have substituted uj and u′j by
z and z′ because of the SSA form of the input program.
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(b) ∃k < l and ∃k′ < l′ with αk = uj ← g(s1, ..., sp) and αk′ = u′j ←
g(s′1, ..., s

′
p) and it holds again (∗) with uj = sj, u′j = s′j , f = g, l = k,

l′ = k′ and r = p.
Because n < ∞ the induction must terminate; this can only occur in the
cases 1 or 2(a). Hence we get a contradiction. ut

A TXOPT–optimal program cannot contain arbitrary copy instructions; they
must follow a certain form.

Lemma 5.28. Let π := (Σ,~vin, ~vout, β) ∈ SLC be a TXOPT–optimal program
with β := α1; ...;αn and αi := xi ← ei. Then for all i ∈ {1, ..., n}:

αi = x← y ⇒ x ∈ Vout ∧ y ∈ Vin ∪ Vout

Proof.

1. x must be an output variable since otherwise all occurrences of x in αj , j > i
would have been substituted by y due to the SSA property of π and αi there-
fore would have become Dead Code. This is a contradiction to the TXOPT–
optimality.

2. Let y /∈ Vin ∪ Vout. Then an operation instruction αi′ = y ← f(u1, ..., ur)
must exist for i′ < i. A constant assignment is impossible because of the use
of TCF and a copy instruction is impossible according to case 1.
The SSA property of π ensures that neither x nor y are ever assigned a value
except in αi and αi′ . Furthermore y does not occur above αi in the program.
Then TRC would substitute y by x and the instruction αi would be removed.
That is a contradiction to the optimality w.r.t. TXOPT . ut

Now all prerequisites for the proof of the TDAG–optimality of the Extended
Compositional Transformation are fulfilled.

Theorem 5.29 (Optimality of TXOPT w.r.t. TDAG). TDAG ≤ TXOPT .

Proof. For π0 ∈ SLC and Σ := (F,C) let π := (Σ,~vin, ~vout, β) := TXOPT (π0)
with β := α1; ...;αn. By A := (A,ϕ) an interpretation of Σ is given. In addition
let Dπ := (G, val) with G := (K,L, lab, suc) be the DAG of π and let TDAG(π) =:
π′ =: (Σ,~vin, ~vout, β

′) with β′ := α′1; ...;α
′
n be the DAG–optimized version of π.

Because of the final application of TSSA the program π is in SSA form. There-
fore for all i ∈ {1, ..., n} and all v ∈ Vπ: if val(v, i) ∈ K (function value is defined)
val(v, i) = val(v, n) holds. After La. 5.25 K does only contain output–relevant
nodes, thus Alg. 4.6 is directly applicable (without eliminating “dead” nodes).

We show that αi = α′i must hold for all i ∈ {1, ..., n}. Case distinction for
αi = x← e:

1. e = a ∈ A: this case is only possible if x ∈ Vout since otherwise all later
occurrences25 of x would have been replaced by a and αi therefore would be
Dead Code.
According to Alg. 4.2 then a ∈ K, val(x, i) = val(x, n) = a and last(x) = i
since later no redefinition of x is possible.1 Hence by Alg. 4.6 while choosing
the next node kl, l > i before the code generation for kl (step 3) first an
assignment to y must be created, i.e., α′i = x← a = αi. If no operation node
as above exists we obtain the same result with step 8.

25 Because of the SSA form of π, x is never redefined.
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2. e = y ∈ V : according to La. 5.28 x ∈ Vout and we have get two cases:
(a) y ∈ Vin: val(x, i) = y and last(x) = i. Analogously to the first case

according to step 3 or 8 of the algorithm for the DAG code generation we
obtain α′i = x← y.

(b) y ∈ Vout: then there is an instruction αl = y ← f(u1, ..., ur) with l < i
in π (since constant assignments to y and further copy instructions are
obviously not possible) and by La. 5.27 a node kl representing αl has
been created. Thus it holds val(x, i) = val(y, i − 1) = kl, last(y) = l
and last(x) = i. In π′ an operation instruction for kl with y as assign-
ment variable already exists (this is αl). Hence, according to step 3 or 8
analogously to the first case α′i := x← y is set.

3. e = f(u1, ..., ur) for an f ∈ F (r): by La. 5.27 a node ki ∈ K exists with

lab(ki) = f

suc(ki, j) = u′j with u′j =

{
val(uj , i− 1) if uj ∈ V
uj else

val(x, i) = ki

Further case distinction by the type of y:
(a1) x ∈ Vout: last(x) = i because of the SSA property of π. Hence x is the

entry with the lowest last–value of all V ki
out in step 4 (since the other

z ∈ V ki
out cannot obtain a value before x). Thus δ := δ[ki/x] is set and the

following code is generated by step 6:

αi = δ(ki)← f(δ(suc(ki, 1)), ..., δ(suc(ki , r)))

= x← f(δ(suc(ki, 1)), ..., δ(suc(ki , r)))

(b1) x /∈ Vout: thus x = vi (because of the final application of TSSA). Now
V ki

out = ∅ because for an output variable z 6= x with val(z, n) = ki it
holds:
– A value assignment to z via a copy chain is impossible since due to

vi /∈ Vin ∪ Vout La. 5.28 would be violated.
– An assignment of an operation expression equivalent to αi to z is

neither possible since π is optimal w.r.t. TCPCS .
Because of δ(ki) /∈ Vout in step 5 δ := δ[ki/vi] is set. Then:

αi = δ(ki)← f(δ(suc(ki, 1)), ..., δ(suc(ki , r)))

= vi ← f(δ(suc(ki, 1)), ..., δ(suc(ki , r)))

Now only the validity of δ(suc(ki, j)) = uj for j ∈ {1, ..., r} is left to show.
Case distinction:

(a2) uj ∈ A: the claim holds immediately according to the DAG construction.
(b2) uj ∈ V : an l < i exists such that αl = uj ← el in π. Because of the SSA

form of π an assignment to uj is only possible in αl. Thus val(uj , i) =
val(uj , l).
If el is an operation expression by La. 5.27 a node kl ∈ K exists. Depend-
ing on the type of uj we get different cases:
(i) uj /∈ Vout: it holds

δ(suc(ki, j)) = δ(val(uj , i)) = δ(val(uj , l)) = δ(kl) = vl = uj ,

since similarly to case 3(b1) V kl
out = ∅.
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(ii) uj ∈ Vout: δ(suc(ki, j)) = δ(kl) = uj (because the last–value of uj is

automatically the lowest of all variables from V kl
out).

If el ∈ Vout by La. 5.28 el ∈ Vin ∪ Vout must hold. Additional cases:
(i) el ∈ Vin: then uj = x since π is optimal w.r.t. TCP and before the

application of TCP the SSA property was in effect. Given also that
val(uj , i− 1) = val(uj , l) = x it follows suc(ki, j) = val(uj , i− 1) = x
and ∀v ∈ Vin : δ(v) = v : δ(suc(ki, j)) = uj = x.

(ii) el ∈ Vout: then an l′ < l exists with αl′ = el ← g(s1, ..., sp) since due
to TCP an additional copy instruction el ← z with z ∈ Vin ∪ Vout is
out of question (then el would have been replaced by z).
Thus val(uj , i − 1) = val(uj , l) = val(el, l − 1) = val(el, l

′) and
suc(ki, j) = kl′ . Then we have uj = el, δ(kl′) = el (according to the
DAG code generation, step 4) and therefore δ(suc(ki, j)) = uj = el′ .

Thus overall TXOPT is TDAG–optimal. ut

For the equivalence of the Extended Compositional Transformation and the
DAG optimization we have to show the reverse too.

Main Theorem 5.30 (Equivalence of TDAG and TXOPT ). The two trans-
formations TXOPT and TDAG are equivalent (TXOPT ∼ TDAG).

Proof. According to Def. 5.1 it remains to show:

TXOPT ≤ TDAG

The reverse direction holds by Thm. 5.29.
In Sec. 4 we have shown that TDAG is optimal w.r.t. the classical optimiza-

tions. The same holds according to [Rie05b] for the additionally introduced spe-
cialized algorithms. Thus the application of one of the algorithms composing
TXOPT does not modify a TDAG–optimal program and neither a chaining of
these algorithms will provoke any change. Hence the claim holds. ut
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1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen
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