
Aachen
Department of Computer Science

Technical Report

WST’04

7th International Workshop on Termination

Michael Codish and Aart Middeldorp (eds.)

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2004-07

RWTH Aachen · Department of Computer Science · June 2004



The publications of the Department of Computer Science of RWTH Aachen (Aachen Uni-
versity of Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/



Preface

This report contains the proceedings of the 7th International Workshop on Termination
(WST 2004), which was held June 1 – 2, 2004 in Aachen as part of the Federated Conference
on Rewriting, Deduction, and Programming. Previous workshops were held in St. Andrews
(1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), and Valencia (2003).

This workshop delves into all aspects of termination of processes. Though the halting of
computer programs is undecidable, methods of establishing termination play a fundamental
role in many applications and the challenges are both practical and theoretical. From a
practical point of view, proving termination is a central problem in software development
and formal methods for termination analysis are essential for program verification. From a
theoretical point of view, termination is central in mathematical logic and ordinal theory.

Because of the success of the exhibition/competition of termination provers at last year’s
workshop in Valencia, it was decided to make the workshop annual. The results of this year’s
competition are not known at the time of writing, so the interested reader is referred to

http://www.lri.fr/~marche/wst2004-competition/

We are grateful to Claude Marché for running the competition and to both Claude Marché
and Albert Rubio for the preliminary work.

In addition to the regular abstracts and system descriptions selected by the program
committee, the workshop features an invited talk by Danny De Schreye, surveying the last
10 years of research on termination in the logic programming community.

It is our pleasure to thank the organizing committee of RDP 2004, and in particular
Jürgen Giesl, for hosting the workshop and printing the proceedings.

May 2004 Michael Codish
Aart Middeldorp
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The Never-Ending Story: 10 years after (preliminary and

limited version)

Danny De Schreye

Dept. Computer Science, K.U.Leuven, Belgium
dannyd@cs.kuleuven.ac.be

Abstract. The research area of Logic Program termination analysis has its origins from nearly 20 years ago.
Exactly 10 years ago, a survey of the work in this area appeared as one of a collection of survey papers on
Logic Programming in the Journal of Logic Programming, under the title: Termination of Logic Programs:
the never-ending story ([1]).

This talk is in preparation of a sequel to this survey, presenting the new directions of work published
over the last 10 years. The survey is in a very preliminary phase of its preparation. As a result, the goals
for this talk are somewhat broader then just to survey the area.

Because the audience for this talk includes many people who may be less familiar with Logic Pro-
gramming termination analysis, one important goal for the talk is present and discuss some of the issues
in termination analysis that are specific for the Logic Programming context and present some proposed
solutions for these issues. These issues may not correspond to publications of the last 10 years. In that sense,
the talk will be broader than what the title suggests.

On the other hand, since most of the work on the survey still needs to be done, in the talk we will
focus more on contributions of the Leuven group than on others. This reflects in no way a judgment of
the importance of the Leuven contributions, but is a cheap trick to avoid extensive preparation in limited
remaining time.

Finally, whenever possible, contributions will be placed in their historic context. to give the audience a
broader and more conceptual view of the evolution within this area.

References

1. D. De Schreye and S. Decorte, Termination of Logic Programs: the never-ending story, J. Logic Pro-
gramming 19-20, pp.199-260, 1994.



Connecting Remote Termination Tools?

Maŕıa Alpuente and Salvador Lucas

DSIC, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain
{alpuente,slucas}@dsic.upv.es

Abstract. After more than thirty years of development of the theory of termination of rewriting, a number
of tools for automatically proving termination of TRSs have recently emerged. Their application to real
programming languages and systems is of course desirable and has been envisaged in many of these tools.
The World Wide Web makes it possible to gain access to the different resources in a number of ways, ranging
from remote downloads followed by local executions to remote execution via WWW services. Unfortunately,
though, few of the existing systems and tools (including termination tools) are readily connectable. We
advocate systematically considering interoperability across platforms, applications and programming lan-
guages when developing termination tools and related language processors. This is only possible if a number
of common practices (and standards) are seriously put into use by the international community.

1 Introduction

The quest for a verifying compiler is a classic but still hot, challenging goal for both the
Software Industry and the Computer Science community [4]. Of course, termination analysis
would be an essential component of such a tool. As mentioned in [4], the effective devel-
opment of such a system will require an incremental and cooperative effort from different
work teams all around the world. Thanks to the WWW, the physical distance among those
teams is becoming less and less important. However, many existing systems and tools are
not easily conciliable for working together, even if they address closely related problems or
rely on similar theoretical bases. The WWW technology, however, is full of possibilities for
removing barriers to integration and for dramatically improving the re-usability of previous
theoretical results and development efforts.

2 Termination of programs and termination tools

As a motivating example, we consider the termination analysis of programs written in pro-
gramming languages such as CafeOBJ, Elan, Erlang, Maude, OBJ, etc., whose operational
principle is based on term rewriting. Proofs of termination of TRSs can be used for proving
the termination of programs written in these languages. A number of systems for proving
termination are available on the WWW: e.g.,

Tool WWW site (use prefix http://)

AProVE www-i2.informatik.rwth-aachen.de/AProVE

CiME cime.lri.fr

Hasta-La-Vista www.cs.kuleuven.ac.be/~dtai/dpl/systems-E.shtml

Matchbox theo1.informatik.uni-leipzig.de/matchbox

TALP bibiserv.techfak.uni-bielefeld.de/talp

TerminWeb lvs.cs.bgu.ac.il/~mcodish/suexec/terminweb

Termptation www.lsi.upc.es/~albert/term.tar.gz

Tyrolean/Tsukuba Termination Tool cl2-informatik.uibk.ac.at

? Work partially supported by MCyT project TIC2001-2705-C03-01, MCyT Acción Integrada HU 2003-0003
and AVCyT grant GR03/025.



Other systems, like the Mercury compiler www.cs.mu.oz.au/research/mercury, include a
termination checker.

Unfortunately, however, it is not easy to connect independently developed analysis tools
to a practical environment such as the Maude interpreter1: the syntax of Maude programs
does not correspond to the syntax of any of existing termination tools (see [5] for descriptions
of many of them); the systems have quite different interfaces (for instance, stream-based
input output or graphical interfaces); the Maude interpreter is written in C++, whereas
the tools are written in different languages, namely CAML, Java, SICSTUS Prolog, etc.

From a semantic point of view, there are also other relevant issues which have to be
considered when trying to bridge term rewriting tools and Maude: Maude programs are
syntactically richer than term rewriting systems. Maude features that are not necessarily
managed by these rewriting tools include: sorts, conditional rules, pattern matching expres-
sions, programmable evaluation strategies, associative/commutative/idempotent symbols,
modules, etc. The previous tools for proving termination of rewriting hardly deal with these
features, which still have to be properly managed if we want to (accurately) use the existing
tools to prove properties of real programs. Eventually, this can be done by means of program
transformations which preserve the focused property (e.g., termination). This is somehow
related to the transformational approaches for proving termination of (well-moded) logic
programs which reduce the termination problem of logic programs to that of TRSs. These
findings are the basis for logic programming termination tools consisting of a front-end
which implements the considered transformation and a back-end for proving termination of
the generated TRS.

3 Web services for termination analysis

Interoperability (i.e., to make it possible for a program on one system to access programs and
data on another system [1]) is a general problem in Software Engineering and a number of
solutions have been devised up to now (namely, middleware systems [1,6]). The XML WWW
services (or just WWW services) are the most recent proposal for interconnecting systems
[7]. They provide a flexible architecture for achieving interoperability of loosely-coupled
systems that use different internal data structures to represent the information, and that
have been developed in different programming languages. The exchange of information, the
implementation of the necessary calls, and the localization of services on the web is based
on different XML dialects (XML for representing data, SOAP for packaging messages,
WSDL for defining the available services, and UDDI for finding them on the Web [3]).
Even in the case that the systems are available on the same local machine, most of these
interoperability facilities could play a relevant role in gluing together different tools which
are often developed in different programming languages as well as combining architectural
approaches where more tightly-coupled techniques like RPC or CORBA are not viable in
many cases. Innovation is moving towards the so-called WWW services choreography, which
pursues new standards to support the specification of complex systems out of simpler ones.

The definition of standards is widely recognized as desirable in the industry. The sci-
entific community would also benefit from some standardization regarding, e.g., interop-
erability of systems which are naturally and highly distributed. We do believe that more
general frameworks are lacking, that is, abstract schemes for particular kinds of applications
-abstract in the sense of isolating the common features of that class. In many framework

1 http://maude.cs.uiuc.edu
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designs, the applications are created by the combination of the framework with a number
of application-dependent decisions so that they get permanently -and undesirably- linked
to the framework. Tackling the following specific issues seems desirable:

1. Defining suitable XML-like formats for expressing the most important features of cur-
rently used (families of) programming languages (in particular, rewriting–based pro-
gramming languages).

2. XML sublanguages for expressing analysis/verification requirements to existing tools
(e.g., innermost termination, simple termination, etc., possibly considering information
regarding special operators, types, modules, strategies, conditions, etc.). We believe that
this approach deserves great interest since it does contribute to the design of abstractions
which are completely independent from the target language and are highly reusable.

3. Middleware translators from the existing programming languages to the lower level lan-
guages or formalisms which underly the program analysis tools. XSLT could be used for
that purpose. Also declarative languages such as CiaoProlog, Haskell, SICStus Prolog,
SWI-Prolog, etc., are well-suited for that.

4. Including the termination tools into the SOAP/WSDL/UDDI framework to get system-
atic access to their functionality.

As a concrete starting point, we think that the current format for specifying termination
problems in the WST 2004 competition

http://www.lri.fr/~marche/wst2004-competition

could be further developed in the following directions:

1. separate the purely syntactic components of the problem (i.e., those referring the struc-
ture of the TRS) from the proof-oriented ones (i.e., those concerning a kind of termina-
tion property or termination proof which could be required from a tool);

2. use XML to express these different aspects of the problem; and
3. making some concrete, preliminary experiences to connect ‘server’ tools (e.g., termina-

tion provers) and ‘client’ tools (e.g., compilers, interpreters, or other systems which use
auxiliary termination tools).

Beyond being the current trend of the international community, we believe that the use
of XML-based technology for these purposes is also positive due to its flexibility and the
existence of many tools and libraries which can be reused. Of course, other approaches,
such as the ASF+SDF technology [2] could also provide useful ideas and solutions.

These tasks could probably be better addressed in coordination with existing working
groups in international associations: for instance,

W3 Consortium http://www.w3c.org

IFIP http://www.ifip.org

ERCIM http://www.ercim.org

4 Conclusion

The recent development of new and powerful termination tools is encouraging for the sci-
entific community and suggests that they could be used by more complex computational
systems such as advanced compilers and integrated software development environments.
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However, the current tools are not commonly used or even easily reusable. The use of re-
mote analysis tools (where remote means not only distant but also difficult to connect)
is essential to be able to integrate powerful program analysis into programming environ-
ments. Not only should correctness or efficiency be taken into account while designing new
tools, environments and frameworks, but interoperability issues should also be systemati-
cally considered as well. We honestly believe that putting greater effort into these issues
will contribute to being successful with the current challenge of connecting analysis tools.
In our opinion, these tasks should be appropriately coordinated by existing working groups
in international associations.

References

1. P.A. Bernstein. Middelware: A Model for Distributed System Services. Comm. of the ACM, 39(2):86-98,
2002.

2. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser The ASF+SDF Meta-
Environment: A component-based language development environment In R. Wilhelm, editor, Proc. of
10th International Conference on Compiler Construction CC’01, LNCS 2027:365-370, Springer-Verlag,
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3. M. Burner. The Deliberate Revolution. Creating Connectedness with XML Web Services. ACM Queue
1(1):29-37, March 2003.
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A Note on a Term Rewriting Characterization of PTIME

Toshiyasu Arai1 and Georg Moser2

1 Graduate School of Science and Technology
Kobe University
arai@kurt.scitec.kobe-u.ac.jp

2 Institut für mathematische Logik und Grundlagenforschung
WWU Münster
moserg@math.uni-muenster.de

Abstract. In [2] a clever term rewriting characterization of the polytime functions is given by defining a
set RB′ of feasible rewrite rules for predicative recursion. It is shown that the derivation length function
(DlR

B′ ,f ) of RB′ for f is bounded by a monotone polynomial in the length of the inputs. We give a simplified
proof of this result. As a consequence we obtain the stronger result that DlR

B′ ,f is bounded by a monotone
polynomial in the length of the normal inputs, only. Thereby the specific features of RB′ are more accurately
expressed. We believe our results imply the usefulness of so-called Cichon’s principle (CP) to the (worst-case)
derivation length analysis of a given term rewriting system R.

1 Motivation

In [2] a feasible term rewriting framework for the Bellantoni Cook schemata of predicative
recursion [3] is introduced. The latter yields a canonical definition of the polynomial time
computable function (PTIME). The term rewriting characterization of PTIME is obtained
by restricting the natural rewriting analogue of the schema of predicative recursion suitably.
These restrictions amount essentially to the fact that rewrite rule applications are restricted
to the case where all the safe argument are numerals. No restriction is given for the normal
arguments. Thus the schemata of predicative recursion are feasibly represented by the below
set of rewrite rules. Following [2] this rewrite system is called RB′ .

Due to space limitations, we suppose (at least nodding) familiarity with [2,3]. Further-
more we assume the notations of [2] and use the following conventions. Let k, l, k ′, l′, r denote
arbitrary natural numbers, respectively. The symbols n̄, m̄ are used to denote numerals. We
write t, to denote sequences of terms t1, . . . , tk and g to denote sequences of function sym-
bols g1, . . . , gk, respectively. For simplicity we write n for a sequence of numerals n̄1, . . . , n̄k

and we write O for O0,0. The set RB′ consists of the following rules.

Ok,l(x1, . . . , xk; y1, . . . , yl)→ O .

for all k, l so that k + l > 0;

Uk,l
r (x1, . . . , xk;xk+1, . . . , xk+l)→ xr ,

for any 1 ≤ r ≤ k + l;

P 0,1(;O)→ O ,

P 0,1(;Si(; y))→ y ,

for i ∈ {1, 2};

C0,3(;O, y1, y2)→ y1 ,

C0,3(;Si(; y), y1, y2) → yi ,



for i ∈ {1, 2};

SUBk,l
k′,l′ [f, g,h](x;n)→ f(g1(x; ), . . . , gk′(x; );h1(x;n), . . . , hl′(x;n)) ,

and finally

PRECk+1,l[g, h1, h2](O,x;n)→ g(x;n) ,

PRECk+1,l[g, h1, h2](Si(;x),x;n)→ hi(x,x;n,PRECk+1,l[g, h1, h2](x,x;n)) .

We write B (Bk,l) to denote the set of predicative recursive functions (with k normal terms
and l safe terms as arguments).1 The set of ground terms over B is defined as usual and
denoted as T (B). We denote the derivation length function of a rewrite system R for f ∈ B
as DlRB′ ,f . The latter is defined as follows. For any f ∈ Bk,l let

DlRB′ ,f (m;n) := max{n | ∃t1, . . . , tn ∈ T (B)(t1 →RB′
· · · →RB′

tn) ∧ t1 = f(m;n)} .

One of the main results of [2] states

Theorem 1. The rewrite system RB′ is terminating and for any f ∈ B, DlRB′ ,f is bounded
by a monotone polynomial in the length of the inputs.

To obtain this, Beckmann and Weiermann define a monotone interpretation J : T (B)→ ω
that normalizes RB′ . In some sense their result is non-optimal. The bounding function
for DlRB′ ,f depends on (the length of) all inputs, i.e. on the length of normal and safe
arguments. However an inspection of the rules in RB′ shows that a bounding function for
DlRB′ ,f need not depend on (the length of) the safe argument terms of f .

Below we define a monotone interpretation S: T (B) → ω that normalizes RB′ . This
interpretation is designed such that DlRB′ ,f (m,n) ≤ (2 +

∑

i|m̄i|)
`(f) holds, where |m̄|

denotes the dyadic length of the numeral m̄. I.e. the derivation length function of RB′ for f
becomes bounded by a monotone polynomial in the length of the input of normal arguments.
Thereby we obtain a somewhat stronger result. Furthermore the designed interpretation S
is considerably simpler than the original given interpretation J .

2 Results

We state the definition of the interpretation S: T (B) → ω. For f ∈ B, let `(f) ≥ 1 be
defined as follows:

• `(f) := 1, for f ∈ {S0,1
i , Ok,l, Uk,l

r , P 0,1, C0,3}.

• `(SUBk,l
k′,l′ [f, g,h]) := 2 + max{`(f) · (maxi `(gi) + k′),maxj `(hj) + l′}.

• `(PRECk+1,l[g, h1, h2]) := 1 + max{`(g), `(h1), `(h2)}.

Let sn(t) (t ∈ T (B)) denote the maximal length of numerals occurring in a safe position
in t, defined as follows: (i) sn(n̄) := |n| or (ii) sn(f(t; s)) = maxj sn(sj), otherwise. For the
definition of S, we simultaneously define S: T (B)→ ω and N: T (B)→ ω. We set

S(n̄) := 0 ,

S(Si(; t)) := S(t) + 1 if t 6≡ n̄ ,

S(f(t; s)) := (2 +
∑

i

N(ti))
`(f) +

∑

j

S(sj) otherwise, and

N(t) := S(t) + sn(t) .

1 For a formal definition the reader is kindly referred to Definition 2.2 in [2].
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In particular note that N(n̄) = |n|, while S(n̄) = 0. Based on this notion we obtain the
following proposition.

Proposition 1. The interpretation S provides a monotone interpretation of T (B) into the
natural numbers. This interpretation is compatible with →RB′

. Thus termination of RB′

follows. Furthermore let t = f(m;n); we obtain DlRB′ ,f (m;n) ≤ S(t) = (2 +
∑

i|mi|)
`(f)

for any sequence of numerals m, n, respectively. Thus DlRB′ ,f is bounded by a polynomial
in the length of the input of the normal arguments.

In the remainder of this abstract we (briefly) indicate the steps that led us to the
final definition of S. We think these considerations are interesting to the reader as they
indicate a successful application of so-called Cichon’s principle (CP) [4]. We make us of the
follow formulation: “The (wort-case) complexity of a rewrite system for which termination
is provable using a termination order of order type α is eventually dominated by a function
from the slow-growing hierarchy along α.”

We started with an interpretation π : T (B) → ωω that guarantees termination of the
rewrite system RB′ . We write Φ(f) to denote the number theoretic function represented by
f ∈ B, the extension of Φ to arbitrary terms in T (B) is defined as usual.

Let lh(f), f ∈ B be defined as in [2]: (i) lh(f) := 1, for f ∈ {S0,1
i , Ok,l, Uk,l

r , P 0,1, C0,3}.

(ii) lh(SUBk,l
k′,l′ [f, g,h]) := 1 + lh(f) + lh(g1) + · · · + lh(gk′) + lh(h1) + · · · + lh(hl′). (iii)

lh(PRECk+1,l[g, h1, h2]) := 1 + lh(g) + lh(h1) + lh(h2). Then set for f(t; s) ∈ T (B)

π(f(t; s)) := π(t)⊕ π(s)⊕ 1 if f ∈ {S0,1
i , Ok,l, Uk,l

r , P 0,1, C0,3} ,

π(f(t; s)) := ωlh(f) · π(t) ·
∑

i

|Φ(ti)| ⊕ π(s) otherwise ,

such that ·, ⊕ denote ordinal product and natural sum, respectively and π(t) abbreviates
π(t1)⊕ · · · ⊕ π(tk) if t = t1, . . . , tk.

Proposition 2. The interpretation π provides a monotone interpretation of T (B) into the
set of ordinals below ωω. As π is compatible with→RB′

the rewrite system RB′ is terminating.

This reveals that the order type of a suitable termination order for RB′ is in fact a
rather small ordinal, namely ωω. An immediate consequence of the above proposition is
that DlRB′ ,f can principally be majorized in terms of the so-called slow-growing function
Gωlh(f)+1 .2 This can be conjectured on the assumption that CP holds for the set of rewrite
rules RB′ .

To verify that this really works, i.e. that CP indeed holds, a little bit more work is
necessary. We employ the following proposition from [3]

Proposition 3. Let f ∈ B. There exists a monotone polynomial qf such that for all se-
quences of numerals m, n |Φ(f)(m;n)| ≤ qf (|m1|, . . . , |mk|) + maxj |nj| holds.

This proposition allows us to define a more suitable ordinal interpretation ord: T (B)→
ωω. Let ⊗ denote the natural product. We set for f(s; t) ∈ T (B)

ord(n̄) := 0 ,

ord(Si(; t)) := ord(t) + 1 if t 6≡ n̄ ,

ord(f(t; s)) := ωlh(f) ⊗ (ord(t) + 1)⊗ Jf (|Φ(t)|)⊕ ord(s) otherwise ,

2 The slow-growing functions are number-theoretic functions indexed by ordinals. One defines G0(x) := 0,
Gα+1(x) := Gα(x) + 1, and Gα(x) := Gα[x](x), if α is a limit; α[x] denotes the xth branch of the
fundamental sequence for α.
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where for f ∈ {Ok,l, Uk,l
r , P 0,1, C0,3} we set Jf (m) := 1, for F = SUBk,l

k′,l′ [f, g,h] let

JF (m) := (1 +
∑

i

Jgi
(m)) · Jf (qg1(m), . . . , qgk′

(m)) +
∑

j

Jhj
(m) + 1 ,

and finally for F = PRECk+1,l[g, h1, h2] we set

JF (m,m) := m · (Jh1(m,m) + Jh2(m,m)) + Jg(m) .

Proposition 4. The interpretation ord provides a monotone interpretation of T (B) into
the ordinals below ωω. This interpretation is compatible with →RB′

. Furthermore let t =
f(m;n); for some suitable variant Gα of the slow-growing hierarchy, we obtain Gord(t)(c) ≥
DlRB′ ,f (m;n) for any sequence of numerals m, n, and some small number c, respectively.

To achieve the above proposition one replaces the usual order relation > on ordinals
by a pointwise order relation >1. I.e. one has to make sure that for s, t ∈ T (B) s →RB′

t
implies ord(s) >1 ord(t) and Gord(s)(c) > Gord t(c) for some effectively given c < ω. A
suitable definition of >1 can be either extracted from [1] or from [5].

It is easy to see that the thus obtained bounding function is a polynomial in the length
of inputs of the normal arguments. Furthermore a brief inspection of the proof of the
proposition reveals that no use of the occurring infinite ordinals is made. This led us to
the quest for a natural number-theoretic interpretation S, whose definition has been given
above.

3 Conclusion

Based on the work of Beckmann and Weiermann in [2] we have established a new and
relatively simple interpretation S: T (B) → ω that yields a stronger bounding function of
DlRB′ ,f (f ∈ B). Our solution was based on a successful application of CP, employing the
intermediate (ordinal) interpretations π and ord, respectively.

Finally, assume that g ∈ B1,1, hi ∈ B2,2 and p ∈ B2,1. Let f be a new function
symbol of arity 2, 1. Extend RB′ by the following rules for f , f(O, x1; n̄) → g(x1; n̄) and
f(Si(;x), x1; n̄) → hi(x, x1; n̄, f(x, x1; p(x, x1, n̄)). The interpretation S can be extended to
show that the derivation length function of the extended rewrite system for f is bounded
by a monotone polynomial in the length of the input of the normal arguments. This yields
that predicative parameter recursion is predicative recursive, cf. [2].

We believe the given simplifications make it easier to grasp the elegance of the term
rewriting characterization of PTIME, presented in [2] and could perhaps ease applications
of the method proposed by Beckmann and Weiermann.
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Introduction

Termination of a string rewriting system can be proven automatically via match bounds [3].
This method is implemented in the tools TORPA [6] and Matchbox [5]. In the present paper,
we describe how to extend it to term rewriting.

To prove that a term rewriting system (TRS) R over a signature Σ terminates on a set
of terms L, we adopt the following basic plan:

1. Reduce to the problem of termination of some enrichment R′ over some Σ ′ on some L′.
2. Show that although R′ and Σ′ may be infinite, every subset of R′ over a finite signature

is terminating.
3. Construct a finite tree automaton A that contains L′ and is closed under R′-rewriting.

Then R′ is compact for L′: every infinite R′-derivation involves only a finite signature.

In all, A certifies termination of R′ on L′, and therefore R terminates on L.
In the remainder of this note we elaborate on this new automated termination proof

method. In particular we show how to choose R′ such that proof obligation (2) holds,
and we give an approximate construction of rewriting-closed automata. Finally we apply
the method for L being the set RFC(R) of right hand sides of forward closures of R.
Termination of R on RFC(R) implies uniform termination.

Enrichments by Height Annotations

We call a term rewriting system (TRS) R over a signature Σ an enrichment of a TRS R ′

over a signature Σ ′, if there is a mapping base : T (Σ ′)→ T (Σ) such that every R-derivation
step can be lifted to an R′-derivation step: for each step s →R t, and each s′ ∈ base−1(s),
there is some t′ ∈ base−1(t) with s′ →R′ t′. In this way the problem of termination of R on L
is reduced to the problem of termination of R′ on some language L′ such that L = base(L′).

We choose the enriched signature Σ ′ = Σ ×N, and call the numbers heights. We define
base : Σ′ → Σ by dropping all annotations. We obtain R′ from R by annotating the function
symbols in the rules. Depending on the linearity of R, we use one of the following:

• the enriched system top(R) is defined by all right hand side heights being one plus the
height of the top symbol of the left hand side,

? Partly supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-
97046 while this author was in residence at the NIA.



• the enriched system match(R) has all heights of the right hand side of an enriched rule
to be one plus the least height of all symbols in the left hand side.

Take R = {s(x) + 0→ s(x)} as an example. Then top(R) contains, among others, the rule
s1(x) +2 00 → s3(x), where subscripts denote annotated heights; and match(R) contains,
among others, the rule s1(x) +2 00 → s1(x).

For arbitrary R, every restriction of top(R) to a finite signature is terminating, by a
standard recursive path order argument. For linear R, every restriction of match(R) to a
finite signature is terminating, and the derivational complexity is linear. This follows by
ordering the multisets of heights.

Compatible Automata

A tree automaton A = (Q,Γ, F, T ) over a signature Γ consists of a set Q, disjoint from
Γ , of nullary symbols, called states; a set F ⊆ Q called the final states; and a ground
rewriting system T over Γ ∪ Q, with rules of the form f(q1, . . . , qk) → q or q0 → q for
f ∈ Γ, q0, . . . , qk, q ∈ Q. The automaton is called finite if T is finite. Note that for finite T ,
the reachable parts of Q and Γ are finite as well. The automaton is called deterministic if
T is non-overlapping. The language accepted by the automaton A is L(A) = {t ∈ T (Γ ) |
∃q ∈ F : t→∗

T q}.
We call A = (Q,Γ, F, T ) compatible with a term rewriting system S over Γ and a

language M over Γ if (1) M ⊆ L(A), and (2) for each rule (` → r) ∈ S, for each state
q ∈ Q, and for each substitution σ : V(`) → Q, we have that `σ →∗

T q implies rσ →∗
T q.

Under additional restrictions, a compatible automaton is closed under rewriting: If A is
compatible with S and M , and A is deterministic or S is left-linear, then S ∗(M) ⊆ L(A).
Here S∗(M) denotes the set {s ∈ T (Γ ) | ∃m ∈M : m→∗

S s} of S-descendants of M .

We call a finite or infinite rewriting system S over a finite or infinite signature Γ compact
for a language M if every derivation starting from M involves only a finite sub-signature
of Γ . If A is a finite automaton with S∗(M) ⊆ L(A), then S is compact for M .

Our approach is to construct an automaton that is compatible with a rewriting system
R′ and a regular tree language L′ by repeatedly adding transitions and states to the au-
tomaton that accepts L′. This completion procedure for tree automata need not stop. We
developed and use heuristics for re-using existing states, inspired by a similar technique for
string rewriting in the tool TORPA [6]. We plan to compare our algorithm to the com-
pletion procedure given by Genet [2]. We require that R′ is left linear in order to avoid
determinisation of tree automata.

Right Hand Sides of Forward Closures

A theorem by Dershowitz [1] states that a right-linear TRS R is terminating if and only if
it is terminating on the right hand sides of forward closures RFC(R). Hence if we are able
to describe RFC(R) as a regular tree language, then termination of R can be certified by
an automaton compatible with the system R and the language RFC(R).

For the remainder of this section we assume R to be linear. We construct RFC(R) while
we construct the compatible automaton. We do so by adding a system border(R) of rules
that are created from R rules by replacing some proper non-variable subterms of the left
hand side, and the corresponding variable subterms of the right hand side, with a new
nullary symbol #.
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For example, for the rewriting system

R = {0 + y → y, s(x) + 0→ s(x), s(x) + s(y)→ s(s(x) + (y + 0))},

the following system border(R) is obtained:







# + y → y,
# + 0→ s(#),

s(x) + #→ s(x),
# + #→ s(#),

# + s(y)→ s(s(#) + (y + 0)),
s(x) + #→ s(s(x) + (# + 0)),

# + #→ s(s(#) + (# + 0))







Then, RFC(R)# = (R ∪ border(R))∗(rhs(R)#), where (·)# maps each variable to #. In
the example, rhs(R)# = {#, s(#), s(s(#) + (# + 0))}. Now, termination of R on T (Σ)
follows from termination of R on (R ∪ border(R))∗(rhs(R)#), which will be certified by
an automaton compatible with an enriched system. As the enriched system we choose
match(R) ∪ zero(border(R)), where zero is the enrichment that labels all right hand side
symbols with 0, totally disregarding the annotations in the left hand side.

We first construct a tree automaton that accepts the language lift0(rhs(R)#), containing
the terms from rhs(R)# where all symbols are labelled by 0:

/.-,()*+�������� s0oo /.-,()*+oo

+0

OO

/.-,()*+ 1

;;xxxxx /.-,()*+2

ccHHHHH

s0

OO

s0

OO

+0

OO

/.-,()*+
ccFFFFF

;;vvvvv

``

HH

/.-,()*+
ccFFFFF

#0

OO

00

OO

?>=<89:;q

fh

OO

76540123q1

1

AA�����
. . . 76540123qk

k

]];;;;;

Here, double circles denote final states. Squares contain function symbols with height an-
notations as subscripts. A transition fh(q1, . . . , qn)→ q is graphically represented as in the
illustration at the right. The argument order of the function symbol is indicated by numbers
at the incoming arrows.

Completion yields the compatible automaton below, which establishes the upper bound 2
on match heights, and therefore proves termination of R. Note that the automaton contains
a looping transition for s1 that has been found by our “state re-use heuristics”.

/.-,()*+�������� s0oo /.-,()*+oo s1oo /.-,()*+oo
;;
s1

||

+0

OO

+1

OO

/.-,()*+ 1

;;xxxxx /.-,()*+2

ccHHHHH /.-,()*+ 1

;;xxxxx /.-,()*+2

ccHHHHH

s0

OO

s1

55

s0

OO

s0

;;vvvvv
+0

OO

s2

55

s1

OO

s0

;;vvvvv
+1

OO

/.-,()*+
ccFFFFF

OO

1

;;vvvvv

dd``

HH

ED

@A BC

OO

ED

@A BC

OO

ED

@A BC

OO

ED

@A BC

1

OO

/.-,()*+2

ccFFFFF

gg

/.-,()*+2

ccFFFFF

gg

#0

OO

00

OO

01

OO
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Conclusion

We have implemented these algorithms as extensions to the program Matchbox [5]. For
linear TRSs, this is a powerful automated termination proof method, with the RFC-match-
bound method for strings [3] as a special case. By using top(R) instead of match(R), and
L = Σ∗, we can also prove termination of some left-linear, right-non-linear TRSs.

We use the rewriting system as it is, and try to construct an approximate automaton.
Another idea is to approximate the rewriting system by a system from a class for which the
set of descendants can be constructed exactly [4].

Directions for further research are: to relate the idea of height annotations to the ques-
tion of preservation of regular tree languages, and to combine it with standard methods for
automated termination proofs.
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1 Introduction

The dependency pair approach [1–3] is a powerful technique for automated (innermost)
termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality
constraints that have to be satisfied by well-founded orders. We improve the approach by
considerably reducing the number of constraints for (innermost) termination proofs.

Example 1. The following TRS [1] is not simply terminating. Therefore classical approaches
for termination proofs fail, while the example is easy to handle with dependency pairs.

minus(x, 0)→ x (1)

minus(s(x), s(y))→ minus(x, y) (2)

quot(0, s(y))→ 0 (3)

quot(s(x), s(y))→ s(quot(minus(x, y), s(y))) (4)

The dependency pair approach is recapitulated in Sect. 2. Then we show in Sect. 3 and
4 how to reduce the constraints for both termination and innermost termination proofs.
We implemented our results in the automated termination prover AProVE [6] and evalu-
ated them on large collections of examples. The system is available at http://www-i2.

informatik.rwth-aachen.de/AProVE. The results of this paper are contained in [4,5,10]
to which we refer for further details.

2 Dependency Pairs

We restrict ourselves to finite signatures and TRSs. For a TRS R over a signature F , the
defined symbols D are the root symbols of the left-hand sides of rules and the constructors
are C = F \ D. For every f ∈ D, F is a fresh tuple symbol with the same arity as f . If
f(s1, . . . , sn)→ r ∈ R and g(t1, . . . , tm) is a subterm of r with g ∈ D, then F (s1, . . . , sn)→
G(t1, . . . , tm) is a dependency pair of R. So the dependency pairs of the TRS in Ex. 1 are

MINUS(s(x), s(y))→ MINUS(x, y) (5)

QUOT(s(x), s(y))→ MINUS(x, y) (6)

QUOT(s(x), s(y))→ QUOT(minus(x, y), s(y)) (7)

A sequence of dependency pairs s1 → t1, s2 → t2, . . . is a chain if there exist substitutions
σj such that tjσj→

∗
R sj+1σj+1 for all j. A chain is an innermost chain if tjσj

i→∗
R sj+1σj+1

and if sjσj is a normal form for all j.

Theorem 1. R is (innermost) terminating iff there is no infinite (innermost) chain.

To estimate which dependency pairs may occur consecutively in (innermost) chains, we
build an (innermost) dependency graph. Its nodes are the dependency pairs and there is an
arc from s→ t to v → w iff s→ t, v → w is an (innermost) chain. In Ex. 1, the (innermost)
dependency graph has arcs from (5) to itself, from (6) to (5), and from (7) to (6) and to



itself. So it has the cycles P1 = {(5)} and P2 = {(7)}. Since it is undecidable whether
two dependency pairs form an (innermost) chain, for automation one constructs estimated
graphs such that all arcs in the real graph are also arcs in the estimated graph [1,5,8].

To show (innermost) termination, one can prove absence of infinite (innermost) chains
separately for every cycle of the (innermost) dependency graph. To this end, one generates
constraints which should be satisfied by some reduction pair (%,�) consisting of a quasi-
rewrite order % (i.e., % is reflexive, transitive, monotonic, and stable) and a stable well-
founded order � which is compatible with % (i.e., % ◦ �⊆� and � ◦ %⊆�). However,
� need not be monotonic. For that reason, before synthesizing a suitable order, some
arguments of function symbols can be eliminated by an argument filtering.

Theorem 2. A TRS R is terminating iff for every cycle P of the dependency graph, there
is a reduction pair (%,�) and argument filtering π such that

(a) π(s) � π(t) for at least one pair s→ t ∈ P and π(s) % π(t) for all other s→ t ∈ P
(b) π(l) % π(r) for all rules l→ r ∈ R

A TRS R is innermost terminating if for every cycle P of the innermost dependency graph,
there is a reduction pair (%,�) and an argument filtering π satisfying both (a) and

(c) π(l) % π(r) for all rules l→ r ∈ U(P)

Here, U(P) are all rules that are usable for the symbols in right-hand sides of P’s dependency
pairs. For a symbol f , all f -rules are usable and if g occurs in the right-hand side of an
f -rule, then all usable rules for g are also usable for f .

So in Ex. 1, we obtain the following 10 constraints for termination. Here, (%i,�i) is the
reduction pair and πi is the argument filtering for cycle Pi, where i ∈ {1, 2}.

π1(MINUS(s(x), s(y))) �1 π1(MINUS(x, y)) (8)

π2(QUOT(s(x), s(y))) �2 π2(QUOT(minus(x, y), s(y))) (9)

πi(minus(x, 0)) %i πi(x) (10)

πi(minus(s(x), s(y))) %i πi(minus(x, y)) (11)

πi(quot(0, s(y))) %i πi(0) (12)

πi(quot(s(x), s(y))) %i πi(s(quot(minus(x, y), s(y)))) (13)

Let πi be the argument filtering that replaces all terms minus(t1, t2) by minus(t1). With
this filtering, (8) – (13) are satisfied by the lexicographic path order (LPO) with the prece-
dence quot > s > minus. So termination of the TRS is proved.

For innermost termination, we only obtain the constraint (8) for the cycle P1, since
it has no usable rules. For P2, the constraints (12) and (13) are not necessary, since the
quot-rules are not usable for any symbol in right-hand sides of dependency pairs.

3 Reducing Constraints by C � -compatibility and Dependency Graphs

Now we improve Thm. 2 for termination proofs and show that even for termination, it
suffices to require π(l) % π(r) just for the usable rules l→ r from U(P) instead of all rules
from R. So essentially, one may replace (b) by (c) in Thm. 2, provided one imposes a minor
restriction on the reduction pairs (%,�) used.
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To this end, we improve a result of Urbain [12] who showed how to use dependency
pairs for modular termination proofs of hierarchical combinations of Cε-terminating TRSs.
R is Cε-terminating iff R ∪ Cε terminates where Cε = {c(x, y) → x, c(x, y) → y} for a
fresh symbol c /∈ F . But due to the restriction to Cε-termination, in [12] one could not use
the full power of dependency graphs. For example, recent estimations [8] detect that the
dependency graph for the TRS f(0, 1, x) → f(x, x, x) of Toyama [11] has no cycle and thus,
it is terminating. But since it is not Cε-terminating, this example cannot be handled by the
approach of [12].

Thm. 3 improves the results of [12] in two ways: First, it integrates the approach of [12]
with (arbitrary estimations of) dependency graphs and combines their advantages. To this
end, we remove the restriction to Cε-terminating TRSs in Thm. 3. Instead, one only has to
restrict the reduction pairs to be Cε-compatible. This requirement is satisfied by virtually
all reduction pairs used in practice (based on RPOS, KBO, or polynomial orders).

Moreover, [12] required a weak decrease of the form “π(l) % π(r)” for unnecessary many
rules l → r. For example, to prove termination of the minus-rules (1) and (2), in [12] one
obtained the constraints (8), (10), and (11). However, Thm. 3 shows that demanding (10)
and (11) is not necessary to verify the termination of minus. More precisely, for each cycle P
of the dependency graph it suffices to require π(l) % π(r) only for the usable rules l→ r of P.
Hence, the constraints for termination are analogous to the ones for innermost termination
except that for termination we have to require Cε-compatibility of the quasi-order % (i.e.,
c(x, y) % x and c(x, y) % y).

Theorem 3. A TRS R is terminating if for every cycle P of the dependency graph, there
is a reduction pair (%,�) and an argument filtering π such that

(a) π(s) � π(t) for at least one pair s→ t ∈ P and π(s) % π(t) for all other s→ t ∈ P
(b) π(l) % π(r) for all rules l→ r ∈ U(P) ∪ Cε

Now the constraints of type (b) are reduced significantly and it becomes easier to find
a reduction pair satisfying them. For instance, termination of a well-known example of [9]
to compute intervals of natural numbers cannot be shown with Thm. 2 and a reduction
pair based on simplification orders, whereas a proof with Thm. 3 and LPO is easy, cf. [4].
In fact, by the refinement of Thm. 3, proving termination is almost the same as proving
innermost termination.

4 Reducing Constraints by Argument Filtering Before Usable Rules

Now we improve Thm. 2 for innermost termination and Thm. 3 for termination further.
These approaches can be refined by applying the argument filtering π first and determining
the usable rules U(P, π) afterwards. The advantage is that by the argument filtering, some
symbols f may have been eliminated from right-hand sides of dependency pairs and rules.
Then the f -rules do not have to be weakly decreasing anymore. Here, U(P, π) are all rules
that are π-usable for the symbols in {π(t) | s → t ∈ P}. For f , all f -rules are π-usable
and if g occurs in π(r) for an f -rule l → r, then all π-usable rules for g are also π-usable
for f . However, this refinement is only sound for non-collapsing argument filterings. If π
is collapsing, then one should instead use U(P, π ′), where π′ is like π but does not remove
function symbols.
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Example 2. We illustrate the new definition of usable rules with the following TRS of [7].

rev(nil)→nil rev1(x, nil)→x
rev(cons(x, l))→cons(rev1(x, l), rev2(x, l)) rev1(x, cons(y, l))→ rev1(y, l)

rev2(x, nil)→nil rev2(x, cons(y, l))→ rev(cons(x, rev(rev2(y, l))))

For any cycle containing REV2(x, cons(y, l)) → REV(cons(x, rev(rev2(y, l)))), up to now all
rules were usable, since rev and rev2 occur in the right-hand side and rev calls rev1. However,
if the argument filtering π removes the first argument of cons, then the rev1-rules are not π-
usable. The reason is that while rev and rev2 still occur in the right-hand side of the filtered
dependency pair, rev1 no longer occurs in right-hand sides of filtered rev- or rev2-rules.

Theorem 4. A TRS R is terminating if for every cycle P of the dependency graph, there
is a reduction pair (%,�) and an argument filtering π such that

(a) π(s) � π(t) for at least one pair s→ t ∈ P and π(s) % π(t) for all other s→ t ∈ P
(b) π(l) % π(r) for all rules l→ r ∈ U(P, π) ∪ Cε

A TRS R is innermost terminating if for every cycle P of the innermost dependency graph,
there is a reduction pair (%,�) and an argument filtering π satisfying both (a) and

(c) π(l) % π(r) for all rules l→ r ∈ U(P, π)

The TRS from Ex. 2 shows the advantages of Thm. 4. When proving innermost termina-
tion with Thm. 2 or when proving termination with Thm. 3, for the cycle of the REV- and
REV2-dependency pairs, we obtain inequalities from the dependency pairs and π(l) % π(r)
for all rules l → r, since all rules are usable. But with standard reduction pairs based on
RPOS, KBO, or polynomial orders, these constraints are not satisfied for any argument
filtering. In contrast, with Thm. 4 and a suitable argument filtering, all constraints are
oriented by the embedding order, cf. [4].
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Abstract. We investigate modularity of termination of left-linear rewrite systems in the constructor sharing
case. More precisely, we study cases where both involved system are left-linear, as well as other related
cases where the conditions on the involved systems systems (like left-linearity) are not the same. Several
tempting approaches to generalize the well-known deep modularity results of [21,22], [8,18] are discussed
and falsified by counterexamples. By a thorough analysis of the crucial notions of uniquely collapsing and
consistency w.r.t. reduction and of the role of left-linearity in collapsing and, more generally, shared symbol
lifting reductions we finally show how to generalize certain modularity results for termination in the case of
disjoint unions to combinations of constructor sharing systems. The problem in the symmetric case (where
both systems are left-linear) remains open, whereas we are able to extend a couple of asymmetric modularity
results from [4] to combinations of constructor sharing systems.

1 Background

Modularity of termination of rewrite systems has been extensively and thoroughly investi-
gated in the past, under various types of combinations. Starting with the pioneering work of
Toyama [20,19], especially with the fact that termination is in general not even modular for
disjoint unions, a whole series of (positive and negative) results have been obtained so far
(cf. e.g. [17], [13,14], [5,6], [2,3], [15,16], [1]). Subsequently, most of these results for disjoint
unions – whether symmetric or asymmetric preservation criteria - have also been extended
to more general types of non-disjoint combinations, namely constructor sharing systems,
composable ones, and (certain) hierarchical combinations.

Somehow surprisingly, there is one major exception with the extension of basic results
from the disjoint union case, namely for the case of left-linear systems. Toyama, Klop and
Barendregt [21,22] have shown by a very sophisticated analysis of collapsing reduction:

(1) Termination is modular for left-linear confluent systems.

Later, independently Marchiori and Schmidt-Schauss & Panitz ([8], [18]) succeeded in giv-
ing a simplified proof of this deep result. Actually, their proof(s)1 rely on the same basic
observations (about the uniqueness of certain collapsing reductions) as the proof of [21,22].
However, the actual construction of [8], [18] for transforming an assumed minimal coun-
terexample in the union to a smaller one is somewhat easier (to understand) than the proof
in [21,22].2 Moreover, they have shown that instead of confluence the weaker assumption
of consistency w.r.t. reduction (CON→) suffices, too, i.e.:

(2) Termination is modular for left-linear systems satisfying CON→.

The property CON→ says that a reduction of a term to two distinct variables is impos-
sible, and means that in disjoint unions the collapsing of some mixed term to some of its
aliens (or principal subterms) is only possible in a very restricted way.

1 which are not identical but very similar
2 Yet, it should be noted that in both papers [8], [18] these transformations are not really formally defined,

but rather sketched. A completely formal presentation would most probably be much more involved.



Strikingly, and in contrast to most of the other modularity results for termination, none
of the latter results (for left-linear systems) have been extended later on to non-disjoint
unions. Perhaps this is partially due to the fact that the authors in [18] mentioned

“The proof technique in this paper appears not to be extendable to the sum of term
rewriting systems where there may be common constructors, i.e., function symbols
that do not appear at the top in the left-hand sides of rules . . .

Furthermore they argue that there are simple counterexamples to (2) above if shared con-
structors are permitted, e.g. the following variant of Toyama’s basic counterexample (cf.
[20,19]):

R1 : h(a, b, x)→ h(x, x, x) R2 : D → a,D → b

These two systems only share the common constructors a, b. Both are left-linear, terminat-
ing, and CON→. Yet, their union allows a cycle:

h(D,D,D)→ h(a,D,D)→ h(a, b,D)→ h(D,D,D)

So, there seems to be no hope to extend (1), (2) above to non-disjoint combinations of
rewrite systems.

The properties of being uniquely collapsing, collapsing confluent (cf. [4]) and left-linear
are crucial in the analysis of the above symmetric case where both systems are supposed
to be left-linear:

• Intuitively, a system is uniquely collapsing if whenever there is a reduction s→∗ x from
a term to a variable, then the predecessor of x in s is unique.

• A rewrite system is collapsing confluent whenever s →∗ x and s →∗ t imply t →∗ x,
i.e., reduction to a variable remains always possible.

These properties are also crucial for various other asymmetric modularity results on
termination of disjoint unions, e.g., when only one of the systems is supposed to be left-
linear. Here we will consider the following known results in this area ([4]:

(3) If one system is non-collapsing and the other one is both uniquely collapsing
and collapsing confluent, then their disjoint union is terminating.

(4) If one system is non-collapsing and left-linear and the other one is uniquely
collapsing, then their disjoint union is terminating.

2 Our Approach

Regarding (1), (2), we will show that an extension attempt as above is too native to work.
From the extension of other basic results about modularity of termination for disjoint unions
to constructor sharing systems (and more general combinations) it is also well known that
the additional complications caused by the increased amount of shared information in the
union (especially the increasing possibilities of inferences between reduction steps in one
system and steps in the other system) have to be taken appropriately into account.

We do this concerning (2) above, by a thorough analysis of the role of the preconditions
left-linearity, consistency w.r.t. reduction (CON→) and of related properties (cf. [4]). We
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present a couple of tempting approaches and conjectures of how to adapt the preconditions
of (2) in such a way that the extension to constructor sharing systems holds, and also provide
counterexamples to most of them. Based on this analysis, we finally arrive at an extended
version of (2) for systems with shared constructors. However, so far we have neither been
able to prove it nor to discover a counterexample. 3 Hence, this remains an open problem.

On the positive side, we show that the concepts of uniquely collapsing reduction and
collapsing confluence can be extended in a natural way to the constructor sharing case such
that for instance the asymmetric results (3) and (4) above can indeed be extended to this
case.

We think that our results obtained are not only interesting from the point of view
of providing new termination criteria, but possibly even more regarding the structural
analysis of (uniqueness of) collapsing or, more generally, shared symbol lifting reductions in
combinations of systems with shared constructors.
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Abstract. We show that polynomial interpretations with negative constants can be used effectively to
prove termination of term rewrite systems.

1 Introduction

Consider the following recursive definition

f(x) = if x > 0 then f(f(x− 1)) + 1 else 0

from [5]. It computes the identity function over the natural numbers. Termination of the
rewrite system

1: f(s(x))→ s(f(f(p(s(x))))) 2 : f(0)→ 0 3: p(s(x))→ x

obtained after the obvious translation is not easily proved. The (manual) proof in [5] relies
on forward closures whereas powerful automatic tools like AProVE [6] and CiME [4] that
incorporate both polynomial interpretations and the dependency pair method fail to prove
termination. There are three dependency pairs:

4 : F(s(x))→ F(f(p(s(x)))) 5 : F(s(x))→ F(p(s(x))) 6 : F(s(x))→ P(s(x))

By taking the natural polynomial interpretation

f � (x) = F � (x) = x s � (x) = x + 1 0 � = 0 p � (x) = P � (x) = x− 1

over the integers, the rule and dependency pair constraints reduce to the following inequal-
ities:

1 : x + 1 > x + 1 2: 0 > 0 3: x > x 4, 5, 6: x + 1 > x

These constraints are obviously satisfied. The question is whether we are allowed to con-
clude termination at this point. We will argue that the answer is affirmative and, moreover,
that the search for appropriate natural polynomial interpretations can be efficiently imple-
mented.

The approach described in this paper is inspired by the combination of the general path
order and forward closures [5] as well as semantic labeling [9].

2 Theoretical Framework

The first challenge we face is that the standard order > on Z is not well-founded. Restricting
the domain to the set N of natural numbers makes an interpretation like p � (x) = x − 1
ill-defined.



Definition 1. Let F be a signature and let (Z, {f � }f∈F ) be an F -algebra such that
every interpretation function is weakly monotone in all its arguments: f � (x1, . . . , xn) >

f � (y1, . . . , yn) whenever xi > yi for all 1 6 i 6 n. The interpretation functions of the in-
duced algebra (N, {f � }f∈F ) are defined as follows: f � (x1, . . . , xn) = max{0, f � (x1, . . . , xn)}
for all x1, . . . , xn ∈ N. We write s > � t if [α] � (s) > [α] � (t) and s > � t if [α] � (s) > [α] � (t)
for all assignments α of natural numbers for the variables in s and t.

It is easy to show that the interpretations functions of the induced algebra are weakly
monotone in all arguments. Routine arguments reveal that the relation > � is a well-founded
order which is closed under substitutions and that > � is a preorder closed under contexts
and substitutions. Moreover, the inclusion > � ◦ > � ⊆ > � holds. These properties make
the pair (> � ,> � ) suitable as basic ingredient of powerful termination methods like the
dependency pair method [1] and the monotonic semantic path order [3].

It is interesting to remark that unlike usual polynomial interpretations, the relation > �

does not have the weak subterm property. For instance, with respect to the interpretations
in the example of the introduction, we have s(0) > � p(s(0)) and not p(s(0)) > � s(0).

Example 1. Consider TRS consisting of the following rewrite rules:

1 : half(0)→ 0 4: bits(0)→ 0

2: half(s(0))→ 0 5: bits(s(x))→ s(bits(half(s(x))))

3 : half(s(s(x)))→ s(half(x))

The function half(x) computes d x
2 e and bits(x) computes the number of bits that are needed

to represent all numbers less than or equal to x. Termination of this TRS is proved in [2]
by using the dependency pair method together with the narrowing refinement. There are
three dependency pairs:

6 : HALF(s(s(x)))→ HALF(x) 7 : BITS(s(x))→ BITS(half(s(x)))

8 : BITS(s(x))→ HALF(s(x))

By taking the interpretations 0 � = 0, half � (x) = x − 1, bits � (x) = HALF � (x) = x, and
s � (x) = BITS � (x) = x + 1, we obtain the following constraints over N:

1, 2, 4: 0 > 0 3: x + 1 > max{0, x − 1}+ 1 5: x + 1 > x + 1

6: x + 2 > x 7, 8: x + 2 > x + 1

These constraints are satisfied, so the TRS is terminating, but how can an inequality like
x + 1 > max{0, x − 1}+ 1 be verified automatically?

3 Towards Automation

Because the inequalities resulting from interpretations with negative constants may contain
the max operator, we cannot use standard techniques for comparing polynomial expressions.
In order to avoid reasoning by case analysis (x − 1 > 0 or x − 1 6 0 for constraint 3 in
Example 1), we approximate the evaluation function of the induced algebra.
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Definition 2. Given a polynomial P with coefficients in Z, we denote the constant part by
c(P ) and the non-constant part P − c(P ) by n(P ). Let (Z, {f � }f∈F ) be an F -algebra such
that every f � is a weakly monotone polynomial. With every term t we associate polynomials
Pleft(t) and Pright (t) with coefficients in Z and variables in t as indeterminates:

Pleft(t) =











t if t is a variable

0 if t = f(t1, . . . , tn), n(P1) = 0, and c(P1) < 0

P1 otherwise

Pright(t) =











t if t is a variable

n(P2) if t = f(t1, . . . , tn) and c(P2) < 0

P2 otherwise

Here P1 = f � (Pleft(t1), . . . , Pleft (tn)) and P2 = f � (Pright (t1), . . . , Pright (tn)). Let α : V → N

be an assignment. The result of evaluating Pleft(t) and Pright(t) under α is denoted by [α]l� (t)
and [α]r� (t). Furthermore, the result of evaluating a polynomial P under α is denoted by
α(P ).

Lemma 1. Let (Z, {f � }f∈F ) be an F-algebra such that every f � is a weakly monotone
polynomial. Let t be a term. For every assignment α : V → N we have [α]r� (t) > [α] � (t) >

[α]l� (t).

Proof. By induction on the structure of t. If t ∈ V then [α]r� (t) = [α]l� (t) = α(t) = [α] � (t).
Suppose t = f(t1, . . . , tn). According to the induction hypothesis, [α]r� (ti) > [α] � (ti) >

[α]l� (ti) for all i. Since f � is weakly monotone,

f � ([α]r� (t1), . . . , [α]r� (tn)) > f � ([α] � (t1), . . . , [α] � (tn)) > f � ([α]l� (t1), . . . , [α]l� (tn))

By applying the weakly monotone function max{0, ·} we obtain max{0, α(P2)} > [α] � (t) >

max{0, α(P1)} where P1 = f � (Pleft(t1), . . . , Pleft (tn)) and P2 = f � (Pright (t1), . . . , Pright (tn)).
We have

[α]l� (t) =

{

0 if n(P1) = 0 and c(P1) < 0

α(P1) otherwise

and thus [α]l� (t) 6 max{0, α(P1)}. Likewise,

[α]r� (t) =

{

α(n(P2)) if c(P2) < 0

α(P2) otherwise

In the former case, α(n(P2)) = α(P2)− c(P2) > α(P2) and α(n(P2)) > 0. In the latter case
α(P2) > 0. So in both cases we have [α]r� (t) > max{0, α(P2)}. Hence we obtain the desired
inequalities. ut

An immediate consequence of the preceding lemma is that [α]l� (s) > [α]r� (t) ([α]l� (s) >
[α]r� (t)) is a sufficient condition for [α] � (s) > [α] � (t) ([α] � (s) > [α] � (t)) and hence we can
safely replace a constraint l > � r (l > � r) by Pleft (l) > Pright (r) (Pleft(l) > Pright (r)).

Example 2. Consider again the TRS of Example 1. By applying Pleft to the left-hand sides
and Pright to the right-hand sides of the rewrite rules and the dependency pairs, the following
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ordering constraints are obtained:

1 : 0 > 0 3: x + 1 > x + 1 5: x + 1 > x + 1 7: x + 2 > x + 1

2: 0 > 0 4: 0 > 0 6: x + 2 > x 8: x + 2 > x + 1

The only difference with the constraints in Example 1 is the interpretation of the term
s(half(x)) on the right-hand side of rule 3. We have Pright (half(x)) = n(x− 1) = x and thus
Pright(s(half(x))) = x+1. Although x+1 is less precise than max{0, x−1}+1, it is accurate
enough to solve the ordering constraint resulting from rule 3.

So once the interpretations f � are determined, we transform a rule l → r into the
polynomial Pleft(l) − Pright (r). Standard techniques can then be used to test whether this
polynomial is positive (or non-negative) for all values in N for the variables. The remaining
question is how to find suitable interpretations for the function symbols.

4 Finding Appropriate Interpretations

The idea is to take the natural interpretation for certain function symbols that appear
in many example TRSs: 0 � = 0, 1 � = 1, 2 � = 2, . . . , s � (x) = x + 1, p � (x) = x − 1,
x + � y = x + y, and x× � y = xy. For other function symbols f we take linear interpreta-
tions: f � (x1, . . . , xn) = a1x1 + · · · + anxn + b with a1, . . . , an ∈ {0, 1} and b ∈ {−1, 0, 1}.
By disallowing negative coefficients for a1, . . . , an weak monotonicity is obtained for free.
Determining appropriate coefficients can be done by a straightforward but inefficient “gen-
erate and test” algorithm. We are currently implementing a more involved algorithm in
the Tyrolean Termination Tool [8]. The initial experiments are very promising. If we use
the most basic version of the dependency pair method, termination of the example in the
introduction is proved in 0.01 seconds. With the recursive SCC algorithm of [7] for the
dependency graph but without any other refinements, 50 of the 66 TRSs in Section 3 of [2]
are handled (with an average time of just 0.08 seconds).1
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Abstract. Two applications of the Erasure Lemma for first-order orthogonal term rewriting systems are:
weak innermost termination implies termination, and weak normalization implies strong normalization for
non-erasing systems. We discuss these two results in the setting of higher-order rewriting.

1 Introduction

The Erasure Lemma for orthogonal term rewriting systems (TRSs) states that if we lose the
possibility of performing an infinite reduction by reducing s to t, then a subterm that admits
an infinite reduction is erased. Two well-known results can be seen as applications of the
Erasure Lemma. The first, due to O’Donnell [8], states that weak innermost normalization
implies termination for orthogonal TRSs. We give an example showing that O’Donnell’s
result cannot directly be generalized to the higher-order case, and we propose a restricted
version for the higher-order setting. The second result originates from Church, and states
that weak and strong normalization coincide for orthogonal and non-erasing TRSs. Klop
extends this to second-order rewriting. We discuss the definitions of non-erasing and propose
one that permits to extend Church’s result to (general) higher-order rewriting.

2 Notation

We work with higher-order rewriting systems (HRSs) as defined by Nipkow [7]; we also refer
to combinatory reduction systems (CRSs) defined by Klop [4].

A term s is terminating or strongly normalizing, notation SN(s), if all rewrite sequences
starting in s are finite. It is weakly normalizing, notation WN(s), if there is a (finite) sequence
s →∗ n from s to a normal form n. We use the notation ∞(s) to indicate that the term s
admits an infinite rewrite sequence.

A rewrite step s → t is critical if ∞(s) but not ∞(t). A rewrite step s → t that is not
critical is perpetual ; in that case we have ∞(s)⇒∞(t). A rewrite step s→ t is innermost,
denoted s→i t, if no proper subterm of the contracted redex is itself a redex. A term s is
weakly innermost normalizing, notation WIN(s), if there is an innermost reduction s→∗

i n
to a normal form n. It is strongly innermost normalizing, notation SIN(s), if all innermost
reductions starting in s are finite.

A term s has the conservation property if every step from s is perpetual. A term s is
uniformly normalizing if WN(s)⇒ SN(s).

A set of terms satisfies a property if all terms in the set satisfy that property. We then
also use the notations as above without the term argument. For instance, we write that a
TRS is SN. As remarked in [6], uniform normalization implies the conservation property,
but the reverse implication only holds for sets of terms that are closed under reduction.
For instance, in the ARS {a → a, a → b, b → b, b → c} the set {a} has the conservation
property because every step from a is perpetual, but {a} is not uniformly normalizing.



3 O’Donnell

The Erasure Lemma (Proposition 4.8.4 and Lemma 9.3.27 in [10]) for first-order orthogonal
TRSs states that in a critical step a sub-term u with ∞(u) is erased. O’Donnell [8] shows
that for orthogonal TRSs we have WIN⇒ SN. This can be shown using the Erasure Lemma.
The following example shows that the result by O’Donnell cannot directly be generalized
to the higher-order case.

Example 1. Consider the HRS defined by the following rewrite rules:

f(X) → a
g(λx.F (x))→ F (g(λx.f(x)))

This is a second-order orthogonal fully extended HRS. It is not SN because we have the
following infinite reduction:

g(λx. f(x))→ f(g(λx. f(x)))→ f(f(g(λx. f(x))))→ . . .

However, the term g(λx. f(x)) has an innermost reduction to normal form:

g(λx. f(x))→i g(λx. a)→i a

The HRS is WIN; it is even SIN. This can be shown by giving a measure on terms that
strictly decreases with each innermost reduction step. Hence the implications WIN ⇒ SN
and SIN⇒ SN do not hold for second-order orthogonal fully extended HRSs.

One might wonder where the proof of WIN ⇒ SN breaks down in the higher-order
case. First we consider the proof using the Erasure Lemma. The problem here is that the
Erasure Lemma does not hold for higher-order rewriting. Indeed, the Erasure Lemma for
second-order rewriting, given in [3], states the following: In a critical step a subterm u is
erased, that can descend, by reduction steps that do not overlap with u, to a subterm u ′

with ∞(u′). In the example, the critical step g(λx. f(x)) → g(λx. a) erases the subterm x
which itself does not admit an infinite reduction. However, its descendant g(λx. f(x)) does;
note that it is obtained by contracting the g-redex that does not overlap with x.

An alternative proof of WIN⇒ SN is given in [9], by showing the sequence of implications
WIN⇒ SIN⇒ SN for non-overlapping TRSs. The generalization of O’Donnell’s result to the
case of non-overlapping instead of orthogonal TRSs is due to Gramlich [1,2]. The proof given
in [9] uses besides [1,2] also [5]. The implication WIN⇒ SIN holds for non-overlapping HRSs;
the proof directly carries over from the first-order case. However, Example 1 shows that the
implication SIN⇒ SN does not hold for second-order orthogonal fully-extended HRSs. The
proof of SIN⇒ SN for the first-order case uses the following: if in a reduction step s→ t a
redex is contracted that is not convergent (i.e. both confluent and SN), then φ(s)→+ φ(t).
Here φ computes the result of reducing all maximal convergent subterms to their (unique)
normal form. This is Lemma 5.6.6 in [9]. Example 1 shows that this statement is not true
for orthogonal second-order fully extended HRSs: In the step g(λx. f(x))→ f(g(λx. f(x)))
the non-terminating g-redex is contracted. If we compute in both terms the normal forms
of the maximal convergent subterms, then we find g(λx. a) and f(g(λx. a)). There is no
reduction sequence consisting of one or more steps from g(λx. a) to f(g(λx. a)).

Is it possible to impose additional restrictions such that the implication WIN⇒ SN holds
for the higher-order case? One possibility is to restrict attention to bounded orthogonal fully
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extended HRSs. Using the generalization of [10, Lemma 9.2.28] to the higher-order case,
which states that for orthogonal fully extended HRSs, WN implies acyclicity, we conclude SN
from the fact that the length of the reducts of all terms are bounded. Another possibility is
to restrict attention to non-erasing rules which actually brings us to the second application
of the Erasure Lemma discussed in the next section.

To conclude, note that for orthogonal TRSs the (stronger) local version of O’Donnell’s
result, the statement ∀t. [WIN(t)⇒ SN(t)], also follows from the Erasure Lemma. Klop [4,
Remark 5.9.8.1(ii)] remarks that the local version of O’Donnell’s result does not hold for
orthogonal CRSs. For instance, the λ-term (λx.(λy.z)(xx))(λu.uu) is SIN but not SN. (This
is a solution to [10, Exercise 4.8.13].)

4 Church

Church proved that weak and strong normalization coincide in the λI-calculus, where in
an abstraction λx.M there is at least one free occurrence of x in M . The crucial property
that makes the λI-calculus uniformly normalizing is the fact that it is non-erasing. That
is, intuitively, a reduction step cannot erase a subterm.

A first-order rewrite rule l→ r is said to be non-erasing if all variables in l also occur in r.
A rewrite step is non-erasing if the applied rule is non-erasing. Orthogonal and non-erasing
TRSs are uniformly normalizing (see [10, Theorem 4.8.5] and [9, Theorem 5.6.10(2)]).

For second-order rewriting, this requirement on the rewrite rule does not guarantee that
the induced step is non-erasing. Clearly the step (λx. y) z → y is erasing although in the
β-reduction rule all variables in the left-hand side also occur in the right-hand side. Klop
[4] therefore defines a CRS (which is a second-order rewriting system) to be non-erasing if
for every rewrite step s→ t the terms s and t have the same free variables. He then proves
uniform normalization for orthogonal and non-erasing CRSs. This generalizes the result by
Church because the λI-calculus is an example of an orthogonal and non-erasing CRS.

For third-order rewriting, this second-order notion of non-erasing is not sufficient for
proving uniform normalization, as shown in the following example.

Example 2. Consider the HRS defined by the following rules:

f(λx. F (x))→ F (f(λx. F (x)))
g(λy.G(y)) → G(λu. a)

This is a third-order orthogonal fully extended HRS. (In fact for the left-hand side of the g-
rule we should write g(λy.G(λz. y(z))).) Consider the term g(λy. f(λx. y(x))). It is a redex
with respect to the g-rule using the substitution {G 7→ λu. f(λx. u(x))}. It contains a redex
with respect to the f -rule using the substitution {F 7→ λu.y(u)}. If first the g-redex is
contracted, we obtain a reduction to normal form:

g(λy. f(λx. y(x)))→ f(λx. a)→ a

Note that both steps are non-erasing in the sense of Klop because all free variables (none)
are preserved. But repeatedly contracting the f -redexes yields an infinite rewrite sequence:

g(λy. f(λx. y(x))) → g(λy. y(f(λx. y(x)))) → . . .

Hence in a third-order orthogonal fully extended HRS a non-erasing step is not necessarily
perpetual. This is already remarked in [3] where another example is given.
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The question is how to adapt the definition of non-erasure such that it is useful for proving
uniform normalization. Note that a rewrite step in a HRS is obtained in two stages:

lσ↓β −→R rσ −→∗
β rσ↓β

Intuitively, a rewrite step is non-erasing if both stages are non-erasing.
In a first-order HRS, which is in fact a TRS, the second stage, the β-reduction to normal

form, does not play a role. In that case, indeed the requirement that the applied rewrite
rule is non-erasing guarantees that the rewrite step is non-erasing.

In a second-order HRS, the second stage may play a role. There is no erasure in the
β-reduction to normal form if this is a λI-reduction. Observe that all abstractions in the
second stage originate from the substitution σ. This motivates the following alternative to
the second-order definition of non-erasure due to Klop: a rewrite step in a second-order
HRS is non-erasing if all variables in the left-hand side of the applied rule also occur in
the right-hand side, and in addition the substitution used to instantiate the rewrite rule is
non-erasing in the sense that the terms assigned to free variables are λI-terms. This is a
more restrictive definition than the one by Klop: the step in the example f(λx. a)→ a does
not remove free variables, but it uses the erasing substitution {F 7→ λx.a}.

In a third-order HRS, the abstractions that occur in the second stage may originate from
the substitution σ, but also from the arguments of the free variables in the rewrite rule. In
the example, the free variable G in the g-rule has as argument the abstraction λu. a. Note
that this is not a λI-term. In a second-order HRS, free variables cannot have abstractions
as argument. The second stage is a λI-reduction if both the abstractions originating from
σ and the abstractions originating from the rewrite rule are λI-terms.

To summarize, a rewrite step in a HRS is non-erasing if first, all variables in the left-
hand side of the applied rewrite rule also occur in the right-hand side, and second, the
applied substitution assigns λI-terms to free variables, and third, the arguments of the free
variables in the applied rewrite rule are λI-terms. We claim that for orthogonal HRSs weak
and strong normalization coincide if all steps are non-erasing, and that non-erasing steps
are perpetual in orthogonal fully extended HRSs.
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Abstract. We relate Kamin and Lévy’s original presentation of lexicographic path orders (LPO), using an
inductive definition, to a presentation, which we will refer to as iterative lexicographic path orders (ILPO),
based on Bergstra and Klop’s definition of recursive path orders by way of an auxiliary term rewriting
system.

1 Introduction

In his seminal paper [4], Dershowitz introduced the recursive-path-order method to prove
termination of a first-order term rewrite system (TRS) T . The method is based on extending
a well-quasi-order (WQO) � on the signature of a TRS to a WQO �rpo on the set of (open)
terms over the signature. Termination of the TRS follows if l �rpo r holds for every rule l→r
of T . Several variants of this technique have been studied. Here we restrict our attention
to the so-called lexicographic path order (LPO), due to Kamin and Lévy [6].

In Bergstra and Klop [2] an alternative definition of RPO is presented, which we call the
iterative path order (IPO), the name stressing the way it is generated. It is operational in
the sense that it is itself defined by means of an (auxiliary) term rewriting system, the rules
of which depend only on the given well-quasi order �. The iterative approach can easily be
adapted to the case of LPO, yielding the iterative, lexicographic path order (�ilpo).

The auxiliary rewrite rules for ILPO as given here Definition 1 were essentially formu-
lated for the first time in the PhD-thesis of Geser [5] and, in a somewhat restricted form, in
Klop [7]. It should be noted though that no proofs are given in [5] and [7]. What also has
been lacking until now is an understanding of the exact relationship between a path order
and its iterative variant. That is the main subject of our investigation, here for the case of
LPO versus ILPO.

2 The iterative lexicographic path order

A path order is a way to extend a terminating relation on a signature to a reduction
order on the terms over the signature. Here by a reduction order we mean a transitive and
terminating relation on terms which is closed under substitution and contexts. ILPO is a
particular path order.

As a running example to illustrate ILPO, we take the terminating relation R given by
M R A and A R S on the signature of the TRSMul of addition and multiplication on natural
numbers with rewrite rules: {A(x, 0)→ x, A(x, S(y))→ S(A(x, y)), M(x, 0)→ 0, M(x, S(y))→
A(x, M(x, y))}. Clearly, the relation R is terminating and ILPO will extend it to a reduction
order Rilpo , in such a way that termination of the TRSMul can be concluded.

The definition of Rilpo proceeds in two steps. First, a term rewriting system Lex (de-
pending on R) over the signature extended with control symbols, is defined. The relation



Rilpo is then obtained by restricting the transitive closure of→Lex to terms over the original
signature.

Definition 1. Let R be a relation on a signature Σ, and let V be a set of variables, disjoint
from Σ. The TRS LexR is 〈Σ ]Σ∗ ] V,R〉:

1. The signature Σ∗ of control symbols is a copy of Σ, i.e. for each function symbol f ∈ Σ,
Σ∗ contains a fresh symbol f ∗ having the same arity f has.

2. The rules R are given in the table, for arbitrary function symbols f , g in Σ, with x, y,
z disjoint vectors of pairwise disjoint variables of appropriate lengths.

f(x) →put f∗(x)
f∗(x)→select xi (1 ≤ i ≤ |x|)
f∗(x) →copy g(f∗(x), . . . , f ∗(x)) (f R g)

f∗(x, g(y), z) →lex f(x, g∗(y), l, . . . , l) (l = f ∗(x, g(y), z))

The idea of Lex is that marking the head symbol of a term, by means of the put-rule,
corresponds to the obligation to make that term smaller. The other rules correspond to
atomic ways in which this can be brought about. For our running exampleMul, the reduc-
tion A(x, 0) →put A

∗(x, 0) →select x in Lex, is a decomposition of the first rule into atomic
Lex-steps. This also holds for the other rules of Mul. E.g. in case of the fourth rule:

M∗(x, S(y))M(x, S(y))

A(M∗(x, S(y)), M∗(x, S(y)))

A(x, M∗(x, S(y)))

select
A(x, M(x, S∗(y)))A(x, M(x, y))

+

Lex

put

lex

select

copy

Definition 2. The iterative lexicographic path order Rilpo of a relation R on a signature
Σ is the restriction of →+

LexR
to T (Σ ] V ). A TRS is ILPO -terminating if its rules are

contained in Rilpo , for some terminating relation R.

Since l →+
Lex

r for each rule l → r of the TRS Mul, it is ILPO-terminating. Note that
transitivity and closure under contexts and substitutions of Rilpo are ‘built in’ into our
definition. In order to show Rilpo is a reduction order, it remains to show it is terminating.

3 ILPO-termination implies termination

We show that if a relation R is terminating, then Rilpo is terminating as well. Since the
rewrite rules of Rilpo are given by the restriction of →+

Lex
to T (Σ ] V ), termination of

the TRS Lex would be sufficient for termination of Rilpo . However, Lex is in general not
terminating, e.g. in case of the running example we have, despite R being terminating:

A(x, y)→put A
∗(x, y)→copy S(A∗(x, y))→copy S(S(A∗(x, y)))→copy . . .

Non-termination is ‘caused’ by the left-hand side of the copy-rule being a subterm of its
right-hand side. Observe that the marked symbol A∗ is ‘used’ infinitely often. We will show
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that this is necessary in any infinite reduction; more precisely, that fixing how often a
marked symbol can be used in advance in the copy- and lex-rules yields a terminating TRS
Lexω. Since in any given atomic decomposition l→+

Lex
r of a rule l→ r, any marked symbol

is only used finitely often (certainly not more often than the length of the decomposition),
the relations →+

Lex
and →+

Lexω coincide on the unmarked terms. We will exploit this fact,
by showing that ILPO-termination implies termination via termination of Lexω.

Definition 3. Let R be a relation on a signature Σ, and let V be a signature of nullary
symbols disjoint from Σ. The TRS Lexω

R is 〈Σ ]Σω ] V,Rω
R〉:

1. The signature Σω of ω-control symbols consists of ω copies of Σ, i.e. for each symbol
f ∈ Σ and natural number n, Σω contains a fresh symbol fn having the arity f has.

2. The rules Rω
R are given in the table, for arbitrary symbols f , g in Σ and natural number

n, with x, y, z disjoint vectors of pairwise disjoint variables of appropriate lengths.

f(x) →put fn(x)
fn(x)→select xi (1 ≤ i ≤ |x|)

fn+1(x) →copy g(fn(x), . . . , fn(x)) (f R g)
fn+1(x, g(y), z) →lex f(x, gn(y), l, . . . , l) (l = fn(x, g(y), z))

The TRS LexR (Definition 1) is seen to be a homomorphic image of Lexω
R, by mapping fn

to f∗, for any natural number n. Vice versa, reductions in LexR can be ‘lifted’ to Lexω
R.

Lemma 1. 1. →+
LexR

and →+
Lexω

R
coincide as relations restricted to T (Σ ] V ).

2. If R is terminating, then Lexω
R is terminating.

The latter item is proven by employing the proof technique of [3]. It follows that Rilpo is
terminating, if R is, hence ILPO-termination implies termination. So Mul is terminating.

4 Equivalence of ILPO with the recursive lexicographic path order

We show that ILPO is at least as powerful as the recursively defined lexicographic path
order found in the literature, and is equivalent to it for transitive relations. In the following
we refer verbatim to the recursive definition of >lpo as it is given in [1, Definition 5.4.12],
starting from a strict order > on Σ. It is easy to see that this is still a correct recursive
definition for > being an arbitrary relation R, yielding Rlpo . We call a TRS T = 〈Σ,R〉
LPO -terminating for a terminating relation R, if R ⊆ Rlpo .

Theorem 1. Rlpo ⊆ Rilpo , for any relation R.

Proof. We show by induction on the definition of s Rlpo t that s∗ �LexR
t, where (f(s))∗ =

f∗(s). This suffices, since s→put s∗ and s, t are not marked.

(LPO1) If t ∈ Var (s) and s 6= t, then the result follows by repeatedly selecting the
subterm on a path to an occurrence of t in s.

(LPO2) Otherwise, let s = f(s1, . . . , sm), t = g(t1, . . . , tn).
(LPO2a) Suppose there exists i, 1 ≤ i ≤ m, with either si = t or si Rlpo t. In the

former case, the result follows by a single application of the select-rule for index i.
In the latter case, this step is followed by an application of the put-rule after which
the result follows by the IH.
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(LPO2b) Suppose f R g and s Rlpo tj for all j, 1 ≤ j ≤ n. Then the result follows by
a single application of the copy-rule and n applications of the IH.

(LPO2c) Suppose f = g, s Rlpo tj for j, 1 ≤ j ≤ n, and there exists i, 1 ≤ i ≤ m,
such that s1 = t1, . . ., si−1 = ti−1 and si Rlpo ti. Then the result follows by a single
application of the lex-rule, selecting the ith argument, and the IH for si Rlpo ti and
s Rlpo tj for j, i < j ≤ n.

We call the Lex-strategy defined by this proof the wave strategy. The idea is that the marked
positions in a term represent the wave front, which moves downwards in the term tree, i.e.
from the root in the direction of the subterms. This is visualised for the Lex-reduction from
M(x, S(y)) to A(x, M(x, y)) above as:

S

M

x S

y

x S

y

A

Sx x

y y

x

A

x S

y y

x

Mx

A A

x M

x y

put copy select lex select
M
∗

M
∗

M
∗

M
∗

S
∗

We prove a converse to Lemma 1 by a detailed proof-theoretic analysis, showing that any
Lex-reduction can be transformed, into a wave reduction.

Theorem 2. Rilpo = (Rlpo)+.

As a corollary we have that ILPO is equivalent with LPO for any strict order, and that
Rilpo is decidable, in case R is a terminating relation for which reachability is decidable:
simply ‘try all waves up to the size of the right-hand side’.

Note that (R+)ilpo may differ from Rilpo . Consider the signature consisting of nullary
symbols a, b, and unary symbols f , g, with precedence relation f R b R g. Then the one-rule
TRS f(a)→ g(a) is not ILPO-terminating, but it is ILPO-terminating for R+.

5 Conclusion

We have shown that our iterative set-up of ILPO can serve as an independent alternative to
the classic, recursive, treatment of LPO. It was obtained by a proof-theoretic analysis of the
usual inductive definition of LPO, giving prominence to the steps hidden in the inductive
clauses. From this perspective it is only natural that we have taken an arbitrary terminating
relation (instead of order) on the signature as our starting point, so one could speak, in the
spirit of Persson’s presentation of recursive path relations [8], of iterative lexicographic path
relations. Finally, we note that the correspondence between recursive and iterative ways of
specifying path orders, also exists for variants of LPO like the embedding relation and the
recursive path order.
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Abstract. Polynomials over the real numbers were proposed as an alternative to polynomials over the
naturals in termination proofs. We have recently shown how to use an arbitrary polynomial interpretation
over the reals to generate well-founded and stable term orderings. Monotonicity can, then, be gradually
introduced in the interpretations to deal with different applications. The first one is the generation of
reduction orderings. We can also take advantage of non-fully monotonic polynomial interpretations in some
remarkable cases. The dependency pairs method for proving termination of rewriting is an interesting one.

1 Introduction

Polynomials over the real numbers were proposed by Dershowitz [5] as an alternative to
Lankford’s polynomials over the naturals [6]. In contrast to Lankford’s, well-foundedness
has to be explicitly ensured by further requiring the subterm property; on the other hand,
comparisons of terms by using the orderings induced by such polynomials are decidable.The
automatic generation of such polynomials, however, has been hardly explored to date.

In [8], we have described how to associate a well-founded and stable ordering to an
arbitrary polynomial interpretation over the reals, i.e., a collection {[f ] | f ∈ F} of poly-
nomials, where [f ] is a polynomial in ar(f) variables whose coefficients are real numbers:
[f ] ∈ R[x1, . . . , xar(f)]. For the purpose of this paper, we assume that [f ](x1, . . . , xar(f)) ≥ 0
for all x1, . . . , xar(f) and f ∈ F . Given a positive real number δ ∈ R>0, a well-founded and
stable (strict) ordering >δ on terms is defined as follows: for all t, s ∈ T (F ,X ), t >δ s
if and only if [t] − [s] ≥ � δ, where [t] is the polynomial which is inductively obtained by
interpreting each symbol f in t as [f ] and each variable x ∈ Var(t) as a variable x ranging
in R. Monotonicity is ensured for each argument i ∈ {1, . . . , ar(f)} of each symbol f ∈ F

if
∂[f ](x1,...,xi,...,xar(f))

∂xi
≥ 1.

Polynomial interpretations are well-suited to mechanize the proofs of termination. A
proof of termination of a TRS is transformed into the problem of solving a set of constraints
over the coefficients of a polynomial interpretation for the symbols of the TRS [6]. For
practical reasons, we consider polynomials using nonnegative, rational coefficients. Thus,
[f ] ∈ Q≥0[x1, . . . , xk] for each k-ary symbol f ∈ F . The tool mu-term1 implements the
previous approach to automatically generate µ-reduction orderings based on polynomial
interpretations over the rationals. We use the CiME system [4] to solve the set of constraints
that we obtain. CiME solves Diophantine inequations and yields non-negative integers as
solutions. The use of rational numbers is easily made compatible with this limitation: given
a Diophantine constraint e1 ≥ e2 containing an occurrence of p

q
in e1 (or e2), we obtain

an equivalent constraint q · e1 ≥ q · e2. Then, we propagate the multiplication of q inside
the members of e1 and e2 thus removing occurrences of q as a denominator. We repeat this
process to remove all rational coefficients.

? Work partially supported by MCyT project TIC2001-2705-C03-01, MCyT Acción Integrada HU 2003-0003
and AVCyT grant GR03/025.

1 See http://www.dsic.upv.es/~slucas/csr/termination/muterm.



The previous framework is well-suited for context-sensitive rewriting (CSR [7]). In CSR,
a replacement map µ discriminates, for each symbol f of the signature, the argument posi-
tions µ(f) on which replacements are allowed. This can improve the termination behavior
by pruning (all) infinite rewrite sequences2. Termination of CSR is fully captured by the
so-called µ-reduction orderings [11], i.e., well-founded, stable orderings > which are µ-
monotonic, i.e., for all f ∈ F and i ∈ µ(f), > is monotonic in the i-th argument of f . Term
rewriting is a particular case of CSR where the replacement map µ>(f) = {1, . . . , ar(f)},
for all f ∈ F is used. Thus, polynomial µ>-reduction orderings can also be used in proofs
of termination. We will also see that more general µ-reduction orderings can also be useful
in proofs of termination of rewriting.

2 Proofs of polynomial termination of TRSs

We do not know whether polynomial interpretations over the rationals (or reals) are actually
more powerful than polynomial interpretations over the naturals. As far as the author
knows, this is an open problem. In practice, however, they can be helpful:

Example 1. Consider the TRS R:

a -> b c -> d b -> c

Most constraint solvers use some finite domain to give value to the unknowns. For instance,
a system using a domain3 {0, 1, 2} would be unable to prove the termination of R by using
polynomials over the naturals. However, the polynomial interpretation

[a] = 2 [b] = 1 [c] = 1/2 [d] = 0

(computed by mu-term for δ = 1
10) proves termination of R.

Although this example looks somehow artificial, these chains of symbols naturally arise in
some applications. For instance, proofs of termination of a Conditional TRS (CTRS) R are
usually attempted by first transforming it into a TRS U(R) and then proving termination
of U(R) (see [9] for an overview of these methods). In this setting, it is usual to introduce n
new symbols U1, U2, . . . , Un for each conditional rule l → r ⇐ s1 = t1, s2 = t2, . . . , sn = tn
which are related in the transformed system as in the previous example.

Example 2. Consider the following CTRS R [10, Example 3.4]:

f(x) -> g(y) <= x -> h(y), i(x) -> y a -> b <= c -> d

i(x) -> a c -> d

By using the transformation of [9, Definition 7.2.48], we get U(R):

f(X) -> u1(X,X) i(X) -> a a -> u(c)

u1(h(Y),X) -> u2(i(X),X,Y) c -> d u(d) -> b

u2(Y,X,Y) -> g(Y)

which can be proved terminating by the following polynomial interpretation (computed by
mu-term with δ = 1

10 ):

[f](X) = 3.X + 1 [h](X) = X + 3 [a] = 1 [b] = 0

[u1](X1,X2) = X1 + 2.X2 [i](X) = X + 3/2 [g](X) = X [d] = 0

[u2](X1,X2,X3) = X1 + X2 + X3 + 1 [u](X) = X + 1/2 [c] = 1/3

No polynomial interpretation over the naturals using coefficients below 4 can directly prove
termination of U(R).

2 See http://www.dsic.upv.es/~slucas/csr/termination/examples.
3 This is the current default domain for CiME and AProVE (see http://www-i2.informatik.rwth-aachen.
de/AProVE).
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3 Termination of TRSs using dependency pairs

A reduction pair (&,=) consists of a reflexive, transitive, stable, and weakly monotonic
relation & and a stable and well-founded ordering = satisfying either & ◦ =⊆= or = ◦ &⊆=.
Note that monotonicity is not required for =. When using the dependency pairs method
[1], we can prove termination by showing that the lhs and rhs of each rule of the TRS are
comparable by using & whereas the components of each dependency pair are comparable
by using = [2].

Example 3. Consider the TRS R which is part of the TPDB4:

f(f(X)) -> f(g(f(g(f(X)))))

f(g(f(X))) -> f(g(X))

Termination of R can be proved by finding a reduction pair (&,=) such that:

f(f(X)) � f(g(f(g(f(X))))) F(f(X)) = F(g(f(g(f(X)))))

f(g(f(X))) � f(g(X)) F(f(X)) = F(g(f(X)))

F(f(X)) = F(X)

F(g(f(X))) = F(g(X))

where F is introduced to define the dependency pairs (see [1]).

Given a polynomial interpretation over the reals, the relation t & s iff [t] − [s] ≥ 0, is
a quasi-ordering; this quasi-ordering is weakly monotonic in all arguments of all symbols
provided that only nonnegative coefficients are used in the polynomials. Given a polynomial
interpretation and δ > 0, we have & ◦ >δ ⊆ >δ (if there is u such that [t] − [u] ≥ 0 and
[u] − [s] ≥ δ, then [t] − [u] + [u] − [s] = [t] − [s] ≥ 0 + δ = δ); thus (&, >δ) is a reduction
pair. We have implemented the generation of such reduction pairs in mu-term: we just
give a TRS R the least replacement map µ⊥(f) = ∅ for all f ∈ F . Since µ⊥ expresses no
monotonicity requirements for >δ, this is the most flexible choice we can do (although it is
not the only one). mu-term (tries) to compute the interpretation which makes & and >δ

compatible with the rules and the dependency pairs as above.

Example 4. The following polynomial interpretation:

[f](X) = X + 1 [g](X) = 1/2.X [nF_f](X) = X

(where nF_f is the mu-term representation of symbol F in Example 3) defines a reduction
pair (&, >δ) (with δ = 1

10) which proves termination of R in Example 3.

In fact, Arts and Giesl already noticed that the polynomials used with dependency pairs
do not necessarily depend on all their arguments.

Example 5. Consider the TRS R [1, Example 2]:

minus(X,0) -> X minus(s(X),s(Y)) -> minus(X,Y)

quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y)))

The following polynomial interpretation (computed by mu-term for δ = 1
10 ):

[minus](X1,X2) = X1 [s](X) = X + 1 [nF_minus](X1,X2) = X1

[0] = 0 [quot](X1,X2) = X1 [nF_quot](X1,X2) = X1

defines a reduction pair (&, >δ) which proves termination of R in Example 3. The interpre-
tation computed by mu-term exactly corresponds to the ad-hoc polynomial proof given by
Arts and Giesl [1, page 142].

4 Termination Problems Data Base, see http://www.lsi.upc.es/~albert/tpdb.html and also http://

www.lri.fr/~marche/wst2004-competition/tpdb/Rubio/aoto.trs.
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This nicely corresponds to polynomial µ-reduction orderings. Arts and Giesl, however, do
not consider polynomials over the rationals in their proofs of termination. It is worth to note
that the use of rational coefficients (between 0 and 1) to introduce non-monotonicity in the
corresponding term orderings makes a difference which cannot be simulated by just using
polynomials over the naturals (see [8, Section 4] for a deeper discussion in this respect).
In the proof of termination of Example 3 above, the difference is noticeable in that the
proof which uses polynomials over the rationals is pretty simple and automatic (Example
4), but it becomes difficult or impossible when more traditional base orderings are used
in combination with the dependency pairs approach (e.g., RPOS or polynomials over the
naturals).

4 Conclusion

The use of µ-reduction orderings based on polynomial interpretations over the real or ra-
tional numbers can play a role in proofs of termination of term rewriting. Moreover, we
stress that µ-reduction orderings provide a more general framework and, in fact, other µ-
reduction orderings (e.g., the context-sensitive recursive path ordering, CSRPO [3]) could
also be suitable for implementing the necessary comparisons.

There are, however, many theoretical and practical issues that deserve further investiga-
tion. An exciting one is: are the polynomial interpretations over the reals (or rationals) more
powerful than polynomial interpretations over the naturals? As remarked above, regarding
the generation of term orderings which are not fully monotonic, the answer is yes (already
for the rationals). Regarding the generation of monotonic term orderings, the answer is not
clear yet. In particular, we do not know of any TRS which can be proved terminating by
using a reduction ordering based on a polynomial interpretation over the reals (or rationals)
but cannot be proved terminating by using a polynomial interpretation over the naturals.
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Abstract. We report work in progress concerning the theoretical basis and the implementation in the
Theorema system of a methodology for the generation of verification conditions for recursive procedures,
with the aim of practical verification of recursive programs. Proving total correctness is achieved by proving
separately partial correctness and then termination. In contrast to other approaches, which use a special
theory describing the behavior of programs, we use such a theory only “in the background”, for developing
a general rule for generating verification conditions, while the conditions themselves are presented (and
provable) using the theories relevant to the program text only. This is very important for automatic proving,
since it reduces significantly the effort of the provers. We performed practical experiments in which various
programs are completely verified using the verification condition generator and the provers of the Theorema
system.

Introduction. While proving [partial] correctness of non-recursive procedural programs
is quite well understood, for instance by using Hoare Logic [3], [6], there are relatively few
approaches to recursive procedures (see e.g. [8] Chap. 2).

We discuss here a practical approach to automatic generation of verification conditions
for functional recursive programs, partially based on Scott induction in the fixpoint theory
of programs [13,11,7,9] and the implementation of this approach. The implementation is
part of the Theorema system, and complements the research performed in the Theorema
group on verification and synthesis of functional algorithms based on logic principles [1,2,4].

The Theorema system (www.theorema.org, [12]) aims at realization of a computer aided
assistant for the working mathematicians and engineers, which integrates automatic reason-
ing, algebraic computing, and equational solving. The system provides an uniform environ-
ment in natural logico-mathematical language for defining, testing, and proving properties
of algorithms, and in general for creating and investigating mathematical models.

We consider the correctness problem expressed as follows: given the program (by its
source text) which computes the function F and given its specification by a precondition
on the input IF [x] and a postcondition on the input and the output OF [x, y], generate
the verification conditions which are [minimally] sufficient for the program to satisfy the
specification.

For simplifying the presentation, we consider here the “homogeneous” case: all functions
and predicates are interpreted over the same domain. Proving the verification conditions
will require the specific theory relevant to this domain and to the auxiliary functions and
predicates which occur in the program.

? The program verification project in the frame of e-Austria Timişoara is supported by BMBWK (Austrian
Ministry of Education, Science and Culture), BMWA (Austrian Ministry of Economy and Work) and
MEC (Romanian Ministry of Education and Research). The Theorema project is supported by FWF
(Austrian National Science Foundation) – SFB project P1302. Additional support comes from the EU
project CALCULEMUS (HPRN-CT-2000-00102).



The functional program of F can be interpreted as a set of predicate logic formulae, and
the correctness of the program can be expressed as:

∀x IF [x] : OF [x, F [x]], (1)

which we will call the correctness formula of F . In order for the program to be correct, the
correctness formula (1) must be a logical consequence the formulae corresponding to the
definition of the function (and the specific theory). This approach was previously used by
other authors and is also experimented in the Theorema system [1]. However, the proof of
such one-single theorem may be difficult, because the prover has to find the appropriate
induction principle and has to find out how to use the properties of the auxiliary functions
present in the program.

The method presented in this paper generates several verification conditions, which are
easier to prove. In particular, only the termination condition needs an inductive proof, and
this termination condition is “reusable”, because it basically expresses an induction principle
which may be useful for several programs. This is important for automatic verification
embedded in a practical verification system, because it leads to early detection of bugs
(when proofs of simpler verification conditions fail).

Moreover, the verification conditions are provable in the frame of predicate logic, without
using any theoretical model for program semantics or program execution, but only using
the theories relevant to the predicates and functions present in the program text. This is
again important for the automatic verification, because any additional theory present in
the system will significantly increase the proving effort.

We start by developing a set of rules for generating verification conditions, for programs
having a particular structure. The rules for partial correctness are developed using Scott in-
duction and the fixpoint theory of programs, however the verification conditions themselves
do not refer to this theory, they only state facts about the predicates and functions present
in the program text. In particular, the termination condition consists in a property of a
certain simplified version of the original program. By inspecting the shape of these rules for
several program structures, it is possible to derive a more general rule for the derivation of
verification conditions, such that the correctness formula (see above) is a logical conse-
quence of these verification conditions in the frame of predicate logic, without using
any model of computation.

We approach the correctness problem by splitting it into two parts: partial correctness
(prove that the program satisfies the specification provided it terminates), and termination
(prove that the program always terminates). Proving partial correctness may be achieved
by Scott’s induction [13,11,7,9] – a detailed description of the method for a certain class of
functional programs is presented in [10].

Example: Simple Recursive Programs. Let be the program:

F [x] = If Q[x] then S[x] else C[x, F [R[x]]],

where Q is a predicate and S,C, and R are auxiliary functions whose total correctness is
assumed (S is a “simple” function, C is a “combinator” function, and R is a “reduction”
function). Note that the program above can be seen as an abbreviated notation for the
logical formulae:

∀x (Q[x] =⇒ F [x] = S[x])
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∀x (¬Q[x] =⇒ F [x] = C[x, F [R[x]]]).

Using Scott induction in the fixpoint theory of functions, one obtains the following
verification conditions for the partial correctness of the program of F :

∀x IF [x] : (Q[x] =⇒ OF [x, S[x]])

∀x, y IF [x] : ((¬Q[x] ∧OF [R[x], y]) =⇒ OF [x,C[x, y]])

(In fact, the conditions can be further decomposed using the preconditions and the post-
conditions of the auxiliary functions, see [5].)

The condition for the termination of the program can be expressed using a simplified
version of the initial function:

F ′[x] = If Q[x] then 0 else F ′[R[x]],

which only depends on Q and R. Namely, the verification condition is

∀x IF [x] : F ′[x] = 0, (2)

which must be proven based on the logical formulae corresponding to the definition of F ′

(and the local theory relevant to the program). The condition follows from the equivalence
of the termination properties of F and F ′, which can be proven in the fixpoint theory of
functions e. g. by using induction on the number of recursion steps (see [14]).

The termination condition can be further refined to:

∀x IF [x] : ((Q[x] =⇒ P [x]) ∧ (¬Q[x] =⇒ (P [R[x]] =⇒ P [x])) =⇒ ∀xP [x]),

where P is a new predicate symbol, which is a proof in second order logic of the formula
above for any P . This condition defines in fact an induction principle. By taking P [x]⇐⇒
(F ′[x] = 0), one can obtain a proof of (2). By taking P [x]⇐⇒ OF [x, F [x]], one can obtain
a proof of the correctness formula (1).

Note that both conditions only depend on Q and R, thus they abstract some part of
the function definition. In practical programming, these Q and R correspond to typical
algorithm schemes (take e. g. Q[x] ⇐⇒ (x = 0) and R[x] = (x− 1)), thus the termination
condition (whose proof usually involves induction) is usable for several programs.

Generalization. By applying the same method to other recursion schemes, one notes
that the verification conditions for the partial correctness can be generated directly (without
using an additional theory) by applying few basic principles:

• check the input conditions when calling subroutines;
• accumulate all reasonable assumptions (coming from the input condition of the main

function, from if–then–else statements and from the correctness formulae of the sub-
routines),

• try to finally obtain the correctness property for the output of F .

Furthermore, the termination condition can be generated either:

• as the “identical zero” property of the simplified function, or
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• as the appropriate induction principle which makes the correctness formula a logical
consequence the partial correctness conditions.

Implementation and experiments. The methods described above are implemented
in the Theorema system and we are studying various recursive schemes and several test
cases in order to improve the power of the verification condition generator. Furthermore,
the concrete proof problems are used as test cases for the provers of Theorema and for exper-
imenting with the organization and management of the mathematical knowledge. Currently
we are able to generate the verification conditions and to prove them automatically in the
Theorema system for many concrete programs.
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1 Introduction

Current techniques for proving termination of logic programs focus on size and instantiation
information. Structure information is ignored and for many examples this leads to impre-
cision in the analysis. There are two approaches to consider structure information: either
to enhance the abstract domain over which the analysis is performed; or to transform the
program so that structure in the concrete program is considered before abstract interpre-
tation is applied. In [5], the authors propose a technique to transform a program so that
the predicate names are adorned to reflect different structure patterns. In this approach,
the adorned program is equivalent to the original program and termination analysis of the
adorned program is more precise.

In this paper we present an alternative approach based on well-studied techniques of
partial evaluation (unfolding) and abstract interpretation. Partial evaluation is a natural
choice when the intention is to pre-evaluate just so much as to consider the structure present
in the program. The advantage of this approach is that it relies completely on well-studied
formal techniques.

In addition to partial evaluation we also abstract the program, maintaining structure,
but possibly adding computations. This process preserves nontermination and hence is safe
for termination analysis. This often simplifies the transformation.

We obtain results similar to those illustrated in [5]. We also compare our results to those
obtained using ECCE [3] which is an off-the-shelf partial evaluator. Our results are more
precise and analyses are considerably faster than those obtained using ECCE.

2 Partial Evaluation for Termination Analysis

When considering partial evaluation as a preprocessing for termination analysis it is impor-
tant to keep in mind that unfolding does not preserve non-termination in general. Hence a
preprocessed program might appear to terminate while the original does not. To illustrate
the problem consider the following example.

Example 1. The program below is nonterminating for the query ?- r(A,B). It is intended
to find two natural numbers the product and sum of which each are 0.

r(X,Y) :- times(X,Y,0), plus(X,Y,0).

plus(0, X, X).

plus(s(X), Y, s(Z)) :- plus(X,Y,Z).

times(0,X,0).

times(s(X),Y,Z) :-

times(X,Y,W), plus(W,Y,Z).

Partial evaluation (using ECCE) results in the program consisting of the single fact r(0,0)
which is clearly terminating for the query ?- r(A,B).

The ECCE [3] partial evaluator comes with a predefined setting ‘‘t’’ which is non-
termination preserving and hence safe for termination analysis. This setting is used in all
of our experiments.



3 Our method

Our method consists of three simple program transformations: (a) Binarisation — A pro-
gram P is transformed to a binary program P ′ — this phase involves an abstraction, however
termination of P ′ implies termination of P ; (b) Binary unfolding — Unfolding a binary
program is a simple transformation which preserves termination (and nontermination) —
The main problem is to decide how much to unfold; and (c) Predicate renaming — This
is a simple transformation along the lines of adorning [5] in which structural information
is “encoded” in the predicate names. We illustrate that for the examples illustrated in [5]
(and others) the TerminWeb analyzer [6] is able to prove termination after the application
of the above transformations.

Binarisation: For a logic program P , the following (possibly infinite program) has the
same termination behaviour (and makes observable the same answers and calls) as P [1].

bin(P ) =

{

(h← bi)θ

∣

∣

∣

∣

h← b1, . . . , bn ∈ P, 1 ≤ i ≤ n,
θ ∈ ansP (b1, . . . , bi−1)

}

where ansP (G) denotes the answer set for goal G with program P . As bin(P ) cannot be
computed, we approximate it by taking an approximation of ansP (G). For the results of this
paper we look at the approximation where ansP (G) maps all goals to the singleton {ε} (the
empty substitution). We denote by bina(P ) =

{

h← bi

∣

∣h← b1, . . . , bn ∈ P, 1 ≤ i ≤ n
}

.

Example 2. The following Prolog program, quoted from [5], rewrites an expression in vari-
able x by repeatedly applying laws of distributivity. The original statement of the problem
is given in terms of rewrite systems and is described in [2].

dist(x,x). % (1)

dist(x*x,x*x). % (2)

dist(X+Y,U+V) :- dist(X,U), dist(Y,V). % (3)

dist(X*(Y+Z),T) :- dist(X*Y+X*Z,T). % (4)

dist((X+Y)*Z,T) :- dist(X*Z+Y*Z,T). % (5)

The program bina(P ) is obtained by replacing the clause (3) by the two clauses
dist(X+Y,U+V) :- dist(X,U). % (3a) dist(X+Y,U+V) :- dist(Y,V). % (3b)

Theorem 1. Termination of bina(P ) implies termination of P .

Proof. The result follows because P and bin(P ) have the same termination behaviour and
because bina(P ) is more general than bin(P ).

Binary unfolding: Binary unfolding, in contrast to general unfolding, is guaranteed to
preserve termination and nontermination [1](theorem 4.3). A binary clause a ← b in a
binary program P can be replaced by the set of binary clauses

unfP (a← b) =
{

(a← c)θ
∣

∣ b′ ← c ∈ P,mgu(b, b′) = θ
}

.

The unfolding operation can be applied repeatedly, however, in case the call graph of the
program contains cycles, this process may not terminate. In practice, whenever it is possible
to unfold a clause along a cyclic path, we do so only if the size of the clause body gets smaller
according to a selected norm (we currently apply the termsize norm by default).
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Example 3. Unfolding the clause (4) with (3a) from the binarised program bina(P ) of
Example 2 yields: dist(A*(B+C),D+E) :- dist(A*B,D).

This demonstrates our strategy: Even though clause (3a) is cyclic, the body of the
unfolded clause decreases when compared to (4) (in at least one of its arguments), hence
we choose to follow this path for unfolding.

Unfolding bina(P ) results in the following program (where facts have been omitted as they
do not contribute to non-termination).

dist(A+B,D+E) :- dist(A,D). % (1’)

dist(A+B,D+E) :- dist(B,E). % (2’)

dist(A*(B+C),D+E) :- dist(A*B,D). % (3’)

dist(A*(B+C),D+E) :- dist(A*C,E). % (4’)

dist((A+B)*C,D+E) :- dist(A*C,D). % (5’)

dist((A+B)*C,D+E) :- dist(B*C,E). % (6’)

Clauses (3’), (4’), (5’) and (6’) are obtained as a result of unfolding, whereas (1’)

and (2’) remain unchanged. TerminWeb succeeds to prove termination of this program,
where with the original it fails.

Predicate renaming: This is a simple program transformation to remove from the pro-
gram calls to clauses with incompatible structure. Once program analysis will be applied
these inconsistencies will disappear and precision will be lost.

Example 4. The program on the left is presented in [5]. We first rename each predicate
occurrence to obtain the program on the right.

loop(0,X,s(Y)) :- loop(0,s(X),Y).

loop(0,X,Y) :- loop(s(0),X,Y).

loop(s(0),s(X),Y) :- loop(s(0),X,s(Y)).

loop1(0,X,s(Y)) :- loop2(0,s(X),Y).

loop3(0,X,Y) :- loop4(s(0),X,Y).

loop5(s(0),s(X),Y) :- loop6(s(0),X,s(Y)).

We then add: (a) entry points of the form loop(A,B,C) :- loopj(A,B,C) corresponding
to the new head atoms; and (b) call graph edge clauses of the form loopi(A,B,C) :-

loopj(A,B,C) if the body atom loopi(. . .) is unifiable with the head atom loopj(. . .).

loop(A,B,C) :- loop1(A,B,C).

loop(A,B,C) :- loop3(A,B,C).

loop(A,B,C) :- loop5(A,B,C).

loop2(A,B,C) :- loop1(A,B,C).

loop2(A,B,C) :- loop3(A,B,C).

loop4(A,B,C) :- loop5(A,B,C).

loop6(A,B,C) :- loop5(A,B,C).

TerminWeb can prove the termination of the transformed program (but not the original).

4 Experimentation

We have applied the approach to a set of benchmarks which can be found at http:

//www.cs.bgu.ac.il/~mcodish/TerminWeb/ (under “Examples”). All of the transforma-
tions applied are fully implemented. Table 1 summarizes the results. The rows in the table
correspond to the test programs. The columns indicate: program - the program, query -
the query pattern (’b’ means bound and ’f’ means free), *.pl - termination analysis for
the original program, *.pe - termination analysis after applying ECCE (non-termination
preserving mode), *.bin - termination analysis after applying binarisation, *.bin pe -
termination analysis after applying ECCE to the binarised program, and *.bin unf - ter-
mination analysis after applying binarisation and binary unfolding (as described in Section
3).

For each application of the termination analyzer the table indicates the total termination
analysis time (in milliseconds) if the analysis was successful, or “no” if termination was not

1 Selected norm is “termsize edges”.
2 The analyzer timed-out.
3 The original program is binary to start with.
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Program Query *.pl *.pe *.bin *.bin pe *.bin unf

dist dist(b,f) no no no 3040 10
dist(f,b) no 650 no 3490 10

d d(b,f,f) no no no 1280 20
d(f,f,b) no no no 1280 20

thrm11 false(b) no no no no 20

thrm21 true(b) no 1010 no 450 20

balance balance(b,f) 75780 ∞
2 63250 43290 2880

plus reduce(b,f) no 15703 no3 1570 20

Table 1. Results

proven. The analyses were performed through the web interface to TerminWeb using the
default options of the analyzer unless indicated otherwise. We have focused on the cost of
the termination analysis of the transformed programs, ignoring for the time being the cost
of the transformations themselves. We have not compared the cost of unsuccessful analyses
(also to get a “no” has a cost).

The results indicate that off-the-shelf partial evaluation is not suitable for termination
analysis. This is apparent from the columns *.pe and *.bin pe, illustrating that the analy-
ses of the partial evaluated programs are less precise and are more costly than those obtained
with simple unfolding. The purpose of the column *.bin is to illustrate that binarisation
on its own does not solve the problem.

5 Conclusions and Ongoing Work

We illustrate that simple techniques of partial evaluation can be applied to improve the pre-
cision of termination analysis. Most likely, partial evaluators can be better tuned to perform
this task. Meanwhile we have implemented straightforward transformations to illustrate the
point.

An advantage in comparison to the adornments approach is that all is based on simple
and well-studied transformations. A disadvantage is that it is not clear how to generalize
ours for numeric computation.

We note that unfolding has been recognized important for improving the precision of
termination analysis already in [4]. We note also that TerminWeb can analyse the mergesort
program directly without applying unfolding.
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Abstract. We investigate

• how current techniques for proving termination for term rewriting systems (TRSs) essentially use relative
termination, although not always stated explicitly,

• how using relative termination is helpful for proving termination in a modular way,
• which techniques for proving termination easily extend to proving relative termination,
• how for some applications relative termination is the natural underlying concept, justifying studying

relative termination in itself.

For abstract reduction systems →R and →S we write →R /→S =→∗
S · →R · →

∗
S . We say

that→R is terminating relative to→S (notation: SN(→R /→S)) if→R /→S is terminating.
Equivalently, SN(→R /→S) holds if and only if no infinite sequence t1, t2, t3, . . . exists such
that ti →R∪S ti+1 for all i = 1, 2, 3, . . ., and ti →R ti+1 for infinitely many values of i.

In case R and S are term rewriting systems with corresponding rewrite relations →R

and →S we shortly write SN(R/S) for SN(→R / →S). Clearly termination of R coincides
with SN(R/∅), hence termination is a special case of relative termination.

Relative termination was investigated by Alfons Geser in his PhD thesis in 1990, [2]. It
is thoroughly used for string rewriting in TORPA, [8].

We start by a characterization of relative termination by compatible orders.

Theorem 1. Let R, S be TRSs. Then SN(R/S) holds if and only if a strict order (transitive
and irreflexive) > and a quasi-order (transitive and reflexive) ≥ on terms exist such that

• R ⊆ > and S ⊆ ≥,
• > and ≥ are closed under contexts and substitutions,
• > is well-founded, and
• ≥ · > · ≥ ⊆ >.

Here we avoid to require that > is the strict part of ≥ since it may occur that ≥ is
closed under contexts and substitutions but its strict part is not.

The next property may be used for proving (relative) termination in a stepwise way.

Theorem 2. Let R, S, R′ and S′ be TRSs for which

• R ∪ S = R′ ∪ S′,
• SN(R′/S′), and
• SN((R ∩ S ′)/(S ∩ S′)).

Then SN(R/S).

Variants of these basic properties Theorems 1 and 2 were already given in [2]. Theorem
2 may be used as follows. If we want to prove SN(R/S) then we try to split up R ∪ S into
two disjoint parts R′ and S′ for which R′ 6= ∅ and SN(R′/S′). Typically this is done by



searching for a compatible order > for R ∪ S. This may partially succeed: for some rules
l→ r we have l > r, but for the others we have l ≥ r, for >,≥ satisfying the requirements
of Theorem 1. Then we choose R′ to consist of the rules l → r satisfying l > r, and S ′ the
rest, then SN(R′/S′) holds by Theorem 1. Hence by Theorem 2 we may weaken the proof
obligation SN(R/S) to SN((R ∩ S ′)/(S ∩ S′)), i.e., all rules from R′ may be removed. This
process may be repeated as long as it is applicable. If after a number of steps R ∩ S ′ = ∅
then SN((R ∩ S ′)/(S ∩ S′)) trivially holds and the desired proof has been given.

As a very simple example we prove termination of the TRS consisting of the following
three rules:

a(b(x))→ b(a(x)), b(c(x))→ c(b(x)), c(a(x))→ a(c(x)).

Doing this in one step is not that easy, but proving SN(R′/S′) is very simple for R′ consisting
of the first rule and S ′ consisting of the rest: choose the polynomial order where a, b, c are
interpreted as λx·2x, λx·x+1 and the identity, respectively. Hence by Theorem 2 it remains
to prove termination of the last two rules, which is immediate by recursive path order using
the precedence b > c > a.

Dependency pairs

For a TRS R over an alphabet Σ let ΣD be the set of defined symbols of R, i.e., the set of
symbols occurring as the root of the left hand side of a rule in R. For every defined symbol
f ∈ ΣD we introduce a fresh symbol f , usually written as the capitalized version of f if f
is a lower case letter. The TRS DP (R) over Σ = Σ ∪ {f | f ∈ ΣD} is defined to consist of
all rules of the shape

f(t1, . . . , tn) → g(u1, . . . , um)

for which f(t1, . . . , tn) = l and r = C[g(u1, . . . , um)] for some rule l→ r in R and f, g ∈ ΣD.
Rules of DP (R) are called dependency pairs. In our view the main theorem of dependency
pairs from [1] is the following.

Theorem 3. Let R be any TRS. Then SN(R) if and only if SN(DP (R)/R).

Hence proving termination of a TRS can be done by proving relative termination using
dependency pairs. In [1] this is done by analyzing chains of dependency pairs, essentially
being reductions of R ∪DP (R) in which DP (R)-steps are only applied on the root. It has
to be proved that only finitely many DP (R)-steps occur in such a R ∪DP (R)-reduction,
corresponding to relative termination. On a first glance it seems that in our approach
the requirement that the DP (R)-steps are only applied on the root is lost. However, by
type elimination / type introduction as introduced in [5] this aspect is easily brought in
separately.

It is a natural question whether dependency pairs can be used for relative termination
rather than termination. More precisely, we wonder whether SN(R/S) can be concluded
from SN(DP (R)/R′) for some R′ like R′ = R ∪ S ∪ DP (S). This is not the case: let R
consist of the rule a → b and S of the rule f(b) → f(a). Then clearly SN(R/S) does not
hold, while SN(DP (R)/ · · · ) holds since DP (R) = ∅. We expect that in some cases SN(R/S)
may be concluded from SN(DP (E(R))/R∪S ∪DP (S)) for a TRS E(R) consisting of rules
of the shape C[l]→ C[r] for l → r ∈ R, along the lines of [3].
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Generalized argument filtering

Argument filtering is a technique used in the dependency pair method in [1] to deal with
combinations of strict and non-strict inequalities, hence essentially for relative termination.
The idea is that terms are reduced by filtering arguments: for one or more function symbols
arguments may be removed or the symbol itself is removed and one argument is chosen.
Here we generalize this to recursive program schemes.

A recursive program scheme (RPS) is defined to be a TRS in which all left hand sides
of the rules have distinct root symbols, and all of these left hand sides are of the shape
f(x1, . . . , xn) where x1, . . . , xn are distinct variables. By definition an RPS is orthogonal,
hence confluent. If an RPS S is terminating then we write S(t) for the unique normal form
of a term t, and S(R) = {S(l)→ S(r) | l→ r ∈ R} for a TRS R.

Theorem 4. Let R,R′ be TRSs satisfying SN(S(R)/S(R′)) for some non-erasing termi-
nating RPS S. Then SN(R/R′) holds.

The proof of this theorem is easily given using Lemma’s 6.5.4 and 6.5.5 from [7]. Unfor-
tunately, for this theorem the requirement of non-erasingness is essential: for R consisting
of the rule a → f(a) and R′ = ∅ and S consisting of the rule f(x) → b we do have
SN(S(R)/S(R′)) but not SN(R/R′). However, for dependency pairs the requirement of
non-erasingness is not essential:

Theorem 5. Let R be a TRS satisfying SN(S(DP (R))/S(R)) for some terminating RPS
S. Then SN(R) holds.

Semantic labelling

The theory of semantic labelling ([6,7]) directly extends to relative termination:

Theorem 6. Let R and R′ be the labelled versions of TRS R,R′ with respect to some quasi-
model, and let Decr be the corresponding set of decreasing rules, as defined in [6,7]. Then
SN(R/R′) if and only if SN(R)/(R′ ∪ Decr)).

This theorem turned out to be extremely fruitful in TORPA ([8]).

Relative termination in liveness and fairness

In [4] it was investigated how termination of term rewriting may be applied for proving
liveness properties: proving that some desired property eventually will hold in some compu-
tation. For many instances of such problems fairness is involved: an infinite computation is
only considered valid if some particular steps are applied infinitely often. As a very simple
example consider a waiting line in which on the one end new clients may enter and on the
other end clients may be served. Introducing a constant serve for the serving end of the line,
a unary symbol top for the end where new clients may enter, and unary symbols old, new
for old and new clients, respectively, the behavior of the waiting line may be described by
the three rules top(x)→ top(new(x)), new(serve)→ serve, old(serve)→ serve.

For this system we want to prove the liveness property that eventually all old clients
will be served. According to the method described in [4] this can be done by considering the
transformed TRS obtained by replacing top(x)→ top(new(x)) by top(x)→ top(c(new(x)))
and adding the rules c(new(x))→ new(c(x)), c(old(x))→ old(c(x)), c(old(x))→ old(x).
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Without a fairness requirement the liveness property does not hold: if the line contains
an old client, the serve rules are never applied and infinitely often a new client enters,
then an infinite computation is obtained in which the old client remains for ever in the
waiting line. However, if we require that in the infinite computation infinitely often clients
are served, then the liveness property holds. In terms of relative termination this means
that R consists of the serving rules new(serve) → serve, old(serve) → serve and S consists
of the other rules

top(x)→ top(new(x)), c(new(x))→ new(c(x)), c(old(x))→ old(c(x)), c(old(x))→ old(x)

By the observations given in [4] the liveness property under the above fairness restriction
can be concluded from SN(R/S). This may be proved using semantic labelling; by TORPA
this is done automatically.

This example is very simple, but we believe that this approach is applicable for much
more involved examples, and that relative termination is the natural property to be con-
sidered for proving liveness properties as soon as fairness properties come in.
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1 Introduction

The system AProVE (Automated Program Verification Environment) offers a variety of
techniques for automated (innermost) termination proofs of (possibly conditional) TRSs,
logic programs, and first-order functional programs. Besides efficient implementations of
classical simplification orders (Sect. 2), it offers the dependency pair technique [2,11] which
allows the application of classical orders to examples where they would fail otherwise (Sect.
3). In contrast to most other implementations, we integrated numerous refinements such
as narrowing, rewriting, and instantiation of dependency pairs [2,10,12,13], recent improve-
ments to reduce the constraints generated by the dependency pair technique [12,13,23], etc.
Therefore, AProVE succeeds on many examples where other currently available systems for
automated termination proofs fail. AProVE also features the size-change principle [20] and
it is possible to combine this principle with dependency pairs [22]. The tool is written in
Java and proofs can be performed both in a fully automated or in an interactive mode via
a graphical user interface. Sect. 4 compares AProVE with related tools.

2 Direct Termination Proofs

In direct termination proofs, one tries to find a reduction order where all rules are decreasing.
AProVE contains recursive path orders (RPOS) with multiset or lexicographic status for each
function symbol as well as several restrictions of RPOS (RPO, LPOS, LPO, EMB, etc.). AProVE
also offers Knuth-Bendix orders (KBO) using the polynomial-time algorithm of [18].

Finally, AProVE also features polynomial orders (POLO) where every function symbol is
associated with a polynomial with natural coefficients. The user can specify the degree of the
polynomials and the range of the coefficients. One can also provide individual polynomials
for some function symbols manually. To prove termination, AProVE generates a set of
polynomial inequalities stating that left-hand sides of rules should be greater than the
corresponding right-hand sides. By the method of partial derivation [9,19], these inequalities
are transformed into inequalities only containing coefficients, but no variables anymore.
Finally, a search algorithm determines coefficients satisfying the resulting inequalities. The
user can choose between brute force search, greedy search, a genetic algorithm, and a
constraint-based method based on interval arithmetic, which is preferable in most examples.

To improve power and efficiency, one can apply a pre-processing step to remove rules
from the TRS that do not influence the termination behavior. Here, AProVE tries to find a
monotonic order � such that the rules of the TRS R are at least weakly decreasing (i.e.,
l % r for all l → r ∈ R). Then those rules which are strictly decreasing can be removed,
i.e., it suffices to prove termination of R \ {l→ r | l � r}. This extends related approaches
to remove rules [5,15,19,25] which were restricted to certain classes of orders or TRSs.

For this pre-processing, we use linear polynomial interpretations with coefficients from
{0, 1}. AProVE’s algorithm for polynomial orders solves constraints where some inequalities



are strictly decreasing and all others are weakly decreasing in just one search attempt
without backtracking [13]. Thus, removal of rules can be done very efficiently and it is
repeated until no rule can be removed anymore.

3 Termination Proofs with Dependency Pairs

The dependency pair approach [2,11] increases the power of automated termination analysis
significantly. For every TRS, it generates sets of inequality constraints. If there exist well-
founded (quasi-)orders satisfying these constraints, then termination is proved. In AProVE,
one can select whether to use the dependency pair approach for termination or for innermost
termination proofs. The system can also check if a TRS is non-overlapping (because then
innermost termination implies termination). To search for suitable orders, one can select
any base order from Sect. 2.

Argument Filtering

However, most of these orders are strongly monotonic, while the dependency pair approach
only requires weak monotonicity. (For polynomial orders, a weakly monotonic variant is
obtained by permitting the coefficient 0. But LPO(S), RPO(S), and KBO are always strongly
monotonic.) Thus, before searching for an order, some of the arguments of the function
symbols in the constraints can be eliminated by an argument filtering [2]. Moreover, we
developed an improvement by first applying the argument filtering and determining the
constraints of the dependency pair approach afterwards [12,23].

Since there are exponentially many argument filterings, a crucial problem is to explore
this search space efficiently. AProVE uses a depth-first algorithm [12] which starts with the
set of argument filterings possibly satisfying the first constraint. Here we use the idea of
[16] to keep argument filterings as “undefined” as possible. Then this set is reduced further
to those filterings which can possibly satisfy the second constraint as well. This procedure
is repeated until all constraints are investigated. By inspecting the constraints in a suitable
order (instead of treating them separately as in [16]), already after the first constraint the
set of possible argument filterings is rather small and one only inspects a small subset of
all potential argument filterings.

Heuristics

To improve performance, AProVE offers several heuristics. For example, one can use heuris-
tics to restrict the set of possible argument filterings. The most successful of these heuristics
(“Type”) only regards argument filterings where for every symbol f , either no argument
position is eliminated or all non-eliminated argument positions are of the same type. Here,
we use a (monomorphic) type inference algorithm to transform a TRS into a sorted TRS.

Another heuristic to increase the efficiency (“EMB for DPs”) is to only use the very
simple embedding order for orienting constraints which come from dependency pairs. Only
for constraints from rules, one may apply more complicated orders like LPO, RPO(S), etc.
Since our depth-first algorithm to determine argument filterings starts with the dependency
pairs, this reduces the search space significantly without compromising power very much.

Dependency Graph

To perform (innermost) termination proofs in a modular way, one constructs an estimated
(innermost) dependency graph and regards its cycles separately [2,11]. One can select be-
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tween standard [2] and more powerful recent estimations (EDG∗ / EIDG∗∗) [13,16].
To benefit from all refinements on modularity of dependency pairs, we developed and

implemented an improved technique which combines recent results on modularity of Cε-
terminating TRSs [24] with arbitrary estimations of dependency graphs, cf. [12,23].

Dependency Pair Transformations

To increase power, a dependency pair can be transformed into several new pairs by narrow-
ing, rewriting, and instantiation [2,10,12,13]. In contrast to [10,12], AProVE can instantiate
dependency pairs both w.r.t. the pairs before and behind it in chains (the latter is called
forward instantiation) [13]. The user can select which of these transformations should be
used when applicable. Usually, all transformations should be enabled, since they are often
crucial for the success of the proof and they can never “harm”: if the termination proof
succeeds without transformations, then it also succeeds when performing transformations
[13], but not vice versa. However, the problem is when to use these transformations, since
they may be applicable infinitely often. Moreover, transformations may increase runtime
by producing a large number of similar constraints. AProVE performs transformations in
“safe” cases where their application is guaranteed to terminate [12].

4 Comparison with Other Tools

Compared with other recent termination provers for TRSs (Arts [1], Cariboo [8], CiME [6],
Termptation [4], TTT [17]), AProVE is the only system with improvements like automated
dependency pair transformations, applying argument filterings before determining the con-
straints, and combining modularity results based on Cε-termination with recent dependency
graph estimations. Moreover, it offers more base orders than any other system, it can also
handle conditional TRSs, and integrates the size-change principle. Finally, AProVE’s design
permits the combination of powerful heuristics and different termination techniques.

The following experiments compare AProVE 1.0 (using its “Meta Combination” algo-
rithm) with the only other tools currently available on the web (CiME and Termptation).
They were tested on the collections of [3,7,21] (130 TRSs for termination, 151 TRSs for
innermost termination). To show that the techniques described in [17] are a substantial re-
striction, in the last row we ran AProVE in a mode where we switched off all improvements
and only used the methods available in [17]. Since [17] has several base orders and argument
filtering heuristics, we took the ones which gave the best overall result on this collection.

Termination Innermost Term.

System Power Time Power Time

AProVE 95.4 % 26.2 s 98.0 % 34.3 s

CiME 71.5 % 660.7 s — —

Termptation 65.4 % 521.8 s 72.8 % 681.7 s

AProVE with techniques of [17] 52.3 % 679.1 s — —

The “Power” column contains the percentage of those examples in the collection where
the proof attempt was successful. The “Time” column gives the overall time for running the
system on all examples of the collection (also on the ones where the proof attempt failed).
For each example we used a time-out of 60 seconds on a Pentium IV with 2.4 GHz and 1
GB memory.
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For more details on the above experiments and to download AProVE, the reader is re-
ferred to http://www-i2.informatik.rwth-aachen.de/AProVE. A more detailed descrip-
tion of the system can be found in [14].
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1 Introduction

This contribution describes the Tyrolean Termination Tool, the successor of the Tsukuba
Termination Tool [8]. We describe the differences between the two and explain the new
features in some detail. The Tyrolean Termination Tool (TTT in the sequel) is a tool for
automatically proving termination of first-order rewrite systems based on the dependency
pair method of Arts and Giesl [1]. It produces high-quality output and has a convenient
web interface. The tool is available at

http://cl2-informatik.uibk.ac.at/ttt

Figure 1 shows the web interface. TTT incorporates several new improvements to the de-
pendency pair method. In addition, it is now possible to run the tool in fully automatic
mode on a collection of rewrite systems.

In the next section we describe the differences between the semi automatic mode and
the Tsukuba Termination Tool. Section 3 describes the fully automatic mode. In Section 4

Fig. 1. A screen shot of the web interface of TTT.



we describe how to input a collection of rewrite systems and how to interpret the resulting
output.

2 Semi Automatic Mode

This menu corresponds to the options that were available in the Tsukuba Termination
Tool. A first difference is that we now support the dependency pair method for innermost
termination [1]. A second difference is that dependency pairs that are covered by the subterm
criterion of Dershowitz [3] are excluded. The other differences are described in the following
paragraphs.

First of all, when approximating the (innermost) dependency graph the original esti-
mations of [1] are no longer available since the approximations described in [6] generally
produce smaller graphs while the computational overhead is neglectable.

Secondly, the user can no longer select the cycle analysis method (all cycles separately,
all strongly connected components separately, or the recursive SCC algorithm of Hirokawa
and Middeldorp [7]). Extensive experiments reveal that the latter method outperforms the
other two, so this is now the only supported method in TTT.

Finally, the default method to search for appropriate argument filterings has been
changed from enumeration to the divide and conquer algorithm of [7]. By using dynamic
programming techniques, the divide and conquer method has been improved (cf. the full
version of [7]) to the extent that for most examples it is more efficient than the straight-
forward enumeration method. Still, there are TRSs where enumeration is more effective, so
the user has the option to change the search strategy (by clicking the enumerate box).

New features include (1) a very useful criterion based on the subterm relation to dis-
card SCCs of the dependency graph without considering any rewrite rules and (2) a very
powerful modularity criterion for termination inspired by the usable rules of [1] for inner-
most termination. The second criterion1 is stronger than previous modularity results in
connection with the dependency pair method ([4,10,12]). These new features are described
in detail in [9]. The first one is selected by clicking the subterm criterion box and the second
by clicking the usable rules box.

3 Fully Automatic Mode

In this mode TTT uses a simple strategy to (recursively) solve the ordering constraints
for each SCC of the approximated dependency graph. The strategy is based on the new
features described in the previous section and uses LPO (with strict precedence) with some
argument filterings and linear polynomial interpretations with coefficients from {0, 1} as
base orders. The usefulness of the latter has been observed first in [5].

After computing the SCCs of the approximated (innermost) dependency graph, the
strategy subjects each SCC to the following algorithm:

1. First we check whether the new subterm criterion is applicable.
2. If the subterm criterion was unsuccessful, we compute the usable rules (using the new

modularity criterion for termination).
3. The resulting (usable rules and dependency pairs) constraints are subjected to the divide

and conquer algorithm for computing suitable argument filterings with respect to the
some heuristic and LPO with strict precedence.

1 The criterion was independently obtained by Thiemann et al. [11].
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Fig. 2. Output produced by TTT.

4. If the constraints could not be solved in step 3, we try linear polynomials with coefficients
from {0, 1}.

If only part of an SCC could be handled, we subject the resulting new SCCs recursively to
the same algorithm.

The effectiveness of the automatic strategy can be seen from the data presented in
Figure 2, which were obtained by running TTT in fully automatic mode on the 89 terminating
TRSs (66 in Section 3 and 23 in Section 4) of [2]. An explanation of the data is given in
the next section.

4 A Collection of Rewrite Systems as Input

In addition to inputting a single TRS by typing the rules into the upper left text area or by
uploading a file via the browse button, the user can upload a zip archive. All files ending in
.trs are extracted from the archive and the termination prover runs on each of these files
in turn. The results are collected and presented in two tables. The first table lists for each
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TRS the execution time in seconds together with the status: bold green indicates success,
red italics indicates failure, and gray indicates timeout. By clicking green (red) entries the
user can view the termination proof (attempt) in HTML or high-quality Postscript format.
The second table gives the number of successes and failures, both with the average time
spent on each TRS, the number of timeouts, and the total number of TRSs extracted from
the zip archive together with the total execution time. Figure 2 shows the two tables for
the 66 TRSs in Section 3 of [2]. Here we used TTT’s fully automatic mode with a timeout
of 1 second (for each TRS). The experiment was performed on a PC equipped with a 2.20
GHz Mobile Intel Pentium 4 Processor - M and 512 MB of memory.
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Abstract. This paper describes mu-term, a tool which can be used to automatically prove termination of
computational restrictions of rewriting such as context-sensitive rewriting and lazy rewriting. The tool can
also be used to prove termination of rewriting. In this sense, mu-term provides the first implementation of
reduction orderings based on polynomial interpretations over the rational numbers.

1 Introduction

Restrictions of rewriting can eventually achieve termination of rewriting computations by
pruning all infinite rewrite sequences issued from every term. However, such kind of im-
provements can be difficult to prove. Context-sensitive rewriting (CSR [6]) is a restriction
of rewriting which is useful for describing semantic aspects of programming languages (e.g.,
Maude, OBJ2, OBJ3, or CafeOBJ) and analyzing termination of the corresponding pro-
grams. In CSR, a replacement map µ discriminates, for each symbol of the signature, the
argument positions µ(f) on which replacements are allowed. Although several methods have
been developed for proving termination of CSR, no tool for doing it has been reported to
date. Our tool, mu-term, is intended to fill this gap. mu-term is written in Haskell1 and
makes use of the graphical library wxHaskell2. The mu-term system is available at

http://www.dsic.upv.es/~slucas/csr/termination/muterm

There are two main approaches to prove termination of CSR: direct proofs use adapted
versions of simplification orderings such as RPOs and polynomial orderings to compare the
left- and right-hand sides of the rules [4]; and transformations which convert the problem of
proving termination of CSR into a proof of termination of rewriting [5]. Our tool implements
both approaches. The modular analysis of termination of CSR described in [3] has also been
implemented. We have used mu-term for developing the experiments reported in

http://www.dsic.upv.es/~slucas/csr/termination/examples

where we collect almost all published examples of TRSs which can be proved µ-terminating
for concrete replacement maps µ.

The tool can also be used for proving termination of rewriting. Polynomials over the
rationals [8] are used to generate appropriate reduction orderings (nowadays mu-term is the
only tool which uses such kind of polynomials). On the other hand, µ-reduction orderings
[10] based on such polynomial interpretations are also used together with the dependency
pairs approach [1] to prove termination of rewriting.

? Work partially supported by MCyT project TIC2001-2705-C03-01, MCyT Acción Integrada HU 2003-0003
and AVCyT grant GR03/025.

1 See http://haskell.org/.
2 See http://wxhaskell.sourceforge.net.



2 Interface and functionality

The tool has a quite intuitive graphical user interface. TRSs can be loaded from files contain-
ing the rules in the ‘simple format’ l -> r, where l and r are terms in the usual prefix syntax.
The system is also able to deal with modules following a subset of the full OBJ / Maude
grammar. The advantage is that, in contrast to the simple format, we are able to directly
specify the replacement map by means of the OBJ / Maude strategy annotations. For in-
stance, the following module

obj ExNatsOddsPairs is

sort S .

op 0 : -> S .

op s : S -> S .

op nil : -> S .

op cons : S S -> S [strat (1 0)] .

op nats : -> S .

op pairs : -> S .

op odds : -> S .

op incr : S -> S .

op tail : S -> S .

vars X XS : S .

eq nats = cons(0,incr(nats)) .

eq pairs = cons(0,incr(odds)) .

eq odds = incr(pairs) .

eq incr(cons(X,XS)) = cons(s(X),incr(XS)) .

eq tail(cons(X,XS)) = XS .

endo

describes the generation of some infinite lists of natural numbers. The strategy annotation
(1 0) for cons is interpreted by mu-term as follows: µ(cons) = {1}. The very recent TPDB
(Termination Problems Data Base) format3 can also be used to fully specify a TRS together
with a replacement map.

TRSs are introduced in the system from text files via menu File; after successfully
reading the file, the TRS becomes the current TRS. mu-term uses the current TRS to
perform most actions selected by the user: prove termination, transform, etc.

Panel Termination of CSR (direct proof). The tool implements the techniques described in
[8]. A proof of µ-termination of a TRS is transformed into the problem of solving a set
of constraints over the coefficients of a polynomial interpretation for the symbols of the
TRS. An interesting feature of our technique is that we generate polynomial interpretations
with rational coefficients. We use CiME [2] as an external tool to solve the constraints
generated by the system. If CiME is directly available (on the path of the OS), then the
constraints are automatically generated and sent to CiME; the answer is automatically
received and processed to show the corresponding polynomial interpretation. For instance,
for ExNatsOddsPairs we get:

[0] = 0 [nats] = 1 [cons](X1,X2) = X1 + 1/5.X2

[s](X) = X [pairs] = 1 [incr](X) = X + 1

[nil] = 0 [odds] = 3 [tail](X) = 5.X + 1

which proves termination of CSR for the system. In this case, the use of rational numbers
below one (e.g., 1

5 in the polynomial interpreting cons) plays a crucial role for achieving
the proof of termination (see [8, Section 4] for a deeper discussion in this respect). If the

3 See http://www.lri.fr/~marche/wst2004-competition/format.html.
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modular proofs are activated, then mu-term computes a maximal safe decomposition of
the current system (according to the results in [3]) and separately proves termination of
each module.

Panel Transformations. This option permits to apply different transformations for proving
termination of CSR (see [5] for an overview). Each of them transforms the current TRS
which remains unchanged (the transformed system is added to the internal list of TRSs).
Again, if the modular proofs are activated, then mu-term uses the computed maximal
decomposition of the current system to separately apply the transformations. Eventually,
the transformed systems will also be separately proved terminating.

We also include a transformation from CS-TRSs into CS-TRSs (rather than TRSs) that
permits to prove termination of lazy rewriting as termination of CSR (see [7]). However, since
the results in [3] only concern CSR, no modular treatment is given with this transformation.

Panel Termination of rewriting. Term rewriting is a particular case of CSR where the re-
placement map µ>(f) = {1, . . . , ar(f)}, for all f ∈ F is used. Thus, polynomial orderings
described above can also be used in proofs of termination of rewriting. On the other hand,
Arts and Giesl discuss the use of weakly monotonic and non-monotonic orderings for prov-
ing termination of TRSs in combination with the dependency pairs approach [1]. We have
implemented the use of polynomial interpretations over the rationals to generate such order-
ings and we use them together with the dependency pairs approach for proving termination
of rewriting (see [9] for further details). In particular, we can use this technique, for instance,
to prove termination of the TRSs which are obtained from the previous transformations.
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2. E. Contejean and C. Marché. CiME: Completion Modulo E. In Proc. of RTA’96, LNCS 1103:416-419,
Springer-Verlag, Berlin, 1996.

3. B. Gramlich and S. Lucas. Modular termination of context-sensitive rewriting. In Proc. of PPDP’02,
pages 50-61, ACM Press, New York, 2002.

4. B. Gramlich and S. Lucas. Simple termination of context-sensitive rewriting. In Proc. of RULE’02,
pages 29-41, ACM Press, New York, 2002.

5. J. Giesl and A. Middeldorp. Transformation Techniques for Context-Sensitive Rewrite Systems. Journal
of Functional Programming, to appear, 2004.

6. S. Lucas. Context-sensitive rewriting strategies. Information and Computation, 178(1):293-343, 2002.
7. S. Lucas. Lazy Rewriting and Context-Sensitive Rewriting. Electronic Notes in Theoretical Computer

Science, volume 64. Elsevier Sciences, 2002.
8. S. Lucas. Polynomials for proving termination of context-sensitive rewriting. In Proc. of FOSSACS’04,

LNCS 2987:318-332, Springer-Verlag, Berlin, 2004.
9. S. Lucas. Polynomials over the rationals in proofs of termination. In Proc. of WST’04, this volume,

2004.
10. H. Zantema. Termination of Context-Sensitive Rewriting. In Proc. of RTA’97, LNCS 1232:172-186,

Springer-Verlag, Berlin, 1997.

65





Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports please

consult http://aib.informatik.rwth-aachen.de/ or send your request to: Informatik-

Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.

rwth-aachen.de

95-11 ∗ M. Staudt / K. von Thadden: Subsumption Checking in Knowledge

Bases

95-12 ∗ G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements

Analysis from Multiple Perspectives: Experiences with Conceptual Mod-

eling Technology

95-13 ∗ M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-

ized Views

95-14 ∗ P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-

mation Management: Conceptual Models at Work

95-15 ∗ S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on

Information Technologies & Systems
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