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Abstract
This work is  devoted to  the development  of  landmine detection intelligent  system with the usage of  
unmanned aerial vehicle mounted thermal camera. The problem is considered under the framework of 
object  detection.  The  proposed  framework  is  based  on  the  robust  pre-processing  pipeline,  with  a 
lightweight neural network performing feature extraction, classification and bounding box detection tasks. 
Pre-processing  pipeline  includes  normalization,  texture  extraction,  and  noise  reduction  algorithms  to 
minimize the impact of defects in the images on the accuracy of the neural network. The neural network  
was trained on a custom-collected dataset of various landmines with a low-altitude flyby, with captured 
images being used to train the neural network. The proposed method shows perfect recall (1.0), adequate  
precision (0.909), high Rand index (0.98), and intersection over union(0.963) metrics.
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1. Introduction

Even though the usage of landmines were greatly reduced by Ottawa treaty, landmine pollution 
is  still  an  acute  problem  around  the  world.  It  is  estimated  that  over  60  countries  are  still  
contaminated  by  various  types  of  landmines  and  unexploded  ordnance,  according  to  the  2023 
Landmine Monitor report. Most common hazards are landmines, improvised explosive devices, and 
artillery shells that did not explode on impact, collectively referred to as explosive ordnance (EO). It  
is estimated that over 4700 civilians were killed or injured in 2022 by explosive ordnance, according 
to the Landmine Monitor report.

Ukraine  is  one  of  the  most  heavily  landmine-polluted  countries  in  the  world,  with  various 
estimates stating that up to a third of its territory is polluted by EO. Removal of EO is paramount 
for the restoration of economic activity, which can only be achieved via the process of landmine 
removal. The process of landmine removal is tedious, high risk, and is complicated by high rate of  
false positives due to various debris, present on the minefields. As such, having a detailed map of 
the minefield with the most likely areas where explosive ordnance is present is extremely useful for 
engineers that will be performing the landmine removal operation. Drones, in particular unmanned 
aerial vehicles (UAVs) are particularly useful, as they are able to perform a safe and fast scan of the  
area.

However,  the  process  of  collecting  images  is  not  the  only  problem,  as  covering  1  square 
kilometer at a useful resolution requires approximately 60,000 images. An expert takes, on average, 
3 minutes to verify the image for presence of EO, or 3000 man hours to process 1 square kilometer.  
In  the context  of  all  landmine contaminated territory of  Ukraine,  it  is  estimated that  over  500 
million man hours are required to manually process the images. Artificial intelligence, specifically 
computer vision algorithms, can greatly speed up the process and make it possible to create detailed  
maps of landmine polluted area for the following landmine removal operation.
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2. Literature review

2.1. .Remote Sensing for Landmine Detection

Modern mine detection methods are based on the use of  a  combination of  sensors and mobile 
platforms to quickly collect information about a mined area. The most common types of sensors 
used  for  mine  detection  are  ground  penetrating  radar,  electromagnetic  sensors,  hyperspectral 
cameras and infrared cameras. Most of these sensors have a number of disadvantages that limit the  
possibility of their use with unmanned aerial vehicles - weight, price, the requirement to be directly  
close  to  the  ground  (which  can  lead  to  detonation  of  the  explosive  device),  however,  the  
development of infrared camera technologies has made it possible to create lightweight, compact 
and relatively inexpensive sensors that can be used in combination with artificial intelligence to 
detect mines. Infrared cameras are used to detect shallowly buried metal mines as well as non-
metallic mines [1].

The presence of a buried mine is determined based on the difference in thermal characteristics  
between  the  buried  objects  and  the  surrounding  soil,  since  a  buried  mine  affects  the  thermal 
conductivity within the soil, resulting in a temperature difference between the buried object and the 
soil. [2]. This temperature contrast is measured using a thermographic camera that detects radiation 
in  the  infrared  region of  the  electromagnetic  spectrum and appears  as  pseudocolor  in  thermal 
images [3].

However, detecting mines in thermal images is difficult due to the temporal behavior of soil 
temperature distribution during the day and night, as well as the presence of other buried objects 
[4].

Given the difficulty of object detection in thermal imaging images, there is a need to develop 
suitable image processing-based decision tools for accurate landmine detection. Various researchers 
have  proposed  various  methods  to  improve  the  detection  of  buried  mines  in  thermal  infrared  
images.  Infrared  thermal  imaging  can  work  with  passive  (natural)  or  active  (man-made)  heat 
sources.  However,  they  are  influenced  by  weather  conditions  and  soil  moisture  [5].  Since  the 
thermal differences between bare soil and the soil surface above buried mines are quite small, a 
circular symmetrical spatial filter is applied to enhance these differences [6].

Visibility of buried targets using an infrared and charge camera has been found to be difficult 
during sunrise and sunset [7]. Ederra proposed mathematical morphological tools for denoising and 
segmentation of individual images [8].  Since the raw thermography sensor image is unlikely to 
provide satisfactory information due to interference from solar radiation, soil conditions, humidity, 
etc.,  the  complex  steps  of  infrared  thermography  processing,  including  data  acquisition,  data 
preprocessing, anomaly detection, and evaluation of the thermal and geometric properties of the 
detected anomalies, are explained using appropriate techniques [9]. Image processing techniques 
such as Karhunen-Loeve transform (KLT), Kittler and Young transform have been used to reduce 
the data size and computation time in thermal image based mine detection systems [10]. KLT and 
watershed segmentation were proposed for landmine detection applications [11]. The concept of 
spectral differentiation and detection algorithm, based on the principles of pattern recognition, were 
developed [12].  The dynamic behavior  of  the scene due to time variation and cooling of  solar 
illumination during landmine detection and its  impact on the images are analyzed using image 
processing  tools  [13].  A  3D  finite  difference  thermal  model  was  presented  and  validated  for 
detecting landmines in outdoor minefield datasets [11].

2.2. .Artificial Intelligence for Landmine Detection

The operating principle of IR radiation is based on the fact that different objects can have different 
thermal characteristics [12], i.e. thermal conductivity and heat capacity. Mines can be thought of as  
an unnatural volume for heat flow within the soil. This may cause a specific spatiotemporal thermal 
pattern on the soil surface, which can be detected using IR imaging systems [13]. According to [14],  
IR-based detection systems mainly depend on the condition of the soil surface, the nature of the soil, 
climatic  changes,  the  characteristics  of  buried  objects,  their  position  and  finally  the  thermal 
excitation. When all these factors are handled properly, IR thermography is a noteworthy detection 
tool for locating buried objects. 



If these space-time thermal patterns are due to mines, it is called a volumetric effect. On the 
other hand, if they occur due to disturbed soil, it is called surface effect [15]. We have experienced 
that the surface effect can only be detected for a short period of time after planting. During this  
period,  the  thermal  contrast  is  quite  visible  [20].  An  IR  system can  detect  these  anomalies  as 
evidence of mines [16].

According [2], IR images do not require too much pre-processing and this system can work with 
passive  (natural)  or  active  (man-made)  heat  sources.  However,  it  can  be  affected  by  weather  
conditions and soil moisture. Soil moisture has a positive effect on the thermal signature of a non-
metallic mine and increases the detection speed; on the other hand, it reduces the detection rate of 
metal mines due to the shift of thermal characteristics with humidity [17].

Deeply buried objects cannot be detected using IR sensors [18]. The maximum detection limit for 
mines using IR radiation is about 10 cm [19]. [15] visualizes buried landmines under three different 
soil surface conditions. According to their conclusion, mines buried at moderate depths in the soil  
do not create a direct signature.

Similar  studies  have  been  published  on  mine  detection  using  IR  sensors.  In  [20],  authors 
monitored areas containing buried anti-tank mines and analyzed changes in surface temperature 
over a diurnal cycle to compare different soil textures and soil moisture. According to their analysis,  
it is possible to predict the cyclical behavior of the thermal signatures of mines, with the exception 
of soil with silty loam. Authors of [21] used 24-hour time series of IR images in their studies. They 
used  the  Karhunen-Love  transform  (KLT)  to  reduce  the  data  size  and  applied  three  different 
methods to segment the mines. They enhanced the image/images using gray scale morphology. The 
watershed marker algorithm is then applied to the data for segmentation using these three methods. 
In [22] authors have presented landmine detection using KLT and watershed segmentation. In their 
research,  they propose a series  of  night images from 20:00 to  01:00 with a time interval  of  30  
minutes.  According  to  them,  images  taken  in  the  morning  and  afternoon  contain  redundant 
information.

Therefore, they used a series of night images and KLT, which reduces the number of images and 
therefore the time required to process the data.Authors of [23] worked on a 3D thermal model for  
mine detection problems. In [24] a 3D thermal model to study the effects of mines on bare soil is  
presented. They worked with mines with low or no metal content.  They simulated the thermal 
behavior of soil with known boundary conditions. After this, they proposed an iterative method for 
data classification. This iterative method gives the nature and depth of the objects. In [25], a thermal 
radiometric  model  is  presented.  They  used  the  finite  element  method  to  describe  thermal 
phenomena. They used a 25cm anti-tank mine stimulator and a virtual sensor believed to be an  
LWIR camera operating at a wavelength of around 10µm. Additionally, they incorporated surface 
roughness into their thermal and radiometric models to account for surface self-shading due to soil 
surface topology. According to the authors, the surface temperature above the mine is lower at 
dawn, and the surface is hotter during the day. Finally, at night, the soil layer above the mine is 
colder. Additionally, they introduce the concept of spectral differentiation and developed a detection 
algorithm based on pattern recognition principles in another study [26].  They used a weighted 
difference between visible and IR images from the same scene to remove reflected radiation from 
the warm atmosphere to reduce interference caused by reflected light. According to the authors, 
there is a trade-off between reducing interference and increasing the mine signature [27]

In [28], authors investigated how a thin outer metal casing and an air gap left over buried anti-
personnel and anti-tank mines affected IR images. They used the finite element method (FEM) to 
describe thermal phenomena. They modeled buried anti-tank mines with and without a thin metal  
outer casing, as well as surface/buried anti-personnel mines. To analyze the effect of the top air gap, 
they also simulated an anti-personnel mine with a top air gap. The simulated mines had the thermal  
properties  of  TNT  in  the  model.  According  to  their  results,  the  thin  metal  outer  shell  has  a 
significant  impact  on  the  temperature  distribution  due  to  the  noticeable  difference  in  thermal 
conductivity between the metal shell and TNT.

The upper air gap has a more noticeable effect on the temperature change in depth over a given 
time cycle due to the low thermal conductivity of the air gap compared to the soil. In addition to  
this, their results show that surface mines create greater temperature extremes than buried mines.

Thanh et  al.  [28]  presented  and  validated  a  3D thermal  model  for  mine  detection  in  open  
minefield datasets. They proposed a finite-difference approximation of generalized solutions of the 
model. In addition, they proposed methods to evaluate the thermal properties of bare soil and the  
air-soil interface. They validated their estimated soil parameters by comparing simulations with real 



data sets. They [29] also developed a method that gives the thermal diffusivity, depth and size of  
buried objects. In the first stage, they presented a method that can detect landmines. This method  
depends on thermal differences at the soil surface caused by buried objects. In the second part, their  
proposed method finds the thermal diffusivity, depth and size of buried objects using an inverse 
problem formulation. 3D modeling was developed to simulate the passive IR signature of landmines 
that are buried or placed on the soil surface using (FEM). In [30], a two-step method is proposed in a 
review study. In the first  step,  they found the soil  temperature using their new thermal model  
provided by the thermal  properties  of  the  soil  and the buried  object.  At  the second stage,  the 
discovered objects are classified using the proposed improved inverse problem setting. They called 
the second step setting up an inverse problem to detect landmines. They evaluate the depth, shape 
of a buried object, and its thermal diffusivity using their two-step method. In [31], authors have 
proposed a method that can reproduce the thermal properties of outdoor conditions with reduced 
data size and compressed time. They generated a generalized formula for this purpose. They imaged 
the  embedded  test  area  for  eight  and  six  hours  over  a  two-hour  period.  They  used  a  binary 
reduction algorithm to detect mines.

3. Problem statement

In this work, the mine detection task will be considered as an object detection problem - in target 
thermal images it is necessary to generate a bounding box of pixels that correspond to mines and 
other objects of interest (EOs). More formally, thermal image I treated as a matrix of size H × W, 
where H is the matrix’s height, W is the matrix’s width. Each element of the matrix x represents an 
image pixel and contains a single rational value x ∈R, which corresponds to the “brightness” of the 
surface in a given pixel (the higher the temperature, the higher the brightness). The work solves the 
problem of constructing an object detection function that turns the input thermal image I into the 
list of detected objects I’ = [(((x1l, y1l), (x1r, y1r)), y1), …, (((xnl, ynl), (xnr, ynr)), yn)],where each element 
((xnl, ynl), (xnr, ynr)) is a bounding box of target object and, y∈ C ,C={1 ,2 ,3…,c }, is the class of 
the detected object. 

To avoid the effect of the “curse of dimensionality”,  H and W should be limited in size.  When 
collecting information using a drone, there are two possible projections of data - individual frames 
obtained by the  drone and an orthomosaic  (stitched frames).  To  limit  W and  H in  this  paper, 
individual frames collected by an unmanned aerial vehicle (UAV) are used.  If an orthomosaic is 
available,  it  must be divided into small (depending on the configuration of the neural network) 
patches for further processing.

When assessing the effectiveness of the proposed solution, it is important to choose the right 
metrics, since it is important not only to correctly classify the mine, but also to avoid type I errors 
(false negatives).

The following metrics will be used in this work:
1. Precision (Mine / No Mine) –  the ratio of all true results to the total number of true and 

false true results: Precision= TP
TP+FP

;

2. Recall (Mine / No Mine) – the ratio of all true results to the total number of true and false 
negative results. When detecting mines, it is extremely important to avoid Type I errors, 

which makes recall one of the key metrics: Recall= TP
TP+FN

3. Rand  index,  also  known  as  classifier  accuracy.  This  metric  evaluates  the  ratio  of  true 

positive and true negative predictions to all predictions: Rand= TP+TN
TP+TN+FP+FN

4. Intersection over union (IoU) is a metric that is used to measure the accuracy of bounding 

box predictions: IoU=
[ A ∩B ]
[ A∪ B ]

When assessing the quality of the intelligent system, UN standards for humanitarian demining 
will  be used.  The UN landmine clearance standard for detection rate is  99.6% for humanitarian 
demining.



4. Method

The work proposes an integrated approach to information collection, data preprocessing,  feature 
extraction, and classification. The approach is based on using a quadcopter to fly over a mined area,  
with further  image processing using a neural  network.  The general  scheme of the approach is 
presented in Fig 1.

Figure 1: The proposed method’s framework

4.1. . Data Collection

A quadcopter, or other type of a UAV, with a thermal camera mounted perpendicular to the ground, 
is  used to perform a flyby over the landmine contaminated area.  The flight is  performed at an 
altitude of 10-15 meters above ground level,  with a predetermined route. The height is selected 
depending on the area of the landmine-polluted area and weather conditions. The flyby is carried 
out in the afternoon, preferably in low clouds, which provides better thermal contrast between the 
mine and the ground. 

4.2. . Data Preprocessing

The data obtained after the flight goes through a preprocessing pipeline to prepare for feature  
extraction and subsequent classification. The general processing pipeline is shown in Fig. 2.

The first stage of processing is normalization. When normalizing, it is important to take into 
account the nature of the data. Since all images collected during one flight must have the same 
distribution to improve generalization, normalization occurs in two stages. The first step uses linear 
normalization to improve the contrast of all images and bring them to the same distribution:

I N=( I−Min )
(newMax−newMin )

Max−Min
+newMin , (1)

where Min is the minimum brightness value in the original image, Max is the maximum brightness 
value in the original image, newMax is the new maximum value in the image, newMin is the new 
minimum value in the image.



Figure 2: Data processing pipeline

Linear normalization uses classical parameters newMax = 255,  newMin = 0. At the same time Max 
And Min the parameters are selected as the maximum and minimum values for the entire span, and 
not in each image separately.
After  linear  global  normalization,  local  normalization  is  performed  to  increase  the  contrast  of 
regions that may be unevenly illuminated by the sun. To do this, local contrast stretching is used,  
which is equivalent to a convolution operation using an averaging kernel:

I n (x , y )=
newMax∗( I (x , y )−min

I
( x , y ))

max
I

(x , y )−min
I

( x , y )
 , (2)

Where  newMax is a maximum value after normalization,  Ix,y is the pixel value  x,y in the original 
image,  min(x,y) is  the minimum value for the convolution kernel  in pixel  x,y,  max(x,y) is  the 
maximum value for the convolution kernel in pixel x,y. 
For local gradient stretching, it is recommended to use a convolution kernel with padding, which 
allows  for  a  maintainance  the  original  image  size.  Parameter  values  are  set  depending  on  the 
resolution of the input image.
After normalizing the image and stretching the gradient, the result is a high-contrast image, but it  
will contain noise. Stones, debris, grass, and immitators will create noise in the image, leading to a  
high rate of false positives. From a demining perspective, this is not a critical issue as they can be  
safely inspected manually, but it does add significant labor and time to demining operations. To 
overcome this limitation, filtering removes speckle noise and weak signals that complicate further 
image processing. 
Filtering consists of two stages – de-texturization and morphological filtering.
Using the local binary pattern (LBP) histogram method. This is a spatial filtering method that is 
used  to  extract  spatial  features,  especially  textures,  which  significantly  increases  classification 
accuracy. LBP adjusts the intensity value of each pixel using a mapping function to a neighborhood 
function. Initially, the neighborhood function is selected. Moore's neighborhood function is often 
used, but other neighborhood functions can be used to increase the floorI perceive texture. For each 
pixel, a vector of texture characteristics is calculated:

LB P p=∑
p=0

p−1

s (g p−gc )2
p , s (x )={ 1 if x ≥0

0otherwise
, (3)

where gp is the pixel’s neighbourhood value, P is the selected neighbourhood type, gc  is the central 
pixel of the nighborhood P.



Once the image is converted to LBP encoding, they are used to construct a texture histogram. The 
biggest advantage of LBP is its high processing speed and ability to store spatial patterns for high-
resolution mine detection. 
After the histogram is created, an additional filtering step is performed. This step uses 
morphological filtering to remove noise and spots that form the image. Morphological filtering filter 
removes noise and insignificant objects from the texture. Morphological image processing is a set of 
tools for analyzing and processing structural features of images based on set theory. These 
techniques can extract and enhance the spatial characteristics of objects in images, making them 
extremely useful in image processing and computer vision.
The first stage is erosion - reducing the number of objects in the image by removing pixels at the 
boundaries of objects. This removes minor noise:

( A ⊖ B ) (i , j )= min
x , y∈ B

A ( i+x , j+ y ), (4)

where A is the original image, B is a structural element. After this, the image must be restored to  
avoid loss of features, for which the expansion operator is used:

( A ⨁ B ) (i , j )= min
x , y∈ B

A ( i−x , j− y ), (5)

where A is the original image, B is a structural element. The morphological filtering operation is a  
composition of the erosion and dilation operator, which removes noise from the image and makes it  
clearer.
These steps ensure that the input images are cleaned, noise is removed and textures are preserved 
(if possible). These steps also partially extract features (through LBP and morphological filtering), 
which  allows  for  a  more  simple  neural  network  architecture,  decreasing  the  number  of  learnt 
parameters.

4.3. . Feature Extraction and Classification

This paper considers a hybrid architecture for the task of segmentation and classification. Due to 
the need to calibrate the sensitivity of the mine detection network, two-step segmentation is used, 
which allows the sensitivity and accuracy of the network to be adjusted separately from each other.
Segmentation will be performed in two stages - the first stage uses U-net with residual connections 
to  identify  areas  of  interest  that  are  most  likely  to  contain  a  mine.  These  zones  are  marked,  
expanded and fed into a convolutional neural network to classify the type of mine.
Convolutional  neural  networks  are  used  to  solve  the  problem  of  feature  extraction  and 
classification. This is a common approach for solving computer vision problems. There are many 
architectures, but most of them are designed to process complex images with a large number of  
features and possible classes. After pre-processing, the dimensionality and complexity of the data is 
significantly reduced, which makes it possible to synthesize [32, 33] a simpler architecture [34]. 

Figure 3: Proposed neural network architecture



The proposed network consists of the following types of layers:
1.  Convolutional  layer  is  the  primary building block of  CNN where  the convolution operation 
occurs. Filters (kernels) slide over the entire image, calculating the dot product between the filter  
and part of the input image, creating feature maps;
2.  The  pooling  layer  performs  dimensionality  reduction  of  feature  maps,  preserving  the  most 
important features. The most common types are MaxPooling (selects the maximum value in each 
window) and AveragePooling (selects the average value);
3. BatchNorm layer is used to normalize feature maps, which increases stability and learning speed;
4. The exclusion layer is used to prevent overfitting by randomly “turning off” some neurons during 
training;
5. A fully connected layer has its neurons connected to all the neurons of the previous layer, which 
enables combining features, making a final classification decision;
A key feature of the proposed architecture is the relatively low depth of the convolutional network.  
This allows you to reduce the number of parameters, which speeds up training and processing. This  
was achieved through the use of a comprehensive preprocessing pipeline.
For object detection, region-based convolutional neural networks were selected as a baseline for the 
model. Specifically, we use fast R-CNN with a convolutional pathway outlined above. While this is 
not the most robust algorithms, it performs reasonably well due to the nature of the domain and  
robust pre-processing pipeline, which partially extracts the features, reducing the learning capacity 
that is expected of neural network.
To achieve object detection, ROI projection is used to extract areas of the image that are then passed 
through the convolution path outlined above. Global average pooling is used to build a feature 
vector from the image, passing through two fully connected layers. After this, a pathway branches 
into two – the classification pathway which utilizes sigmoid to perform binary classification task 
and through a bounding box regressor, which extracts the bounding box from the feature vector of 
the image. The selected architecture is somewhat simplistic, however it was considered to have 
sufficient learning capacity in the context of this problem [38].
To train the learner, a multi-task loss is used. Classification loss is based on a simple binary cross-
entropy loss. Bounding box repressor needs a location-aware loss, as such, a modification of IoU is  
used as a loss function. The problem with using IoU itself is that if no overlap is detected between  
the target object and the classified image, the loss function becomes constant. To overcome this, a 
variety of modifications of IoU is designed to serve as a loss function. In this paper, a generalized 
intersection over union (GIoU) is used. The rectangle bounding box C is used to build a convex of an 
object that encloses both A and B:

GIoU=
[ A ∩ B ]
[ A ∪ B ]

−
C \( A ∪ B )

C
, (6)

where  A and  B are groundtruth and predicted bounding box areas,  C is the bounding box that 
covers both A and B.
The GIoU loss is constructed as following:

LGIoU=1−GIoU . (7)
To handle object detection, a selective search, ROI polling, and bounding box prediction modules 
are added to the network’s architecture.

5. Experiment & Result

To test and evaluate the proposed system, an experiment was conducted to collect data, train and 
evaluate the proposed system. Data was collected using a DJI ZH20T thermal camera attached to a  
Mavic Phantom T4 quad copter. The mines were installed on the surface and also buried in the 
ground to a shallow depth (up to 10 cm). The study used two types of mines - anti-tank and anti-
personnel, both types had a metal casing. The flight was carried out at a low altitude (5-6 meters)  
and medium altitude(10-11 meters). The integrity of the grass cover was damaged only in the places  
where the mines were installed, but otherwise the cover remained intact. Data were collected in 
clear, warm weather to minimize noise and maximize image quality. The temperature was shifting 
thought the day, which ensured high quality thermal gradient in the collected dataset.
A limited amount of  debris  and uneven ground was present in the collection area,  which also 
created additional noise and false-positive spots in the thermal gradient on the ground. This creates 
additional challenge for the neural network, as this noise is not fully removed by the pre-processing 



pipeline. Collected data set consists of 436 thermal images, with 62 images being removed due to 
low quality.
After data collection, the resulting frames undergo pre-processing, eliminating low-quality frames. 
Low-quality  footage  refers  to  footage  with  high  levels  of  noise  or  blur.  Such  frames  have  an 
extremely negative impact on the quality of classification and detection of objects, reducing the 
accuracy of the neural network. One of the main problems is motion blur. If the desired object falls  
into a blurred area of the image, this significantly increases the bounding box of the desired object,  
negatively affecting the training of the network, so in this study such frames were removed from 
the original data set. In further research, it is possible to use an algorithm to restore the quality of  
images. An example of a blurry (low-quality image) is shown in Fig. 4 

Figure 4:  Normal(a) and blurred image (b) examples from the dataset. Motion blur is one of the 
major contributing factors.

The  neural  network  was  trained  in  batches  of  16  images.  The  sample  size  is  bolstered  by 
applying “weak” augmentations that consist of rotations, stretching, and other augmentations from 
RandAugment. The preprocessing stage was performed for each batch separately to increase the 
generalization ability of the neural network. Adam learning algorithm with a decaying learning rate 
from 0.001 to 0.00001 during the training of the neural network. Default parameters were used 
during the initial training, with further fine-tuning during the experiment using methods outlined 
in [35, 36]

The results of the training are presented in the table 1, and a sample of classification is given in  
Fig. 5
 

Figure 5: Object detection result. The system is unable to classify the type of the landmine, labels 
were added manually for clarity



Table 1
Experiment result

Metric Value Note
Precision 0.909 Precision is reasonably high, with several samples 

being mislabeled (with weak blur / noise)
Recall 1.0 All landmines were successfully detected
Rand index (OA) 0.98 Overall high, apart from few misclassifications
IoU 0.963 Bounding  boxes  around  the  mines  are  precise, 

apart from few cases where they are somewhat 
larger than anticipated.

Overall, the algorithm performs well, detecting both landmines installed over the ground and under 
the ground,  with high reliability,  however  it  should be noted that  even on a  small  number of  
samples and with a large number of training iterations, the network has modest precision. While in  
the case of landmine detection this is not as bad as having low recall,  it is still  something that 
should be addressed, as a high number of false-positives leads to slower and more costly landmine 
removal operation.

Conclusion

This paper presents a comprehensive framework for landmine detection with thermal imagery 
cameras installed on a mobile platform (UAV). The proposed approach is based on the combination 
of deterministic pre-processing to pre-extract features from the images, followed by a region-based 
convolution neural network detector for feature extraction, classification and ROI extraction.

The  proposed approach was able  to  achieve  high recall  (1.0)  and moderate  precision  (0.92). 
Algorithm’s average IoU is reasonably high at 0.875, with results being skewed by false positives 
and unclear edge for buried landmines.

Future  research  will  be  focused  on  addressing  some  of  the  shortcomings  of  the  algorithm 
discovered in this paper. First such shortcoming is the diversity of the dataset. The research is based 
on the dataset collected over 1 flyby over a limited area, with limited number of landmines available  
and in new-perfect weather conditions. Future dataset collection should be focused around building 
a more challenging and diverse dataset for neural network training and evaluation. The second 
consideration to address is identifying optimal architecture for the neural network itself.  In this 
research, a simple yet robust fast CNN-based region object detection. It  works reasonably well,  
considering  the  nature  of  data  and  feature  pre-extraction  step,  however  exploration  of  other 
options, such as mask-based CNN could improve performance of the method. Lastly, in this paper  
binary object detection was used. For the proposed method to be practically valuable, it would also 
be beneficial to identify the type of the landmine, so future research will focus on multi-class object  
detection to not just detect the mine itself, but also it’s type or exact model.
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