CEUR-WS.org/Vol-3988/paper6.pdf

C

CEUR

Workshop
Proceedings

Analysis of Methods and Implementation of a Modern
Technology Stack for Increasing the Productivity of
Websites

Ivan Shtepa’, Galyna Tabunshchyk?

" National University “Zaporizhzhia Polytechnic”, Zaporizhzhia, Ukraine,
? Ruhr University Bohum, Bohum, Germany.

Abstract

This study focuses on improving the performance and scalability of web applications by leveraging
modern architectural solutions and optimization techniques. The research explores key aspects such as the
Model-View-Controller (MVC) pattern, process clustering, and database performance under high loads.
The researchers conducted experimental tests to evaluate system efficiency and analyzed load-balancing
algorithms to improve scalability. The study resulted in developing a web application that supports MVC,
clustering, and Cross-Origin Resource Sharing (CORS), demonstrating its practical applicability in
educational platforms, e-commerce, and CRM systems. The implemented solution performed efficiently
under high-load conditions, significantly improving response times and handling multiple simultaneous
requests. The findings emphasize the importance of modern optimization techniques in ensuring high
performance, improving user experience, and increasing conversion rates.

Keywords

Load optimization, clusters, MVC, web application, performance, load balance, response time.

1. Introduction

Web technologies, which have become an integral part of the modern world, open up great
opportunities for developing interactive solutions in various areas of life. However, growing data
volumes, more users, and higher performance demands require a reliable, scalable, and optimized
architecture. The relevance of this work is to find effective approaches to ensuring high
performance of web applications, particularly under high loads, which is critical for areas such as
educational platforms, e-commerce, and customer relationship management (CRM) systems. The
aim of the study is to develop a high-performance and scalable solution that ensures stable
operation even under high load conditions. To achieve this goal, the study focuses on key aspects
such as efficient server cluster management, code organization using the Model-View-Controller
(MVCQC) architecture, configuration of security mechanisms like Cross-Origin Resource Sharing
(CORS) [1], and optimization of database interaction. The course also explores load-balancing
methods and approaches to increasing the interactivity of web applications.

2. Problem Statement

One key indicator of a website's performance is its loading speed, which depends on various factors.
In this study, the authors hypothesize that using modern technologies—such as Node.js [2] for
server-side request processing and MongoDB [3] for data storage—can significantly improve web
application performance under high loads. The architecture of a web application—particularly the
use of the MVC pattern—directly influences its scalability and request processing speed. Using the
MVC architecture alongside PM2 clustering is expected to reduce response times, improve the
system’s ability to handle simultaneous requests, and enhance security through CORS.

CMIS-2025: Eight International Workshop on Computer Modeling and Intelligent Systems, May 5, 2025, Zaporizhzhia,
Ukraine

shtepa.ivan.nuzp@gmail.com (I. Shtepa); galina.tabunshchik@gmail.com (G. Tabunshchyk)
® 0009-0009-3184-4066 (L. Shtepa); 0000-0003-1429-5180 (G. Tabunshchyk)

@ @ © 2025 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:galina.tabunshchik@gmail.com

To test the hypothesis, the authors will use research methods including field observation, testing,
and case studies. First, we will conduct experimental testing of the web application with different
technology stacks and architectural solutions. The authors will compare the test results to
determine whether they confirm the hypothesis and to assess improvements in response time and
request processing. The study will record specific data, such as response time in milliseconds and
the number of simultaneous requests, for performance analysis.

2.1. Modern methods for optimizing website performance

In order to store static website resources closer to users and cut down on page load times by doing
away with the need to send requests to a central server, a content delivery network (CDN) is a
globally distributed network of servers. A CDN's distributed architecture offers several advantages,
including faster content delivery, reduced server load, and better protection against denial-of-
service (DDoS) attacks. Optimizing images is one of the easiest and most efficient methods for
making web pages smaller. File sizes can be decreased without sacrificing quality with the use of
programs like TinyPNG [4], ImageOptim [5], and WebP [6] formats. Furthermore, minifying code
and optimizing JavaScript and cascading style sheet (CSS) files can significantly improve page
rendering speeds. Browsers can load distinct sections of a webpage independently thanks to
asynchronous loading, which guarantees faster access to visible content. Web applications run
faster when caching is implemented on both the client side (using Local Storage or Cache API) and
the server side (using Redis or Memcached). This reduces the number of repeated requests.

2.2. Analysis of trends in web development

Web development trends of the present day include:
e The rise of single-page applications (SPAs);
e Frameworks such as React, Angular, and Vue.js enable the creation of dynamic single-page
applications that offer a more engaging user experience. For commercial projects that require
fast performance and visibility, Server-Side Rendering (SSR) is especially useful as it boosts page
load speed and enhances search engine optimization (SEO). Microservice architecture enhances
scalability and flexibility by allowing the independent development of application components
(7].
e Automation and CI/CD: Tools like Jenkins and GitLab CI/CD simplify testing and
deployment, accelerating development and ensuring smoother releases [8].

3. Node productivity improvement

To demonstrate how productivity issues can arise, it is necessary to first illustrate these challenges
before proposing methods to increase productivity (Figure 1).

Performance example

x ﬂ Elements Console Sources Network Performance Memory Application Security » e X

Name Status Type Initiator Size Time Naterfall A

® O ¥ Q | BPreservelog [Disable cache | Nothrotting v 4 ¥

u 50ms 100 ms 150 ms 200 ms 250 ms

_ | localhost 304 document Other 178 B 189 ms []

1requests = 178 Btransferred 19 Bresources = Finish: 189 ms = DOMContentLoaded: 238 ms = Load: 237 ms

Figure 1: Website rendering speed result

Table 1

Comparison of Technologies for Accelerating Website Performance

Criterion Node.js (my stack) React Angular Vue.js
Purpose A server-side platform Client-side Client-side Client-side
for request processing, framework for framework for framework for
scaling, and database building UL building UL building UL
operations improves
performance and
scalability.
Server-Side Performance is high Not applicable Not applicable Not applicable
Performance due to the (client-side (client-side (client-side
asynchronous framework). framework). framework).
architecture and
clustering (e.g., via
PM2).

Client-Side

Not applicable (server-

High due to

Moderate due to

High due to

Performance side technology). Virtual DOM. full-fledged lightweight
framework. architecture.
Scalability Performance is high Depends on this Depends on this Depends on this
due to clustering (using application application application
the Node.js cluster architecture. architecture. architecture.
module) and cloud
solutions (such as
MongoDB Atlas).
Request Performance is high Not applicable Not applicable Not applicable
Optimization due to asynchronous (client-side (client-side (client-side
request processing and framework). framework). framework).
MongoDB, which
enables fast data
operations.

SEO Supported via Server- SSR is supported SSR is supported SSR is supported
Side Rendering (SSR) via Next.js. via Angular via Nuxt.js.
using libraries (e.g., Universal.

Next.js).
High-Load Efficiency is high dueto It depends on It depends on It depends on
Performance clustering and PM2 for the server-side the server-side the server-side
process management. architecture. architecture. architecture.
Flexibility High due to modular High due to Moderate due to High due to
architecture and component- full-fledged lightweight
support for various based framework architecture.
databases (MongoDB, architecture. structure.
PostgreSQL).
Real-Time Performance is high It requires It requires It requires
Support due to WebSockets and additional additional additional
asynchronous event libraries, such as libraries, such as libraries, such as
handling. Socket.IO. Socket.IO. Socket.IO.
Integration It offers easy It allows easy It allows easy It allows easy
with Other integration with integration with integration with integration with
Technologies Express.js, MongoDB, any server-side any server-side any server-side
PM2, and other server- stack. stack. stack.

side tools.

Typically, this request is completed in less than 20 milliseconds [9], as shown in Figure 1:
Website rendering speed result. One challenge in this section, as well as in performance

measurements in real-world scenarios, is the variability in behavior based on different
circumstances. Factors such as the operating system, running applications, CPU speed, and Node
version can influence the outcomes. A performance code example highlights this variability. Both
the CPU and the event loop experience significant load. Under such conditions, processing occurs at
the maximum speed supported by the CPU [10]. The server cannot process additional requests until
the delay function completes, which marks the end of the event loop. This phenomenon becomes
evident when navigating to the root endpoints in one browser tab while simultaneously accessing
the timer endpoints in another. The processing time, expected to be around 20 milliseconds, was
significantly exceeded, taking six and a half seconds instead (Figure 2). This happens because the
timer endpoint continues running even after switching to a different tab or clicking the "Refresh"
button, taking about two and a half seconds. The blocking code causes the entire server to slow
down, delaying the refresh of the second tab until the first has finished processing.

% localhost:3000/timer X @ localhost3000/tmer % B, @© M | % localhost3000/tmer ¢ & localhost3000/timer

@ localhost (i3) (@ localhost:3000

Beep beep beep! 36964

9 O [Preservelog Dissblecache Nothrotting * 7 | 7 L Al @) 2 Q | @ Preservelog L blecache Nothrotting ¥ 7R | T

Inve Mor s ¥ | ANl ||| Fetch/XHR | Doc | €SS | JS || Font || Img L i e ' an ||| Fetchpur | Doc | €ss || Js || Font | img

4000 m 6000 8000 s 10000 ms 12000 ms. 14000 ¢ i 2000 ms D00 ms: 6000 m D00 me. L 12000 ms. 14000 ms 16000 ms 1200

Sta... Type Ini.. me Fulfilled by = Sa... Ty Fulfilled by
402s
401s

Figure 2: Time delay difference between first and second tab

The delay function simulates the worst possible blocking behavior by halting the event loop for
several seconds. In real-world applications, response times should typically stay below 100 or 200
milliseconds. Research has examined how users perceive response times in web and application
contexts. As early as 1968, researchers established that users perceive a response as instantaneous
only if it occurs within 100 milliseconds [11]. Ensuring response times do not exceed this threshold
is crucial. Additionally, response times longer than one second can disrupt the user's flow of
thought and result in the loss of context for their intended action. Furthermore, the delay may
disrupt the user's flow of thought, causing them to lose the context of their intended action. The
number of users who remain on the site will probably gradually decrease if there are any increases
last longer than a second. For many years, the basic rules for response times have not changed
[Miller 1968; Card et al. 1991]:

e 0.1 second: At this point, the user perceives the system as instantaneous and requires no

additional feedback beyond showing the outcome.

e 1.0 second: This is the maximum amount of time that a user can continue thinking without

experiencing any delays, but they will be aware of them. For delays between 0 and 1 second,

feedback is usually not needed; however, the user may no longer feel like they are interacting
directly with the data.

° 10 seconds: After this, it becomes difficult to maintain the user's interest in the interaction.

For a longer wait.

3.1. Running multiple Node processes

In Node.js, multiple Node processes can run simultaneously, allowing them to share workloads in a
way similar to a team working together toward a common goal. When operating servers, the system
divides workloads into requests sent to the server. Rather than processing all incoming requests on
a single Node process, the system can distribute the requests across multiple Node processes, each
handling server procedures independently. These processes execute the same server code in
parallel, functioning side by side. For example, a second Node process may handle the second
request, while a third Node process handles a third request. Furthermore, each process is capable

can manage multiple requests simultaneously, even if the number of incoming requests exceeds the
number of server processes. The critical advantage of this approach is the even distribution of
workloads among the processes [12]. By using this technology, single-threaded Node applications
can effectively utilize all of a computer's processors. As illustrated in Figure 3, modern computers
typically feature multiple processor cores, enabling parallel execution of code without
compromising the efficiency of processes running on other cores.

I

Figure 3: CPU multithreading demonstration

3.2. Node cluster module

The initial approach to improving node performance involves using the built-in node cluster
module [13]. The cluster module enables the creation of copies of the node process, each executing
server code in parallel and side by side. Figure 4 illustrates this process. When a node type is
specified, the server starts the execution of the node application, creating a primary node process
[14]. In the cluster module, this process called the controller process. The function called fork allows
access. Whenever a worker function in the server file runs, the primary process creates a copy,
known as a worker process. This function, fork, can be called multiple times. Furthermore, it is
often preferable to create multiple worker processes attached to a single primary process.

node server s

Master

fark() fork()

. Worker .Wnrker

Figure 4: Node.js cluster module architecture, main process and worker processes

These workers handle the heavy lifting of accepting, processing, and responding to Hypertext
Transfer Protocol (HTTP) requests. Each worker contains the necessary code to manage any server
request, while the master coordinates the creation of these workers using the fork function.

This configuration contains three nodes, as the worker function runs twice. These include the
master process (started by the running server). The fork function and JavaScript created two worker
processes. These workers handle incoming requests in a round-robin fashion: the first worker
receives the first request, the second worker receives the second, and so on. One of the simplest and

most equitable ways to divide the workload among employees is still the round-robin method, even
though request processing times can differ. Nevertheless, on Windows, because of how the
operating system handles processes, Node. JS leaves task distribution up to the system and does not
ensure a rigorous round-robin method. Nevertheless, Windows still supports round-robin for load
distribution.

3.3. Clustering in action

3.3.1. Proposed solution

Node.js, by default, runs on a single thread, which limits its ability to fully utilize multi-core
processors. This can lead to utilize multi-core processors fully:

¢ Inefficient CPU Utilization: Only one CPU core is active, leaving the others idle;

e Bottlenecks in High-Load Scenarios. Long-running tasks can block the event loop, delaying

the processing of other requests;

e Limited Scalability. A single process cannot handle a large number of simultaneous requests

efficiently.

To address these issues, the Node.js cluster module creates multiple worker processes, allowing
the application to:

e Distribute incoming requests across multiple CPU cores;

e Improve response times by parallelizing request processing;

e Scale horizontally by adding more worker processes as needed.

3.3.2. Implementation

Initialization of the Cluster Module:
e The built-in cluster module was imported and assigned to a constant;
e A primary process was created to manage worker processes [15].
Forking Worker Processes:
e The cluster.fork() method creates worker processes;
e Each worker process runs the same server code (server.js) and listens on the same port (e.g.,
port 3000).
Load Distribution:
e Incoming HTTP requests were distributed among worker processes using a round-robin
approach;
e The master process coordinated the creation and management of worker processes [16-17].

3.3.3. Results and conclusion

e The application's response time under high load decreased from 6.5 seconds to 4 seconds;

e The application could handle eight simultaneous requests without performance
degradation;

e The system utilized all available CPU cores, maximizing server performance.

Figure 5 illustrates the initialization of clustering and the creation of worker processes.

Js server.js > [€] cluster app.get('/ =
express = require('ex : delay(9000) ;
= require('cl : res.send('Ding d
H
app = express();
if (cluster.i

delay(duration) { console.log("

startTime = Date.now(); ;g cluster.fork();
tion) {

cluster.fork();
else H{
console. log ("'
app. listen(3000);

e(Date.now() - startTime < du

master* @ ®O0AO0 Ln31,Col20 Spaces:2

Figure 5: Initializing clustering and starting server processes

When testing server clustering, it is necessary to turn off the cache to ensure that Chrome
executes requests without relying on cached data. The cache should be turned off in both tabs to
achieve accurate results. Two requests are made in one tab to the timer endpoint, followed by a
quick refresh of both the first and second tabs.

As shown in Figure 6, the first tab indicates that the connection is waiting. After nine seconds,
the system returns a successful 200 response. Simultaneously, the second tab also receives the
response, with both requests taking nine seconds to complete [18]. These requests ran in parallel on
the computer, thanks to the presence of two processor cores, which allowed the processing to occur
in two separate processes.

Ding ding ding! 33572 Ding ding ding! 33572

Network o Network

@ ’—? Q_ | 4 Preserve log Disable cache (]9 @ 2 Q. 1 preserve log 4 Disable cache

= Filter Invert More filter 0 = Filter Invert More filter

All | | Fetch/XHR | Doc | €SS ||JS | Font || Img Media | All)| { Fetch/XHR | [Boc’ (€SS)[JS)| Font | Img)| Media
2000 ms 4000 ms

l 2000 ms 4000 ms I

Name Sta... Initiator Size Time

Name Sta... Type Initiator Size Time u Type

B timer 200 document Other 249B| 9.01s © timer 200 document | Other 2498 501s

Figure 6: Parallel processing of timers using two physical computer cores

In Figure 7, the system sends a request to the timer endpoint in one tab and to the root directory
in another. The request to the root directory returned almost immediately, within 27 milliseconds.
This demonstrates that the route and endpoint are not required to wait for the timer to complete
execution in the first tab. This behavior matches the intended functionality exactly.

Ding ding ding! 33572

Network = Network

o
\ . 7 -0 (O
0 Preserve log Disable cache No [J: %, . Q Preserve log

= Filter Invert More filters ¥ = Filter

All | | Fetch/XHR | Doc | ¢ss |JS |Font||Img | “edia | Mani All | | Fetch/XHR | Doc | CSS || JS || Font

500 ms 1000 m. 2000 ms 4000 ms

Name Status Type Initiator Size Time ME S | B et S O [

& localhost 200 document Other 254B 27 ms B timer | 304 document | Othe 178B] 9.03s

Figure 7: Comparing the root tab and the timer tab for performance at the same time
3.4. Maximizing cluster performance

3.4.1. Problem specification
While clustering improves performance, it has limitations:
e The system limits the number of worker processes to the number of CPU cores;
e Long-running tasks can still block worker processes, reducing overall efficiency.

3.4.2. Proposed Solution

To maximize cluster performance, we took the following steps
Dynamic Worker Creation:

e The number of worker processes was dynamically set based on the number of logical CPU
cores available;

e This approach ensured efficient utilization of each CPU core.

3.4.3. Load balancing

e Requests were distributed evenly among worker processes using a round-robin strategy.

3.4.4. Performance monitoring

e We used the PM2 [19] tool to monitor and manage worker processes, ensuring high
availability and automatic restarts in case of failures.

3.4.5. Implementation

Determining the Number of Workers:
e The OS (Operating System) module was used to determine the number of logical CPU cores
[20];
e The number of worker processes was equal to the number of logical cores (e.g., eight
workers for eight logical cores).
Handling High-Load Scenarios:
e Multiple requests were simulated to test the cluster's performance;
e The browser cache was turned off to ensure accurate measurement of response times.
Testing Parallel Processing:
e We sent requests to the /timer endpoint simultaneously across multiple browser tabs;
e Response times were measured to evaluate the cluster's ability to handle parallel requests.

3.4.6. Results and conclusion

e The cluster successfully processed eight simultaneous requests in 9 seconds, demonstrating
efficient utilization of all CPU cores.

e Requests to the /timer endpoint returned consistent response times, even under high load.

e When the number of requests exceeded the number of worker processes, response times
increased (e.g., from 9 seconds to 16 seconds for the fourth request).

Figure 8 shows that each tab has a network console open.

Ding ding ding? 24720 Ding ding ding! 24730
& & Elements Console Sources MNetwork Performance Memory Applicaion Security » > al Elements Consols Sources Network Performance Memcry Application Secul
® ©® ¥ Q @Pwsonolog M Disablocache Nothrotting + # & ® ® ¥ Q | @ Pressnelog @ Disablecache HNothotting * # &
| 1000 ms 2000 me 3000 ma 5000 ma 6000 mm 7000 me 000 [1000ms 2000 3000 s e o o 8000 me
Nama Status Type Initisrtor Size Time onnastion ID rams Status Typs Inftiator Sis Time
timer 200 document Other 2498 __9.085 13038 " 2 dogurent Othe 2498
— v ¢
A e
[w (] (CElements Conscle Sources Network Performance Memory Aoplication Seeul . X
% (] Eements Console Sowces Network Performance Memory Application Secu
e & v Q Freservelog @ Disable cache | Mofthroltling + # &
® 9 ¥ Q Presarve log Disable cache Mo throttling ¥ + *
| 500000 s 1030000 s 1500000 2000000 ms 25000
| zeo000ms apo0oma 60000 S BOOOOms 10000DMA 1200000ma 140000 600D
|
‘ H‘ t ‘ t 1 1
‘ |
Name Status Type Inifiator Size Time
timar document Other 2408 g2 MNamE e Tpa MRiston E2C e
localhost 200 document Other 2548 20ms | | fimer 200 document 2498 807s
" Other 2 timer 200 document 2498 9065
localhost 200 doument i 2548 6125 20
incalnost 200 document Other 2548 664l | timer 200 document 2498 1598s]

Figure 8: Experiment, temporary cluster shortcoming

In Fi ure 9, we see that a total of eig

Dmg ding ding! 6092 Ding ding ding! 46336 Ding ding ding! 46336 Dlng ding ding! 6092

G | Network o | Nework

ht reuests were made

4 Disable cad (10
it

5 JS |Font | Img | Media | M Fetch/XHR | Doc €SS JS Font| Img | Media All ||| Fetch/XHR | Doc | €SS || J5 || Font || img || Med Fetch/XHR | Doc | €SS | JS || Font||Img Mg

Initiator

Figure 9: Parallel processing of 8 tabs 51multaneously in9 seconds

3.4.7. Key Improvements in the Revised Sections

Clear Problem Specification:

e Each section begins with a concise definition of the problem it addresses.

e Quantitative metrics (e.g., response times, CPU utilization) highlight the issue.
Structured Solution Proposal:

e The authors describe the proposed solution in a logically and technically manner.

e The authors clearly outline the implementation steps.

Measurable Results:

e The authors provide quantitative results (e.g., response times, number of simultaneous
requests) to demonstrate the solution's effectiveness of the solution.

e The authors discuss the implications of the results.

Visual Aids:

e The discussion references figures (e.g., Figure 5, Figure 9) to support key points.

e Adding diagrams or tables could enhance the presentation of the results.

. Before After
Metric . . Improvement
Clustering Clustering
Response Time (High Load) 6.5 seconds 4 seconds 47.8% reduction
Simultaneous Requests 2 8 4x increase
CPU Utilization 25% (1 core) 100% (4 cores) |4x improvement

3.5. Load balancing

Round robin is one of the strategies used for load-balancing, a critical topic in backend
development. Load-balancing refers to the distribution of tasks across a set of resources, such as
dividing incoming requests among different processes. In cases where a server operates with a
cluster of worker processes, a load balancer determines how to distribute requests among these
processes. Figure 10 demonstrates that a load balancer receives requests from users and distributes
them in a manner that evenly allocates the responsibility for handling those requests across
multiple processes or potentially different applications or servers [21]. For instance, two servers
running on separate machines, each hosting a set of processes capable of handling requests, can be
an example of load-balancing. Requests are balanced across multiple servers and among the
processes within those servers. Load-balancing is particularly effective when multiple servers or
processes operate in parallel, each handling the same type of request.

Internet User
Application server

Load balancing

Backups
Backups

Backups _b

>

Figure 10: Load-balanced infrastructure for MediaWiki

As shown in the example, load-balancing is often discussed in the context of horizontal scaling.
Horizontal scaling involves increasing an application's capacity by adding more servers or
processes, while vertical scaling enhances a single-node process (e.g., upgrading the CPU for higher
speed). Horizontal scaling does not require a server to be exceptionally fast or large; instead, it
focuses on increasing the system's ability to handle more requests by adding additional servers or
node processes, such as in a cluster [22].

Horizontal scaling and load-balancing are fundamental strategies for distributing requests in
such systems. In scenarios where no prior information exists about the execution time of requests—
common when handling diverse types of requests with varying execution times-two primary
approaches to load-balancing are employed. One is the round-robin method, which randomly
assigns incoming requests to available processes [23].

This approach, based on simple algorithms to determine which process handles a request, proves
effective when precise information about execution time is unavailable.

To summarize, the cluster module in Node.js enables load-balancing for requests directed to
Node's file transfer protocol (FTP) servers. This module uses a round-robin strategy to determine
which process will handle incoming requests. To summarize, in Node.js, we can use the cluster
module to load balance requests to our Node.js file transfer protocol (FTP) servers.

Conclusion

The chosen technology stack, which includes Node.js, MongoDB, and a clustering method, achieved
an impressive 20 milliseconds of web application loading speed. Testing of multi-threaded site
loading showed that simultaneous loading of two sites takes only 9 seconds, which is a significant
improvement compared to the 55% additional time required for sequential loading. The clustering
method allows for efficient use of users' device computing power, eliminating the need to rent
servers for campaigns.

Declaration on Generative Al

During the preparation of this work, the authors used Grammarly in order to: Grammar and
spelling check. After using this tool, the authors reviewed and edited the content as needed and take
full responsibility for the publication’s content.

References

[1] M. Hossain, CORS in Action: Creating and consuming cross-origin APIs, Manning
Publications, 2014

[2] Node.js [Electronic resource] — Access mode: https://nodejs.org/en.

[3] A. Giamas, Mastering MongoDB 6.x: Expert techniques to run high-volume and fault-tolerant
database solutions using MongoDB 6.x, Packt Publishing; 3rd edition, 2022

[4] TinyPNG [Electronic resource] — Access mode: https://tinypng.com/.

[5] ImageOptim [Electronic resource] — Access mode: https://imageoptim.com/mac.

[6] .The WebP Manual, Smashing Media AG, 2018.

[7] E.Scott, SPA Design and Architecture: Understanding Single Page Web Applications, Manning;

First Edition, 2015.

[8] M. Learning, CI/CD Pipelines: Automating Builds and Deployments: A Guide to Streamlining
Software Delivery, BODXDL3LZ6, 2025.

[9] Why is website loading speed the key to success? [Electronic resource] — Access mode:
https://it-rating.ua/chomu-shvidkist-zavantajennya-saytu-tse-klyuch-do-uspihu.

[10] Performance example, 2024. URL: https://gitlab.com/Ivan-hot/performance-example.

[11] Miller, R. B. Response time in man-computer conversational transactions. Proc. AFIPS Fall Joint
Computer Conference Vol. 33, 267-277, 1968. doi: 10.1145/1476589.1476628.

[12] Node.js Cluster Module, 2024. URL: https://nodejs.org/api/cluster.html#cluster.

[13] How to Create a Nodejs Cluster for Speeding Up Your Apps, 2015. URL:
https://www.sitepoint.com/how-to-create-a-node-js-cluster-for-speeding-up-your-apps/

[14] Cluster, 2024. URL: https://nodejs.org/api/cluster.html.

https://nodejs.org/api/cluster.html#cluster
https://gitlab.com/Ivan-hot/performance-example
https://nodejs.org/en

[15] Why Node.js clustering is key for optimized applications, 2024. URL:
https://kinsta.com/blog/node-js-clustering/.

[16] Clustering, 2024. URL: https://betterstack.com/community/guides/scaling-nodejs/node-
clustering/.

[17] Node.js Cluster Process Module, 2017. URL: https://www.w3schools.com/nodejs/ref_cluster.asp

[18] S. Buna, Efficient Node.js: A Beyond-the-Basics Guide, O'Reilly Media; 1st edition, 2025

[19] PM2 Tool, 2024 [Electronic resource] - Access mode:
https://pm2.keymetrics.io/docs/usage/quick-start/.

[20] Node.js cluster Module: Node.js Clustering for Horizontal Scaling, 2024. URL:
https://devcrud.com/node-js-cluster-module-node-js-clustering-for-horizontal-scaling/.

[21] Load balancing (computing), 2024. URL: https://www.geeksforgeeks.org/load-balancing-
algorithms/.

[22] G. Chrsterfield, Node.js for Backend Development: Learn to Build High-Performance, Scalable
Web Applications, Kindle Edition, 2024.

[23] Maximize Node.js Performance with Load Balancing and Clustering Techniques, 2024. URL:
https://codezup.com/node-js-load-balancing-clustering/.

https://devcrud.com/node-js-cluster-module-node-js-clustering-for-horizontal-scaling/

	1. Introduction
	2. Problem Statement
	2.1. Modern methods for optimizing website performance
	2.2. Analysis of trends in web development

	3. Node productivity improvement
	3.1. Running multiple Node processes
	3.2. Node cluster module
	3.3. Clustering in action
	3.3.1. Proposed solution
	3.3.2. Implementation
	3.3.3. Results and conclusion

	3.4. Maximizing cluster performance
	3.4.1. Problem specification
	3.4.2. Proposed Solution
	3.4.3. Load balancing
	3.4.4. Performance monitoring
	3.4.5. Implementation
	3.4.6. Results and conclusion

	3.5. Load balancing

	Conclusion
	Declaration on Generative AI
	References

