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Abstract

This research presents the development of an intelligent controller for the helicopter turboshaft engines gas
temperature, aimed at compensating for the measuring sensor’s inertial delays and optimizing transient
processes. The aim is to compensate for inertial delays 7~ 0.025 seconds and optimize transient processes.
The method is based on a double summation circuit with a channel selector, comparing signals from a
thermocouple and a gas-generator rotor speed sensor, and an adaptive observer based on Pade
approximation and Taylor series expansion provides a prediction of the state at ¢ + 7. The intelligent control
law includes a proportional-integral-differential structure with the coefficients y; correction via gradient
descent. To refine the delay estimate, a two-layer fully connected multilayer perceptron with a SmoothReLU
activation function is implemented trained on flight test data was implemented, which reduced 7 to 0.016
seconds (=36 %). This module allows to approximate nonlinear relations between input features and the delay
value, which ensures the control signal’s timely correction and the system’s adaptation to changing
operating conditions. Modeling of the system in the Matlab Simulink environment demonstrated a
significant improvement in the transient process characteristics: overshoot was reduced from 8.0 to 1.5 %,
and the mode establishment time was reduced from 4.2 to 3.3 seconds. The neural network module testing
showed high predicting accuracy (99.537 % with losses of 0.511 %), confirmed by the determination coefficient
R? = 0.9717. The neural network use made it possible to reduce the delay value to 0.016 seconds, which
corresponds to an improvement of 36 % compared to traditional methods. The obtained results indicate a
proposed technique’s high potential for improving the helicopter turboshaft engines automatic control
system’s dynamic accuracy and stability.
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1. Introduction

The aviation industry's evolution is closely related to the helicopter's new types of operation (e.g.,
Eurocopter AS350, Eurocopter EC145, Eurocopter EC225 Super Puma, etc.), characterized by high
speed and long range, which requires increasingly sophisticated automation control systems [1, 2].
The manual and automatic control synthesis, as well as the latter rapid development, forced designers
to create not only visual devices for humans but also a sensor set, which signals directly affect the
automatic system's subsequent links [3]. The most important characteristic of helicopter turboshaft
engines (TE) is the gas temperature in front of the compressor turbine, since it significantly
determines both the power plant efficiency and its reliability [4, 5]. Thus, these parameters
maintaining accurate values is critical to ensuring the helicopter TE's stable operation.

To maintain the set parameters at a fixed throttle position or to change them according to a given
law depending on flight conditions and operating modes, the helicopter TE automatic control systems
(ACS) are used [6]. The main requirement for modern ACS is compensation for the temperature
sensor's inertia so that the measuring devices function without delays [7, 8].

'CMIS-2025: Eighth International Workshop on Computer Modeling and Intelligent Systems, May 5, 2025, Zaporizhzhia,
Ukraine

& serhii.vladov@univd.edu.ua (S. Vladov); as@wunu.edu.ua (A. Sachenko); nataliia.vladova@sfa.org.ua (N. Vladova);
danylo.r.shved@lpnu.ua (D. Shved)

@ 0000-0001-8009-5254 (S. Vladov); 0000-0002-0907-3682 (A. Sachenko); 0009-0009-7957-7497 (N. Vladova); 0009-0005-

4306-6805 (D. Shved)

@ @ © 2025 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



https://orcid.org/0000-0002-9421-8566
https://orcid.org/0000-0002-9421-8566
mailto:danylo.r.shved@lpnu.ua
mailto:nataliia.vladova@sfa.org.ua

The main requirements for helicopter TE ACS include the high static accuracy to maintain a given
range (0.3...0.5%), efficiency with a quick response to control (2...3 seconds), and transient processes
close to monotonous, which ensures regulation without drops (2...4%) and with a minimum
stabilization time [9, 10]. These strict and contradictory conditions cannot be solved by standard
methods, which creates the developing complex task of multifunctional automatic control systems for
helicopter TE.

2. Related Works

There are known helicopter TE ACS [11-13] that affect a single control parameter, which is the fuel
consumption in the combustion chamber, which includes measuring devices for input signals,
comparison elements, and an actuator, and the signal from the gas temperature controller directly
adjusts the rotor speed controller setting. This scheme's main disadvantage is the reduction in stability
reserves and permissible gain factors, which worsens static and dynamic accuracy, and to eliminate
this effect, systems with a selector are used, excluding controllers’ joint operation area and thereby
improving the system's overall characteristics [14, 15]. The helicopter TE gas temperature control
system presented in [16] uses a correction link with a differentiator, multiplier blocks, and adders to
compensate for the dynamic error caused by the first temperature sensor inertia. The correction
coefficient at the derivative changes based on the current gas flow rate signal, which ensures high
measurement and control accuracy. However, the scheme's key disadvantage is that in transient
modes, the rotor speed and temperature channel's interaction through the selector is not taken into
account, which reduces the inertial delay compensation efficiency.

The helicopter TEs gas temperature control using the controller presented in [17] is carried out
through correcting devices for the control channels transfer functions changing. This allows for
minimizing overshoot and ensuring stable engine operation in various modes. However, its key
disadvantage is related to the inertial delays compensation: since the transfer functions correction
depends on the velocity pressure, changes in the system occur with a delay, which can cause a
temporary mismatch between the required and actual parameters, especially with sharp changes in
engine operating modes.

In [18] the engine temperature controller is presented that uses a double summation scheme, in
which the measured temperature signal is compared with the set value, and the correction is carried
out by a nonlinear element that compensates for the delay in the compressor turbine blades heating.
Due to the inertial link, the rotor speed signal is corrected, which eliminates sharp increases in gas
temperature in front of the compressor turbine, thereby improving the transient processes quality. As
a result, the fuel consumption changes proportionally to the summing amplifier's output signals,
ensuring stable and accurate regulation of the engine operation. This controller's main limitation is
the long return time to the original mode, due to the isodromic feedback inertia. The intelligent
component introduction will allow dynamically optimizing the control parameters and reducing the
system response time to changes in operating conditions.

The helicopter TEs intelligent gas temperature controllers integrate modern automatic control
methods, including correction links with differentiators, nonlinear elements, and double summation
schemes, which allow achieving high accuracy and stability of operation [19, 20]. They ensure
overshoot minimization and fast system response, which is critically important for modern
helicopters with high-speed and long-range characteristics. However, these systems key disadvantage
is insufficient compensation for the measuring sensors inertial delays, which leads to the parameters
temporary mismatch in transient modes. Some schemes, for example, [21, 22], aimed at regulating fuel
consumption, experience a decrease in stability margins and permissible gain factors, which
negatively affects the static and dynamic accuracy of regulation.

3. Goal and Objectives

Thus, a goal of this paper is to develop the helicopter TEs gas temperature intelligent controller,
compensating for the measuring sensors inertial delays and optimizing transient processes. To
achieve the goal the following objectives are formed: (i) developing the intelligent method for
regulating gas temperature, (ii) designing the adaptive algorithms and corrective links with
differentiators implementation to control parameters dynamic adjustment for eliminating the time



discrepancy between the required and actual values. Finally, it’s expected to increase the system's
static and dynamic accuracy and improve its stability, as well as reduce the engine stabilization time.

4. Materials and Methods

4.1. Development of an intelligent gas temperature controller

The proposed controller (Figure 1) is based on a double summation circuit [18]. It is based on a
comparative analysis of signals received from thermocouples and a gas-generator rotor speed sensor
[23], using an inertial link, a comparison element, and a nonlinear unit for adjusting the fuel supply.
This ensures compensation for the delay in heating up the turbine and the temperature regime
stabilization. Under normal conditions, the signals from the speed sensor compensate for each other,
and when the regime changes abruptly, a correcting pulse appears, leading to a change in fuel
consumption proportional to the largest deviation in the summing amplifiers. Under transient
conditions, the signal delay through the inertial link leads to the different signal appearance in the
comparison element, which is then amplified through the summing devices. The control channel
selector selects the largest received deviations, and the nonlinear element with an exponential or
parabolic characteristic reduces the specified temperature setting, compensating for the delay in
heating up the compressor turbine blades.
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Figure 1: The proposed controller scheme

The proposed scheme for the helicopter TE gas temperature regulating integrates adaptive
algorithms and correcting links with differentiators, which allows for dynamic optimization of control
parameters and time discrepancies elimination between required and actual values. Adaptive
algorithms analyze the transient processes current dynamics and correct the gain factors and inertial
links time constants in real time, thus providing a more accurate and timely response to changes in the
engine operating mode. The integration of differentiators into measuring circuits allows for
predicting trends in temperature conditions, compensating for the delay in turbine warm-up, and a
nonlinear element with an exponential characteristic synchronizes system responses, minimizing
sharp transient fluctuations. The result is an ACS of adapting to changing operating conditions,
increasing the helicopter TE reliability and efficiency.

The proposed controller features include the adaptive control module introduction, which is
connected between the summing amplifiers and the control channel selector. This module performs
the transmission coefficients real-time correction and the inertial links time constants, responding to
the transient processes dynamics and eliminating the time discrepancy between the specified and
actual parameters. The adaptive differentiator introduction integrated into the measuring circuit
between the thermocouple unit and the first summing amplifier facilitates preliminary signal
processing, predicting temperature change trends, and compensating for the delay in heating the
compressor turbine blades. The proposed controller also includes a transient mode monitoring unit
connected to the actuator to form feedback and dynamically optimize the control algorithms.

Thus, the scientific novelty consists in obtaining further development of the helicopter TE gas
temperature controller according to the double summation scheme, which, due to the adaptive



algorithm’s introduction integrated with corrective links equipped with differentiators, allows control
parameters, real-time optimization, and inertial delays compensation of measuring sensors. This
ensures synchronization between the required and actual temperature modes, significantly increasing
the helicopter TE accuracy, stability, and efficiency.

4.2. Development of the intelligent method for regulating gas temperature

Based on [17, 18, 23, 24], it is assumed that the gas temperature dynamics is described by the
following equation with a delay of the form:

T(t)=a-T(t)+b-u(t—7)+d(¢), 1)

where T(#) is the gas temperature at time t, u(t) is the control action (for example, change in fuel
consumption), a and b are the system coefficients, 7 is the measuring inertial delay or actuator links,
and d(¢) is the external disturbance.

To track the given temperature trajectory T,.(t), we define the control error:

e(t) = Te(2) - TT0). (2)
The delayed system transfer function based on the Padé approximation [25] for exponential delay
is:

1-Cos
i 2

e n—t, 3)
I+—-s
2

from where the system transfer function has the form:

b.(1_;sj

G(S):(S—a)-(1+;s) 4)

To compensate for the measurement delay, an adaptive observer is used that estimates the system
state. Let the observer have the form:

?(t)za-f'(t)+b-u(t)+l(obs-(T(t)—?(t)), (5)

n

where P is the temperature estimate and K, is the observation coefficient (can be chosen as a vector
for more complex models, for example, as in [26, 27]).

To compensate for the delay 7, the state prediction at time ¢ + 7 is used using a Taylor series
expansion of the form:

n 2 an
?(m):?(r)+7-f(z)+%-?(z)+... ©)
In practical implementation, one can limit oneself to the first or second term of the expansion, as
shown, for example, in [16, 18]. To estimate the temperature's second derivative, a difference scheme
of the form is used:
T(t)-2-T(t—At)+T(t—2-At)

P(r)~ - - )

Based on the adaptive observer mathematical model (5) and the state prediction method (6), an
intelligent control law is proposed that takes into account the predicted error:

u(t)=k (f)'(ﬂgf(t)—f“(tﬂ))%z(f)-T',~e/-(t)+ks(f)'I(ﬂg (s)~ B (s +7))ds. ®)

where k(?) is the proportional coefficient, k»(¢) is the differential gain coefficient, k3(¢) is the integral

. . T.,.(7) . . . o
gain coefficient, =¥ ( ) is the given trajectory derivative.



The coefficients k() are adjusted in real time using adaptive laws, for example, according to the
gradient descent scheme:

k(1) ==7,-¢(1)¢. (1), ©

(i=1,2,3,..)
where y; > 0 are the adaptation rates, ¢,(t) are the signal functions depending on the system's current state,

o example, ()77 - P(150) (=7, 1) o $ O ()=Peeel)ir

To determine the optimal parameters, the quality functional can be minimized:

t+l

/= J ( T () R (). (10)

where Q, R > 0 are the weighting coefficients, T, is the predict horizon.
To improve the compensation accuracy for inertial delays, it is proposed to implement a neural
network module [28-30] that corrects the delay estimate:

;(5)270 + fan (q)([))’ (11)

where 1, is the delay base value, fin(¢) is the neural network approximating function, and ¢(t) is the
feature vector (for example, gas generator rotor speed, current temperature dynamics, and other
parameters).

Thus, the scientific novelty of the developed intelligent method lies in the adaptive observer with
state prediction implementation and a neural network module for compensating for inertial delays,
which allows for the control parameters real-time optimization.

Within the developed method framework, theorem 1, “On adaptive stability and convergence of a
closed system of intelligent gas temperature control with inertial delays compensation,” is formulated.
According to the developed intelligent method, the system dynamics is given by the equation
T(t) - a-T(t) * b-u(z‘ B T) * d(t) provided that the disturbances d(f) are bounded and the adaptive

?(t) ? T(t) o u(t) Ko (T(t) T(z)) , in this case, the control action is
!

(1) =k ()T () =Bl 2)) ko (1) T ()44 1) [ (7, (5)-

observer has the form

determined by the law 0
_ﬁ + d A ——y . .
(S T)) > , and the adaptive coefficients change as k, (t) T e(t) '(t)’ (i=1,2,3,...). If there
1 £ 2
r()=5 ( () Zz_ k(1) =k (1)) r
exists a Lyapunov function of the form ,where " are the

coefficient’s optimal values, and if for some @, > 0 the inequality holds V(n)sa-v(i)+p- ”d(t)”
then the closed system is uniformly bounded in finite time, and the tracking error e(t) = T.(t) - T(t)
asymptotically tends to an arbitrarily small neighborhood of zero, provided that the perturbations d(t)
are sufficiently small.

Proof of Theorem 1.

Let us consider a candidate for a Lyapunov function of the form

/()= (e0) + X (R ) (2

where

ki(1)=k, (1)-k (¢

ety=10 110, O o 13)

and % are the coefficient’s optimal (constant) values, and y; > 0 are the adaptation constants.
Differentiate V(f) with respect to time:

V(t)= e(t+§3:7li€ 1)k (1), (14)



* ; *

Since Xi are constant, then ki (1)=k, . Taking into account the adaptation law (9), we obtain:

V(1) =e(0)-£(0) =X R (1)-<(0) 4,0

(15)

Since the gas temperature dynamics is given by equation (1), and the control action is selected
according to the law (8) using the adaptive observer (5) and under the correct delay compensation
condition (using the state prediction according to the Taylor series) (6), it can be shown that the error

dynamics e(f) = T.(t) - T(#) in a closed system approximately takes the form

3
==k -e(t)+5(1
i=l

(16)

where &(f) combines model errors, delay compensation and external disturbances, and ¢(t) are signal

functions that depend on the system’s state.
When substituting (16) into (15) we obtain:

—e z)-(_gkj.e(f)+5(t)j_gza(f).e(t).¢,(t).

Let's group the terms:

Note that

Sk (1)-4,(1)

and with the ¢{(t) and k() correct choice it is assumed that the total term =!
definite function, that is, there exists A > 0 such that

Zk 1)22>0.

Thus, the assessment can be written as:
V(t)=—A-(e(r)) +e(t)-5(2).

We use Yong's inequality:

1

(1) =2-(e(0) +5-(e(0) +37(6(0) == () +55-(5())"

Taking into account that the function V(¢) satisfies the inequality
1 2
/(02 (el
the final assessment was received:

V(1)<—4- (z)+$ (5(1)).

1
Denoting o = A and 2-4 | then
V(tys—a-v()+B-|s()[ -

(17)

(18)

(19)

is a positive

(20)

(1)

(22)

(23)

(24)

(25)

(26)



2
< _ /. .
According to the comparison lemma, if V)s—aV()+p Hé(l)H , then the function V() has the
uniform finite boundedness property, that is, there exists a constant V., such that

. 2
limsup V(t)Sé-supH&(t)” ) (27)
1w >0
l le t))2
Since V{(t) includes the term 2 , this means that the error e(#) asymptotically approaches a
o suplo(r)]
zero neighborhood whose size is determined by the quantity 0 . Provided that the

disturbances and delay compensation errors are sufficiently small, this neighborhood can be made
arbitrarily small.

Thus, it is proved that the closed system with the chosen adaptive control law and the coefficient
adaptation law is uniformly finitely determined, and the tracking error e(f) = T.(t) - T(?)
asymptotically tends to an arbitrarily small neighborhood of zero. This means

Vit)<—a -V(t)+B -||6(t)|] = lim sup V(t)sg Le=0||s(¢)|,
t >

which proves the theorem on adaptive stability and convergence.

4.3. Development of a neural network module for delay estimation correction

Based on [31-33], we propose to use a deep fully connected (feedforward) neural network to
approximate the function fux(¢(t)) (Figure 2). The neural network architecture is defined by an input
layer of dimension n, where ¢(f) € R, followed by one or more hidden layers with nonlinear activation
functions; in particular, for the two-layer MLP architecture example [34], the first hidden layer
contains m; neurons, and the second contains m; neurons, after which the output layer, consisting of
one neuron with linear activation, forms the correction value.

Hidden layers

Tcorr(t)

Figure 2: Architecture of the proposecf deep fully connected (feedforward) neural network

In the general case, for a neural network with L layers (excluding the input), the input is initialized
as a” = ¢(1). For each hidden layer [ =1, ..., L - 1, the calculation is performed:

L0 0 G 4 0 (28)
a — G(l) . (Z([) )5 (29)
where WU is the weight matrix, b” is the bias vector, and ¢'(+) is the activation function (e.g. ReLU,

SmoothReLU [35], tanh, or sigmoid).
At the output layer (I = L) the following is calculated:

AN Z ) g 4 B0, (30)

fNN (go(t)) — W(L) . a(L) — Z(L), (31)

where a linear activation function is used since the problem is a regression problem.



Thus, the delay adjustment module has the form:
Tor(t) = 1o + 2. (32)
In this research, we propose the neural network architecture with two hidden layers use (Figure 2),
for which the presented expressions will have the form presented in Table 1.

Table 1
Basic analytical expressions for the applied neural network
Numbe Layer Analytical expression
r
1 First hidden layer (/= 1) S0 — ) -q)(t)-i—b(l), a" = SmoothReL U (Z(l))
2 Second hidden layer (/= A2 _ @ 0 +b(2), a? = SmoothReL U (Z(Z))
2)

3 Output layer (/= 3) = a0, 1 (1)) =2
4 Final delay estimate o (1)=7, + 20

0= {Wm’b(/)}L

To determine the parameters I=1, the neural network is trained on historical data,
where for each time moment t; the feature vector qo( ;) and the actual delay tactual(t;) are known. The
training task is to minimize the loss function, for example, the mean square error (MSE), as shown in

[36, 37]:

L 2

L(0)=— Z( e (1)~ (70+ i (1)) + 22 (7)., (33)

I=1

where A > 0 is the regularization coefficient [36].
The neural network parameters are updated according to the gradient descent rule:

0« 0-1-V,L(©), (34)

where 7 > 0 is the training rate.
At the same time, gradients are calculated at each layer using backpropagation. For example, for

the last layer, the error at the output layer is calculated as:
oL

L L
o = =a" (= 0): (35)
For each previous layer =L - 1, L - 2, ..., 1 the following is determined:
SO T 510 (z(l)), (36)

. e (). - . -
where © denotes element-wise multiplication and ©  is the activation function derivative.
The weights and biases update for the I-th layer is performed as:

T
WO =w —n-s0(a" V), (37)

p = pl) —n- S0 (38)

The resulting delay estimate 7..{?) is used to correct the control action in the control scheme. If the
control law (8) was previously written as

u(t) =k (1)-e(1)+ k(1) (1) + ks (1) [e(r)ar (39)

then, taking into account the delay correction, it can be supplemented as follows. For example, the
parameter 7..(t) can be taken into account when predicting the state through the expansion in a

Taylor series:



Pe+r,, (0))=F )+, () F(0)+ % B(0)- (2, (1)) +- (40)

Thus, the neural network module for correcting the delay estimate is implemented according to the
scheme 7,{t) = % + fin(¢(t)), where the function fin(¢(#)) is approximated by a neural network
constructed according to the scheme (27)—(32). The module is trained by minimizing MSE (33) with
updating the parameters according to (34)-(38). When integrated into the general control algorithm,
the 7.,.,(f) value is used to accurately predict the system state (20), which significantly improves the
control quality in the inertial delays presence.

5. Case study

5.1. Results of the helicopter turboshaft engine gas temperature control
channel with the two value’s algebraic minimum selector research

It is accepted that, in general, the proposed intelligent gas temperature controller (Figure 3) is a two-
channel controller: the gas temperature in front of the compressor turbine regulating channel and the
gas generator rotor speed regulating channel [23, 38] (the free turbine rotor speed regulating channel
[39] is not taken into account).

nrc channel%%)& W > = H 2]
_ S 5
g § > I/Iéontr
* T AVARY) s @
Tz channel —="»| oo > H, >

Figure 3: Proposed intelligent controller circuit

According to Figure 3, the minimum selector is described by the expression:

U:{UI,U, <U,,

U, U, >U,, (41)

where H, is the object’s (engine TV3-117) transfer function in the first control channel (the gas

gL

1
generator rotor speed channel) T'-s | H, is the object’s (engine TV3-117) transfer function in the
second channel (the gas temperature in front of the compressor turbine channel) H, = 1, where:

Wcon . — contr "
" s (res+1) (42)
VVl = kl, VVZ = k2,
where Y, and Y are constant settings.
Let's consider the individual open channel’s transfer functions:

k -k
W — 1 contr
,(s) s-(T-s+1)-(‘[-s+1)’ (43)
k -k k -k
Wi _ 1 "contr — L_"contr =
1 (jo) jo-(T-jo+1)-(7- jo+1) —(r+T)-a)2+ja)-<1—T'T'0)2)

44

k -k, (t+T) o' R 0

(z'+T)-a)4+a)2-(l—z'-T-a)2)2 (T+T)-a)4+a)2-(1—r-T-a)2)2’



k, k

W, (5)273.(T.§0f1)’ (45)

Cky kg T ky ok

contr _ 1 contr

. k, -k,
VV”(]G)): 2 con

= J:
T+ jo T -0+’ 0+ (46)

where k; = 10, k; = 1, k, = 10, T= 0.5 second, 7 = 0.025 second [37, 38].
Then the proposed two-channel intelligent controller’s transfer function will have the form:

( ) I/VI(S)_VVII (S) k kcantr k kcontr (TS+1)
§)= = )
2+ W, ()4 Wy (s) 2(T-s+1)-(T-s+1)-s+hk -k, +h -k, (T-s+1) 47)
CD (](0) — (kl : kcomr - k2 ' kcontr ) ] k kconn ’ "W ; —
kl'kcontr_kZ'kcontr_z'kZ'kcontr'T'a) +]((2+k kcontr' ) a)_ZTTa))
_ (k 17 kconli k kconlr) k kCOi’lIi _
(k kconn _k kcuntr _2'k2 'kcontr TC() ) ((2+k kwmr ’ ) a)—2-T-‘L'-a)3 )2 (48)

0k Ky =y R = 2Ky k

contr contr contr

_j'(kl.kcom/*_kfkcon/r) ((2+k kw,,,, ) w_Z'T'T'a) )-I-k -k

o T a)z)
(k -k |

2

contr _kZ 'kcolm 2 k kcomr ) ((2+k kcantr ) w_z'T.T.af)
The Nyquist hodographs constructed for the system’s individual loops with the values k; = 10, k; =
1, keonr = 10, T= 0.5 second, 7= 0.025 second [23, 38] demonstrate that in this automatic control system

with a minimum selector, the closed loop W(s) is unstable, while the closed loop Wy(s) is stable (Figure
4).

Nyquist Hodographs

Imaginary Axis

Real Axis
Figure 4: The resulting Nyquist hodographs

The transformed system’s ®(s) linear link amplitude-phase characteristic is shown in Figure 5. The
condition for the oscillation’s occurrence in such a nonlinear system is the equivalent linear part’s
®(s) hodograph’s intersection point with the complex nonlinearity coefficient’s hodograph. In this
case, the latter corresponds to the negative segment of the real axis in the range from -1 to —co. It



follows from this those oscillations with a frequency of w ~ 12.227 s™ (f » 1.96 Hz) can occur in this
system.
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Figure 5: The transformed system’s linear link’s resulting amplitude-phase characteristic

In this research, the system’s behavior in the time domain was analyzed. For this aim, the
controller links were presented using differential equations:

1 v, du,, (s du, (s) 1 1
VO )= Py g, PO Ly Ly
a v U ( o (5) w
_ contr _ ou d U S) dU S
w = ! = ! ou oul _
(S) S'(T'S+1) Uin T dt2t + d; _kcontr 'Uin'

Therefore, this system is characterized by two differential equations set and an equation that
determines the selector switching:

a _Z x
da T T’

&7 dz (50)
’ 2 +t—= contr‘U’

et dt

[u,.u,-u, <o,

“u,.U,-U, >0. (1)

The system remains stable when the condition is met: Yo = 1, Yz < 1 (if Y2 > 1, oscillations occur).
In this region, the output variables change exponentially. The second circuit is closed (Figure 3), and
Y, reaches the steady-state value in t.u- = 0.25...0.3 seconds. At the setpoint value Yy > 1, oscillations
occur in the system that do not damp. Their frequency remains unchanged and is f~ 1.96 Hz; T'= 0.427
seconds. The oscillation’s amplitude increases as the setpoint increases.



To eliminate temperature overload, corrective elements are introduced [40]. The selection
condition is determined by the following expression [40, 41]:

Y =Us- (52)

In this research, two selection options were considered, similar to [41]:
&=Yn-Y,=0, (53)
& = &, (54)

In this research, the correcting link’s Wi(s) and Wi,(s) transfer functions are determined based on
the selection conditions. For the first condition (53):

U”1(‘ = VV”M‘ (S) L (55)
U, =W, (s)+ W, (s)- W, (s)-s+W,(s)- W, (5)-&,. (56)
From the selection condition (52):
W, (s)& W, (s)+W, (S)'Wr; (s) s +W,, (S)'Wr; (s)-&, (57)
if
W, (s)=W,(s) w. (5), (58)
and
WT( (S)+VV;€|(S)'W7;§ (S):l’ (59)
then & = 0.
Then
W, (s)
W — s ,
k1 (S) Wy{j (s) (60)
1-w. (S)
W (S) = $, (61)
k2 WT(* (S)
For the second condition (54) expressions (55) — (57) are valid and if
VI/"/(* (S)—VI/]C] (S)WTS (S):l’ (62)
s (5) =5 (5) W, ()1, )
w. (s) -1
W — 1C ,
3 (S) WI( (s) (64)
1-w. (5)
W, (s)= — (65)
k2 WT(+ (S)

For modeling and calculations in this study, the parameters of the TV3-117 engine, which is the
Mi-8MTV helicopter’s power plant’s part, were used [42]:

(021-s5+1)-x, =(0.229-5+1.306)-x, , (66)

(0.064-5> +0.667-5+1)-x,. =(0.522-5+3)-x, , (67)



X X .
where ~"¢ is the output signal for the turbocharger rotor speed, ¢ is the output signal for the gas

temperature in front of the compressor turbine, %6, is the input signal for fuel consumption.
From (66), (67) the gas generator rotor speed W”i and the gas temperature in front of the
G,
% transfer functions are obtained, identical to those in [38]:
W (s) = 0.229-5+1.306

021-s+1

compressor turbine

: (68)

G 0.522-5+3
T (s): 2 .
a 0.064-s+0.667-s+1

(69)

From (67) and (68) it follows that the gas generator rotor speed controllers W (S ) and the gas

W. (s
temperature in front of the compressor turbine ' (s) transfer functions have the form:
1
W, o(s)=—————————,
e ()= 52295 71306 (70)
W.(s)= ; (71)
s 0.522-s+3

Then, according to (60), (61), (64), (65), the first and second correction links Wi (s) and Wia(s)
transfer functions are obtained, respectively, for conditions (53) (I) and (54) (II):
0.522-5+3
Wk(]l) (S) =

©0.229-5+1.306° (72)

Wk(zl) (s)=0.522-s+2, (73)

0.12-5*+0.847-5+0.918
w((s)= , 74
a (5) 0.229 -5 +1.306 (74)

W) (s)=0.522-5+2. (75)

It is noted that in [38], the analytical expressions describing the first and second correcting links
Wi(s) and Wiu(s) transfer functions have the form:

(0.0018-5+0.0517)-(0.064- 5> +0.667 -5 +1)

(76)
0.036-5s* +0.38-s+1

W (s)=

9

W (s) = 0.021-5* +0.048-5—2
2 0.174-5+1 '

Thus, in the refined transfer functions Wi (s) and Wi(s) (72)-(75) compared to (76)-(77), a decrease
in the variable s orders is observed, which allows eliminating high-order terms that increase the
system’s dynamic sensitivity. In this case, only those terms are preserved that to the greatest extent
determine the phase and amplitude characteristics necessary to compensate for inertial delays. The
analysis shows that the dominant low-order terms (e.g., constant and linear in s) provide adequate
delay suppression and maintenance of the required transient process, minimizing overshoot and
stabilizing the ACS. This approach simplifies the correcting link’s model, reduces the computational
load and reduces the high-frequency noise amplification, which significantly increases the
adaptability and reliability of the helicopter TE control system.

(77)



5.2. Modeling of the TV3-117 engine’s gas temperature in front of the
compressor turbine controller

According to Figure 3, the Matlab Simulink 2014b software package has constructed simulation
schemes in two versions: without correction links (Figure 6a) and with correction links (Figure 6b).
The simulation results are shown in Figure 7. It is noted that the actuator’s (isodromic controller’s)
transfer function is adopted, according to [38], in the form:

3-(0.56-5+1)  1.68-5+3

Wie(s)= = T (78)
s-(0.02-s+1) 0.02:-5" +s
1 02295+1.306 | |
Ilm * 0.2295+1.306 0.21s+1
Gas generator rotor Cglmpans?n Gas generator rotor Gas generator rotor
speed sensor lement speed controller transfer Fcn speed transfer Fen
(normalized values) ::IE’—> 220833
= - ¢
_ 0.02s%+s
Mnnlnmum Isodromic controller Scope
selector transfer Fen
1 0523 | |
Gas temperature Comrarison 0.522s+3 0.06452+0.667s+1
sensor o P: 2 Gastemperature controller Gas temperature
(normalized values) emel transfer Fcn transfer Fen
a
N 1
| 0.229s+1.306
Comparison Gas .
Gas tor rofs generator rotor
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(normalized values)
Gas generator rotor
speed correction link
D E— 229853 :I_@
N ] _ 002s2ts
Miimum Isodromic controller Scope
selector transfer Fcn
Gas temperature
correction link
+ 1
B = s
Gas tzg\r@ramre Comparison Ful adder2 Gastemperature controller 0-(5:;‘#’*056'78*1
(normalized values) element2 transfer Fen vaﬁ;\gfr’:ac rL:re

Figure 6: Developed schemes for modeling the gas temperature in front of the compressor turbine
controller: (a) without correcting links; (b) with correcting links
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Figure 7: Resulting transient processes diagrams: (a) without correcting links; (b) with correcting
links



In Figure 7, the blue curve corresponds to the gas temperature in front of the compressor turbine
control channel, the black curve corresponds to the gas generator rotor speed control channel, and the
red curve corresponds to the selector switching moment. The first diagram (Figure 7a) illustrates the
transient process before the correction link’s application: since the gas temperature in front of the
compressor turbine controller has inertia with respect to the gas generator rotor speed controller, the
selector switches with a delay, which leads to a temporary surge in the gas temperature transmission.
To improve the dynamic accuracy of the system when changing the selector, it is necessary to
introduce correction links, which is demonstrated in Figure 7b, where more efficient selection and the
gas temperature channel connection is ensured, excluding the specified temperature mode excess. The
transient processes qualitative characteristic’s parameters can be quantitatively described as follows:

e  The transient process’s time interval (f,..s), reflecting the system’s response speed and defined

as the time interval from the dynamic changes beginning to the moment when the difference

between the output signal and its new steady-state level becomes less than 5 % (for the first
diagram (Figure 7a) tyus = 4.2 seconds, and for the second (Figure 7b) tyune = 3.3 seconds;

e  Maximum excess in the transition period o (overshoot), which is equal to:

hmax (t) - hsetting (t)

o= -100%. (79)
hsetting (t)
o, = L0821 1009 = 8%
For the first diagram (Figure 7a) 1 . For the second diagram (Figure 7b)
o, =M~100%=1.5%
1 Thus, the correction links with transfer functions (72)-(75)

introduction makes it possible to virtually eliminate overshoot in the helicopter TE gas temperature in
front of the compressor turbine control channel (the overshoot value does not exceed 1.5 %).

5.3. Test results of the neural network module for adjusting the delay
estimation

During the research it was established that oscillations with a frequency of f~ 1.96 Hz (the delay is
0.025 seconds) can occur in the developed controller. Therefore, it is advisable to conduct a delay
dynamic’s research in this frequency vicinity. For this aim, the Mi-8MTV helicopter flight tests results,
the power plant of which consists of two TV3-117 engines [42], are used (the data for the left engine
are used in the research). In response to an official request sent by the authors to the Ministry of
Internal Affairs of Ukraine, information was obtained on the gas temperature in front of the

*

compressor turbine (TG) and the gas generator rotor speed (nr) in the nominal engine operating
mode. The request was fulfilled within the research project “Theoretical and Applied Aspects of
Aviation Sphere Development” (number 0123U104884) framework. The data was obtained based on
the Mi-8MTV helicopter’s flight tests. The experiments were conducted at an altitude of 2500 meters
above sea level. The test duration was 320 seconds. The sampling step was 0.25 seconds.

The nzc and 76 data obtained during the Mi-8MTV helicopter’s flight tests using the onboard
monitoring system were preliminarily cleared of noise interference and abnormal emissions. After
that, they were transformed into time series are the parameter’s sequences ordered by time [43]. To
ensure the time series with different scales comparability, the z-normalization procedure was applied:

0 _ 1 5,0 0 _ L
nT(,‘_N'ZnTC T _N'ZTG
i=1 Z(Tw i=1

2’ G

2(me) = 1 & & )i: 1 O 2’ (80)
-3 a3
i=1

i=1 i=1 i=1

where N = 1280.

5

Thus, the parameters nyc and Tg resulting dynamic diagrams after data normalization have the
form shown in Figure 8.
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The nsc and T6 normalized values formed the training dataset, which fragment is presented in
Table 2. It is noted that the dataset is homogeneous according to the Fisher-Pearson [44, 45] and
Fisher-Snedecor [46, 47] criteria (the homogeneity assessment results are presented in Table 3).

Gas generator rotor speed
T T T

Gas temperature in front of the compressor turbine
T T T T T T

Gas generator rotor speed, abs. val.
Gas temperature, abs. val.
o
o
&

0 5‘0 160 1‘50 2(‘)0 2‘50 32)0 0 _r,‘o 1(‘)0 1_“,0 2(‘)0 2_“,0 3(‘)0
Time, seconds Time, seconds
a b
Figure 8: Dynamic diagrams of the TV3-117 engine’s gas generator rotor speed (a) and gas

temperature in front of the compressor turbine (b)

Table 2
Training dataset fragment

Number nic parameter T, parameter
1 0.985 0.983
256 0.983 0.981
19 0.977 0.975
768 0.981 0.983
1024 0.982 0.987
1280 0.986 0.989

Table 3
Results of the training dataset homogeneity assessing according to the Fisher-Pearson and Fisher-
Snedecor criterions

Parameter The x* calculated value / The F; calculated value / Decision on the training
The x(a, 1) critical value The Fisea(a = 0.01, 1279) dataset homogeneity
critical value
Nrc 6.418 /6.6 1.122 /1.139 The dataset is
T 6.476 / 6.6 1.128 /1.139 homogeneity.

To check the training dataset (Table 2) representativeness, the cluster analysis method (k-means
[48]) was used. The training and test datasets were formed by random division. The proportion was
2:1, which is 67 and 33 % (858 and 422 elements, respectively). The training dataset’s (Table 2)
clustering revealed 8 groups (classes I...VIII). This indicates the eight clusters identification. This
observation confirms the training and test datasets (Figure 9) structure’s similarity. Based on these

results, the optimal dataset sizes for the nrc and Tg parameters values were established. The training
dataset consisted of 1280 elements (100 %). The control dataset consisted of 858 elements (67% of the
training dataset). The test dataset consisted of 422 elements (33% of the training dataset).
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Figure 9: The parameters nyc and TG values cluster analysis results: (a) training dataset (858
elements); (b) test dataset (433 elements)

The proposed fully connected neural network (see Figure 2), consisting of two hidden layers with
16 and 8 neurons, respectively, was trained using the Keras library [49]. The “time_delay” factor was
separately allocated for the predict, and the original dataset was divided into training and test
datasets, where the test dataset constituted 33 % of the total amount. SmoothReLU [35] was chosen as
the activation function for the hidden layers, and the mean square error (MSE) [35] was used as the
optimization criterion. The model was optimized using the Adam algorithm with the training step
parameter set as 10', where i varies from 1 to 4. Each configuration was trained for 10 epochs, after
which the most successful one was selected based on the loss function and predict accuracy indicators,
which was then further trained for 100 epochs. The best results were demonstrated by the model
configured with the Adam optimizer (training rate 0.0001) and two hidden layers containing 460 and
230 neurons, with SmoothReLU activation [35].

Figures 10 and 11 show the neural network’s accuracy and loss diagrams. The obtained diagrams
prove the neural network’s convergence on 100 training epochs, since both the accuracy and loss on
the training and test datasets coincide on the 100th training epoch. In this case, the accuracy reaches
0.99537 (99.537 %), and the loss decreases to 0.00511 (0.511 %). It is noted that after the 100th training
epoch, the neural network’s occurs overtraining effect. The neural network’s overfitting effect,
observed after 100 training epochs, is that the model begins to adjust too precisely to the training
dataset, including its noise and random deviations, instead of identifying general patterns, which
result the data on the training dataset continues to demonstrate high accuracy and low loss, and on



the test (validation) set, a deterioration in performance is observed, since the model loses the ability to
generalize to new data, having begun to “remember” the training dataset’s specific features, which
reduces its practical applicability.

Model accuracy
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Figure 10: The developed neural network’s accuracy metric diagram
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Figure 11: The developed neural network’s loss function diagram

Thus, it was found that further training leads to the neural network’s generalization abilities

L 2

A- Z(W(/))

deterioration. To prevent this effect, early stopping [50, 51] and regularization  ’=! in (33)
were applied.

The developed neural network’s predictive assessment ability was carried out on a test dataset,

where Figure 12 shows a diagram demonstrating the delay value’s predicted results correspondence to
the actual data.
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Figure 12: Diagram of predicted delay values vs. reference values

The predict errors distribution’s analysis was also conducted, presented in Figure 13. It follows
from the diagram that the developed model demonstrates high accuracy in determining delays in the
gas temperature control channel based on the factor’s given set, without an error’s obvious bias in any
direction.

Delay time errors histogram
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Figure 13: The predicted delay value’s deviations distribution histogram

To assess the predicted delay values with the observed data correspondence, the determination
coefficient and its adjusted version were calculated [52]. The obtained results R* = 0.9717 and adjusted
R = 0.9720 indicate a significant degree of relations between the neural network’s predicts and the
reference data.

To improve the predicted value’s accuracy, a confidence interval construction technique is used,
which aim is to take into account uncertainties arising from errors in data collection, errors in
reference values, or random noise generated by a neural network with a reliability given level. Since
there is no strictly mathematically sound algorithm for determining such intervals for neural
networks, a quantile approach is proposed: the interval boundaries for the 95% reliability level [53] are
set based on the quantiles of 0.025 and 0.975, which leads to the interval [-1.162; 1.077], covering
forecast errors in 95% of the model cases (Figure 14).
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Figure 14: The predicted delay value’s deviations distribution histogram with 95% interval of
predicted value’s deviations

Considering that 95 % of the neural network errors fall within this interval, we can conclude that
for any predicted value of 7 the following confidence interval is valid: [7 - 1.162; 7 + 1.077].

Figure 15 shows the dependence of the delay values on the frequency in the range from 1.9 to 2.1
Hz, with special attention paid to the 1.96 Hz point, where pronounced oscillations are recorded,
which may indicate the system’s resonance effects or specific dynamic features. The neural network
use in this context has a positive effect on reducing the delay, since it is able to model complex
nonlinear relations between system parameters and accurately predict optimal control modes, which
ensures the control signal’s timely correction. Due to the neural network’s adaptability, it is possible
to achieve a faster system response (the delay values using the neural network did not exceed 0.016
seconds, which is 36 % higher compared to the case without using a neural network), the operation
stabilization in critical frequency ranges and, as a result, a significant reduction in delay.

Results of the delay research
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Figure 15: Diagram of the delay value’s dynamics in the resonant frequency vicinity

6. Discussion

In this research, the helicopter TE’s intelligent gas temperature controller (see Figure 1) was
developed based on a double summation scheme, which allows for the measuring sensors inertial
delays compensation and transient processes optimization in real time. Its special feature is the



integration of adaptive algorithms with a differentiator and a neural network module, providing
dynamic correction of control parameters and high control accuracy (up to 99.5 %).

A method has been developed based on a mathematical model of delayed dynamics (1) and
determination of the control error (2), where the state is predicted using Taylor series expansion (6).
The intelligent control law (8), supplemented by the coefficient’s adaptive correction using the
gradient descent scheme (9), allows real-time optimization of control parameters and compensation
for inertial delays.

A neural network module for delay estimation correction (see Figure 2) has been developed, which
is implemented using a deep fully connected neural network, which architecture is specified by (28)-
(32), where the final delay estimation is determined according to (32). The module’s special feature is
the nonlinear activation functions use in hidden layers for accurate approximation of the relations
between input features and delay correction, which ensures the system’s dynamic adaptation in real
time.

The neural network module’s testing results demonstrate high training accuracy: the accuracy and
loss function diagrams (Figures 10 and 11) confirm the model’s convergence on the training and test
datasets, and the predicted and reference delay value’s correspondence diagram (Figure 12) indicates
small predicting errors, which is further confirmed by the errors distribution on the histogram (Figure
13). In addition, the delay value’s dynamics analysis in the resonant frequency vicinity (Figure 15)
shows a 36 % reduction in delay, which indicates a significant improvement in the system’s adaptive
capabilities.

However, despite the positive dynamics and results achieved, the research has some limitations:

1. The modeling and testing results were obtained on the experimental data limited set basis

(Figures 7 and 8), which may reduce the methodology applicability in conditions other than the test

dataset.

2. The neural network module’s overtraining effect is observed (Figures 10 and 11), which limits

its ability to generalize and may negatively affect the delay prediction in real operating conditions.

3. The approximate compensation methods use, such as Taylor series expansion (6) and transfer

function’s simplification, may not provide sufficient accuracy of compensation for inertial delays

during sudden changes in operating modes (Figure 15).

Future research could be structured as follows (Table 4).

Table 4
The future research roadmap
Number Research direction Action
1 Expansion of the 1. Conducting additional tests in various operating modes
experimental base and and extreme conditions to increase the data
testing conditions representativeness [54].

2. Integrating data from various helicopter platforms and
the experimental dataset’s long-term collection to the
specific conditions influence reduce [55].

2 The neural network 1. The regularization method’s design and implementation,
module’s stability and ensemble models, and advanced architectures (e.g., RNNs
generalizing ability or transformers) to prevent overfitting [56].

2. Application of adaptive early stopping and cross-
validation algorithms to improve of latency prediction’s
reliability [57].

3 Refining mathematical 1. The approximate methods extension (e.g., using more
models for compensating complex expansions or alternative dynamic models) to
inertial delays improve compensation accuracy, especially with sudden

changes in operating modes [58].

2.The adaptive self-tuning algorithms integration that
allows the transfer function parameter’s dynamic
adjustment in real time [59].




The research demonstrates that the innovative adaptive control methods development requires
technological improvements while simultaneously complying with regulatory and ethical standards
when applying it on board a helicopter, taking into account the rights and responsibilities of human
operators [60].

7. Conclusions

The helicopter TE’s intelligent temperature controller has been developed that uses a double
summation scheme with an adaptive observer and correction links, which provides effective
compensation for the measuring sensor’s inertial delays.

The neural network module’s implementation for delay estimation correction allows the control
parameter’s dynamic adaptation in real time, which is a significant improvement compared to
traditional approaches.

Simulation showed a reduction in overshoot from 8.0 to 1.5 % and a reduction in the transient
process time from 4.2 to 3.3 seconds, and the neural network module’s testing demonstrated a
forecasting accuracy of 99.537 % (losses is 0.511 %) with a determination coefficient of R* = 0.9717 and
a reduction in delay to 0.016 seconds (an improvement of 36 %).

In the future, authors are going to explore the experimental base and testing conditions expansion,
including additional tests in various operating modes [61] and the data integration [62] from various
helicopter platforms to reduce the specific conditions influence. They also plan to develop robust
neural network modules using regularization methods [62], ensemble models [63], and adaptive
algorithms [64], as well as refine the mathematical models for compensating for inertial delays by
integrating adaptive self-tuning algorithms [65, 66] in real time.
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