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Abstract

This  study  evaluates  the  effectiveness  of  physics-informed  neural  networks  (PINNs)  for  solving  both 
stationary and non-stationary partial differential equations (PDEs), including those with Robin boundary 
conditions, in rectangular and non-rectangular domains. Although only a small subset of the PINN literature 
examines mixed boundaries or tackles non-rectangular geometries,  and even fewer studies benchmark 
accuracy against the finite-element method (FEM), the present work provides precisely that comparison. We 
test feedforward PINNs with tanh activation, whose depth and width were empirically selected for each 
benchmark to balance accuracy and training cost; training uses Adam optimization with Glorot initialization. 
These networks are evaluated on three problems: a 2-D Laplace equation on a square (Dirichlet–Neumann–
Robin), the same equation on a doubly connected domain with Dirichlet boundary conditions, and a 1-D non-
stationary heat equation with Robin boundaries. A weighted mean-squared residual, evaluated via automatic 
differentiation in TensorFlow, balances equation, boundary, and initial-time terms, thereby handling non-
stationary problems without a separate time-stepping scheme. Within the tested class, linear, second-order 
parabolic and elliptic PDEs in 1-D and 2-D, the network attains ≤ 3 % l∞error relative to analytical or FEM 
solutions after 4–6 min of training on an RTX 3080 Ti Laptop GPU, matching FEM accuracy while eliminating 
meshing and easing equation and boundary changes. The time to compute a standard PINN solution is longer 
than for a FEM solution for problems considered in the research, and a broad literature review reveals 
theoretical convergence limits that constrain standard PINNs to modest-scale, well-conditioned diffusion 
problems.
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1. Introduction

In the contemporary scientific community, significant attention is dedicated to developing numerical 
methods for solving differential equations, which have applications across various scientific and 
engineering fields. A leading technology in this domain is physics-informed neural networks (PINNs) 
[1, 2, 3], which integrate physical laws directly into the neural network training process [4], ensuring 
high accuracy and efficiency in solving complex problems. This relies on the universal approximation 
theorem: any continuous function on a  compact  set  can be approximated arbitrarily  well  by a 
sufficiently large multilayer feedforward network with a non-polynomial activation [5].

PINNs have undergone significant advancements, enabling them to solve a broader spectrum of 
partial  differential  equations (PDEs),  including one-dimensional,  nonlinear,  and two-dimensional 
stationary problems [6,  7,  8]. The framework presented in [9] facilitates both forward and inverse 
problem-solving involving nonlinear PDEs. Recent modifications of PINNs include VPINNs [10], 
which reformulate the loss function using a variational (weak) formulation to improve robustness, 
KANN-based  models  [11]  that  leverage  Kolmogorov–Arnold  Networks  for  enhanced  parameter 
efficiency and faster convergence, and others. While they demonstrate impressive examples, several 
gaps persist: (i) mixed Robin conditions are rarely tested. To our knowledge, only five studies [12, 13, 
14,  15,  16] explicitly address Robin boundary conditions in PINNs, even though the overall PINN 
literature numbers in the hundreds. Moreover, those works focus on specialized PINN variants rather 
than the standard PINN formulation employed here; (ii) comparison usually is done with an analytical 
solution, and FEM is usually absent. Only one of the articles mentioned compares PINN with FEM. To 
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our knowledge, the literature still  lacks a systematic PINN vs FEM comparison for equations of  
diffusion type, such as the 2-D Laplace equation and the 1-D heat equation, when mixed Dirichlet–
Neumann–Robin conditions are imposed on rectangular domains or when purely Dirichlet boundary 
conditions are prescribed on non-rectangular geometries. Our work closes these gaps by providing a 
comparison of [Примітки]diffusion and heat-conduction problems with analytically known or FEM 
solutions. Also, some papers like [1, 2] use training datasets generated from another solver, while in 
our approach we only have physics loss.

This research is driven by the need for methods capable of solving physical problems with high 
accuracy and low computational costs. Traditional numerical methods, such as the finite element 
method (FEM) [17,  18], often require substantial computational resources and time, especially for 
multidimensional systems, nonlinear problems, and heterogeneous media.

The goal of this study is to determine the accuracy and computational cost trade-offs under which 
a  mesh-free  PINN  can  replace  FEM  for  linear,  second-order  parabolic  and  elliptic  PDEs.  We 
demonstrate this on stationary 2-D problems, rectangular domains with mixed boundary conditions 
and non-rectangular domains with Dirichlet boundary conditions, and on a 1-D non-stationary heat-
conduction problem, testing PINN predictions against analytical and FEM solutions.

2. Methodology

A physics-informed neural network is a feedforward neural network that incorporates the laws of 
physics, which are defined by differential equations, into the learning process. Figure 1 shows a PINN 
architecture with an input layer, hidden layers, an output layer and components of a loss function.

In our case, the algorithm of this approach can be presented as follows:
 Set datasets for training: for the equation, for the boundary and initial conditions;
 Define the calculation of the necessary derivatives for the equations that are used in the loss 
function;
 Define the loss function for the equation and boundary conditions;
 Train the PINN to find an approximate solution by minimising the loss function.

Figure  1:  Architecture of a physics-informed neural network for solving the non-stationary heat 
equation.

It is assumed that all the necessary input data are initially set, after which the neural network is  
trained, and the values at specific points are predicted. If any of the input parameters are modified, the 
neural network must be retrained.

The loss function is calculated as the sum of the mean squared errors (MSE) of the equation values, 
initial and/or boundary conditions.

The MSE is calculated according to formula (1).

MSE (e )=1
n∑i=1

n

ei
2 , (1)

where e is a vector of length n (n is the number of training points) obtained after substituting the 
obtained approximation from the neural network into the equations or initial/boundary conditions.



The loss function is:

L=λeMSEe+ λbMSEb+ λiMSEi, (2)
where MS Ee is the error of satisfaction of the equation,  MS Eb is the error of satisfaction of the 
boundary conditions,  MS Ei is the error of satisfaction of the initial condition,  λe,  λb and  λi are 
weighting  factors  to  balance  the  influence  of  different  components  of  the  loss  function.  The 
magnitudes of residuals of PDE, boundary conditions and initial condition can differ by orders of  
magnitude, one term may dominate the total loss, preventing the network from accurately enforcing 
the other conditions; this imbalance motivates careful choice of the weights.

The  physics-informed  neural  networks  were  developed  using  Python  and  TensorFlow (TF) 
version 2. TensorFlow's automatic differentiation mechanism [19] was used to calculate the values of 
the loss function and determine all the necessary derivatives, both from the known and the desired 
function. The Adam (adaptive moment estimation) algorithm [20],  a stochastic gradient descent 
method based on estimates of the first and second moments of gradients, was used to optimize the 
model’s parameters. To initialize the weights, we used the Glorot Normal initialization [21], which 
initializes the offset value to zero, and the weights for each layer are determined from the normal 
distribution formula.

For computing the loss and the necessary derivatives in TF, automatic differentiation was used. 
During the forward pass of the neural network, TF creates a computational graph that stores the  
operations performed on the tensors and their sequence. In the automatic differentiation step, the  
chain rule is  applied to compute the derivative of the loss function with respect to the weight  
coefficients and biases based on the computational graph obtained during the forward pass.

The neural networks were trained on an Nvidia GeForce RTX 3080 Ti Laptop graphics card.
The finite element method is implemented using the FEniCS library using piecewise linear basis 

functions for the approximation.
The Crank-Nicolson method, defined by (3), was used for time discretisation. This method is 

certainly numerically stable for diffusion equations and beyond. It has a second-order accuracy with 
respect to ∆ t .

un+1=un+
∆ t
2

(Fn+Fn+1) , (3)

where ∆ t−¿  is the value of the time discretisation step, un−¿ is the approximate solution at time 

tn=
n
N

, n∈ {0 ,1 ,2 ,…,N }−¿ is the time step number, N−¿is the number of time steps, u0−¿is the 

initial condition, Fn is the right-hand side of the non-stationary equation at time tn.

3. Strengths and Limitations

Advantages of PINNs:
 Flexible  problem  setup.  Changing  the  governing  equations  or  boundary  conditions  is 
straightforward, which makes adapting to new problems easy;
 Geometry-agnostic  modeling.  PINNs  can  handle  arbitrarily  complex  domains  without 
requiring a mesh, simplifying the treatment of intricate geometries. Training points density must 
still reflect local solution scales; poor sampling can harm accuracy;
 Built-in  physics  knowledge.  By  embedding  the  differential  equations  directly  into  the 
network’s loss,  PINNs leverage a priori knowledge of the problem structure, improving both 
accuracy and efficiency;
 Multidimensional  and  time-dependent  capability.  A  single  PINN  formulation  can  solve 
stationary and non-stationary, low- or high-dimensional problems without resorting to separate 
time-discretization schemes;
 Advanced  optimization.  They  can  exploit  state-of-the-art  training  algorithms  and 
regularization techniques to accelerate convergence;
 Interoperability. PINNs integrate seamlessly with other machine-learning algorithms and 
data-driven methods.



Disadvantages of PINNs:
 Risk of local minima. Like all gradient-descent–based approaches, PINNs can become trapped 
in local minima, yielding suboptimal solutions;
 Hyperparameter  sensitivity.  Selecting  the  optimal  network  architecture,  learning  rate, 
weighting of loss terms, etc., often demands extensive tuning and computational effort;
 No guaranteed convergence. There is no general convergence guarantee for PINN training—
particularly on highly nonlinear problems and with multiple local minima, so gradient-based 
optimization may never find the true (global) solution.
 High  computational  cost.  Training  PINNs  on  large-scale  or  high-dimensional  tasks  can 
require substantial CPU/GPU resources, which may limit their practical use in some settings.

Recent theory proves convergence of PINNs only in narrow settings—e.g., linear second‐order 
elliptic and parabolic PDEs with smooth coefficients (Hölder-continuous) and infinite points samples 
[22]. For the general nonlinear, stiff, or multimodal (loss landscapes containing many distinct local 
minima or several alternative solutions) case, no global convergence proof exists; instead, empirical  
studies reveal gradient‐flow pathologies (vanishing, exploding, or mutually orthogonal gradients) that 
stall training in local minima [23], failure modes in which the network fails to capture even basic 
physical scenarios [24], and a sharp drop in success probability as PDE order or dimensionality rises 
[25,  26].  Attempts to  fix these issues—loss‐term re‐weighting [27],  curriculum sampling [28] or 
symmetry [29] — improve robustness but still lack rigorous guarantees. Comprehensive convergence 
theory therefore remains an open research problem, and practitioners must validate results against 
reference solvers or a posterior error estimators [30, 31].

4. Results and discussions

4.1. Problem 1

Let us consider the boundary value problem for stationary diffusion:
∆u=0 , x∈ Ω=(0 ;1)× (0 ;1) , (4)

u=0 on Γ 1 , (5)
∂u
∂n

=0 on Γ 2 , (6)

u=1 on Γ 3 , (7)
∂u
∂n

=u on Γ 4 . (8)

Table 1
Selected hyperparameters of the neural network for the problem (4)-(8)

Learning speed Nodes on one 
axis

Hidden layers Number  of 
neurons  in 
one layer

Stopping 
criterion 
(loss)

Activation 
function

1e-2 11 3 10 1e-3 tanh



Figure 2: a) The loss function up to the final epoch. b) The loss function from the 1000th to 3000th 
epoch.

  
Figure 3: The approximate solution of (4)-(8) obtained by PINN after 13900 epochs.

Figure 2 illustrates that after 1000 epochs the NN achieved loss as low as 0.01, compared to initial 
value around 9. Also, in Figure 2 b) can be seen how the network tries to get out of local minimum to 
get a better solution, closer to the global minimum. Figure 3 illustrates solutions obtained by PINN 
after 13900 epochs of training. This neural network has 261 parameters to train. Training of the PINN 
took 3 min 49 sec to achieve the loss given in Table 1. The average training time is 4 minutes and 33 
seconds among the 5 training sessions. The deviation of the average time from the minimum time in 
the sample data is 53s, and from the maximum training time is 89s.

To balance the influence of different components of the loss function, the following coefficients 
were chosen in (2): for Robin's condition on the right boundary Γ 4, λ=2, all other λ coefficients are 
equal to one.

For the FEM, linear rectangular finite elements on a 10x10 grid were used.
Figure 4 and Figure 5 show that the approximate solution corresponds to the error in l∞ norm of 

2.92 % calculated in Table 2. In Figure 5, we can clearly see that NN, which is a non-linear function, 
tries to approximate a line. Therefore, we will always observe some deviations, even as the number of 
epochs or the number of training points increases.

The relatively low relative error in the l∞ norm (2.92 %) indicates that the PINN approximates the 
stationary diffusion problem with high accuracy, comparing favorably with the FEM results. The 
careful  selection of  loss  coefficients,  particularly  using  λ=2 for  the Robin boundary condition, 
appears to be instrumental in balancing the contribution of various loss components. This balance is 
essential to achieve a stable convergence and accurate solution. Overall, these findings suggest that  



PINN is  a  viable  alternative  for  solving  such  boundary  value  problems,  especially  when  rapid 
adjustments to the problem setup are required.

Table 2
Error between the approximate solutions obtained by PINN and FEM for problem (4)-(8)

Type of error Error value (13900 
epoch)

Error  value  (6000 
epoch)

Error  value  (3000 
epoch)

Mean square error 6.86e-06 5.12e-05 2.62e-05
Relative error in the l∞norm 2.92 % 4.2 % 5.24 %
Relative error in the l2norm 0.41 % 1.12 % 0.81 %

Figure  4:  a)  The  approximate  solution  of  (4)-(8) obtained  by  PINN  and  FEM  for  Γ 2.  b)  The 
approximate solution of (4)-(8) obtained by PINN and FEM for Γ 4.

Figure 5:  a) The approximate solution of  (4)-(8) obtained using PINN and FEM for  Γ 1. b)  The 
approximate solution of (4)-(8) obtained using PINN and FEM for Γ 3.

4.2. Problem 2

Let us consider a one-dimensional non-stationary problem for the heat conduction equation:
∂u
∂ t

= ∂2u

∂ x2
, (t , x )∈ (0 ;0.2)× (0 ;1) , (9)

u (0 , t )=0 , (10)
u (1 , t )=0 , (11)

u (x ,0 )=sin (πx )−sin (2πx )+sin (3 πx ) . (12)
The analytical solution for (9)-(12) is obtained by applying the method of separation of variables:

u (x , t )=e−π 2 t sin (πx )−e−(2 π )2 t sin (2πx )+¿ (13)



+e−(3 π )2 t sin (3 πx ) .

This neural network has 1981 parameters to train. Training of the PINN took 5 min 42 sec to 
achieve the loss given in Table 3. The average training time is 4 minutes and 17 seconds among the 5 
training sessions. The deviation of the average time from the minimum time in the sample data is 77s, 
and from the maximum training time is 95s.

To balance the influence of different components of the loss function, the following coefficients 
were chosen in (2): for the initial condition (when t=0) λ=5, for the Dirichlet conditions on the left 
and right boundaries λ=50, and for the equation λ=0.7.

For the FEM, linear rectangular finite elements on a 25x25 grid were used.
Figure 8 and Figure 9 show that the approximate solution corresponds to the errors calculated in 

Table 4 (the error between the PINN and the analytical solution in the l∞norm is 1.17 %). Figure 9 once 
again shows, that we approximate a line with the non-linear function in form of the neural network 
and will always get some deviations for approximating linear function. Also, in Table 4, we can see the 
error values for different numbers of epochs.

Figure 6 shows a graph of the loss function up to the final epoch, as well as from the 1000th to 
3000th epoch. From Figure 6 a) after 4000 epoch small spikes of values of the loss functions are 
observed, as the optimizer tries to get out of local minimum to get closer to the global minimum.  
Figure 7 shows the approximate solution obtained by the PINN after 12441 training epochs.

Table 3
Selected hyperparameters of the neural network for the problem (9)-(12)

Learning speed Nodes on one 
axis

Hidden layers Number  of 
neurons  in 
one layer

Stopping 
criterion 
(loss)

Activation 
function

5e-4 25 3 30 2e-2 tanh

Figure 6: a) The loss over training epochs for the problem (9)-(12) up to the last 12441st epoch. b) The 
loss over training epochs for the problem (9)-(12) from the 1000th to 3000th epoch.



Figure 7: The approximate solution of (9)-(12) obtained by PINN after 12441 epochs.

Figure 8: a) The approximate solution of (9)-(12) using PINN and the initial condition (12) at t=0. b) 
The approximate solution of (9)-(12) using PINN, FEM and the analytical solution at the final time 
t=0.2.



Figure 9: Figures a) and b) show the graphs of the approximate solution of (9)-(12) using PINN and 
FEM on the left and right boundaries.

Table 4
Error between the approximate solutions obtained by PINN and the analytical solution (13) for the  
problem (9)-(12)

Type of error Error value (12441 
epoch)

Error  value  (6000 
epoch)

Error  value  (3000 
epoch)

Mean square error 4.91e-05 5.4 1.81
Relative error in the l∞norm 1.17 % 98.7 % 1e02 %
Relative error in the l2norm 1.69 % 88.8 % 83.1 %

Table 5
Error between the approximate solutions obtained by PINN, FEM and the analytical solution (13) for  
the problem (9)-(12). Separate training session from results from Table 4
Type of error PINN and FEM PINN and analytical FEM and analytical
Mean square error 6.43e-05 7.01e-05 1e-05
Relative error in the l∞norm 1.72 % 1.72 % 1.07 %
Relative error in the l2norm 1.95 % 2.03 % 0.76 %

The error trends presented in Table 4 show that longer training (more epochs) yields more accurate 
approximations, as seen by the decrease in mean square error with increased training. The relatively 
low error in the l∞ norm (1.17 % at 12441 epochs) underscores the robustness of the PINN approach for 
this non-stationary heat conduction problem. Furthermore, the carefully chosen loss coefficients — 
particularly the higher weights for the boundary conditions — appear to contribute to the stable 
convergence of the solution. Moreover, Table 5 — presenting results from an independent training 
session that compares PINN with FEM and the analytical solution — shows that the relative errors are 
consistently low (approximately 1.72 % for PINN against both FEM and the analytical model and 1.07 
% for  FEM against  the  analytical  solution).  These  results  validate  the  effectiveness  of  PINN in 
capturing the dynamics of time-dependent problems while also highlighting the trade-off between 
training time and solution accuracy.

4.3. Problem 3

Definition.  Let  there  be  two  closed  connected  domains  X ,U∈ R2 such  that  X⊊ U , 
∂ X ⋂ ∂U=∅ . Then, a doubly connected domain is a domain D such that: D=U ∖ X .

Let  D⊂ R2−¿ a  limited  doubly  connected  domain with  sufficiently  smooth boundaries  Γ1, 
Γ 2∈ C2, whose parametric definitions are given by (14) and (15).

Γ 1={x1 (φ )=(2cos (φ ) ,2sin (φ ))) , φ∈ [0 ,2π ]}, (14)



Γ 2={x2 (φ )=(5cos (φ ) ,5 sin (φ ))) , φ∈ [0 ,2π ]}. (15)

Let us consider the problem of stationary heat conduction in a doubly connected domain D:
∆u=0 in D (16)

and boundary conditions
u=x on Γ1 , (17)

u=0 on Γ 2 . (18)

This neural network has 1981 parameters to train. A pseudo-random number generator was used 
to generate the input data. The neural network was trained for 4 minutes and 20 seconds to achieve  
the losses given in Table 6.

To balance the influence of different components of the loss function, the following coefficients 
were chosen in (2): for the Dirichlet conditions on the left and right boundaries λ=50 and for the 
equation λ=0.7.

For the FEM, 197 linear triangular finite elements were used.
Figure 10 shows how the loss function decreases rapidly at the initial learning epochs. Figure 11 

shows the approximate solution obtained by the PINN after 10611 training epochs. Graphs on the 
boundaries and errors for the entire domain for the last epoch and intermediate ones are shown in 
Figure 11 and Table 7, respectively. Figure 12 illustrates the values of the analytical solution and the 
approximate solution obtained by PINN after training and on intermediate epochs. As can be seen 
from the approximate solution in Figure 12 b) on intermediate epochs,  u is  approximated by a 
nonlinear function (NN consists of tanh activation functions and linear combinations), and the more 
we train NN, the closer it will get to a straight line, but will always contain some deviations.

Table 6
Selected hyperparameters of the neural network for the problem (16)-(18)

Learning speed Number  of 
internal  points 
and  on  the 
border

Hidden layers Number  of 
neurons  in 
one layer

Stopping 
criterion 
(loss)

Activation 
function

5e-4 500 and 50 3 30 1e-3 tanh

Figure 10: a) The loss over training epochs for the problem (16)-(18) up to the last 10611 epoch. b) The 
loss over training epochs for the problem (16)-(18) from the 1000th to 3000th epoch.



Figure 11: The approximate solution of (16)-(18) obtained by PINN after 10611 epochs.

Figure 12: a) The approximate solution of (16)-(18) obtained by PINN (10611 epochs, 3000 epochs, 100 
epochs) and the analytical value for Γ 1. b) The approximate solution of (16)-(18) obtained by PINN 
(10611 epochs, 3000 epochs, 100 epochs) and the analytical value for Γ 2.

Table 7
Error between the approximate solutions obtained by PINN and FEM solution for the problem (16)-
(18)

Type of error Error value (10611 
epoch)

Error  value  (6000 
epoch)

Error  value  (3000 
epoch)

Mean square error 0.613 0.666 0.75
Relative error in the l∞norm 2.26 % 9.54 % 77.4 %
Relative error in the l2norm 1.95 % 10.2 % 63.8 %

The rapid decrease in loss during the early training epochs (as seen in Figure 10) demonstrates 
that the PINN quickly adapts to the challenges posed by the doubly connected domain. Despite the 
added complexity due to the domain geometry, the PINN achieves a competitive performance relative 
to the FEM approach, as indicated by the error metrics in  Table 7. The  gradual improvement in 
accuracy with extended training epochs underscores the importance of adequate training, especially 
for complex geometries. These results support the potential of PINNs for application in more intricate 



heat conduction problems and suggest that further research into optimization strategies for training 
time reduction could yield even better performance.

5. Conclusions

This study set out to determine whether a compact feedforward PINN can reproduce finite-element 
(FEM) accuracy  for linear, second-order parabolic and elliptic PDEs  while accommodating mixed 
boundary conditions or non-rectangular geometries. For each problem: 2-D Laplace on a square, the 
same equation on a doubly-connected domain, and a 1-D non-stationary heat-conduction problem—
the network depth and width were tuned empirically to minimize loss within a fixed training time.  
The resulting models achieved l∞ errors of 2.92 %, 2.26 % and 1.17 %, respectively, after 4–6 minutes of 
training on an RTX 3080 Ti Laptop GPU, matching FEM accuracy while eliminating mesh generation 
and allowing rapid modification of governing equations or boundary conditions. Because time is 
treated as an additional input, the non-stationary case required no explicit time discretization scheme, 
further simplifying implementation. These results indicate that, for canonical diffusion problems in 
one and two dimensions with constant coefficients, a mesh-free PINN can match FEM accuracy when 
development flexibility outweighs computation time. These empirical results apply to the constant-
coefficient cases we tested; however, convergence proofs [22] hold more generally for linear second-
order parabolic and elliptic PDEs with Hölder-continuous (smooth) coefficients, so the theoretical 
foundation extends beyond the constant-coefficient setting.

The experiments also outline clear performance boundaries. Training remains markedly slower 
than FEM for comparable resolution, and optimization is sensitive to the relative weighting of interior, 
boundary and initial residuals. A broader survey of the literature shows that standard PINNs can 
struggle on more challenging PDEs: convergence proofs are still absent for nonlinear, stiff, high-
frequency, or higher-order cases, and empirical work reports gradient-flow pathologies: vanishing, 
exploding, or mutually orthogonal gradients—that stall training and become more severe in higher 
spatial dimensions. Although our experiments focused on constant-coefficient diffusion problems, 
existing convergence theorems guarantee PINN convergence for any linear second-order parabolic or 
elliptic PDE with Hölder-continuous coefficients [22], and these theoretical and empirical findings 
together indicate that today’s standard PINNs remain most reliable on modest-scale, well-conditioned 
diffusion examples.

Future research should slash training cost and enable high-dimensional scalability; extend PINNs 
to  nonlinear,  stiff,  coupled,  and  stochastic  PDEs;  and  rigorously  validate  their  advantages  on 
engineering  and  physical-science  problems  where  meshing  or  classical  solvers  are  prohibitive.  
Achieving these goals will elevate PINNs from promising prototypes to versatile, production-ready 
solvers.
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