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Abstract
This research presents the development of an intelligent controller for the helicopter turboshaft engines gas 
temperature, aimed at compensating for the measuring sensor’s inertial delays and optimizing transient 
processes. The aim is to compensate for inertial delays τ ≈ 0.025 seconds and optimize transient processes. 
The method is based on a double summation circuit with a channel selector, comparing signals from a  
thermocouple  and  a  gas-generator  rotor  speed  sensor,  and  an  adaptive  observer  based  on  Pade 
approximation and Taylor series expansion provides a prediction of the state at t + τ. The intelligent control 
law includes a proportional-integral-differential structure with the coefficients  γi correction via gradient 
descent. To refine the delay estimate, a two-layer fully connected multilayer perceptron with a SmoothReLU 
activation function is implemented trained on flight test data was implemented, which reduced τ to 0.016 
seconds (–36 %). This module allows to approximate nonlinear relations between input features and the delay 
value,  which  ensures  the  control  signal’s  timely  correction  and  the  system’s  adaptation  to  changing 
operating  conditions.  Modeling  of  the  system  in  the  Matlab  Simulink  environment  demonstrated  a 
significant improvement in the transient process characteristics: overshoot was reduced from 8.0 to 1.5 %, 
and the mode establishment time was reduced from 4.2 to 3.3 seconds. The neural network module testing  
showed high predicting accuracy (99.537 % with losses of 0.511 %), confirmed by the determination coefficient 
R2 = 0.9717. The neural network use made it possible to reduce the delay value to 0.016 seconds, which  
corresponds to an improvement of 36 % compared to traditional methods. The obtained results indicate a 
proposed technique’s high potential  for improving the helicopter turboshaft engines automatic control 
system’s dynamic accuracy and stability.
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1. Introduction

The aviation industry's evolution is closely related to the helicopter's new types of operation (e.g.,  
Eurocopter AS350, Eurocopter EC145, Eurocopter EC225 Super Puma, etc.), characterized by high 
speed and long range, which requires increasingly sophisticated automation control systems [1, 2]. 
The manual and automatic control synthesis, as well as the latter rapid development, forced designers 
to create not only visual devices for humans but also a sensor set, which signals directly affect the  
automatic system's subsequent links [3]. The most important characteristic of helicopter turboshaft 
engines  (TE)  is  the  gas  temperature  in  front  of  the  compressor  turbine,  since  it  significantly 
determines  both  the  power  plant  efficiency  and  its  reliability  [4,  5].  Thus,  these  parameters 
maintaining accurate values is critical to ensuring the helicopter TE's stable operation.

To maintain the set parameters at a fixed throttle position or to change them according to a given 
law depending on flight conditions and operating modes, the helicopter TE automatic control systems 
(ACS) are used [6]. The main requirement for modern ACS is compensation for the temperature  
sensor's inertia so that the measuring devices function without delays [7, 8].
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The main requirements for helicopter TE ACS include the high static accuracy to maintain a given 
range (0.3…0.5%), efficiency with a quick response to control (2…3 seconds), and transient processes 
close  to  monotonous,  which  ensures  regulation  without  drops  (2…4%)  and  with  a  minimum 
stabilization time [9, 10]. These strict and contradictory conditions cannot be solved by standard 
methods, which creates the developing complex task of multifunctional automatic control systems for 
helicopter TE.

2. Related Works

There are known helicopter TE ACS [11–13] that affect a single control parameter, which is the fuel  
consumption  in  the  combustion  chamber,  which  includes  measuring  devices  for  input  signals, 
comparison elements, and an actuator, and the signal from the gas temperature controller directly 
adjusts the rotor speed controller setting. This scheme's main disadvantage is the reduction in stability 
reserves and permissible gain factors, which worsens static and dynamic accuracy, and to eliminate 
this effect, systems with a selector are used, excluding controllers’ joint operation area and thereby 
improving the system's overall characteristics [14, 15]. The helicopter TE gas temperature control 
system presented in [16] uses a correction link with a differentiator, multiplier blocks, and adders to  
compensate for the dynamic error caused by the first temperature sensor inertia. The correction 
coefficient at the derivative changes based on the current gas flow rate signal, which ensures high 
measurement and control accuracy. However, the scheme's key disadvantage is that in transient 
modes, the rotor speed and temperature channel's interaction through the selector is not taken into 
account, which reduces the inertial delay compensation efficiency.

The helicopter TEs gas temperature control using the controller presented in [17] is carried out 
through correcting devices for the control channels transfer functions changing. This allows for 
minimizing overshoot and ensuring stable engine operation in various modes. However, its key 
disadvantage is related to the inertial delays compensation: since the transfer functions correction 
depends on the velocity pressure, changes in the system occur with a delay, which can cause a 
temporary mismatch between the required and actual parameters, especially with sharp changes in 
engine operating modes.

In [18] the engine temperature controller is presented that uses a double summation scheme, in 
which the measured temperature signal is compared with the set value, and the correction is carried 
out by a nonlinear element that compensates for the delay in the compressor turbine blades heating. 
Due to the inertial link, the rotor speed signal is corrected, which eliminates sharp increases in gas  
temperature in front of the compressor turbine, thereby improving the transient processes quality. As 
a result, the fuel consumption changes proportionally to the summing amplifier's output signals,  
ensuring stable and accurate regulation of the engine operation. This controller's main limitation is 
the long return time to the original mode, due to the isodromic feedback inertia. The intelligent  
component introduction will allow dynamically optimizing the control parameters and reducing the 
system response time to changes in operating conditions.

The helicopter TEs intelligent gas temperature controllers integrate modern automatic control 
methods, including correction links with differentiators, nonlinear elements, and double summation 
schemes,  which allow achieving high accuracy and stability of  operation [19,  20].  They ensure 
overshoot  minimization  and  fast  system  response,  which  is  critically  important  for  modern 
helicopters with high-speed and long-range characteristics. However, these systems key disadvantage 
is insufficient compensation for the measuring sensors inertial delays, which leads to the parameters 
temporary mismatch in transient modes. Some schemes, for example, [21, 22], aimed at regulating fuel 
consumption,  experience  a  decrease  in  stability  margins  and  permissible  gain  factors,  which 
negatively affects the static and dynamic accuracy of regulation.

3. Goal and Objectives

Thus, a goal of this paper is to develop the helicopter TEs gas temperature intelligent controller, 
compensating  for  the  measuring sensors  inertial  delays  and optimizing transient  processes.  To 
achieve  the  goal  the  following objectives  are  formed:  (i)  developing the  intelligent  method for 
regulating  gas  temperature,  (ii)  designing  the  adaptive  algorithms  and  corrective  links  with 
differentiators implementation to control parameters dynamic adjustment for eliminating the time 



discrepancy between the required and actual values. Finally, it’s expected to increase the system's 
static and dynamic accuracy and improve its stability, as well as reduce the engine stabilization time.

4. Materials and Methods

4.1. Development of an intelligent gas temperature controller

The proposed controller (Figure 1) is based on a double summation circuit [18]. It is based on a  
comparative analysis of signals received from thermocouples and a gas-generator rotor speed sensor 
[23], using an inertial link, a comparison element, and a nonlinear unit for adjusting the fuel supply.  
This ensures compensation for the delay in heating up the turbine and the temperature regime 
stabilization. Under normal conditions, the signals from the speed sensor compensate for each other, 
and when the regime changes abruptly,  a correcting pulse appears,  leading to a change in fuel 
consumption  proportional  to  the  largest  deviation  in  the  summing  amplifiers.  Under  transient 
conditions, the signal delay through the inertial link leads to the different signal appearance in the 
comparison element, which is then amplified through the summing devices. The control channel 
selector selects the largest received deviations, and the nonlinear element with an exponential or 
parabolic characteristic reduces the specified temperature setting, compensating for the delay in 
heating up the compressor turbine blades.

Figure 1: The proposed controller scheme

The  proposed  scheme  for  the  helicopter  TE  gas  temperature  regulating  integrates  adaptive 
algorithms and correcting links with differentiators, which allows for dynamic optimization of control 
parameters  and  time  discrepancies  elimination  between  required  and  actual  values.  Adaptive 
algorithms analyze the transient processes current dynamics and correct the gain factors and inertial 
links time constants in real time, thus providing a more accurate and timely response to changes in the 
engine  operating  mode.  The  integration  of  differentiators  into  measuring  circuits  allows  for 
predicting trends in temperature conditions, compensating for the delay in turbine warm-up, and a 
nonlinear element with an exponential characteristic synchronizes system responses, minimizing 
sharp transient fluctuations. The result is an ACS of adapting to changing operating conditions, 
increasing the helicopter TE reliability and efficiency.

The proposed controller  features include the adaptive control  module introduction,  which is 
connected between the summing amplifiers and the control channel selector. This module performs 
the transmission coefficients real-time correction and the inertial links time constants, responding to 
the transient processes dynamics and eliminating the time discrepancy between the specified and 
actual parameters.  The adaptive differentiator introduction integrated into the measuring circuit 
between  the  thermocouple  unit  and  the  first  summing  amplifier  facilitates  preliminary  signal 
processing, predicting temperature change trends, and compensating for the delay in heating the 
compressor turbine blades. The proposed controller also includes a transient mode monitoring unit  
connected to the actuator to form feedback and dynamically optimize the control algorithms.

Thus, the scientific novelty consists in obtaining further development of the helicopter TE gas  
temperature controller  according to the double  summation scheme,  which,  due to  the adaptive 



algorithm’s introduction integrated with corrective links equipped with differentiators, allows control 
parameters,  real-time optimization, and inertial delays compensation of measuring sensors.  This 
ensures synchronization between the required and actual temperature modes, significantly increasing 
the helicopter TE accuracy, stability, and efficiency.

4.2. Development of the intelligent method for regulating gas temperature

Based on [17, 18, 23, 24], it is assumed that the gas temperature dynamics is described by the 
following equation with a delay of the form:

(1)

where T(t) is the gas temperature at time t,  u(t) is the control action (for example, change in fuel 
consumption), a and b are the system coefficients, τ is the measuring inertial delay or actuator links, 
and d(t) is the external disturbance.

To track the given temperature trajectory Tref(t), we define the control error:
e(t) = Tref(t) − T(t). (2)

The delayed system transfer function based on the Padé approximation [25] for exponential delay 
is:

(3)

from where the system transfer function has the form:

(4)

To compensate for the measurement delay, an adaptive observer is used that estimates the system 
state. Let the observer have the form:

(5)

where  is the temperature estimate and Kobs is the observation coefficient (can be chosen as a vector 
for more complex models, for example, as in [26, 27]).

To compensate for the delay  τ, the state prediction at time t +  τ is used using a Taylor series 
expansion of the form:

(6)

In practical implementation, one can limit oneself to the first or second term of the expansion, as 
shown, for example, in [16, 18]. To estimate the temperature's second derivative, a difference scheme 
of the form is used:

(7)

Based on the adaptive observer mathematical model (5) and the state prediction method (6), an 
intelligent control law is proposed that takes into account the predicted error:

(8)

where k1(t) is the proportional coefficient, k2(t) is the differential gain coefficient, k3(t) is the integral 

gain coefficient,  is the given trajectory derivative.



The coefficients ki(t) are adjusted in real time using adaptive laws, for example, according to the 
gradient descent scheme:

(i = 1, 2, 3, …)
(9)

where γi > 0 are the adaptation rates, ϕi(t) are the signal functions depending on the system's current state, 

for example, ,  and .
To determine the optimal parameters, the quality functional can be minimized:

(10)

where Q, R > 0 are the weighting coefficients, Tp is the predict horizon.
To improve the compensation accuracy for inertial delays, it is proposed to implement a neural 

network module [28–30] that corrects the delay estimate:

(11)

where τ0 is the delay base value, fNN(•) is the neural network approximating function, and φ(t) is the 
feature vector (for example, gas generator rotor speed, current temperature dynamics, and other 
parameters).

Thus, the scientific novelty of the developed intelligent method lies in the adaptive observer with 
state prediction implementation and a neural network module for compensating for inertial delays, 
which allows for the control parameters real-time optimization.

Within the developed method framework, theorem 1, “On adaptive stability and convergence of a 
closed system of intelligent gas temperature control with inertial delays compensation,” is formulated. 
According to  the  developed  intelligent  method,  the  system dynamics  is  given  by the  equation 

 provided that the disturbances d(t) are bounded and the adaptive 

observer has the form , in this case, the control action is 

determined by the law 

, and the adaptive coefficients change as (i = 1, 2, 3, …). If there 

exists a Lyapunov function of the form , where  are the 

coefficient’s optimal values, and if for some α, β > 0 the inequality holds , 
then the closed system is uniformly bounded in finite time, and the tracking error e(t) = Tref(t) − T(t) 
asymptotically tends to an arbitrarily small neighborhood of zero, provided that the perturbations d(t) 
are sufficiently small.

Proof of Theorem 1.
Let us consider a candidate for a Lyapunov function of the form

(12)

where

e(t) = Tref(t) − T(t),  (i = 1, 2, 3, …), (13)

and  are the coefficient’s optimal (constant) values, and γi > 0 are the adaptation constants.
Differentiate V(t) with respect to time:

(14)



Since  are constant, then . Taking into account the adaptation law (9), we obtain:

(15)

Since the gas temperature dynamics is given by equation (1), and the control action is selected 
according to the law (8) using the adaptive observer (5) and under the correct delay compensation 
condition (using the state prediction according to the Taylor series) (6), it can be shown that the error 
dynamics e(t) = Tref(t) − T(t) in a closed system approximately takes the form

(16)

where δ(t) combines model errors, delay compensation and external disturbances, and ϕi(t) are signal 
functions that depend on the system’s state.

When substituting (16) into (15) we obtain:

(17)

Let's group the terms:

(18)

Note that

(19)

and with the ϕi(t) and ki(t) correct choice it is assumed that the total term  is a positive 
definite function, that is, there exists λ > 0 such that

(20)

Thus, the assessment can be written as:

(21)

We use Yong's inequality:

(22)

Hence,

(23)

Taking into account that the function V(t) satisfies the inequality

(24)

the final assessment was received:

(25)

Denoting α = λ and , then

(26)



According to the comparison lemma, if , then the function V(t) has the 
uniform finite boundedness property, that is, there exists a constant V∞ such that

(27)

Since V(t) includes the term , this means that the error e(t) asymptotically approaches a 

zero  neighborhood  whose  size  is  determined  by  the  quantity  .  Provided  that  the 
disturbances and delay compensation errors are sufficiently small, this neighborhood can be made 
arbitrarily small.

Thus, it is proved that the closed system with the chosen adaptive control law and the coefficient 
adaptation  law  is  uniformly  finitely  determined,  and  the  tracking  error  e(t)  =  Tref(t)  −  T(t) 
asymptotically tends to an arbitrarily small neighborhood of zero. This means

V̇ (t )≤−α⋅V (t )+β⋅‖δ (t )‖2⇒ lim sup
t→∞

V (t )≤ β
α

⋅¿ t ≥0‖δ (t )‖2
,

which proves the theorem on adaptive stability and convergence.

4.3. Development of a neural network module for delay estimation correction

Based on [31–33], we propose to use a deep fully connected (feedforward) neural network to  
approximate the function fNN(φ(t)) (Figure 2). The neural network architecture is defined by an input 
layer of dimension n, where φ(t) ∈ ℝⁿ, followed by one or more hidden layers with nonlinear activation 
functions; in particular,  for the two-layer MLP architecture example [34],  the first hidden layer 
contains m1 neurons, and the second contains m2 neurons, after which the output layer, consisting of 
one neuron with linear activation, forms the correction value.

Figure 2: Architecture of the proposed deep fully connected (feedforward) neural network

In the general case, for a neural network with L layers (excluding the input), the input is initialized 
as a(0) = φ(t). For each hidden layer l = 1, …, L − 1, the calculation is performed:

(28)

(29)

where W(l) is the weight matrix, b(l) is the bias vector, and σ(l)(•) is the activation function (e.g. ReLU, 
SmoothReLU [35], tanh, or sigmoid).

At the output layer (l = L) the following is calculated:

(30)

(31)

where a linear activation function is used since the problem is a regression problem.



Thus, the delay adjustment module has the form:
τcorr(t) = τ0 + z(L). (32)

In this research, we propose the neural network architecture with two hidden layers use (Figure 2), 
for which the presented expressions will have the form presented in Table 1.

Table 1
Basic analytical expressions for the applied neural network

Numbe
r

Layer Analytical expression

1 First hidden layer (l = 1)

2 Second hidden layer (l = 
2)

3 Output layer (l = 3)

4 Final delay estimate

To determine the parameters , the neural network is trained on historical data, 
where for each time moment ti the feature vector φ(ti) and the actual delay τactual(ti) are known. The 
training task is to minimize the loss function, for example, the mean square error (MSE), as shown in 
[36, 37]:

(33)

where λ > 0 is the regularization coefficient [36].
The neural network parameters are updated according to the gradient descent rule:

(34)

where η > 0 is the training rate.
At the same time, gradients are calculated at each layer using backpropagation. For example, for 

the last layer, the error at the output layer is calculated as:

(35)

For each previous layer l = L − 1, L − 2, …, 1 the following is determined:

(36)

where  denotes element-wise multiplication and ⊙  is the activation function derivative.
The weights and biases update for the l-th layer is performed as:

(37)

(38)

The resulting delay estimate τcorr(t) is used to correct the control action in the control scheme. If the 
control law (8) was previously written as

(39)

then, taking into account the delay correction, it can be supplemented as follows. For example, the  
parameter  τcorr(t) can be taken into account when predicting the state through the expansion in a 
Taylor series:



(40)

Thus, the neural network module for correcting the delay estimate is implemented according to the 
scheme  τcorr(t)  =  τ0 +  fNN(φ(t)),  where the function  fNN(φ(t))  is  approximated by a neural network 
constructed according to the scheme (27)–(32). The module is trained by minimizing MSE (33) with 
updating the parameters according to (34)–(38). When integrated into the general control algorithm, 
the τcorr(t) value is used to accurately predict the system state (20), which significantly improves the  
control quality in the inertial delays presence.

5. Case study

5.1. Results of the helicopter turboshaft engine gas temperature control 
channel with the two value’s algebraic minimum selector research

It is accepted that, in general, the proposed intelligent gas temperature controller (Figure 3) is a two-
channel controller: the gas temperature in front of the compressor turbine regulating channel and the 
gas generator rotor speed regulating channel [23, 38] (the free turbine rotor speed regulating channel 
[39] is not taken into account).

Figure 3: Proposed intelligent controller circuit

According to Figure 3, the minimum selector is described by the expression:

(41)

where  H1 is the object’s (engine TV3-117) transfer function in the first control channel (the gas 

generator rotor speed channel) , H2 is the object’s (engine TV3-117) transfer function in the 
second channel (the gas temperature in front of the compressor turbine channel) H2 = 1, where:

 W1 = k1, W2 = k2,
(42)

where Y10 and Y20 are constant settings.
Let's consider the individual open channel’s transfer functions:

(43)

(44)



(45)

(46)

where k1 = 10, k2 = 1, kp = 10, Т = 0.5 second, τ = 0.025 second [37, 38].
Then the proposed two-channel intelligent controller’s transfer function will have the form:

(47)

(48)

The Nyquist hodographs constructed for the system’s individual loops with the values k1 = 10, k2 = 
1, kcontr = 10, T = 0.5 second, τ = 0.025 second [23, 38] demonstrate that in this automatic control system 
with a minimum selector, the closed loop WІ(s) is unstable, while the closed loop WІІ(s) is stable (Figure 
4).
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Figure 4: The resulting Nyquist hodographs

The transformed system’s Ф(s) linear link amplitude-phase characteristic is shown in Figure 5. The 
condition for the oscillation’s occurrence in such a nonlinear system is the equivalent linear part’s  
Ф(s) hodograph’s intersection point with the complex nonlinearity coefficient’s hodograph. In this 
case, the latter corresponds to the negative segment of the real axis in the range from –1 to –∞. It  



follows from this those oscillations with a frequency of ω ≈ 12.227 s–1 (f ≈ 1.96 Hz) can occur in this 
system.

Figure 5: The transformed system’s linear link’s resulting amplitude-phase characteristic

In  this  research,  the  system’s  behavior  in  the  time domain was analyzed.  For  this  aim,  the 
controller links were presented using differential equations:

 or  

 

(49)

Therefore, this system is characterized by two differential equations set and an equation that  
determines the selector switching:

(50)

(51)

The system remains stable when the condition is met: Y10 = 1, Y20 < 1 (if Y20 > 1, oscillations occur). 
In this region, the output variables change exponentially. The second circuit is closed (Figure 3), and 
Y2 reaches the steady-state value in tcontr = 0.25…0.3 seconds. At the setpoint value Y20 > 1, oscillations 
occur in the system that do not damp. Their frequency remains unchanged and is f ≈ 1.96 Hz; T = 0.427 
seconds. The oscillation’s amplitude increases as the setpoint increases.



To  eliminate  temperature  overload,  corrective  elements  are  introduced  [40].  The  selection 
condition is determined by the following expression [40, 41]:

(52)

In this research, two selection options were considered, similar to [41]:
ε2 = Y20 – Y2 = 0, (53)

ε1 = ε2. (54)
In this research, the correcting link’s Wk1(s) and Wk2(s) transfer functions are determined based on 

the selection conditions. For the first condition (53):

(55)

(56)

From the selection condition (52):

(57)

if 

(58)

and 

(59)

then ε2 = 0.
Then

(60)

(61)

For the second condition (54) expressions (55) – (57) are valid and if

(62)

(63)

(64)

(65)

For modeling and calculations in this study, the parameters of the TV3-117 engine, which is the 
Mi-8MTV helicopter’s power plant’s part, were used [42]:

(66)

(67)



where  is the output signal for the turbocharger rotor speed,  is the output signal for the gas 

temperature in front of the compressor turbine,  is the input signal for fuel consumption.

From (66),  (67)  the  gas  generator  rotor  speed   and the  gas  temperature in  front  of  the 

compressor turbine  transfer functions are obtained, identical to those in [38]:

(68)

(69)

From (67) and (68) it follows that the gas generator rotor speed controllers  and the gas 

temperature in front of the compressor turbine  transfer functions have the form:

(70)

(71)

Then, according to (60), (61), (64), (65), the first and second correction links  Wk1(s) and  Wk2(s) 
transfer functions are obtained, respectively, for conditions (53) (I) and (54) (II):

(72)

(73)

(74)

(75)

It is noted that in [38], the analytical expressions describing the first and second correcting links 
Wk1(s) and Wk2(s) transfer functions have the form:

(76)

(77)

Thus, in the refined transfer functions Wk1(s) and Wk2(s) (72)–(75) compared to (76)–(77), a decrease 
in the variable  s orders is observed, which allows eliminating high-order terms that increase the 
system’s dynamic sensitivity. In this case, only those terms are preserved that to the greatest extent 
determine the phase and amplitude characteristics necessary to compensate for inertial delays. The 
analysis shows that the dominant low-order terms (e.g., constant and linear in s) provide adequate 
delay suppression and maintenance of the required transient process, minimizing overshoot and 
stabilizing the ACS. This approach simplifies the correcting link’s model, reduces the computational 
load  and  reduces  the  high-frequency  noise  amplification,  which  significantly  increases  the 
adaptability and reliability of the helicopter TE control system.



5.2. Modeling of the TV3-117 engine’s gas temperature in front of the 
compressor turbine controller

According to Figure 3,  the Matlab Simulink 2014b software package has constructed simulation 
schemes in two versions: without correction links (Figure 6a) and with correction links (Figure 6b). 
The simulation results are shown in Figure 7. It is noted that the actuator’s (isodromic controller’s) 
transfer function is adopted, according to [38], in the form:

(78)
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Figure 6: Developed schemes for modeling the gas temperature in front of the compressor turbine 
controller: (a) without correcting links; (b) with correcting links
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Figure 7: Resulting transient processes diagrams: (a) without correcting links; (b) with correcting 
links



In Figure 7, the blue curve corresponds to the gas temperature in front of the compressor turbine 
control channel, the black curve corresponds to the gas generator rotor speed control channel, and the 
red curve corresponds to the selector switching moment. The first diagram (Figure 7a) illustrates the 
transient process before the correction link’s application: since the gas temperature in front of the 
compressor turbine controller has inertia with respect to the gas generator rotor speed controller, the 
selector switches with a delay, which leads to a temporary surge in the gas temperature transmission. 
To improve the dynamic accuracy of the system when changing the selector, it  is necessary to 
introduce correction links, which is demonstrated in Figure 7b, where more efficient selection and the 
gas temperature channel connection is ensured, excluding the specified temperature mode excess. The 
transient processes qualitative characteristic’s parameters can be quantitatively described as follows:

 The transient process’s time interval (ttrans), reflecting the system’s response speed and defined 
as the time interval from the dynamic changes beginning to the moment when the difference 
between the output signal and its new steady-state level becomes less than 5 % (for the first  
diagram (Figure 7a) ttrans1 = 4.2 seconds, and for the second (Figure 7b) ttrans2 = 3.3 seconds;
 Maximum excess in the transition period σ (overshoot), which is equal to:

(79)

For the first diagram (Figure 7a) . For the second diagram (Figure 7b) 

.  Thus,  the  correction  links  with  transfer  functions  (72)–(75) 
introduction makes it possible to virtually eliminate overshoot in the helicopter TE gas temperature in 
front of the compressor turbine control channel (the overshoot value does not exceed 1.5 %).

5.3. Test results of the neural network module for adjusting the delay 
estimation

During the research it was established that oscillations with a frequency of f ≈ 1.96 Hz (the delay is 
0.025 seconds) can occur in the developed controller. Therefore, it is advisable to conduct a delay 
dynamic’s research in this frequency vicinity. For this aim, the Mi-8MTV helicopter flight tests results, 
the power plant of which consists of two TV3-117 engines [42], are used (the data for the left engine 
are used in the research). In response to an official request sent by the authors to the Ministry of  
Internal  Affairs  of  Ukraine,  information  was  obtained  on  the  gas  temperature  in  front  of  the 

compressor turbine ( ) and the gas generator rotor speed (nTC) in the nominal engine operating 
mode. The request was fulfilled within the research project “Theoretical and Applied Aspects of 
Aviation Sphere Development” (number 0123U104884) framework. The data was obtained based on 
the Mi-8MTV helicopter’s flight tests. The experiments were conducted at an altitude of 2500 meters 
above sea level. The test duration was 320 seconds. The sampling step was 0.25 seconds.

The  nTC and   data obtained during the Mi-8MTV helicopter’s flight tests using the onboard 
monitoring system were preliminarily cleared of noise interference and abnormal emissions. After 
that, they were transformed into time series are the parameter’s sequences ordered by time [43]. To 
ensure the time series with different scales comparability, the z-normalization procedure was applied:

 

(80)

where N = 1280.

Thus, the parameters nTC and  resulting dynamic diagrams after data normalization have the 
form shown in Figure 8.



The nTC and  normalized values formed the training dataset, which fragment is presented in 
Table 2. It is noted that the dataset is homogeneous according to the Fisher-Pearson [44, 45] and  
Fisher-Snedecor [46, 47] criteria (the homogeneity assessment results are presented in Table 3).
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Figure 8: Dynamic diagrams of the TV3-117 engine’s gas generator rotor speed (a) and gas 
temperature in front of the compressor turbine (b)

Table 2
Training dataset fragment

Number nTC parameter  parameter
1 0.985 0.983
… … …

256 0.983 0.981
… … …

512 0.977 0.975
… … …

768 0.981 0.983
… … …

1024 0.982 0.987
… … …

1280 0.986 0.989

Table 3
Results of the training dataset homogeneity assessing according to the Fisher-Pearson and Fisher-
Snedecor criterions

Parameter The χ2 calculated value / 
The χ2(α, 1) critical value

The Fij calculated value / 
The Fcritical(α = 0.01, 1279) 

critical value

Decision on the training 
dataset homogeneity

nTC 6.418 / 6.6 1.122 /1.139 The dataset is 
homogeneity.6.476 / 6.6 1.128 /1.139

To check the training dataset (Table 2) representativeness, the cluster analysis method (k-means 
[48]) was used. The training and test datasets were formed by random division. The proportion was 
2:1,  which is 67 and 33 % (858 and 422 elements,  respectively).  The training dataset’s  (Table 2) 
clustering revealed 8 groups (classes I...VIII). This indicates the eight clusters identification. This  
observation confirms the training and test datasets (Figure 9) structure’s similarity. Based on these 

results, the optimal dataset sizes for the nTC and  parameters values were established. The training 
dataset consisted of 1280 elements (100 %). The control dataset consisted of 858 elements (67% of the 
training dataset). The test dataset consisted of 422 elements (33% of the training dataset).



a

b

Figure 9: The parameters nTC and  values cluster analysis results: (a) training dataset (858 
elements); (b) test dataset (433 elements)

The proposed fully connected neural network (see Figure 2), consisting of two hidden layers with 
16 and 8 neurons, respectively, was trained using the Keras library [49]. The “time_delay” factor was 
separately allocated for the predict,  and the original  dataset  was divided into training and test  
datasets, where the test dataset constituted 33 % of the total amount. SmoothReLU [35] was chosen as 
the activation function for the hidden layers, and the mean square error (MSE) [35] was used as the 
optimization criterion. The model was optimized using the Adam algorithm with the training step 
parameter set as 10i, where i varies from 1 to 4. Each configuration was trained for 10 epochs, after 
which the most successful one was selected based on the loss function and predict accuracy indicators, 
which was then further trained for 100 epochs. The best results were demonstrated by the model 
configured with the Adam optimizer (training rate 0.0001) and two hidden layers containing 460 and 
230 neurons, with SmoothReLU activation [35].

Figures 10 and 11 show the neural network’s accuracy and loss diagrams. The obtained diagrams 
prove the neural network’s convergence on 100 training epochs, since both the accuracy and loss on 
the training and test datasets coincide on the 100th training epoch. In this case, the accuracy reaches 
0.99537 (99.537 %), and the loss decreases to 0.00511 (0.511 %). It is noted that after the 100th training 
epoch,  the  neural  network’s  occurs  overtraining effect.  The neural  network’s  overfitting effect, 
observed after 100 training epochs, is that the model begins to adjust too precisely to the training 
dataset, including its noise and random deviations, instead of identifying general patterns, which 
result the data on the training dataset continues to demonstrate high accuracy and low loss, and on 



the test (validation) set, a deterioration in performance is observed, since the model loses the ability to 
generalize to new data, having begun to “remember” the training dataset’s specific features, which 
reduces its practical applicability.
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Figure 10: The developed neural network’s accuracy metric diagram

Training epoch number
0 10 20 30 40 50 60 70 80 90 100

Lo
ss

0

0.005

0.01

0.015

0.02

0.025
Model loss

Train
Test

Figure 11: The developed neural network’s loss function diagram

Thus, it was found that further training leads to the neural network’s generalization abilities 

deterioration. To prevent this effect, early stopping [50, 51] and regularization  in (33) 
were applied.

The developed neural network’s predictive assessment ability was carried out on a test dataset, 
where Figure 12 shows a diagram demonstrating the delay value’s predicted results correspondence to 
the actual data.
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Figure 12: Diagram of predicted delay values vs. reference values

The predict errors distribution’s analysis was also conducted, presented in Figure 13. It follows 
from the diagram that the developed model demonstrates high accuracy in determining delays in the 
gas temperature control channel based on the factor’s given set, without an error’s obvious bias in any 
direction.
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Figure 13: The predicted delay value’s deviations distribution histogram

To assess the predicted delay values with the observed data correspondence, the determination 
coefficient and its adjusted version were calculated [52]. The obtained results R2 = 0.9717 and adjusted 
R2 = 0.9720 indicate a significant degree of relations between the neural network’s predicts and the 
reference data.

To improve the predicted value’s accuracy, a confidence interval construction technique is used, 
which aim is to take into account uncertainties arising from errors in data collection, errors in 
reference values, or random noise generated by a neural network with a reliability given level. Since 
there  is  no  strictly  mathematically  sound  algorithm  for  determining  such  intervals  for  neural 
networks, a quantile approach is proposed: the interval boundaries for the 95% reliability level [53] are 
set based on the quantiles of 0.025 and 0.975, which leads to the interval [–1.162; 1.077], covering  
forecast errors in 95% of the model cases (Figure 14).
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Figure 14: The predicted delay value’s deviations distribution histogram with 95% interval of 
predicted value’s deviations

Considering that 95 % of the neural network errors fall within this interval, we can conclude that 
for any predicted value of τ the following confidence interval is valid: [τ – 1.162; τ + 1.077].

Figure 15 shows the dependence of the delay values on the frequency in the range from 1.9 to 2.1  
Hz, with special attention paid to the 1.96 Hz point, where pronounced oscillations are recorded, 
which may indicate the system’s resonance effects or specific dynamic features. The neural network 
use in this context has a positive effect on reducing the delay, since it is able to model complex 
nonlinear relations between system parameters and accurately predict optimal control modes, which 
ensures the control signal’s timely correction. Due to the neural network’s adaptability, it is possible 
to achieve a faster system response (the delay values using the neural network did not exceed 0.016 
seconds, which is 36 % higher compared to the case without using a neural network), the operation 
stabilization in critical frequency ranges and, as a result, a significant reduction in delay.
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Figure 15: Diagram of the delay value’s dynamics in the resonant frequency vicinity

6. Discussion

In  this  research,  the  helicopter  TE’s  intelligent  gas  temperature  controller  (see  Figure  1)  was 
developed based on a double summation scheme, which allows for the measuring sensors inertial  
delays compensation and transient processes optimization in real time. Its special feature is the 



integration of adaptive algorithms with a differentiator and a neural network module, providing 
dynamic correction of control parameters and high control accuracy (up to 99.5 %).

A method has been developed based on a mathematical  model  of  delayed dynamics (1)  and 
determination of the control error (2), where the state is predicted using Taylor series expansion (6). 
The intelligent  control  law (8),  supplemented by the coefficient’s  adaptive correction using the 
gradient descent scheme (9), allows real-time optimization of control parameters and compensation 
for inertial delays.

A neural network module for delay estimation correction (see Figure 2) has been developed, which 
is implemented using a deep fully connected neural network, which architecture is specified by (28)–
(32), where the final delay estimation is determined according to (32). The module’s special feature is 
the nonlinear activation functions use in hidden layers for accurate approximation of the relations 
between input features and delay correction, which ensures the system’s dynamic adaptation in real 
time.

The neural network module’s testing results demonstrate high training accuracy: the accuracy and 
loss function diagrams (Figures 10 and 11) confirm the model’s convergence on the training and test  
datasets, and the predicted and reference delay value’s correspondence diagram (Figure 12) indicates 
small predicting errors, which is further confirmed by the errors distribution on the histogram (Figure 
13). In addition, the delay value’s dynamics analysis in the resonant frequency vicinity (Figure 15) 
shows a 36 % reduction in delay, which indicates a significant improvement in the system’s adaptive 
capabilities.

However, despite the positive dynamics and results achieved, the research has some limitations:
1. The modeling and testing results were obtained on the experimental data limited set basis 
(Figures 7 and 8), which may reduce the methodology applicability in conditions other than the test 
dataset.
2. The neural network module’s overtraining effect is observed (Figures 10 and 11), which limits 
its ability to generalize and may negatively affect the delay prediction in real operating conditions.
3. The approximate compensation methods use, such as Taylor series expansion (6) and transfer 
function’s simplification, may not provide sufficient accuracy of compensation for inertial delays 
during sudden changes in operating modes (Figure 15).
Future research could be structured as follows (Table 4).

Table 4
The future research roadmap

Number Research direction Action
1 Expansion of the 

experimental base and 
testing conditions

1. Conducting additional tests in various operating modes 
and  extreme  conditions  to  increase  the  data 
representativeness [54].
2. Integrating data from various helicopter platforms and 
the  experimental  dataset’s  long-term  collection  to  the 
specific conditions influence reduce [55].

2 The neural network 
module’s stability and 

generalizing ability

1. The regularization method’s design and implementation, 
ensemble models, and advanced architectures (e.g., RNNs 
or transformers) to prevent overfitting [56].
2. Application  of  adaptive  early  stopping  and  cross-
validation algorithms  to  improve  of  latency  prediction’s 
reliability [57].

3 Refining mathematical 
models for compensating 

inertial delays

1. The approximate methods extension (e.g., using more 
complex  expansions  or  alternative  dynamic  models)  to 
improve compensation accuracy,  especially  with  sudden 
changes in operating modes [58].
2. The  adaptive  self-tuning  algorithms  integration  that 
allows  the  transfer  function  parameter’s  dynamic 
adjustment in real time [59].



The research demonstrates that the innovative adaptive control methods development requires 
technological improvements while simultaneously complying with regulatory and ethical standards 
when applying it on board a helicopter, taking into account the rights and responsibilities of human 
operators [60].

7. Conclusions

The  helicopter  TE’s  intelligent  temperature  controller  has  been  developed  that  uses  a  double 
summation  scheme  with  an  adaptive  observer  and  correction  links,  which  provides  effective 
compensation for the measuring sensor’s inertial delays.

The neural network module’s implementation for delay estimation correction allows the control 
parameter’s  dynamic  adaptation  in  real  time,  which  is  a  significant  improvement  compared  to 
traditional approaches.

Simulation showed a reduction in overshoot from 8.0 to 1.5 % and a reduction in the transient 
process time from 4.2  to 3.3 seconds,  and the neural  network module’s  testing demonstrated a 
forecasting accuracy of 99.537 % (losses is 0.511 %) with a determination coefficient of R2 = 0.9717 and 
a reduction in delay to 0.016 seconds (an improvement of 36 %).

In the future, authors are going to explore the experimental base and testing conditions expansion, 
including additional tests in various operating modes [61] and the data integration [62] from various 
helicopter platforms to reduce the specific conditions influence. They also plan to develop robust 
neural network modules using regularization methods [62],  ensemble models [63],  and adaptive 
algorithms [64], as well as refine the mathematical models for compensating for inertial delays by 
integrating adaptive self-tuning algorithms [65, 66] in real time.
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