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Abstract

This study evaluates the effectiveness of physics-informed neural networks (PINNs) for solving both
stationary and non-stationary partial differential equations (PDEs), including those with Robin boundary
conditions, in rectangular and non-rectangular domains. Although only a small subset of the PINN literature
examines mixed boundaries or tackles non-rectangular geometries, and even fewer studies benchmark
accuracy against the finite-element method (FEM), the present work provides precisely that comparison. We

test feedforward PINNs with tanh activation, whose depth and width were empirically selected for each

benchmark to balance accuracy and training cost; training uses Adam optimization with Glorot initialization.
These networks are evaluated on three problems: a 2-D Laplace equation on a square (Dirichlet-Neumann-
Robin), the same equation on a doubly connected domain with Dirichlet boundary conditions, and a 1-D non-
stationary heat equation with Robin boundaries. A weighted mean-squared residual, evaluated via automatic
differentiation in TensorFlow, balances equation, boundary, and initial-time terms, thereby handling non-
stationary problems without a separate time-stepping scheme. Within the tested class, linear, second-order

parabolic and elliptic PDEs in 1-D and 2-D, the network attains < 3 % [_error relative to analytical or FEM

solutions after 4-6 min of training on an RTX 3080 Ti Laptop GPU, matching FEM accuracy while eliminating
meshing and easing equation and boundary changes. The time to compute a standard PINN solution is longer
than for a FEM solution for problems considered in the research, and a broad literature review reveals
theoretical convergence limits that constrain standard PINNs to modest-scale, well-conditioned diffusion
problems.
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1. Introduction

In the contemporary scientific community, significant attention is dedicated to developing numerical
methods for solving differential equations, which have applications across various scientific and
engineering fields. A leading technology in this domain is physics-informed neural networks (PINNs)
[1, 2, 3], which integrate physical laws directly into the neural network training process [4], ensuring
high accuracy and efficiency in solving complex problems. This relies on the universal approximation
theorem: any continuous function on a compact set can be approximated arbitrarily well by a
sufficiently large multilayer feedforward network with a non-polynomial activation [5].

PINNs have undergone significant advancements, enabling them to solve a broader spectrum of
partial differential equations (PDEs), including one-dimensional, nonlinear, and two-dimensional
stationary problems [6, 7, 8]. The framework presented in [9] facilitates both forward and inverse
problem-solving involving nonlinear PDEs. Recent modifications of PINNs include VPINNs [10],
which reformulate the loss function using a variational (weak) formulation to improve robustness,
KANN-based models [11] that leverage Kolmogorov—-Arnold Networks for enhanced parameter
efficiency and faster convergence, and others. While they demonstrate impressive examples, several
gaps persist: (i) mixed Robin conditions are rarely tested. To our knowledge, only five studies [12, 13,
14, 15, 16] explicitly address Robin boundary conditions in PINNs, even though the overall PINN
literature numbers in the hundreds. Moreover, those works focus on specialized PINN variants rather
than the standard PINN formulation employed here; (ii) comparison usually is done with an analytical
solution, and FEM is usually absent. Only one of the articles mentioned compares PINN with FEM. To
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our knowledge, the literature still lacks a systematic PINN vs FEM comparison for equations of
diffusion type, such as the 2-D Laplace equation and the 1-D heat equation, when mixed Dirichlet—
Neumann-Robin conditions are imposed on rectangular domains or when purely Dirichlet boundary
conditions are prescribed on non-rectangular geometries. Our work closes these gaps by providing a
comparison of [[Ipmmirku]diffusion and heat-conduction problems with analytically known or FEM
solutions. Also, some papers like [1, 2] use training datasets generated from another solver, while in
our approach we only have physics loss.

This research is driven by the need for methods capable of solving physical problems with high
accuracy and low computational costs. Traditional numerical methods, such as the finite element
method (FEM) [17, 18], often require substantial computational resources and time, especially for
multidimensional systems, nonlinear problems, and heterogeneous media.

The goal of this study is to determine the accuracy and computational cost trade-offs under which
a mesh-free PINN can replace FEM for linear, second-order parabolic and elliptic PDEs. We
demonstrate this on stationary 2-D problems, rectangular domains with mixed boundary conditions
and non-rectangular domains with Dirichlet boundary conditions, and on a 1-D non-stationary heat-
conduction problem, testing PINN predictions against analytical and FEM solutions.

2. Methodology

A physics-informed neural network is a feedforward neural network that incorporates the laws of
physics, which are defined by differential equations, into the learning process. Figure 1 shows a PINN
architecture with an input layer, hidden layers, an output layer and components of a loss function.

In our case, the algorithm of this approach can be presented as follows:

e  Set datasets for training: for the equation, for the boundary and initial conditions;

e  Define the calculation of the necessary derivatives for the equations that are used in the loss

function;

e  Define the loss function for the equation and boundary conditions;

e  Train the PINN to find an approximate solution by minimising the loss function.
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Figure 1: Architecture of a physics-informed neural network for solving the non-stationary heat
equation.

It is assumed that all the necessary input data are initially set, after which the neural network is
trained, and the values at specific points are predicted. If any of the input parameters are modified, the
neural network must be retrained.

The loss function is calculated as the sum of the mean squared errors (MSE) of the equation values,
initial and/or boundary conditions.

The MSE is calculated according to formula (1).

MSE(e):%Z e, (1)
i=1

where e is a vector of length n (n is the number of training points) obtained after substituting the
obtained approximation from the neural network into the equations or initial/boundary conditions.



The loss function is:

L=A,MSE +A, MSE,+A. MSE , (2)
where MS E, is the error of satisfaction of the equation, MS E, is the error of satisfaction of the

boundary conditions, MS E; is the error of satisfaction of the initial condition, A,, A, and A; are
weighting factors to balance the influence of different components of the loss function. The
magnitudes of residuals of PDE, boundary conditions and initial condition can differ by orders of
magnitude, one term may dominate the total loss, preventing the network from accurately enforcing
the other conditions; this imbalance motivates careful choice of the weights.

The physics-informed neural networks were developed using Python and TensorFlow (TF)
version 2. TensorFlow's automatic differentiation mechanism [19] was used to calculate the values of
the loss function and determine all the necessary derivatives, both from the known and the desired
function. The Adam (adaptive moment estimation) algorithm [20], a stochastic gradient descent
method based on estimates of the first and second moments of gradients, was used to optimize the
model’s parameters. To initialize the weights, we used the Glorot Normal initialization [21], which
initializes the offset value to zero, and the weights for each layer are determined from the normal
distribution formula.

For computing the loss and the necessary derivatives in TF, automatic differentiation was used.
During the forward pass of the neural network, TF creates a computational graph that stores the
operations performed on the tensors and their sequence. In the automatic differentiation step, the
chain rule is applied to compute the derivative of the loss function with respect to the weight
coefficients and biases based on the computational graph obtained during the forward pass.

The neural networks were trained on an Nvidia GeForce RTX 3080 Ti Laptop graphics card.

The finite element method is implemented using the FEniCS library using piecewise linear basis
functions for the approximation.

The Crank-Nicolson method, defined by (3), was used for time discretisation. This method is
certainly numerically stable for diffusion equations and beyond. It has a second-order accuracy with
respect to At.

un+1:un+%(Fn+Fn+1)’ (3)
where At—{ is the value of the time discretisation step, y"—/, is the approximate solution at time
t,= % ne { 0,1,2,...,N } —( is the time step number, N — (is the number of time steps, u’— (is the

initial condition, F, is the right-hand side of the non-stationary equation at time t,,.

3. Strengths and Limitations

Advantages of PINNs:
e  Flexible problem setup. Changing the governing equations or boundary conditions is
straightforward, which makes adapting to new problems easy;
e  Geometry-agnostic modeling. PINNs can handle arbitrarily complex domains without
requiring a mesh, simplifying the treatment of intricate geometries. Training points density must
still reflect local solution scales; poor sampling can harm accuracy;
e  Built-in physics knowledge. By embedding the differential equations directly into the
network’s loss, PINNs leverage a priori knowledge of the problem structure, improving both
accuracy and efficiency;
e  Multidimensional and time-dependent capability. A single PINN formulation can solve
stationary and non-stationary, low- or high-dimensional problems without resorting to separate
time-discretization schemes;
e Advanced optimization. They can exploit state-of-the-art training algorithms and
regularization techniques to accelerate convergence;
e Interoperability. PINNs integrate seamlessly with other machine-learning algorithms and
data-driven methods.



Disadvantages of PINNs:

e  Risk of local minima. Like all gradient-descent-based approaches, PINNs can become trapped
in local minima, yielding suboptimal solutions;

e  Hyperparameter sensitivity. Selecting the optimal network architecture, learning rate,
weighting of loss terms, etc., often demands extensive tuning and computational effort;

e  No guaranteed convergence. There is no general convergence guarantee for PINN training—
particularly on highly nonlinear problems and with multiple local minima, so gradient-based
optimization may never find the true (global) solution.

e High computational cost. Training PINNs on large-scale or high-dimensional tasks can
require substantial CPU/GPU resources, which may limit their practical use in some settings.

Recent theory proves convergence of PINNs only in narrow settings—e.g., linear second-order
elliptic and parabolic PDEs with smooth coefficients (Holder-continuous) and infinite points samples
[22]. For the general nonlinear, stiff, or multimodal (loss landscapes containing many distinct local
minima or several alternative solutions) case, no global convergence proof exists; instead, empirical
studies reveal gradient-flow pathologies (vanishing, exploding, or mutually orthogonal gradients) that
stall training in local minima [23], failure modes in which the network fails to capture even basic
physical scenarios [24], and a sharp drop in success probability as PDE order or dimensionality rises
[25, 26]. Attempts to fix these issues—loss-term re-weighting [27], curriculum sampling [28] or
symmetry [29] — improve robustness but still lack rigorous guarantees. Comprehensive convergence
theory therefore remains an open research problem, and practitioners must validate results against
reference solvers or a posterior error estimators [30, 31].

4. Results and discussions

4.1. Problem 1

Let us consider the boundary value problem for stationary diffusion:

Au=0,xeQ=(0;1)x(0;1), (4)
u=0onl’, (5)
ou
—=0onT),, 6
an onl, ( )
u=lonl, (7)
u
—=uonl,. 8
an o 4 ( )
Table 1
Selected hyperparameters of the neural network for the problem (4)-(8)
Learning speed Nodes on one Hidden layers Number of Stopping Activation
axis neurons in criterion function
one layer (loss)

le-2 11 3 10 le-3 tanh
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Figure 2: a) The loss function up to the final epoch. b) The loss function from the 1000th to 3000th
epoch.
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Figure 3: The approximate solution of (4)-(8) obtained by PINN after 13900 epochs.

Figure 2 illustrates that after 1000 epochs the NN achieved loss as low as 0.01, compared to initial
value around 9. Also, in Figure 2 b) can be seen how the network tries to get out of local minimum to
get a better solution, closer to the global minimum. Figure 3 illustrates solutions obtained by PINN
after 13900 epochs of training. This neural network has 261 parameters to train. Training of the PINN
took 3 min 49 sec to achieve the loss given in Table 1. The average training time is 4 minutes and 33
seconds among the 5 training sessions. The deviation of the average time from the minimum time in
the sample data is 53s, and from the maximum training time is 89s.

To balance the influence of different components of the loss function, the following coefficients
were chosen in (2): for Robin's condition on the right boundary I',, A=2, all other A coefficients are
equal to one.

For the FEM, linear rectangular finite elements on a 10x10 grid were used.

Figure 4 and Figure 5 show that the approximate solution corresponds to the error in [,, norm of
2.92 % calculated in Table 2. In Figure 5, we can clearly see that NN, which is a non-linear function,
tries to approximate a line. Therefore, we will always observe some deviations, even as the number of
epochs or the number of training points increases.

The relatively low relative error in the [, norm (2.92 %) indicates that the PINN approximates the
stationary diffusion problem with high accuracy, comparing favorably with the FEM results. The
careful selection of loss coefficients, particularly using A=2 for the Robin boundary condition,
appears to be instrumental in balancing the contribution of various loss components. This balance is
essential to achieve a stable convergence and accurate solution. Overall, these findings suggest that



PINN is a viable alternative for solving such boundary value problems, especially when rapid
adjustments to the problem setup are required.

Table 2
Error between the approximate solutions obtained by PINN and FEM for problem (4)-(8)
Type of error Error value (13900 Error value (6000 Error value (3000
epoch) epoch) epoch)
Mean square error 6.86e-06 5.12e-05 2.62e-05
Relative error in the [,norm  2.92 % 4.2 % 5.24%
Relative error in the l,norm  0.41% 1.12 % 0.81%
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Figure 4: a) The approximate solution of (4)-(8) obtained by PINN and FEM for I',.

approximate solution of (4)-(8) obtained by PINN and FEM for I',.

Values of u on top boundary (x2=1.0)

Values of u on bottom boundary(x.=0.0)
7 1.03 o

000259, ox10 .- —— Uy 10x10 {
UFE\20X20 P y UFEM 20X20 1
=== Upmn === Upmn V‘
1.02 !
0.0020 1 / !
/, i
/ |
1
/ I
’ 101 ‘r

y p—

0.0015 - 1 !
i
|

B E N i
1.00 ~ '
£ S " A N A - Y |

0.0010 - T 3 !

\\‘ \ 1
e - \ {
=" 0.99 v !
Y ]
0.0005 + ]
\ /
\ i
\ /
098 R /
/
/
0.0000 | ’
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 Lo
X1

X1
a)

Figure 5: a) The approximate solution of (4)-(8) obtained using PINN and FEM for I';. b) The

approximate solution of (4)-(8) obtained using PINN and FEM for I,

4.2. Problem 2

Let us consider a one-dimensional non-stationary problem for the heat conduction equation:

ou_o’u

ot ox

u (x, 0):sin(nx)—sin(2 nx)+sin (3 nx).
The analytical solution for (9)-(12) is obtained by applying the method of separation of variables:

ulx,t)=e 2t in (2 7x )+ 4

2
-

2’

‘sin(mx)—e

(t,x)€(0;0.2)x(0;1), )
ul0,t)=0, (10)
u(1,t)=0, (11)

(12)

(13)



+e P gin (3.

This neural network has 1981 parameters to train. Training of the PINN took 5 min 42 sec to
achieve the loss given in Table 3. The average training time is 4 minutes and 17 seconds among the 5
training sessions. The deviation of the average time from the minimum time in the sample data is 77s,
and from the maximum training time is 95s.

To balance the influence of different components of the loss function, the following coefficients
were chosen in (2): for the initial condition (when t =0) A=5, for the Dirichlet conditions on the left
and right boundaries A=>50, and for the equation A=0.7.

For the FEM, linear rectangular finite elements on a 25x25 grid were used.

Figure 8 and Figure 9 show that the approximate solution corresponds to the errors calculated in
Table 4 (the error between the PINN and the analytical solution in the [ norm is 1.17 %). Figure 9 once
again shows, that we approximate a line with the non-linear function in form of the neural network
and will always get some deviations for approximating linear function. Also, in Table 4, we can see the
error values for different numbers of epochs.

Figure 6 shows a graph of the loss function up to the final epoch, as well as from the 1000th to
3000th epoch. From Figure 6 a) after 4000 epoch small spikes of values of the loss functions are
observed, as the optimizer tries to get out of local minimum to get closer to the global minimum.
Figure 7 shows the approximate solution obtained by the PINN after 12441 training epochs.

Table 3
Selected hyperparameters of the neural network for the problem (9)-(12)
Learning speed Nodes on one Hidden layers Number of Stopping Activation
axis neurons in criterion function
one layer (loss)
Se-4 25 3 30 2e-2 tanh
Loss function Loss function from 1000 to 3000 epoch
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Figure 6: a) The loss over training epochs for the problem (9)-(12) up to the last 12441st epoch. b) The
loss over training epochs for the problem (9)-(12) from the 1000th to 3000th epoch.
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The approximate solution of (9)-(12) using PINN, FEM and the analytical solution at the final time
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Figure 9: Figures a) and b) show the graphs of the approximate solution of (9)-(12) using PINN and
FEM on the left and right boundaries.

Table 4

Error between the approximate solutions obtained by PINN and the analytical solution (13) for the
problem (9)-(12)

Type of error

Error value (12441 Error value

(6000 Error

value (3000
epoch) epoch) epoch)
Mean square error 4.91e-05 54 1.81
Relative error in the [,norm  1.17 % 98.7 % 1e02 %
Relative error in the l,norm  1.69 % 88.8 % 83.1%
Table 5

Error between the approximate solutions obtained by PINN, FEM and the analytical solution (13) for
the problem (9)-(12). Separate training session from results from Table 4

Type of error

PINN and FEM PINN and analytical FEM and analytical
Mean square error 6.43e-05 7.01e-05 le-05
Relative error in the [,norm  1.72% 1.72% 1.07%
Relative error in the Lnorm  1.95% 2.03% 0.76 %

The error trends presented in Table 4 show that longer training (more epochs) yields more accurate
approximations, as seen by the decrease in mean square error with increased training. The relatively
low error in the [, norm (1.17 % at 12441 epochs) underscores the robustness of the PINN approach for
this non-stationary heat conduction problem. Furthermore, the carefully chosen loss coefficients —
particularly the higher weights for the boundary conditions — appear to contribute to the stable
convergence of the solution. Moreover, Table 5 — presenting results from an independent training
session that compares PINN with FEM and the analytical solution — shows that the relative errors are
consistently low (approximately 1.72 % for PINN against both FEM and the analytical model and 1.07

% for FEM against the analytical solution). These results validate the effectiveness of PINN in

capturing the dynamics of time-dependent problems while also highlighting the trade-off between
training time and solution accuracy.

4.3. Problem 3

Definition. Let there be two closed connected domains X U & R?> such that X €U,
0X /) 0U=.4 . Then, a doubly connected domain is a domain D such that: D=U \ X.

Let D  R*—( a limited doubly connected domain with sufficiently smooth boundaries I';,
r,ec ? whose parametric definitions are given by (14) and (15).

I,={x,(p)=(2cos(p),2sin(g))),p €[0,2n]), (14)



F2:Ixz((p):(Scos(q)),SSin(go))),q) €[0,2n]]. (15)

Let us consider the problem of stationary heat conduction in a doubly connected domain D:

Au=0in D (16)
and boundary conditions

u=xonl',, (17)

u=0onlrl’,. (18)

This neural network has 1981 parameters to train. A pseudo-random number generator was used
to generate the input data. The neural network was trained for 4 minutes and 20 seconds to achieve
the losses given in Table 6.

To balance the influence of different components of the loss function, the following coefficients
were chosen in (2): for the Dirichlet conditions on the left and right boundaries A=50 and for the
equation A=0.7.

For the FEM, 197 linear triangular finite elements were used.

Figure 10 shows how the loss function decreases rapidly at the initial learning epochs. Figure 11
shows the approximate solution obtained by the PINN after 10611 training epochs. Graphs on the
boundaries and errors for the entire domain for the last epoch and intermediate ones are shown in
Figure 11 and Table 7, respectively. Figure 12 illustrates the values of the analytical solution and the
approximate solution obtained by PINN after training and on intermediate epochs. As can be seen
from the approximate solution in Figure 12 b) on intermediate epochs, u is approximated by a
nonlinear function (NN consists of tanh activation functions and linear combinations), and the more
we train NN, the closer it will get to a straight line, but will always contain some deviations.

Table 6
Selected hyperparameters of the neural network for the problem (16)-(18)

Learning speed  Number of Hidden layers Number of Stopping Activation
internal points neurons in criterion function
and on the one layer (loss)
border

Se-4 500 and 50 3 30 le-3 tanh

Loss function Loss function from 1000 to 3000 epoch
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Figure 10: a) The loss over training epochs for the problem (16)-(18) up to the last 10611 epoch. b) The
loss over training epochs for the problem (16)-(18) from the 1000th to 3000th epoch.
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Figure 12: a) The approximate solution of (16)-(18) obtained by PINN (10611 epochs, 3000 epochs, 100
epochs) and the analytical value for I';. b) The approximate solution of (16)-(18) obtained by PINN

(10611 epochs, 3000 epochs, 100 epochs) and the analytical value for I',.

Table 7
Error between the approximate solutions obtained by PINN and FEM solution for the problem (16)-

(18)
Type of error Error value (10611 Error value (6000 Error value (3000
epoch) epoch) epoch)
Mean square error 0.613 0.666 0.75
Relative error in the [,norm  2.26 % 9.54 % 77.4%
Relative error in the [,norm 1.95% 10.2 % 63.8%

The rapid decrease in loss during the early training epochs (as seen in Figure 10) demonstrates
that the PINN quickly adapts to the challenges posed by the doubly connected domain. Despite the
added complexity due to the domain geometry, the PINN achieves a competitive performance relative
to the FEM approach, as indicated by the error metrics in Table 7. The gradual improvement in
accuracy with extended training epochs underscores the importance of adequate training, especially
for complex geometries. These results support the potential of PINNSs for application in more intricate



heat conduction problems and suggest that further research into optimization strategies for training
time reduction could yield even better performance.

5. Conclusions

This study set out to determine whether a compact feedforward PINN can reproduce finite-element
(FEM) accuracy for linear, second-order parabolic and elliptic PDEs while accommodating mixed
boundary conditions or non-rectangular geometries. For each problem: 2-D Laplace on a square, the
same equation on a doubly-connected domain, and a 1-D non-stationary heat-conduction problem—
the network depth and width were tuned empirically to minimize loss within a fixed training time.
The resulting models achieved [, errors of 2.92 %, 2.26 % and 1.17 %, respectively, after 4-6 minutes of
training on an RTX 3080 Ti Laptop GPU, matching FEM accuracy while eliminating mesh generation
and allowing rapid modification of governing equations or boundary conditions. Because time is
treated as an additional input, the non-stationary case required no explicit time discretization scheme,
further simplifying implementation. These results indicate that, for canonical diffusion problems in
one and two dimensions with constant coefficients, a mesh-free PINN can match FEM accuracy when
development flexibility outweighs computation time. These empirical results apply to the constant-
coefficient cases we tested; however, convergence proofs [22] hold more generally for linear second-
order parabolic and elliptic PDEs with Holder-continuous (smooth) coefficients, so the theoretical
foundation extends beyond the constant-coefficient setting.

The experiments also outline clear performance boundaries. Training remains markedly slower
than FEM for comparable resolution, and optimization is sensitive to the relative weighting of interior,
boundary and initial residuals. A broader survey of the literature shows that standard PINNs can
struggle on more challenging PDEs: convergence proofs are still absent for nonlinear, stiff, high-
frequency, or higher-order cases, and empirical work reports gradient-flow pathologies: vanishing,
exploding, or mutually orthogonal gradients—that stall training and become more severe in higher
spatial dimensions. Although our experiments focused on constant-coefficient diffusion problems,
existing convergence theorems guarantee PINN convergence for any linear second-order parabolic or
elliptic PDE with Holder-continuous coefficients [22], and these theoretical and empirical findings
together indicate that today’s standard PINNs remain most reliable on modest-scale, well-conditioned
diffusion examples.

Future research should slash training cost and enable high-dimensional scalability; extend PINNs
to nonlinear, stiff, coupled, and stochastic PDEs; and rigorously validate their advantages on
engineering and physical-science problems where meshing or classical solvers are prohibitive.
Achieving these goals will elevate PINNs from promising prototypes to versatile, production-ready
solvers.
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During the preparation of this work, the authors used Grammarly in order to: Grammar and spelling
check. After using this tool, the authors reviewed and edited the content as needed and take full
responsibility for the publication’s content.

References

[1] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics Informed Deep Learning (Part I): Data-driven
Solutions of Nonlinear Partial Differential Equations, arXiv preprint arXiv:1711.10561, 2017.
doi:10.48550/arXiv.1711.10561.

[2] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics Informed Deep Learning (Part II): Data-driven
Discovery of Nonlinear Partial Differential Equations, arXiv preprint arXiv:1711.10566, 2017.
doi:10.48550/arXiv.1711.10566.

[3] S.R.Vadyala, S.N. Betgeri, Physics-informed neural network method for solving one-dimensional
advection equation wusing PyTorch, arXiv  preprint arXiv:2103.09662, 2021.
doi:10.48550/arXiv.2103.09662.

[4] C.C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018, 497 p. doi:10.1007/978-3-
319-94463-0.


https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.48550/arXiv.2103.09662
https://doi.org/10.48550/arXiv.1711.10566
https://doi.org/10.48550/arXiv.1711.10561

[5] K.Hornik, M. Stinchcombe, H. White, “Multilayer feedforward networks are universal
approximators,” Neural —Networks, vol.2, mno.5, pp.359-366, 1989. doi:10.1016/0893-
6080(89)90020-8.

[6] D. Alianakh, Implementation of a physics-informed neural network for solving partial
differential equations, in: Proc. of the International Student Scientific Conference on Applied
Mathematics and Computer Science (ISSCAMCS-2023), Lviv, May 4-5, 2023, pp. 64-67. [In
Ukrainian]. URL: https://ami.Inu.edu.ua/wp-content/uploads/2023/06/ISSCAMCS-2023.pdf.

[7] D. Alianakh, I. Dyyak, M. Selivanov, Development of deep learning for mathematical physics
problems, in: Proc. of Modern Problems of Applied Mathematics and Computer Science
(APAMCS-2023), Lviv, November 7-9, 2023, pp. 76—78. [In Ukrainian]. URL: https://Inueduua-
my.sharepoint.com/:b:/g/personal/petro_venherskyy_Inu_edu_ua/
EWrUlRyg9cxHvbPBBphmdbcBXPG3nHiGuhcjvlj7NQ118g?e=I02B8o.

[8] Y. Zong, Q. He, A.M. Tartakovsky, Physics-Informed Neural Network Method for Parabolic
Differential Equations with Sharply Perturbed Initial Conditions, arXiv preprint
arXiv:2208.08635, 2022. doi:10.48550/arXiv.2208.08635.

[9] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations, J. Comput. Phys. 378 (2019) 686—-707. doi:10.1016/j.jcp.2018.10.045.

[10] E. Kharazmi, Z.Zhang, G.E.Karniadakis, VPINNs: Variational Physics-Informed Neural
Networks for Solving Partial Differential Equations, arXiv preprint arXiv:1912.00873, 2019.
doi:10.48550/arXiv.1912.00873.

[11] Y. Wang, J. Sun, J. Bai, C. Anitescu, M. S. Eshaghi, X. Zhuang, T. Rabczuk, Y. Liu, Kolmogorov-
Arnold-Informed Neural Network: A Physics-Informed Deep Learning Framework for Solving
Forward and Inverse Problems Based on Kolmogorov-Arnold Networks, arXiv preprint
arXiv:2406.11045, 2024. doi:10.48550/arXiv.2406.11045.

[12] N. Sukumar, A. Srivastava, Exact imposition of boundary conditions with distance functions in
physics-informed deep neural networks, Computer Methods in Applied Mechanics and
Engineering, vol. 389, art. 114333, 2021. doi:10.1016/j.cma.2021.114333.

[13] N. Zobeiry, K. D. Humfeld, A physics-informed machine learning approach for solving heat
transfer equation in advanced manufacturing and engineering applications, Engineering
Applications of  Artificial Intelligence, vol. 101, art. 104232, 2021.
doi:10.1016/j.engappai.2021.104232.

[14] F. Sahli Costabal, S. Pezzuto, P. Perdikaris, A-PINNs: Physics-informed neural networks on
complex geometries, arXiv preprint arXiv:2209.03984, 2022. doi:10.48550/arXiv.2209.03984.

[15] R. J. Gladstone, M. A. Nabian, N. Sukumar, A. Srivastava, H. Meidani, FO-PINNs: A First-Order
formulation for Physics-Informed Neural Networks, arXiv preprint arXiv:2210.14320, 2022.
doi:10.48550/arXiv.2210.14320.

[16] Q. Yang, Y. Yang, T. Cui, Q. He, FDM-PINN: Physics-informed neural network based on fictitious
domain method, Int. J. Comput. Math. 100 (2022) 1. doi:10.1080/00207160.2022.2128674.

[17] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals,
Butterworth-Heinemann, 2013, 756 p.

[18] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis,
Dover Publications, 2000, 704 p.

[19] D. Harrison, A Brief Introduction to Automatic Differentiation for Machine Learning, arXiv
preprint arXiv:2110.06209v2, 2021. URL: https://arxiv.org/abs/2110.06209v2.

[20] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Proc. of the 3rd International
Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, May 7-9, 2015.
doi:10.48550/arXiv.1412.6980.

[21] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks,
in: Proc. of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010,
pp- 249-256. URL: https://proceedings.mlr.press/v9/glorot10a.html.

[22] Y. Shin, J. Darbon, G. E. Karniadakis, On the convergence of physics-informed neural networks
for linear second-order elliptic and parabolic type PDEs, arXiv preprint arXiv:2004.01806, 2020.
doi:10.48550/arXiv.2004.01806.

[23] P. Rathore, W. Lei, Z. Frangella, L. Lu, M. Udell, Challenges in Training PINNs: A Loss Landscape
Perspective, arXiv preprint arXiv:2402.01868, 2024. doi:10.48550/arXiv.2402.01868.


https://arxiv.org/abs/2402.01868
https://arxiv.org/abs/2004.01806
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/2110.06209v2
https://doi.org/10.1080/00207160.2022.2128674
https://arxiv.org/abs/2210.14320
https://arxiv.org/abs/2209.03984
https://doi.org/10.1016/j.engappai.2021.104232
https://arxiv.org/abs/2104.08426
https://arxiv.org/pdf/2406.11045
https://arxiv.org/pdf/1912.00873
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.48550/arXiv.2208.08635
https://lnueduua-my.sharepoint.com/:b:/g/personal/petro_venherskyy_lnu_edu_ua/EWrUlRyg9cxHvbPBBphmdbcBXPG3nHiGuhcjvIj7NQ118g?e=Io2B8o
https://lnueduua-my.sharepoint.com/:b:/g/personal/petro_venherskyy_lnu_edu_ua/EWrUlRyg9cxHvbPBBphmdbcBXPG3nHiGuhcjvIj7NQ118g?e=Io2B8o
https://lnueduua-my.sharepoint.com/:b:/g/personal/petro_venherskyy_lnu_edu_ua/EWrUlRyg9cxHvbPBBphmdbcBXPG3nHiGuhcjvIj7NQ118g?e=Io2B8o
https://ami.lnu.edu.ua/wp-content/uploads/2023/06/ISSCAMCS-2023.pdf
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8

[24] A. S. Krishnapriyan, A. Gholami, S. Zhe, R. M. Kirby, M. W. Mahoney, Characterizing possible
failure modes in physics-informed neural networks, in Advances in Neural Information
Processing Systems, vol. 34, 2021, pp. 21416—-21427. doi:10.48550/arXiv.2109.01050.

[25] Z. Hu, K. Shukla, G. E. Karniadakis, K. Kawaguchi, Tackling the curse of dimensionality with
physics-informed neural networks, Neural Networks, vol. 176, p. 106369, May 2024.
doi:10.1016/j.neunet.2024.106369.

[26] C. H. Song, Y. Park, M. Kang, How does PDE order affect the convergence of PINNs? in The 38th
Annual Conference on Neural Information Processing Systems, 2024. URL:
https://openreview.net/forum?id=8K6ulOhgtC.

[27] Q. Liu, M. Chu, N. Thuerey, ConFIG: Towards Conflict-free Training of Physics-Informed Neural
Networks, arXiv preprint arXiv:2408.11104, 2024. doi:10.48550/arXiv.2408.11104.

[28] M. Miinzer, C. Bard, A Curriculum-Training-Based Strategy for Distributing Collocation Points
during Physics-Informed Neural Network Training, NeurIPS Workshop on Machine Learning for
the Physical Sciences (ML4PS), 2022; arXiv preprint arXiv:2211.11396, Nov. 2022.
do0i:10.48550/arXiv.2211.11396.

[29] Z.-Y. Zhang, H. Zhang, L.-S. Zhang, L.-L. Guo, Enforcing continuous symmetries in physics-
informed neural network for solving forward and inverse problems of partial differential
equations, Journal of Computational Physics, vol. 492, p. 112415, Nov. 2023.
doi:10.1016/j.jcp.2023.112415.

[30] N. Doumeéche, G. Biau, C. Boyer, Convergence and error analysis of PINNs, arXiv preprint
arXiv:2305.01240, 2023. doi:10.48550/arXiv.2305.01240.

[31] M. Zeinhofer, R. Masri, K.-A. Mardal, A Unified Framework for the Error Analysis of Physics-
Informed  Neural Networks, arXiv  preprint  arXiv:2311.00529, Nov.  2023.
doi:10.48550/arXiv.2311.00529.


https://arxiv.org/abs/2311.00529
https://doi.org/10.48550/arXiv.2305.01240
https://doi.org/10.1016/j.jcp.2023.112415
https://arxiv.org/abs/2211.11396
https://arxiv.org/abs/2408.11104
https://openreview.net/forum?id=8K6ul0hgtC
https://doi.org/10.1016/j.neunet.2024.106369
https://arxiv.org/abs/2109.01050

	1. Introduction
	2. Methodology
	3. Strengths and Limitations
	4. Results and discussions
	4.1. Problem 1
	4.2. Problem 2
	4.3. Problem 3

	5. Conclusions
	Declaration on Generative AI
	References

