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Abstract
The research about implementation transfer learning in medical diagnostics is important because it allows to 
evaluate  how well  already  trained  neural  networks  can adapt  to  specific  medical  data.  This  helps  to 
understand which architectures work best, how to improve diagnostic accuracy, and reduce the risk of false 
positives.  In addition, such research contributes to the development of more reliable and interpretable  
models,  which is  critical  for physician confidence and the implementation of AI in real-world clinical  
practice.
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1. Introduction

Transfer machine learning (TML) can be useful for training analytical diagnostic models as a basis for 
medical diagnostics, as it allows you to use already pre-trained models (models after the parametric 
synthesis stage) on new, similar tasks, reducing the need for large amounts of data. In medicine, even 
modern medicine, there is often a lack of large annotated data sets – usually, this applies to rare  
diseases, or viral (less often bacterial) infections that have passed the stage of seasonal or qualitative 
mutation, or diseases at the beginning of the epidemic (as was the case with COVID-19, for example) 
[1]–[3]. That is why the ability to adapt knowledge from other industries or similar tasks is very 
valuable. For example, models trained on a large general set of medical images can be further trained 
on  smaller  specific  data  sets  for  a  specific  diagnosis,  which  improves  accuracy  and  reduces 
development time. This is especially important in radiology, where the analysis of CT, MRI, or X-ray 
images can be improved using models that have already learned to recognize common pathologies. It 
also reduces the risk of retraining, since the basic characteristics of images or signals (for example,  
tissue features or anomaly patterns) have already been studied by the model before. Unlike the 
neuroevolution approach, which usually requires a large data set to synthesize a more universal 
model, the principle of TML is to adapt an existing model to a specific, narrower task. In addition, it  
can contribute to better generalization of models, allowing them to work on different sets of patients, 
even if they differ in demographic or technical parameters [3].

TML shows good results precisely when using deep neural networks (DNNs) because of their 
ability to automatically extract and summarize complex multi-level data features. DNNs consist of 
many layers, where most layers are layers with hidden neurons, each of which learns to recognize  
certain patterns – from the simplest (edges, textures, normal indicators) on the lower layers to more  
complex (shapes, objects, splashes, pathologies) on the higher ones. This makes it possible to reuse  
already trained layers without the need for training from scratch, which is crucial for tasks where 
access to large amounts of annotated medical data is limited [2]. Moreover, retraining or complete re-
synthesis of DNN can be extremely complex and resource-intensive for a computing system, which is 
not sufficiently optimized due to the receipt of a small amount of new data (2).

This is particularly effective in areas such as medical image analysis (CT, MRI, X-ray), where the  
first layers of DNN trained on large shared datasets (such as ImageNet) can be used to recognize basic 
visual patterns, while only the last few layers are adapted to a specific task. This significantly reduces 
the need for computing resources and training time. In addition, this strategy helps to avoid re-
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learning  on  small  sets  of  medical  data,  since  the  initial  layers  already  contain  generalized 
characteristics  that  are  well  transferred  between similar  tasks,  because  the dataset  can contain 
updated data of  either individual  patients or a  specific pathology that  requires confirmation or 
refutation.

Another reason for effectiveness is the ability of DNN to work with nonlinear and complex 
relationships in data, which is important in medical diagnostic tasks where pathologies can have 
complex and variable manifestations. With TLM, high accuracy can be achieved even with relatively 
small data sets, making this approach practical and effective in real-world medical applications [1]–[3].

However, which DNN topologies to choose, which methods can help better teach a structurally 
synthesized model, how to adjust the metaparameters of methods, and, ultimately, whether such an 
approach is really optimized for medical diagnostics should be considered in this paper [1]–[3].

2. Related Works

Automation of medical diagnostics is the use of technologies, in particular data processing algorithms, 
machine  learning  and  artificial  intelligence,  to  partially  or  completely  perform  the  process  of 
detecting diseases and making diagnoses. This may include analyzing medical images (MRI, CT, X-
rays), interpreting laboratory tests, recognizing symptoms based on electronic medical records, and 
even predicting disease risks [4]–[8].

It should be noted that work on automating decision-making in medical diagnostics has been 
underway for quite a long time, which is associated with a number of important current needs:

 speed up the diagnostic process-automatic systems can significantly speed up the analysis of a 
patient's set of clinical indicators, which is critical in acute conditions (for example, stroke, heart  
attack), especially if you correctly configure the online transmission of clinical indicators after, for 
example, the actual analysis to the general system [1]–[7];
 improved accuracy – artificial  intelligence (AI)  techniques can detect  patterns and non-
obvious connections that a person may miss, even in an ultra-large data stream, reducing the risk 
of false or missed diagnoses;
 reduce the burden on doctors – automation helps reduce the share of routine work of doctors, 
giving doctors more time for complex clinical cases and communication with patients;
 increased access to health care – in the event of a shortage of qualified specialists in the  
regions  or  problems  with  the  departure  of  medical  care  to  dangerous,  restricted  locations, 
automated systems can help compensate for this shortage by providing high-quality preliminary 
diagnostics, and signal the real need to attract qualified specialists to extraordinary cases [8]; 
 standardization of diagnostic solutions – reducing the influence of the human factor allows 
you to minimize the variability in diagnosis between different doctors. 
Therefore, it is necessary to clearly distinguish between the role of AI in the processes of such 

automation – AI is a key component of automation, since it is able to:  
 process and analyze large amounts of medical data – images, tests, medical histories;
 recognize complex patterns and correlations that are difficult to detect even for experienced 
doctors [6]-[8];
 learn from previous cases-constantly improving the accuracy of predictions and diagnoses;
 perform routine tasks, such as sorting cases by risk level or automatically collecting patient 
data.  
In general, AI does not replace doctors, but acts as a tool that enhances their capabilities, helping  

them make informed decisions and improve the quality of medical services.
The TML approach has a number of key advantages over classical machine learning methods,  

which is especially important in medical diagnostics. Therefore, TML has less need for large data sets– 
classical ML models require a large amount of annotated medical data to learn from scratch. Since  
collecting and labeling such data in medicine is complex and resource-intensive, transfer training 
allows you to use already trained models, adapting them to a specific task.

On the other hand, faster adaptation to new tasks. Learning from scratch (especially in DNN) 
requires a lot of time and computing resources. TML allows you to shorten this process by reusing the 
basic characteristics you have already learned [8].  



In addition, the resulting neuromodels are better generalizability – DNNs trained on large shared 
data sets already contain knowledge of common features of images or signals, which makes them 
more resistant to changes in data than models trained only on specific medical sets. 

The derived advantage of using TML is to reduce the risk of retraining – in classical approaches,  
when training on small medical datasets, the model can remember the features of a specific set  
(whether it is a specific group of patients, a specific disease, or even a specific patient), rather than 
learn general patterns. Thanks to transfer training, the basic levels of the network already contain  
generalized knowledge, which makes the adapted model more resistant to various variations in 
medical data. As already noted, learning DNN from scratch requires powerful hardware. TML reduces 
the need for long-term training and allows you to achieve high accuracy even on less powerful  
systems, thereby increasing the efficiency of using computing resources. Also, the TML approach has 
a certain versatility: the same approach can be used for various medical tasks: analysis of X-rays, CT, 
MRI, diagnostics using electrocardiograms or histological images.  

Thus, TML is significantly more efficient than classical methods, as it allows you to adapt existing 
models to medical diagnostic tasks faster, more accurately and with less resource costs.

To clearly demonstrate this, let's look at a comparison table of different ML approaches for our 
problem of automating medical diagnostics in the form of a Table 1.

Table 1
Comparison of classical ML approaches with TML

Criteria Transfer machine learning Transfer machine learning
Need for data Smaller,  uses  already  trained 

models
Smaller,  uses  already  trained 
models

Training time Shorter,  because  it  adapts 
already trained models

Shorter,  because  it  adapts 
already trained models

Requirements  for  computing 
resources

Less, because mostly only the 
last layers are taught

Less, because mostly only the 
last layers are taught

Generalization of knowledge Better  yet,  the  basic  features 
are  already  learned  on  large 
sets

Better  yet,  the  basic  features 
are  already  learned  on  large 
sets

Risk of overfitting Lower,  because  the  model 
already has general knowledge

Lower,  because  the  model 
already has general knowledge

Flexibility in use High-can  be  adapted  for 
various medical tasks

High-can  be  adapted  for 
various medical tasks

Application examples Analysis  of  X-rays,  CT,  MRI, 
histology,  ECG,  pathology 
recognition

Analysis  of  X-rays,  CT,  MRI, 
histology,  ECG,  pathology 
recognition

Accuracy Higher,  especially  for  small 
data sets

Higher,  especially  for  small 
data sets

Practical effectiveness High-faster  implementation in 
clinical practice

High-faster  implementation in 
clinical practice

Transfer training is more effective for medical diagnostics when access to large amounts of data is 
limited and deployment speed is critical. Classical machine learning is useful when it is possible to  
build a large, high-quality dataset and train the model for a specific task.

To  date,  a  number  of  independent  and  professional  researches  [9]-[14]  have  already  been 
conducted on the introduction of TML technologies in medical diagnostics. TML involves using the 
knowledge gained by the model when solving one problem to improve results on another, often 
similar problem. This approach is particularly useful in medicine, where there is a limited amount of 
data to train models [7].

After analyzing a set of studies, we can conclude the general advantages of using TML in medicine, 
among which the researchers identified:

 resource savings: models pre-trained on large shared data sets can be adapted to specific 
medical tasks with less time and data.;



 improved accuracy: adapting models to medical data can lead to higher diagnostic accuracy, 
even with a limited amount of specific medical data.
 However, it should also be noted the general disadvantages and risks associated with the 
implementation of TML in medical diagnostics:
 risk of transferring inappropriate characteristics: if the baseline model was trained on data 
that is significantly different from medical data, this may lead to the transfer of inappropriate or  
undesirable characteristics, which will worsen the quality of diagnosis;
 interpretation problems: machine learning models, including those that use TML, can be black 
boxes, making it difficult to understand the reasons for making certain decisions that are crucial in 
medical practice;
 need for thorough validation: it is necessary to carefully test adapted models on medical data 
to ensure their reliability and accuracy before implementing them in clinical practice.
Overall, while TML offers significant benefits for medical diagnosis, it is important to consider 

potential risks and limitations while ensuring that models are thoroughly validated and adapted to the 
specifics of medical data.

As already noted, within the framework of this work, it is extremely important for us to deal with a 
number of issues related to the implementation of transfer training in medical diagnostics, namely: 
which DNN topologies to choose; which methods can help to better teach the structurally synthesized 
model; how to configure the metaparameters of methods. A similar research structure should be 
argued [.

Choosing  a  deep  neural  network  (DNN)  topology  for  transfer  learning,  configuring 
metaparameters,  and learning methods are  critical  aspects  when it  comes to  applying machine 
learning technologies to medical diagnostics. Here are some important points that explain why this is 
so important and how you can improve your results.

2.1.1. Selecting the DNN topology for transfer training.

The network topology (or architecture or structural structure) is crucial because it determines how 
the neuromodel will process data. For medical tasks, such as image diagnostics or analysis of medical 
records, architectures that are well-suited for image processing are most commonly used [15]:

• Convolutional Neural Networks (CNN)
• Recurrent Neural Networks (RNN)
 Transformer-based models (most often for sequential data).
The choice of topology affects:
 model performance: an incorrect topology may cause the model to fail to learn or process data 
efficiently;
 generalization  capability  and  quality:  it  is  important  that  the  network  can transfer  the 
acquired knowledge to new medical tasks without losing accuracy;
 model complexity: for small medical data sets, simpler models can be more efficient than 
complex ones that require huge amounts of data [16].

2.1.2. Methods for improving the training of a structurally synthesized 
model

In order to train the model more effectively, the following methods are used:
• Fine-tuning: this is the process in which a network pre-trained on a large amount of shared 
data adapts to a specific medical task. This method allows you to preserve the knowledge gained at 
the previous stage of training, and only partially retrain the model on new data [11];
• Data augmentation: in cases where medical data is limited, you can use data augmentation 
techniques to artificially enlarge the data set,  creating new examples from the original ones 
through transformations (rotation, shifting, image scaling, etc.);
• Regularization: regularization techniques such as Dropout or L2 regularization help prevent 
overfitting, which is especially important when there is not enough data for training [12].



2.1.3. Configuring metaparameters

Among the metaparameters (or hyperparameters for some methods) of methods for training 
structurally synthesized models, there are [5]:

• learning rate: it is important to adjust the learning rate correctly so that the model does not 
get stuck in local lows or learn too slowly [15];
• batch size: the batch size determines how many examples will be processed before updating 
the scale. This can affect the stability and speed of learning;
• number of epochs: the number of iterations (epochs) of training in which the network adapts 
to data is an important factor for achieving optimal results.
Transfer  training can be  a  good (if  not  the best)  approach to  implementing ML in  medical  

diagnostics in general, given the frequent problem of data limitations, because the medical field often 
lacks large data sets to train models from scratch. TML allows you to use already trained models,  
which significantly reduces the need for data and time. Moreover, since decisions often need to be 
made quickly in medicine, the use of models pre-trained on large sets of General Data allows you to 
achieve results faster, and therefore solutions based on the use of the TML approach differ in speed  
and efficiency. It is also worth paying attention to the fact that transfer training allows you to 
effectively adapt General models to specific tasks related, for example, to rare diseases or specific 
medical images. Thus, TML will help increase the adaptability of neuromodels. [16]

However, this approach also has its own risks, especially if the adaptation of the model to new 
medical  data has not been properly performed.  It  is  important that the validation performed is  
thorough and takes into account the specifics of specific medical data, otherwise there is a risk of  
incorrect diagnoses.

Transfer training has great potential for medical diagnostics due to its ability to effectively use 
limited data and reduce training time. However, it is important to carefully choose the network 
architecture, configure metaparameters, and take into account the specifics of medical data to achieve 
optimal results [17].

3. Materials and the methods

As noted earlier, DNN networks are most often used for the TML approach. Quite often, among 
medical clinical data, you can find visualized test results, for example: X-rays, or MRI or CT. Then the 
diagnostic task is a more complex task of computer vision – image recognition. That is why among all 
possible  topologies  of  DNN  networks,  we  will  choose  those  topologies  that  best  demonstrate 
themselves in working with images, namely: CNN, DenseNet, VGG16, ResNet and InceptionNet [18]-
[20]. For clarity, we will compare all the considered topologies in the form of a table: Table.2.

The CNN architecture is one of the most common architectures for image processing. It consists of 
several layers:

• convolutional  layers:  key  components  for  identifying  image  features  such  as  contours, 
textures, etc.;
• pooling layers: reduce image size while maintaining important features;
• fully connected layers: exit at the last stage for classification or regression.
Overall, CNNs are highly efficient in image recognition due to their ability to process spatial 

structures.
DenseNet or Densely Connected Convolutional Networks): this is an improved version of CNN, 

where each layer has direct connections to all previous layer [18]s. This allows the model to have 
more context and make better use of information from previous stages. Compared to conventional 
CNNs, increased learning efficiency is most often noted due to the reduction of the problem of  
gradient attenuation and improved accuracy due to the stronger exchange of information between 
layers.

VGG16 or Visual Geometry group 16: this is a deep CNN with 16 layers. It uses small filters (3x3)  
and large layers for more accurate feature detection. Of course, this architecture is easy to implement 
and learn thanks to the use of the same filters (3x3) in all layers [19].

The ResNet architecture uses the concept of skip connections, which allows you to skip certain 
layers and avoid the problem of fading gradients when training deep networks. It can work effectively 
with very deep networks (up to several hundred layers). And the structural feature improves learning 



ability by using redundant links that allow you to skip multiple layers without losing important  
information [20].

Table 2
Comparison of DNN topologies

Characteristics CNN DenseNet VGG 16 ResNet InceptionNet

Architecture

Base layers 
with 

convolution 
and pooling

Tightly 
connected 

layers

Deep CNN 
with 16 layers

Skip 
connections

Inception 
blocks with 

different 
filters

Network 
depth

Usually 10-30 
layers

Usually 100-
200 layers 16 layers

High (can 
reach 

hundreds of 
layers)

Many depth 
options 

depending on 
the 

configuration

Main 
advantage

Easy and 
efficient 
image 

processing

Improved 
learning 

thanks to 
thick 

connections

Simplicity, 
works well 
with small 

data

Skip layers 
(skip 

connections) 
for deep 
networks

Higher 
efficiency 

thanks to the 
use of various 

filters

Disadvantages

May have 
problems 
with deep 
networks

It can be 
difficult to 

calculate due 
to the large 
number of 
parameters

Large 
volumes of 

parameters, 
which can be 
a problem for 

memory

It can be 
difficult to 

train with a 
lot of 

parameters

Optimization 
is required to 

reduce 
parameters

Learning 
speed Moderate

Slower due to 
the large 

number of 
parameters

Fast training 
thanks to the 
simplicity of 

the 
architecture

The right 
setup for an 

effective 
workout

High thanks to 
the 

combination 
of different 

filters

Application in 
medicine

Diagnostics of 
medical 
images, 

pathology 
analysis

High-
precision 

image 
classification

Diagnostics of 
images with 
small details

Analysis of 
complex 
medical 
images

Wide real-
time 

application 
for image 
analysis

InceptionNet (GoogleNet): this is an architecture that includes the concept of Inception blocks,  
where filters of different sizes (1x1, 3x3, 5x5) are used for each layer in order to preserve a variety of  
functions. It differs in that it increases efficiency and reduces the number of parameters by combining 
filters of different sizes. Well adapted for real-time use [19].

We will use dropout as the basis of transfer training. Dropout is a regularization technique used in 
DNN to prevent overfitting. It randomly shuts down a certain percentage of neurons during training, 
which  forces  the  model  not  to  depend  on  individual  neurons  and  process  information  more 
universally. In the context of transfer training, dropout can be used to improve the efficiency and 
stability of the model [18]. 

In TML, we often have a model pre-trained on a large set of General Data, and then adapt it to 
specific data (for example, medical images). Enabling dropout during adaptation reduces the risk of 
retraining on new data, especially if the amount of data is limited [18].

During fine-tuning, when we adapt an already trained model to a specific task (for example, 
classification of medical images),  dropout helps to avoid over-training on a small data set.  This 
ensures that the model does not remember specific features of training data, but can summarize new 
examples [20].

TML often involves using models that have been trained on large shared data sets and then adapted 
to a narrow, specific task (such as detecting specific diseases in medical images). Because new data 



may be less representative or have fewer examples, dropout helps reduce the likelihood that the model 
will remember insignificant or noisy data that can cause diagnostic errors [19].

TML often experiments with different dropout values (for example, 0.3-0.5), depending on the task 
and data availability. Too high a dropout can make learning more difficult, while too low a dropout 
will not give the desired regularization effect.

4. Experiment

A sample of data on patients with Pneumonia from the Mayo Clinic's Article was selected for the 
experiment [21].

Images from the entire sample for the experiment will be redistributed as follows, as in Table.3.

Table 3
Data distribution between experiment stages

Train set
Pneumonia 3875

Normal 1341
Test set

Pneumonia 390
Normal 234

Validation set
Pneumonia 8

Normal 8

Figure 1: Example of images from a dataset

For all topologies, we define the following training metaparameters: Table. 4



Table 4
Table title

Metaparameter Value
The number of epochs 10
Batch size 8+1+1
Detect that feature (activation 
function)

using the ReLU activation

The accuracy of all solutions demonstrates in the Table 5.

Table 5
Data distribution between experiment stages

Neuromodel Train Accuracy Test Accuracy
CNN 89.69% 84.62%

DenseNet 92.45% 84.46%
VGG 16 61.81% 65.71%
ResNet 81.96% 81.73%

InceptionNet 69.04% 70.51%

The following Fig.5-6 show the dynamics of changes in diagnostic accuracy.

Figure 2: The dynamics of changes in diagnostic accuracy for CNN neuromodel

Figure 3: The dynamics of changes in diagnostic accuracy for DenseNet neuromodel



Figure 4: The dynamics of changes in diagnostic accuracy for VGG 16 neuromodel

Figure 5: The dynamics of changes in diagnostic accuracy for ResNet neuromodel

Figure 6: The dynamics of changes in diagnostic accuracy for InceptionNet neuromodel



5. Analysis of results

The analysis of the results should begin with noting the striking difference in accuracy between 
classical CNNs and all other types of DNNs. Most notably, the difference is not even 10-15%.

There  are  several  possible  explanations  for  why  CNNs  performed  better  in  X-ray  image 
classification compared to more advanced architectures such as  DenseNet,  VGG16,  ResNet,  and 
InceptionNet.

Firstly, it is simplicity of structure and lack of parameter overload. More modern architectures, 
such as ResNet or DenseNet, contain a large number of parameters and complex mechanisms that are 
optimized for processing very deep and complex images, such as ImageNet. X-ray images typically  
have fewer high-level texture features, so simpler CNNs can learn more efficiently without the risk of 
overfitting.

Secondly, it is limited variability in X-ray images. Unlike natural images (with huge variations in  
textures, colors, and objects), X-ray images have a similar structure and fewer unique features to 
extract. Conventional CNNs can quickly learn to extract the necessary medical features without the  
need  for  complex  mechanisms  like  ResNet  (residual  connections)  or  DenseNet  (dense  layer 
connectivity).

Moreover, retraining and data requirements. Deep networks like ResNet or InceptionNet require 
very large amounts of data to train effectively. If your X-ray dataset is not large enough, then deeper 
architectures may not reach their maximum efficiency and may need to be retrained.

Further, artifacts and noise in medical images. Deeper architectures may be more sensitive to 
artifacts, noise, or contrast variations in X-ray images. Conventional CNNs, due to their simplicity, 
can learn to ignore unnecessary details and focus only on key patterns.

Finally, model optimization and adaptation. Some modern architectures are optimized for color or 
more variable images, while X-rays are usually black and white (grayscale). This can lead to inefficient 
use of many filters in large networks. Limitations in hardware resources

More complex networks require significantly more computing resources for inference.  If  the 
system used for training and testing had limited capabilities (e.g., weaker GPUs or limited memory), 
this could affect the performance of complex architectures.

6. Conclusion

For image-based medical diagnoses, each of these architectures has its advantages. CNN is a classic  
and efficient method, suitable for basic tasks. DenseNet and ResNet provide better deep network 
processing capability and reduce training problems, so they are suitable for more complex medical 
images. VGG16 is a great option for simple but accurate tasks. InceptionNet is optimal for reducing the 
number  of  parameters  and  improving  efficiency,  which  is  important  for  real-world  medical  
applications.

Benefits of using transfer learning and dropout, in particular:
Reduced overfitting: The model becomes less prone to overfitting on new data, which is especially 

important when working with small medical datasets.
Improved generalization: Thanks to regularization, the model can better generalize knowledge and 

transfer it to new, previously unknown examples.
Improved learning stability:  Combined with fine-tuning techniques,  dropout helps the model 

consistently achieve optimal results without large fluctuations in performance on validation data.
Dropout is a useful technique for transfer learning, especially when adapting models to specific 

tasks with limited data, such as medical diagnosis. By using dropout during fine-tuning, you can 
effectively reduce the risks of  overfitting and improve the model's  ability to generalize to new 
examples.

Transfer  learning  has  a  great  future  in  medical  diagnostics,  as  it  allows  to  effectively  use  
knowledge from large datasets to analyze X-ray, CT, or MRI images, even when annotated medical  
data is limited. This significantly reduces training time and improves the quality of predictions,  
especially if the models are adapted to the specifics of medical images.

However, it is important to keep in mind that standard architectures trained on ImageNet are not 
always optimal for medical tasks, so they should be modified to take into account specific data 
features. In general, transfer learning is a promising approach that has already demonstrated success 
in clinical practice, but requires careful validation and adaptation to specific medical cases.
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