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Abstract
Automatically segmenting narrative text into scenes is a complex task that remains relatively underex-
plored. Scenes form fundamental structural units within narratives, marking shifts in time, location, and
character interactions. In this paper, we introduce a supervised learning approach to scene segmentation,
using SceneML, an annotation framework for narrative text. We evaluate multiple models, including
BERT-based classifiers and Conditional Random Fields (CRF), treating scene segmentation as a sentence
classification and sequence labeling task. Our experiments show that the BERT cased model achieves
the highest balanced accuracy of 0.58 and an F1 score of 0.24 for the minority class. However, statis-
tical tests revealed no significant differences among BERT-based models but highlighted distinctions
between CRF models and BERT models. These results indicate that while supervised learning models
can improve scene segmentation, further refinements are needed. We discuss potential enhancements,
including sequence-based transformer models, integration of temporal and geographical references, and
the investigation of decoder-only models such as GPT-3 and GPT-4. Our findings highlight both the
progress and challenges in automating scene segmentation and provide directions for future research.
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1. Introduction

Narrative texts, whether in literature, film scripts, or storytelling applications, often follow
a structured progression of scenes that convey events, character interactions, and shifts in
time and location. Automatically segmenting these texts into scenes can enhance various
natural language processing (NLP) tasks such as text summarization, information retrieval, and
interactive storytelling. It is also of interest to literary scholars studying variation in narrative
structure within and across authors. However, scene segmentation remains a challenging
problem due to the complexity of defining and identifying boundaries within a continuous text.
Existing studies on text segmentation primarily focus on topic-based segmentation, lexical

cohesion, and discourse structure, but these approaches are insufficient for capturing scene-level
transitions in narratives. Previous work specifically on the segmentation of narrative texts has
investigated lexical cohesion measures, supervised classification, and event boundary detection,
yet none of this work is set within a broad framework for annotation of narrative structure and
has achieved limited results.
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This paper introduces an approach to scene segmentation based on SceneML, an annotation
framework designed for narrative text [1]. We develop and evaluate supervised learning models
that leverage contextual and linguistic features to automatically segment narrative texts into
coherent scenes. Our work differs from prior studies by incorporating a more comprehensive
scene representation, addressing scene transitions, and using machine learning techniques to
enhance segmentation performance.
The remainder of this paper is structured as follows: Section 2 reviews related work in

text segmentation and scene detection. Section 3 describes the dataset used for training and
evaluation. Section 4 presents the models and experimental setup. Section 5 discusses the
results and their implications, followed by the conclusion in Section 6.

2. Related Work

Automatic segmentation of narrative text into scenes remains underexplored. Existing studies
address related tasks such as lexical cohesion-based segmentation, feature-based segmentation,
and event segmentation but lack comprehensive scene annotation frameworks. Kozima and
Furugori [2] use what they call a Lexical Cohesion Profile (LCP) to detect scene boundaries
through shifts in lexical cohesion, but the approach’s reliance on fixed window sizes limits
its applicability. Kauchak and Chen [3] frame segmentation as a classification task, using an
SVM classifier with lexical and structural features, yet their approach disregards sequential
dependencies, leading to potentially inconsistent segment lengths. Event segmentation has also
been studied, focusing on narrative shifts in film based on location, character, and time, though
this work does not provide computational models applicable to text [4]. Closest to our work, a
more recent study by Zehe et al. [5] developed a scene annotation scheme for German narratives
and tested unsupervised and supervised segmentation models. However, their definition of
scene differs from ours by requiring not only that a scene be a portion of a narrative where
location, characters and time are coherent, i.e. do not change, but which centres on a single
central action. We do not require this last condition. Overall, their annotation scheme is quite
limited and their segmentation model achieves relatively weak performance (F1 = 0.24). Unlike
previous work, our approach builds on a more comprehensive annotation framework, SceneML,
that captures a broader range of narrative scene dynamics.

3. Data Set

The dataset used for our study – the ScANT corpus [6] – was constructed for the study of
narrative structure and is composed of selected chapters from children’s stories and adult novels
that are no longer protected by copyright. Children’s stories were specifically chosen with the
expectation that they would exhibit a relatively simple narrative structure. Conversely, adult
novels were included to incorporate more complex narratives, posing a greater challenge for
automated analysis of narrative structure. There are three sources for the dataset. The first
is ‘Bunnies from the Future’, a middle-grade children’s story authored by Joe Corcoran. The
second source is ‘The Wonderful Wizard of Oz’, originally part of the Brown Corpus. Finally, the
third source comprises ‘Pride and Prejudice’, ‘A Tale of Two Cities’, ‘The Adventures of Sherlock
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Holmes’ and ‘The Great Gatsby’ obtained from Project Gutenberg. The dataset is annotated with
a subset of the SceneML elements proposed in [1], specifically just scene, scene description
segment (SDS) and scene transition segment (STS), along with the more recently added
non-scene element. In brief these may be described as follows:

Scene A scene is defined as a unit of narrative in which the time, location and principal
characters are constant and in which specific events which constitute the narrative are
recounted. Any change in these three elements indicates a change in the scene.

Scene Description Segment (SDS) A scene is realised in written forms of narrative through
one or more, potentially non-contiguous, scene description segments (SDSs), themselves
contiguous sequences of sentences all narrating the same scene. The SDS mechanism
allows for the relating of one scene in a narrative to be embedded within another, as for
example, in flashback or flashforward.

Scene Transition Segment(STS) Some passages describe not one scene or another but rather
the transition between scenes. So, one SDS describing a conversation between two
characters A and B in location L could be followed by a single sentence “As soon as B had
left, A jumped in a taxi and drove to L′”. At L′ a new scene might then unfold. The single
sentence joining the two SDSs does not belong to the first scene nor to the second. And it
does not constitute a scene in its own right, as no narrative-significant action takes place
during the time it describes, save the transition of A to a new location. Its sole narrative
function is to indicate a transition from one scene to another. Such elements SceneML
refers to as scene transition segments (STSs).

Non-scene Elements Aside from STS’s, other elements are also present in narrative text.
These include general philosophising or opinion segments, background information
segments, and narrative summary or narrative catchup (e.g. “It was the best of times, it
was the worst of times, it was the age of wisdom, it was the age of foolishness …” from
Charles Dickens, A Tale of Two Cities). These passages serve a variety of functions but do
not relate specific, situated events involving protagonists in the story. All such passages
SceneML designates as non-scene elements.

The ScANT dataset has 2,796 sentences, 55,635 words and 191 SDSs 1.

4. Models

To build a model that can automatically segment narrative text into scenes (SDSs) using machine
learning, first, we need to train the model using training data. To make the problem easier for
automatic scene segmentation, we treated the task as a sentence classification problem instead
of text segmentation, where each sentence is given a tag (i.e. 1 is designated for sentences on
the boundary of an SDS, either at the beginning or the end, and 0 otherwise). Scene Transition
Segments are not considered as a separate classification task here as their numbers in the
annotated data were very small compared to the number of annotated SDSs.
1The corpus is free for research purposes and is available from https://doi.org/10.15131/shef.data.21517908.v1.
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The machine-learning models were trained and tested using the ScANT corpus. To ensure
robust evaluation, stratified 10-fold cross-validation was implemented using the scikit-learn
library. This technique splits the data into 10 equally sized folds while preserving the class
distribution, allowing the models to be trained and tested on each fold independently. This
approach helps in obtaining reliable performance estimates for the models. Notably, the data
were not shuffled to preserve sentence order. The following section presents and explains the
machine-learning models used for the task.
Three machine-learning models were trained and tested on the annotated data. Then, we

compared the models’ performances to determine which model is optimal for our task. The
following subsections provide a brief description of each of the models.

4.1. Model 1 - The Conditional Random Field (CRF) Model

In the first model, we treated the problem as a sequence-labelling problem, where the order of
sentences is significant and the wider textual context of the sentence being labelled is important.
Herein, the sequence refers to the ordered sentences of each chapter and their corresponding
tags. A CRF model was trained on the training data. For this endeavour, we first extracted the
following features:

• Transitioning phrases: This is a binary feature, where if the sentence contains a transition-
ing phrase, the feature is given a tag of 1 and 0 otherwise. This feature aims to identify
transitions between different segments within the text. Transitioning words/phrases (e.g.
later on, after, etc.) are hypothesised to appear more in sentences on the boundaries of a
scene.

• Beginning or end of a paragraph: This is also a binary feature, where if the sentence
occurs at the beginning or end of a paragraph, the feature is given a tag of 1 and 0
otherwise. This feature aims to capture paragraph-level patterns that might influence the
classification of the current sentence.

• End of a chapter (true/false): This binary feature denotes whether the current sentence
occurs at the end of a chapter, as the end of a chapter usually indicates the end of a scene.

• Part-of-speech (POS) tags: Incorporating the part-of-speech tags of each word in the
current sentence being classified was carried out using spaCy. In addition, POS tags were
extracted for the two preceding sentences and the two following sentences.

• Named entity: Each word in the sentence being classified was given a BIO tag. The
Named Entity Recognition (NER) function used was implemented by spaCy, using the
NER model en_core_web_md. Named entities can include names of people, organisations,
locations or other specific entities. In addition, the words of the two preceding sentences
and the two following sentences were also given named entity tags.

• Contextual information (2 sentences before and after): This feature considers the two
sentences preceding and the two sentences following the current sentence. By incorpo-
rating neighbouring sentences, the model can capture contextual dependencies and the
influence of surrounding information on the classification of the current sentence. This
information presented to the model as a set of features. The same set of features extracted
from the test sentence is also extracted from the two preceding sentences and the two
following.
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• Visually descriptive language (VDL): Visually descriptive information as described in [7]
is used here as a feature, on the basis of the hypothesis that a scene change is likely to
include a description of a new setting. A classifier was developed to classify sentences as
(0, 1, or 2), where:

– 0 tag: not visually descriptive
– 1 tag: visually descriptive
– 2 tag: partially visually descriptive

To assess the effectiveness of the VDL feature on the performance of the CRF classifier,
the model was tested twice—once with the VDL feature added to the list of features and
once without.

Table 1 presents the results of the two versions of the CRF model. Section 6 summarises and
compares the performance results of all models.

4.2. Model 2 - Bidirectional Encoder Representations from Transformers
(BERT)

The second model developed is a deep-learning model that uses a pre-trained language model.
The ktrain library [8] was utilised to implement the model, with the use of BERT [9] from
Hugging Face transformers. Two experiments were conducted on the model to explore the
most effective implementation: one with BERT cased and one with BERT uncased. The model
was fine tuned using a learning rate of 1.44E-05, with 3 epochs, and maximum length of 128 for
Bert-Cased, and 5 epochs, and maximum length of 256 for Bert-Uncased.

4.3. Model 3 - Sentence Pair Classification with BERT

In an attempt to capture as much context as possible, the task of scene segmentation was also
treated as a sentence pair classification task, where the relationship between a current sentence
and its surrounding context is assessed. The input consists of a pair: the first-pair part is
the current sentence and the second-pair part is the concatenated form of the sentence itself
along with the two preceding and two following sentences. This allows the broader context
surrounding the current sentence to be considered during classification (see Figure 1). As with
model 2, this model was implemented using the ktrain library. To explore different variations,
two experiments were conducted using pre-trained BERT models from the Hugging Face model
repository: BERT cased and BERT uncased.
The model was fine tuned using a learning rate of 1.44E-05, with 10 epochs, and maximum

length of 512 for Bert-Cased and Bert-Uncased.

5. Results

Table 1 presents the performance results of the six machine-learning models, namely, CRF,
CRF(VDL), which refers to CRF models with the VDL feature added, BERT cased, BERT uncased,
Sent-Pair Cased, which is a sentence pair classification with a BERT cased model, and Sent-Pair

Joao Paulo Cordeiro
111



[𝑠1, 𝑠2, … , 𝑠𝑁]↓[(𝑠1, 𝑐1), (𝑠2, 𝑐2), … , (𝑠𝑁, 𝑐𝑁)]
where 𝑐𝑖 = 𝑠𝑖−2 + 𝑠𝑖−1 + 𝑠𝑖 + 𝑠𝑖+1 + 𝑠𝑖+2

Figure 1: Sentence pair input, where c refers to the concatenated form. Input to the classifier is formed
by pairing each sentence in the original text with a context, which is the concatenation of the sentence
itself along with the two preceding and two following sentences.

Table 1
SDS boundary classification results, (W) refers to weighted average and (M) refers to macro averaging.
P refers to Precision, R refers to Recall and Acc means accuracy. Tenfold-cross-validation was carried
out on each of the models. The average of the results of the 10 folds is reported here. MCC refers to the
most common class classifier (as a base line).

Model Acc
Balanced
Acc P(W) R(W) F1(W) P(M) R(M) F1(M)

F1
class 0

F1
class 1

Bert Cased 0.92 0.58 0.88 0.89 0.87 0.64 0.58 0.59 0.94 0.24
Bert Uncased 0.92 0.56 0.87 0.89 0.88 0.61 0.56 0.57 0.94 0.20
Sent-Pair Cased 0.90 0.51 0.86 0.85 0.84 0.56 0.55 0.54 0.91 0.17
Sent-Pair Uncased 0.90 0.55 0.87 0.85 0.84 0.55 0.53 0.51 0.92 0.18
CRF(VDL) 0.90 0.52 0.85 0.88 0.85 0.59 0.52 0.52 0.93 0.12
CRF 0.87 0.52 0.86 0.89 0.86 0.64 0.52 0.53 0.91 0.12
MCC 0.92 0.50 0.84 0.92 0.88 0.46 0.50 0.48 0.96 0.00

Uncased (with BERT base uncased). The models are evaluated using different metrics, including
accuracy, balanced accuracy, precision (with both macro and weighted average), recall (with
both macro and weighted average) and F1 (with both macro and weighted average and F1 score
for each class 0 and 1 independently). Tenfold-cross-validation was used to test each of the six
models.
The findings indicate that accuracy alone showed relatively high values across the models

(ranging from 0.87 to 0.92). However, since the dataset is highly imbalanced (there are many
more 0 tags than 1 tags), accuracy alone is not sufficient to compare between models. We added
other metrics that can give a better insight into the performance of models, such as balanced
accuracy and F1 for each individual class.

As can be seen, most of the metrics used in testing the models yielded highly similar results,
which made it difficult to determine which model performed best. However, if we focus on the
two metrics that can be used to reflect the performance of models on imbalanced datasets, the
balanced accuracy metric is often considered when one of the classes is a lot larger than the
other. The BERT cased model achieved the highest balanced accuracy of 0.58, indicating its
ability to handle imbalanced data more than the other models.

In addition, we obtained the F1 score for each class and focused on the results for a minority
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class (class 1) that could help elicit an insight on which of the models would perform better in
predicting class 1. Similarly, the BERT cased model scored the highest, with a 0.24 F1 score.
Notably, although the BERT cased model achieved the highest scores among all models in

terms of balanced accuracy and F1 (for class 1), it is difficult to derive a conclusion as the results
for the majority of the models are highly similar. To see whether the differences in our models’
performances are significant, we conducted a statistical test on the results, as reported in the
following section.

6. Analysis and Discussion

A statistical analysis was conducted to analyse whether there is a significant difference in the
performance of the six models. Our null hypothesis is that there is no significant difference
in the performance of the six models that were used for scene boundary detection. Of the 10
metrics presented in Table 1, balanced accuracy and F1 for class 1 are the two metrics chosen to
do the statistical analysis on. The metric values for each of the 10 folds were used as the data
samples for the significance test. A Mann–Whitney U test [10] was then carried out on these
performance metrics of the six models. Mann–Whitney test is non-parametric test that does
not require normally distributed data and works well with small data sizes, which is the case in
our task (10 BA and 10 F1 scores for each classifier).

6.1. Statistical Analysis

Table 2
Pairwise Mann–Whitney p-value results on the models’ performance. For each pair, the p-value was
calculated on the balanced accuracy results and on F1 for the minority class. The results were reported
as BA | F1 in each case.

Model Comparison Sent Pair-BERT Uncased Normal-BERT Cased Normal-BERT Uncased CRF-VDL CRF

Sent Pair-Bert Cased 0.3847 | 0.4048 0.1859 | 0.1402 0.3640 | 0.4043 0.7337 | 0.6488 0.8501 | 0.6770
Sent Pair-Bert Uncased - 0.2123 | 0.2890 0.7336 | 0.8203 0.1212 | 0.1035 0.1859 | 0.1402
Normal-Bert Cased - 0.6230 | 0.5449 0.0211 | 0.0309 0.0257 | 0.0341
Normal-Bert Uncased - 0.1211 | 0.1397 0.2729 | 0.1617
CRF-VDL - 1.0 | 0.7896

Table 3
Mann-Whitney Test Results for Balanced Accuracy

Comparison Sent Pair-Bert Cased Sent Pair-Bert Uncased Normal-Bert Cased Normal-Bert Uncased CRF-VDL CRF

MCC 0.1153 0.0014 6.39e-05 0.0014 0.0426 0.1153

In general, as shown in Table 2, the results showed no significant difference (p-value> 0.05)
in the performance of the models. In terms of balanced accuracy metric, the p-values ranged
from 0.1859 to 0.7336, suggesting no significant difference in the performances of BERT cased,
BERT uncased, sentence pair with BERT cased and sentence pair with BERT uncased. This is
also the case for the results in terms of F1 for class 1. The p-values for the model comparisons
ranged from 0.1402 to 0.8203, suggesting no significant difference in the performances of BERT
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cased, BERT uncased, sentence pair with BERT cased and sentence pair with BERT uncased.
On the other hand, the p-values for both metrics (balanced accuracy and F1 for class 1) showed
a significant difference (p-value < 0.05) in the performance of BERT cased compared with CRF
and CRF with the VDL feature.

In addition, another statistical analysis was conducted to analyse whether there is a significant
difference in the performance of the six models compared to the MCC baseline. Table 3 shows
Mann-Whitney p-value results between the most common class (MCC) classifier and each of the
six models. These p-values were obtained for 10-fold BA, as the F1 for the minority class will
be all 0s for the MCC. The results show that there is a significant difference in the performance
between the MCC and sentence pair with Bert Uncased, Bert Cased, and Bert Uncased. There is
marginally significant evidence of a difference with CRF-VDL. And finally, there is no strong
evidence of a difference with sentence pair with Bert Cased and CRF.

6.2. Discussion

The stronger performance of BERT could be attributed to the fact that BERT is pre-trained on
the BookCorpus collected by [11]. The BookCorpus is made of 11,038 novels from 16 different
genres (e.g. romance, science fiction, fantasy, etc.). Therefore, BERT has seen narrative text
previously.

Overall, the findings suggest that the choice of model (BERT cased, BERT uncased, sentence
pair with BERT cased and sentence pair with BERT uncased) may not significantly impact
performance in our tasks. Users can select the model that best aligns with their specific
requirements or preferences without compromising performance.
However, there is no significant difference both between the CRF models and the some of

BERT models and between the two CRF models. This could suggest: (1) the power of language
models pretrained on large amounts of text and then fine-tuned for the task outweighs the use
of features engineered for this specific task but then trained on a small amount of labelled data
(2) VDL either offers no help for this task or the accuracy level of the VDL classification is too
low to be useful here.
Finally, comparing the performance of our models to those of Zehe et al. [5] on the binary

scene segmentation task they define, we see that our results are broadly similar (0.24 F1 measure).
Given differences in task definition and dataset not too much should be made of this without
further investigation. However, both their efforts and ours suggest this is indeed a hard task.

7. Conclusion

Among the models evaluated, the BERT cased model achieved the highest performance for scene
segmentation, with a balanced accuracy of 0.58 and an F1 score of 0.24 for the minority class.
However, statistical analysis using the Mann-Whitney test revealed no significant differences
among the BERT-based models, including their cased and uncased versions. Additionally, while
there was a significant difference between the CRF models and the BERT cased model, no
significant difference was found between the sentence pair BERT cased model and the MCC
baseline. Interestingly, a marginally significant difference was observed between MCC and
CRF-VDL, whereas no significant difference was found between MCC and the standard CRF
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model. These findings highlight the complexity of the scene segmentation task and suggest
that while BERT-based models demonstrate improved performance, the differences among
approaches may not be substantial.

8. Future Work

Although we have made progress in investigating supervised models for scene segmentation,
there is clearly still room for substantial improvement. As an initial step, designating some
our corpus as a development data, as distinct from training and test data, would allow us to
conduct some failure analysis to determine which cases in particular various models are finding
challenging. Of course acquiring more labelled data should also help – how sensitive task
performance is to training set size is not known.
In terms of model refinement and variation, one possible enhancement is incorporating a

geographical and temporal reference extraction model such as [12], which could help to detect
scene-related entities and changes more effectively. Additionally, decoder-only models, such
as GPT-3 [13] or GPT-4 [14] should be explored for this task. These models could be used
in a zero-shot or few-shot learning setting, where they classify scene boundaries with little
to no task-specific training data. Another possible direction would be to develop a model
that, as with our CRF approach, treats scene segmentation as a sequence-labeling task at the
whole sentence level, but uses sentence embeddings as sentence representations. I.e., instead
of handling segmentation as a classification task at the sentence or sentence pair level, as we
do in our BERT-based models, this approach would learn to assign sentence-level labels across
sequences of sentence embeddings, potentially making better use of longer range contextual
dependencies.

Another interesting and potentially important refinement could be incorporating the detection
of non-scene segments and scene transition segments (STSs) into the task. Learning to identify
these segments explicitly could potentially improve scene segmentation accuracy and would
also result in a better representation the overall narrative structure.

Acknowledgements

The authors thank the Text2Story reviewers for their helpful comments. The first author
acknowledges support from the University of Jeddah in the form of a PhD studentship.

Joao Paulo Cordeiro
115



References

[1] R. Gaizauskas, T. Alrashid, SceneML: A proposal for annotating scenes in narrative text,
in: Proceedings of the 15th Workshop on Interoperable Semantic Annotation (ISA-15),
Gothenburg, Sweden, 2019.

[2] H. Kozima, T. Furugori, Segmenting narrative text into coherent scenes, Literary and
Linguistic Computing 9 (1994) 13–19.

[3] D. Kauchak, F. Chen, Feature-based segmentation of narrative documents, in: Proceedings
of the ACL Workshop on Feature Engineering for Machine Learning in Natural Language
Processing - FeatureEng ’05, June, Association for Computational Linguistics, Morristown,
NJ, USA, 2005, p. 32. URL: http://www.aclweb.org/anthology/W/W05/W05-0405. doi:10.
3115/1610230.1610237.

[4] J. E. Cutting, Event segmentation and seven types of narrative discontinuity in popular
movies, Acta Psychologica 149 (2014) 69–77. URL: http://linkinghub.elsevier.com/retrieve/
pii/S000169181400078X. doi:10.1016/j.actpsy.2014.03.003.

[5] A. Zehe, L. Konle, L. K. Dümpelmann, E. Gius, A. Hotho, F. Jannidis, L. Kaufmann, M. Krug,
F. Puppe, N. Reiter, et al., Detecting scenes in fiction: A new segmentation task, in: Proceed-
ings of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, 2021, pp. 3167–3177.

[6] T. Alrashid, R. Gaizauskas, ScANT: A small corpus of scene-annotated narrative texts, in:
Proceedings of the Text2Story’23 Workshop, 2023, pp. 143–149.

[7] R. Gaizauskas, J. Wang, A. Ramisa, Defining visually descriptive language, in: Proceed-
ings of the Fourth Workshop on Vision and Language, Association for Computational
Linguistics, Lisbon, Portugal, 2015, pp. 10–17.

[8] A. S. Maiya, ktrain: A low-code library for augmented machine learning, arXiv preprint
arXiv:2004.10703 (2020). arXiv:2004.10703.

[9] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).

[10] T. W. MacFarland, J. M. Yates, T. W. MacFarland, J. M. Yates, Mann–whitney u test,
Introduction to nonparametric statistics for the biological sciences using R (2016) 103–132.

[11] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, S. Fidler, Aligning
books and movies: Towards story-like visual explanations by watching movies and reading
books, in: Proceedings of the IEEE international conference on computer vision, 2015, pp.
19–27.

[12] I. Ezeani, P. Rayson, I. N. Gregory, Extracting imprecise geographical and temporal
references from journey narratives., in: Text2Story@ ECIR, 2023, pp. 113–118.

[13] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot learners, Advances in
neural information processing systems 33 (2020) 1877–1901.

[14] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Al-
tenschmidt, S. Altman, S. Anadkat, et al., Gpt-4 technical report, arXiv preprint
arXiv:2303.08774 (2023).

http://www.aclweb.org/anthology/W/W05/W05-0405
http://dx.doi.org/10.3115/1610230.1610237
http://dx.doi.org/10.3115/1610230.1610237
http://linkinghub.elsevier.com/retrieve/pii/S000169181400078X
http://linkinghub.elsevier.com/retrieve/pii/S000169181400078X
http://dx.doi.org/10.1016/j.actpsy.2014.03.003
http://arxiv.org/abs/2004.10703
Joao Paulo Cordeiro
116


	1 Introduction
	2 Related Work
	3 Data Set
	4 Models
	4.1 Model 1 - The Conditional Random Field (CRF) Model
	4.2 Model 2 - Bidirectional Encoder Representations from Transformers (BERT)
	4.3 Model 3 - Sentence Pair Classification with BERT

	5 Results
	6 Analysis and Discussion
	6.1 Statistical Analysis
	6.2 Discussion

	7 Conclusion
	8 Future Work

