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Abstract

The rapid evolution of 5G networks demands advanced methodologies for optimizing communication
resource allocation, particularly under high-load conditions with fluctuating traffic patterns. This paper
presents a novel adaptive model for managing the distribution of communication resources in 5G
infrastructures, utilizing a queuing system with delay. The proposed approach accounts for subscriber
mobility, traffic irregularities, and peak load conditions, enabling real-time optimization of base station
utilization. By integrating probability distribution functions with delay, the model enhances service quality
by reducing waiting times and minimizing energy consumption. The study provides analytical formulations
for key performance metrics, including queue waiting time, base station utilization, and variation
coefficients. Experimental validation confirms the efficiency of the model in comparison with classical
queuing approaches, demonstrating its potential for intelligent traffic management in next-generation
networks.
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1. Introduction

The ongoing digital transformation requires a communication infrastructure capable of ensuring
high data transmission speeds, low latency, and scalability for millions of devices operating
simultaneously within the network. In this context, 5G technology has become a cornerstone in the
development of telecommunication systems, enabling the management of high-load networks with
diverse use-case scenarios such as the Internet of Things, augmented reality, autonomous vehicles,
and smart cities [1-5]. However, as the number of subscribers and devices continues to grow,
challenges emerge in effectively managing utilization, particularly under conditions of traffic
irregularities, high subscriber mobility, and variable input request density.

Ensuring connection stability under peak loads is particularly crucial, as traditional
communication resource management models exhibit limited efficiency [6]. Neglecting behavioral
patterns of network load, such as the delay between the arrival of incoming requests and their
processing, may lead to a critical decline in service quality for subscribers. This justifies the relevance
of developing adaptive models capable of maintaining high performance and reliability of
communication systems even under extreme operating conditions.
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Managing the distribution of utilization in high-load 5G infrastructures is a critical task for
ensuring connection stability and efficient utilization of network resources [7, 8]. In response to this
challenge, the article presents a corresponding concept formalized within the framework of queuing
theory [9-12]. To assess the uniqueness and effectiveness of the proposed approach, existing
counterparts were examined to identify their limitations.

The %type queuing system model is widely used for analyzing network systems [13, 14]. It

1
assumes an exponential distribution of intervals between incoming requests and their service

duration, which significantly simplifies calculations. However, it has serious limitations: it does not
account for traffic irregularities and peak loads, does not allow for effective delay prediction under
variable loads, and its sensitivity to increasing base station utilization leads to an exponential rise in
the average waiting time for accepted service requests. Additionally, the 5-model does not consider

1
subscriber mobility, which is a key factor in 5G networks. These limitations make it ineffective for

real-world networks with dynamic traffic and uneven spatial distribution of subscribers.
The more generalized z—model allows for arbitrary distributions of incoming request arrival times

1
and service durations, significantly improving adaptation to real-world information and

communication scenarios [12, 15, 16]. However, more complex analytical and numerical methods are
required for parameter evaluation. It does not account for the specific characteristics of 5G
infrastructure, where significant load fluctuations can occur due to subscriber mobility and dynamic
changes in traffic density. Additionally, the complexity of the z-model makes its real-time

1
implementation impractical, as it necessitates computing a large number of probabilistic

characteristics.

Some researchers propose using machine learning (ML) to predict traffic and optimize resource
allocation in 5G networks [17, 18]. The main advantages of this approach include automated model
training based on operational logs of target network infrastructures, enabling proactive adjustments
in communication resource management, and facilitating rapid adaptation of the framework to
changing load conditions. However, ML-based approaches require significant computational
resources and prior model training, making real-time implementation challenging. Additionally, the
effectiveness of ML methods depends on the availability of high-quality data, which can be difficult
to obtain in high-load 5G networks.

A distinct role in structuring 5G infrastructures is played by Network Slicing (NS) technology [19,
20], which enables the allocation of utilization among different categories of subscribers based on
their specific needs (eMBB, URLLC, mMTC). However, complex resource allocation management
between slices under variable load conditions and the high costs associated with implementing and
maintaining such an architecture are its primary drawbacks. Additionally, NS technology relies on
complex optimization algorithms, which can significantly increase latency and lead to inefficient
network utilization.

Thus, existing solutions have significant limitations in the context of communication resource
management in high-load 5G infrastructures. The article presents a concept that eliminates these
limitations, based on the formalization of the research object, goal, and tasks, formulated considering
the results of a critical analysis of existing approaches.

Research Object: The process of managing the utilization distribution in a high-load 5G
infrastructure.

Research Goal: Formalizing a mathematical framework for efficient communication resource
management in 5G infrastructure by reducing latency.

Research Tasks:

1. Identify behavioral patterns of network load, including changes in subscriber density and
their mobility between base stations.



2. Develop probability distribution functions to describe the intensity of incoming requests and
service duration, considering latency.

3. Formalize mathematical expressions for key model parameters, particularly for the average
waiting time of an accepted incoming request, variation coefficients, and other
characteristics.

4. Compare the developed mathematical framework with a classical counterpart.

5. Investigate the impact of latency and base station utilization on service quality in a high-load
5G infrastructure.

2. 2. Models and methods

2.1. Research statement

Let us focus on the process of managing the utilization distribution in a densely populated (high-
load) 5G infrastructure. Considering the specificity of such an object of study, an adequate
description of the process is possible only if behavioral patterns of network load are considered -
particularly changes in subscriber density during peak hours and the rapid movement of mobile
subscribers between base stations.

To account for these network load behavioral patterns, we employ a recurrent modeling
framework with delay [13, 14]. This mathematical framework enables proactive resource demand
forecasting and adaptive redistribution in real-time. The recurrent approach helps minimize
management delays, ensure seamless connectivity during subscriber mobility, and optimize energy
consumption, which is critical for maintaining the high efficiency of 5G networks.

We introduce the concept of a recurrent flow, defined by a set of probability distribution functions
C1(t) = C(t) = - Cy(t) = C(t) between incoming subscriber requests. Consider a scenario in
which the quality-of-service system manages two flows, each defined by probability distribution
1- exp(—(p(t - to)) vVt = to,
0v0 <t <ty
is the distribution rate parameter in the system. This parameter determines how rapidly the

functions of type C(t) = { with identical delays equal to ty, where ¢

probability accumulation changes after the delay £, moment.

The studied process of communication resource management is defined as a queuing system,
where subscriber requests arrive at the input, with stochastic intervals between them determined by
a probability distribution function of the form:

a(t) = {,u exp(—y(t - to)) vVt = to, (1)
0v0 <t <t
where p is a parameter that characterizes the arrival intensity of subscriber requests at the system’s
input.

In turn, the service duration of accepted requests is determined by a probability distribution

function of the form:
B(t) = {77 exp(—n(t — to)) Yt = t,, @)
0ov0 <t <ty
where 7 is a parameter that characterizes the service intensity of accepted subscriber requests within
the system.

The probability distribution functions (1) and (2) are shifted to the right relative to the zero
reference point by the magnitude of the delay t,. These functions are exponential, with controlled
parameters (u,ty) and (n,t,), respectively. Moreover, u <1n. We now analyze the dynamic
properties of key qualitative parameters of the studied system, particularly the arrival intervals of
subscriber requests a(t) and the service duration of accepted requests S (t).



2.2. The concept of managing the utilization distribution in a high-load 5G
infrastructure

To determine the numerical characteristics of the qualitative parameters a(t) and £(t), we apply
the Laplace transform to functions (1) and (2):

A(2) = %f"” (3)

B'(7) = 12202 @

where z is a variable used in the Laplace transform to transition from a time-domain function to a

frequency-domain function. The first derivative of function A*(z) is given by % =

(_”t°(z+?z);£2€xp(_toz), dA;Z(Z) i =£ ZO:M —+t,. Based on these analytical expressions, we
formalize the mathematical ex;;ctation of the arrlval interval of subscriber requests as:

T, = £+ to. (5)

In the context of expression (5), it can be stated that the arrival intensity of subscriber requests yt
in the studied queuing model is determined through the parameters of the probability distribution
function (1):

f U
K= Grntey (©)
We derive analogous expressions to (5) and (6) for the service duration of accepted requests (4):
- 1
TT] = 1—] + to, (7)
C_ n
= (1+nto) (8)

where expression (8) is obtained from expression (7) through the parameters of the probability
distribution function (2).

In the context of arrival intensities (6) and service intensities (8) of incoming subscriber requests,
it is observed that the utilization u of a base station in the cluster of the studied 5G infrastructure

. 1+nt . . I M
has increased by a factor 51:_Zt0§ relative to the corresponding characteristic of the 3-type system:
0 M
1
1 u(1+nty)
n n(l+uto) ©

T,
The utilization u can also be interpreted as u = T—" This fact allows the use of the controlled
u

parameters from expressions (5) and (7) as input variables for the studied system. This approach
enables adaptive resource management, where arrival intensity and service intensity dynamically
adjust based on real-time network conditions, optimizing communication resource distribution in
the high-load 5G infrastructure.

We introduce the variance of intervals for the probability distribution function (1): alf = —, and

= P

express the coefficient of variation CV, = through it. The latter, considering expression (5), can

be represented in the form:

1
e = oy (10)

Similarly, for the probability distribution function (2), we introduce the variance 0,? = Tliz and

define the coefficient of variation as:
2
Un

v, = ! (11)

T,, (1+nt0)'
Further, we take into account that for t; > 0, u > 0, n > 0, the values of the coefficients of
variation from expressions (10) and (11) are less than one. This implies that the distribution of arrival
intervals and service durations exhibits low variability, meaning that the process is relatively stable




and predictable, which is critical for ensuring efficient resource allocation in a high-load 5G
infrastructure.

Based on the characteristics of the studied system, such as (5), (7), (10), and (11), several
assumptions can be made:

1. Considering the delay in time leads to an increase in the utilization of the base station cluster
1 77 to)
f

) relative to the corresponding metric in
0

in the studied 5G infrastructure by a factor o

. M
the classical 47-type system;
1
2. Since the coefficient of variation values from expressions (10) and (11) are less than one, it can

be concluded that the model of the studied system is non-Markovian. Thus, for the same
value of (9), the average waiting time for an incoming subscriber request in the studied
. . M
system should be shorter than the corresponding metric in the 47-type system;
1

3. Unlike the %—type system, the use of probability distribution functions (1) and (2) allows for
1
approximating the distributions of controlled parameters at the level of their first two

moments.

In further studies of the recurrent model with delay defined in Section 2.1, we focus on its

G .

convergence to the type system. In such a queuing system, the states at the moment t depend on
1

previous system states, which can be formalized using recurrent equations with delay. The states of

the %—type system at the moment t are uniquely characterized by known integral equations of
1
spectral decomposition [21, 22], which are related through the Laplace transform to Lindley's integral

equation:
Flx )_{f LF(x = w)dRw)vx 2 0, (12)
0,x <0,
where F(x) is the probability distribution function of x, which represents the waiting time of an
accepted incoming request in the buffer; w is a stochastic variable characterizing the service duration
or the time a request spends in the system after being accepted; R (w) is the probability distribution
function of the boundary stochastic value W = ]EL_H}O W), = sy — tx41, Where s; represents the service

duration of an incoming request Ry, and ¢4 is the interval between the arrival of requests R}, and
Ry, 1 at the system's input. This formulation enables a precise mathematical description of dynamic
processes in the high-load 5G infrastructure, contributing to adaptive communication resource
management.
The solution of equation (12) using the spectral method results in the product

A*(—-1)B* (1) — 1, (13)
which is a rational function [15, 16], where the complex variable 7 is used in the Laplace transform
to represent probability distribution functions in the frequency domain. Thus, to determine the
distribution function from (12), we need to find the spectral decomposition of the form:

* * [
A (=D)B* (1) — 1 = q)*—g (14)

where @, (1), @_(7) represents fractional-rational functions, which must satisfy the following
conditions:

o V Re(t) > 0, the function @, (7) is analytic and has no zeros in this half-plane, and the

/z'—l

equality ‘T‘_’“’ Rl must hold.



° V Re(t) > 02, the function ®_(7) is analytic and has no zeros in this half-plane, and the

D (7
im0
equality =R’ T must hold, where 62 is determined by the condition
a(t)
<

t—oo exp(—azt)

We represent the probability distribution functions (1) and (2) on the basis of expression (14),
taking into account the Laplace transforms (3) and (4), respectively. The solution of equation (12) for
this case takes the form:

®4+(1) _ pexp(=tor) nexp(=tor) . _ t(a—p-n) _ (15)
@o_(7) u—-t n-t (u-v)(n+7)

As we can see, during the transformation process of functions (1) and (2) into the form (15), the

delay was lost. At the same time, it is worth noting that function (15) also serves as a spectral

decomposition for the solution of the 4r-type system. However, this identity is purely formal since,
1

. M . . . . .
unlike the §r-type system, the parameters u and 7 in the queuing system with delay, defined in
1
Section 2.1, are not interpreted as the arrival intensity and service intensity of incoming requests,

respectively.
We now unveil the essence of the controlled parameters u and 7 within the framework of the
queuing system with delay, as presented in Section 2.1. For further transformations, we define

o, (1) = Tﬁ:{%’”, ®_(1) = u — 1. These functions do not have zeros or poles in their respective

domains Re(t) > 0, Re(r) < p. In analytical form, the Laplace transform of the probability

distribution function F(x), introduced in (12), takes the form ¥, (7) = where the constant V

v
‘1’+(T)’

. . . D (T . T+n—
is defined as V = lim +(0 _ IimE1TE =1
-0 T -0 T+7M

— % In turn, the parameters g, 7 are determined by

equations (5) and (7), respectively, while the ratio % characterizes the utilization u (similar to the

analysis of the %—type system). Thus, the input parameters of the studied queuing system with delay
1
are the mathematical expectations Tu’ Tn (see expressions (5) and (7), respectively), and coefficients

of variation CV,, CV}, (see expressions (10) and (11), respectively).
v (1—%)(7’]+‘L’)
o,(v)  t(Tin-p)

Considering that ¥, (7) = , we define the probability density function F*(7)

as:

(l—ﬁ)(n+r)
* — — n 16
F'(t) =td,.(1) = v— (16)

The derivative of function (16) is given by:
aF* (1) _ (1-%)(”7)—#)—(1—%)(”77) _ #(1—%) (17)
ar (T+n-p)? T (-
u
. dF* (1) ”(1‘5) . .

For T = 0, expression (17) takes the form 0 = from which the average waiting

=0 -

time for an accepted incoming subscriber request in the buffer of the queuing system with delay, as
presented in Section 2.1, is given by:
&)
F=-1 (18)
-
To complete the formalization of the concept of managing communication resource distribution
in a high-load 5G infrastructure, we formulate the methodology for calculating unknown parameters

of the studied queuing system with delay. For this purpose, we define the qualitative parameters ,
71, to based on the analytical expressions (5), (7), (10), and (11), which are oriented toward the



calculation of numerical characteristics of the probability distribution functions (1) and (2). We
introduce a system of equations of the form:

(1 -
_+t0 —Tu,
—1 =CV,
1+uty) W
_+t0 =Tn,
=V,
(1 +nto) 7

We use the numerical characteristics on the right-hand side of the system of equations (19) to
determine the desired qualitative parameters p, 1, ty. The system (19) exhibits redundancy, which
we overcome by introducing input parameters Tu’ Tn, CV,, CV,. From the first equation of system

(19), we express the qualitative parameter t, as

-1
to=T, —— 20
0 u u ( )
. . 1 . .
From the second equation, we derive CV}, = e =) From the last expression, we obtain:
-

U= m (21)

. . 55 = , 1 1 . .
From the third equation, we express T,;: T, = T, + — — . Generalizing the obtained results, we

=

write:
1

n=————-

(Ta=Tu(1-CV,))

Finally, we process the fourth equation, taking into account the previously derived analytical
constructions:

(1)

1 1-CV,
1-—*=1-u(1-CW), (22)

CVyy=——F—~~ =
n Tu(1-cvy)
(1+T17—HTH(1—(,{LV”))

7,
where u = T—" Thus, we have expressed the unknown parameters u, 7, ty of the studied queuing
u

system with delay through a set of parameter values Tu’ Tﬂ’ CV,, CWy.

Overall, Section 2 presents a mathematical model of a queuing system with delay, which replicates
the process of managing communication resource distribution in a high-load 5G infrastructure. The
foundation of the model is the introduction of probability distribution functions with delay
(expressions (1) and (2)) to describe behavioral patterns of incoming request flows and their service
durations. Key analytical expressions are introduced, including request arrival intensity u’
(expression (6)) and service intensity 7’ (expression (8)), average waiting time F (expression (18)),
coefficients of variation CV,, C;, (expressions (10) and (11)), and spectral approach for determining
waiting time distribution functions (expression (15)). The model accounts for dynamic network load
variations, enabling efficient resource demand forecasting, latency reduction, energy consumption
optimization, and uninterrupted connectivity. Due to its flexibility, the proposed approach is well-
suited for analyzing and managing resources in complex 5G infrastructure scenarios, particularly
under variable subscriber density and high subscriber mobility conditions.

3. Results and discussion

To demonstrate the practical value of the proposed communication resource management concept
from Section 2, we analyze its application in a 5G infrastructure under three operating modes: Low-
load mode, Medium-load mode, and High-load mode.

Assume that as a result of censored observation of the target 5G infrastructure, the following
values of the system’s input parameters in a queuing system with delay have been determined: Tu =



10,T,=1,C V77 = 0.5, corresponding to a Low -load mode. Then, for utilization u = 0.1, expression
(23) yields CV, = 0.95. Considering the known input parameters, expression (21) allows us to

1 . . .
calculate the parameter p: u = o while expression (22) determines the parameter n: n =

19
1

10005 — 2. For the target 5G infrastructure, determine the average waiting time F for the

()
(5)=3

. M . . .
It should be noted that for the classical §-type system, considering the same input parameter

1
(1(?1) = %, which is four

times higher than the recently calculated value for the queueing system with delay. However, if

accepted incoming subscriber request in the buffer using expression (18): F =

values (including u = 0.1, n = 1), the average waiting time F equals F =

2 . . . . .
parameters i = —- and 1 = 2 are interpreted as the arrival rate of incoming requests and the service

. M . 1 1
rate, respectively, then for the y-type system, we obtain u = o< 0.1 and F = 3¢ AAs We can see,
1

with identical parameter u, 7 values for both the queueing system with delay and the %—type system,
1

the average waiting time F turns out to be the same.

Now, let us characterize the operation of the target 5G infrastructure in a Medium-load mode,
which is defined by the following input parameter values: Tﬂ =2, 'I_",, =1, CV, = 0.5. Then for u =
0.5, using expression (23), we obtain CV,, = 0.75, and according to expressions (21) and (22), we
G)

(4) 7. For

obtain u = g n = 2. The average waiting time F is determined using expression (18): F =

3 4

M . - i
the r-type system, under the same input parameter values and considering u = 0.5, we obtain F =
1

&)

0.5=1"

. M . . . . 2 .
Meanwhile, for the §-type system, with an incoming request arrival rate u = 3 and a service
1
1
3
S 1 o= \3/ 1 . .
rate 7 = 2, the utilization u = = and the average waiting time F = -4 = — are obtained accordingly.
3 (1) 4

3
Finally, we characterize the operation of the target 5G infrastructure in a High-load mode, which

is defined by the following input parameter values: Tu = %, 'I_",, =1, CV, = 0.5. Then, for u = 0.9,
using expression (23), we obtain CV}, = 0.55, and according to expressions (21) and (22), we obtain
(2)
19 _ _ i
p=pn= 2. The average waiting time F is determined using expression (18): F = W For the
117

M . S I
+r-type system, under the same input parameter values and considering u = 0.9, we obtain F' =
1

)

. M . . . . 18
09)=o Meanwhile, for the y-type system, with an incoming request arrival rate p = I and a

1

. e 1 e e A9 . .
service rate ) = 2, the utilizationu = 3 and the average waiting time F = L are obtained accordingly.

Let us explore the potential of the mathematical framework proposed in Section 2 by conducting
a series of studies analyzing the above parametrically defined 5G infrastructure. All subsequent
studies presented here focus on evaluating the process of managing the utilization distribution
within the target 5G infrastructure (hereinafter referred to as the studied process), based on both the
queuing system with the delay model introduced in Section 2 (hereinafter referred to as the delay

model) and the classical %—type queuing system model (hereinafter referred to as the classical model).
1



In a real 5G infrastructure, the quality of subscriber service is significantly affected by the uneven
flow of incoming requests and the high utilization of base stations. Unlike the classical model, the
delay model accounts for these factors when managing the utilization distribution, ensuring
connection stability even when the target 5G infrastructure operates under high-load conditions. Let
us compare the results of describing the studied process using the delay model and the classical
model, focusing on the impact of base station utilization u and the coefficient of variation of

incoming request flow CV,, on the average waiting time F (see Fig. 1).
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Figure 1: Results of the parameterization of the studied process in the form of the dependency F =
flucv,).

The results presented in Fig. 1 reveal a significant difference in the representation of the studied
process by the delay model and the classical model. The delay model ensures a stable dynamic of the
average waiting time F even under a high coefficient of variation C V, and substantial utilization u.
This indicates the model’s ability to adapt to the variability of the incoming request flow effectively.
Regardless CV,, the classical model allows for a rapid increase in average waiting time as utilization
approaches the critical level u — 1, which limits its efficiency. Therefore, unlike the classical model,
the delay model accounts for the uneven distribution of incoming traffic, reducing service delays for
accepted incoming requests, particularly under low or moderate utilization u < 0.7.

The analysis of average waiting time conducted in the previous study provided insights into how
changes in request structure and utilization are accounted for by the studied process in managing
subscriber service quality. However, this alone is insufficient for a comprehensive description of the
target 5G infrastructure's operation, as the waiting time for an incoming request in the buffer
depends on the efficiency of base station resource utilization. Examining the dependency u =
f (,u, C I/,'J allows for an assessment of how utilization levels fluctuate with varying intensity and
unevenness of incoming request flow, which is crucial for maintaining a balance between efficient
communication resource usage and minimizing waiting time. The calculated u = f (y, C V/t)
dependency variants for describing the studied process using the delay model and the classical model

are presented in Fig. 2.
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Figure 2: Results of the parameterization of the studied process in the form of the dependency u =
f (l'" CVu)'

From Fig. 2, it is evident that the results of communication resource management using the delay
model differ significantly from those demonstrated by the classical model. The delay model ensures
a smoother adjustment of base station utilization u in response to increasing incoming request
intensity u and coefficient of variation CV,, highlighting its ability to adapt to the unevenness of
incoming traffic flow. The classical model linearizes the dependency of utilization on u and exhibits
insensitivity u to the impact of the coefficient of variation CV}, which reduces the efficiency of
communication resource utilization in cases of high traffic flow irregularity. The graph on the left
shows that even at high values of C Vi, utilization increases in a controlled manner. In contrast, the
classical model exhibits a significant rise in u only in response to a substantial increase in intensity
u. This confirms the advantage of the delay model, which ensures the stability of communication
resource management under complex operating conditions of the 5G infrastructure.

For a real 5G infrastructure, delay is one of the key factors negatively affecting subscriber service
quality, especially under high base station utilization. This fact highlights the relevance of studying
the impact of delay t, and utilization u on the average waiting time F. The mathematical framework
presented in Section 2 provides the necessary functionality to represent the studied process within
this basis. The obtained results, including those for the classical model, are presented in Fig. 3.
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Figure 3: Results of the parameterization of the studied process in the form of the dependency F =
f(to, ).

The results presented in Fig. 3 clearly demonstrate that the delay model and the classical model
account for the impact of delay t, duration on the average waiting time F in different ways. The



graph on the left distinctly shows that the delay model allows for a significant increase in F in
synchronization with the growth of ty, especially at high utilization levels: u — 1. This highlights
the importance of considering the delay factor when studying the operation of a 5G infrastructure
under high-load conditions, where even a slight increase in t; can significantly impact subscribers’
service quality. The graph on the right illustrates that within the framework of the classical model,
F it depends only on utilization and increases linearly with u, ignoring the impact of delay duration.
This reduces the computational complexity of the analysis but simultaneously limits the applicability
of the classical model in real-world conditions where delay is inevitable. Thus, the delay model
provides a more accurate representation of the studied process and enables a more precise
determination of the moment when the impact of t, on F may become critical.

4. Conclusions

The article presents a concept for managing the utilization distribution in a high-load 5G
infrastructure. This concept is based on the queuing system with a delay model. Analytical
expressions have been derived to calculate the characteristics of such a system under variation
coefficients of inter-arrival periods of incoming requests CV,, < 1 and specific additional constraints
on the system’s input parameters. Based on the obtained results, the following conclusions can be
drawn:

1. Considering the delay t, in modeling the process of communication resource management
in a high-load 5G infrastructure significantly affects the determination of utilization u, which
exceeds the corresponding value for the classical %——type system by a factor of %;

= 0

1

2. The stability of the studied queuing system with delay is largely determined by this value.
This is confirmed by the analytical form of expressions (10) and (11), and subsequently,
expression (15);

3. When the variation coefficients reach CV, < 1, CV;, < 1, the studied queuing system with
delay loses its Markovian properties. In this case, the average waiting time F for an accepted
incoming subscriber request in the system’s buffer becomes lower than the corresponding
parameter in the classical %— -type system under identical utilization u values;

1
4. The use of probability distribution functions (1) and (2) in the proposed queuing system with

delay enabled the approximation of input parameter distributions at the level of the first two
. . oM
moments, in contrast to the classical - -type system;

1
5. The obtained queuing system with delay can be applied to model a wide range of processes.

Furthermore, adapting the system for an adequate description of the target process can be
. . . . : M
achieved by introducing a primary regulatory element in the form of the - type system,

1
with parameters defined according to expressions (21) and (22).

It should be noted that in the theoretical part of the article when characterizing the studied
queuing system with delay, we focused on the average waiting time of an accepted incoming
subscriber request in the buffer. The remaining informative system parameters, such as the average
queue length, the average number of accepted subscriber requests, and others, are derived from the
parameter F.

Future research will focus on improving the mathematical framework presented in the article. In
particular, a promising direction is the analysis of the impact of dynamic changes in delay and
variation coefficients CV,,, CV;, on service quality under conditions of uneven incoming request flow.
Additionally, it is advisable to develop adaptive algorithms that account for variable subscriber
mobility and fluctuations in subscriber density during peak load periods. Special attention will be



given to integrating machine learning technologies for predicting communication resource demands
and optimizing energy consumption, ensuring the stability of the target infrastructure under
complex operational scenarios in 5G networks.
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