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Abstract 
Deep learning models have demonstrated remarkable performance across the glaucoma's diagnosis and 
prognosis; however, deploying them in resource-constrained environments poses significant challenges. 
This research explores the balance between compression and accuracy preservation in specialist 
convolutional neural networks (CNNs) intended for CPU-based execution with minimal storage 
requirements. By employing pruning, knowledge distillation, quantization, and weight sharing, it is aimed 
to achieve maximal compression without compromising essential task performance. Resulting findings 
provide insights into the efficiency limits of model compression and its implications for real-world 
deployment. Additionally, the applicability of these compression techniques to Transformer-based 
architectures is examined throughout the work, which pose unique challenges due to their reliance on 
attention mechanisms. 
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1. Introduction 

Glaucoma is the second most common cause of blindness and disability in the world [1]. It affects 
more than 90 million people worldwide [1]. It is estimated that in 2013, the number of people aged 
40-80 years suffering from glaucoma was 64.3 million, in 2020 - about 76.0 million, and by 2040 this 
figure is projected to increase to 111.8 million [2]. 

The main difficulty in diagnosing glaucoma is that its symptoms usually appear only when vision 
has already deteriorated significantly. Due to the asymptomatic course and slow development of the 
disease, many people are unaware of the problem, which makes it difficult to detect and predict it 
early, especially in the initial stages. However, timely diagnosis can slow down the progression of 
the disease and prevent vision loss. 

Since glaucoma causes retinal damage due to damage to the optic nerve head and increased 
intraocular pressure, an important step in its detection is the segmentation of the optic disc. This 
procedure is difficult due to the small size of the disc and possible blood supply disorders [3]. 
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The standard diagnosis of glaucoma includes an assessment of the optic nerve head by examining 
the retina, measuring intraocular pressure, analyzing visual fields, and taking into account other 
related factors [4]. At the same time, traditional methods are time-consuming, largely dependent on 
the ophthalmologist's experience, and may be accompanied by human error, which makes it difficult 
to detect the disease in the early stages. 

A promising area for improving the diagnostic process is modern information consulting and 
diagnostic technologies. They help to improve medical decisions and the quality of treatment of 
patients with retinal pathologies and are already used in numerous systems for diagnosing various 
diseases [5-8]. 

Over the past decade, machine learning and deep learning methods have developed significantly, 
not only improving the accuracy of glaucoma detection but also speeding up the processing of large 
amounts of images and data, making the work of doctors easier [9]. Studies confirm that the use of 
these technologies allows for the automatic diagnosis of glaucoma in the early stages by analyzing 
fundus and optical coherence tomography images to classify the eye as normal or glaucoma-affected 
[10, 11]. 

Recent advancements in deep learning have led to increasingly large and complex models, making 
deployment on limited-resource environments such as edge devices and low-power CPUs 
impractical. While specialist models tailored for specific tasks offer high accuracy, they often retain 
redundant parameters that inflate model size and computational overhead. The challenge lies in 
optimizing these models for real-world applications while maintaining their effectiveness. 

Compression techniques [12-14] such as pruning (removes unnecessary weights, reducing 
computation and memory footprint), quantization (converts high-precision weights into lower-bit 
representations, minimizing storage requirements and enhancing inference speed; applied to an 
already-learned model for increasing performance speed), weight sharing (groups similar weights to 
reduce parameter redundancy while preserving network expressiveness; also applied to an already-
learned model for increasing performance speed and decrease storage space), and knowledge 
distillation (transfers knowledge from a larger, more complex model to a smaller, more efficient 
model) can significantly reduce model size and inference time. However, an aggressive compression 
strategy may result in degraded accuracy, raising the question: How far can a model be compressed 
while maintaining usability?  

2. Related works 

The balance between model size and performance has been widely studied. Han et al. [15] introduced 
structured and unstructured pruning to eliminate redundant weights, demonstrating notable 
efficiency improvements. Frankle & Carbin [16] proposed the Lottery Ticket Hypothesis, suggesting 
that sparse subnetworks can match full model performance. Other works [17-19] explore 
quantization and architectural optimizations to further enhance efficiency. 

Additionally, research by Bala and Eschbach [20] highlights the importance of optimized color 
spaces for improving neural network visibility in medical imaging. Their findings inform our 
preprocessing techniques for fundus image analysis. 

Studies such as Wu et al. [18] emphasize the delicate balance between compression level and 
accuracy. Excessive pruning or quantization can introduce errors that degrade performance, 
highlighting the need for a strategic approach to compression. Knowledge distillation has also been 
explored as a means to retain essential knowledge in highly compressed models while mitigating 
accuracy loss. 

Research has shown that specialized models tend to outperform general-purpose models in their 
respective domains [21-24]. This motivated selection of an image transformer model for optic nerve 
extraction, as transformers have demonstrated superior performance in medical imaging tasks. By 
leveraging their self-attention mechanisms, these models excel in capturing fine-grained spatial 
dependencies, which is crucial for precise segmentation of the optic nerve in fundus images. 



3. Methodology 

3.1. Baseline model description 

CNN-based encoder-decoder architecture was utilized, structured as follows: 

1. Initial feature extraction – VGG-16 backbone with four pooling layers. 
2. Intermediate processing – custom layers for high-level feature abstraction. 
3. Decoding – three decoder layers with skip connections to preserve spatial information. 

This model is fine-tuned for binary classification of optic nerve localization in fundus images. 
Model is used for image segmentation into single-channel optic mask [25]. The model is tasked to 
learn high-level features, which, in practice, may further decompose into finer feature 
representations depending on the model's depth and granularity.  Feature rough estimate is 17 
discrete low-level features that the CNN must detect, process, and classify to correctly locate the 
optic nerve. Feature breakdown follows: 

Feature 1: Bright round/oval spot (optic disc): 
1. Brightness intensity contrast (1). 
2. Circular shape detection (1). 
3. Local texture gradient (1). 
4. Edge detection (1). 
5. Color consistency (1). 

Feature 2: Conjunction of several blood vessels: 
6. Vessel edge detection (1). 
7. Vessel thickness estimation (1). 
8. Vessel directionality (1). 
9. Vessel junction detection (1). 
10. Vessel curvature (1). 

Feature 3: Rounded dark border around the bright spot: 
11. Contrast difference (1). 
12. Border shape (1). 
13. Edge sharpness (1). 
14. Shadowing effects (1). 

Feature 4: Not on the black part of the image: 
15. Background segmentation (1). 
16. Foreground detection (1). 
17. Image region classification (1). 

Image describing structure of base-64 transformer model is provided in Figure 1. 
 

 
Figure 1: Encoder-decoder architecture for current sample. 



3.2. Image preprocessing 

To enhance image quality and improve feature extraction, histogram equalization and CLAHE 
(Contrast Limited Adaptive Histogram Equalization) in the LAB color space are applied. These 
techniques help normalize contrast and highlight relevant structures in the fundus images. The 
choice of the LAB color space is inspired by research from [26, 27], which demonstrates that 
optimized color spaces can improve neural network visibility and feature extraction in medical 
imaging. 

3.3. Compression techniques 

Iterative structured pruning is being applied to model, progressively removing low-importance 
weights while monitoring accuracy loss, resulting model was fine-tuned. In this article pruning was 
pretty aggressive (50%). Dropout layers (30% rate) were also applied to force model to compress 
knowledge and decrease amount of knowledge lost on pruning application, lessening retrain time 
and shortening preparation for further compression. 

A smaller student model is trained to mimic the larger teacher model, learning its essential 
features while significantly reducing parameter count. In this article larger first iteration model was 
used as teacher model for all further iterations of student model learning. 

Post-training quantization was employed to convert 32-bit floating-point weights to 8-bit integers, 
reducing memory consumption. Spoiler: memory consumption remained unchanged, inference time 
remained largely unchanged (5% speed increase), space on disk actually increased (why?). 

K-Means clustering was used to group similar weights, replacing them with shared values to 
reduce parameter storage. Spoiler: ineffective for accuracy, inference time unchanged, memory 
consumption unchanged. 

Transfer learning was employed to teach the first large iterations of the transformer faster, 
leveraging pre-trained models to accelerate convergence and improve performance. Prior research 
has demonstrated the effectiveness of transfer learning in deep learning applications, particularly in 
medical imaging tasks, where pre-trained architectures significantly enhance detection accuracy and 
efficiency [28].  

3.4. Transformer model considerations 

In addition to the CNN-based approach detailed above, current research evaluates an image 
transformer model for optic nerve extraction. Transformer architectures are renowned for their self-
attention mechanisms, which excel at capturing long-range dependencies and fine-grained 
contextual relationships-a quality that is particularly beneficial for specialized tasks in medical 
imaging. In the context of optic nerve segmentation, transformers are capable of discerning subtle 
variations in image features that are crucial for accurate detection. 

While recent literature has introduced a range of advanced compression strategies tailored to 
transformers (example - low-rank factorization [29, 30] and sparse attention mechanisms [31, 32]), 
current work does not implement these methods. Instead, the transformer model is utilized in its 
standard form to serve as a benchmark for specialized model performance. This approach allows to 
directly compare the efficiency gains achieved through CNN compression techniques - pruning, 
knowledge distillation, quantization, and weight sharing - with the inherent advantages of 
transformer-based models operating under similar CPU constraints. 

By focusing on this comparison, we seek to determine where the transformer’s compressed 
performance can match accuracy of base transformer model. This evaluation is critical to overall 
theme of liminal efficiency, where we explore the threshold at which aggressive compression 
techniques can be applied without incurring unacceptable losses in accuracy, while considering the 
trade-offs between generalist and specialist model architectures. Liminal efficiency is defined as <5% 
accuracy loss from starting model without losing binary feature classification metrics and increasing 
performance. 



4. Experiments and testing 

For experiments we use datasets ODIR-5K [33] – local ophthalmologist-provided datasets, which 
consists of 500 random images selected for training and evaluation. 

We calculated following metrics: inference time, total training time, number of training epochs 
for sufficient results (here training epoch is one run over training image set), evaluation prediction 
count, total true positive predictions, total true negative predictions, total false positive predictions, 
total false negative predictions, additional false detections, model size, and complex metrics: 
accuracy, recall, and F1-score. 

For testing the results 871 images tested in a CPU environment. 
Experiments are conducted on model bases of 64, 32, 16, 8. Iteration model graphic images for 

reference of differences in iteration for base 32 and base 16 are displayed on Figure 2 and Figure 3 
respectively (difference is in thickness of convolution blocks – these are multipliers of base). 

 

 
Figure 2: Encoder-decoder architecture for base of 32. 

 
Figure 3: Encoder-decoder architecture for base of 16. 

 
Training was conducted using k-fold cross-validation algorithm with resulting loss being 

extracted from evaluation fold. Additionally, to preserve edge cases knowledge a set of highest loss 
cases in maximum size of 1 fold was assembled and used every step to additionally randomly select 



a batch to train upon using weighted random where higher loss cases are selected more often. Both 
knowledge distillation and pruning were trained on similar edge cases. 

4.1. Pruning experiments 

Pruning experiment results are provided in Table 1. Pruning experiments involve following: 

1. Record metrics for each iteration, epoch and training session. 
2. At iteration 1 transfer-learning is applied to model encoder blocks 1 through 4, then dropout 

is applied at each activation except the very last block using dropout-30% layers. After that 
model is trained to find optic nerve until sufficient results are obtained. 

3. At subsequent iterations: previous iteration model is pruned by 50% with dropout turned off, 
dropout is turned back on after 1 training epoch and model is subsequently fine-tuned until 
sufficient accuracy is obtained. 

4. Repeat for following “bases” of transformer: 64 (initial), 32, 16, 8. We stopped at base 8 
because model stopped converging fast enough requiring obnoxious amount of training time 
(recorded results are results of first converged training, however last iteration did not 
converge at all). 

Table 1 
Results of pruning learning 

Transformer configuration x64 dropout x32 dropout x16 dropout x8 dropout 
Size 152 M 38 M 9.5 M 2.4 M 

Train epochs for sufficient result 24 30 56 122 
Train time 3h 34m 4h 15m 5h 57m 13h 1m 

Total train time, Σ 3h 34m 7h 49m 13h 46m 1d 2h 47m 
Inference time 0.54 s 0.2 s 0.09 s 0.06 s 

Accuracy 98.16% 98.28% 95.29% 54.54% 
Precision 98.73% 98.96% 98.93% 97.34% 

Recall 99.42% 99.30% 96.29% 55.36% 
F1-score 99.07% 99.13% 97.59% 70.58% 

Additional false detections 16 18 107 346 
Edge case detection yes yes yes no 

 

4.2. Knowledge distillation 

Knowledge distillation experiment results are provided in Table 2. Knowledge distillation 
experiments involve following: 

1. Record metrics for each iteration, epoch and training session. 
2. At iteration 1 transfer-learning is applied to model encoder blocks 1 through 4. After that 

model is trained to find optic nerve until sufficient results are obtained. 
3. At subsequent iterations: use results from iteration 1 as training target. 
4. Repeat for following iteration “bases” of transformer: 64(initial, step 2), 32, 16, 8. I stopped at 

base 8 because model(again) stopped converging fast enough, requiring obnoxious amount 
of training time. This time base 8 model was trained for another 40 epochs till sufficient 
accuracy. 

 
 
 
 



Table 2 
Results of knowledge distillation 

Transformer configuration x64  x32 t x16  x8  
Train epochs for sufficient result 10 78 80 160 

Train time 1h 3m 10h 21m 7h 45m 13h 26m 
Total train time 1h 3m 11h 24m 8h 48m 14h 29m 
Inference time 0.6 s 0.2 s 0.09s 0.06s 

Accuracy 99.20% 94.60% 90.36% 94.37% 
Precision 99.53% 99.63% 100.00% 95.56% 

Recall 99.65% 94.88% 90.23% 98.67% 
F1-score 99.59% 97.20% 94.87% 97.09% 

Additional false detections 1 11 41 10 
Edge case detection yes yes no no 

 
Resulting images that denote edge cases handling are displayed in Figures 4-8. 

 

 
Figure 4: х16 dropout-pruning – positive edge case result – here blood vessels did converge to where 
optic nerve is, even if it outside the visible part. Knowledge distillation did not grab anything. [Local 
Image] result file of detection on 4330_left image using x16 dropout model detection. 

 

 
Figure 5: х16 dropout-pruning – positive edge case result - subtle visibility. [Local Image] result file 
of detection on 4381_left image using x16 dropout model detection. 



 

 
Figure 6: х16 no-dropout knowledge distillation — negative edge case result – subtle visibility, round 
bright feature was not grabbed. [Local Image] result file of detection on 4381_left image using x16 
no-dropout model detection. 
 

 
Figure 7: х16 dropout-pruning – positive edge case result — correct subtle visibility feature was 
grabbed. [Local Image] result file of detection on 4288_left image using x16 dropout model detection. 

 

 
Figure 8: х16 no-dropout knowledge distillation – negative edge case result – wrong feature. [Local 
Image] result file of detection on 4288_left image using x16 no-dropout model detection. 



4.3. Quantization testing 

Quantization testing experiments involve following: 

1. Prepare final model from training for certain model base for quantization. 
2. Train prepared model to adjust it for quantization and quantize when results are sufficient. 
3. Evaluate performance. 

Results: gains after quantization are negligible. No useful results. 

4.4. Weight sharing 

Weight sharing testing involve following: Use final model from training for certain model base and 
apply weight sharing, fine-tune and reapply weight sharing till accuracy is acceptable. 

Results: unusable, breaks detection. Training and weight sharing after each epoch did not improve 
result. Applying weight sharing after every training did not improve resulting accuracy. Applying 
weight sharing after several epochs passed did not improve accuracy. Issue with weight sharing was 
that there were too many interconnected target clusters for good enough selection of optic nerve.  
Issue example provided in Figure 9. 
 

 
Figure 9: Weight sharing lowest loss results. 

5. Conclusions 

Analysis of experiments’ results shows that the x16 base dropout pruning variant is a liminal point 
in terms of accuracy/performance ratio. It exhibits negligible accuracy loss compared to previous 
results while being smaller in size and 5.8 times faster than the x64 base transformer. Moreover, it 
retains edge case detection capability, indicating superior knowledge retention and fine-tuning 
potential.   This variant remains undertrained and can be fine-tuned further along with un-
constraining with setting dropout to 0. Alternatively, data from knowledge distillation experiments 
suggest that the x8 base transformer has performed well in general cases. Therefore, an x8 no-
dropout pruned variant may be obtained from the x16 dropout 30 variant by pruning it to x8 base 
and fine-tuning it with dropout set to 0 for maximum performance and knowledge retention. 
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