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Abstract 
In the field of artificial intelligent decision systems, the challenge of learning to construct effective decisions 
in problems, scenarios and environments characterized by significant uncertainty is encountered 
commonly. An extensive body of research has been devoted to the development of learning processes and 
methods which are able to operate within the constraints of uncertainty often described by the shortage of 
prior information about the problem distribution while having the ability to produce effective decisions and 
improve their quality in the process. Due to the nature of the constraints in this type of problem, the 
necessary core capacity of such methods is the ability to extract maximum information from the problem 
data, including in the raw form and utilize it effectively for the construction of correct, i.e., empirically 
successful decisions. In this work, we propose and demonstrate an intelligent process of analysis and 
construction of the conceptual structure of problem data in the “constrained prior” context that requires 
effective learning with minimal prior data, based on the determination of a structure of probabilistic, “fuzzy” 
prototype classes/regions. The process and application of iterative learning, starting with minimal sets of 
problem data is demonstrated with a model dataset of images of basic geometric shapes. The proposed 
approach demonstrated an effective ability to learn the conceptual structure of problem data with minimal 
samplings and improve the quality of learning and associated decisions over learning iterations. 
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1. Introduction 

Intelligent decision systems which find applications in many functions and domains of modern 
society and technology depend on correct interpretation of inputs, expressed in certain measurable 
parameters that described the data space of the problem. It is logical that similar inputs or 
observations should induce similar decisions: this logic allows a decision that has been verified as 
correct and effective for one input sample to be applied to the class of inputs that are essentially 
similar to it, allowing for effective (the decisions produced by the system are consistent) and efficient 
(completely new decisions do not need to be constructed for every new input) process and models 
of constructing decisions. 

However, the problem of how the relationship of essential similarity between inputs in general 
data spaces can be determined appears to be not so trivial. Particular challenge is presented by the 
cases and scenarios where the knowledge or information about the distribution of data points in the 
problem space is not available “at prior” that is, to a system in the training regime before it can be 
set in operation as is the case with conventional methods of supervised classification [1]. In such 
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cases that can be designated as “learning with constrained prior” intelligent systems must possess 
the ability to bring out, determine or calculate the relationship of similarity directly from samplings 
of data in the problem space and without massive prior information about characteristics of its 
distribution [2]. Developing approaches to deal with this type of problems is the subject of this work. 

2. Prior work 

The subject of this study lies at the conjunction of several actively researched directions and fields 
in data science and theory and practice of intelligent systems. The region of the problems we 
approach here can be defined as learning with constrained prior information, “learning with 
constrained prior” problem, that is, data with limited and/or insufficient prior knowledge about 
the distribution of the problem to employ conventional methods of machine intelligence. In this 
regard, methods of self-supervised, unsupervised and generative learning and dimensionality 
reduction were proven effective in their ability to identify and determine characteristic structures 
of types or patterns of similarity with a wide array of data of realistic complex types. 

To reduce the dimensionality, improve the interpretability of data and, as a result, reduce the 
computational complexity of subsequence methods of analysis, a wide range of methods, both linear 
and non-linear were researched, including PCA, SNE [3, 4], prototype learning including with 
generative neural models [5, 6], dimensionality reduction and manifold learning [7, 8] and others. 
These methods compress data of large dimensions while preserving its essential information content, 
not in the least, in the context of this study, the relationship of similarity in the spaces (embeddings) 
of informative factors/features.  It was shown that these methods can be used in combination with 
fuzzy approaches such as fuzzy C-means [9]. 

This observation brings us to the field of fuzzy sets that have been applied extensively to problems 
in multifactorial data spaces. Papers [10, 11] demonstrated successful applications of fuzzy pattern 
recognition and fuzzy modeling to evaluate, compare, select, prioritize, and/or organize alternative 
decision options. Such approaches have been shown to simplify decision-making processes and 
reduce their complexity. 

Fuzzy models are effectively used in intelligent decision-making systems. Such integration allows 
to work effectively with multidimensional data and ensure the accuracy of decisions in complex 
conditions of uncertainty.  

For example, [12] presented a novel neuro-fuzzy diagnostic system based on a non-iterative ANN 
and an original fuzzy information model. In [13] a novel effective decision-making method aimed to 
assist in clinical practice based on integrated fuzzy information models and data mining was 
proposed.  

An interesting approach demonstrated recently in [14] is a combination of prototype models and 
fuzzy methods such as fuzzy C-means in the analysis of conceptual data structures. The method 
demonstrated the potential for accurate classification while managing data uncertainty. A related 
study [15] presented a multi-objective optimization method that showed potential in confident 
determination of the optimal prototype structures via simultaneous minimization of the training 
error on historical training data and minimization of the intra-cluster variance. 

In this work we attempted to advance and refine methods of determination of the prototype 
structure, including fuzzy prototypes to the case and essential limitations in the problem of 
constrained prior by incorporating optimization and iterative improvement of conceptual models of 
problem data. 

In approaching the problem of learning with constrained prior for optimal decisions produced by 
intelligent decision systems with arbitrary type of problem data space, we first examine the process 
of construction of fuzzy-prototype models with arbitrary samplings of the problem data, attempting 
to avoid essential assumptions and/or constraints such as pre-known content of protype classes. 
Next, observing that in the constrained setting, general data of the problem, not necessarily 
associated with verified outcomes, can be accumulated in the active process of decision making, we 
examine quality characteristics of fuzzy prototype models, such as precision/resolution relative to 



the size of the data samplings. Formulating these methods and processes allows us to test the 
hypothesis that using a combination of iterative accumulation of problem data and construction of 
fuzzy-prototype models with more representative and detailed samplings produces more precise 
models of the problem data distribution leading to improve quality of decisions based on such 
models.  

3. Methods 

3.1. Problem formulation 

In this work we will deal with data that is obtained as a sampling of an unknown distribution D, W 
= { P, F } where P = { p }: the individual points of observation that describe the domain, F = { f }, the 
observable factors recorded in the sampling. Accordingly, each data point 𝑝𝑝 ∈ 𝑃𝑃 is described by a 
set of observable factors 𝑓𝑓𝑝𝑝 = 𝐹𝐹(𝑝𝑝).  

In the task of interpretation of the data D for making decisions the critical challenge is to establish 
an association between an observation 𝑥𝑥 ∈ 𝑃𝑃 and a class of similar observations K(x) that can be 
associated with a correct decision M(K, a), where a: the parameters of the decision function.  

An additional challenge we will be discussing in this work relaters to the case/scenarios where 
the information about the association, the factorization relationship R:  

𝐾𝐾(𝑝𝑝) =  𝑅𝑅�𝐹𝐹(𝑝𝑝)�. (1) 

is limited or absent at the outset of the study. In such cases, one cannot rely on a known function or 
logical sequence to connect an observed instance of the phenomena of interest to the correct 
decision. This range of problems/scenarios will be referred to as “learning with constrained prior” 
problem. 

In approaching this problem, one is faced with the challenge of determination of classes of 
similarity in complex data described by a large set of observable factors F without sufficient prior 
information about the factorization relationship (1), often inferred from sets of known associations 
(p, K(p)) known as annotated or labeled data. 

3.2. Fuzzy prototype analysis 

Prototype analysis is a well-known approach in problems and scenarios where prior information 
about a given type of data or distribution, D is limited or not available, confounding or precluding 
resolution of the factorization relationship (1) from known associations observation, class [5, 16].  

These methods work particularly well with data that can be described or expressed by a large 
number of observable factors with a possibility of a strong redundancy in the observation points 
described by them (multiple homogeneous observable factors). 

Following the well-researched process of unsupervised analysis and determination of conceptual 
structure that is in data science that commonly involves strong reduction of dimensionality, a 
structure of natural prototypes or concepts can be derived from a general representative sampling 
of the distribution D: P(D) = { pk } that can be interpreted as the basic framework of the essential 
types of similarity pk that approximate the distribution:  

𝑥𝑥 ∈ 𝐷𝐷 →  ∃ 𝑘𝑘,𝑝𝑝𝑘𝑘: 𝑡𝑡(𝑥𝑥) ∈ 𝑝𝑝𝑘𝑘 , (2) 

where t(x) is the image of the observation x in the informative prototype space (the embedding) 
commonly of reduced functionality [5, 6]. In many specific models and methods of unsupervised 
embedding, the inverse association from the prototype to the observable space exists as well 𝑦𝑦(𝑡𝑡) =
𝐺𝐺(𝑡𝑡),𝑦𝑦 ∈ 𝐷𝐷, where G(t): the generative transformation [17]. 

In this work, we propose an extension of the prototype analysis based on the observation that the 
association between an observation and its prototype class (2) in most practical cases with many 
methods is not categorical but rather, probabilistic, i.e. the probability of association of an 



observation 𝑥𝑥 ∈ 𝐷𝐷 to the prototype class pk is described by the prototype probability distribution 
ρ(x, pk): 

𝜌𝜌(𝑥𝑥,𝑝𝑝k) = 𝑊𝑊�𝐸𝐸(𝑥𝑥)� ∈ 𝑝𝑝𝑘𝑘 ,�𝜌𝜌(𝑥𝑥,𝑝𝑝k) = 1
𝑘𝑘

 (3) 

where E(x): the embedding transformation 𝐷𝐷 → 𝑃𝑃, W: the probability of a point in the prototype 
space belonging to a specific prototype class. The relationship in (3) defines probabilistic or “fuzzy” 
association between the observations in the observable data space D and the prototype classes P 
resolved with methods of prototype analysis. 

The advantage of the methods just described in application to the learning with constrained prior 
problem comes from the observation that whereas prior knowledge of the problem can be limited or 
constrained, it may not necessarily be the case for the general raw data in the problem data space.  

Moreover, this data can be accumulated in the process of the interactions of the learning system 
with the problem data space, with a possibility of iterative, progressive learning from the experience, 
based on the results of the earlier observations and learning iterations.  

Then, with the data accumulated through this process, methods of analysis of its informative 
structure can be applied, including, as discussed earlier, neural generative learning, prototype 
learning, deep dimensionality reduction with preservation of the information content and many 
others. This approach can offer essential insights into the conceptual composition of the distribution 
of the problem that can be used for determination of the prototype structure and subsequent 
applications in intelligent decision systems. 

3.3. Integration with decision systems 

Application of the fuzzy prototype analysis in intelligent decision systems operating in the context 
of constrained prior problems can be proposed straightforwardly via the construction of decisions 
based on the natural, intrinsic similarity of the observations, as: 

𝑡𝑡(𝑥𝑥), 𝑡𝑡(𝑦𝑦) ∈ 𝑝𝑝𝑘𝑘  → 𝐷𝐷(𝑥𝑥) ≅ 𝐷𝐷(𝑦𝑦) (4) 

where D(x), D(y): decisions produced (constructed) for the observations x, y, 𝑡𝑡(𝑥𝑥), 𝑡𝑡(𝑦𝑦): their images 
in the informative embedding space of the problem. 

In other words, once the structure of fuzzy prototypes in the problem data D has been determined 
via application of the fuzzy prototype analysis as described in the preceding sections, observations 
that belong in the same prototype class with high confidence can be associated with similar decisions. 
Fuzzy prototype models can as well provide some informative insights for observations with less 
confident association to prototype classes, as will be discussed further in the results section. 

3.4. A demonstration of fuzzy prototype analysis 

In this work we illustrate the methods and workflow of the fuzzy prototype analysis for intelligent 
decision systems with a dataset that models a case of a learning with constrained prior problem. 

3.4.1. Model dataset 

For an illustration of the fuzzy prototype method, we will consider here an example of an observable 
distribution is described by a large number of numerical parameters of the same type such as images. 
We will use the dataset of images of basic geometric shapes that was described in [18].  

The images in the dataset were of three basic types: circles, triangles and backgrounds, of variable 
size and grayscale contrast. The resolution of the images was 64 × 64 pixels i.e. each data point 
corresponding to a single observation was expressed in 4,096 numerical factors in the range [0, 1]. 



3.4.2. Informative dimensionality reduction 

An informative embedding the model dataset was obtained by applying a generative neural network 
model with the architecture of a convolutional encoder, as described in [18]. This class of neural 
architectures, being of the type of self-supervised learning, does not require annotated datasets for 
training [17]. It is trained by reducing the error of reproduction (generation) of the samples in a set 
of observables samples that can represent a sampling of the distribution of the problem.  

Thus, it is essential to note that informative embedding spaces constructed by application of 
generative models to the problem dataset do not depend on any prior information about the 
distribution and fully satisfy the constraints of the problem. Examples of distributions of data 
samples in the embedding spaces of trained generative models are shown in Figure 1. 

 

Figure 1: Distributions of multifactorial homogeneous data (images of geometric shapes, [18]) in 
low-dimensional informative embedding spaces. 

Another point that is essential for the analysis and discussion here is that successful learning 
could be achieved with relatively small samplings of the distribution, in the model example, as small 
as dozens or even single samples per class. Granted, this observation needs to be taken with caution 
and may not be readily extendable to significantly more complex problem data. Still, it shows that 
meaningful initial learning of problem data of significant complexity as described earlier can be 
achieved with limited samplings and moreover, as noted earlier, do not require annotations with 
known types or classes, or any other form of prior knowledge about the problem distribution. 

Finally, it is worth noting that the method of construction of informative low-dimensional 
embeddings of the problem data used here is not unique and a wide selection of methods of self-
supervised, unsupervised learning and dimensionality reduction has been studied and applied 
successfully. A more detailed discussion of the types of the methods, their differences, etc., would 
fall beyond the scope of this work. 

3.4.3. Fuzzy-prototype structure of problem data 

In the example that we use in this work, groups of samples of the unknown distribution of the 
problem in the high dimensional space of observable factors characterized by essential similarity are 
modeled by the types of the geometric shape in the dataset of images.  

This type of model corresponds to problems and scenarios where an unknown distribution of 
the problem is described by a large number of the numerical factors with approximately equal 
significance in the effect of interest in the distribution (homogeneous multifactorial data).  

It was shown [18] that in some such cases, the prototype/conceptual structure of the data P(D) 
discussed in the preceding sections can be determined or resolved with sufficient confidence by 
application of methods of unsupervised ensemble learning and clustering that do not depend on 
significant or, in fact, any prior knowledge about the unknown distribution.  



As a result of application of such methods, the distribution of data points that correspond to a 
certain sampling of the original data S in the informative embedding space E(S) can be represented 
by the fuzzy-prototype structure Pf(D): 

𝑃𝑃𝑓𝑓(𝐷𝐷): { 𝑃𝑃(𝐷𝐷),𝜌𝜌(𝑥𝑥,𝑝𝑝k) } (4) 

where P(D) = P(E(S)), the sequence of the prototypes derived from the distribution E(S) in the derived 
informative embedding space, 𝜌𝜌: the prototype probability distribution. 

Again, one can observe that the fuzzy-prototype structure of the problem data (4) effectively 
approximates the observable distribution by providing a probabilistic model of distribution of 
arbitrary representative of the problem data D between the conceptual prototypes. 

3.4.4. Iterative learning 

One can observe that the process of the resolution or construction of the fuzzy-prototype structure 
of the problem data described in the preceding sections was in effect, static with respect to to the 
basic sampling of the problem data S(D) that was used for the derivation of the structure/model of 
the fuzzy prototypes. 

As we noted earlier, an essential advantage of the methods of unsupervised learning with 
constrained prior problems is the potential to accumulate general, non-annotated data in the course 
of the learning process. Such more extensive and detailed samplings can in their turn provide 
additional, more detailed information about the conceptual structure of the distribution. Then, 
repeating the described process iteratively with a sequence of extended samplings of data S1, S2, .. Sk 
in the problem space it can be possible to produce more precise, “sharper” fuzzy prototype models 
with diminishing uncertainty in the probability distribution of the prototype classes. This iterative 
process is illustrated in Figure 2. 

 

Figure 2: Iterative learning of fuzzy protype structure via extended samplings. 

Thus, one can expect that the iterations of the fuzzy-prototype models Pf(D)k obtained with more 
descriptive samplings Sk would produce more precise models of the prototype probability 
distribution, reducing the uncertainty in the distribution of the observations between the prototype 
classes. In the next section we attempt to verify this hypothesis with the model dataset of images. 



4. Results 

In this section we illustrate the method of construction of fuzzy-prototype models of problem data 
in constrained prior problems with the dataset of images as described in Section 3.3.1. To examine 
the relationship between the precision or resolution of the fuzzy-protype model on the size of 
sampling, we used samples of three different sizes: S-90, having 30 images per type (i.e., geometric 
shape); S-150, 50 images per type; and S-300, with 100 images per type. 

4.1. Samplings and construction of fuzzy-prototype models 

Iterative learning of fuzzy-prototype models of problem data in the constrained prior setting can face 
another challenge in the early stages of the process: that of instability of learning with small data. 
This limitation applies only to some problems, where both known and general data are constrained, 
whereas in other cases, samplings of general data that is not associated with prior knowledge would 
not be limited or constrained. Still, in this work we chose to address the case where general data is 
limited along with the annotated one, and the processes of learning of prototype structure and 
collection of general samplings proceed alongside each other. For this reason, the initial, starting 
sample was chosen to be of a rather small size, about two dozen instances per conceptual class, that 
is in our case, the type of geometric shape.  

One can note before proceeding to further analysis that the minimum threshold of the size of 
samplings that is necessary for initial learning of the prototype structure in the data is not an obvious 
choice; it depends on several factors such as conceptual complexity of data, characteristics of the 
variation in the informative embedding factors of the prototype classes and others. Addressing this 
question in full detail would be a challenging problem of its own that merits another study. With the 
data used in this work it was found by trial that the chosen size of the initial sampling was sufficient 
for the purposes of the study. 

To construct fuzzy-prototype models with samplings of the problem data modeled by the model 
dataset of images, the process described in [18] was used. To address the challenge of stability in 
learning with small data for smaller-size samplings [19, 20], an ensemble [21, 22] of generative neural 
models was used. To outline it briefly, after construction of informative embeddings with neural 
models of self-supervised learning, clustering in the embedding space was applied to identify 
characteristic regions/clusters of samples that were associated with the concept/prototype classes. 
In this work we used clustering by a visual observation method, but the demonstrated approach can 
be extended straightforwardly to use known methods of unsupervised clustering such as DbScan, 
MeanShift and others [23-25].  

4.2. Construction and resolution/precision of fuzzy-prototype models 

Based on the structure of characteristic types/concepts/prototypes associated with clusters in the 
informative embedding space of the problem data, one can derive the fuzzy-prototype model of the 
data (in the iteration of the sampling Sk used to calculate the structure) 𝑃𝑃𝑓𝑓(𝑆𝑆𝑘𝑘) via the process 
illustrated in Figure 3. Many specific implementations of the process are possible with arbitrary 
number of clusters and without limitations for the dimensionality of the informative embedding 
space nor the methods of constructing it. 

At a given iteration characterized by a general sampling of the problem distribution D, Sk the 
precision or resolution of the fuzzy prototype model 𝑃𝑃𝑓𝑓(𝑆𝑆𝑘𝑘) can be characterized by the confidence 
factor tc indicating the minimal confidence threshold for an association of an observation x to a 
prototype class Pk, and the confusion matrix M(P(x), Ptrue): 

𝜌𝜌(𝑥𝑥,𝑝𝑝k)  ≥ 𝑡𝑡𝑐𝑐  → 𝑃𝑃(𝑥𝑥) = 𝑝𝑝𝑘𝑘𝑃𝑃𝑓𝑓(𝐷𝐷): { 𝑃𝑃(𝐷𝐷),𝜌𝜌(𝑥𝑥,𝑝𝑝k) }, (5) 

where 𝑃𝑃(𝑥𝑥): the prototype class associated with an observation x by the fuzzy-prototype model at 
the confidence threshold tc, Ptrue: the true, known class associated with the observation. 



 

Figure 3: Fuzzy-prototype model from informative embedding of data sampling. 

An example of the confusion matrix produced by a fuzzy prototype model for the model data of 
geometric images is shown below (from [9]). 

Table 1 
Confusion Matrix, S-150 Fuzzy Prototype Model, tc = 0.95 

4.3. Iterative learning with fuzzy-prototype models 

To demonstrate the usability of the fuzzy-prototype approach with real data, we applied the process 
of construction of fuzzy-prototype models with three samplings of the model problem data of 
progressively larger size, as described earlier in this section: S-90, S-150, and S-300. 

As can be seen in Table 2, where the precision characteristics of fuzzy-prototype models 
constructed with the samplings at two confidence thresholds, tc = 0.8, 0.9 are given, fuzzy-prototype 
models obtained with iteratively extended samplings via the process shown in Figure 2 showed 
progressive improvement in the precision/resolution of the prototype classes.  

The precision/resolution used to measure the performance of the models was calculated from the 
confusion matrix M of the model as a pair (tuple) (a, c) of:  

1. The accuracy, a, measured as the sum of the diagonal (correct) predictions of the prototype 

class, divided by the number of classes: 𝑎𝑎 =  1
𝑁𝑁

 ∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 . 

2. The confusion, c, measured as the sum of the non-diagonal (incorrect) predictions of the 

prototype class, divided by the number of combinations of classes: 𝑐𝑐 =  1
𝑁𝑁(𝑁𝑁−1)

 ∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗 . 

Table 2 
Precision/resolution in Iterative Learning with Model Data, Accuracy/Confusion Metrics 

Shape, Cluster Cluster 0 Cluster 1 Cluster 2 
Circle 1.0 0. 0. 
Triangle 0.25 0.75 0. 
Background 0. 0.15 0.85 

Sampling Size (per type) Precision, tc=0.8 Precision, tc=0.9 
S-90 30 0.811/ 0.082  0.773/ 0.092 
S-150 50 0.867/ 0.067  0.824/ 0.075 
S-300 100 0.912/ 0.054  0.885/ 0.633 



It can be noted in conclusion of this section that the stability of the structure and content of 
clusters in the embedding space is a key dependency and a requirement for confident determination 
of the fuzzy prototype structure. The use of an ensemble of generative neural models assured that 
the cluster/prototype structure resolved by the method described characteristic patterns in the model 
problem data. 

The results of this experiment show that the precision of association of observations to prototype 
classes determined via the process described in this work improves steadily with accumulation of 
new data, even without the dependency on the known association between the observations and 
their true, externally known class. This knowledge was used in this work only for verification of the 
performance of the models. 

4.4. Application of fuzzy-prototype models in intelligent decisions systems in the 
constrained prior context 

The method of construction of fuzzy-prototype models developed in this study has shown the 
potential of progressive improvement in the precision of association of the data points in the problem 
data space with characteristic types, concepts or prototypes. Importantly, the fuzzy-prototype 
structure can be initially resolved with smaller samplings and the method allows to accumulated 
data in the process of learning/operation with progressively improving precision, resulting in higher 
effectiveness of the decisions associated with prototypes. A word of caution that needs to be said 
here is that data used to demonstrate the method was relatively simple with respect to its conceptual 
content (i.e., the number of distinct types) and more complex types/spaces of problem data may 
require samplings of larger size for confident determination of the prototype structure. 

Another interesting potential of the proposed method can be pointed out for observations (i.e., 
data points in the problem data space) that produce less confident, “confused” associations to 
prototype classes. In such cases, if the decision space and process allow so, the constructed decision 
that is a mixture of the “pure” decisions associated with prototype classes can be more effective than 
any of the pure decisions. Let consider an example with a prototype structure of three classes p1 – 
p3, and an observation xm: 𝜌𝜌(𝑥𝑥𝑚𝑚,𝑝𝑝1) = 0.4,𝜌𝜌(𝑥𝑥𝑚𝑚,𝑝𝑝2) = 0.3,𝜌𝜌(𝑥𝑥𝑚𝑚,𝑝𝑝3) = 0.3. Then, the decision 
created as a combination of the pure decisions d1 – d3 associated with the prototype classes, for 
example as: 

𝑑𝑑(𝑥𝑥𝑚𝑚) =  �𝜌𝜌(𝑥𝑥𝑚𝑚,𝑝𝑝k) 𝑑𝑑𝑘𝑘 ,
𝑘𝑘

 

if the decision space/process allows such kind of mixing, can be more effective than any of the pure 
decisions di(pi) associated with the prototype classes. 

5. Conclusions 

In this work, we attempted to approach the problem of learning with constrained prior for intelligent 
decision making by combining the results from several thriving fields of data science and the 
research in intelligent systems: methods of unsupervised and/or self-supervised learning, generative 
learning, prototype/concept learning, unsupervised, including density clustering and fuzzy 
clustering with iterative aggregation of samplings of the problem data space to outline the direction 
in which intelligent systems can begin learning complex data spaces with minimal data improving 
the quality of the decisions in the process of learning. As outlined in the review section, these results 
connect with reported results in these fields and are supported by them. Several concluding 
comments need to be added to this summary of the findings of this study. 

First, while one can expect the outlined approach to be sufficiently general to accommodate a 
broad range of realistic complex data, specific characteristics and implementations of the method 
suitable for different types of data/problem spaces can vary. This can include methods of producing 
informative embeddings, characteristics of the embeddings including dimensionality, methods of 



clustering/fuzzy conceptualization, minimal sampling, the number and pace of learning iterations 
and other essential characteristics. 

Another essential point that was mostly left out of the scope of our discussion is verification of 
the quality and effectiveness of the learning process and the decisions produced by the learning 
system. A verification loop, based on batches of samples verified empirically, with known outcomes 
can be collected in each learning iteration and integrated into the learning process to evaluate the 
quality and progress of learning. This essential function of the system will be examined in a future 
work. 

A close and seemingly natural connection between the processes of learning the conceptual 
structure in general problem data and the ability of intelligent systems to construct effective 
decisions and responses based on the relationship of essential similarity in the input data space was 
noted. In that way, a decision learned, and verified once can be applied to a class of inputs in the 
problem data space, improving the generality, effectiveness and efficiency of the learning process. 
An interesting direction of research that can be pursued in another work is the potential to construct 
fuzzy or “hybrid” decisions for observations with less certain association to concept/prototype 
classes, as discussed briefly in Section 3.4.  

The problem of learning with constrained prior data described and examined here, where 
sufficiently large volumes of empirically verified knowledge about the problem distribution for 
conventional approaches in learning have not been accumulated emerge on a regular basis in modern 
science and technology. We expect that the methods proposed and examined in this work will be 
instrumental and find application in the theory and practice of development of effective and efficient 
intelligent decision systems capable of working with strongly constrained problems and 
environments. 

Declaration on Generative AI  

The authors have not employed any Generative AI tools in preparation of this work. 
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