
Adaptive management of communication resource 
allocation in high-load 5G infrastructures: a queuing-
based approach⋆ 

Viacheslav Kovtun1,∗,†, Oksana Kovtun2,†, Tetiana Gryshchuk3,†, Maria Yukhimchuk3,† 

1 Institute of Theoretical and Applied Informatics Polish Academy of Sciences, Bałtycka Str., 5, Gliwice, 44-100, Poland 
2 Vasyl’ Stus Donetsk National University, 600-richchya Str., 21, Vinnytsia, 21000, Ukraine 
3 Vinnytsia National Technical University, Khmelnytske shose, 95, Vinnytsia, 21021, Ukraine 
 

Abstract 
The rapid evolution of 5G networks demands advanced methodologies for optimizing communication 
resource allocation, particularly under high-load conditions with fluctuating traffic patterns. This paper 
presents a novel adaptive model for managing the distribution of communication resources in 5G 
infrastructures, utilizing a queuing system with delay. The proposed approach accounts for subscriber 
mobility, traffic irregularities, and peak load conditions, enabling real-time optimization of base station 
utilization. By integrating probability distribution functions with delay, the model enhances service quality 
by reducing waiting times and minimizing energy consumption. The study provides analytical formulations 
for key performance metrics, including queue waiting time, base station utilization, and variation 
coefficients. Experimental validation confirms the efficiency of the model in comparison with classical 
queuing approaches, demonstrating its potential for intelligent traffic management in next-generation 
networks. 
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1. Introduction 

The ongoing digital transformation requires a communication infrastructure capable of ensuring 
high data transmission speeds, low latency, and scalability for millions of devices operating 
simultaneously within the network. In this context, 5G technology has become a cornerstone in the 
development of telecommunication systems, enabling the management of high-load networks with 
diverse use-case scenarios such as the Internet of Things, augmented reality, autonomous vehicles, 
and smart cities [1-5]. However, as the number of subscribers and devices continues to grow, 
challenges emerge in effectively managing utilization, particularly under conditions of traffic 
irregularities, high subscriber mobility, and variable input request density. 

Ensuring connection stability under peak loads is particularly crucial, as traditional 
communication resource management models exhibit limited efficiency [6]. Neglecting behavioral 
patterns of network load, such as the delay between the arrival of incoming requests and their 
processing, may lead to a critical decline in service quality for subscribers. This justifies the relevance 
of developing adaptive models capable of maintaining high performance and reliability of 
communication systems even under extreme operating conditions. 
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Managing the distribution of utilization in high-load 5G infrastructures is a critical task for 
ensuring connection stability and efficient utilization of network resources [7, 8]. In response to this 
challenge, the article presents a corresponding concept formalized within the framework of queuing 
theory [9-12]. To assess the uniqueness and effectiveness of the proposed approach, existing 
counterparts were examined to identify their limitations. 

The М
М
1

-type queuing system model is widely used for analyzing network systems [13, 14]. It 

assumes an exponential distribution of intervals between incoming requests and their service 
duration, which significantly simplifies calculations. However, it has serious limitations: it does not 
account for traffic irregularities and peak loads, does not allow for effective delay prediction under 
variable loads, and its sensitivity to increasing base station utilization leads to an exponential rise in 

the average waiting time for accepted service requests. Additionally, the М
М
1

-model does not consider 

subscriber mobility, which is a key factor in 5G networks. These limitations make it ineffective for 
real-world networks with dynamic traffic and uneven spatial distribution of subscribers. 

The more generalized 𝐺𝐺𝐺𝐺
1

-model allows for arbitrary distributions of incoming request arrival times 

and service durations, significantly improving adaptation to real-world information and 
communication scenarios [12, 15, 16]. However, more complex analytical and numerical methods are 
required for parameter evaluation. It does not account for the specific characteristics of 5G 
infrastructure, where significant load fluctuations can occur due to subscriber mobility and dynamic 

changes in traffic density. Additionally, the complexity of the 𝐺𝐺
𝐺𝐺
1

-model makes its real-time 

implementation impractical, as it necessitates computing a large number of probabilistic 
characteristics. 

Some researchers propose using machine learning (ML) to predict traffic and optimize resource 
allocation in 5G networks [17, 18]. The main advantages of this approach include automated model 
training based on operational logs of target network infrastructures, enabling proactive adjustments 
in communication resource management, and facilitating rapid adaptation of the framework to 
changing load conditions. However, ML-based approaches require significant computational 
resources and prior model training, making real-time implementation challenging. Additionally, the 
effectiveness of ML methods depends on the availability of high-quality data, which can be difficult 
to obtain in high-load 5G networks. 

A distinct role in structuring 5G infrastructures is played by Network Slicing (NS) technology [19, 
20], which enables the allocation of utilization among different categories of subscribers based on 
their specific needs (eMBB, URLLC, mMTC). However, complex resource allocation management 
between slices under variable load conditions and the high costs associated with implementing and 
maintaining such an architecture are its primary drawbacks. Additionally, NS technology relies on 
complex optimization algorithms, which can significantly increase latency and lead to inefficient 
network utilization. 

Thus, existing solutions have significant limitations in the context of communication resource 
management in high-load 5G infrastructures. The article presents a concept that eliminates these 
limitations, based on the formalization of the research object, goal, and tasks, formulated considering 
the results of a critical analysis of existing approaches. 

Research Object: The process of managing the utilization distribution in a high-load 5G 
infrastructure. 

Research Goal: Formalizing a mathematical framework for efficient communication resource 
management in 5G infrastructure by reducing latency. 

Research Tasks: 

1. Identify behavioral patterns of network load, including changes in subscriber density and 
their mobility between base stations. 



2. Develop probability distribution functions to describe the intensity of incoming requests and 
service duration, considering latency. 

3. Formalize mathematical expressions for key model parameters, particularly for the average 
waiting time of an accepted incoming request, variation coefficients, and other 
characteristics. 

4. Compare the developed mathematical framework with a classical counterpart. 
5. Investigate the impact of latency and base station utilization on service quality in a high-load 

5G infrastructure. 

2. 2. Models and methods 

2.1. Research statement 

Let us focus on the process of managing the utilization distribution in a densely populated (high-
load) 5G infrastructure. Considering the specificity of such an object of study, an adequate 
description of the process is possible only if behavioral patterns of network load are considered – 
particularly changes in subscriber density during peak hours and the rapid movement of mobile 
subscribers between base stations.  

To account for these network load behavioral patterns, we employ a recurrent modeling 
framework with delay [13, 14]. This mathematical framework enables proactive resource demand 
forecasting and adaptive redistribution in real-time. The recurrent approach helps minimize 
management delays, ensure seamless connectivity during subscriber mobility, and optimize energy 
consumption, which is critical for maintaining the high efficiency of 5G networks. 

We introduce the concept of a recurrent flow, defined by a set of probability distribution functions 
𝐶𝐶1(𝑡𝑡) = 𝐶𝐶2(𝑡𝑡) = ⋯𝐶𝐶𝑘𝑘(𝑡𝑡) = 𝐶𝐶(𝑡𝑡) between incoming subscriber requests. Consider a scenario in 
which the quality-of-service system manages two flows, each defined by probability distribution 

functions of type 𝐶𝐶(𝑡𝑡) = �1 − 𝑒𝑒𝑒𝑒𝑒𝑒�−𝜑𝜑(𝑡𝑡 − 𝑡𝑡0)�∀𝑡𝑡 ≥ 𝑡𝑡0,
0∀0 ≤ 𝑡𝑡 < 𝑡𝑡0,

 with identical delays equal to 𝑡𝑡0, where 𝜑𝜑 

is the distribution rate parameter in the system. This parameter determines how rapidly the 
probability accumulation changes after the delay 𝑡𝑡0 moment. 

The studied process of communication resource management is defined as a queuing system, 
where subscriber requests arrive at the input, with stochastic intervals between them determined by 
a probability distribution function of the form: 

𝛼𝛼(𝑡𝑡) = �𝜇𝜇 𝑒𝑒𝑒𝑒𝑒𝑒�−𝜇𝜇(𝑡𝑡 − 𝑡𝑡0)�∀𝑡𝑡 ≥ 𝑡𝑡0,
0∀0 ≤ 𝑡𝑡 < 𝑡𝑡0,

 (1) 

where 𝜇𝜇 is a parameter that characterizes the arrival intensity of subscriber requests at the system’s 
input. 

In turn, the service duration of accepted requests is determined by a probability distribution 
function of the form: 

𝛽𝛽(𝑡𝑡) = �𝜂𝜂 𝑒𝑒𝑒𝑒𝑒𝑒�−𝜂𝜂(𝑡𝑡 − 𝑡𝑡0)�∀𝑡𝑡 ≥ 𝑡𝑡0,
0∀0 ≤ 𝑡𝑡 < 𝑡𝑡0,

 (2) 

where 𝜂𝜂 is a parameter that characterizes the service intensity of accepted subscriber requests within 
the system. 

The probability distribution functions (1) and (2) are shifted to the right relative to the zero 
reference point by the magnitude of the delay 𝑡𝑡0. These functions are exponential, with controlled 
parameters (𝜇𝜇, 𝑡𝑡0) and (𝜂𝜂, 𝑡𝑡0), respectively. Moreover, 𝜇𝜇 < 𝜂𝜂.  We now analyze the dynamic 
properties of key qualitative parameters of the studied system, particularly the arrival intervals of 
subscriber requests 𝛼𝛼(𝑡𝑡) and the service duration of accepted requests 𝛽𝛽(𝑡𝑡). 



2.2. The concept of managing the utilization distribution in a high-load 5G 
infrastructure 

To determine the numerical characteristics of the qualitative parameters 𝛼𝛼(𝑡𝑡) and 𝛽𝛽(𝑡𝑡), we apply 
the Laplace transform to functions (1) and (2): 

𝛢𝛢∗(𝑧𝑧) = 𝜇𝜇 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑡𝑡0𝑧𝑧)
𝑧𝑧+𝜇𝜇

, (3) 

𝛣𝛣∗(𝑧𝑧) = 𝜂𝜂 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑡𝑡0𝑧𝑧)
𝑧𝑧+𝜂𝜂

, (4) 

where 𝑧𝑧 is a variable used in the Laplace transform to transition from a time-domain function to a 

frequency-domain function. The first derivative of function 𝛢𝛢∗(𝑧𝑧) is given by 𝑑𝑑𝛢𝛢∗(𝑧𝑧)
𝑑𝑑𝑑𝑑

=
(−𝜇𝜇𝑡𝑡0(𝑧𝑧+𝜇𝜇)−𝜇𝜇)𝑒𝑒𝑒𝑒𝑒𝑒(−𝑡𝑡0𝑧𝑧)

(𝑧𝑧+𝜇𝜇)2 , 𝑑𝑑𝛢𝛢
∗(𝑧𝑧)
𝑑𝑑𝑑𝑑

�
𝑧𝑧=0

= 𝜇𝜇2𝑡𝑡0+𝜇𝜇
𝜇𝜇2

= 1
𝜇𝜇

+ 𝑡𝑡0. Based on these analytical expressions, we 

formalize the mathematical expectation of the arrival interval of subscriber requests as: 

𝑇̄𝑇𝜇𝜇 = 1
𝜇𝜇

+ 𝑡𝑡0. (5) 

In the context of expression (5), it can be stated that the arrival intensity of subscriber requests 𝜇𝜇′ 
in the studied queuing model is determined through the parameters of the probability distribution 
function (1): 

𝜇𝜇′ = 𝜇𝜇
(1+𝜇𝜇𝑡𝑡0). (6) 

We derive analogous expressions to (5) and (6) for the service duration of accepted requests (4): 

𝑇̄𝑇𝜂𝜂 = 1
𝜂𝜂

+ 𝑡𝑡0, (7) 

𝜂𝜂′ = 𝜂𝜂
(1+𝜂𝜂𝑡𝑡0), (8) 

where expression (8) is obtained from expression (7) through the parameters of the probability 
distribution function (2). 

In the context of arrival intensities (6) and service intensities (8) of incoming subscriber requests, 
it is observed that the utilization 𝑢𝑢 of a base station in the cluster of the studied 5G infrastructure 

has increased by a factor 
(1+𝜂𝜂𝑡𝑡0)
(1+𝜇𝜇𝑡𝑡0) relative to the corresponding characteristic of the 𝑀𝑀𝑀𝑀

1

-type system: 

𝑢𝑢 = 𝜇𝜇′

𝜂𝜂′ = 𝜇𝜇(1+𝜂𝜂𝑡𝑡0)
𝜂𝜂(1+𝜇𝜇𝑡𝑡0). (9) 

The utilization 𝑢𝑢 can also be interpreted as 𝑢𝑢 = 𝑇̄𝑇𝜂𝜂
𝑇̄𝑇𝜇𝜇

. This fact allows the use of the controlled 

parameters from expressions (5) and (7) as input variables for the studied system. This approach 
enables adaptive resource management, where arrival intensity and service intensity dynamically 
adjust based on real-time network conditions, optimizing communication resource distribution in 
the high-load 5G infrastructure. 

We introduce the variance of intervals for the probability distribution function (1): 𝜎𝜎𝜇𝜇2 = 1
𝜇𝜇2

, and 

express the coefficient of variation 𝐶𝐶𝑉𝑉𝜇𝜇 =
�𝜎𝜎𝜇𝜇2

𝑇̄𝑇𝜇𝜇
 through it. The latter, considering expression (5), can 

be represented in the form: 

𝐶𝐶𝑉𝑉𝜇𝜇 = 1
(1+𝜇𝜇𝑡𝑡0). (10) 

Similarly, for the probability distribution function (2), we introduce the variance 𝜎𝜎𝜂𝜂2 = 1
𝜂𝜂2

 and 

define the coefficient of variation as: 

𝐶𝐶𝑉𝑉𝜂𝜂 =
�𝜎𝜎𝜂𝜂2

𝑇̄𝑇𝜂𝜂
= 1

(1+𝜂𝜂𝑡𝑡0). 
(11) 

Further, we take into account that for 𝑡𝑡0 > 0, 𝜇𝜇 > 0, 𝜂𝜂 > 0, the values of the coefficients of 
variation from expressions (10) and (11) are less than one. This implies that the distribution of arrival 
intervals and service durations exhibits low variability, meaning that the process is relatively stable 



and predictable, which is critical for ensuring efficient resource allocation in a high-load 5G 
infrastructure. 

Based on the characteristics of the studied system, such as (5), (7), (10), and (11), several 
assumptions can be made: 

1. Considering the delay in time leads to an increase in the utilization of the base station cluster 

in the studied 5G infrastructure by a factor of 
(1+𝜂𝜂𝑡𝑡0)
(1+𝜇𝜇𝑡𝑡0) relative to the corresponding metric in 

the classical 𝑀𝑀𝑀𝑀
1

-type system; 

2. Since the coefficient of variation values from expressions (10) and (11) are less than one, it can 
be concluded that the model of the studied system is non-Markovian. Thus, for the same 
value of (9), the average waiting time for an incoming subscriber request in the studied 

system should be shorter than the corresponding metric in the 𝑀𝑀𝑀𝑀
1

-type system; 

3. Unlike the 𝑀𝑀𝑀𝑀
1

-type system, the use of probability distribution functions (1) and (2) allows for 

approximating the distributions of controlled parameters at the level of their first two 
moments.  

In further studies of the recurrent model with delay defined in Section 2.1, we focus on its 

convergence to the 𝐺𝐺𝐺𝐺
1

-type system. In such a queuing system, the states at the moment 𝑡𝑡 depend on 

previous system states, which can be formalized using recurrent equations with delay. The states of 

the 𝐺𝐺𝐺𝐺
1

-type system at the moment 𝑡𝑡 are uniquely characterized by known integral equations of 

spectral decomposition [21, 22], which are related through the Laplace transform to Lindley's integral 
equation: 

𝐹𝐹(𝑥𝑥) = �∫ 𝐹𝐹(𝑥𝑥 − 𝑤𝑤)𝑑𝑑𝑥𝑥
−∞ 𝑅𝑅(𝑤𝑤)∀𝑥𝑥 ≥ 0,

0, 𝑥𝑥 < 0,
. (12) 

where 𝐹𝐹(𝑥𝑥) is the probability distribution function of х, which represents the waiting time of an 
accepted incoming request in the buffer; 𝑤𝑤 is a stochastic variable characterizing the service duration 
or the time a request spends in the system after being accepted; 𝑅𝑅(𝑤𝑤) is the probability distribution 
function of the boundary stochastic value 𝑊𝑊 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘→∞
𝑊𝑊𝑘𝑘 = 𝑠𝑠𝑘𝑘 − 𝑡𝑡𝑘𝑘+1, where 𝑠𝑠𝑘𝑘 represents the service 

duration of an incoming request 𝑅𝑅𝑘𝑘, and 𝑡𝑡𝑘𝑘+1 is the interval between the arrival of requests 𝑅𝑅𝑘𝑘 and 
𝑅𝑅𝑘𝑘+1 at the system's input. This formulation enables a precise mathematical description of dynamic 
processes in the high-load 5G infrastructure, contributing to adaptive communication resource 
management. 

The solution of equation (12) using the spectral method results in the product 
𝛢𝛢∗(−𝜏𝜏)𝛣𝛣∗(𝜏𝜏) − 1, (13) 

which is a rational function [15, 16], where the complex variable 𝜏𝜏 is used in the Laplace transform 
to represent probability distribution functions in the frequency domain. Thus, to determine the 
distribution function from (12), we need to find the spectral decomposition of the form: 

. 𝛢𝛢∗(−𝜏𝜏)𝛣𝛣∗(𝜏𝜏) − 1 = 𝛷𝛷+(𝜏𝜏)
𝛷𝛷−(𝜏𝜏), (14) 

where 𝛷𝛷+(𝜏𝜏), 𝛷𝛷−(𝜏𝜏) represents fractional-rational functions, which must satisfy the following 
conditions: 

• ∀𝑅𝑅𝑅𝑅(𝜏𝜏) > 0, the function Φ+(𝜏𝜏) is analytic and has no zeros in this half-plane, and the 

equality ( )
( )

,Re 0
lim 1

τ τ
τ τ+→∞ >

Φ =
 must hold. 



• ∀𝑅𝑅𝑅𝑅(𝜏𝜏) > 𝜎𝜎2, the function Φ−(𝜏𝜏) is analytic and has no zeros in this half-plane, and the 

equality ( )

( )
2,Re

lim 1
τ τ σ

τ
τ
+

→∞ <

Φ
=

 must hold, where 𝜎𝜎2 is determined by the condition 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→∞

𝛼𝛼(𝑡𝑡)
𝑒𝑒𝑒𝑒𝑒𝑒(−𝜎𝜎2𝑡𝑡) < ∞. 

We represent the probability distribution functions (1) and (2) on the basis of expression (14), 
taking into account the Laplace transforms (3) and (4), respectively. The solution of equation (12) for 
this case takes the form: 

𝛷𝛷+(𝜏𝜏)
𝛷𝛷−(𝜏𝜏) = 𝜇𝜇 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑡𝑡0𝜏𝜏)

𝜇𝜇−𝜏𝜏
𝜂𝜂 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑡𝑡0𝜏𝜏)

𝜂𝜂−𝜏𝜏
− 1 = 𝜏𝜏(𝜏𝜏−𝜇𝜇−𝜂𝜂)

(𝜇𝜇−𝜏𝜏)(𝜂𝜂+𝜏𝜏). (15) 

As we can see, during the transformation process of functions (1) and (2) into the form (15), the 
delay was lost. At the same time, it is worth noting that function (15) also serves as a spectral 

decomposition for the solution of the ММ
1

-type system. However, this identity is purely formal since, 

unlike the ММ
1

-type system, the parameters 𝜇𝜇 and 𝜂𝜂 in the queuing system with delay, defined in 

Section 2.1, are not interpreted as the arrival intensity and service intensity of incoming requests, 
respectively.  

We now unveil the essence of the controlled parameters 𝜇𝜇 and 𝜂𝜂 within the framework of the 
queuing system with delay, as presented in Section 2.1. For further transformations, we define 

𝛷𝛷+(𝜏𝜏) = 𝜏𝜏(𝜏𝜏+𝜂𝜂−𝜇𝜇)
𝜂𝜂+𝜏𝜏

, 𝛷𝛷−(𝜏𝜏) = 𝜇𝜇 − 𝜏𝜏. These functions do not have zeros or poles in their respective 

domains 𝑅𝑅𝑅𝑅(𝜏𝜏) > 0, 𝑅𝑅𝑅𝑅(𝜏𝜏) < 𝜇𝜇. In analytical form, the Laplace transform of the probability 

distribution function 𝐹𝐹(𝑥𝑥), introduced in (12), takes the form 𝛹𝛹+(𝜏𝜏) = 𝑉𝑉
𝛷𝛷+(𝜏𝜏), where the constant 𝑉𝑉 

is defined as 𝑉𝑉 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝜏𝜏→0

𝛷𝛷+(𝜏𝜏)
𝜏𝜏

= 𝑙𝑙𝑙𝑙𝑙𝑙
𝜏𝜏→0

𝜏𝜏+𝜂𝜂−𝜇𝜇
𝜏𝜏+𝜂𝜂

= 1 − 𝜇𝜇
𝜂𝜂
. In turn, the parameters 𝜇𝜇, 𝜂𝜂  are determined by 

equations (5) and (7), respectively, while the ratio 𝜇𝜇
𝜂𝜂
 characterizes the utilization 𝑢𝑢 (similar to the 

analysis of the ММ
1

-type system). Thus, the input parameters of the studied queuing system with delay 

are the mathematical expectations Т̄𝜇𝜇, Т̄𝜂𝜂 (see expressions (5) and (7), respectively), and coefficients 
of variation 𝐶𝐶𝑉𝑉𝜇𝜇, 𝐶𝐶𝑉𝑉𝜂𝜂 (see expressions (10) and (11), respectively). 

Considering that 𝛹𝛹+(𝜏𝜏) = 𝑉𝑉
𝛷𝛷+(𝜏𝜏) =

�1−𝜇𝜇𝜂𝜂�(𝜂𝜂+𝜏𝜏)

𝜏𝜏(𝜏𝜏+𝜂𝜂−𝜇𝜇) , we define the probability density function 𝐹𝐹∗(𝜏𝜏) 

as: 

𝐹𝐹∗(𝜏𝜏) = 𝜏𝜏𝛷𝛷+(𝜏𝜏) =
�1−𝜇𝜇𝜂𝜂�(𝜂𝜂+𝜏𝜏)

𝜏𝜏+𝜂𝜂−𝜇𝜇
. (16) 

The derivative of function (16) is given by: 

𝑑𝑑𝐹𝐹∗(𝜏𝜏)
𝑑𝑑𝑑𝑑

=
�1−𝜇𝜇𝜂𝜂�(𝜏𝜏+𝜂𝜂−𝜇𝜇)−�1−𝜇𝜇𝜂𝜂�(𝜏𝜏+𝜂𝜂)

(𝜏𝜏+𝜂𝜂−𝜇𝜇)2 = −
𝜇𝜇�1−𝜇𝜇𝜂𝜂�

(𝜏𝜏+𝜂𝜂−𝜇𝜇)2. 
(17) 

For 𝜏𝜏 = 0, expression (17) takes the form 𝑑𝑑𝐹𝐹
∗(𝜏𝜏)
𝑑𝑑𝑑𝑑

�
𝜏𝜏=0

=
𝜇𝜇�1−𝜇𝜇𝜂𝜂�

(𝜏𝜏−𝜇𝜇)2 , from which the average waiting 

time for an accepted incoming subscriber request in the buffer of the queuing system with delay, as 
presented in Section 2.1, is given by: 

𝐹̄𝐹 =
�𝜇𝜇𝜂𝜂�

(𝜂𝜂−𝜇𝜇). 
(18) 

To complete the formalization of the concept of managing communication resource distribution 
in a high-load 5G infrastructure, we formulate the methodology for calculating unknown parameters 
of the studied queuing system with delay. For this purpose, we define the qualitative parameters 𝜇𝜇, 
𝜂𝜂, 𝑡𝑡0  based on the analytical expressions (5), (7), (10), and (11), which are oriented toward the 



calculation of numerical characteristics of the probability distribution functions (1) and (2). We 
introduce a system of equations of the form: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1
𝜇𝜇

+ 𝑡𝑡0 = 𝑇̄𝑇𝜇𝜇 ,

1
(1 + 𝜇𝜇𝑡𝑡0) = 𝐶𝐶𝑉𝑉𝜇𝜇 ,

1
𝜂𝜂

+ 𝑡𝑡0 = 𝑇̄𝑇𝜂𝜂 ,

1
(1 + 𝜂𝜂𝑡𝑡0) = 𝐶𝐶𝑉𝑉𝜂𝜂 .

 (19) 

We use the numerical characteristics on the right-hand side of the system of equations (19) to 
determine the desired qualitative parameters 𝜇𝜇, 𝜂𝜂, 𝑡𝑡0. The system (19) exhibits redundancy, which 
we overcome by introducing input parameters Т̄𝜇𝜇, Т̄𝜂𝜂, 𝐶𝐶𝑉𝑉𝜇𝜇 , 𝐶𝐶𝑉𝑉𝜂𝜂. From the first equation of system 
(19), we express the qualitative parameter 𝑡𝑡0 as 

𝑡𝑡0 = 𝑇̄𝑇𝜇𝜇 −
1
𝜇𝜇
. (20) 

From the second equation, we derive 𝐶𝐶𝑉𝑉𝜇𝜇 = 1
�1+𝜇𝜇𝑇̄𝑇𝜇𝜇−1�

. From the last expression, we obtain: 

𝜇𝜇 = 1
�𝑇̄𝑇𝜇𝜇𝐶𝐶𝑉𝑉𝜇𝜇�

. (21) 

From the third equation, we express Т̄𝜂𝜂: Т̄𝜂𝜂 = Т̄𝜇𝜇 + 1
𝜂𝜂
− 1

𝜇𝜇
. Generalizing the obtained results, we 

write: 

𝜂𝜂 = 1
�𝑇̄𝑇𝜂𝜂−𝑇̄𝑇𝜇𝜇�1−𝐶𝐶𝑉𝑉𝜇𝜇��

. (21) 

Finally, we process the fourth equation, taking into account the previously derived analytical 
constructions: 

𝐶𝐶𝑉𝑉𝜂𝜂 = 1

�1+
𝑇̄𝑇𝜇𝜇�1−𝐶𝐶𝑉𝑉𝜇𝜇�

𝑇̄𝑇𝜂𝜂−𝑇̄𝑇𝜇𝜇�1−𝐶𝐶𝑉𝑉𝜇𝜇�
�

= 1 − 1−𝐶𝐶𝑉𝑉𝜇𝜇
𝑢𝑢

= 1 − 𝑢𝑢�1 − 𝐶𝐶𝑉𝑉𝜇𝜇�, (22) 

where 𝑢𝑢 = 𝑇̄𝑇𝜂𝜂
𝑇̄𝑇𝜇𝜇

. Thus, we have expressed the unknown parameters 𝜇𝜇, 𝜂𝜂, 𝑡𝑡0 of the studied queuing 

system with delay through a set of parameter values Т̄𝜇𝜇, Т̄𝜂𝜂, 𝐶𝐶𝑉𝑉𝜇𝜇, 𝐶𝐶𝑉𝑉𝜂𝜂 . 
Overall, Section 2 presents a mathematical model of a queuing system with delay, which replicates 

the process of managing communication resource distribution in a high-load 5G infrastructure. The 
foundation of the model is the introduction of probability distribution functions with delay 
(expressions (1) and (2)) to describe behavioral patterns of incoming request flows and their service 
durations. Key analytical expressions are introduced, including request arrival intensity 𝜇𝜇′ 
(expression (6)) and service intensity 𝜂𝜂′ (expression (8)), average waiting time 𝐹̄𝐹 (expression (18)), 
coefficients of variation 𝐶𝐶𝑉𝑉𝜇𝜇, 𝐶𝐶𝑉𝑉𝜂𝜂 (expressions (10) and (11)), and spectral approach for determining 
waiting time distribution functions (expression (15)). The model accounts for dynamic network load 
variations, enabling efficient resource demand forecasting, latency reduction, energy consumption 
optimization, and uninterrupted connectivity. Due to its flexibility, the proposed approach is well-
suited for analyzing and managing resources in complex 5G infrastructure scenarios, particularly 
under variable subscriber density and high subscriber mobility conditions. 

3. Results and discussion 

To demonstrate the practical value of the proposed communication resource management concept 
from Section 2, we analyze its application in a 5G infrastructure under three operating modes: Low-
load mode, Medium-load mode, and High-load mode. 

Assume that as a result of censored observation of the target 5G infrastructure, the following 
values of the system’s input parameters in a queuing system with delay have been determined: 𝑇̄𝑇𝜇𝜇 =



10, 𝑇̄𝑇𝜂𝜂 = 1, 𝐶𝐶𝑉𝑉𝜂𝜂 = 0.5, corresponding to a Low -load mode. Then, for utilization 𝑢𝑢 = 0.1, expression 
(23) yields 𝐶𝐶𝑉𝑉𝜇𝜇 = 0.95. Considering the known input parameters, expression (21) allows us to 

calculate the parameter 𝜇𝜇: 𝜇𝜇 = 1
9,5= 2

19
, while expression (22) determines the parameter 𝜂𝜂: 𝜂𝜂 =

1
(1−10⋅0.05) = 2. For the target 5G infrastructure, determine the average waiting time 𝐹̄𝐹 for the 

accepted incoming subscriber request in the buffer using expression (18): 𝐹̄𝐹 =
� 119�

�3619�=
1
36

. 

It should be noted that for the classical ММ
1

-type system, considering the same input parameter 

values (including 𝑢𝑢 = 0.1, 𝜂𝜂 = 1), the average waiting time 𝐹̄𝐹 equals 𝐹̄𝐹 =
�𝑢𝑢𝜂𝜂�

(1−𝑢𝑢) = 1
9
, which is four 

times higher than the recently calculated value for the queueing system with delay. However, if 

parameters 𝜇𝜇 = 2
19

 and 𝜂𝜂 = 2 are interpreted as the arrival rate of incoming requests and the service 

rate, respectively, then for the ММ
1

-type system, we obtain 𝑢𝑢 = 1
19

< 0.1 and 𝐹̄𝐹 = 1
36

. As we can see, 

with identical parameter 𝜇𝜇, 𝜂𝜂 values for both the queueing system with delay and the ММ
1

-type system, 

the average waiting time 𝐹̄𝐹 turns out to be the same. 
Now, let us characterize the operation of the target 5G infrastructure in a Medium-load mode, 

which is defined by the following input parameter values: 𝑇̄𝑇𝜇𝜇 = 2, 𝑇̄𝑇𝜂𝜂 = 1, 𝐶𝐶𝑉𝑉𝜂𝜂 = 0.5. Then for 𝑢𝑢 =
0.5, using expression (23), we obtain 𝐶𝐶𝑉𝑉𝜇𝜇 = 0.75, and according to expressions (21) and (22), we 

obtain 𝜇𝜇 = 2
3
, 𝜂𝜂 = 2. The average waiting time 𝐹̄𝐹 is determined using expression (18): 𝐹̄𝐹 =

�13�

�43�=
1
4

. For 

the ММ
1

-type system, under the same input parameter values and considering 𝑢𝑢 = 0.5, we obtain 𝐹̄𝐹 =

�0.5
1 �

0.5=1
. Meanwhile, for the ММ

1

-type system, with an incoming request arrival rate 𝜇𝜇 = 2
3
 and a service 

rate 𝜂𝜂 = 2, the utilization 𝑢𝑢 = 1
3
 and the average waiting time 𝐹̄𝐹 =

�13
2
�

�13�
= 1

4
 are obtained accordingly. 

Finally, we characterize the operation of the target 5G infrastructure in a High-load mode, which 

is defined by the following input parameter values: 𝑇̄𝑇𝜇𝜇 = 10
9

, 𝑇̄𝑇𝜂𝜂 = 1, 𝐶𝐶𝑉𝑉𝜂𝜂 = 0.5. Then, for 𝑢𝑢 = 0.9, 

using expression (23), we obtain 𝐶𝐶𝑉𝑉𝜇𝜇 = 0.55, and according to expressions (21) and (22), we obtain 

𝜇𝜇 = 19
11

, 𝜂𝜂 = 2. The average waiting time 𝐹̄𝐹 is determined using expression (18): 𝐹̄𝐹 =
�1811
2
�

�2−1811�=
9
4

. For the 

М
М
1

-type system, under the same input parameter values and considering 𝑢𝑢 = 0.9, we obtain 𝐹̄𝐹 =

�0.9
1 �

(1−0.9)=9
. Meanwhile, for the ММ

1

-type system, with an incoming request arrival rate 𝜇𝜇 = 18
11

 and a 

service rate 𝜂𝜂 = 2, the utilization 𝑢𝑢 = 1
3
 and the average waiting time 𝐹̄𝐹 = 9

4
 are obtained accordingly. 

Let us explore the potential of the mathematical framework proposed in Section 2 by conducting 
a series of studies analyzing the above parametrically defined 5G infrastructure. All subsequent 
studies presented here focus on evaluating the process of managing the utilization distribution 
within the target 5G infrastructure (hereinafter referred to as the studied process), based on both the 
queuing system with the delay model introduced in Section 2 (hereinafter referred to as the delay 

model) and the classical М
М
1

-type queuing system model (hereinafter referred to as the classical model). 



In a real 5G infrastructure, the quality of subscriber service is significantly affected by the uneven 
flow of incoming requests and the high utilization of base stations. Unlike the classical model, the 
delay model accounts for these factors when managing the utilization distribution, ensuring 
connection stability even when the target 5G infrastructure operates under high-load conditions. Let 
us compare the results of describing the studied process using the delay model and the classical 
model, focusing on the impact of base station utilization 𝑢𝑢 and the coefficient of variation of 
incoming request flow 𝐶𝐶𝑉𝑉𝜇𝜇 on the average waiting time 𝐹̄𝐹 (see Fig. 1). 

 
 

Figure 1: Results of the parameterization of the studied process in the form of the dependency 𝑭̄𝑭 =
𝒇𝒇�𝒖𝒖,𝑪𝑪𝑽𝑽𝝁𝝁�. 

The results presented in Fig. 1 reveal a significant difference in the representation of the studied 
process by the delay model and the classical model. The delay model ensures a stable dynamic of the 
average waiting time 𝐹̄𝐹 even under a high coefficient of variation 𝐶𝐶𝑉𝑉𝜇𝜇 and substantial utilization 𝑢𝑢. 
This indicates the model’s ability to adapt to the variability of the incoming request flow effectively. 
Regardless 𝐶𝐶𝑉𝑉𝜇𝜇 , the classical model allows for a rapid increase in average waiting time as utilization 
approaches the critical level 𝑢𝑢 → 1, which limits its efficiency. Therefore, unlike the classical model, 
the delay model accounts for the uneven distribution of incoming traffic, reducing service delays for 
accepted incoming requests, particularly under low or moderate utilization 𝑢𝑢 < 0.7. 

The analysis of average waiting time conducted in the previous study provided insights into how 
changes in request structure and utilization are accounted for by the studied process in managing 
subscriber service quality. However, this alone is insufficient for a comprehensive description of the 
target 5G infrastructure's operation, as the waiting time for an incoming request in the buffer 
depends on the efficiency of base station resource utilization. Examining the dependency 𝑢𝑢 =
𝑓𝑓�𝜇𝜇,𝐶𝐶𝑉𝑉𝜇𝜇� allows for an assessment of how utilization levels fluctuate with varying intensity and 
unevenness of incoming request flow, which is crucial for maintaining a balance between efficient 
communication resource usage and minimizing waiting time. The calculated 𝑢𝑢 = 𝑓𝑓�𝜇𝜇,𝐶𝐶𝑉𝑉𝜇𝜇� 
dependency variants for describing the studied process using the delay model and the classical model 
are presented in Fig. 2. 



 
 

Figure 2: Results of the parameterization of the studied process in the form of the dependency 𝒖𝒖 =
𝒇𝒇�𝝁𝝁,𝑪𝑪𝑽𝑽𝝁𝝁�. 

From Fig. 2, it is evident that the results of communication resource management using the delay 
model differ significantly from those demonstrated by the classical model. The delay model ensures 
a smoother adjustment of base station utilization 𝑢𝑢 in response to increasing incoming request 
intensity 𝜇𝜇 and coefficient of variation 𝐶𝐶𝑉𝑉𝜇𝜇, highlighting its ability to adapt to the unevenness of 
incoming traffic flow. The classical model linearizes the dependency of utilization on 𝜇𝜇 and exhibits 
insensitivity 𝑢𝑢 to the impact of the coefficient of variation 𝐶𝐶𝑉𝑉𝜇𝜇 , which reduces the efficiency of 
communication resource utilization in cases of high traffic flow irregularity. The graph on the left 
shows that even at high values of 𝐶𝐶𝑉𝑉𝜇𝜇, utilization increases in a controlled manner. In contrast, the 
classical model exhibits a significant rise in 𝑢𝑢 only in response to a substantial increase in intensity 
𝜇𝜇. This confirms the advantage of the delay model, which ensures the stability of communication 
resource management under complex operating conditions of the 5G infrastructure. 

For a real 5G infrastructure, delay is one of the key factors negatively affecting subscriber service 
quality, especially under high base station utilization. This fact highlights the relevance of studying 
the impact of delay 𝑡𝑡0 and utilization 𝑢𝑢 on the average waiting time 𝐹̄𝐹. The mathematical framework 
presented in Section 2 provides the necessary functionality to represent the studied process within 
this basis. The obtained results, including those for the classical model, are presented in Fig. 3. 

 
 

Figure 3: Results of the parameterization of the studied process in the form of the dependency 𝑭̄𝑭 =
𝒇𝒇(𝒕𝒕𝟎𝟎,𝒖𝒖). 

The results presented in Fig. 3 clearly demonstrate that the delay model and the classical model 
account for the impact of delay 𝑡𝑡0 duration on the average waiting time 𝐹̄𝐹 in different ways. The 



graph on the left distinctly shows that the delay model allows for a significant increase in 𝐹̄𝐹 in 
synchronization with the growth of 𝑡𝑡0, especially at high utilization levels: 𝑢𝑢 → 1. This highlights 
the importance of considering the delay factor when studying the operation of a 5G infrastructure 
under high-load conditions, where even a slight increase in 𝑡𝑡0 can significantly impact subscribers' 
service quality. The graph on the right illustrates that within the framework of the classical model, 
𝐹̄𝐹 it depends only on utilization and increases linearly with 𝑢𝑢, ignoring the impact of delay duration. 
This reduces the computational complexity of the analysis but simultaneously limits the applicability 
of the classical model in real-world conditions where delay is inevitable. Thus, the delay model 
provides a more accurate representation of the studied process and enables a more precise 
determination of the moment when the impact of 𝑡𝑡0 on 𝐹̄𝐹 may become critical. 

4. Conclusions 

The article presents a concept for managing the utilization distribution in a high-load 5G 
infrastructure. This concept is based on the queuing system with a delay model. Analytical 
expressions have been derived to calculate the characteristics of such a system under variation 
coefficients of inter-arrival periods of incoming requests 𝐶𝐶𝑉𝑉𝜇𝜇 < 1 and specific additional constraints 
on the system’s input parameters. Based on the obtained results, the following conclusions can be 
drawn: 

1. Considering the delay 𝑡𝑡0 in modeling the process of communication resource management 
in a high-load 5G infrastructure significantly affects the determination of utilization 𝑢𝑢, which 

exceeds the corresponding value for the classical ММ
1

--type system by a factor of 
(1+𝜂𝜂𝑡𝑡0)
(1+𝜇𝜇𝑡𝑡0); 

2. The stability of the studied queuing system with delay is largely determined by this value. 
This is confirmed by the analytical form of expressions (10) and (11), and subsequently, 
expression (15); 

3. When the variation coefficients reach 𝐶𝐶𝑉𝑉𝜇𝜇 < 1, 𝐶𝐶𝑉𝑉𝜂𝜂 < 1, the studied queuing system with 
delay loses its Markovian properties. In this case, the average waiting time 𝐹̄𝐹 for an accepted 
incoming subscriber request in the system’s buffer becomes lower than the corresponding 

parameter in the classical ММ
1

- -type system under identical utilization 𝑢𝑢 values; 

4. The use of probability distribution functions (1) and (2) in the proposed queuing system with 
delay enabled the approximation of input parameter distributions at the level of the first two 

moments, in contrast to the classical ММ
1

- -type system; 

5. The obtained queuing system with delay can be applied to model a wide range of processes. 
Furthermore, adapting the system for an adequate description of the target process can be 

achieved by introducing a primary regulatory element in the form of the ММ
1

 - type system, 

with parameters defined according to expressions (21) and (22). 

It should be noted that in the theoretical part of the article when characterizing the studied 
queuing system with delay, we focused on the average waiting time of an accepted incoming 
subscriber request in the buffer. The remaining informative system parameters, such as the average 
queue length, the average number of accepted subscriber requests, and others, are derived from the 
parameter 𝐹̄𝐹. 

Future research will focus on improving the mathematical framework presented in the article. In 
particular, a promising direction is the analysis of the impact of dynamic changes in delay and 
variation coefficients 𝐶𝐶𝑉𝑉𝜇𝜇, 𝐶𝐶𝑉𝑉𝜂𝜂 on service quality under conditions of uneven incoming request flow. 
Additionally, it is advisable to develop adaptive algorithms that account for variable subscriber 
mobility and fluctuations in subscriber density during peak load periods. Special attention will be 



given to integrating machine learning technologies for predicting communication resource demands 
and optimizing energy consumption, ensuring the stability of the target infrastructure under 
complex operational scenarios in 5G networks. 
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