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Abstract 
In this paper, we propose an innovative hybrid method for the helicopter turboshaft engine's gas 
temperature in front of the compressor turbine, determining under rapid change conditions in operating 
parameters. The method is based on an adaptive neural network built on the LSTM architecture and 
physical and mathematical modeling implemented through a heat balance and correction using a Kalman 
filter combination. This approach allows us to take into account the temperature changes dynamics, 
compensate for the sensors’ inertia and minimize the interference impact, which significantly improves the 
estimate accuracy compared to traditional direct measurement methods. At the signal preprocessing stage, 
wavelet transform and singular spectrum analysis (SSA) are used to eliminate noise and restore missing 
data, which ensures the initial data is high quality for further modeling. The obtained normalized data are 
fed to the LSTM network input equipped with an adaptation mechanism that allows adjusting the model 
weights depending on changes in engine characteristics. The predicted temperature values are integrated 
with the physical modeling results using the Kalman filter algorithm, which provides an optimal 
combination of information from both models in order to achieve the lowest prediction error. The method’s 
experimental verification was carried out on the TV3-117 engine data installed on the Mi-8MTV helicopter. 
The obtained results demonstrate high predicting accuracy: the mean absolute error (MAE) was 0.34 %, the 
root mean square error (RMSE) was 0.45 %, and the determination coefficient (R²) reached 0.992. At the same 
time, the algorithm’s computational time does not exceed 55 ms, which allows using the method in real 
time for the engine operation’s monitoring and diagnostics. The proposed hybrid approach has proven its 
efficiency in the rapidly changing conditions of operating modes, providing reliable and accurate 
determination of the gas temperature.  
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1. Introduction 

Modern helicopter turboshaft engines (TE) operate under significant dynamic loads, which requires 
high precision control of their operating parameters. One of the critical indicators is the gas 
temperature in front of the compressor turbine (TG), as it directly affects the engine’s efficiency and 
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reliability [1]. However, traditional methods for measuring TG have a limited number associated 
with the sensor’s inertia, the interference, and the presence of changing operating conditions [2]. 
This makes it relevant to develop intelligent methods for assessing temperature, capable of quickly 
adapting to changing engine dynamics. 

Rapid changes in the TG, typical for the helicopter TE operation transient modes, complicate 
accurate measurement and require high-speed data processing algorithms [3]. Existing methods 
based on direct measurements often do not provide the required accuracy and stability under 
turbulent flows and load fluctuation conditions. An intelligent method for determining the TG using 
neural networks and adaptive algorithm development will improve the parameter estimation 
accuracy in real time, reduce the errors associated with probability with noise and systematic errors, 
and improve the engine’s operational status prediction. 

2. Related works 

The TG accurate measurement issue in helicopter TEs remains relevant in the aviation industry. 
Traditional methods are based on thermocouple sensors, which are widely used due to their simple 
design and high thermal stability [4]. However, their main drawbacks are inertia, high sensitivity to 
vibrations and interference, as well as limited accuracy with sudden temperature changes, which 
make it difficult to use in dynamically changing engine operating modes. Researches [5, 6] propose 
improved thermocouple systems with measurement correction based on mathematical heat transfer 
models, but their efficiency decreases under non-stationary conditions. 

An alternative to traditional methods is temperature estimation algorithms using mathematical 
modeling and numerical error correction methods. In [7], temperature prediction models based on 
heat balance equations that take into account changes in engine operating mode are proposed. 
However, such models require precise knowledge of engine parameters and do not always provide 
adaptability to real operating conditions. In [8], Bayesian methods for temperature estimation taking 
into account measurement uncertainties are considered, but their application is limited by the need 
for complex a priori calibration. 

In recent years, intelligent data processing methods, including neural networks and hybrid 
algorithms, have been actively developed. Research [9] describes an approach using recurrent neural 
networks (RNN) to predict gas temperature based on time series. However, this technique does not 
take into account the fast transient processes typical of helicopter TE. The research [10] uses a 
combination of neural networks with data filtering based on wavelet transforms, which allows for 
increased predicting accuracy. However, most existing approaches are not adapted to the sudden 
temperature change conditions that occur during helicopter maneuvering and changing engine 
operating modes. 

Despite significant progress in the TG measuring and predicting field, a number of important 
issues remain unresolved. Most existing methods are either focused on stationary engine operating 
modes [5, 6] or require complex preliminary calibrations [9, 10], which limits their application in real 
time. Also, the issues of comprehensively accounting for systematic and random measurement errors 
[7, 8] arising from turbulent disturbances and vibration loads have not been sufficiently studied. 

The intelligent method for the TG assessing development based on hybrid algorithms of machine 
learning and mathematical modeling seems to be a promising direction. Such a method will allow 
taking into account the dynamics of temperature changes in transient modes, adapt to changing 
operating conditions, and ensure high accuracy of assessment without the need for complex 
adjustments. In addition, the intelligent data processing into on-board engine monitoring systems 
integration will significantly increase the helicopter TE operational status monitoring and predicting 
reliability, which is especially important for the helicopter’s operation in extreme conditions. 



3. Proposed method 

3.1. Development of an intelligent method for the gas temperature in front of the 
compressor turbine estimating 

The proposed method combines adaptive neural network algorithms with physical and mathematical 
modeling to accurately determine the TG under rapid change conditions in its values. The hybrid 
approach allows taking into account the temperature change dynamics, compensating for the 
traditional sensors’ inertia and interference impact, minimizing (Figure 1). 
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Figure 1: The proposed method structure. (author’s research). 

The method includes three main components: a predictive model based on machine learning, 
using an LSTM network with additional adaptation modules to predict temperature based on 
historical data and current engine operating parameters; a correlation-physical model representing 
an analytical description of thermal processes in helicopter TE, taking into account external factors 
such as operating mode, turbulence, and heat loss; and an integrating module based on a Bayesian 
filter, which corrects temperature estimates by combining the results of machine learning and 
physical modeling, ensuring high accuracy and adaptability of the method. 

The proposed method architecture includes four key modules: a data preprocessing system, a 
neural network predicting module, a physical and mathematical model, and an integrating module 
(Figure 2).  

The data preprocessing system cleans and normalizes signals from temperature sensors, removes 
noise using wavelet transform, and applies SSA (Singular Spectrum Analysis) to identify outliers and 
restore missing data. This ensures high quality of input data, and the noise impact reduces on 
subsequent processing. 

The neural network predictive module is based on the LSTM (Long Short-Term Memory) 
architecture, trained on historical data on gas temperature, engine operating parameters (the gas-
generator and free turbine rotors speed), and operating modes. It is supplemented by an adaptive 
learning mechanism, which allows taking into account changes in engine characteristics during 
operation. 

equations, energy balance, and empirical coefficients and also takes into account dynamic heat 
losses, turbulent effects, and changes in operating modes. The integrating module, implemented on 
the Kalman filter basis or its nonlinear variations (for example, Unscented Kalman Filter—UKF), 
combines the neural network predicted data and the physical modeling results, providing a balance 
between accuracy and adaptability.  

Weighting coefficients are adjusted in real time, which allows for changing operating conditions 
and increases the reliability of temperature assessment. 

The physical and mathematical model calculates the TG theoretical value based on heat transfer. 

https://goo.gl/VLCRBB
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Figure 2: The proposed method architecture. (author’s research). 

The proposed method’ algorithm is presented in Table 1. 

Table 1 
The results evaluating the quality of solving the missing 𝑇𝑇𝐺𝐺∗ parameter values restoring task (author’s 
research). 

Stage 
number 

Stage name Stage description 

1 Data collection Receiving readings from TG sensors and auxiliary 
parameters (for example, the gas generator and free 

turbine rotor speed) [11]. 
2 Preliminary processing Cleaning data from noise and outliers using wavelet 

filtering and SSA. 
3 Predicting by neural 

network model 
Using an LSTM network to predict the temperature 
for the next time step based on historical data and 

current parameters. 
4 Calculation of physical 

model 
The TG expected value is calculated taking into 

account heat transfer, energy balance, and dynamic 
factors. 

5 Integration and 
correction 

Using Bayesian correction (Kalman filter or UKF) to 
combine the neural network prediction and the 

physical model results. 
6 Data update Transferring the corrected values to the helicopter 

TE monitoring and diagnostics system for further 
analysis and control. 

https://goo.gl/VLCRBB
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3.2. Development of a mathematical model 

To develop a mathematical model describing the proposed method’s architecture, several key 
components can be identified: a data preprocessing system, a neural network predictive module, a 
physical and mathematical model, and an integrating module. 

Let the input data be a gas temperature measurements time series: 

𝑇𝑇𝐺𝐺∗ = �𝑇𝑇𝐺𝐺
∗(1),𝑇𝑇𝐺𝐺

∗(2) … ,𝑇𝑇𝐺𝐺
∗(𝑖𝑖)�, (1) 

where 𝑇𝑇𝐺𝐺∗ are the helicopter TE gas temperature in front of the compressor turbine values in time 
moment t. 

Noise is removed using the wavelet transform as: 

(𝑇𝑇𝐺𝐺∗)′ = 𝑊𝑊(𝑇𝑇𝐺𝐺∗), (2) 

where W(•) is the wavelet filtering operator. 
To extract the principal components, the SSA method is used in the form: 

(𝑇𝑇𝐺𝐺∗)′′ = 𝑆𝑆𝑆𝑆𝑆𝑆((𝑇𝑇𝐺𝐺∗)′), (3) 

where SSA(•) is the decomposition operator into a singular spectrum and restoration of the useful 
signal. 

Signal preprocessing includes denoising and data normalization. Signal filtering is used to denoise 
the signal, and z-normalization is used for the denoised signal [12]: 

𝑧𝑧(𝑇𝑇𝐺𝐺∗)(𝑖𝑖)
′′ =

(𝑇𝑇𝐺𝐺∗)(𝑖𝑖)
′′ − 1

𝑁𝑁 ∙ ∑ (𝑇𝑇𝐺𝐺∗)(𝑖𝑖)
′′𝑁𝑁

𝑖𝑖=1

�1
𝑁𝑁 ∙ ∑ �(𝑇𝑇𝐺𝐺∗)(𝑖𝑖)

′′ − 1
𝑁𝑁 ∙ ∑ (𝑇𝑇𝐺𝐺∗)(𝑖𝑖)

′′𝑁𝑁
𝑖𝑖=1 �

2
𝑁𝑁
𝑖𝑖=1

, (4) 

where N is the training dataset size. The z-normalization use allows us to the variables 𝑇𝑇𝐺𝐺∗ each value 
transform so that they are expressed in standard deviation units from the mean. This allows us to 
bring the 𝑇𝑇𝐺𝐺∗ data to a form with a mean value of 0 and a standard deviation of 1, which is important 
for improving the machine learning algorithms convergence and for the data correct comparison 
with different scales. 

The LSTM based network prediction can be represented as follows: 

ℎ𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�ℎ𝑡𝑡−1, (𝑇𝑇𝐺𝐺∗)(𝑖𝑖)
′′ ,𝛼𝛼𝑡𝑡�, (5) 

where (𝑇𝑇𝐺𝐺∗)(𝑖𝑖)
′′  is the input vector containing gas temperature in front of the compressor turbine 

normalized data, ht is the hidden state at time t, αt is an adaptation coefficient that takes into account 
changes in engine characteristics. The adaptation coefficient αt describes the added adaptive learning 
mechanism that changes the weights in the neural network depending on changes in engine 
characteristics. 

To calculate the 𝑇𝑇𝐺𝐺∗ theoretical value, a thermodynamic model is used based on the energy balance 
and compression and combustion processes equations [13]. 

The power transferred to the gas flow is determined by the equation: 

Qf = mf · Hu · ηG, (6) 

where Qf is the thermal power released during fuel combustion, W; mf is the fuel mass flow rate, 
kg/s; Hu is the fuel net calorific value, J/kg; ηG is the combustion process efficiency (usually 
0.96…0.99). 

The gas temperature in front of the compressor turbine is determined from the heat balance 
equation: 

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑐𝑐𝑝𝑝 ∙ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 +𝑚𝑚𝑓𝑓 ∙ 𝑐𝑐𝑝𝑝𝑝𝑝 ∙ 𝑇𝑇𝑓𝑓 + 𝑄𝑄𝑓𝑓 = �𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑚𝑚𝑓𝑓� ∙ 𝑐𝑐𝑝𝑝 ∙ 𝑇𝑇𝐺𝐺∗,  (7) 



wherefrom 

𝑇𝑇𝐺𝐺∗ =
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑐𝑐𝑝𝑝 ∙ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑚𝑚𝑓𝑓 ∙ 𝑐𝑐𝑝𝑝𝑝𝑝 ∙ 𝑇𝑇𝑓𝑓 + 𝑄𝑄𝑓𝑓

�𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑚𝑚𝑓𝑓� ∙ 𝑐𝑐𝑝𝑝
, (8) 

 
where mair is the air mass flow rate, kg/s; Tair is the air temperature in front of the combustion 
chamber, K; cp is the gas specific heat capacity at constant pressure, J/(kg K); cpt is the fuel specific 
heat capacity, J/(kg K); Tf is the fuel temperature, K. 

If we neglect the fuel heat capacity (cpt ≈ cp), then (8) is simplified to: 

𝑇𝑇𝐺𝐺∗ = 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 +
𝑚𝑚𝑓𝑓 ∙ 𝐻𝐻𝑢𝑢 ∙ 𝜂𝜂𝐺𝐺

�𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑚𝑚𝑓𝑓� ∙ 𝑐𝑐𝑝𝑝
. (9) 

This physical model shows that the gas temperature in front of the compressor turbine is 
determined by the temperature of the incoming air, the fuel combustion heat, and the combustion 
chamber efficiency. 

To adjust the neural network and the physical model predictions, the Unscented Kalman Filter 
(UKF) [14] is used. It is assumed that xt is the system’s current state, zt is the observed value, A is the 
state matrix, H is the observation matrix, Pt is the state error covariance matrix, Q is the process 
covariance matrix, R is the measurement covariance matrix, and Kt is the Kalman matrix (update 
weighting factor).  

The UKF algorithm consists of two stages: the predicting stage and the correction stage. At the 
predicting stage, sigma points are formed, the predicted sigma points are determined, and the state 
and covariance predictions are made as: 

𝜒𝜒𝑡𝑡−1𝑖𝑖 = 𝑥𝑥𝑡𝑡−1 + 𝑊𝑊𝑖𝑖 ∙ �(𝑛𝑛 + 𝜆𝜆) ∙ 𝑃𝑃𝑡𝑡−1, 𝑖𝑖 = 0, … ,2𝑛𝑛, 

𝜒𝜒𝑡𝑡𝑖𝑖 = 𝑓𝑓�𝜒𝜒𝑡𝑡−1𝑖𝑖 �+ 𝜔𝜔𝑡𝑡
𝑖𝑖 ,𝜔𝜔𝑡𝑡

𝑖𝑖~𝑁𝑁(0,𝑄𝑄), 

𝑥𝑥�𝑡𝑡 = �𝑊𝑊𝑖𝑖 ∙ 𝜒𝜒𝑡𝑡𝑖𝑖
2𝑛𝑛

𝑖𝑖=0

, 

𝑃𝑃𝑡𝑡 = �𝑊𝑊𝑖𝑖 ∙ �𝜒𝜒𝑡𝑡𝑖𝑖 − 𝑥𝑥�𝑡𝑡� ∙ �𝜒𝜒𝑡𝑡𝑖𝑖 − 𝑥𝑥�𝑡𝑡�
𝑇𝑇 + 𝑄𝑄,

2𝑛𝑛

𝑖𝑖=0

 

(10) 

where Wi is the sigma points weights, λ is the scaling parameter, n is the state dimension. 
At the correction stage, the sigma points projection onto the measurement space, measurement 

prediction, measurement covariance, cross-covariance, Kalman matrix determination, and state and 
covariance matrix updating are performed as: 

𝜁𝜁𝑡𝑡𝑖𝑖 = ℎ�𝜒𝜒𝑡𝑡𝑖𝑖� + 𝑣𝑣𝑡𝑡𝑖𝑖, 𝑣𝑣𝑡𝑡𝑖𝑖~𝑁𝑁(0,𝑅𝑅), 

𝑧̂𝑧𝑡𝑡 = �𝑊𝑊𝑖𝑖 ∙ 𝜁𝜁𝑡𝑡𝑖𝑖
2𝑛𝑛

𝑖𝑖=0

, 

𝑆𝑆𝑡𝑡 = �𝑊𝑊𝑖𝑖 ∙ �𝜁𝜁𝑡𝑡𝑖𝑖 − 𝑧̂𝑧𝑡𝑡� ∙ �𝜁𝜁𝑡𝑡𝑖𝑖 − 𝑧̂𝑧𝑡𝑡�
𝑇𝑇 + 𝑅𝑅,

2𝑛𝑛

𝑖𝑖=0

 

𝑃𝑃𝑥𝑥𝑥𝑥 = �𝑊𝑊𝑖𝑖 ∙ �𝜁𝜁𝑡𝑡𝑖𝑖 − 𝑧̂𝑧𝑡𝑡� ∙ �𝜁𝜁𝑡𝑡𝑖𝑖 − 𝑧̂𝑧𝑡𝑡�
𝑇𝑇 ,

2𝑛𝑛

𝑖𝑖=0

 

𝐾𝐾𝑡𝑡 = 𝑃𝑃𝑥𝑥𝑥𝑥 ∙ 𝑆𝑆𝑡𝑡−1, 

𝑥𝑥𝑡𝑡 = 𝑥𝑥�𝑡𝑡 + 𝐾𝐾𝑡𝑡 ∙ (𝑧𝑧𝑡𝑡 − 𝑧̂𝑧𝑡𝑡), 

𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑡𝑡 − 𝐾𝐾𝑡𝑡 ∙ 𝑆𝑆𝑡𝑡 ∙ 𝐾𝐾𝑡𝑡𝑇𝑇 . 

(11) 



The neural network predicts and the physical model results combination using the Unscented 
Kalman Filter (UKF) is carried out as follows: 

(𝑇𝑇𝐺𝐺∗)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐾𝐾𝑡𝑡 ∙ (𝑇𝑇𝐺𝐺∗)𝑁𝑁𝑁𝑁 + (𝐼𝐼 − 𝐾𝐾𝑡𝑡) ∙ (𝑇𝑇𝐺𝐺∗)𝑝𝑝ℎ𝑦𝑦𝑦𝑦, (12) 

where (𝑇𝑇𝐺𝐺∗)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the gas temperature in front of the compressor turbine combined predicted 
value, (𝑇𝑇𝐺𝐺∗)𝑁𝑁𝑁𝑁 is the predicted value obtained by the LSTM network (equation 5), (𝑇𝑇𝐺𝐺∗)𝑝𝑝ℎ𝑦𝑦𝑦𝑦 is the 
value calculated using the thermodynamic model (equation 9), Kt is the Kalman matrix, which 
determines the neural network prediction and the physical model weight adaptation (11). 

Thus, the final predict is formed as a data adaptive combination from the physical model and 
neural network prediction, where the weighting coefficient Kt takes into account the trust in each 
source of information. 

3.3.   Development of a neural network predictive module 

The predictive module is designed to predict the gas temperature in front of the compressor turbine 
𝑇𝑇𝐺𝐺∗  based on historical data on temperature, engine operating parameters, and operating modes. The 
module is based on an LSTM network that adapts to changes in engine characteristics during 
operation. The predictive module model architecture includes the following main components: input 
layer, LSTM layer, fully connected layer, output layer (Figure 3). 
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Figure 3: The predictive module architecture. (author’s research). 

The input layer receives the parameters of the time series recorded by the standard sensors on 
board the helicopter: gas temperature in front of the compressor turbine 𝑇𝑇𝐺𝐺∗ , gas-generator rotor 
speed nTC, free turbine rotor speed nFT, and the adaptation coefficient αt value. The LSTM layer with 
the hidden state dimension ht includes forgetting and remembering mechanisms for analyzing long 
time dependencies. The fully connected layer transforms the LSTM output into the predicted 
temperature 𝑇𝑇�𝐺𝐺∗. The output layer produces the gas temperature in front of the compressor turbine 
predicted value. 

Each LSTM node consists of three main gates: forget, input, and output. For a time moment t, the 
LSTM cell (Figure 4) state is updated by defining the input data vector xt, defining the forget gate 
(determines how much information from the previous state should be forgotten) ft, the input gate 
(determines how much new information should be added) it, the cell state update candidate 𝑐̃𝑐𝑡𝑡, the 
cell state update ct, the output gate ot, and the hidden state update ht [15, 16]: 

𝑥𝑥𝑡𝑡 = �𝑇𝑇𝐺𝐺
∗(𝑡𝑡−1),𝑛𝑛𝑇𝑇𝑇𝑇

(𝑡𝑡−1),𝑛𝑛𝐹𝐹𝐹𝐹
(𝑡𝑡−1),𝛼𝛼𝑡𝑡�, (13) 
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ft = σ(Wf · xt + Uf · ht−1 + bf), 

it = σ(Wi · xt + Ui · ht−1 + bi), 

𝑐̃𝑐𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐 ∙ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐 ∙ ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐), 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∙ 𝑐𝑐�𝑡𝑡, 
ot = σ(Wo · xt + Uo · ht−1 + bo), 

ht = ot ⋅ tanh(ct), 

where W, U, b are the model’ trainable parameters, σ(•) is the sigmoid activation function. 
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Figure 4: The LSTM network diagram. [15, 16]. 

The predictive module’ output layer generates the gas temperature in front of the compressor 
turbine predicted value as: 

𝑇𝑇�𝐺𝐺∗ = 𝑊𝑊ℎ ∙ ℎ𝑡𝑡 + 𝑏𝑏ℎ . (14) 

Next, the 𝑇𝑇𝐺𝐺∗ predict is transferred to the integrating module, where it is combined with the 
physical model result according to (12). 

The LSTM network is supplemented with an adaptation mechanism that allows adjusting weights 
when engine characteristics change. The adaptation coefficient αt adjusts the input parameters 
influence that depends on the engine age and operating conditions and is used when updating the 
neural network weights, affecting the training speed. The adaptation coefficient αt is determined by 
the measured deviation parameters 𝛿𝛿𝑇𝑇𝐺𝐺∗, δnTC, δnFT as: 

𝛼𝛼𝑡𝑡 = (𝛿𝛿𝑇𝑇𝐺𝐺∗, 𝛿𝛿𝑛𝑛𝑇𝑇𝑇𝑇 ,𝛿𝛿𝑛𝑛𝐹𝐹𝐹𝐹). (15) 

Thus, the neural network predictive module uses transfer training, in which, when new data is 
available, the model is partially retrained using weight adjustment methods. 

Thus, the proposed method’s scientific novelty lies in the hybrid intelligent approach 
development to estimating the gas temperature in front of the compressor turbine under rapidly 
changing value conditions. Unlike traditional methods based on direct measurements using 
thermocouples, the proposed method combines adaptive neural network algorithms with physical 
and mathematical modeling, which allows taking into account the temperature change dynamics, 
compensating for the sensor’s inertia, and minimizing the interference impact. 

The method’ key innovations include: 

1. A hybrid approach combining LSTM recurrent neural network predicting and 
thermodynamic modeling with UKF Kalman filter correction; 



2. An intelligent adaptation mechanism that takes into account changes in engine performance 
during operation, which improves the assessment accuracy without the need for complex 
calibration; 

3. Efficient data processing, including wavelet filtering and singular spectrum analysis (SSA) to 
eliminate noise and restore missing values; 

4. Real-time implementation, providing high processing speed and the ability to integrate into 
on-board helicopter TE monitoring and diagnostic systems. 

This method use helps to increase the gas temperature reliability assessment in front of the 
compressor turbine, reduce the measurement errors probability and improve predictive diagnostics 
of the helicopter TE operational status. 

4. Results 

4.1. The input data analysis and preprocessing 

To conduct a computational experiment demonstrating the developed method’s operability, this 
research object was the TV3-117 engine [17], which is part of the Mi-8MTV helicopter and its 
modifications to the power plant. Based on the Mi-8MTV helicopter flight test results, data on the 
TV3-117 engine parameters were obtained and recorded on board the helicopter by standard sensors 
of the onboard monitoring system: the gas temperature in front of the compressor turbine 𝑇𝑇𝐺𝐺∗ (a 
sensor consisting of 14 dual thermocouples T-101 was used), the gas-generator rotor speed nTC (a D-
2M sensor was used), and the free turbine rotor speed nFT (a D-1M sensor was used) [18]. The data 
on board the Mi-8MTV helicopter were recorded during a real flight for 320 seconds with a sampling 
frequency of 0.25 seconds. To form time series from flight data of the onboard engine parameter 
monitoring system TV3-117, the measurements’ sequential processing obtained from standard 
sensors T-101, D-2M, and D-1M is performed. 

The initial data 𝑇𝑇𝐺𝐺∗, nTC, nFT (1) underwent preliminary processing, including noise reduction and 
outliers’ elimination (2), (3), after which time series are formed—ordered sequences of parameter 
values over time. To reduce time series with parameters’ different scales to a single scale, z-
normalization is applied (4). After normalization, the parameters 𝑇𝑇𝐺𝐺∗, nTC, nFT time series have the 
form shown in Figure 5. 

 

Figure 5: The TV3-117 engine normalized parameters time series diagrams: “black curve” is the gas-
generator rotor speed nTC, “blue curve” is the gas temperature in front of the compressor turbine 𝑇𝑇𝐺𝐺∗, 
“green curve” is the free turbine rotor speed nFT (author’s research). 
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Based on the presented diagrams, a parameters’ 𝑇𝑇𝐺𝐺∗, nTC, nFT training dataset was formed, which 
fragment is presented in Table 2. 

Table 2 
The parameters’ 𝑇𝑇𝐺𝐺∗, nTC, nFT normalized values training dataset fragment (author’s research) 

Number The gas temperature in 
front of the compressor 

turbine 𝑇𝑇𝐺𝐺∗ 

The gas-generator rotor 
speed nTC 

The free turbine rotor 
speed nFT 

1 0.995 0.989 0.988 
… … … … 

166 0.983 0.976 0.974 
… … … … 

251 0.986 0.978 0.976 
… … … … 

375 0.973 0.964 0.96 
… … … … 

492 0.986 0.978 0.977 
… … … … 

630 0.980 0.975 0.974 
… … … … 

789 0.987 0.981 0.979 
… … … … 

985 0.991 0.989 0.986 
… … … … 

1280 0.993 0.990 0.987 
 
To assess the parameters 𝑇𝑇𝐺𝐺∗, nTC, nFT training dataset homogeneity, based on [19], the Fisher-

Pearson criterion χ2 general statistics was used. To draw a conclusion, the calculated χ2 indicator is 
compared with the threshold value corresponding to the specified significance level α and the 
number of degrees of freedom (in this case, 2). If χ2 > 𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 (α, 2), the normal distribution assumption 
is rejected. In this study, the significance level α = 0.01 was set, which is due to strict requirements 
for helicopter flight safety [20]. The false assumption of erroneous acceptance probability 
minimizing (for example, missing a deviation from the norm) plays a key role in preventing 
emergency situations. This significance level increases the reliability of the decisions made and 
reduces the likelihood of engine failures in flight. Table 3 presents the parameters 𝑇𝑇𝐺𝐺∗, nTC, nFT training 
dataset homogeneity estimating results according to the Fisher-Pearson criterion. 

Table 3 
Results of the parameters’ 𝑇𝑇𝐺𝐺∗, nTC, nFT training dataset training dataset homogeneity assessing 
according to the Fisher-Pearson criterion (author’s research) 

Parameter The χ2 calculated 
value 

The χ2(α, 2) 
critical value 

Decision on the training dataset 
homogeneity 

𝑇𝑇𝐺𝐺∗ 9.134 
9.2 The dataset is homogeneity. nTC 9.147 

nFT 9.183 
 

The training dataset homogeneity, according to [21], is checked using the Fisher-Snedecor 
criterion Fij. To assess the parameters 𝑇𝑇𝐺𝐺∗, nTC, nFT consistency, their variances are compared pairwise. 
The Fij calculated values are compared with the threshold value Fcritical, set for a given significance 
level α = 0.01 and degrees of freedom v1 = N1 − 1 and v2 = N2 − 1 (where N1 = N2 = N = 1280 are the 
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datasets sizes). If Fij > Fcritical, the datasets are considered heterogeneous. Table 4 presents the 
parameters 𝑇𝑇𝐺𝐺∗, nTC, nFT training dataset homogeneity, confirming results according to the Fisher-
Snedecor criterion. 

Table 4 
Results of the parameters’ 𝑇𝑇𝐺𝐺∗, nTC, nFT training dataset training dataset homogeneity assessing 
according to the Fisher-Snedecor criterion (author’s research) 

Parameter The Fij calculated 
value 

The Fcritical(α = 0.01, 
1279) critical value 

Decision on the training dataset 
homogeneity 

𝑇𝑇𝐺𝐺∗ 1.129  

The dataset is homogeneity nTC 1.132 1.139 

nFT 1.133  

 
To check the training dataset's representativeness, the cluster analysis method (k-means [22]) 

was used. Within this approach framework, the training and test datasets were formed by random 
partitioning in a 2:1 ratio (67 and 33 %, respectively, which corresponds to 858 and 422 elements). 
The training dataset (Table 2) clustering results showed the 8 groups (classes I...VIII) presence, which 
indicates the eight clusters identification and confirms the training and test datasets structure 
similarity (Figure 6). 

Based on these data, the optimal dataset sizes for signals from the TV3-117 engine T-101, D-2M, 
and D-1M sensors were determined: training dataset is 1280 elements (100 %), control dataset is 858 
elements (67 % of the training dataset), test dataset is 422 elements (33 % of the training dataset). 

 

a 
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b 

Figure 6: Cluster analysis results: a is the training dataset; b is the test dataset. (author’s research). 

4.2. The method’ performance testing results 

To adapt the developed method to transient engine operation modes, Figure 7 shows a diagram of 
transient processes for the gas temperature in front of the compressor turbine 𝑇𝑇𝐺𝐺∗ parameter. In 
Figure 7, the black solid line shows the 𝑇𝑇𝐺𝐺∗ data from the T-101 sensor, containing jumps and noise, 
the red dotted line shows the predicted 𝑇𝑇𝐺𝐺∗ data using a neural network model (LSTM) curve, 
demonstrating possible delays or errors, the blue dashed-dotted line shows the corrected temperature 
𝑇𝑇𝐺𝐺∗ curve, demonstrating the final value after the Kalman filter, showing the adaptation of the method 
to rapid changes. 

 

Figure 7: The method’ adaptation to transient modes diagram. (author’s research). 

This diagram clearly shows how the LSTM neural network model and the Kalman filter's 
sequential application improve the gas temperature data in front of the compressor turbine quality. 
The original (black) curve contains noise and jumps, which complicate the analysis. The predicted 
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(red) line already smooths out some of the noise but may have delays or errors. The final (blue) curve 
after the Kalman filter eliminates jumps and “fits” the result to real measurements while maintaining 
a smooth shape. 

Figure 8 shows the prediction root mean square error (RMSE) dependence on the adaptive 
coefficient αt. Figure 8 compares two models: without adaptation (red dotted line) and with 
adaptation (blue solid line). It is evident that with the αt growth, the adaptive model’s RMSE decreases 
monotonically, indicating an improvement in the prediction accuracy due to the adaptation 
mechanism use. In contrast, the model without adaptation demonstrates higher and fluctuating 
RMSE values, indicating a lower ability to adapt to changing conditions. 

 

Figure 8: Diagram of the adaptive coefficient influence on the prediction’ accuracy. (author’s 
research). 

Figure 9 shows the change in the temperature derivative 𝜕𝜕𝑇𝑇𝐺𝐺
∗

𝜕𝜕𝜕𝜕
 over time in transient modes, where 

three curves are compared: the actual rate of temperature change predicted by the neural network 
model and the corrected rate after applying filtering. This approach allows us to visually assess how 
well the model predictions correspond to the real data, as well as to show the effectiveness of filtering 
in eliminating noise and the measurements accuracy increasing when analyzing dynamic 
temperature transitions. 

The diagram shows that the actual rate of temperature change (blue line) has a pronounced 
maximum in the middle of the range (around t = 320), forming a smooth bell-shaped curve. The rate 
predicted by the neural network (red line) follows the actual curve's general shape but contains 
noticeable noise and deviations, especially near the peak. After applying filtering (green dotted line), 
the noise is significantly reduced, and the curve becomes smoother, while the main dynamics of the 
actual rate of temperature change are preserved. 
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Figure 9: Diagram of the change in the temperature derivative over time. (author’s research). 

4.3. The results obtained effectiveness evaluation 

To evaluate the different algorithms’ computation time, the computation time was measured for 
three algorithms used to estimate the gas temperature in front of the compressor turbine. The 
experiment was conducted on typical hardware using a semi-naturalistic simulation stand [23], 
under equal testing conditions, using both real and synthetically generated data simulating the 
engine operating dynamics. Each algorithm was run multiple times, and the average computation 
time was determined to reduce the random errors influence. According to the obtained results, the 
LSTM model showed the shortest running time—about 22 ms—which is due to the time series 
efficient processing and optimized network architecture. The physical and mathematical model 
implementing calculations based on heat balance and energy exchange equations required about 37 
ms, as it included more complex mathematical operations. The combined method integrating the 
LSTM model with the physical-mathematical model through the use of the Kalman filter for 
prediction correction had the longest computation time—about 55 ms—which is explained by 
processing’ additional stages and results’ adaptation. The obtained results (Table 5) demonstrate that 
even the most resource-intensive approach remains within the acceptable time for real-time 
operation, which is critical for the method implementation in helicopter TE onboard monitoring and 
diagnostic systems. 

Table 5 
Results of the parameters’ 𝑇𝑇𝐺𝐺∗, nTC, nFT training dataset training dataset homogeneity assessing 
according to the Fisher-Pearson criterion (author’s research) 
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At the next stage, data on gas temperature in front of the compressor turbine 𝑇𝑇𝐺𝐺∗ prediction errors 
were collected for each of the three algorithms: the LSTM model, the physical-mathematical model, 
and the combined method. For each method, the difference between the predicted values (𝑇𝑇𝐺𝐺∗)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
and the real measurements (𝑇𝑇𝐺𝐺∗)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 was calculated for a test observations number. The obtained 
errors were distributed over a values range, and an error histogram was obtained for each algorithm 
(Figure 10), displaying the observations number depending on the error value. Thus, the error 
histogram can be used to estimate which error distribution is typical for each approach: for example, 
a narrow distribution with a smaller variance indicates an algorithm’s higher accuracy, while a wide 
distribution indicates a larger spread of errors. 

 

Figure 10: The prediction errors histogram. (author’s research). 

As can be seen from Figure 10, the errors histogram obtained using the LSTM model shows a 
relatively narrow distribution with a small spread, indicating high prediction accuracy in most cases. 
The physical-mathematical model’s errors histogram is more diffuse, reflecting the complex physical 
calculations influence, where the values spread is somewhat larger. The combined method histogram 
shows the distribution obtained by integrating the two approaches using the Kalman filter result, 
which allows for a decrease in the overall prediction error and a decrease in the spread. 

At the final stage, the predictive model’s efficiency and quality are assessed according to 
traditional metrics. In this case, efficiency can be understood as, for example, the mean absolute error 
(MAE) or the root mean square error (RMSE), and quality is the determination coefficient (R2) [24]. 
The mean absolute error shows the average absolute deviation of predictions from real values, while 
the root mean square error amplifies the large errors impact. The determination coefficient shows 
how well the model explains the data variability. These metrics are defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
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𝑅𝑅2 = 1 −
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where (𝑇𝑇𝐺𝐺∗)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
(𝑖𝑖)  is the gas temperature predicted value, (𝑇𝑇𝐺𝐺∗)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(𝑖𝑖)  is the actual measured value, 

�𝑇𝑇𝐺𝐺
∗
�
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 is the actual measurements average value. 

Based on the calculations carried out on the grouped error intervals basis, the  MAE, RMSE and 
R2 metrics values were obtained (Table 6). 

Table 6 
Results of calculating MAE, RMSE and R2 metrics. (author’s research). 

Metric LSTM Model Physical Model Combined Method 
MAE, % 0.49 0.53 0.34 
RMSE, % 0.62 0.67 0.45 

R2 0.987 0.976 0.992 
 

From these results, it is evident that the combined method gives the lowest MAE, RMSE, and R2, 
which is consistent with the finding of higher accuracy and smaller error spread compared to the 
other two models. 

5. Discussions 

An intelligent method for estimating the helicopter TE gas temperature in front of the compressor 
turbine has been developed (Figures 1 and 2), which combines adaptive neural networks and physical 
and mathematical modeling to obtain accurate results under dynamic changes. The method includes 
a predictive model based on LSTM with adaptive modules, a correlation-physical model for 
describing thermal processes taking into account energy exchange, turbulence and dynamic losses, 
as well as an integrating module based on a Bayesian filter (for example, a Kalman filter or its 
nonlinear variants) for adjusting predicted values. Preliminary data processing using wavelet 
transform and SSA provides signal cleaning and normalization, minimizing the noise influence, 
which in turn increases the gas temperature estimate accuracy and adaptability, making the method 
effective for the helicopter TE operation’s monitoring and diagnosing. 

Within the developed method (Figures 1 and 2) framework, a mathematical model for the 
helicopter TE gas temperature in front of the compressor turbine was developed, which is based on 
the temperature measurements time series processing (1), after which noise is removed using a 
wavelet transform (2), and the main components are identified using singular spectrum analysis (3). 
Further data normalization (4) improves the algorithm's convergence, and predicting is implemented 
through an LSTM network taking into account the adaptive change in engine characteristics (5). In 
parallel, a physical model based on the heat balance and combustion equations (6)–(9) is used, and 
the final prediction is formed by adaptively combining the results of both models using a Kalman 
filter, where the adjustment is made at the prediction and correction stages (10)–(12). The prediction 
is implemented using an LSTM network (Figures 3 and 4), the hidden state of which is updated 
according to calculations (13) with the final prediction given by (14), and the result is adjusted using 
a physical model based on the heat balance and combustion efficiency equations (6)–(9), where the 
combination of predictions is carried out using the Kalman filter (10)–(12). Additionally, the 
coefficient adaptation αt (15) allows dynamic adjustment of the changing engine characteristics 
influence on the model. 

A computational experiment was conducted to evaluate the developed method’s efficiency for 
predicting the gas temperature in front of the compressor turbine, based on the LSTM model and the 
physical-mathematical model using the Kalman filter (10)–(12) combination. The experiment was 
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carried out on data obtained during the Mi-8MTV helicopter’ TV3-117 engine real flight tests (Figure 
5), where pre-processing included noise removal, selection of the time series main components and 
normalization (Table 2). 

During the experiment, it was found that the correction stage with the Kalman filter use allows 
for significant smoothing of jumps and delays in predictions, ensuring the method’s adaptation to 
transient engine operating modes (Figure 7). The RMSE dependence analysis on the adaptive 
coefficient αt (Figure 8) showed a monotonic decrease in error, which confirms the implemented 
adaptive mechanism effectiveness. 

The predicted quality by the MAE, RMSE and R2 metrics final assessment (Table 6) demonstrated 
that the combined method provides the best results: MAE was 0.34 %, RMSE was 0.45 %, and the 
determination coefficient R2 reached 0.992. At the same time, the computation time does not exceed 
55 ms, which allows using the developed method in real time for monitoring and diagnosing the 
operation of aircraft engines. 

At the same time, the obtained results have a number of limitations: 

1. The experimental results were obtained using data from one specific engine (TV3-117), which 
limits the method applicability to other models or types of helicopter TE. 

2. The final estimate's accuracy depends significantly on the preliminary signal processing 
(wave transform, SSA, normalization) quality, and even minor errors at this stage can 
negatively affect the results. 

3. The combined method, although demonstrating the lowest error rates, has a higher 
computational complexity (about 55 ms), which can become a limiting factor in systems with 
very strict response time requirements. 

4. The neural network adaptation mechanism operation depends on the correct determination 
of the adaptation coefficient αt, and its incorrect configuration can lead to a decrease in the 
prediction’s accuracy with abrupt changes in engine characteristics. 

To eliminate these limitations, the following prospects for further research are proposed: 

1. Conducting additional tests on various types of engines to verify the method generalizability. 
2. Improving the signal pre-processing stage (wave transform, SSA, normalization) to increase 

the results stability. 
3. Optimizing the computational algorithms of the combined method, for example, [25], to 

reduce the response time in systems with strict time constraints. 
4. Developing and testing an improved adaptation mechanism for correctly determining the 

adaptation coefficient αt with abrupt changes in engine characteristics. 

6. Conclusions 

A method has been developed that is a hybrid approach that combines an adaptive neural network 
based on the LSTM architecture with physical and mathematical modeling using heat balance 
equations and correction using the Kalman filter. This combination allows taking into account the 
gas temperature dynamics changes under engine operating modes’ rapid transition’ conditions, 
compensating for the sensors’ inertia and the interference impact minimizing, which is a significant 
advantage compared to traditional direct measurement methods. 

The experiments conducted on the TV3-117 engine data installed on the Mi-8MTV helicopter 
demonstrated high predicting accuracy. The main quality metrics (MAE, RMSE, and the 
determination coefficient R²) showed that the combined method achieves MAE values of 0.34 %, RMSE 
is 0.45 % and R² is 0.992, which indicates a decrease in errors and a decrease in the errors’ spread 
compared to individual approaches. At the same time, the algorithm’s computational time, not 
exceeding 55 ms, confirms its possibility of using it in real time for monitoring and diagnosing engine 
operation. 



The adaptive mechanism implemented through the coefficient αt allows the system to quickly 
respond to changes in engine characteristics, ensuring the neural network weights and the predicted 
data integration with the physical modeling results adjustment. The Kalman filter's use helps smooth 
out emissions and eliminate delays in predictions, which increases the final estimate’s reliability. 
This approach significantly improves the temperature assessment quality and ensures the system’s 
stability even with rapid mode transitions under conditions. 

Thus, the developed method demonstrates high efficiency and accuracy in estimating the gas 
temperature in front of the compressor turbine, which is an important factor for increasing the 
helicopter TE reliability. The results obtained confirm the using hybrid algorithms prospects to solve 
real-time problems, and experimental further optimization and expansion base can contribute to its 
implementation in helicopter TE on-board monitoring systems. 
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