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Abstract 
The article explores critical cybersecurity challenges related to robotic sorting systems employed for 
warehouse asset management within the printing industry. Given the increasing implementation of 
automated logistics platforms, the potential vulnerability of such systems to cyber threats, including DDoS 
attacks, Man-in-the-Middle attacks, data manipulation, and vulnerabilities within common industrial 
network protocols (MQTT, OPC UA, Modbus TCP/IP), is highlighted and analyzed in detail. The novelty of 
the study lies in the development of a comprehensive mathematical model designed specifically to quantify 
the impacts of these cyberattacks on robotic sorting system performance. 
The primary research object is the robotic warehouse sorting system integrated with the myCobot 280 
manipulator, simulating real-world logistics operations in printing enterprises. Experimental modeling 
using MATLAB Simulink allowed for realistic reproduction and testing of cyberattack scenarios. To counter 
identified vulnerabilities, a multi-level cybersecurity framework incorporating network traffic monitoring 
(IDS), data encryption (TLS 1.3), and artificial intelligence-based behavioral analysis of robotic operations 
was developed and implemented. 
The research objective—to enhance the security and operational resilience of robotic warehouse systems—
has been successfully met. Experimental results indicate a significant improvement in cybersecurity 
resilience, demonstrated by an 80% reduction in cyber threat impacts. Specifically, response times and 
operational errors under attack conditions were substantially decreased, validating the effectiveness of the 
proposed integrated cybersecurity solution. This outcome underscores the critical importance and efficacy 
of applying advanced cybersecurity strategies to safeguard automated robotic systems against sophisticated 
cyber threats in the printing industry's logistics processes. 
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1. Introduction 

Modern warehouse complexes in the printing industry are actively implementing robotic sorting 
systems, which enhance the efficiency of logistics processes, optimise costs, and minimise human 
involvement. Automated warehouse facilities using robotics ensure fast sorting of printed products, 
packaging, and shipment control, which is critically important in the publishing and advertising 
industries, where order fulfilment time plays a key role [1]. 

However, the widespread adoption of such systems presents significant cybersecurity challenges. 
Robotic warehouse platforms interact with internal ERP systems, utilise cloud services for order 
management, and often have open communication channels via the internet, making them 
potentially vulnerable to cyberattacks. Unauthorised access to such systems can result not only in 
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financial losses but also in physical damage to equipment, production disruptions [2], and the 
compromise of confidential data belonging to clients and suppliers. 

Therefore, researching methods to protect robotic sorting systems for warehouse assets in the 
printing industry is a highly relevant applied scientific task [3]. Developing effective cybersecurity 
strategies, including the use of artificial intelligence to analyse anomalous activity, implementing 
multi-level authentication, and applying cryptographic data protection, will contribute to enhancing 
the reliability of automated logistics systems and ensuring the uninterrupted operation of printing 
production. 

2. Analysis of research and publications 

In contemporary scientific research, significant attention is devoted to ensuring the cybersecurity of 
robotic sorting systems in warehouse complexes, particularly within the printing industry. Key 
studies by researchers addressing this topic have been reviewed [4]. 

The developed a cyber-physical security system for robotic warehouse complexes that integrates 
sensors for monitoring physical parameters and machine learning algorithms for detecting 
anomalies in robot behaviour. Their model enables the analysis of not only digital but also physical 
threats, significantly enhancing the effectiveness of cyberattack detection [4].   

In publications [5, 6, 7]focused on studying the application of blockchain technology to ensure 
data transparency and security in supply chains. They demonstrated that the use of distributed 
ledgers for data exchange between warehouse systems significantly reduces the risks of order 
manipulation and unauthorised interference in logistics processes.   

Adaptive Cybersecurity Methods [8, 9]a methodology for assessing cyber risks in automated 
logistics systems of printing enterprises. They proposed the implementation of an intrusion detection 
system adapted to the specifics of handling printed products. The methodology accounts for dynamic 
changes in warehouse operations and can rapidly adjust security strategies in response to emerging 
threats.   

Modern research increasingly focuses on cryptographic methods for data protection. The 
application of quantum cryptography for securing communications between warehouse robots and 
central management servers is being explored. For instance, the study by Wang et al. (2023) 
demonstrates the effectiveness of quantum key distribution (QKD) in ensuring secure data exchange 
between robotic modules and cloud services.   

Research indicates that the human factor remains a significant vulnerability in the cybersecurity 
of warehouse systems in publication [10] emphasise the importance of staff training in cybersecurity 
methods, including recognising phishing attacks, using strong passwords, and adhering to security 
policies when accessing critical systems.   

An analysis of contemporary scientific studies suggests that ensuring cybersecurity in robotic 
sorting systems within warehouse complexes in the printing industry requires a comprehensive 
approach [11, 12]. The combination of network monitoring methods, artificial intelligence, 
blockchain technologies, and cryptographic protection significantly reduces the risks of 
cyberattacks. Furthermore, increasing staff awareness of cybersecurity threats and enforcing strict 
data protection protocols remain crucial [12].   

Further research is focused on developing new algorithms and improving adaptive cybersecurity 
systems that take into account the specifics of the printing industry. 

3. Material and methods 

The research focuses on protecting robotic sorting systems for warehouse assets in the printing 
industry from cyberattacks. Primary materials used for analysis and experimental verification 
include: As test platforms, we considered automatic sorting systems for printing products using 
autonomous mobile robots (AMR) and conveyor solutions with automated manipulators. In our 
study, we used myCobot 280 to simulate attack scenarios and their impact on the manipulator. For 



programming and modeling of the physical experiment, we used ROS (Robot Operating System) - 
for controlling and simulating robotic systems, and AnyLogic software - for modeling logistics 
processes in a warehouse. To assess the impact on the network traffic system, we used Wireshark 
and Zeek, which help in detecting anomalies in the network infrastructure of robots [13, 14]. 

The study utilised communication protocols typical for modern manufacturing enterprises: 
MQTT, OPC UA, and Modbus TCP/IP, which were analysed for potential threats arising from 
exploitation of industrial network vulnerabilities [13].   

Additionally, the research was conducted using wireless technologies such as Wi-Fi 6 and 5G, 
which facilitate interactions between warehouse systems. These technologies were examined for 
potential traffic interception attacks (Man-in-the-Middle attacks) [14, 15].   

At the initial stage of the study, computer modelling was performed using MATLAB & Simulink. 
This environment allows for the simulation of both the physical characteristics of the manipulator 
and the impact of attacks on the control system [16, 17].   

The main tools used in the study: Simulink & Simscape Multibody were selected to build a 
kinematic and dynamic model of the myCobot 280 robotic manipulator. Robotics Toolbox was used 
to implement inverse and forward kinematics, calculate the motion trajectory. Simulink Control 
Design was used to develop control systems, including a PID controller. Simulink & Simulink Real-
Time were selected to emulate the impact of cyber threats and simulate protection mechanisms [18]. 

3.1. Research methods 

The research methodology is based on a combination of empirical and analytical methods for risk 
assessment and implementation of cybersecurity measures [19]. 

The STRIDE Method (Spoofing, Tampering, Repudiation, Information Disclosure, Denial of 
Service, Elevation of Privilege) was used to categorize threats [13]. 

The CVSS Method (Common Vulnerability Scoring System) was used to assess the criticality of 
the identified vulnerabilities of robotic systems [20-21]. 

When modeling threats, typical actions were used to stop the operation of information systems, 
such as: DDoS attack on the central logistics management server. Substitution of control commands 
in ROS due to communication protocol vulnerabilities. Physical attack on the access system (RFID 
spoofing) [12]. 

3.2. Experimental testing and methods of evaluating results 

A simulation of cyberattacks was conducted in a laboratory environment using Metasploit for attacks 
on network protocols of sorting systems. Zeek was used to assess malicious activity in traffic logs. 
Three main criteria for evaluating the results were selected: the first and main one is the analysis of 
the system's response time to attacks - a comparison of normal and attacked work (for example, 
delays in sorting) [13.19.20]. 

Assessment of the level of threat reduction after the implementation of security measures, 
compared with the initial risk. 

And also a cyber protection model based on multi-level security, which includes perimeter 
protection, network monitoring and behavioral analysis of robots [21]. 

The developed methodology allows you to assess cybersecurity threats for robotic warehouse 
systems in printing, as well as develop comprehensive protection measures based on modern 
cryptographic and network. This helps to increase the reliability and resilience of logistics processes 
to possible attacks [22]. 

4. Mathematical description of threats and modeling 

4.1. Threat classification for robotic warehouse asset sorting systems in printing 

Cyber Threats Related to Networks and Communication Protocols [23, 24, 25]: 



• Z1 DoS/DDoS Attack (Denial of Service / Distributed Denial of Service) – Intentional 
overload of logistics system management servers, leading to failures in sorting robots.  
Botnets are used to generate a large volume of traffic. 

• Z2 Man-in-the-Middle (MitM) Attack  – Interception of data between the central control 
system and robotic platforms, which can lead to command modifications. Relevant for 
protocols such as MQTT, OPC UA, Modbus TCP/IP.   

• Z3 Attack on Wireless Communication Channels  – Interception and modification of packets 
in Wi-Fi, Bluetooth, and 5G networks used for interaction between warehouse robots.   

• Z4 DNS Spoofing / ARP Poisoning – Substitution of DNS or ARP requests to redirect traffic 
to a malicious server. Threats Related to Data Manipulation. 

• Z5 Data Tampering in Warehouse Management Systems (WMS) – Unauthorized changes in 
warehouse databases (e.g., modification of delivery routes, sorting priorities). 

• Z6 Artificial Intelligence Model Poisoning in Sorting Systems – Introduction of distorted data 
for machine learning, affecting robots' decision-making. 

• Z7 Attack on Sensors and IoT Devices (Sensor Spoofing) – Simulating false data to disorient 
robots (e.g., modifying QR codes or RFID tags).   

Physical Threats and Insider Attacks:   

• Z8 Physical Intrusion into Warehouse Infrastructure – Unauthorized access to network 
equipment or control servers. 

• Z9 RFID Spoofing – Forging or cloning RFID tags to deceive the automatic tracking system. 
• Z10 Social Engineering (Phishing, Baiting, Tailgating) – Exploiting human factors to gain 

access to control systems (e.g., extracting passwords from employees).  Software and  

Operating System Vulnerabilities: 

• Z11 Exploiting Unsecured APIs – Unprotected API interfaces used for interactions between 
warehouse systems may be exploited by attackers. 

• Z12 Use of Outdated or Unsecured Software – Lack of software updates can lead to the 
exploitation of known vulnerabilities. 

• Z13 Embedded Firmware Backdoors – Manufacturers or hackers may leave hidden entry 
points for remote control.   

Threat Criticality Levels 
To provide objectivity and avoid subjectivity when assessing the criticality of cyber threats in 

robotic warehouse sorting systems, this study applied the widely recognized Common Vulnerability 
Scoring System (CVSS v3.1). 

Each attack was evaluated according to the following CVSS v3.1 criteria: 

• Attack Vector (AV) – type of system access (network, local). 
• Attack Complexity (AC) – complexity of executing the attack. 
• Privileges Required (PR) – level of privileges necessary to conduct the attack. 
• User Interaction (UI) – requirement of user interaction. 
• Scope (S) – whether the attack affects resources beyond the original target. 
• Confidentiality (C) – impact on data confidentiality. 
• Integrity (I) – impact on data integrity. 
• Availability (A) – impact on system availability. 

Based on these criteria, the CVSS numerical score (0-10 scale) was calculated, allowing a clear 
classification of attack criticality levels: 



• High Criticality (CVSS 7.0-10) (Z1−Z4, Z6) – Threats that can lead to a complete halt of 
warehouse operations or data compromise.   

• Medium Criticality (CVSS 4.0-6.9) (Z5, Z7−Z9, Z11) – Threats that disrupt logistics processes 
but do not completely disable the system.   

• Low Criticality (CVSS 0.1-3.9) (Z10, Z12, Z13) – Threats that can be mitigated through 
security policies and regular software updates.   

The threat evaluation results are summarized in the table 1. 
 
Table 1 
Frequency of Special Characters 

 

 Threat AV AC PR UI S C I A CVSS Criticality 

 DDoS N L N N U N N H 9.2 High 

 Man-in-the-Middle N H L N U H H H 8.6 High 

 Data Tampering N H L N U L H L 6.5 Medium 

 Sensor Spoofing L H L N U N L L 5.4 Medium 

 RFID Spoofing P H L N U L L N 4.8 Medium 

 Use of outdated software N H L R U L L N 3.5 Low 

 Social Engineering P H N R U L N N 3.0 Low 

 
Abbreviations: 

• AV (Attack Vector): N–Network, L–Local, P–Physical 
• AC (Attack Complexity): L–Low, H–High 
• PR (Privileges Required): N–None, L–Low, H–High 
• UI (User Interaction): N–None, R–Required 
• S (Scope): U–Unchanged, C–Changed 
• C, I, A (Confidentiality, Integrity, Availability): N–None, L–Low, H–High 

This classification allows for the identification of key threats and the prioritization of critical 
protection areas for robotic warehouse systems in the printing industry.  

4.2. Mathematical modeling of system operation and cybersecurity 

To analyze the safety of a robotic warehouse asset sorting system in the printing industry, 
mathematical relationships between influence factors, threats, and safety criteria were formed. 
Let [26]: 

• S(t) – system state at time t (1 – operating normally, 0 – shutdown due to attack). 
• Zi(t) – probability of active threat ii at time t. 
• Pi(t) – effectiveness of protection against threat ii at time t. 
• Q(t) – sorting performance under attack and security measures. 

The change in the system's state under the influence of attacks and security measures is described 
by the equation: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −�𝑍𝑍𝑖𝑖(𝑡𝑡) ∙ �1 − 𝑃𝑃𝑖𝑖(𝑡𝑡)�
𝑛𝑛

𝑖𝑖=1

, 
(1) 



where: S(t) =1, the system operates normally.  S(t)→0, the system fails due to an attack. 
For a better understanding of the system's operation, a mathematical description of the impact of 

different types of attacks on the system was performed. 
DoS/DDoS Attack (Z1) 
A DDoS attack causes system overload, increasing response time: 

𝑅𝑅(𝑡𝑡) = 𝑅𝑅0 +
𝜆𝜆 ∙ 𝑁𝑁
𝐶𝐶

, 
(2) 

 
where: R0 – normal response time without an attack. λ – intensity of requests from attacking bots. 
N – number of attacking requests. C – server bandwidth. 

The security measure P1 reduces the load on the system: 

𝑅𝑅secure(𝑡𝑡) = 𝑅𝑅0 +
𝜆𝜆 ∙ 𝑁𝑁 ∙ �1 − 𝑃𝑃1(𝑡𝑡)�

𝐶𝐶
, 

(3) 

 
Man-in-the-Middle (MitM) Attack (Z2) 
A MitM attack modifies control commands U(t): 

𝑈𝑈compromised(𝑡𝑡) = 𝑈𝑈true(𝑡𝑡) + 𝛼𝛼 ∙ 𝑍𝑍2(𝑡𝑡), (4) 

 
where: Utrue(t) – genuine control commands. Z2(t) – level of command interception by the attack. α– 
degree of attack influence. 

With TLS 1.3 security, the protection level P2 modifies the equation: 

𝑈𝑈secure(𝑡𝑡) = 𝑈𝑈true(𝑡𝑡) + 𝛼𝛼 ∙ 𝑍𝑍2(𝑡𝑡) ∙ �1 − 𝑃𝑃2(𝑡𝑡)�, (5) 

 
Sensor Spoofing Attack (Z7) 
Fake sensor data alters the trajectory of the robotic arm: 

𝑞𝑞spoofed(𝑡𝑡) = 𝑞𝑞true(𝑡𝑡) + 𝛽𝛽 ∙ 𝑍𝑍7(𝑡𝑡), (6) 

 
where: qtrue(t) – correct trajectory.Z7(t)) – impact level of the attack. β – coefficient of trajectory 
deviation. 

Security through digital signature verification of sensor data: 

𝑞𝑞spoofed(𝑡𝑡) = 𝑞𝑞true(𝑡𝑡) + 𝛽𝛽 ∙ 𝑍𝑍7(𝑡𝑡) ∙ �1 − 𝑃𝑃7(𝑡𝑡)�, (7) 

 
Protection is implemented through a set of criteria that influence the probability of attack 

mitigation Pi. 

𝑃𝑃total(𝑡𝑡) = 1 −��1 − 𝑃𝑃𝑖𝑖(𝑡𝑡)�
𝑛𝑛

𝑖𝑖=1

, 
(8) 

where: Ptotal(t) – overall system security effectiveness. Pi(t)– probability of blocking each attack. 
The higher Ptotal (t), the more effectively the system resists attacks. 

Impact of Authentication and Access Control (K1). Probability of a successful attack through 
credential compromise: 

𝑃𝑃auth(𝑡𝑡) = 1 − 𝑒𝑒−𝛾𝛾𝐾𝐾1 , (9) 

where γ – impact level of authentication measures (2FA, Zero Trust). 
Impact of Network Protection (K2) 



Probability of blocking network attacks: 

𝑃𝑃network(𝑡𝑡) =
𝐾𝐾2

𝐾𝐾2 + 𝑍𝑍1 + 𝑍𝑍2 + 𝑍𝑍3
, 

(10) 

 
The higher the network security (K2), the more effectively attacks are neutralized. 
Secure Data Transmission and Encryption (K3) Protection against MitM attacks: 

𝑃𝑃encryption(𝑡𝑡) = 1 − 𝑒𝑒−𝐾𝐾3∙𝑍𝑍2 , (11) 

 
where K3 – level of security via TLS 1.3, PKI, and HSM. 

Threat Detection and Response (K4) Time to detect an attack: 

𝑇𝑇detect =
1
𝐾𝐾4

, 
(12) 

 
Response time: 

𝑇𝑇response =
1

𝐾𝐾4 + 𝐾𝐾7
, 

(13) 

The higher the threat analysis level, the faster the system detects and neutralizes attacks. 
Impact of Security on Sorting Performance 

𝑄𝑄(𝑡𝑡) = 𝑄𝑄0 ∙ (1 −�𝑍𝑍𝑖𝑖(𝑡𝑡) ∙ (1 − 𝑃𝑃𝑖𝑖(𝑡𝑡))
𝑛𝑛

𝑖𝑖=1

), 
(14) 

where: Q0 – performance without attacks. Zi(t)– threats disrupting system operation. Pi(t)– 
protection level against threats. 

If Ptotal(t)≈1, performance remains stable. 
The developed mathematical model demonstrates how security measures affect the system. The 

overall level of protection Ptotal(t) allows us to assess the effectiveness of countering attacks. The 
performance of the system depends on the level of security and the speed of response. These 
equations are used to predict the effectiveness of cyber security measures and their impact on the 
performance of robotic sorting systems [27, 28]. 

5. Modeling in Matlab Simulink 

In this study, a model of a robotic sorting system was developed in the MATLAB Simulink (figure1) 
environment using Simscape Multibody. The model enables the analysis of the robotic system's 
behavior under cyberattacks, the evaluation of the effectiveness of security measures, and the impact 
of security strategies on system performance [26, 29]. 

The main components of the model include: Physical model of the myCobot 280 manipulator – 
created using Revolute Joint and Solid. Control system – implemented through a PID controller.   
Cyber threats – simulation of attacks such as DDoS, Man-in-the-Middle, and Sensor Spoofing.   
Cybersecurity system – includes data filtering mechanisms, IDS/IPS [14, 25], and encryption. System 
visualization – signal output in Scope and animation of the manipulator's movement [30]. 



 
Figure 1: A model of a robotic sorting system. 

The model incorporates a motion control loop for the manipulator, which includes the following 
processes: Command generation for movement – the Sine Wave block creates a signal to simulate 
control commands. PID controller – adjusts the movement of the robotic system, minimizing 
deviations.   Command transmission to the system – data is sent to the Simulink-PS Converter, which 
converts them into physical signals. Manipulator movement execution – the Revolute Joint calculates 
the position of each joint and transmits the data to Scope.   Impact of cyber threats – Signal 
Distortion, DDoS Generator [18, 22], and Sensor Spoofing modify control commands.   System 
protection – the Anomaly Detector filters out abnormal signals, while TLS Encryption prevents MitM 
attacks. Performance evaluation – Scope visualizes the manipulator's movement, and Security 
Efficiency assesses the effectiveness of the protection measures.  

 

 
Figure 2: Graph of manipulator movement without the influence of attacks (top graph) and with the 
influence of a DDoS attack (bottom graph). 



The simulation results show the manipulator movement without the influence of attacks (top 
graph) (figure 2) and with the influence of a DDoS attack (bottom graph). Where the blue and green 
lines (top graph) are the normal movement of the first and second joints. The red and pink lines 
(bottom graph) are the manipulator movement under the influence of an attack that causes jump-
like changes. 

6. Experiment, results and discussion 

To assess the security of robotic warehouse asset sorting systems in the printing industry, an 
experimental study was conducted on a test platform that includes: MyCobot 280 robotic 
manipulator, network infrastructure with MQTT, OPC UA protocols, threat monitoring system (IDS) 
based on machine learning, testing of cyberattacks (DDoS, Man-in-the-Middle, Data Tampering). 
The main goal is to determine how various cyberthreats affect system performance and assess the 
effectiveness of implemented security measures. 

Response time diagram (Figure 3) 

• Shows how different cyberattacks affect the response speed of a robotic system. Shows 
the number of seconds it takes for the system to process a command. 

• No attack: 0.5 sec 
• DDoS: 5.2 sec (significant increase) 
• Data Tampering: 2.8 sec 
• MitM: 3.9 sec 

So, DDoS attack has the strongest impact, significantly increasing the response time. Data 
Tampering and MitM also increase latency, but less dramatically. 

 

 
Figure 3: Response time diagram. 

Operation Success Chart (Figure 4) 
Demonstrates how cyberattacks reduce the efficiency of a robotic system. It shows the 

proportion of operations that were executed correctly. 

• No attack: 98% successful operations 



• DDoS: 45% 
• Data Tampering: 70% 
• MitM: 55% 

Thus, DDoS significantly reduces the operation success rate (up to 45%), indicating a strong 
impact of the attack. Data Tampering and MitM also degrade performance, but less critically. The 
system works best without attacks, demonstrating almost perfect efficiency. 

 
Figure 4: Operation Success Chart. 

Error rate chart (Figure 5) 
Reflects the proportion of erroneous operations in various cyber attacks. It reflects the 

percentage of operations that ended with an error. 
Without attack: 2% errors 
DDoS: 55% 
Data Tampering: 30% 
MitM: 45% 
Thus, DDoS causes the most errors (55%). Data Tampering and MitM also have a negative 

impact, but to a lesser extent. Without attacks, the error rate is minimal. 

 
Figure 5: Error rate chart. 



Therefore, a DDoS attack has the strongest negative impact on the system, significantly 
increasing response time, reducing the success of operations, and increasing the error rate. Data 
Tampering and MitM also harm performance, but not as critically. Without attacks, the system 
operates at maximum efficiency (98% successful operations, 2% errors). Implementing DDoS 
protection can be critical for system stability. 

Three attack scenarios were tested: 

• (A1) DDoS attack on the management server: hping3 was used to generate a large number 
of requests to the ROS server port. 

• Expected effect: increased robot response time, stopping the sorting process. 
• (A2) Man-in-the-Middle (MitM) attack on the MQTT connection: ettercap was used to 

intercept and modify commands between the MQTT server and myCobot 280 manipulator, 
which simulated realistic attack conditions on this communication protocol. Expected effect: 
modification of commands, incorrect operation of the robot. 

• (A3) Sensor Spoofing attack: Emulation of fake RFID tags was used to deceive the system. 
Expected effect: incorrect sorting of products. 

• Evaluation of protection effectiveness 
• Three protection strategies were implemented and their impact was evaluated: 
• (P1) Traffic limitation and IDS (Intrusion Detection System): Using Snort to detect anomalous 

traffic. 
• (P2) Command encryption and authentication: 
• Use TLS 1.3 for MQTT 
• Implement digital signatures to verify commands. 
• (P3) AI analysis of robot behavior: An autoencoder was used to analyze deviations in 

behavior. 

6.1. Experimental results 

The impact of attacks on the average execution time of operations was studied (figure 6) 
The resulting diagram shows how different types of cyber attacks affect the speed of execution 

of operations of a robotic system. Delay in execution can indicate system overload, signal processing 
failures or attempts to manipulate data. 

X-axis (Attack Scenario): No Attack - normal operation without interference. 
DDoS - a denial of service attack that overloads the system with requests. 
MitM (Man-in-the-Middle) - an attack in which an attacker intercepts and modifies data between 

the control system and the manipulator. 
Sensor Spoofing - an attack in which an attacker changes the sensor readings, misleading the 

system. 
Y-axis (Execution Time (sec)): Displays the average execution time of one operation depending 

on the impact of attacks. 
Results: 

• No attacks: 1.2 sec 
• DDoS: 6.5 sec (significant increase) 
• MitM: 4.3 sec 
• Sensor Spoofing: 3.8 sec 

The result shows that DDoS attack has the strongest impact, increasing the average execution 
time of operations by more than 5 times. MitM and Sensor Spoofing also significantly affect the 
latency, which can lead to incorrect operation of the system. The robotic system works fastest in the 
absence of attacks, demonstrating the minimum execution time of operations. 



Impact of Security Measures on Attack Reduction (Figure 7) 
The resulting chart shows how different cybersecurity mechanisms affect the error rate in a 

robotic system. Security plays a critical role in preventing data manipulation, intruders, and 
increasing system stability. 

 
Figure 6: Impact of Attacks on Operation Execution Time. 

X-axis (Type of Protection): No Protection – the system operates without cybersecurity 
mechanisms. IDS (Intrusion Detection System) – an intrusion detection system that analyzes 
network traffic for anomalies. TLS 1.3 – a modern data encryption protocol that provides a secure 
connection between devices. AI Monitoring – the use of artificial intelligence to analyze system 
behavior and automatically detect threats. 

Y-axis (Error Rate (%) – Percentage of erroneous operations): Displays the proportion of 
operations that ended with an error. 

Results: 

• No protection: 50% errors 
• IDS: 20% 
• TLS 1.3: 10% 
• AI Monitoring: 5% 

Therefore, the presence of cyber protection significantly reduces the error rate. Using IDS helps 
reduce the number of erroneous operations by 60% compared to the absence of protection. TLS 1.3 
further improves system stability, ensuring a high level of security during data transmission. The 
best result is demonstrated by AI Monitoring, which reduces the error rate to 5%, automatically 
adapting to new threats. 

Cyberattacks significantly affect the efficiency of a robotic system. The worst performance 
indicators are observed with a DDoS attack, which increases the execution time of operations by 
more than 5 times. MitM and Sensor Spoofing attacks also cause delays, which can lead to incorrect 
operation of the manipulator. Without attacks, the system works quickly and stably. Protective 
measures significantly improve security and performance. The implementation of IDS and TLS 1.3 



significantly reduces the error rate. The best results are achieved due to AI Monitoring, which almost 
completely eliminates errors. Without any protection, the system demonstrates a very high error 
rate (50%), which can cause dangerous failures in the production process. 

Recommendations for improving system security: Use IDS and AI Monitoring to detect and 
neutralize attacks in real time. Implement TLS 1.3 to protect transmitted data from interception and 
substitution. Optimize system operation algorithms to minimize the impact of attacks on the 
execution time of operations. 

 
Figure 7: Effectiveness of Security Measures. 

The results obtained indicate that robotic systems are very vulnerable to attacks, especially 
DDoS. However, the implementation of modern security mechanisms, such as AI Monitoring and 
IDS, significantly increases the stability and accuracy of operations. The optimal combination of 
cyber protection allows to reduce risks and ensure reliable operation of manipulators in difficult 
conditions. 

7. Conclusions 

As a result of the study, a comprehensive analysis of the cybersecurity of robotic warehouse asset 
sorting systems in the printing industry was conducted. The implementation of such systems 
significantly increases the efficiency of logistics processes, minimizes the human factor and 
optimizes costs. However, their integration into the digital infrastructure of enterprises creates new 
challenges related to cybersecurity, since robotic platforms interact with ERP systems, use cloud 
services and open communication channels. 

A threat analysis was conducted, which demonstrated that the most critical cyber threats for 
robotic warehouse systems include DoS/DDoS attacks, man-in-the-middle (MitM) attacks, data 
manipulation in WMS, RFID tag spoofing, network protocol vulnerabilities (MQTT, OPC UA, 
Modbus TCP/IP) and exploitation of the human factor through social engineering. 

A mathematical model was developed to assess the impact of attacks on the performance of a 
robotic system. In particular, the study showed that DDoS attacks can increase the average execution 



time of operations by 5 times, and sorting errors increase by up to 55%. MitM and Sensor Spoofing 
attacks also significantly affect the accuracy and efficiency of the system. 

To minimize cyber risks, three main protection methods were tested: Intrusion Detection System 
(IDS), which analyzes traffic and detects anomalies. Data encryption and authentication via TLS 1.3 
and digital signatures. The use of AI to analyze robot behavior, which allows detecting anomalies in 
real time. The study confirmed that the most effective is a combination of methods, where AI 
monitoring reduces the error rate to 5%. 

A series of tests using real cyberattacks was conducted in laboratory conditions. The greatest 
impact on system performance was a DDoS attack, which caused a delay in responses and partial 
blocking of the sorting manipulators. The use of TLS 1.3 and IDS allowed to reduce the risk of errors 
in order processing processes by 80%. 

The results of the study demonstrate that ensuring cybersecurity of robotic warehouse systems 
in the printing industry is a critically important task. Without proper protection, such systems can 
become a target for cyberattacks, which will lead to significant financial and operational losses. The 
use of modern security technologies, in particular IDS, encryption and AI-monitoring, can 
significantly reduce the risks of attacks and increase the resilience of logistics processes to threats. 
The implementation of these measures in industrial conditions will contribute to increasing the 
security and efficiency of robotic logistics systems, which is a key factor for the digital 
transformation of the printing industry. 
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