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Abstract

In this paper, we propose an innovative hybrid method for the helicopter turboshaft engine's gas
temperature in front of the compressor turbine, determining under rapid change conditions in operating
parameters. The method is based on an adaptive neural network built on the LSTM architecture and
physical and mathematical modeling implemented through a heat balance and correction using a Kalman
filter combination. This approach allows us to take into account the temperature changes dynamics,
compensate for the sensors’ inertia and minimize the interference impact, which significantly improves the
estimate accuracy compared to traditional direct measurement methods. At the signal preprocessing stage,
wavelet transform and singular spectrum analysis (SSA) are used to eliminate noise and restore missing
data, which ensures the initial data is high quality for further modeling. The obtained normalized data are
fed to the LSTM network input equipped with an adaptation mechanism that allows adjusting the model
weights depending on changes in engine characteristics. The predicted temperature values are integrated
with the physical modeling results using the Kalman filter algorithm, which provides an optimal
combination of information from both models in order to achieve the lowest prediction error. The method’s
experimental verification was carried out on the TV3-117 engine data installed on the Mi-8MTV helicopter.
The obtained results demonstrate high predicting accuracy: the mean absolute error (MAE) was 0.34 %, the
root mean square error (RMSE) was 0.45 %, and the determination coefficient (R*) reached 0.992. At the same
time, the algorithm’s computational time does not exceed 55 ms, which allows using the method in real
time for the engine operation’s monitoring and diagnostics. The proposed hybrid approach has proven its
efficiency in the rapidly changing conditions of operating modes, providing reliable and accurate
determination of the gas temperature.

Keywords
hybrid method, LSTM, Kalman filter, neural network, adaptive modeling, gas temperature, helicopter
turboshaft engine, physical and mathematical modeling, signal processing, real-time monitoring

1. Introduction

Modern helicopter turboshaft engines (TE) operate under significant dynamic loads, which requires
high precision control of their operating parameters. One of the critical indicators is the gas
temperature in front of the compressor turbine (TG), as it directly affects the engine’s efficiency and
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reliability [1]. However, traditional methods for measuring TG have a limited number associated
with the sensor’s inertia, the interference, and the presence of changing operating conditions [2].
This makes it relevant to develop intelligent methods for assessing temperature, capable of quickly
adapting to changing engine dynamics.

Rapid changes in the TG, typical for the helicopter TE operation transient modes, complicate
accurate measurement and require high-speed data processing algorithms [3]. Existing methods
based on direct measurements often do not provide the required accuracy and stability under
turbulent flows and load fluctuation conditions. An intelligent method for determining the TG using
neural networks and adaptive algorithm development will improve the parameter estimation
accuracy in real time, reduce the errors associated with probability with noise and systematic errors,
and improve the engine’s operational status prediction.

2. Related works

The TG accurate measurement issue in helicopter TEs remains relevant in the aviation industry.
Traditional methods are based on thermocouple sensors, which are widely used due to their simple
design and high thermal stability [4]. However, their main drawbacks are inertia, high sensitivity to
vibrations and interference, as well as limited accuracy with sudden temperature changes, which
make it difficult to use in dynamically changing engine operating modes. Researches [5, 6] propose
improved thermocouple systems with measurement correction based on mathematical heat transfer
models, but their efficiency decreases under non-stationary conditions.

An alternative to traditional methods is temperature estimation algorithms using mathematical
modeling and numerical error correction methods. In [7], temperature prediction models based on
heat balance equations that take into account changes in engine operating mode are proposed.
However, such models require precise knowledge of engine parameters and do not always provide
adaptability to real operating conditions. In [8], Bayesian methods for temperature estimation taking
into account measurement uncertainties are considered, but their application is limited by the need
for complex a priori calibration.

In recent years, intelligent data processing methods, including neural networks and hybrid
algorithms, have been actively developed. Research [9] describes an approach using recurrent neural
networks (RNN) to predict gas temperature based on time series. However, this technique does not
take into account the fast transient processes typical of helicopter TE. The research [10] uses a
combination of neural networks with data filtering based on wavelet transforms, which allows for
increased predicting accuracy. However, most existing approaches are not adapted to the sudden
temperature change conditions that occur during helicopter maneuvering and changing engine
operating modes.

Despite significant progress in the TG measuring and predicting field, a number of important
issues remain unresolved. Most existing methods are either focused on stationary engine operating
modes [5, 6] or require complex preliminary calibrations [9, 10], which limits their application in real
time. Also, the issues of comprehensively accounting for systematic and random measurement errors
[7, 8] arising from turbulent disturbances and vibration loads have not been sufficiently studied.

The intelligent method for the TG assessing development based on hybrid algorithms of machine
learning and mathematical modeling seems to be a promising direction. Such a method will allow
taking into account the dynamics of temperature changes in transient modes, adapt to changing
operating conditions, and ensure high accuracy of assessment without the need for complex
adjustments. In addition, the intelligent data processing into on-board engine monitoring systems
integration will significantly increase the helicopter TE operational status monitoring and predicting
reliability, which is especially important for the helicopter’s operation in extreme conditions.



3. Proposed method

3.1. Development of an intelligent method for the gas temperature in front of the
compressor turbine estimating

The proposed method combines adaptive neural network algorithms with physical and mathematical
modeling to accurately determine the TG under rapid change conditions in its values. The hybrid
approach allows taking into account the temperature change dynamics, compensating for the
traditional sensors’ inertia and interference impact, minimizing (Figure 1).
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Figure 1: The proposed method structure. (author’s research).

The method includes three main components: a predictive model based on machine learning,
using an LSTM network with additional adaptation modules to predict temperature based on
historical data and current engine operating parameters; a correlation-physical model representing
an analytical description of thermal processes in helicopter TE, taking into account external factors
such as operating mode, turbulence, and heat loss; and an integrating module based on a Bayesian
filter, which corrects temperature estimates by combining the results of machine learning and
physical modeling, ensuring high accuracy and adaptability of the method.

The proposed method architecture includes four key modules: a data preprocessing system, a
neural network predicting module, a physical and mathematical model, and an integrating module
(Figure 2).

The data preprocessing system cleans and normalizes signals from temperature sensors, removes
noise using wavelet transform, and applies SSA (Singular Spectrum Analysis) to identify outliers and
restore missing data. This ensures high quality of input data, and the noise impact reduces on
subsequent processing.

The neural network predictive module is based on the LSTM (Long Short-Term Memory)
architecture, trained on historical data on gas temperature, engine operating parameters (the gas-
generator and free turbine rotors speed), and operating modes. It is supplemented by an adaptive
learning mechanism, which allows taking into account changes in engine characteristics during
operation.

equations, energy balance, and empirical coefficients and also takes into account dynamic heat
losses, turbulent effects, and changes in operating modes. The integrating module, implemented on
the Kalman filter basis or its nonlinear variations (for example, Unscented Kalman Filter—UKF),
combines the neural network predicted data and the physical modeling results, providing a balance
between accuracy and adaptability.

Weighting coefficients are adjusted in real time, which allows for changing operating conditions
and increases the reliability of temperature assessment.

The physical and mathematical model calculates the TG theoretical value based on heat transfer.
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Figure 2: The proposed method architecture. (author’s research).

The proposed method’ algorithm is presented in Table 1.

Table 1
The results evaluating the quality of solving the missing T parameter values restoring task (author’s
research).
Stage Stage name Stage description
number
1 Data collection Receiving readings from TG sensors and auxiliary
parameters (for example, the gas generator and free
turbine rotor speed) [11].
2 Preliminary processing  Cleaning data from noise and outliers using wavelet
filtering and SSA.
3 Predicting by neural Using an LSTM network to predict the temperature
network model for the next time step based on historical data and
current parameters.
4 Calculation of physical The TG expected value is calculated taking into
model account heat transfer, energy balance, and dynamic
factors.
5 Integration and Using Bayesian correction (Kalman filter or UKF) to
correction combine the neural network prediction and the
physical model results.
6 Data update Transferring the corrected values to the helicopter

TE monitoring and diagnostics system for further
analysis and control.
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3.2. Development of a mathematical model

To develop a mathematical model describing the proposed method’s architecture, several key
components can be identified: a data preprocessing system, a neural network predictive module, a
physical and mathematical model, and an integrating module.

Let the input data be a gas temperature measurements time series:

T = {1, 1;@ ., 10, (1)

where T; are the helicopter TE gas temperature in front of the compressor turbine values in time
moment .
Noise is removed using the wavelet transform as:

(Te)' = W(Tp), (2)

where W(e) is the wavelet filtering operator.
To extract the principal components, the SSA method is used in the form:

(Te)" = SSA((T;)"), ®)

where SSA(e) is the decomposition operator into a singular spectrum and restoration of the useful
signal.

Signal preprocessing includes denoising and data normalization. Signal filtering is used to denoise
the signal, and z-normalization is used for the denoised signal [12]:

(T — N 2T

Ve (@ - 5 sap)

where Nis the training dataset size. The z-normalization use allows us to the variables T; each value
transform so that they are expressed in standard deviation units from the mean. This allows us to

z (TG ) Ol 2 (4)

bring the T; data to a form with a mean value of 0 and a standard deviation of 1, which is important
for improving the machine learning algorithms convergence and for the data correct comparison
with different scales.

The LSTM based network prediction can be represented as follows:

he = LSTM (hy—y, (T, ar), (5)

where (Tg)'('l) is the input vector containing gas temperature in front of the compressor turbine
normalized data, h;is the hidden state at time ¢, @;is an adaptation coefficient that takes into account
changes in engine characteristics. The adaptation coefficient a: describes the added adaptive learning
mechanism that changes the weights in the neural network depending on changes in engine
characteristics.

To calculate the T theoretical value, a thermodynamic model is used based on the energy balance
and compression and combustion processes equations [13].

The power transferred to the gas flow is determined by the equation:

Qr= mys- Hu - ng, (6)

where Qris the thermal power released during fuel combustion, W; my is the fuel mass flow rate,
kg/s; Hy is the fuel net calorific value, J/kg; nc is the combustion process efficiency (usually
0.96...0.99).

The gas temperature in front of the compressor turbine is determined from the heat balance
equation:

Mair * Cp " Tair + Mg - Cpe * Tr + Qf = (mair + mf) “Cp* T¢, (7)
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_mair'cp'Tair+mf'cpt'Tf+Qf
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where mair is the air mass flow rate, kg/s; Tair is the air temperature in front of the combustion
chamber, K; ¢, is the gas specific heat capacity at constant pressure, J/(kg K); ¢y is the fuel specific
heat capacity, J/(kg K); Tris the fuel temperature, K.

If we neglect the fuel heat capacity (cp: ~ cp), then (8) is simplified to:

mg - Hy " ng
+ .
(mair + mf) "Cp

Tg = Tair ©)

This physical model shows that the gas temperature in front of the compressor turbine is
determined by the temperature of the incoming air, the fuel combustion heat, and the combustion
chamber efficiency.

To adjust the neural network and the physical model predictions, the Unscented Kalman Filter
(UKF) [14] is used. It is assumed that x; is the system’s current state, z: is the observed value, A is the
state matrix, H is the observation matrix, P; is the state error covariance matrix, Q is the process
covariance matrix, R is the measurement covariance matrix, and K; is the Kalman matrix (update
weighting factor).

The UKF algorithm consists of two stages: the predicting stage and the correction stage. At the
predicting stage, sigma points are formed, the predicted sigma points are determined, and the state
and covariance predictions are made as:

Xio1 =X + Wi J(n+2) - Py, i=0,...2n,

xt = f(ti-1) + wp, 0;~N(0,Q),

2n
X = Z W; - xt, (10)
i=0

2n
Po= ) Wi (di-2) (d-%) +0,
i=0

where Wiis the sigma points weights, A is the scaling parameter, n is the state dimension.

At the correction stage, the sigma points projection onto the measurement space, measurement
prediction, measurement covariance, cross-covariance, Kalman matrix determination, and state and
covariance matrix updating are performed as:

3t = h(xt) + v, vi~N(0,R),
2n
ZAt = Z w; - G;
i=0
2n
St =ZWL(QL —ZAt)'(G_ZAt)T'i'R,
i=0 (11)
2n
Po= ) Wi (3i-2)- (i-2)
i=0

K; =sz'5t_1'
xe =X + K- (20 — 2¢),

Ptzpt_Kt.St.KlT'



The neural network predicts and the physical model results combination using the Unscented
Kalman Filter (UKF) is carried out as follows:

(Té)fusion =K (Tuw + U —Kp) - (Tg)physr (12)
where (T¢) fysion is the gas temperature in front of the compressor turbine combined predicted
value, (Tg)yy is the predicted value obtained by the LSTM network (equation 5), (T¢)ppys is the
value calculated using the thermodynamic model (equation 9), K; is the Kalman matrix, which
determines the neural network prediction and the physical model weight adaptation (11).

Thus, the final predict is formed as a data adaptive combination from the physical model and

neural network prediction, where the weighting coefficient K; takes into account the trust in each
source of information.

3.3. Development of a neural network predictive module

The predictive module is designed to predict the gas temperature in front of the compressor turbine
T; based on historical data on temperature, engine operating parameters, and operating modes. The
module is based on an LSTM network that adapts to changes in engine characteristics during
operation. The predictive module model architecture includes the following main components: input
layer, LSTM layer, fully connected layer, output layer (Figure 3).
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Figure 3: The predictive module architecture. (author’s research).

The input layer receives the parameters of the time series recorded by the standard sensors on
board the helicopter: gas temperature in front of the compressor turbine T; , gas-generator rotor
speed nrc, free turbine rotor speed nrr, and the adaptation coefficient o; value. The LSTM layer with
the hidden state dimension h; includes forgetting and remembering mechanisms for analyzing long
time dependencies. The fully connected layer transforms the LSTM output into the predicted
temperature T;. The output layer produces the gas temperature in front of the compressor turbine
predicted value.

Each LSTM node consists of three main gates: forget, input, and output. For a time moment ¢, the
LSTM cell (Figure 4) state is updated by defining the input data vector x;, defining the forget gate
(determines how much information from the previous state should be forgotten) f;, the input gate
(determines how much new information should be added) i, the cell state update candidate ¢,, the
cell state update c; the output gate o;, and the hidden state update h; [15, 16]:

*(t-1) _(t— -1
X, = {TG(t )’n(th D,YlffT )’at}, (13)
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fi= o(Wr- xt+ Ur- he1 + b,
ir=o(Wi-xt+ Ui+ he1 + by),

é = tanh(W, - x, + U, - hy_, + b,),
ct =frrc1+ i Ty
0r=0(Wo- xi+ Uy - he-1 + bo),
ht = o¢ - tanh(cy),

where W, U, b are the model’ trainable parameters, o(e) is the sigmoid activation function.
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Figure 4: The LSTM network diagram. [15, 16].

The predictive module’ output layer generates the gas temperature in front of the compressor
turbine predicted value as:

Next, the T; predict is transferred to the integrating module, where it is combined with the
physical model result according to (12).

The LSTM network is supplemented with an adaptation mechanism that allows adjusting weights
when engine characteristics change. The adaptation coefficient o adjusts the input parameters
influence that depends on the engine age and operating conditions and is used when updating the
neural network weights, affecting the training speed. The adaptation coefficient o; is determined by
the measured deviation parameters 8§T¢, dnrc, dnrr as:

at = (6TG*, 6nTc, 5TLFT). (15)

Thus, the neural network predictive module uses transfer training, in which, when new data is
available, the model is partially retrained using weight adjustment methods.

Thus, the proposed method’s scientific novelty lies in the hybrid intelligent approach
development to estimating the gas temperature in front of the compressor turbine under rapidly
changing value conditions. Unlike traditional methods based on direct measurements using
thermocouples, the proposed method combines adaptive neural network algorithms with physical
and mathematical modeling, which allows taking into account the temperature change dynamics,
compensating for the sensor’s inertia, and minimizing the interference impact.

The method’ key innovations include:

1. A hybrid approach combining LSTM recurrent neural network predicting and
thermodynamic modeling with UKF Kalman filter correction;



2. Anintelligent adaptation mechanism that takes into account changes in engine performance
during operation, which improves the assessment accuracy without the need for complex
calibration;

3. Efficient data processing, including wavelet filtering and singular spectrum analysis (SSA) to
eliminate noise and restore missing values;

4. Real-time implementation, providing high processing speed and the ability to integrate into
on-board helicopter TE monitoring and diagnostic systems.

This method use helps to increase the gas temperature reliability assessment in front of the
compressor turbine, reduce the measurement errors probability and improve predictive diagnostics
of the helicopter TE operational status.

4. Results

4.1. The input data analysis and preprocessing

To conduct a computational experiment demonstrating the developed method’s operability, this
research object was the TV3-117 engine [17], which is part of the Mi-8MTV helicopter and its
modifications to the power plant. Based on the Mi-8MTV helicopter flight test results, data on the
TV3-117 engine parameters were obtained and recorded on board the helicopter by standard sensors
of the onboard monitoring system: the gas temperature in front of the compressor turbine T (a
sensor consisting of 14 dual thermocouples T-101 was used), the gas-generator rotor speed nrc (a D-
2M sensor was used), and the free turbine rotor speed nrr (a D-1M sensor was used) [18]. The data
on board the Mi-8MTV helicopter were recorded during a real flight for 320 seconds with a sampling
frequency of 0.25 seconds. To form time series from flight data of the onboard engine parameter
monitoring system TV3-117, the measurements’ sequential processing obtained from standard
sensors T-101, D-2M, and D-1M is performed.

The initial data T;, nrc, nrr (1) underwent preliminary processing, including noise reduction and
outliers’ elimination (2), (3), after which time series are formed—ordered sequences of parameter
values over time. To reduce time series with parameters’ different scales to a single scale, z-
normalization is applied (4). After normalization, the parameters T;, nrc, nrr time series have the
form shown in Figure 5.

Flight test results
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Figure 5: The TV3-117 engine normalized parameters time series diagrams: “black curve” is the gas-
generator rotor speed nrc, “blue curve” is the gas temperature in front of the compressor turbine Tg,
“green curve” is the free turbine rotor speed nrr (author’s research).
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Based on the presented diagrams, a parameters’ T, nrc, nrr training dataset was formed, which
fragment is presented in Table 2.

Table 2
The parameters’ T¢, nrc, nrr normalized values training dataset fragment (author’s research)
Number  The gas temperature in ~ The gas-generator rotor The free turbine rotor
front of the compressor speed nrc speed nrr
turbine T;

1 0.995 0.989 0.988

166 0.983 0.976 0.974

251 0.986 0.978 0.976

375 0.973 0.964 0.96

492 0.986 0.978 0.977

630 0.980 0.975 0.974

789 0.987 0.981 0.979

985 0.991 0.989 0.986

1280 0.993 0.990 0.987

To assess the parameters Tg, nrc, nrr training dataset homogeneity, based on [19], the Fisher-
Pearson criterion y? general statistics was used. To draw a conclusion, the calculated y? indicator is
compared with the threshold value corresponding to the specified significance level o and the
number of degrees of freedom (in this case, 2). If 2 > xZ.;rica1 (% 2), the normal distribution assumption
is rejected. In this study, the significance level a = 0.01 was set, which is due to strict requirements
for helicopter flight safety [20]. The false assumption of erroneous acceptance probability
minimizing (for example, missing a deviation from the norm) plays a key role in preventing
emergency situations. This significance level increases the reliability of the decisions made and
reduces the likelihood of engine failures in flight. Table 3 presents the parameters T¢, nrc, nrrtraining
dataset homogeneity estimating results according to the Fisher-Pearson criterion.

Table 3
Results of the parameters’ T¢, nrc, nrr training dataset training dataset homogeneity assessing
according to the Fisher-Pearson criterion (author’s research)

Parameter  The y? calculated The y(a, 2) Decision on the training dataset
value critical value homogeneity
I 9.134
nrc 9.147 9.2 The dataset is homogeneity.
NFT 9.183

The training dataset homogeneity, according to [21], is checked using the Fisher-Snedecor
criterion Fj. To assess the parameters T;, nrc, nrrconsistency, their variances are compared pairwise.
The Fj calculated values are compared with the threshold value Fginical, set for a given significance
level o = 0.01 and degrees of freedom vi = N; - 1 and v; = N> — 1 (where N; = N, = N = 1280 are the
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datasets sizes). If Fj > Feriical, the datasets are considered heterogeneous. Table 4 presents the
parameters T;, nrc, ner training dataset homogeneity, confirming results according to the Fisher-
Snedecor criterion.

Table 4
Results of the parameters’ T;, nrc, nrr training dataset training dataset homogeneity assessing
according to the Fisher-Snedecor criterion (author’s research)

Parameter  The Fjcalculated  The Feisical( = 0.01,  Decision on the training dataset
value 1279) critical value homogeneity
g 1.129
nrc 1.132 1.139 The dataset is homogeneity
nrr 1.133

To check the training dataset's representativeness, the cluster analysis method (k-means [22])
was used. Within this approach framework, the training and test datasets were formed by random
partitioning in a 2:1 ratio (67 and 33 %, respectively, which corresponds to 858 and 422 elements).
The training dataset (Table 2) clustering results showed the 8 groups (classes L...VIII) presence, which
indicates the eight clusters identification and confirms the training and test datasets structure
similarity (Figure 6).

Based on these data, the optimal dataset sizes for signals from the TV3-117 engine T-101, D-2M,
and D-1M sensors were determined: training dataset is 1280 elements (100 %), control dataset is 858
elements (67 % of the training dataset), test dataset is 422 elements (33 % of the training dataset).
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Figure 6: Cluster analysis results: a is the training dataset; b is the test dataset. (author’s research).

4.2. The method’ performance testing results

To adapt the developed method to transient engine operation modes, Figure 7 shows a diagram of
transient processes for the gas temperature in front of the compressor turbine T; parameter. In
Figure 7, the black solid line shows the T; data from the T-101 sensor, containing jumps and noise,
the red dotted line shows the predicted T; data using a neural network model (LSTM) curve,
demonstrating possible delays or errors, the blue dashed-dotted line shows the corrected temperature
T; curve, demonstrating the final value after the Kalman filter, showing the adaptation of the method
to rapid changes.

Adaptaion of the Method to Transient Modes
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Figure 7: The method’ adaptation to transient modes diagram. (author’s research).

This diagram clearly shows how the LSTM neural network model and the Kalman filter's
sequential application improve the gas temperature data in front of the compressor turbine quality.
The original (black) curve contains noise and jumps, which complicate the analysis. The predicted
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(red) line already smooths out some of the noise but may have delays or errors. The final (blue) curve
after the Kalman filter eliminates jumps and “fits” the result to real measurements while maintaining
a smooth shape.

Figure 8 shows the prediction root mean square error (RMSE) dependence on the adaptive
coefficient ;. Figure 8 compares two models: without adaptation (red dotted line) and with
adaptation (blue solid line). It is evident that with the o; growth, the adaptive model’s RMSE decreases
monotonically, indicating an improvement in the prediction accuracy due to the adaptation
mechanism use. In contrast, the model without adaptation demonstrates higher and fluctuating
RMSE values, indicating a lower ability to adapt to changing conditions.
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Figure 8: Diagram of the adaptive coefficient influence on the prediction’ accuracy. (author’s
research).

. . .. 0Tg
Figure 9 shows the change in the temperature derivative atG

over time in transient modes, where

three curves are compared: the actual rate of temperature change predicted by the neural network
model and the corrected rate after applying filtering. This approach allows us to visually assess how
well the model predictions correspond to the real data, as well as to show the effectiveness of filtering
in eliminating noise and the measurements accuracy increasing when analyzing dynamic
temperature transitions.

The diagram shows that the actual rate of temperature change (blue line) has a pronounced
maximum in the middle of the range (around t = 320), forming a smooth bell-shaped curve. The rate
predicted by the neural network (red line) follows the actual curve's general shape but contains
noticeable noise and deviations, especially near the peak. After applying filtering (green dotted line),
the noise is significantly reduced, and the curve becomes smoother, while the main dynamics of the
actual rate of temperature change are preserved.
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Figure 9: Diagram of the change in the temperature derivative over time. (author’s research).

4.3. The results obtained effectiveness evaluation

To evaluate the different algorithms’ computation time, the computation time was measured for
three algorithms used to estimate the gas temperature in front of the compressor turbine. The
experiment was conducted on typical hardware using a semi-naturalistic simulation stand [23],
under equal testing conditions, using both real and synthetically generated data simulating the
engine operating dynamics. Each algorithm was run multiple times, and the average computation
time was determined to reduce the random errors influence. According to the obtained results, the
LSTM model showed the shortest running time—about 22 ms—which is due to the time series
efficient processing and optimized network architecture. The physical and mathematical model
implementing calculations based on heat balance and energy exchange equations required about 37
ms, as it included more complex mathematical operations. The combined method integrating the
LSTM model with the physical-mathematical model through the use of the Kalman filter for
prediction correction had the longest computation time—about 55 ms—which is explained by
processing’ additional stages and results’ adaptation. The obtained results (Table 5) demonstrate that
even the most resource-intensive approach remains within the acceptable time for real-time
operation, which is critical for the method implementation in helicopter TE onboard monitoring and
diagnostic systems.

Table 5
Results of the parameters’ T, nrc, ner training dataset training dataset homogeneity assessing
according to the Fisher-Pearson criterion (author’s research)

Algorithm Type Computation Time (ms)
LSTM Model 22
Physical-Mathematical Model 37

Combined Method 55
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At the next stage, data on gas temperature in front of the compressor turbine T; prediction errors
were collected for each of the three algorithms: the LSTM model, the physical-mathematical model,
and the combined method. For each method, the difference between the predicted values (T¢)preq
and the real measurements (T;),.q Was calculated for a test observations number. The obtained
errors were distributed over a values range, and an error histogram was obtained for each algorithm
(Figure 10), displaying the observations number depending on the error value. Thus, the error
histogram can be used to estimate which error distribution is typical for each approach: for example,
a narrow distribution with a smaller variance indicates an algorithm’s higher accuracy, while a wide
distribution indicates a larger spread of errors.

Histogram of Prediction Errors
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B Physical Model

mmm Combined Method
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Figure 10: The prediction errors histogram. (author’s research).

As can be seen from Figure 10, the errors histogram obtained using the LSTM model shows a
relatively narrow distribution with a small spread, indicating high prediction accuracy in most cases.
The physical-mathematical model’s errors histogram is more diffuse, reflecting the complex physical
calculations influence, where the values spread is somewhat larger. The combined method histogram
shows the distribution obtained by integrating the two approaches using the Kalman filter result,
which allows for a decrease in the overall prediction error and a decrease in the spread.

At the final stage, the predictive model’s efficiency and quality are assessed according to
traditional metrics. In this case, efficiency can be understood as, for example, the mean absolute error
(MAE) or the root mean square error (RMSE), and quality is the determination coefficient (R?) [24].
The mean absolute error shows the average absolute deviation of predictions from real values, while
the root mean square error amplifies the large errors impact. The determination coefficient shows
how well the model explains the data variability. These metrics are defined as:
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where (Tg)(i) q is the gas temperature predicted value, (T;)

pre ; is the actual measured value,
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(TG) is the actual measurements average value.
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Based on the calculations carried out on the grouped error intervals basis, the MAE, RMSE and
R? metrics values were obtained (Table 6).

Table 6
Results of calculating MAE, RMSE and R? metrics. (author’s research).
Metric LSTM Model Physical Model Combined Method
MAE, % 0.49 0.53 0.34
RMSE, % 0.62 0.67 0.45
R? 0.987 0.976 0.992

From these results, it is evident that the combined method gives the lowest MAE, RMSE, and R?,
which is consistent with the finding of higher accuracy and smaller error spread compared to the
other two models.

5. Discussions

An intelligent method for estimating the helicopter TE gas temperature in front of the compressor
turbine has been developed (Figures 1 and 2), which combines adaptive neural networks and physical
and mathematical modeling to obtain accurate results under dynamic changes. The method includes
a predictive model based on LSTM with adaptive modules, a correlation-physical model for
describing thermal processes taking into account energy exchange, turbulence and dynamic losses,
as well as an integrating module based on a Bayesian filter (for example, a Kalman filter or its
nonlinear variants) for adjusting predicted values. Preliminary data processing using wavelet
transform and SSA provides signal cleaning and normalization, minimizing the noise influence,
which in turn increases the gas temperature estimate accuracy and adaptability, making the method
effective for the helicopter TE operation’s monitoring and diagnosing.

Within the developed method (Figures 1 and 2) framework, a mathematical model for the
helicopter TE gas temperature in front of the compressor turbine was developed, which is based on
the temperature measurements time series processing (1), after which noise is removed using a
wavelet transform (2), and the main components are identified using singular spectrum analysis (3).
Further data normalization (4) improves the algorithm's convergence, and predicting is implemented
through an LSTM network taking into account the adaptive change in engine characteristics (5). In
parallel, a physical model based on the heat balance and combustion equations (6)—-(9) is used, and
the final prediction is formed by adaptively combining the results of both models using a Kalman
filter, where the adjustment is made at the prediction and correction stages (10)—(12). The prediction
is implemented using an LSTM network (Figures 3 and 4), the hidden state of which is updated
according to calculations (13) with the final prediction given by (14), and the result is adjusted using
a physical model based on the heat balance and combustion efficiency equations (6)—(9), where the
combination of predictions is carried out using the Kalman filter (10)-(12). Additionally, the
coefficient adaptation «; (15) allows dynamic adjustment of the changing engine characteristics
influence on the model.

A computational experiment was conducted to evaluate the developed method’s efficiency for
predicting the gas temperature in front of the compressor turbine, based on the LSTM model and the
physical-mathematical model using the Kalman filter (10)-(12) combination. The experiment was
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carried out on data obtained during the Mi-8MTV helicopter’ TV3-117 engine real flight tests (Figure
5), where pre-processing included noise removal, selection of the time series main components and
normalization (Table 2).

During the experiment, it was found that the correction stage with the Kalman filter use allows
for significant smoothing of jumps and delays in predictions, ensuring the method’s adaptation to
transient engine operating modes (Figure 7). The RMSE dependence analysis on the adaptive
coefficient a; (Figure 8) showed a monotonic decrease in error, which confirms the implemented
adaptive mechanism effectiveness.

The predicted quality by the MAE, RMSE and R? metrics final assessment (Table 6) demonstrated
that the combined method provides the best results: MAE was 0.34 %, RMSE was 0.45 %, and the
determination coefficient R? reached 0.992. At the same time, the computation time does not exceed
55 ms, which allows using the developed method in real time for monitoring and diagnosing the
operation of aircraft engines.

At the same time, the obtained results have a number of limitations:

1. The experimental results were obtained using data from one specific engine (TV3-117), which
limits the method applicability to other models or types of helicopter TE.

2. The final estimate's accuracy depends significantly on the preliminary signal processing
(wave transform, SSA, normalization) quality, and even minor errors at this stage can
negatively affect the results.

3. The combined method, although demonstrating the lowest error rates, has a higher
computational complexity (about 55 ms), which can become a limiting factor in systems with
very strict response time requirements.

4. The neural network adaptation mechanism operation depends on the correct determination
of the adaptation coefficient a;, and its incorrect configuration can lead to a decrease in the
prediction’s accuracy with abrupt changes in engine characteristics.

To eliminate these limitations, the following prospects for further research are proposed:

1. Conducting additional tests on various types of engines to verify the method generalizability.

2. Improving the signal pre-processing stage (wave transform, SSA, normalization) to increase
the results stability.

3. Optimizing the computational algorithms of the combined method, for example, [25], to
reduce the response time in systems with strict time constraints.

4. Developing and testing an improved adaptation mechanism for correctly determining the
adaptation coefficient oy with abrupt changes in engine characteristics.

6. Conclusions

A method has been developed that is a hybrid approach that combines an adaptive neural network
based on the LSTM architecture with physical and mathematical modeling using heat balance
equations and correction using the Kalman filter. This combination allows taking into account the
gas temperature dynamics changes under engine operating modes’ rapid transition’ conditions,
compensating for the sensors’ inertia and the interference impact minimizing, which is a significant
advantage compared to traditional direct measurement methods.

The experiments conducted on the TV3-117 engine data installed on the Mi-8MTV helicopter
demonstrated high predicting accuracy. The main quality metrics (MAE, RMSE, and the
determination coefficient R?) showed that the combined method achieves MAE values of 0.34 %, RMSE
is 0.45 % and R? is 0.992, which indicates a decrease in errors and a decrease in the errors’ spread
compared to individual approaches. At the same time, the algorithm’s computational time, not
exceeding 55 ms, confirms its possibility of using it in real time for monitoring and diagnosing engine
operation.



The adaptive mechanism implemented through the coefficient at allows the system to quickly
respond to changes in engine characteristics, ensuring the neural network weights and the predicted
data integration with the physical modeling results adjustment. The Kalman filter's use helps smooth
out emissions and eliminate delays in predictions, which increases the final estimate’s reliability.
This approach significantly improves the temperature assessment quality and ensures the system’s
stability even with rapid mode transitions under conditions.

Thus, the developed method demonstrates high efficiency and accuracy in estimating the gas
temperature in front of the compressor turbine, which is an important factor for increasing the
helicopter TE reliability. The results obtained confirm the using hybrid algorithms prospects to solve
real-time problems, and experimental further optimization and expansion base can contribute to its
implementation in helicopter TE on-board monitoring systems.
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