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1. Introduction

The Shapes Constraint Language (SHACL) is the World Wide Web recommended language for
expressing and validating constraints on RDF graphs [1]. SHACL uses the notion of shapes

graph to describe a set of shape constraints paired with targets, that specify which nodes of
the RDF graph should satisfy which shapes. The main computational problem in SHACL is to
check whether an RDF graph validates a shapes graph. Indeed, large RDF triple stores, which
are subject to frequent change, may be missing some facts to validate a target or may have
conflicting or contradictory facts. Therefore, detecting such inconsistencies and measures to
deal with data graphs that fail to validate a shapes graph is very relevant in practice.

A possible solution is to fix the data graph before reasoning. In the style of database repairs,
[2, 3] propose to fix the data graph through (minimal) additions or removals of facts such that
the resulting data graph validates the shapes graph. However, this may not always be desirable
in practice as there may be a large number of possible repairs and selecting one may keep wrong
facts, or remove true facts. Another alternative is to tolerate the non-validation and find ways
to leverage the consistent part of the data and obtain meaningful and correct answers to queries
despite the non-validation. This view is known as consistent query answering (CQA), and it
has gained a lot of attention since the seminal paper [4]. The idea is to accept as answers to a
query those that are true over all (minimal) repairs of the input database. This is also known
as the AR semantics [4, 5, 6, 7]. Several other inconsistency-tolerant semantics have also been
studied such as brave [8] and IAR [6] semantics. The former accepts answers that are true in
some repair, and the latter accepts the most reliable answers, that is those that are true in the
intersection of all repairs. There is now a large body of research works on CQA in both the
database and KR setting; we refer to [5, 9, 10] for nice surveys.

In this work, we focus on CQA in the presence of (recursive) SHACL shapes. We thus consider
a fundamental fragment of the standard query language SPARQL. Specifically, we focus on
basic graph patterns (Bgps) and the well-behaved extension with the OPTIONAL operator [11],
referred to as well-designed queries (wdQs) in this paper. Our main goal is a detailed complexity
analysis of the CQA problem. In total, we study several variants of the CQA problem by
considering 4 query languages (Bgps and wdQs, with or without projection), under 3 semantics
(brave, AR, IAR), with or without (cardinality or subset inclusion) minimality-restrictions.
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Moreover, we distinguish data complexity (where the SHACL constraints and the query are
considered as fixed and only the data is allowed to vary) and combined complexity.

We initially consider the scenario that the repairs must validate all targets. If this is not
possible, we have to settle for repairs that validate a subset of the targets. To address this,
in the spirit of inconsistency tolerance, [3] proposes a relaxed notion of repairs, which aims
at validating a maximal subset of the targets. We also study the complexity of CQA over
maximal repairs. In all cases considered, we provide a complete complexity classification in the
form of matching upper and lower bounds. All details of our results are provided in the full
paper [12, 13].

2. SHACL Validation and Well-Designed SPARQL

RDF Graphs. Let 𝑁𝑁 , 𝑁𝐶 , 𝑁𝑃 denote sets of nodes (constants), class names, and property names,
respectively. An RDF (data) graph 𝐺 is a finite set of (ground) atoms of the form 𝐵(c) and
𝑝(c, d), where 𝐵 ∈ 𝑁𝐶 , 𝑝 ∈ 𝑁𝑃 , and c, d ∈ 𝑁𝑁 .

SHACL Validation. Let 𝑁𝑆 be a set of shape names. A shape atom is an expression of the form
s(a), where s ∈ 𝑁𝑆 and a ∈ 𝑁𝑁 . A path expression 𝐸 is a regular expression built using the
usual operators *, ·, ∪, property names 𝑝 ∈ 𝑁𝑃 and inverse properties 𝑝−, where 𝑝 ∈ 𝑁𝑃 . A
(complex) shape is an expression 𝜙 obeying the syntax:

𝜙,𝜙′ ::= ⊤ | s | 𝐵 | c | 𝜙 ∧ 𝜙′ | ¬𝜙 | ≥𝑛𝐸.𝜙 | =𝑛𝐸.𝜙 | 𝐸 = 𝐸′,

where s ∈ 𝑁𝑆 , 𝑝 ∈ 𝑁𝑃 , 𝐵 ∈ 𝑁𝐶 , c ∈ 𝑁𝑁 , 𝑛 is a positive integer, and𝐸, 𝐸′ are path expressions.
A (shape) constraint is an expression s ↔ 𝜙 where s ∈ 𝑁𝑆 and 𝜙 is a complex shape. A shapes

graph is a pair (𝒞, 𝒯 ), where 𝒞 is a set of constraints and 𝒯 is a set of shape atoms called targets.
A set of constraints 𝒞 is recursive, if there is a shape name in 𝒞 that directly or indirectly refers
to itself. A (shape) assignment for a data graph 𝐺 is a set 𝐼 = 𝐺 ∪ 𝐿, where 𝐿 is a set of shape
atoms. The evaluation of a complex shape w.r.t. an assignment 𝐼 is given in terms of a function
J·K𝐼 that maps shape expressions 𝜙 to a set of nodes, and path expressions 𝐸 to a set of pairs of
nodes with the connectives interpreted in the usual way; we refer to [13] for more details.

Following the supported model semantics proposed in [14], given a shapes graph (𝒞, 𝒯 ), an
assignment 𝐼 for 𝐺 is a (supported) model of 𝒞 if J𝜙K𝐼 = s𝐼 for all s ↔ 𝜙 ∈ 𝒞. The data graph
𝐺 validates (𝒞, 𝒯 ) if there exists a supported model 𝐼 of 𝒞 such that 𝒯 ⊆ 𝐿.

Well-Designed SPARQL. Let 𝑁𝑉 be a set of variables. A basic graph pattern (Bgp) is a conjunctive
query (without existentially quantified variables) over atoms of the form 𝐵(𝑡) or 𝑝(𝑡1, 𝑡2) with
𝐵 ∈ 𝑁𝐶 , 𝑝 ∈ 𝑁𝑃 , and 𝑡, 𝑡1, 𝑡2 ∈ 𝑁𝑉 ∪𝑁𝑁 . A well-designed SPARQL query 𝑄 (wdQs) is built
from Bgps and the OPTIONAL (or OPT) operator such that for every subquery 𝑄′ = (𝑃1OPT𝑃2)
of 𝑄, the variables of 𝑃2 that appear outside of 𝑄′ also appear in 𝑃1. A mapping 𝜇 is any partial
function whose domain dom(𝜇) is from 𝑁𝑉 . The notion of a mapping 𝜇 that is an answer to
a Bgp 𝑄 over a graph 𝐺 is defined in the standard way. Mappings 𝜇1 and 𝜇2 are compatible

(written 𝜇1 ∼ 𝜇2) if 𝜇1(𝑥) = 𝜇2(𝑥) for all 𝑥 ∈ dom(𝜇1)∩ dom(𝜇2). A mapping 𝜇 is an answer
to a wdQ 𝑄 = 𝑄1 OPT 𝑄2 if (1) 𝜇 is of the form 𝜇1 ∪ 𝜇2, where 𝜇1 is an answer to 𝑄1, 𝜇2 is
an answer to 𝑄2, and 𝜇1 ∼ 𝜇2, or (2) 𝜇 is an answer to 𝑄1 for which there does not exists an



answer to 𝑄2 that is compatible with 𝜇. We denote the query classes where we additionally
allow top-level projections by 𝜋-Bgp and 𝜋-wdQ.

3. Inconsistency-tolerant Semantics and Complexity Results

In this section, we formally introduce the problems considered in the paper and present our
main results. As was done in [2], we can explain non-validation of a SHACL shapes graph
in the style of database repairs. Hence, a repair is provided as a set 𝐴 of facts to be added
and a set 𝐷 of facts to be deleted, so that the resulting data graph validates the shapes graph.
Concretely, let 𝐺 be a data graph, (𝒞, 𝒯 ) a SHACL shapes graph, and let 𝐻 be another data
graph disjoint from 𝐺, called hypotheses. Then, a repair is a pair 𝑅 = (𝐴,𝐷), such that 𝐷 ⊆ 𝐺,
𝐴 ⊆ 𝐻 , and the repaired graph 𝐺𝑅 := (𝐺 ∖𝐷) ∪𝐴 validates (𝒞, 𝒯 ). Note the 𝐻 is necessary,
as allowing arbitrary atoms to be added makes the problem of checking the existence of a repair
undecidable.

Instead of considering all possible repairs, we consider preference relations given by a pre-
order ⪯ (a reflexive and transitive relation) on the set of repairs. Following [2], we study
subset-minimal (⊆), and cardinality-minimal (≤) repairs. We denote with = when there is no
preference order, and we use ⪯ as a placeholder for ⊆, ≤, and =. We say a repaired graph 𝐺𝑅

is ⪯-minimal iff 𝑅 is ⪯-minimal.
We define the three inconsistency-tolerant semantics brave (∃), AR (∀), and IAR semantics (∩).

Consider a query 𝑄, a mapping 𝜇, a data graph 𝐺, a shapes graph (𝒞, 𝒯 ), and hypotheses 𝐻 .
Then, 𝜇 is an answer of 𝑄 over Ψ = (𝐺, 𝒞, 𝒯 , 𝐻) and preference order ⪯ ∈ {=,≤,⊆} under:

• brave semantics, if 𝜇 is an answer to 𝑄 over some ⪯-minimal repaired graph 𝐺𝑅,
• AR semantics, if 𝜇 is an answer to 𝑄 over all ⪯-minimal repaired graphs 𝐺𝑅,
• IAR semantics, if 𝜇 is an answer to 𝑄 over 𝐺∩ :=

⋂︀
{𝐺𝑅 | 𝑅 is a ⪯-minimal repair}.

We illustrate SHACL and the various inconsistency-tolerant semantics with an example.

Example. Consider data graph 𝐺, hypotheses 𝐻 , and the shapes graph (𝒞, 𝒯 ):

𝐺 = {Stud(Ann),Stud(Ben), id(Ann, 3)id(Ben, 1), id(Ben, 2), enrolledIn(Ben, a)},
𝐻 = {enrolledIn(Ann, b), enrolledIn(Ben, c)},
𝒞 = {ActiveStud ↔ Stud ∧=1id ∧ ≥1enrolledIn},
𝒯 = {ActiveStud(Ann),ActiveStud(Ben)}.

Intuitively, the constraint states that “active students” are students that have exactly one ID and are

enrolled in at least one course. The targets ask to check whether Ann and Ben are active students. The

data graph 𝐺 does not validate the shapes graph. Intuitively, the reason is that Ben has two IDs and

Ann is not enrolled in any course. Validation can be obtained by repairing 𝐺 with the subset- and

cardinality-minimal repairs 𝑅1 = (𝐴,𝐷1) and𝑅2 = (𝐴,𝐷2), where𝐴 = {enrolledIn(Ann, b)},

and each 𝐷𝑗 includes the fact id(Ben, 𝑗). There are 4 more non-minimal repairs, i.e., repairs where

additionally enrolledIn(Ben, c) is added and, optionally, the atom enrolledIn(Ben, a) is removed.

Next, consider the Bgp 𝑄1 = Stud(𝑥) ∧ 𝑖𝑑(𝑥, 𝑦) and wdQ 𝑄2 = Stud(𝑥) OPT id(𝑥, 𝑦). Clearly,



ℒ \⪯,𝒮 =,∃ ≤,∃ ⊆,∃ =,∀ ≤,∀ ⊆,∀ =,∩ ≤,∩ ⊆,∩
Bgp (DC) NP Θ2P Σ2P coNP Θ2P Π2P coNP Θ2P Π2P

𝜋-Bgp (DC) NP Θ2P Σ2P coNP Θ2P Π2P coNP Θ2P Π2P
wdQ (DC) NP Θ2P Σ2P coNP Θ2P Π2P DP Θ2P DP2

𝜋-wdQ (DC) NP Θ2P Σ2P coNP Θ2P Π2P Θ2P Θ2P Θ3P

Bgp (CC) NP Θ2P Σ2P coNP Θ2P Π2P coNP Θ2P Π2P
𝜋-Bgp (CC) NP Θ2P Σ2P Π2P Π2P Π2P Θ2P Θ2P Π2P
wdQ (CC) Σ2P Σ2P Σ2P coNP Θ2P Π2P Θ2P Θ2P DP2

𝜋-wdQ (CC) Σ2P Σ2P Σ2P Π3P Π3P Π3P Σ2P Σ2P Θ3P

Table 1
Data (DC) and combined complexity (CC) of the problem CQA(ℒ,⪯,𝒮).

the mapping 𝜇1 = {𝑥 → Ann, 𝑦 → 3} is an answer of 𝑄1 under brave, AR, and IAR semantics.

The mappings 𝜇2 = {𝑥 → Ben, 𝑦 → 1} and 𝜇3 = {𝑥 → Ben, 𝑦 → 2} are answers of 𝑄1 over

𝐺𝑅1 and 𝐺𝑅2 , respectively, and hence under brave semantics, but not under AR nor IAR semantics.

For 𝑄2, 𝜇1 and 𝜇4 = {𝑥 → Ben} are the solutions under IAR semantics. Clearly, 𝜇1, 𝜇2, and

𝜇3 are still the answers under brave semantics and 𝜇1 under AR semantics. Note that the above

statements hold for each preference order ⪯ ∈ {⊆,≤,=}.

For query language ℒ ∈ {Bgp, 𝜋-Bgp,wdQ, 𝜋-wdQ}, preference order ⪯ ∈ {=,≤,⊆}, and
inconsistency-tolerant semantics 𝒮 ∈ {∃,∀,∩}, we define the CQA(ℒ,⪯,𝒮) problem as follows:

Input: A query 𝑄 ∈ ℒ, Ψ = (𝐺, 𝒞, 𝒯 , 𝐻), and a mapping 𝜇.
Question: Is 𝜇 an answer of𝑄 overΨ and preference order⪯ under𝒮-semantics?

The complete picture of our complexity results in all settings is shown in Table 1.
We also consider the setting where there is no repair of the data graph that validates all the

targets. E.g., consider constraints s1 ↔ 𝐵 and s2 ↔ ¬𝐵 and targets s1(a) and s2(a); in this
case, there exists no repair for any input data graph, since adding 𝐵(a) violates the second
constraint and not adding it violates the first one. Following [3], we relax the notion of repairs
and aim at satisfying the maximum number of targets. Such tuples 𝑅 = (𝐴,𝐷) that maximize
the number of targets validated by 𝐺𝑅 are called maximal repairs and we define the problem
mCQA(ℒ,⪯,𝒮) analogously to CQA(ℒ,⪯,𝒮) where maximal repairs play the role of repairs. It
turns out that the complexities remain almost as in Table 1 – only the classes NP, coNP,DP
have to be replaced by the boolean hierarchy BH in data complexity and by Θ2P in combined
complexity.

4. Conclusion and Future Work

In this work, we have carried out a thorough complexity analysis of the CQA problem for data
graphs with SHACL constraints and we have pinpointed the complexity of this problem in a
multitude of settings – considering various query languages, inconsistency-tolerant semantics
of CQA, and preference relations on repairs. Additionally, we have studied the CQA problem
for maximal repairs in cases where no repair exists. Several new proof techniques had to be



developed to obtain these results. For instance, this has allowed us – in contrast to [2] – to
prove all our hardness results without making use of recursion in shapes constraints.

The targets we considered here are shape atoms of the form s(c). The SHACL standard also
allows for richer targets over class and property names. Specifically, it allows to state that a data
graph must validate a shape name at each node of a certain class name, or domain (or range) of a
property name. All the membership results in this paper can be immediately updated to support
these richer targets. Some features of SHACL (such as disjointness and closed constraints) are
not considered here, but we strongly believe they do not change the complexity results.

An immediate direction for future work is to investigate the notion of optimal repairs of
prioritized data graphs over SHACL constraints and specifically, the notions of global, Pareto
and completion optimality of repairs [15]. In particular, it would be of interest to study the
computational properties of the main reasoning tasks such as repair checking and repair
existence, and to analyze CQA for each of the three notions of optimal repairs and the various
settings studied in this paper.

In the absence of general tractability results, a further important next step is to devise practical
algorithms for CQA over SHACL constraints, either by relying on heuristics or by identifying
meaningful and relevant fragments of SHACL that admit better complexity results.
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