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Abstract

Achieving fair, accountable, transparent, and ethical decentralized finance requires activating enabling properties
at the level of smart contracts, the executable scripts at its basis. In this vision paper, a joint effort of the Central
Bank of Italy, TU Wien, and the University of Oxford, we leverage the vast amount of experience in this sense
from the database community and propose a logic-based reasoning framework that captures smart contracts as a
set of rules in DatalogMTL, a temporal language for querying databases. We present the high-level architecture of
our framework and explain how the theoretical underpinnings of the reasoning of DatalogMTL convey important
properties to the approach.

Keywords
Smart contracts, DatalogMTL, FATE principles

1. Introduction

The Artificial Intelligence and database communities are experiencing a growing infusion of the FATE
(Fairness, Accountability, Transparency, Ethics) principles [2]. These principles are gaining prominence,
drawing attention to the non-functional requirements of everyday Al-assisted and data-driven decision-
making and catalyzing the discussion around regulatory bodies. Unfortunately, the same level of
attention to these high-level concerns is not mirrored in developer circles, and recent studies underscore
the scant regard machine learning developers have shown for FATE concerns in machine learning
applications [3, 4].

FATE and DeFi. We see similar patterns emerging when assessing developers’ awareness of FATE
concerns within the industrial realm of Decentralized Finance (DeFi). DeFi entails financial transactions
devoid of intermediaries, instead relying on software modules executed on a decentralized public
ledger [5]. At the core of DeFI is the notion of smart contracts [6], which are machine-readable and
executable agreements that establish and enforce the binding terms for the parties involved.

Supporting FATE. In the Al and data world, social forces have been effective in supporting FATE,
for example, by means of third-party audits of the algorithms, either conducted by experts or by
everyday users. As recently highlighted by Hong in CACM [2], prominent examples can be found in
the fights against the racial bias of face-recognition systems [7], and commercial gender disparities in
photo cropping or credit card algorithms [8]. These audits, spurred by social forces and the scientific
community, have provided regulators with positive guidance.

In contrast to Al DeFi boasts a substantial theoretical transparency advantage, thanks to its open-
access code and the ability for anyone to inspect smart contract data on a public ledger. However,
enforcing policies in a decentralized context remains an incredibly challenging task. The praiseworthy
goal of establishing standards, taxonomies, compliance measures, quality controls, and upholding
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ethical principles [9] can benefit from robust support from the social forces in the monitoring and
enforcement of such policies. However, this must align with the specific technical attributes of these
smart contracts. Yet, smart contracts have been criticised within the community due to their overly
complex business logic, and limited explainability, resulting in a lack of transparency. Furthermore, they
often prove challenging to describe and communicate, rendering them less user-friendly, particularly
for non-technical users [10, 11, 12].

A Knowledge Representation and Reasoning (KRR) approach to smart contracts. In the area
of deductive Al and ontological reasoning on databases, logic-based approaches built on top of KRR
formalisms are gaining increasing attention in industrial settings, with many successful financial
applications [13, 14, 15]. Modern logical languages manage to strike a good balance between expressive
power and computational complexity, resulting in compact and efficiently executable formalizations of
complex domains, for instance, being able to capture SPARQL under OWL 2 entailment regimes [16]
and so enabling ontological reasoning. The declarative paradigm sustains simplicity, transparency,
compactness, and understandability of code, which becomes algorithm-independent and closer to
the high-level specifications, policies, and standards. The well-defined semantics of KRR languages
fosters non-ambiguity, ease of use for non-technical users, and correctness. The intrinsic step-by-step
nature of logical reasoning is conceptually close to notions of explainability and thus supports decision
transparency.

The thesis of this vision paper is that a KRR framework for smart contracts that addresses FATE by design
is both theoretically and practically viable. For the theory, we show that, by building on the underpinnings
of logic-based reasoning, the features important to achieving FATE desiderata can be obtained and rigorously
justified. In terms of application, we show that our framework is adaptable to serve as both an interpreted
and a compiled execution mode for real-world contracts.

Contributions to industrial advances. In recent industrial EDBT work done by the Central Bank
of Italy [17], they started to investigate the possibility of encoding complex smart contracts in Dat-
alogMTL [18, 19], a temporal extension of the Datalog language [20] of databases. They obtained
promising results, highlighting the potential of a KRR approach in the specific case of a derivative
contract. In this work, a joint effort of the Central Bank of Italy, TU Wien, and the University of
Oxford, we propose (i) a full-fledged and general framework for smart contracts that sustains
FATE concerns (ii) by leveraging the vast amount of experience from the database community to
achieve enabling properties; (iii) using our framework to study and implement proof of concepts
for many smart contracts where FATE is a core desideratum of a central bank. More details can be
found in the full version of the paper [1].

2. Overview of the Framework and Related Work

We use a form of declarative logical object-oriented approach and encode the behaviour of a class
of smart contracts as a set ¥ of reasoning rules—or programs—working on a database D of tem-
poral facts. A temporal fact of D is such that it holds in a given time interval, for example,
price(123, 2)@[2023-09-01,2023-09-02] defines the price 2 for the asset 123 in a two-day interval.

To model the rules of 3, we introduce DatalogMTL, a variant of DatalogMTL with features of practical
utility. A smart contract is then an instance of a smart contract class, whose time-dependent status is
represented as a database D of temporal facts. Instances are stateful objects and the contract execution
consists in invocations, akin to method calls, that are carried out by the involved parties. Calls result
in updates to the status D through the addition of new facts. The semantics of a call is operationally
described as the application of the rules of 3 (denoted as (D)) to the temporal facts of D, extended
with call-specific facts.

DatalogMTLS rules are sets of head<—body logic implications where the body is a conjunction of atoms
and the head is an atom. As a general guideline, whenever the body of a rule is satisfied by a conjunction
of facts in D at a point in time ¢, the evaluation of the rule triggers the insertion in D of a new fact for
the head atom, holding at t. For example, the rule ‘position(x, w) < buy(x,a,q), price(a, p),w = p* ¢



v LN ¢ On-chain execution
JS ‘ ® target VM . .

N o ilati
Javascript Vyper Solidity Rust complation H e timely
R
H e trustless
reverse target language '
engineering = compilation :
g@}

i TargetVM/DLT
translati
DatalogMTLS ", $=_/
— = "
Contract description verifiable .
NL Contract computation
l interpretation
On-reasoner execution { Off-chain execution

Datalog+/- VM

imulati ' compilation :
* simulation : > ! s cost effective
e explanation H e verifiable
o verification i

DatalogMTLS
Reasoner

Reasoner VM

Figure 1: Overview of the DatalogMTL® framework for smart contracts.

states that, for every point in time f, the position w of a trader x that buys an amount q of an asset a of
price p is obtained as p * g. So, if D contains the price fact price(123, 2) and buy(0x241F, 123, 12), both
holding at [2023-09-01,2023-09-02], a new position(0x241F, 24) holding in the same time interval will
be added to D.

In DatalogMTLS, temporal operators can be used to either modify the temporal binding of body
atoms to facts of D, or to alter the temporal validity of the generated facts. For instance, an expression
of the form ¢ yjposition(x, w) in the body holds at a point in time ¢, if the trader x had at least an open
position win the interval [t — 1,¢], while an expression of the form H ;position(x, w) in the head,
states that the position will be open in the interval [¢,t + 1] for every t. In the following, we show a
smart contract class defining a simple financial market:

R1: accepted($sender, y) « #open(y), "marketClosed.
R2: Hposition(x, y,k) < accepted(x, y), price(p),k = y * p.

R3: return(x, g), Aposition(x, y,0) « #close(), price(p), position($sender, y, k), g = y * p — k.
At a specific point in time in which the market is not closed, a trader tries to open a position by investing
an amount y (Rule R1). The constant $sender is a call-level variable that at runtime binds to the invoking
trader. When the transaction is accepted (Rule R2), the position of the trader x on the amount y is
updated by multiplying by the current price p. The = operator stands for a new future temporal validity
of the position fact. Finally, when the position is closed (Rule R3), the final profit g is computed based
on the current price.

Execution modes. From a practical perspective, our framework implements (D) by enabling three
execution alternatives, each offering specific properties, as reported in Figure 1: (i) on-reasoner execution:
the rules are applied natively by a reasoning system supporting DatalogMTL or DatalogMTLS such as
Temporal Vadalog [21] or MeTeoR [22]; (ii) on-chain execution: the DatalogMTL® programs are verifiably
translated into the language of a target system, for instance, Solidity [23] or Bitcoin Script [24] and
executed within the target systems; (iii) off-chain execution, the rules are applied with an on-reasoner
execution with persistent effects on a blockchain and cryptographically verifiable computation.

The expert intention is substantiated as a natural language (NL) contract or directly encoded in a
DatalogMTL® program 3, and the use of large language models (LLM) can bridge the gap between the
natural language specification of the contract and the encoding of its DatalogMTL’ version [25].

In the on-reasoner execution mode, to evaluate X, reasoners use variants of the cHASE procedure [26]
specialized for the temporal extensions [27]. They offer a good degree of explainability of the produced
facts as a side effect of the inference process of the chase. Also, they are suited to be used for simulation



and runtime verification purposes as step-by-step debugging can be emulated by incrementally adding
facts to D and monitoring the results entailed by the application of %. On the other hand, the execution
relies on a trusted centralized system.

Conversely, on-chain execution offers a trustless paradigm, only requiring that the user acknowledges
the translation of the DatalogMTL code into the target language, which can be verified through open-
sourced translators. This trustlessness is underpinned by the validation properties ensured by the
distributed consensus protocol embraced by the blockchain, guaranteeing the integrity of the mined
blocks. What is more, on-chain execution is characterized by its timeliness, as results are promptly
included in the first mined block.

However, on-chain execution comes with a high cost and is ill-suited for complex applications. In
contrast, off-chain execution is widely regarded as a practical and efficient alternative, and there is a large
body of related work such as state-channels [28], Plasma [29], and Zero-Knowledge Rollups [30]. In
particular, specific protocols have been proposed, that help attest the integrity of off-chain computation
(i-e., verifiable computation), such as ZK-SNARK [31] and ZK-STARK [32]. Towards this direction, the
construction of specialized virtual machines compiling succinct ZK proofs for DatalogMTLS executions
is envisaged here, but beyond the scope of this vision paper and a matter of future work.

Termination and Complexity. Fact entailment in DatalogMTL is a decidable task, in particular
PSPACE in data complexity [18]; therefore we have guaranteed termination and guaranteed computational
complexity. Moreover, the rules modelling real-world smart contracts need to allow for the derivation of
facts into present and future time points, while the propagation towards the past is almost never required.
Under this condition, the set X belongs to the forward-propagating fragment, namely, DatalogMTL
[18], for which a finite representation of infinite models is always possible [19]. It is important to point
out that in DatalogMTL the use of arithmetic and recursion can, in general, lead to undecidability [33]
and a comprehensive study of arithmetic in DatalogMTL has not been provided yet. However, our
framework conditions the activations of the rules on the specific smart contract functions being called,
which reduces the cases of potentially harmful recursion.

3. The Framework in Action

In this section, we show the usefulness of our framework with a smart contract of industrial relevance.

ERC-20. The ERC-20 [34] is a well-known and widely adopted Token Standard that implements an API
for tokens within smart contracts. The following DatalogMTL® smart contract implements a simple
ERC-20 contract with a fixed supply S.

R1: EEltotalSupply(S),ETElbalanceOf(stender, S) « #init(S).

R2: ETabalanceOf($sender, 0) < —balanceOf ($sender, X), #create().

R3: ETEibalanceOf(ﬂisender, B;— A),

El-ﬂbalanceOf(to, B, + A) < balanceOf ($sender, By), balanceOf (to, B,),
B > A, #transfer(to, A).

Atoms with predicates #init, create, and #transfer are called trigger atoms and represent contract
functions, while atoms with balanceOf and totalSupply are status atoms and they persist across state
transitions. Other atoms are transient and they are discarded at the end of each function evaluation. Rule
R1 initializes the smart contract state by adding the facts BtotalSupply(S) and E-ElbalanceOf ($sender, S).
Note that using the B operator allows to overwrite the balance in case of a transfer. Rule R2 allows the
sender to initialize a balance, if not already done earlier. Rule R3 implements the “transfer” function
from the sender address $sender to the recipient address fo of amount A. Atoms of the form balanceOf (
address, X) in the body are used to query the balance X of address (a common pattern in logic pro-
gramming), the condition By > A imposes that there is enough balance from the sender account to
complete the transfer, and the head of the rule uses the A to update the balances accordingly. We
omitted allowances and the transferFrom and approve functions.
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contract SimpleERC20Contract { 14

uint256 immutable totalSupply; 15 function transfer(address _to, uint256 _A) public {
mapping(address => uint256) public balanceOf; 16 uint256 Bs = balanceOf[msg.sender];
17 uint256 Br = balanceOf[to];
constructor (uint256 _S) { 18 if (1(Bs >= _A)) { revert(); }
totalSupply = _S; 19 balanceOf [msg.sender] = Bs - _A;
balanceOf[msg.sender] = _S; 20 balanceOf[_to] = Br + A;
} 21 }
22 }
function create () public { 23
if (balanceOf[msg.sender] != 0) { revert(); } 24
balanceOf[msg.sender] = 0; 25
} 26}

Figure 2: The Solidity code generated from the ERC-20 DatalogMTL® program example.

Compilation to Solidity. In [1] we outlined an approach to compile DatalogMTL’ programs into
Solidity code that implements the same contract. Intuitively, rules with trigger atoms in the body
are translated into functions, and status atoms are translated into contract state variables and data
structures. Figure 2 shows an example of how we can translate the ERC-20 DatalogMTL® program into
Solidity.

Formal Verification. Our framework can enable formal verification of smart contracts written in
DatalogMTLS. An example of how formal properties can be verified is by additional program rules
that formalize invariants in the DatalogMTLS language. These are formalized using rules of the form
1« Ay,..., Ay, meaning that, if all expressions Ay, ..., A, are true (that is, the invariant does not hold),
then the function call that triggered that rule must be reverted. These rules are compiled into assert
instructions and can be seen as a runtime verification technique that rejects all transactions that violate
the invariants, as in [35]. For example, in the ERC-20 smart contract, we might add some invariant
conditions that must be true at any time during the lifetime of the smart contract, such as:

« The sum of user balances is equal to totalSupply [36] (the operator msum is an aggregation operator
that computes the sum, see [37, 27])

actualTotalSupply(msum({(B))) < balanceOf (_, B).
1 « actualTotalSupply(N ), totalSupply(N5), N;! = Nj.

« The sums of sender and receiver balances before and after the transfer are equal [38]:

1 <—6[1,1] #transfer(), address(to), 6[1,1] balanceOf ($sender, B;), 6[1’1] balanceOf (to, B,),
balanceOf ($sender, B;), balanceOf ($sender, By.), B; + B, = B; + B;.

4. Conclusion

This preliminary work proposes a framework for expressing and evaluating smart contracts, focusing on
improving the explainability and transparency of traditional smart contract development. We achieve
this by building on decades of research in KRR, particularly in declarative logic-based programming,
leveraging the expressive power of DatalogMTL. Inspired by a recent application of such formalism
for modelling smart contracts [39, 17], we generalize those approaches and develop a foundational
framework which supports the formalization and evaluation of arbitrary smart contracts. While in this
paper we focused more on the vision and its industrial applications in the financial sector, we can already
foresee many research avenues as future works. First, we aim to develop novel techniques (e.g., zero-
knowledge techniques for off-chain execution) and implementations for realizing each execution mode.
Next, it would be interesting to investigate the impact of developing smart contracts in DatalogMTL,
in terms of ease of use, explainability, and code quality. Finally, we want to devise and apply formal
verification techniques for DatalogMTLS smart contracts.
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