CEUR-WS.org/Vol-3954/paper7893.pdf

C

CEUR

Workshop
Proceedings

Continuous Query Engine to Detect Anomalous ATM
Transactions

Fernando Martin-Canfran, Daniel Benedi, Amalia Duch and Edelmira Pasarella

Universitat Politécnica de Catalunya, Barcelona Tech, Barcelona, Spain

Abstract

Nowadays data are in motion, change continuously and are —possibly— unbounded implying data
sources that are also constantly evolving. From the data persistence point of view this reality breaks the
usual paradigm of having dynamic but stable data sources. This, together with the increasing number
applications based on data streams for taking critical decisions in real time, raises the need for re-thinking
both the data and the query models to fit these new requirements. Therefore, under these circumstances,
it seems reasonable that a suitable data model is a continuously evolving data graph. In this work we
tackled the problem of querying continuously evolving data graphs in the context of ATM transactions, in
particular anomalous ones. Under this context, evaluating continuous queries corresponds to recognize
patterns usually associated with anomalous behaviors in the volatile subgraph of ATM transactions. We
propose an evaluation process based on the dynamic pipeline computational model, a stream processing
technique allowing the emission of alerts as soon as anomalous patterns are identified. Stream based
Bank applications that monitor ATM transactions are direct beneficiaries of our proposal since they
can continuously query data graphs to get “fresh” data as are produced, avoiding the computational
overhead of having to discard non-valid data.

Keywords
continuous query evaluation, property graphs, dynamic pipeline approach, stream processing, ATM
transactions

1. Introduction

Although from a classical point of view databases are thought of for persistent data, nowadays
this perspective is changing since data are in motion, continuously changing and (possibly)
unbounded. So, the following questions arise: (i) What is the proper data model? and (ii) What
is the proper query model?

Regarding the data model, the new nature of data requires a de facto new database paradigm
-continuously evolving databases- where data can be both stable and volatile. Even though
evolving databases can be implemented according to any approach, graph databases seem
especially well suited here [1, 2]. Indeed, the natural way to process evolving graphs as streams
of edges gives insights on how to proceed in order to maintain dynamic graph databases. Hence,
we consider that a suitable data model is a continuously evolving data graph, a graph having
persistent (stable) as well as non persistent (volatile) relations. Stable relations correspond
to edges occurring in standard graph databases while volatile relations are edges arriving in

AMW2024: 16th Alberto Mendelzon International Workshop on Foundations of Data Management, September 30th -
October 4th , 2024, Mexico City, Mexico

Q fernando.martin.canfran@estudiantat.upc.edu (F. Martin-Canfran); daniel. benedi@estudiantat.upc.edu

(D. Benedi); duch@cs.upc.edu (A. Duch); edelmira@cs.upc.edu (E. Pasarella)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:fernando.martin.canfran@estudiantat.upc.edu
mailto:daniel.benedi@estudiantat.upc.edu
mailto:duch@cs.upc.edu
mailto:edelmira@cs.upc.edu
https://creativecommons.org/licenses/by/4.0

xpid #x,id Ay start - y,.end < Tpjn (. Joc, x,loc)
(a) Part of a schema of a PG (b) Pattern of anomalous transactions

Figure 1: Part of a PG schema specifying volatile (interaction edges) and stable (issued_by, owned_by,
interbank edges) relations in an evolving ATM Network and a continuous query pattern.

data streams during a set time interval. Once this time interval is over, the relations are not
longer valid so that there is no need to store them in the (stable) graph database. However,
when required -as for further legal or auditing purposes- timestamped occurrences of volatile
relations can be kept in a log file. Volatile relations induce subgraphs that exist only while the
relations are still valid. Without loss of generality, in this work we consider property graphs
(PG) [3, 4] as the basic reference data model. As an example, Figure 1a depicts part of a schema
of a PG database where stable relations correspond to the data that a bank typically gathers
on its issued cards, ATMs (Automated Teller Machines) network, etc. Volatile relations model
the interaction between cards and ATM entities. Concerning the query model, fixed queries
evaluated over data streams are known as continuous queries [5, 6]. Thus, instead of classical
query evaluation processes we envision incremental/progressive query evaluation processes. A
query on a PG database can be seen as a PG graph pattern with constraints over some of its
properties. Evaluating such a query consists on identify if there is a subgraph of the database
that matches the given pattern and satisfies its constraints. The problem of progressively
identify and enumerate bitriangles (i.e. a specific graph pattern) in bipartite evolving graphs
using the Dynamic Pipeline Approach [7] have been successfully solved by Royo-Sales [8]. We
claim that the problem of evaluating continuous queries over continuously evolving PGs belongs
to the same family of problems and hence, we propose to address it using the same stream
processing approach. However, in this case, in addition to identify the query pattern, the
constraint satisfaction over properties must be checked also. Figure 1b shows a constrained
graph pattern corresponding to a continuous query. In this work, as a proof of concept, we
tackled the problem of evaluating continuous queries corresponding to anomalous patterns
of ATM transactions against a continuously evolving PG representing a bank database. To
be concrete, the anomalous patterns of ATM transactions are identified in the volatile (PG)
subgraph of the considered database. The evaluation process is based on the dynamic pipeline
computational model and emits answers (alarms) as soon as anomalous patterns are identified.
Additionally, a log of all the volatile relations of the PG is maintained. Figure 2 illustrates a
possible anomalous situation associated to this query.

Related work. Recently, in Rost et al. [9] authors formalize an extension to the query
language Cypher that allows for evaluating continuous queries over property graph streams

ns: Card
[number: 9456

ng: Card [micad)

ng: Cord | [np:Card
number: 1219 [number: 4521] e,: interaction

[number: 9456 | {number: 1725

trans: withdraw
start: 22:56

e;: interaction \
trans: withdraw [Tecatm) n:ATM | [aiatM)
start: 22:07 code: 322-75 code: 523-99 code: 127-78
end: 22:14 loc: Barcelon: loc: Barcelona loc: Madrid
G Bankl K2 G
code: B321 code: B562
BARCELONA MADRID
t1=22:00 t2=23:00

Figure 2: Example of the occurrence of anomalous ATM transactions in (a part of) a continuously
evolving PG over a time interval: the card 9456 is used twice at ATMs in different cities, within one hour.
However, to get from one of the cities to the other and vice versa requires more than one hour using any
means of transport. This example could represent a possible case of skimming and cloning.

1 F F Answers
| - S, =D . GED (3 Sk —>

1

1

1

l l
1

1

1 Transactional
1

1

Log

Evolving sub-property graph

Stable property graph

Figure 3: Preliminary continuous query engine architecture for detecting anomalous ATM transactions
based on the dynamic pipeline computational model. Considering the schema given in Figure 1a, in
this directed (multi) graph presentation of the DPary, the arriving input data is a stream (... ey ... €; &j_1)
corresponding to interactions (volatile relations). Boxes (vertices) represent stateful processes called
stages and internal arrows in the pipeline represent channels. Blue channels carry interaction edges and
red channels carry detected anomalies (answers). S, and S, correspond to the Source and Sink stages
which receive input data and results, respectively. Filter stages, Fy, are parameterized with the value of
the property number (N) of Card vertices. The Generator stage, Gy, is in charge of spawning new filters,
when required. The stable PG is a standard bank database (i.e. without volatile relations). Transactional
log and Answers log keep input interactions and answers, respectively.

according to a specified frequency, during a defined time interval. The main differences of their
approach with our proposal are: first, the data model because they merge incoming PGs to the
persistent database and, second, we evaluate continuous queries as new edges are added to the
volatile part of the property graph (i.e. as the PG evolves) by processing (identifying) patterns
(subgraphs). To our knowledge there is no other work approaching the problem of modeling
and implementing a continuous query engine for detecting anomalous ATM transactions. The
related work that we have found is mainly based on using machine learning, big data and data
visualization approaches[10, 11, 12, 13, 14].

Contribution. The main contribution of this work is to provide, using a stream processing
approach, a general technique for addressing the problem of continuous query evaluation
against an evolving graph database by decomposing the datagraph into volatile and stable
well defined subgraphs. Among the advantages of using the dynamic pipeline computational
model are its parallel/concurrent nature and its suitability for developing real-time systems that
emit results as they are computed, in a progressive way. In regards to detecting abnormal or
suspicious ATM transaction, to our knowledge, most of the work addressing this topic provide
a delayed detection based on predictions given by ML systems. Also, it is frequent the classical
treatment of the problem by consulting log files because of the complaint of customers when
detecting by themselves some weird movement in their accounts. This involves annoying
processes for customers in order to have their money back. The idea is that, in presence of
some weird finding in an ATM transaction, banks have a tool able to either ask card holders for
authorizations or to take any other fraud preventing action at real-time.

2. Challenges for achieving a real implementation

Defining and implementing a continuous query engine requires to address many different
problems, each of different nature. In addition, the proof of concept we intend to provide has
itself its own complications.

2.1. Defining anomalous patterns of transactions

It is not trivial to establish what is and in which circumstances a transaction can be considered
anomalous. Based on a work that have addressed this characterization [15] we intend to find a
proper characterization and then define the graph patterns associated to these anomalies. The
exact topology of an anomaly will depend on its own nature. Figure 1b depicts an example
characterizing a possible card cloning, among many other possibilities. For instance, using a
(stolen) card many times over a period of time at different ATMs to withdraw small amounts.
In this latter case, there will arrive to the evolving PG many volatile (interaction) edges having
the same card vertex and different ATM vertices. There could also be patterns related with
frequent/very high expenses; transactions located in an ATM out of the threshold distance of
the usual/registered address of the card holder and so on. Moreover, definition of patterns can
be beyond ATM transactions by considering online card transactions.

2.2. Modeling and implementing the continuous query engine

To define a proper architecture for a continuous query engine is one of the most challenging
activities of our work. Among other tasks, this comprises: to define a graph-based query
language expressive enough to allow for capturing the different patterns representing anoma-
lous queries; to establish the algorithms for identifying the patterns associated to anomalous
queries; to choose and manage the right windowing approach and other features related to
distributed query-evaluation; to deal with the evaluation of many continuous queries simul-
taneously; to evaluate the suitability of the implementation language, tools and the proper
system configuration. Figure 3 depicts a preliminary architecture for a continuous query engine

for detecting anomalous ATM transactions, DPa1pm. We propose a solution that follows the
Dynamic Computational Model [7]. Briefly speaking, in this approach, stages are processes
that execute tasks concurrently/in-parallel. The multiset underlying the input data stream is
partitioned [16] and distributed along filters according to a grouping relationship, usually based
on filters’ parameters. Each filter applies the same function to its block of data (stored as its
state). Accordingly, the DPa1p algorithm is specified as follows: During a pre-defined time
interval window, when an interaction e (together its properties’ values) arrives to the DP a7,
the stage S, register it into a standard transactional log file. Then, S, passes e to the next stage.
If there exists a filter parameterized with the value of the property number of the Card vertex
that is incident to e, this filter keeps e in its state. In this way, filters’ states store subgraphs
induced by the edges in the volatile subgraph. Notice that these sets of edges in each filter
correspond to blocks of the (multiset) input data stream. Otherwise, the filter passes e to the
next stage. The task/function of each filter is to decide if there is a match with (some of) the
continuous query pattern(s) evaluated by the engine DPo1p by means of the graph that it stores
and the information retrieved from the stable PG to identify patterns and solve constraints.
This is, indeed, the way to evaluate continuous queries. In case of matching a pattern, filters
emit an alert reporting the finding. Hence, answers are the detected anomalies and they are
emitted as they are obtained in filters. When answers arrive to Sy, this stage post-process and
output them. In addition, Sy maintains an answer log file. The fact that an interaction arrives
to Gr means that there were not previous interactions having the same value of Card property
number and thus, a new filter parameterized with this new value is spawned. When the time
interval window is over, the DPatp is, in some sense, reset according to the given window
policy. Note that the window policy must take into account stored data that might be valid in
between two windows and handle the transition properly.

3. Discussion on Ongoing Work and Outlook

The main luck stone, in order to be able to provide the proof of concept that we propose,
is to have a proper dataset. Given the confidential and private nature of bank data, it has
been impossible to find a real dataset for our experiments. In this regard, we are currently
constructing a synthetic property graph bank dataset based on the Wisabi Bank Dataset'. In
fact, we consider that our synthetic dataset will be an important contribution of this work.

A prototype implementation of the DPa1p for detecting the anomalous ATM transaction
pattern presented in Figure 1b has been developed using Go language. For testing this implemen-
tation? we have constructed a small stable bank PG using Neo4j graph database management
system. We plan to extend the prototype including window management and multiple continu-
ous query evaluation. Once we had generated a big enough stable bank property graph, to be
able to conduct experiments to assess our proposal, we need to tackle two important issues: (i)
to find appropriate baselines to compare our solution and (ii) to establish what are the proper
statistic frequency distributions for including anomalous ATM transactions in the input streams
of volatile relations.

Thttps://www.kaggle.com/datasets/obinnaiheanachor/wisabi-bank-dataset
*https://github.com/FCanfran/ATM-DP

https://github.com/FCanfran/ATM-DP

Acknowledgments

This work has been supported by MCIN/AEI/10.13039/501100011033 under grant PID2020-
112581GB-C21.

References

(1]
(2]

(8]
(9]

[10]

[11]

[15]

[16]

R. Angles, C. Gutierrez, Survey of graph database models, ACM Computing Surveys
(CSUR) 40 (2008) 1-39.

R. Kumar Kaliyar, Graph databases: A survey, in: International Conference on Computing,
Communication & Automation, IEEE, 2015, pp. 785-790.

R. Angles, M. Arenas, P. Barceld, A. Hogan,]J. Reutter, D. Vrgoc¢, Foundations of modern
query languages for graph databases, ACM Computing Surveys (CSUR) 50 (2017) 1-40.
R. Angles, The property graph database model, in: CEUR Workshop Proceedings, CEUR-
WS.org (AMW?2018), volume 2100, 2018. URL: https://ceur-ws.org/Vol-2100/paper26.pdf.
S. Babu, J. Widom, Continuous queries over data streams, ACM Sigmod Record 30 (2001)
109-120.

C. Zaniolo, Logical foundations of continuous query languages for data streams, in:
International Datalog 2.0 Workshop, Springer, 2012, pp. 177-189.

E. Pasarella, M.-E. Vidal, C. Zoltan, J. P. Sales, A computational framework based on the
dynamic pipeline approach, Journal of Logical and Algebraic Methods in Programming
139 (2024) 100966.

J. P. Royo-Sales, An algorithm for incrementally enumerating bitriangles in large bipartite
networks (master thesis), 2021. URL: http://hdl.handle.net/2117/361615.

C. Rost, R. Tommasini, A. Bonifati, E. Della Valle, E. Rahm, K. W. Hare, S. Plantikow,
P. Selmer, H. Voigt, Seraph: Continuous queries on property graph streams, in: EDBT,
2024, pp. 234-247.

M. Ahmed, A. N. Mahmood, M. R. Islam, A survey of anomaly detection techniques in
financial domain, Future Generation Computer Systems 55 (2016) 278—-288.

Y. Heryadi, L. A. Wulandhari, B. S. Abbas, et al., Recognizing debit card fraud transaction
using chaid and k-nearest neighbor: Indonesian bank case, in: 2016 11th International
Conference on Knowledge, Information and Creativity Support Systems (KICSS), IEEE,
2016, pp. 1-5.

K. Singh, P. Best, Anti-money laundering: Using data visualization to identify suspicious
activity, International Journal of Accounting Information Systems 34 (2019) 100418.

M. M. Rahman, A. R. Saha, et al., A comparative study and performance analysis of atm
card fraud detection techniques, Journal of Information Security 10 (2019) 188.

R. Kian, H. S. Obaid, Detection of fraud in banking transactions using big data cluster-
ing technique customer behavior indicators, Journal of applied research on industrial
engineering 9 (2022) 264-273.

F. Magdalena-Laorden, Artificial intelligence and ontology applied to credit card fraud
detection (bachelor thesis), 2021. URL: https://oa.upm.es/69050/.

E. A. Bender, Partitions of multisets, Discrete Mathematics 9 (1974) 301-311.

https://ceur-ws.org/Vol-2100/paper26.pdf
http://hdl.handle.net/2117/361615
https://oa.upm.es/69050/

	1 Introduction
	2 Challenges for achieving a real implementation
	2.1 Defining anomalous patterns of transactions
	2.2 Modeling and implementing the continuous query engine

	3 Discussion on Ongoing Work and Outlook

