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Abstract

Scientific question answering remains a significant challenge for the current generation of large language models
(LLMs) due to the requirement of engaging with highly specialised concepts. A promising solution is to integrate
LLMs with knowledge graphs of research concepts, ensuring that responses are grounded in structured, verifiable
information. One effective approach involves using LLMs to translate questions posed in natural language into
SPARQL queries, enabling the retrieval of relevant data. In this paper, we analyse the performance of several
LLMs on this task using two scientific question-answering benchmarks: SciQA and DBLP-QuAD. We explore
both few-shot learning and fine-tuning strategies, investigate error patterns across different models, and propose
directions for future research.
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1. Introduction

Answering scientific questions poses a significant challenge for current LLMs due to the need to engage
with highly specialised and complex concepts. In this domain, common limitations of LLMs, such
as hallucinations [1] and the “long-tail” issue [2], where LLMs struggle with rare or less frequently
occurring concepts, become especially crucial. While a new generation of LLM-based systems for
literature reviews and scientific writing support has emerged [3], their output still falls short of the
standards expected in high-quality scientific literature.

One promising solution is the integration of LLMs with Knowledge Graphs (KGs) of research con-
cepts, which helps ensure that responses are grounded in structured, verifiable information [4, 5]. The
scientific domain benefits from a wide array of knowledge organization systems [6], such as taxonomies
and ontologies of research topics, which play a crucial role in categorizing, managing, and retrieving
information. Additionally, numerous knowledge graphs have been developed in this space, providing
machine-readable, semantically rich, and interlinked descriptions of the content of research publica-
tions [7, 8, 9, 10]. Notable examples include the Open Research Knowledge Graph (ORKG)' [7], the
Computer Science Knowledge Graph (CS-KG)?, and Nanopublications® [11, 9].

An effective approach for integrating LLMs with KGs involves using LLMs to translate scientific
questions, posed in natural language, into SPARQL queries [12]. This allows for the retrieval of relevant
data from the KG, which can either be presented directly to the user or further refined by the LLM. This
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solution also enables less technically proficient users to query and navigate complex knowledge graphs
of scientific concepts through a natural language interface.

In this paper, we evaluate the performance of several LLMs in translating scientific questions into
SPARQL queries. We first conduct a comprehensive evaluation on the SciQA benchmark [13], followed
by testing the best-performing methods on the DBLP-QuAD benchmark [14]. Our goal is to assess
how effectively LLMs perform this task and determine whether current training or prompting methods
are sufficient or if more advanced techniques are required. We explore the effects of fine-tuning
and various prompting strategies, including zero-shot and few-shot learning, using different example
selection methods such as semantic similarity [15] and diversity [16, 17]. Furthermore, we analyse error
patterns across models to identify areas for improvement. The insights gained from this study provide
a foundation for advancing the field by developing more comprehensive benchmarks and designing
systems better equipped to answer complex scientific questions.

This short paper extends [18] by introducing several additional experiments. These include the
evaluation of Mistral, enhanced error analysis, and the integration of the DBLP-QuAD benchmark. It
should be noted that here we intentionally focus on testing off-the-shelf LLMs using general-purpose
optimisation strategies that can be widely applied across diverse tasks and datasets. In contrast, other
researchers have focused on developing specialised approaches for SciQA, often incorporating additional
components to integrate information from the ORKG ontological schema [19, 20, 21].

In summary, the key contributions of this study are as follows: i) we conduct performance analysis
of five language models, evaluated across zero-shot, few-shot, and fine-tuning approaches; ii) we
demonstrate that the best models can achieve an F1 score exceeding 97% on both benchmarks; and iii)
we release the complete codebase of our experiments to support further research into LLMs performance
on similar benchmarking tasks®.

2. Experiments on the SciQA dataset

The SciQA dataset contains 2,565 pairs of natural language questions and corresponding SPARQL
queries, designed to retrieve relevant information from the ORKG, which includes 170,000 resources
detailing research from nearly 15,000 scholarly articles across 709 topics. The dataset consists of
both manually curated and automatically generated question-query pairs. Specifically, 100 pairs were
manually created, revealing eight distinct question templates. Using these templates, an additional
2,465 pairs were generated by GPT-3 and verified by human experts [22]. The SciQA benchmark dataset
is divided into three parts: 70% for training (1,795 samples), 10% for validation (257 samples), and 20%
for testing (513 samples).

For our experiments, we evaluated five LLMs: T5-base’[23], GPT-2-large®[24], Dolly-v2-3b’[25],
Mistral-7B-v0.18[26], and GPT-3.5 Turbo’[22]. We examined three optimization methods for LLMs:
fine-tuning (FT), zero-shot learning (ZSL), and few-shot learning (FSL). In FSL, to evaluate a question
from the test set, we used different methods from the literature to select the most relevant samples for
each question.

Random: Select S samples randomly from the training set for each test question.

Similarity: Order samples by their semantic similarity to the test question, and choose the top S most
similar samples.

Diversity - Test A (All Diverse Templates): Rank samples by semantic similarity to the test question
and select the top S samples, ensuring they represent different templates.

Diversity - Test B (Same Template for All): Rank samples by semantic similarity and select the top S
samples that share the same template as the first sample.
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Table 1
Summary of F1 scores and exact matches (in parentheses), organised by various strategies (Strat.) and criteria
(C). S denotes the number of samples, with the best results of each model displayed in bold.

Strat. ‘ C ‘ Test name ‘ S ‘ T5-base ‘ GPT2-large ‘ Dolly-v2-3b ‘ Mistral-7B ‘ GPT-3.5-turbo

FT 0.9751 (483) | 0.9669 (430) | 0.9658 (483) | 0.9769 (480)
ZSL 0.0653 (0) 0.1087 (0) 0.2043 (0) 0.2632 (0)
> 1 0.2718 (0) 0.8792 (167) | 0.8529 (259) | 0.9368 (356)
s 3 0.4051 (2) 0.8304 (182) | 0.9409 (382) | 0.9667 (451)
E 5 0.8242 (180) | 0.9386 (403) | 0.9709 (464)
A 7 0.8052 (181) | 0.9470 (409) | 0.9736 (475)
c 1 0.2005 (0) 0.5659 (27) 0.5055 (28) 0.7362 (45)
S 3 0.2187 (0) 0.5900 (31) 0.6835 (75) 0.8259 (113)
= 5 0.6242 (51) 0.7342 (115) | 0.8675 (165)
o 7 0.6576 (69) 0.7799 (135) | 0.8905 (189)
FSL Test A 3 0.2215 (0) 0.7000 (43) 0.8589 (154) | 0.9378 (315)
5 0.6525 (39) 0.8447 (120) | 0.9428 (328)
Z 7 0.6729 (46) 0.8033 (84) 0.9375 (313)
£ [ TestB 3 0.2988 (1) 0.8025 (171) | 0.9179 (368) | 0.9561 (412)
z 5 0.8181(201) | 0.9095 (378) | 0.9566 (417)
7 0.8261(212) | 0.9087 (389) | 0.9562 (422)
DPPs 7 0.3912 (54) 0.7277 (84) 0.9452 (389)

Diversity - DPPs (Determinantal Point Processes): Start with the most similar sample to the question
and select additional samples with minimal semantic similarity to each other and the initial sample [27].
Table 1 provides a comparative analysis of all configurations according to their F1 scores and number
of exact match rates. The fine-tuned Mistral achieved the highest F1 score (97.69%), slightly surpassing
the fine-tuned T5 (97.51%) and GPT-3.5, using the 7-sample few-shot method based on similarity (97.36%).
Next is the fine-tuned Dolly (96.58%) and GPT-2 (96.69%). In terms of exact matches, T5 and Dolly
attained the highest score (483/513, 94.1%). The model utilising FSL performed well overall, though it
did not achieve the same level of performance as the fine-tuned model. For example, Mistral, with a
7-sample FSL approach based on similarity, achieved a solid 94.7% F1. Semantic similarity is the most
effective method for FSL across all models. Notably, the benchmark proved highly challenging for all
models under ZSL conditions, as none achieved any exact matches and F1 scores were under 26%.

We performed an in-depth review of the queries generated by the top three models that were classified
as incorrect due to their deviation from the benchmark responses. The most common error category
involved the generation of incorrect predicates (56.8% of erroneous queries on average), followed by
semantic errors, where the query failed to accurately reflect the user’s question (51.4%), and misspelled
entities (51.3%). A query can be associated with multiple categories, meaning the total percentage
across all categories exceeds 100%.

The most common error types for both T5 and GPT-3.5 stemmed from a limited understanding of
the underlying ontological schema. A prevalent issue was the generation of misspelled entities, which
constituted 60.0% of T5’s and 60.5% of GPT-3.5’s incorrect outputs. Furthermore, both models had
difficulty accurately assigning entity types, contributing to 36.6% of T5’s errors and 52.6% of GPT-3.5’s
errors.

In contrast, Mistral performed significantly better in these two categories, with error rates of 33.3%
and 15.2%, respectively. However, Mistral exhibited a much higher rate of semantic misunderstandings,
with 69.7% of its errors resulting from incorrect interpretations of the query.

The first type of error appears easier to address, potentially by incorporating an additional entity
recognition component. To investigate this approach further, we evaluated the top three models
(fine-tuned Mistral, fine-tuned T5, and GPT-3.5 with 7-shot learning) on the DBLP-QuAD benchmark.
DBLP-QuAD is similar to SciQA but also includes relevant entities and relationships as part of the input.
This enabled us to assess whether providing the correct entity could help reduce the occurrence of



Table 2
F1-scores and exact matches of the best models on DBLP-QuUAD dataset. In bold the most performing model.

‘ T5-base ‘ Mistral-7B ‘ GPT-3.5 Turbo

F1-score 0,9746
Exact Match | 1693

0,8866 0,9473
1214 1364

these types of errors.

3. Experiments on the DBLP-QuAD dataset

The DBLP-QuAD benchmark!? [14] includes 10,000 distinct question-query pairs, divided into training,
validation, and test sets in a 7:1:2 ratio. The dataset covers 13,348 entities (creators and publications)
and 11 predicates from the DBLP Knowledge Graph'!. It offers 10 query types, each with 1,000 question-
query pairs, equally split between creator-focused and publication-focused queries. Additionally, 2,350
of the questions in DBLP-QuAD are temporal, requiring the analysis of statistics across a specified
timeframe, e.g., “in the last five years”. The key difference from the SciQA dataset is that the entities
and relationships involved in the natural language query are also provided.

We evaluated the top three models from our previous experiments on the DBLP-QuAD dataset. Please
note that, unlike the original paper that introduced the benchmark [14], we fine-tuned the T5 model
for 20 epochs instead of 5, and applied a slightly modified prompt. Full implementation details can be
found in the GitHub repository linked in the introduction.

As reported in Table 2, T5-base achieved the best results (97.5%), slightly outperforming GPT-3.5
(94.7%). Mistral exhibited lower performance on this benchmark (88.7%). The advantage of T5-base
becomes even more evident when considering exact matches. In this case, T5-base leads significantly
(1,693/2,000, 84.6%), outperforming both GPT-3.5 at (68.2%) and Mistral (60.7%).

These findings are consistent with previously observed error patterns. T5 and GPT-3.5, which had
previously struggled the most with entity identification, now seem to leverage the provided entities
effectively and outperform Mistral. Additionally, the results suggest that a lightweight encoder-decoder
model such as T5, which can be fine-tuned effectively for translating natural language into SPARQL,
has significant potential as a scalable, resource-efficient, and effective method for this task, particularly
when paired with an entity resolution mechanism.

4. Conclusions

The experiments reported in this short paper provide several valuable insights about the capability of
LLMs to address scientific question answering on KGs.

First, it appears that current benchmarks are not sufficiently challenging for the latest generation of
LLMs, as the best configurations achieved over 97% F1 on both benchmarks. This may be attributed to
the regularities within the benchmarks, allowing fine-tuned models to learn and reproduce patterns. To
advance this field further, it is crucial to develop more diverse and challenging datasets that cover a
broader range of realistic query types, while actively involving human users in the dataset creation
process to minimise the risk of LLMs learning only a limited set of templates. Conducting user studies
with real-world applications could also be beneficial, as users tend to formulate more varied and complex
questions [28].

Second, incorporating additional components to resolve entities and relations seems to be highly
useful, particularly for encoder-decoder models like T5 and generalist LLMs using few-shot learning,
such as GPT-3.5. This approach allows LLMs to focus on semantic interpretation and the generation of
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Thttps://blog.dblp.org/tag/knowledge-graph/


https://huggingface.co/datasets/awalesushil/DBLP-QuAD?row=89
https://blog.dblp.org/tag/knowledge-graph/

accurate, well-formed SPARQL queries without needing to understand the specific schema of a given KG.
A possible enhancement would be to also provide systems with an ontological schema representation
as context, as explored in recent specialised approaches [19, 20].

We are currently developing a new and more challenging benchmark, building upon the Academi-
a/Industry DynAmics (AIDA) Knowledge Graph [29] and the Computer Science Knowledge Graph
(CS-KG) [30]. To expand the diversity of question types, we are leveraging various question tem-
plates drawn from large-scale question-answering benchmarks, such as Mintaka [31]. We are also
analysing the performance of large language models across several tasks relevant to scientific research,
including the construction of scientific knowledge graphs [32], link prediction between research con-
cepts [33, 34], research paper classification [35], citation recommendation [36], and the generation of

literature reviews [3].
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