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Abstract
Urban demand forecasting plays a critical role in optimizing routing, dispatching, and congestion management within Intelligent
Transportation Systems. By leveraging data fusion and analytics techniques, traffic density estimation serves as a key intermediate
measure for identifying and predicting emerging demand patterns. In this paper, we propose two gradient boosting model variations,
one for classification and one for regression, both capable of generating demand forecasts at various temporal horizons, from 5 minutes
up to one hour. Our approach effectively integrates spatial and temporal features, enabling accurate predictions that are essential for
improving the efficiency of shared (micro-)mobility services. To evaluate the effectiveness of our approach, we utilize open shared
mobility data derived from e-scooters and e-bikes networks in two Dutch metropolitan areas. These real-world datasets enable us
to validate our approach and demonstrate its effectiveness in capturing the complexities of modern urban mobility. Ultimately, our
methodology offers novel insights on urban micro-mobility management, helping to tackle the challenges arising from rapid urbanization
and thus, contributing to more sustainable, efficient, and liveable cities.
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1. Introduction
Urban shared mobility, also known as Mobility-as-a-Service
(MaaS) [1], integrates transportation modes, such as pub-
lic transit, micromobility services (e.g., bike- and scooter-
sharing), and commute-based models (e.g., carpooling). The
need for accurate mobility pattern forecasting is growing
rapidly as real-time data analytics in Intelligent Transporta-
tion Systems (ITS) help alleviate congestion, reduce travel
times, and enhance road safety in increasingly complex ur-
ban environments. In shared mobility services, including
ride-hailing and bike-sharing, predicting demand across
spatial and temporal dimensions is essential for efficient re-
source allocation, reduced waiting times, and optimized fleet
deployment. This insight supports smart city initiatives by
informing human-centric urban infrastructure design and
facilitating sustainable development through data-driven de-
cisions in areas, such as energy consumption, public transit
planning, and emergency services.

Several Machine Learning (ML) approaches have been
proposed for detecting and forecasting spatio-temporal pat-
terns in timeseries, including Long Short-Term Memory
(LSTM) networks [2], Graph Neural Networks (GNNs) [3, 4],
and Diffusion-based Models [5, 6]. However, these models
often suffer from high computational complexity due to the
intricate nature of spatio-temporal data, which combines
spatial correlations with temporal dependencies [7].

A common representation for such data is the Spatio-
Temporal Graph (STG), where nodes denote spatial locations
and edges encode relationships over time. Capturing both
spatial and temporal dependencies requires advanced archi-
tectures, such as Spatio-Temporal Graph Neural Networks
(STGNNs) [8] or Spatio-Temporal Graph Convolutional Net-
works (STGCNs) [9]. However, these methods impose sig-
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nificant computational demands, limiting their real-world
applicability. [10]. While optimization techniques such as
compression and pruning can reduce model size and infer-
ence time, they often come at the cost of decreased predictive
accuracy.

This trade-off between complexity, accuracy, and effi-
ciency underscores the need for alternative methodologies.
In this work, we propose a novel approach based on gradient-
boosted trees, a class of models known for their superior
performance on structured tabular data [11]. Our method
effectively forecasts micro-mobility demand across spatial
and temporal dimensions while maintaining computational
efficiency, making it suitable for large-scale deployment.

In our approach, we provide a robust feature extraction
pipeline that can capture both spatial and temporal depen-
dencies and integrate them into our model. We also present
a gradient boosting ML algorithm capable of predicting the
demand in a given area, either in the form of levels (e.g.,
’Low’, ’Medium’, ’High’) through a classifier, or in absolute
demand values through a regressor. The performance of
our model is evaluated using two real-world micro-mobility
datasets and the results turn out to be quite promising since
the our approach can effectively adapt to the uniqueness of
each area and adequately model its intricacies.

The rest of this paper is structured as follows: Section 2
reviews related work, Section 3 introduces our forecasting
methodology, including the feature extraction process and
training configuration. Section 4 describes the experimental
setup and presents the results of both predictive models,
offering detailed performance metrics. Finally, Section 5
concludes the paper with a summary of the key contribu-
tions and directions for future research.

2. Related Work
A wide variety of modeling approaches have been proposed
to tackle the challenges related to spatio-temporal forecast-
ing. In this section, we will identify and review previous
approaches in the context of shared mobility demand fore-
casting by categorizing them in three groups: (traditional
or advanced) ML approaches, deep learning models, and
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ensemble and hybrid methods, respectively.

2.1. ML Approaches
Traditional machine learning (ML) methods provide a sta-
ble analytical foundation for structured predictive prob-
lems. Feng et al. [12] developed a predictive model for
bike-sharing demand in Chicago using Poisson regression,
incorporating time, weather, population density, and activ-
ity density as features. Additionally, a Random Forest model
was employed to enhance predictive accuracy through en-
semble learning, aiding in demand-supply optimization and
the identification of potential new station locations. Simi-
larly, Xiao et al. [13] applied clustering techniques to fore-
cast short-term car demand, utilizing an improved k-nearest
neighbor (kNN) model for online car-hailing services in
Hefei City, China. Their results highlight the effectiveness
of clustering methodologies in enhancing demand predic-
tion accuracy.

A notable advancement in bike-share traffic prediction is
the two-step pattern recognition model proposed by Sohrabi
& Ermagun [14]. This approach first generates traffic pro-
files, where bike station traffic is represented as timeseries
profiles with 𝑡-minute intervals and an overlap length 𝑂.
The kNN algorithm is then applied to identify spatiotem-
poral similarities, incorporating historical traffic data, tem-
poral factors (e.g., weather, weekdays), and spatial char-
acteristics (e.g., socio-demographics, land use, infrastruc-
ture). By leveraging weighted Euclidean distance metrics,
this method enables accurate short- and long-term traffic
forecasting at both station and system-wide levels, demon-
strating the efficacy of integrating spatiotemporal features
with ML techniques.

Smith et al. [15] employ ML to predict bicycle and pedes-
trian traffic patterns across 20 U.S. metropolitan statistical
areas (MSAs). Building on previous efforts by Le et al. [16],
where stepwise linear regression models were developed
based on Census-derived, neighborhood-level covariates,
this study incorporates traffic counts aggregated from 4,145
locations alongside novel street-level data, including Google
Street View imagery and Point of Interest (PoI) data. The
authors evaluate several ML regressors, including linear,
ridge, lasso, bagging, gradient boosting, and random forest,
reporting significant improvements in predictive accuracy
over traditional linear regression, particularly when using
augmented datasets.

2.2. Deep Learning Models
Ge et al. [17] introduced a Self-Attention ConvLSTM (SA-
ConvLSTM) model to enhance the accuracy of ConvLSTM
for online car-hailing demand forecasting. By converting
car-hailing trajectories into grid-based images, the model
incorporates a self-attention module to capture long-range
spatiotemporal dependencies, leveraging pairwise similarity
scores across input and memory positions.

Luo et al. [18] proposed a Spatial-Temporal Diffusion
Convolutional Network (ST-DCN) to address limitations
in modeling dynamic spatiotemporal dependencies for taxi
demand forecasting. Their approach integrates a two-phase
graph diffusion convolutional network with an attention
mechanism to model spatial dependencies, while a temporal
convolution module captures long-term trends, including
recent, daily, and weekly patterns. The use of stacked convo-
lution layers further enhances the model’s ability to process

extended timeseries sequences.
Li et al. [19] proposed a hierarchical framework for proac-

tive bike redistribution in bike-sharing systems. A bipar-
tite clustering algorithm groups stations, followed by city-
wide rental prediction using a Gradient Boosting Regression
Tree. Rental proportions and inter-cluster transitions are
then estimated via a multi-similarity-based model to predict
station-level rentals and returns. Experiments on real-world
datasets from New York City and Washington D.C. indi-
cate significant performance gains over baseline models,
particularly during periods of atypical demand.

2.3. Ensemble and Hybrid Models
The concept of ensemble learning, which involves combin-
ing the predictions of multiple simple models to form a
new, more robust model, has been extensively explored in
the literature and has been shown to produce better results
compared to its individual constituent models. Building on
this idea, Yuming et al. [20] developed a stacking ensemble
learning framework that integrates the predictions of three
distinct base learners: Random Forest, LightGBM, and Long
Short-Term Memory (LSTM) networks. These base learn-
ers were trained in parallel using a common set of input
features, including temporal, spatial, and weather-related
variables. The predictions generated by each base learner
were then aggregated by a Support Vector Regression (SVR)
meta-learner that produced the final demand forecast val-
ues.

2.4. Positioning of Our Work with Respect
to State-of-the-Art

Our approach diverges from these approaches in multiple
ways. Firstly, our methodology employs a unified modeling
workflow that can tackle the problem in two alternative
ways, by either regression or classification, allowing us to
adjust to specific needs. Additionally, our feature engineer-
ing pipeline integrates both spatial and temporal features
which are fed to a tuned gradient boosting model, enabling
us to better identify the intricacies of urban micro-mobility.
Lastly, by utilizing two real-world datasets for evaluation,
our method can be adequately validated under different sce-
narios, ensuring it is effective and robust. Nevertheless, as
part of our future research, we plan to align related work
with our approach for a fair comparison under the same
settings over the same real datasets.

3. Our Approach for Efficient Shared
Micro-Mobility Demand
Forecasting

In this section, we define the shared mobility demand fore-
casting problem and present our proposed approach.

3.1. Problem Definition
Generally speaking, a spatio-temporal timeseries is a se-
quence of data points, where each one is associated with
a time index and a spatial location. For the purposes of
our work, an area of interest (a city, a region, etc.) is par-
titioned into a set of geographical districts, where each
district 𝐴 is represented as a polygon. We denote 𝐷𝐴

𝑡 as



the percentile-encoded demand of micro-mobility vehicles
within district 𝐴 at time 𝑡. Given 𝜏 past observations for
district 𝐴, we construct its spatio-temporal timeseries as
𝑋𝐴

𝑡 = {𝐷𝐴
𝑡−𝜏 , 𝐷

𝐴
𝑡−𝜏+1, . . . , 𝐷

𝐴
𝑡−1, 𝐷

𝐴
𝑡 }. The problem ad-

dressed in this paper is to predict the micro-mobility demand
value 𝐷𝐴

𝑡+𝑚 for district 𝐴, 𝑚 time steps ahead, given 𝑋𝐴
𝑡

i.e., the current along with the past 𝜏 observations.
We will exemplify the above definition through a real

case extracted from our real-world dataset (dataset details
are presented in Section 4). As illustrated in Figure 1, the
problem at hand is to predict (as accurately as possible) the
anticipated demand values of each district’s demand time-
series (in orange) given the current and some past demand
values (in blue), taking into account relevant (temporal,
spatial, context) features. To efficiently achieve this goal,
seasonal etc. patterns hidden in these timeseries should be
disclosed. For instance, looking at the timeseries of two
major districts in Rotterdam that are displayed in Figure 1,
we identify seasonal commuting patterns: the highest and
most spread peak occurs on Friday, due to a combination of
leisure and work time. This is made more evident in Figure
2, which showcases the combination of the hour-of-day and
day-of-week features in Rotterdam Centrum district.
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Figure 1: Two indicative timeseries for two regions of Rotterdam:
Delfshaven (top) and Rotterdam Centrum (bottom). The x-axis
denotes time, while the y-axis indicates the measured demand
values.

3.2. Methodology
We propose the so-called Gradient Boosting Demand Predic-
tor, in two variations, differentiated by their output type:

• A 𝑁 -class classifier (per horizon per district)
• A regressor (per horizon per district)

The purpose of the classifier is to classify the future
demand of a district into predefined levels (e.g., ’Low’,
’Medium’, ’High’), whereas the regressor aims to predict
the actual demand values for the respective horizon. In
other words, for an area of interest partitioned into 𝑀 dis-
tricts with the goal of 𝑇 individual prediction horizons, both
architectures require training 𝑇 ×𝑀 models, where each
model predicts the output for a specific district-horizon pair.
The reasoning behind training individual models per district
is to allow each model to specialize in its respective spatial
region, focusing exclusively on its unique spatial and tem-
poral patterns. Nevertheless, in our future work we plan to
assess the efficiency of single global model for all districts
(where the district ID will be given as input to the model).

As illustrated in Figure 3, the initial step of our method-
ology is the partitioning of the area of interest into districts,
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Figure 2: Average hourly demand across the week in Rotterdam
Centrum. The coloring indicates the relative demand intensity
and, along with the peaks, aid in highlighting daily and weekly
usage patterns.

modeled as an adjacency graph that allows us to extract
the neighbors of each district. Two districts are defined as
neighbors if they share a common boundary1. The demands
of the target as well as of the neighboring districts are repre-
sented by the respective spatiotemporal timeseries (step 2),
as defined in Section 3.1, which are fed into a feature extrac-
tion pipeline (step 3), to be detailed in Section 3.3. Finally,
all these features are combined into a single, augmented
dataset (step 4) to be used for the purposes of training our
two models, the classifier and the regressor (step 5).

3.3. Feature Extraction
Given a timeseries 𝑋𝐴

𝑡 of a target district 𝐴, feature extrac-
tion is performed to enhance the spatio-temporal modeling
capabilities of the proposed method. The extracted fea-
tures are categorized into four primary groups: time-related,
lagged, rolling, and exponentially weighted features. These
features are derived not only from the target district but also
from its neighboring districts, incorporating both spatial
and temporal dependencies.
Time-related capture temporal patterns influencing the

target variable. Key attributes include the hour of the day
(0-23) to identify daily patterns like peak periods, and the
day of the week (0-6, with 0 as Monday) to capture weekly
trends. Monthly variations are represented by the month
(0-11, with 0 as January), accounting for seasonal behaviors.
Additionally, the minute component (0-59) highlights finer
time dependencies and intra-hour variations.

The second category of features, denoted to as lagged
features, is designed to capture the temporal dependencies
between past observations of the timeseries and its current
state. For each district, a set of lagged features is generated
by systematically shifting the original timeseries observa-
tions backward in time. Formally, given a timeseries 𝑋𝐴

𝑡

representing the observed values of a target district A at
time 𝑡, the lagged feature at a temporal offset 𝜏 is defined as
𝑋𝐴

𝑡−𝜏 . A range of temporal offsets is selected to ensure that
both short-term and long-term dependencies are captured.
Specifically, the lagged features are computed at intervals
of 1, 5, 10, and 15 minutes, capturing short-term temporal
dependencies across multiple time horizons.

1The inclusion of neighboring districts is justified by the limited spatial
range and temporal duration of trips usually made by e-bikes and e-
scooters. Due to their physical constraints, micro-mobility vehicles are
unlikely to reach distant districts within short timeframes, making the
consideration of neighboring districts only being a sufficient choice
for effective spatio-temporal modeling.



Figure 3: Illustration of our Gradient Boosting Density Predictor proposed methodology

Table 1
Summary table of the extracted features used in our approach

Category Feature Name Description

Base target Target variable for the current district at the present time step
neighbor_* Feature variable of each of the target’s neighbors in neighboring districts

Time-Related hour-of-day Hour of the day of the timestamp (0-23)
minute-of-hour Minute of the hour of the timestamp (0-59)
day-of-week Day of the week of the timestamp (0=Monday, 6=Sunday)
month-of-year Month of the year of the timestamp (0=January, 11=December)

Lagged neighbor_lag_{1, 5, 10, 15} Lagged value ({1, 5, 10, 15}-step(s) back) of the target variable for neighboring districts
target_lag_{1, 5, 10, 15} Lagged value ({1, 5, 10, 15}-step(s) back) of the target variable for the current district

Rolling neighbor_rolling_mean_{5, 10, 15} Rolling mean of neighbors over the last {5, 10, 15} observations
target_rolling_mean_{5, 10, 15} Rolling mean of the target variable over the last {5, 10, 15} observations

EWMA neighbor_ewm_{5, 10, 15} Exponentially weighted moving average of neighbors with a span of {5, 10, 15}
target_ewm_{5, 10, 15} Exponentially weighted moving average of the target variable with a span of {5, 10, 15}

This shifting operation effectively creates additional fea-
ture representations of the past states of the system, allow-
ing the model to learn historical patterns that influence
future predictions. By incorporating lagged features into
the predictive framework, the approach enhances its ability
to capture recurrent patterns, trends, and autocorrelations
inherent in spatio-temporal mobility data.

The rolling features provide a smoothed representation
of the data over various intervals, capturing localized fluc-
tuations that are critical for accurate forecasting. These
features are computed using sliding windows, where sta-
tistical measures are aggregated over a sequence of recent
time steps to encapsulate short-term trends and variability
in mobility patterns. For each district, a rolling window of
varying sizes—ranging from 5 to 15 minutes in 5-minute
increments—is applied to the timeseries data. Within each
window, the mean is computed to capture central tendency
and, over larger windows, the degree of short-term variabil-
ity.

Finally, the objective of the exponentially weighted fea-
tures is to prioritize recent observations while retaining
information from historical data. This is achieved through
the application of exponentially weighted techniques, which
assign progressively smaller weights to older data points,
ensuring that the model places greater emphasis on more
recent trends. Among these methods, the Exponential
Weighted Moving Average (EWMA) is particularly effec-
tive, as it assigns exponentially decreasing weights to past
observations, thereby capturing temporal dependencies in
a manner that balances adaptability and historical context.
For a given timeseries 𝑋𝑡, the EWMA at time 𝑡 is computed
recursively as 𝐸𝑊𝑀𝐴𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)𝐸𝑊𝑀𝐴𝑡−1

where 𝛼 represents the smoothing factor, typically defined
as 𝛼 = 2

𝑁+1
for a given window size 𝑁 . This formula-

tion allows the predictive framework to swiftly adapt to

evolving patterns, including sudden variations induced by
external factors such as weather conditions, road incidents,
or public events, while maintaining a stable representation
of long-term trends.

The features used in our methodology are summarized
in Table 1.

4. Experimental Study
This section describes the data and preprocessing steps used
in our experimental study (Section 4.1) as well as our find-
ings (Section 4.2). The experiments were conducted on a
server with an AMD Epyc 64-Core CPU and an Nvidia A100
GPU with 40GB of memory. Our source code is publicly
available for reproducibility purposes.2

4.1. Experimental Setup
In our study, we utilize shared micro-mobility data provided
by Deelfiets Nederland, a popular micro-mobility service
provider in Netherlands, through an open API3. Data con-
sists of real-time GPS positions for vehicles in the Nether-
lands, which we query every 60 seconds, creating a dataset
of sufficient granularity for our use-case. The dataset in-
cludes the latitude, longitude, vehicle type and company
name for each vehicle. For the purposes of this study, we
utilize mobility data from two major metropolitan areas,
Amsterdam and Rotterdam, focusing specifically on the ten
most densely populated districts in each city. These districts
exhibit diverse urban characteristics and distinct spatio-
temporal patterns, making them well-suited for evaluating
the model’s adaptability to localized mobility trends. The

2https://github.com/DataStories-UniPi/Shared-Mobility.git
3https://api.deelfietsdashboard.nl/dashboard-api/public/vehicles_in_
public_space
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temporal coverage of our data is about 2 months (November
11, 2024 - January 15, 2025), and 5 months (August 06, 2024
- January 15, 2025), respectively. Since the original data
source is a stream instead of a static dataset, we manually
append the temporal indicator in each subsequent request.

To derive demand estimates at the district level, a spa-
tial filtering and aggregation procedure is applied. First, a
point-polygon intersection is performed to associate each
mobility trace with its corresponding district boundaries,
discarding traces that fall outside the predefined study ar-
eas. Next, the filtered traces are aggregated based on their
unique spatio-temporal identifiers (i.e., timestamp and dis-
trict ID), summing the occurrences within each region to
obtain demand estimates. This transformation preserves the
spatial and temporal integrity of the data while ensuring
compatibility with the forecasting models. In its final form,
the dataset consists of 89,022 observations across 97 districts
in Amsterdam and 218,325 observations across 22 districts
in Rotterdam.

To validate our models, we use a 70-30 train-test temporal
split validation method. To ensure effective training of the
classifier, additional preprocessing steps were taken apart
from the feature extraction process discovered above. To
this extent, a quantile-based discretization function was
employed to transform continuous density values into 3
discrete demand levels (Low, Medium, High, as they will be
defined in the following paragraph). This transformation
enhances the classifier’s ability to model class distinctions
and mitigates the challenges associated with imbalanced
class distributions.

We define ’Medium’ demand as the range where demand
levels are centered around 50% of the value of the day with
the highest demand, which serves as the baseline value.
Specifically, for a given threshold 𝑑 ∈ (0, 50), the range
[50− 𝑑, 50+ 𝑑) is categorized as normal demand. Demand
levels below (above) this range are classified as ’Low’ (’High’,
respectively) demand. In our experiments, we set 𝑑 = 17, in
order for the demand levels to correspond to three equally
sized ranges. This threshold provides a balanced distribution
of data across the defined demand categories, facilitating a
robust analysis of varying demand patterns.

The optimization framework employed in this study in-
corporates Bayesian Optimization due to its ability to bal-
ance exploration and exploitation effectively. This approach
facilitates the exploration of the search space for better solu-
tions while simultaneously exploiting regions with high po-
tential, thereby reducing the number of iterations required
for optimization. Its suitability is particularly evident when
dealing with extensive experimental evaluations, such as
the computationally intensive training of ML models, as
it leverages prior knowledge to guide sampling and opti-
mize resources efficiently. Additionally, the probabilistic
framework of Bayesian Optimization enables the automatic
adjustment of the exploration-exploitation trade-off through
its acquisition functions.

4.2. Experimental Results
In this section, we assess the overall performance of our
models across multiple districts and timestamps. Table 2
summarizes the training and inference times of our mod-
els across different prediction horizons in the two cities
of interest. Training time corresponds to the overall time
required to train the respective model, whereas inference
time corresponds to the average time taken to generate a

specific prediction for a given time horizon. It turns out that
training of our models is extremely fast since it takes 1-2
seconds or even less to be performed, while the inference
time is impressively in the order of 1 microsecond. This
analysis showcases the computational efficiency of the mod-
els, providing insights into their scalability and suitability
for real-world spatio-temporal forecasting tasks.

Table 2
Training and inference times of the two models across different
horizons.

City Model Prediction Horizon
(min)

Training Time
(sec)

Inference Time
(µsec)

Rotterdam

Regressor

5 1.17 ± 0.43 0.99 ± 0.15
15 0.35 ± 1.04 1.07 ± 0.30
30 0.22 ± 0.97 0.97 ± 0.09
60 0.47 ± 1.10 1.10 ± 0.24

Classifier

5 2.21 ± 1.26 1.11 ± 0.17
15 1.10 ± 1.15 1.15 ± 0.21
30 1.00 ± 1.10 1.10 ± 0.18
60 1.07 ± 1.19 1.19 ± 0.16

Amsterdam

Regressor

5 0.68 ± 0.22 0.95 ± 0.12
15 1.21 ± 0.95 0.95 ± 0.18
30 0.28 ± 0.94 0.94 ± 0.13
60 0.29 ± 0.92 0.92 ± 0.08

Classifier

5 1.40 ± 0.69 1.01 ± 0.13
15 0.81 ± 1.10 1.10 ± 0.26
30 1.22 ± 1.07 1.07 ± 0.28
60 1.07 ± 1.02 1.02 ± 0.21

Tables 3-6 present the predictive performance of the pro-
posed spatio-temporal forecasting models evaluated at four
prediction horizons: 5, 15, 30, and 60 minutes. The qual-
ity metrics we used include 𝑅2, RMSE, sMAPE and MASE
for the regressor and F1-score, Accuracy, Recall and Pre-
cision for the classifier. These metrics collectively assess
the model’s predictive accuracy, robustness, and relative
performance across districts with varying population sizes
and temporal dynamics.

Aggregated metrics are added to summarize the overall
performance across all districts, offering insights into the
model’s general effectiveness and consistency across vary-
ing prediction horizons. It is evident that both architectures
perform really well at both short-term (5-15 min.) and long-
term (30-60 min.) forecasting. From the summary statistics
we can deduce that both models consistently perform well
for the vast majority of the districts. Indicatively, the regres-
sor’s 𝑅2 ranges on the average from 0.94 down to 0.84 as
we move from lower to higher prediction horizons. As for
the classifier, 𝐹1-score ranges on the average from 0.89 to
0.80, respectively.

4.3. A Note on Feature Importance
In order to assess the effect of the underlying features in the
quality of prediction of either the classifier or the regressor,
we present the average feature importance across all pre-
diction horizons for both models. The feature importance
values were computed using XGBoost’s internal feature
importance computation algorithm. Given the minimal con-
tributions of some features (importance values below 10−4),
the y-axis of the corresponding plots has been log-scaled
to improve visualization. The results of this analysis are
grouped by city and illustrated in Figures 4 and 5.

In both figures we can see that the average contribution
of the features related to the target is higher than those of
the neighbors, as expected. Overall, in decreasing order, the
most important features appear to be the target_ewm_*, the
target_rolling_mean_*, and the target_lag_*, denoting the
EWMA, the rolling mean, and the lagged value, respectively,



Table 3
Predictive performance of the regressor in Rotterdam across different prediction horizons.

District Avg Pop 5 min 15 min 30 min 60 min

R2 RMSE MAE sMAPE R2 RMSE MAE sMAPE R2 RMSE MAE sMAPE R2 RMSE MAE sMAPE

Kralingen-Crooswijk 507 0.97 9.70 6.94 0.01 0.96 11.00 7.86 0.02 0.95 13.17 9.81 0.02 0.90 18.11 13.45 0.03
Rotterdam Centrum 502 0.99 15.25 11.18 0.02 0.98 20.33 14.77 0.02 0.97 22.95 17.37 0.03 0.93 34.66 26.62 0.04
Hillegersberg-Schiebroek 476 0.80 17.36 12.67 0.02 0.76 18.82 14.06 0.03 0.73 20.03 15.20 0.03 0.68 21.79 16.78 0.03
Delfshaven 347 0.98 6.43 4.70 0.01 0.97 8.03 5.75 0.02 0.96 10.13 7.27 0.02 0.92 13.78 9.97 0.03
Feijenoord 347 0.97 6.31 4.61 0.01 0.92 10.09 7.72 0.02 0.94 9.29 7.00 0.02 0.92 10.31 7.63 0.02
Noord 307 0.88 15.69 10.11 0.03 0.85 17.49 11.61 0.03 0.81 19.76 13.61 0.04 0.73 23.96 16.87 0.04
Prins Alexander 303 0.99 6.04 4.37 0.01 0.99 5.91 4.26 0.01 0.98 6.76 4.92 0.01 0.98 7.99 5.87 0.02
Charlois 242 0.97 5.24 3.84 0.02 0.97 5.93 4.42 0.02 0.96 6.89 5.20 0.02 0.94 7.84 5.92 0.03
Ĳsselmonde 184 0.94 5.25 3.25 0.02 0.90 6.58 4.18 0.03 0.89 7.11 4.50 0.03 0.84 8.37 5.57 0.04
Spaanse Polder 36 0.90 2.18 1.36 0.03 0.69 3.88 2.18 0.05 0.87 2.53 1.76 0.04 0.54 4.75 3.43 0.07

Average (𝜇 ± 𝜎) 0.94
± 0.06

8.94
± 5.29

6.30
± 3.77

0.02
± 0.01

0.90
± 0.10

10.80
± 5.98

7.68
± 4.41

0.02
± 0.01

0.90
± 0.08

11.86
± 6.86

8.66
± 5.17

0.03
± 0.01

0.84
± 0.14

15.16
± 9.40

11.21
± 7.22

0.03
± 0.02

Table 4
Predictive performance of the classifier in Rotterdam across different prediction horizons.

District Avg Pop 5 min 15 min 30 min 60 min

F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec.

Kralingen-Crooswijk 507 0.92 0.92 0.92 0.92 0.90 0.90 0.90 0.90 0.89 0.88 0.88 0.88 0.85 0.85 0.85 0.85
Rotterdam Centrum 502 0.91 0.99 0.96 0.87 0.87 0.98 0.94 0.80 0.83 0.98 0.92 0.78 0.75 0.97 0.84 0.70
Hillegersberg-Schiebroek 476 0.75 0.95 0.82 0.71 0.73 0.94 0.79 0.70 0.71 0.94 0.77 0.67 0.67 0.93 0.76 0.63
Delfshaven 347 0.91 0.96 0.91 0.91 0.89 0.95 0.90 0.89 0.86 0.93 0.86 0.87 0.80 0.90 0.81 0.80
Feijenoord 347 0.88 0.95 0.90 0.87 0.87 0.94 0.89 0.85 0.84 0.93 0.88 0.81 0.74 0.90 0.82 0.71
Noord 307 0.82 0.99 0.85 0.80 0.71 0.98 0.74 0.69 0.55 0.91 0.55 0.63 0.59 0.97 0.62 0.58
Prins Alexander 303 0.97 0.98 0.97 0.97 0.97 0.98 0.97 0.97 0.96 0.98 0.96 0.96 0.96 0.97 0.96 0.95
Charlois 242 0.91 0.91 0.92 0.91 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.87 0.87 0.87 0.87
IJsselmonde 184 0.92 0.97 0.92 0.92 0.91 0.97 0.91 0.91 0.90 0.97 0.90 0.91 0.89 0.97 0.89 0.90
Spaanse Polder 36 0.95 0.99 0.98 0.92 0.90 0.98 0.94 0.87 0.93 0.98 0.96 0.90 0.91 0.98 0.95 0.88

Average (𝜇 ± 𝜎) 0.89
± 0.06

0.96
± 0.03

0.91
± 0.05

0.88
± 0.07

0.87
± 0.08

0.95
± 0.03

0.89
± 0.07

0.85
± 0.09

0.84
± 0.12

0.94
± 0.04

0.86
± 0.12

0.83
± 0.11

0.80
± 0.11

0.93
± 0.05

0.84
± 0.10

0.79
± 0.12

of the target variable. Focusing on the time-related features
only, hour-of-day and day-of-week show the relatively high-
est importance in both cases, underlying the presence of
seasonal patterns.

5. Conclusions
This study investigated spatio-temporal forecasting meth-
ods for density prediction in urban environments. By inte-
grating spatial dependencies with temporal trends, the pro-

Table 5
Predictive performance of the regressor in Amsterdam across different prediction horizons.

District Avg. Pop 5 min 15 min 30 min 60 min

R2 RMSE MAE sMAPE R2 RMSE MAE sMAPE R2 RMSE MAE sMAPE R2 RMSE MAE sMAPE

Oostelijk Havengebied 110 0.97 2.34 1.83 0.02 0.96 2.75 2.16 0.02 0.95 3.24 2.53 0.02 0.92 4.16 3.24 0.03
Buitenveldert-West 87 0.97 2.12 1.57 0.02 0.95 2.66 1.96 0.02 0.93 3.28 2.40 0.02 0.87 4.37 3.17 0.03
Burgwallen-Nieuwe Zijde 72 0.98 1.91 1.41 0.02 0.96 2.55 1.91 0.03 0.93 3.38 2.58 0.03 0.89 4.35 3.35 0.04
Jordaan 71 0.98 2.31 1.78 0.02 0.94 4.04 2.75 0.03 0.91 4.67 3.42 0.04 0.85 6.14 4.66 0.05
Scheldebuurt 71 0.98 1.56 1.19 0.01 0.96 2.06 1.57 0.02 0.94 2.66 2.02 0.02 0.89 3.50 2.64 0.03
Middenmeer 66 0.96 1.94 1.46 0.02 0.94 2.28 1.73 0.02 0.90 2.89 2.20 0.03 0.86 3.55 2.71 0.03
IJburg West 63 0.93 1.62 1.28 0.02 0.91 1.83 1.45 0.02 0.87 2.15 1.70 0.02 0.79 2.76 2.20 0.03
Westelijk Havengebied 63 0.88 3.72 1.60 0.03 0.85 4.05 1.75 0.03 0.83 4.28 1.87 0.04 0.78 4.74 2.20 0.04
Landlust 59 0.99 1.42 1.07 0.02 0.97 1.96 1.51 0.03 0.96 2.60 2.01 0.04 0.92 3.49 2.70 0.05
Nieuwmarkt/Lastage 58 0.92 2.82 1.94 0.02 0.88 3.34 2.37 0.03 0.76 4.71 3.35 0.04 0.70 5.29 3.88 0.05

Average (𝜇 ± 𝜎) 0.95
± 0.04

2.18
± 0.69

1.51
± 0.28

0.02
± 0.01

0.93
± 0.04

2.75
± 0.81

1.92
± 0.41

0.02
± 0.01

0.90
± 0.06

3.38
± 0.89

2.41
± 0.59

0.03
± 0.01

0.85
± 0.07

4.24
± 0.99

3.08
± 0.77

0.04
± 0.01

Table 6
Predictive performance of the classifier in Amsterdam across different prediction horizons.

District Avg. Pop 5 min 15 min 30 min 60 min

F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec.

Oostelijk Havengebied 110 0.90 0.92 0.93 0.89 0.89 0.90 0.89 0.88 0.86 0.88 0.87 0.85 0.76 0.78 0.75 0.79
Buitenveldert-West 87 0.92 0.93 0.94 0.91 0.90 0.91 0.92 0.89 0.88 0.89 0.89 0.86 0.83 0.86 0.85 0.82
Burgwallen-Nieuwe Zijde 72 0.94 0.94 0.95 0.94 0.92 0.92 0.92 0.91 0.89 0.89 0.89 0.89 0.85 0.84 0.85 0.84
Jordaan 71 0.91 0.94 0.94 0.89 0.87 0.92 0.89 0.85 0.84 0.90 0.87 0.81 0.82 0.89 0.82 0.82
Scheldebuurt 71 0.91 0.93 0.93 0.90 0.88 0.90 0.90 0.87 0.85 0.88 0.88 0.83 0.79 0.83 0.83 0.77
Middenmeer 66 0.85 0.94 0.90 0.81 0.79 0.91 0.81 0.77 0.73 0.90 0.80 0.70 0.68 0.83 0.69 0.69
IJburg West 63 0.73 0.96 0.81 0.68 0.63 0.95 0.66 0.61 0.57 0.79 0.54 0.73 0.61 0.92 0.60 0.62
Westelijk Havengebied 63 0.91 0.89 0.94 0.90 0.89 0.87 0.93 0.88 0.90 0.89 0.92 0.90 0.87 0.85 0.89 0.86
Landlust 59 0.94 0.94 0.93 0.94 0.93 0.93 0.92 0.93 0.92 0.92 0.91 0.92 0.87 0.87 0.87 0.87
Nieuwmarkt/Lastage 58 0.79 0.94 0.88 0.73 0.69 0.92 0.78 0.65 0.62 0.91 0.65 0.60 0.55 0.88 0.57 0.53

Average (𝜇 ± 𝜎) 0.88
± 0.07

0.93
± 0.02

0.91
± 0.04

0.86
± 0.09

0.84
± 0.10

0.91
± 0.02

0.86
± 0.09

0.83
± 0.11

0.81
± 0.12

0.88
± 0.03

0.82
± 0.13

0.81
± 0.10

0.76
± 0.11

0.86
± 0.04

0.77
± 0.11

0.76
± 0.11



Figure 4: Average feature importance across all 4 prediction horizons of the regressor in Rotterdam (left) and Amsterdam
(right)

Figure 5: Average feature importance across all 4 prediction horizons of the classifier in Rotterdam (left) and Amsterdam
(right)

posed methodology effectively captured localized patterns,
generating accurate forecasts across multiple horizons. Key
contributions include a flexible feature engineering pipeline
that incorporates both intra- and inter-district interactions,
alongside the application of efficient gradient boosting ar-
chitectures. This approach enhances predictive accuracy
while minimizing computational overhead, rendering it suit-
able for large-scale forecasting tasks. Experimental results
demonstrated the efficacy of gradient-boosted density pre-
dictors for both regression and classification, exhibiting com-
petitive performance across varying prediction horizons.
Although accuracy slightly declines for longer horizons, the
model remains robust, underscoring its adaptability and
practical applicability in real-world mobility forecasting.

This research also unveils opportunities for future explo-
ration. Specifically, the integration of feature interactions
and their contributions to the overall model quality warrant
further investigation. Incorporating external factors, such
as weather conditions or public events, could potentially
enhance predictive performance. Additionally, applying
the proposed methodology to other geographical areas and
diverse mobility scenarios would help validate its gener-
alization capabilities and adaptability to varying contexts.
Finally, a comprehensive experimental comparison with re-
lated work under specific settings is planned to facilitate
fair benchmarking.

In conclusion, this study showcases the ability of data-
driven approaches to effectively tackle spatio-temporal fore-



casting challenges. By leveraging the inherent spatial seg-
mentation of cities into districts, the methodology enables
the extraction of localized temporal patterns, facilitating
more informed decision-making and contributing to smarter,
more efficient urban planning from the perspective of mo-
bility data science [21].
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