CEUR-WS.org/Vol-3946/DARLI-AP-2.pdf

C

CEUR

Workshop
Proceedings

Context-Aware AutoML for Accurate Wheat Disease Detection

Muhammad Uzair!, Radwa ElShawi’* and Stefania Tomasiello®?

!Institute of Computer Science, University of Tartu, Estonia

2Department of Industrial Engineering, University of Salerno, Fisciano, Italy

Abstract

Timely detection and management of crop diseases are crucial for food security and agricultural productivity. Traditional methods,
which rely on manual inspection, are often slow and prone to human error. With the rise of diseases like stripe rust in wheat, there is a
growing need for efficient automated detection methods. This paper proposes a novel classification strategy that leverages Automated
Machine Learning (AutoML) in combination with advanced feature engineering techniques. We develop a scalable framework that
detects stripe rust by extracting comprehensive statistical features from images, distinguishing disease symptoms from healthy crops.
To enhance feature quality, we employ Context-Aware Automated Feature Engineering, which iteratively generates meaningful features
to capture subtle patterns in the data. Our method achieves 95.35% accuracy on the RustNet dataset, significantly outperforming the
state-of-the-art ResNet-18 model, which achieved 85.2% accuracy. These findings highlight the potential of AutoML and automated
feature engineering to revolutionize disease detection in agriculture, offering a cost-effective alternative to traditional deep learning
methods that require extensive computational resources and expertise.

Keywords

AutoML, disease detection, feature engineering, large language models

1. Introduction

The Food and Agriculture Organization (FAO) forecasts a
0.9% increase in global cereal utilization for 2023/24 com-
pared to the previous year. Wheat, as the most widely culti-
vated crop globally, is essential to agriculture, with rising
consumption expected in regions like the European Union,
China, India, the UK, and the US [1]. However, wheat faces
significant threats from diseases and pests, causing sub-
stantial annual losses, roughly one-fifth of global yield [2].
Among these, wheat stripe rust, caused by Puccinia stri-
iformis f.sp.tritici, is particularly devastating, leading to se-
vere yield losses [3]. This disease has become increasingly
prevalent worldwide, posing serious risks to food security
and agricultural sustainability.

Traditional methods for monitoring wheat rust rely on
manual visual inspection, which is time-consuming, labor-
intensive, and costly, making it impractical for large-scale
agriculture [4]. Recent advancements in imaging technolo-
gies, especially the use of Unmanned Aerial Vehicles (UAVs),
offer a promising alternative for automated crop disease
detection. UAVs can capture high-resolution images of large
fields, enabling more efficient and accurate disease monitor-
ing [5, 6]. This technology, combined with advanced image
processing techniques, holds great potential for timely and
precise identification of disease outbreaks.

Effective and timely monitoring of yellow rust is essential
for both disease management and sustainable crop produc-
tion. Accurate disease mapping facilitates the judicious
application of fungicides and enhances breeding programs
by identifying resistant wheat varieties [6]. Machine learn-
ing (ML) techniques play a crucial role in achieving high
precision in disease detection, focusing on extracting rele-
vant features from images and utilizing classifiers such as
Neural Networks, Random Forest, Support Vector Machines,
and K-Nearest Neighbors [7, 8]. However, the complex-
ity and manual effort required to develop these ML models

Published in the Proceedings of the Workshops of the EDBT/ICDT 2025
Joint Conference (March 25-28, 2025), Barcelona, Spain

*Corresponding author: Radwa ElShawi (radwa.elshawi@ut.ee).

Q& muhammad.uzair@ut.ee (M. Uzair); radwa.elshawi@ut.ee

(R. ElShawi); stefania.tomasiello@ut.ee (S. Tomasiello)

@ 1234-5678-9012 (R. EIShawi); 0000-0001-8208-8285 (S. Tomasiello)

@ @ © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
m Attribution 4.0 International (CC BY 4.0).

have led to a growing interest in automating the ML process.
This has spurred the development of Automated Machine
Learning (AutoML) techniques [9, 10], which simplify the
creation of ML pipelines by automating stages such as data
preprocessing, feature engineering, model selection, and
optimization. By reducing the need for manual interven-
tion, AutoML streamlines the development of effective ML
models, making advanced disease detection more accessible
and efficient.

This study introduces a novel approach that integrates
AutoML with context-aware feature engineering for the de-
tection of stripe rust in wheat. We extract comprehensive
statistical features from UAV-captured images and refine
them using Context-Aware Automated Feature Engineering
(CAAFE), a feature engineering method designed for tabu-
lar datasets [11]. CAAFE leverages a large language model
(LLM) to iteratively generate additional semantically mean-
ingful features based on the dataset description, enhancing
the discriminatory power of the features. These refined
features are then processed using the Tree-Based Pipeline
Optimization Tool (TPOT) [12], an AutoML framework that
automates the selection, optimization, and construction of
classification models. Our proposed framework was rigor-
ously evaluated on the publicly available RustNet dataset [6],
achieving a remarkable accuracy of 95.35%. This represents
a substantial improvement over the state-of-the-art ResNet-
18 model, which attained an accuracy of only 85.2% [6].

2. Related Works

The application of Unmanned Aerial Vehicles (UAVs) for
plant disease detection has garnered substantial interest,
leading to the development of advanced methodologies that
integrate image processing with Machine Learning (ML)
algorithms. Gu et al. [13] introduced a method for detect-
ing and quantifying the severity of narrow brown leaf spot,
a common disease affecting rice crops. The methodology
began with the extraction of color features and vegetation
indices from UAV-acquired images. Pearson’s correlation
analysis was then employed to identify the four most sig-
nificant features, which were subsequently used as inputs
for support vector regression, achieving a high degree of
accuracy in disease severity estimation.

mailto:muhammad.uzair@ut.ee
mailto:radwa.elshawi@ut.ee
mailto:stefania.tomasiello@ut.ee
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0001-8208-8285
https://creativecommons.org/licenses/by/4.0/deed.en

In the field of wheat disease detection, Liu et al. [14]
focused on identifying powdery mildew using UAV im-
agery. They meticulously extracted textural features such
as contrast, correlation, and variance, and applied Partial
Least Squares Regression (PLSR) for comprehensive anal-
ysis, yielding a nuanced understanding and quantification
of the disease’s impact. Additionally, a study on monitor-
ing wheat scab using UAV remote sensing [15] emphasized
the value of texture features derived from multiple spec-
tral bands. When combined with vegetation indices, these
features provided extensive data for disease monitoring,
with Support Vector Regression (SVR) demonstrating effec-
tiveness in predictive analysis. Zhang et al. [16] utilized
a combination of spectral and textural features to detect
Fusarium Head Blight in wheat crops, employing Logis-
tic Regression to highlight the critical role of feature-rich
datasets in accurate disease classification and monitoring.
Subsequent studies [17, 18] advanced this approach by inte-
grating spectral, textural, and color features with various
classification models, including Support Vector Machines
(SVM) and Neural Networks (NNs). These studies high-
lighted the significance of feature extraction techniques and
the adaptability of ML algorithms in managing the complex
datasets derived from UAV imagery. Furthermore, research
on wheat yellow rust detection illustrated the interaction
between traditional ML algorithms and Deep Learning (DL)
techniques [19, 6, 20]. While ML methods such as SVR, NNs,
and Random Forests demonstrated significant effectiveness,
DL models have shown promising potential for enhancing
accuracy and efficiency in disease detection tasks.

Broadening the application beyond wheat, research on
UAV-based disease detection in rubber trees [21] and citrus
plants [22] demonstrated the broad applicability of UAV-
based disease detection techniques across different agricul-
tural sectors. These studies emphasized the vital role of
advanced image processing techniques and ML algorithms
in enhancing global food security by enabling effective dis-
ease detection in a wide range of crops.

3. Methodology

Figure 1 illustrates the architecture of our approach that
consists of three main stages, including data preprocessing
(Section 3.2), automated feature engineering using CAFE
(Section 3.3), and model training and evaluation using Au-
toML approach (Section 3.4). In the following subsections,
we explain the different building blocks of our approach.

3.1. Dataset

In this study, we used a publicly available dataset, RustNet
[6]. RustNet comprises 508 images categorized into two
classes: disease and no disease. Among these, there are 281
images depicting instances of disease and 227 images with-
out any disease. RustNet is based on data collected from
two experimental wheat fields were imaged in Pullman, WA,
the US, in 2021. Field 1, located at Palouse Conservation
Field Station, comprised two winter wheat trials: one for
testing fungicides on 'PS 279’ variety and another for as-
sessing stripe rust resistance in 23 winter wheat cultivars.
Both trials had randomized designs with four replications,
planted on November 1, 2020. Urediniospores of P. stri-
iformis were inoculated twice to induce disease. Field 2, at
Spillman Agronomy Farm, housed spring wheat nurseries

labeled images
v

Data Preprocessing

[Grayscale Conversion & Resizing]

Feature Extraction
Data Matrix Shuffling

Data Matrix Normalization

Context-Aware Automated
Feature Engineering

‘ AutoML Model

Training and Evaluation
Figure 1: Flowchart of the proposed framework

\

with regular irrigation. Lemhi 66 cultivar in borders was
highly susceptible to stripe rust, with three inoculated bor-
ders and one non-infected border. Images were collected
only from the borders in Field 2.

3.2. Data preprocessing

Our preprocessing phase involves several key stages: ini-
tial image acquisition, conversion to grayscale, resizing,
and feature extraction. During feature extraction, we com-
pute essential statistical measures, including mean, standard
deviation, variance, correlation, energy, entropy, contrast,
skewness, kurtosis, and homogeneity.

3.3. Context-Aware Automated Feature
Engineering

Feature engineering is a critical component of machine
learning, as it involves transforming raw input data into fea-
tures that can improve predictive performance [23, 24]. In
our approach, we leverage CAAFE, an automated machine
learning technique specifically designed for tabular datasets.
CAAFE employs an LLM to iteratively generate semanti-
cally meaningful features based on a detailed description of
the dataset. This process not only generates Python code
for creating new features but also provides explanations for
the relevance and utility of the generated features.

CAATFE operates iteratively on both the training and val-
idation datasets, Dirqin and Dyq144, along with a descrip-
tion of the dataset’s context and features. In each itera-
tion, CAAFE constructs a prompt that includes detailed
information about the dataset and the specific feature en-
gineering task, which is then passed to the LLM. Based
on this prompt, the LLM generates code to alter or create
new features. The generated code is executed on the cur-
rent datasets (D¢rain and Dyaiiq), producing transformed
datasets (D’train and D'valid). An ML classifier is subse-
quently trained on D’train and evaluated on D'valid. If
the classifier’s performance on D’valid surpasses its perfor-
mance on the original Dvalid, the newly generated feature
is retained, and the datasets are updated accordingly. If not,
the feature is discarded, and the datasets remain unchanged.

The prompt provided to the LLM includes semantic and
descriptive information about the dataset, such as a user-
generated dataset description, feature names, data types,
the percentage of missing values, and random sample rows
from the dataset. Additionally, a template for the expected
format of the generated code and explanations is included,
which improves the clarity and quality of the LLM’s out-
put. To further enhance performance, chain-of-thought
instructions guide the LLM through a series of intermediate
reasoning steps, leading to more effective code generation.
By utilizing CAAFE, we integrate domain knowledge into
the feature engineering process, all while maintaining in-
terpretability and optimizing predictive performance. This
approach offers a powerful and efficient method for gener-
ating high-quality features in complex datasets, marking a
promising advancement in machine learning research.

3.4. AutoML approach

TPOT is an AutoML framework designed for constructing
and optimizing machine learning pipelines for both classi-
fication and regression tasks. It utilizes tree-based genetic
programming [25] to evolve pipelines by treating them as
individuals within an evolutionary algorithm. Each pipeline
is structured as a tree, with its nodes categorized as either
Primitives or Terminals. Primitives represent operators that
require input, such as machine learning algorithms needing
data and hyperparameter values. Terminals, on the other
hand, are constants that provide input to the Primitives. No-
tably, a Primitive can also act as input for another Primitive,
allowing for complex pipeline configurations. The evolu-
tionary process in TPOT operates by applying genetic oper-
ations such as mutation and crossover to the pipelines. Mu-
tation involves making small modifications, such as chang-
ing a hyperparameter or introducing a new preprocessing
step. Crossover, on the other hand, selects two pipelines
that share common Primitives and allows them to exchange
subtrees or branches. Once these operations are performed,
each pipeline is evaluated and assigned a fitness score, which
reflects its performance. This fitness score is used in the
selection process to determine which pipelines should be
retained and evolved further in the next generation, ulti-
mately leading to the creation of highly optimized machine
learning pipelines. Generally, these pipeline trees could be
arbitrarily large. Nevertheless, extensive machine learning
pipelines usually have downsides. Longer pipelines with
numerous hyperparameters can be challenging to fine-tune,
more prone to overfitting, complicate the understanding of
the final model, and demand extended evaluation time, thus
slowing down the optimization process. Due to these con-
siderations, a multiobjective optimization technique, NSGA-
II [26], is employed. It assists in selecting candidates based
on the Pareto front, representing the balanced trade-off be-
tween pipeline length and performance.

4. Experimental Evaluation

4.1. Experimental setup

Training and test. For a fair comparison, we adopted the
same train-test split methodology as outlined in the refer-
enced study, allocating 70% of the RustNet dataset for train-
ing and 30% for testing [6]. Detailed information regarding
these splits is provided in Table 1.

Class Train Test Total

disease 208 73 281

no_disease 172 55 227

Total 380 128 508
Table 1

Number of images in train and test split for the RustNet dataset

Baselines. Given the randomized nature of the experi-
ments reported in [6], we conducted new experiments using
the same computational setup as described in their study.
Specifically, we employed ResNet-18, following the origi-
nal architecture and hyperparameters outlined in [6], and
initialized the model with pre-trained weights.

CAAFE setting. We leverage the advanced capabilities
of OpenAr’s language models, including GPT-3.5, as LLM
within the CAAFE framework [27, 28]. The integration of
these powerful language models enables CAAFE to generate
semantically meaningful features iteratively, enhancing the
effectiveness of feature engineering. To ensure robust per-
formance and accuracy, we conduct ten feature engineering
iterations using the CAAFE framework. Additionally, in
the iterative evaluation of code blocks, we employ TabPFN
(Tabular Predictive Functional Network), as proposed by
Hollmann et al. [29], to assess the effectiveness of generated
features and their impact on model performance.

TPOT setting. To ensure a fair comparison, an equal time
budget was allocated for both TPOT and ResNet methodol-
ogy. Experiments were constrained to a 20-minute time limit.
This consistent time allocation ensures parity in computa-
tional resources between the methods, enabling a thorough
and unbiased evaluation of their respective performances.
The input to TPOT is a data matrix after performing the fea-
ture engineering step from CAAFE. The hyperparameters
for TPOT were configured with a set number of genera-
tions, specifically 10, and a population size of 100. The
resulting pipeline generated by TPOT, constrained by the
specified time budget, is a multi-layer perceptron classifier
with a learning rate of 0.01 and regularization parameter of
0.0001. The latter is a penalty term, constraining the size
of the weights [30]. The aim of such a strategy is to reduce
overfitting and enhance the generalization ability of the NN.

Hardware Resources. We conducted our experiments
on a CPU environment. The CPU environment runs on Win-
dows 11 Pro 64-bit (10.0, Build 22621) with 16 core Intel(R)
Core(TM) i9-10885H Processor @ 2.40GHz,32 GB DIMM
memory, and 1000 GB SSD data storage. All the approaches
have been implemented in Python.

Performance metrics. Since the classification problem
is being tackled in this study, the performance metrics used
are Accuracy, Precision, Recall, and F1-score.

4.2. Results
4.2.1. Preprocessing

We followed the preprocessing steps described in Section 3.2.
Regarding the conversion of the class associated with the
image to a numerical equivalent, we adopted for RustNet
dataset disease = 1 and no_disease = 0.

After the statistical features are extracted from images,
the resulting feature set is normalized using min-max nor-
malization, where each feature has a value between 0 and 1.
The general formula for min-max normalization is:

Dataset Description:

This dataset contains handcrafted statistical features from images. The images are
wheat images and there are two types of images, i.e with disease and without
disease. This dataset predicts whether an image is infected with disease or not.

Attribute Information:
- mean: mean of the image (numerical)
std: standard deviation of the image (numerical)
var: variance of the image (numerical)
skewness: skewness of the image (numerical)
entropy: entropy of the image (numerical)
kurtosis: kurtosis of the image (numerical)
contrast: contrast of the image (numerical)
correlation: correlation of the image (numerical)
energy: energy of the image (numerical)
homogeneity: homogeneity of the image (numerical)
class: class variable 1: disease

0: no disease

Some samples from the dataset:

<Sample 1, class=1>:

mean: 0.769010384, std: 0.761649904,var: 0.580110568, skewness: 0.466414969,
entropy: 0.963101,kurtosis: 0.369918743, contrast: 0.489227072,
correlation: 0.756602121, energy: 0.688121882,homogeneity: 0.954844229

<Sample 5, class=1>:

mean:0.636383104,std: 0.87729013,var: 0.769637974,skeuness: 0.586431784,
entropy: 0.973940969,kurtosis: 0.37709383,contrast: 0.488186784,
correlation: 0.526767611,energy: 0.799576354,homogeneity: 0.947847399
<Sample 6, class=0>:

mean: 0.677572277,std: 0.854699258,var: 0.730510817,skewness: 0.549493916,
entropy: 0.980216291,kurtosis: 0.395917515,contrast: 0.474908547,
correlation: 0.69608474,energy: 0.762089244,homogeneity: 0.983787588

<Sample 10, class=0>:

mean: 0.568418388,std: 0.879868278,var: 0.774168186,skewness: 0.7706753,
entropy: 0.964696511,kurtosis: 0.47484991,contrast: 0.483253361,
correlation: 0.717102329,energy: 0.859660247,homogeneity: 0.926171716

Feature name and description: "mean_variance_ratio", ratio of mean to variance.
his feature could highlight the relationship between the mean and
variance of the image, which could be useful in identifying patterns related
to the presence of a disease.
Input samples: ’mean’: [0.4967, 0.7235, 0.5506],
>var’: [0.879374249, 0.774168186, 0.691100425]

df [’mean_variance_ratio’] = df[’mean’] / df[’var’]

Iteration 1

Performance before adding features ROC 0.912, ACC 0.946.

Performance after adding features ROC 0.911, ACC 0.949.

Improvement ROC -0.001, ACC 0.003. The code was executed and changes to “df”
were kept.

Feature name and description: "contrast_energy ratio", ratio of contrast to
energy

Usefulness: This feature could highlight the relationship between the contrast
and energy of the image, which could be useful in identifying patterns
related to the pre:

Input samples: ’contra

, 0.48], ‘energy’: [1.0, 0.78, 0.92]

4f[’contrast_energy_ratio’] = df[’contrast’] / df [’energy’]

Iteration 2

Performance before adding features ROC 0.911, ACC 0.949.

Performance after adding features ROC 0.910, ACC 0.950.

Improvement ROC -0.001, ACC 0.001. The code was executed and changes to “df”
were kept.

Explanation why the column ‘correlation‘ is dropped

The correlation of an image might not provide much useful information in terms
of disease detection as it measures the degree to which the two variables in
the image move in relation to each other, which might not be directly related
to the presence of a disease.

df .drop(columns=[’correlation’], inplace=True)

Iteration 5

Performance before adding features ROC 0.911, ACC 0.949.

Performance after adding features ROC 0.911, ACC 0.950.

Improvement ROC 0.000, ACC 0.001. The code was executed and changes to “df”
were kept.

Explanation why the column ‘contr
of an image might n
detection as it m

s dropped
rovide much useful information in terms

of an image and it might not b

df .drop(columns=[’contrast’], inplace=True)

Iteration 7
Performance before adding features ROC 0.911, ACC 0.950.

Performance after adding features ROC 0.913, ACC 0.952.

Inprovement ROC 0.002, ACC 0.002. The code was executed and changes to “df
were kept.

Explanation why the column ‘energy‘ is dropped

st of an image might not provide much useful information in terms
sures local change in an image and it

e detection

might not be very useful in

df .drop(columns=[’energy’], inplace=True)

Iteration 8

Performance before adding features ROC 0.913, ACC 0.952.

Performance after adding features ROC 0.913, ACC 0.953.

Improvement ROC 0.000, ACC 0.001. The code was executed and changes to “df”
were kept.

Figure 2: Exemplary run of CAAFE on the RustNet image dataset. User-generated input is shown in blue, ML-classifier
generated data in red, and LLM-generated code with syntax highlighting. The generated code contains a comment per
generated/deleted feature following a template (Feature name, description of usefulness, features used in the generated code,
and sample values). CAAFE improved the ACC on the validation dataset from 0.946 to 0.953 over 10 iterations, but only those

improving ACC are shown.

, x; — min(X)

~ max(X) — min(X)

where z is the normalized value, x; € X,i =
1,2,...,nis the original value.

4.3. Feature Engineering

A demonstration of CAAFE using the RustNet dataset is il-
lustrated in Figure 2. User inputs are highlighted in blue, ML-
classifier-generated data in red, and LLM-generated code is
presented with syntax highlighting. The code includes com-
ments for each generated feature, adhering to a predefined
template in CAAFE'’s prompt. This template comprises the
feature name, its utility description, the features utilized in
the generated code, and sample values for these features.
The retained generated features from CAAFE after 10 itera-
tions include 'mean_variance_ratio’, calculated as the mean
divided by the variance, and ’contrast_energy_ratio’, com-
puted as the contrast divided by the energy. Incorporating
the features generated by CAAFE into TPOT improved the
accuracy from 93.02% achieved using TPOT alone on the
validation dataset to 95.42%, as shown in Table 2.

—— Training Accuracy ~ —— Test Aceuracy

Accuracy

L - TR L S T

Epoch

Figure 3: ResNet-18 Accuracy for RustNet dataset

4.4. AutoML

The results, evaluated using TPOT and ResNet-18, are de-
tailed in Table 2. For TPOT, two variants are considered: the
baseline TPOT and TPOT with Context-Aware Automated
Feature Engineering (CAAFE), referred to as TPOT (FE). The
comparative results demonstrate that both variants of our
proposed framework—TPOT and TPOT (FE)—outperform
the baseline ResNet-18 model. TPOT achieved an accuracy
of 93.02%, which was further enhanced to 95.35% with the

integration of CAAFE. In contrast, ResNet-18 achieved a
lower accuracy of 85.2% on the same dataset, highlighting
the superior performance of our proposed approach. The
limited number of epochs achieved within the allocated
time budget highlights the substantial computational effort
required.

Dataset| Model Accuracy Precision Recall F1-Score
TPOT 93.02 92.99 92.90 92.80

RustNet| TPOT (FE) 95.35 95.79 94.85 95.22
ResNet-18 85.20 86.13 86.54 86.15

Table 2
Performance of TPOT and ResNet-18 on RustNet dataset

5. Conclusion

This study introduces a novel approach to detect stripe rust
in wheat crops, using AutoML and rigorous feature engineer-
ing techniques. By extracting a comprehensive set of statis-
tical features from original images and employing Context-
Aware Automated Feature Engineering, we enhance the dis-
criminative power of the extracted features. Our iterative
feature generation process aims to capture subtle patterns
and nuances, leading to superior effectiveness compared
to state-of-the-art deep learning techniques. The consid-
ered wheat rust disease problem has already been tackled
in the literature by employing several ML techniques, such
as feed forward NNs, KNN, SVM, RF. All of them populated
the search space of TPOT, which helped to determine the
best one for the considered case. We compared our results
against the ones by ResNet-18, a state-of-the-art technique
used for the same kind of problem, according to the most
recent literature. The experiments were performed on a
publicly available dataset retrieved from the relevant liter-
ature. Our approach outperformed the above-mentioned
state-of-the-art technique, revealing a higher computational
effort of the latter in the allotted computing time.

Acknowledgments

This work has been partially funded by the Estonian Re-
search Council, grant PRG1604, through the funding of
SusAn, FACCE ERA-GAS, ICT-AGRI-FOOD and SusCrop
ERA-NET, and through the project Increasing the knowl-
edge intensity of Ida-Viru entrepreneurship co-funded by the
European Union.

References

[1] FAO, Fao cereal supply and demand brief, 2023,
www.fao.org/worldfoodsituation/csdb/en/, https://
www.fao.org/worldfoodsituation/csdb/en/, 2023. Ac-
cessed: 2024-11-22.

[2] S. Savary, L. Willocquet, S. Pethybridge, P. Esker,
N. McRoberts, A. Nelson, The global burden of
pathogens and pests on major food crops, Na-
ture Ecology & Evolution 3 (2019) 1. doi:10.1038/
s41559-018-0793-y.

[3] X. Chen, Pathogens which threaten food secu-
rity: Puccinia striiformis, the wheat stripe rust

pathogen, Food Security 12 (2020). doi:10.1007/
s12571-020-01016-z.

[4] J. su, C.Liu, X. Hu, X. Xu, L. Guo, W.-H. Chen, Spatio-
temporal monitoring of wheat yellow rust using uav
multispectral imagery, Computers and Electronics in
Agriculture (2019). doi:10.1016/j.compag.2019.
105035.

[5] D. Basurto-Lozada, A. Hillier, D. Medina, D. Pulido,
S. Karaman, J. Salas, Dynamics of soil surface temper-
ature with unmanned aerial systems, Pattern Recog-
nition Letters 138 (2020). doi:10.1016/j.patrec.
2020.07.003.

[6] Z.Tang, M. Wang, S. Michael, K.-H. Dammer, X. Li,
R. Brueggeman, S. Sankaran, A. Carter, M. Pumphrey,
Y. Hu, X. Chen, Z. Zhang, Affordable high through-
put field detection of wheat stripe rust using deep
learning with semi-automated image labeling, 2022.
doi:10.20944/preprints202204.0177.v1.

[7] U. Shafi, R. Mumtaz, Z. Shafaq, S. Zaidi, Z. Mah-
mood, S. Zaidi, Wheat rust disease detection tech-
niques: a technical perspective, Journal of Plant
Diseases and Protection 129 (2022). doi:10.1007/
s41348-022-00575-x.

[8] T.Hayit, H. Erbay, F. Varcin, F. Hayit, N. Akci, The
classification of wheat yellow rust disease based on a
combination of textural and deep features, Multimedia
Tools and Applications 82 (2023) 1-19. doi:10.1007/
$11042-023-15199-y.

[9] R. Elshawi, S. Sakr, Automated machine learning:
Techniques and frameworks, in: R.-D. Kutsche,
E. Zimanyi (Eds.), Big Data Management and Ana-
lytics, Springer International Publishing, Cham, 2020,
pPp- 40-69.

[10] H. Eldeeb, M. Maher, O. Matsuk, A. Aldallal,
R. El Shawi, S. Sakr, Automlbench: A comprehensive
experimental evaluation of automated machine learn-
ing frameworks, 2022. doi:10.2139/ssrn.4516282.

[11] N.Hollmann, S. Miller, F. Hutter, Large language mod-
els for automated data science: Introducing CAAFE
for context-aware automated feature engineering, in:
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL: https://openreview.net/
forum?id=9WSxQZ9ImG7.

[12] R. Olson, J. Moore, Tpot: A tree-based pipeline opti-
mization tool for automating machine learning, 2019.
doi:10.1007/978-3-030-05318-5_8.

[13] C.Gu, T. Cheng, N. Cai, W. Li, G. Zhang, X.-G. Zhou,
D. Zhang, Assessing narrow brown leaf spot sever-
ity and fungicide efficacy in rice using low altitude
uav imaging, Ecological Informatics 77 (2023) 102208.
doi:10.1016/j.ecoinf.2023.102208.

[14] Y.Liu, L. An, N. Wang, W. Tang, M. Liu, G. Liu, H. Sun,
M. Li, Y. Ma, Leaf area index estimation under wheat
powdery mildew stress by integrating uav-based spec-
tral, textural and structural features, Computers
and Electronics in Agriculture 213 (2023) 108169.
URL: https://www.sciencedirect.com/science/article/
pii/S0168169923005574. doichttps://doi.org/10.
1016/3.compag.2023.108169.

[15] W. Zhu, Z. Feng, S. Dai, P. Zhang, X. Wei, Using
uav multispectral remote sensing with appropriate
spatial resolution and machine learning to monitor
wheat scab, Agriculture 12 (2022) 1785. doi:10.3390/
agriculturel12111785.

[16] Y.Xiao,Y. Dong, W.Huang, L. Liu, H. Ma, Wheat fusar-

https://www.fao.org/worldfoodsituation/csdb/en/
https://www.fao.org/worldfoodsituation/csdb/en/
http://dx.doi.org/10.1038/s41559-018-0793-y
http://dx.doi.org/10.1038/s41559-018-0793-y
http://dx.doi.org/10.1007/s12571-020-01016-z
http://dx.doi.org/10.1007/s12571-020-01016-z
http://dx.doi.org/10.1016/j.compag.2019.105035
http://dx.doi.org/10.1016/j.compag.2019.105035
http://dx.doi.org/10.1016/j.patrec.2020.07.003
http://dx.doi.org/10.1016/j.patrec.2020.07.003
http://dx.doi.org/10.20944/preprints202204.0177.v1
http://dx.doi.org/10.1007/s41348-022-00575-x
http://dx.doi.org/10.1007/s41348-022-00575-x
http://dx.doi.org/10.1007/s11042-023-15199-y
http://dx.doi.org/10.1007/s11042-023-15199-y
http://dx.doi.org/10.2139/ssrn.4516282
https://openreview.net/forum?id=9WSxQZ9mG7
https://openreview.net/forum?id=9WSxQZ9mG7
http://dx.doi.org/10.1007/978-3-030-05318-5_8
http://dx.doi.org/10.1016/j.ecoinf.2023.102208
https://www.sciencedirect.com/science/article/pii/S0168169923005574
https://www.sciencedirect.com/science/article/pii/S0168169923005574
http://dx.doi.org/https://doi.org/10.1016/j.compag.2023.108169
http://dx.doi.org/https://doi.org/10.1016/j.compag.2023.108169
http://dx.doi.org/10.3390/agriculture12111785
http://dx.doi.org/10.3390/agriculture12111785

(19]

(27]

(28]

(30]

ium head blight detection using uav-based spectral and
texture features in optimal window size, Remote Sens-
ing 13 (2021). URL: https://www.mdpi.com/2072-4292/
13/13/2437. doi:10.3390/rs13132437.

H. Zhang, L. Huang, W. Huang, Y. Dong, S. Weng,
J. Zhao, H. Ma, L. Liu, Detection of wheat fusarium
head blight using uav-based spectral and image feature
fusion, Frontiers in Plant Science 13 (2022) 1004427.
doi:10.3389/fpls.2022.1004427.

L. Liu, Y. Dong, W. Huang, X. Du, H. Ma, Monitoring
wheat fusarium head blight using unmanned aerial
vehicle hyperspectral imagery, Remote Sensing 12
(2020) 3811. doi:10.3390/rs12223811.

A. Guo, W. Huang, Y. Dong, H. Ye, H. Ma, B. Liu,
W. Wu, Y. Ren, C. Ruan, Y. Geng, Wheat yellow
rust detection using uav-based hyperspectral technol-
ogy, Remote Sensing 13 (2021) 123. doi:10.3390/
rs13010123.

C.Nguyen, V. Sagan, J. Skobalski, J. Severo, Early detec-
tion of wheat yellow rust disease and its impact on ter-
minal yield with multi-spectral uav-imagery, Remote
Sensing 15 (2023) 3301. doi:10.3390/rs15133301.
T. Zeng, J. Fang, C. Yin, Y. Li, W. Fu, H. Zhang,
J. Wang, X. Zhang, Recognition of rubber tree powdery
mildew based on uav remote sensing with different
spatial resolutions, Drones 7 (2023) 533. doi:10.3390/
drones7080533.

S. Ding, J. Jing, S. Dou, M. Zhai, W. Zhang, Cit-
rus canopy spad prediction under bordeaux so-
lution coverage based on texture- and spectral-
information fusion, Agriculture 13 (2023). URL: https:
/[www.mdpi.com/2077-0472/13/9/1701. doi:10.3390/
agriculture13091701.

S. Wold, K. Esbensen, P. Geladi, Principal com-
ponent analysis, Chemometrics and Intelligent
Laboratory Systems 2 (1987) 37-52. doi:10.1016/
0169-7439(87)80084-9.

H. Eldeeb, R. El Shawi, Empowering machine learning
with scalable feature engineering and interpretable
automl, IEEE Transactions on Artificial Intelligence
PP (2024) 1-16. d0i:10.1109/TAI.2024.3400752.
W. Banzhaf, P. Nordin, R. Keller, F. Francone, Genetic
programming: An introduction on the automatic evo-
lution of computer programs and its applications, 1998.
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast
and elitist multiobjective genetic algorithm: Nsga-ii,
Evolutionary Computation, IEEE Transactions on 6
(2002) 182 — 197. d0i:10.1109/4235.996017.
OpenAl, Gpt-3 can’t count syllables - or doesn’t “get”
haiku. https://community. openai.com/t/gpt-3-cant-
count-syllables-or-doesnt-get-haiku/18733, 2021. ac-
cessed on: 2024-03-1, 2021.

OpenAl, openai/openai-cookbook: Exam-
ples and guides for wusing the openai api.
https://github.com/openai/openai-cookbook, 2023b.
(accessed on 03/1/2023), 2023.

N. Hollmann, S. Miiller, K. Eggensperger, F. Hut-
ter, Tabpfn: A transformer that solves small tab-
ular classification problems in a second, 2022.
URL: https://arxiv.org/abs/2207.01848. doi:10. 48550/
ARXIV.2207.01848.

Mlpclassifier documentation, https://scikit-learn.org/
stable/modules/generated/sklearn.neural network.
MLPClassifier.html, 2024. Accessed: 2024-11-22.

https://www.mdpi.com/2072-4292/13/13/2437
https://www.mdpi.com/2072-4292/13/13/2437
http://dx.doi.org/10.3390/rs13132437
http://dx.doi.org/10.3389/fpls.2022.1004427
http://dx.doi.org/10.3390/rs12223811
http://dx.doi.org/10.3390/rs13010123
http://dx.doi.org/10.3390/rs13010123
http://dx.doi.org/10.3390/rs15133301
http://dx.doi.org/10.3390/drones7080533
http://dx.doi.org/10.3390/drones7080533
https://www.mdpi.com/2077-0472/13/9/1701
https://www.mdpi.com/2077-0472/13/9/1701
http://dx.doi.org/10.3390/agriculture13091701
http://dx.doi.org/10.3390/agriculture13091701
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1109/TAI.2024.3400752
http://dx.doi.org/10.1109/4235.996017
https://arxiv.org/abs/2207.01848
http://dx.doi.org/10.48550/ARXIV.2207.01848
http://dx.doi.org/10.48550/ARXIV.2207.01848
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Dataset
	3.2 Data preprocessing
	3.3 Context-Aware Automated Feature Engineering
	3.4 AutoML approach

	4 Experimental Evaluation
	4.1 Experimental setup
	4.2 Results
	4.2.1 Preprocessing

	4.3 Feature Engineering
	4.4 AutoML

	5 Conclusion

