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Abstract

Voice disorders constitute a significant health concern, with an annual prevalence of approximately 7% among the adult population,
adversely affecting patients’ quality of life, encompassing both social and occupational functioning. Also, the majority of diagnostic
methodologies continue to depend on invasive techniques, whereas non-invasive automated diagnostic approaches have not been
extensively investigated yet. This study introduces a transformer-based method for detecting voice disorders aimed at enhancing
detection efficacy through a multimodal fusion strategy. Specifically addressing two distinct types of voice recordings — extracted from
sentences reading and vowels emissions -— we devised and assessed five multimodal fusion strategies across three stages: early, mid,
and late. Our experimental findings indicate that the cross-attention mid-fusion method harnesses the benefits of both data types, and it
achieves a detection accuracy of 0.885 and a macro F1 score of 0.843 on an internal dataset. These results represent an improvement of
+.03 to +.06 in accuracy and +.02 to +.05 in macro F1 score when compared to unimodal models (trained on sentence or vowel data
only). This study represents an advancement for an effective non-invasive detection of voice disorders and provides insights for clinical

practice.
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1. Introduction

Voice disorders have a significant impact on people’s lives,
with 7% of adults suffering from them each year. They can
lead to communication difficulties, reduced work productiv-
ity (7.4 work days lost per year on average), and even career
changes, with 4% of patients reporting a career change due
to voice problems [1, 2]. There are many types of voice
disorders, including but not limited to murmurs, vocal cord
dysfunction, and other voice problems caused by neurologi-
cal diseases, and their early and accurate diagnosis is crucial
for effective treatment [3].

Although traditional diagnostic techniques such as laryn-
goscopy and speech assessment are widely used clinically,
they have significant limitations [4]. First, these diagnostic
methods are very invasive and may cause discomfort to
the patient, thus affecting the experience particularly for
patients requiring several investigations and recurrent con-
trols (e.g. cancer patients) [5]. Secondly, these technologies
often rely on expensive equipment and highly specialized
operators, which limits their accessibility in resource-poor
settings. Thirdly, traditional methods rely on doctors’ sub-
jective judgments and suffer from subjective bias in eval-
uation results. Finally, these methods are mostly used for
diagnosis when symptoms are evident rather than as proac-
tive preventive screening tools, limiting their role in the
early detection of voice disorders [6].

The development of artificial intelligence technology [7],
especially the application of deep learning in the field of
audio and sound processing, provides new possibilities for
overcoming the above challenges [8]. By enabling auto-
mated, non-invasive, efficient diagnostics, deep learning
methods can lower diagnostic costs and reduce the need for
professionals, making detection more accessible and accu-
rate. In addition, these technologies can be integrated into
portable devices or mobile applications for active screening
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and real-time monitoring, providing a new solution for early
detection and intervention of voice disorders.

Very recently, Transformer-based models [9, 10, 11] have
been shown to be effective tools for the automatic detection
of voice disorders. Their core advantage is the ability to
capture long-term dependencies in time series data, which is
crucial for analyzing complex speech patterns. Through the
self-attention mechanism, transformers can not only effi-
ciently process large-scale datasets, but also extract complex
patterns that determine voice characteristics. However, this
area still remains under-researched with several research
questions that remain open due to the complexity and di-
versity of pathological voice features, which still remains
an open issue. Indeed, doctors perform different patient
voice assessments to assess different voice properties, such
as requiring the patient to read pre-defined sentences and
emitting sustained vowels.

This study addresses this challenge by proposing a multi-
modal approach to voice disorder detection. We leverage
the strengths of the transformer architecture to analyze mul-
timodal pathological speech data. Specifically, dealing with
two different types of data, namely sentences and vowels
only, we design a unified model to process them together.
Three fusion strategies — early fusion, mid-level fusion, and
late fusion - are investigated to effectively integrate cross-
modal information.

We empirically demonstrate that mid-level fusion tech-
niques are particularly suited for this task, demonstrating
their ability to capture complementary features and improve
detection performance. The cross-attention technique, in
particular, achieves performance gains of +.03-.06 in accu-
racy and +.04-.05 in macro F1 compared to single-modality
models, highlighting the potential of multimodal integra-
tion in enhancing detection performance. These findings
highlight the feasibility of multi-modal transformer-based
models in clinical applications and lay a solid foundation for
further advancement of automatic voice disorder detection.

The rest of the paper is organized as follows. In Section 2
we first review the relevant research on voice disorder detec-
tion and analyze the main challenges of existing methods in
application. Section 3 describes the proposed Transformer-
based method in detail, focusing on different multimodal
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fusion strategies. In Section 4 we introduce the experimen-
tal setup and evaluation methods, while in Section 5 we
provide a comprehensive analysis and interpretation of the
experimental results. Finally, in Section 6 we summarize the
significance of our research, explore potential limitations,
and provide suggestions for future research directions.

2. Related work

This section reviews the relevant research on voice disorder
detection and provides a theoretical basis for the tools and
methods used in subsequent sections. The discussion fo-
cuses on the evolution of voice feature analysis techniques,
the application of classifiers in detecting voice disorders,
and the latest progress in data augmentation and fusion
models.

2.1. Automatic Voice Disorder Detection
Methods

Traditional voice disorder detection methods rely on arti-
ficial feature engineering, that is, extracting acoustic fea-
tures such as Mel-frequency cepstral coefficients (MFCC),
pitch jitter, and amplitude shimmer from speech signals
[12, 13]. These features, rooted in digital signal process-
ing and speech science, have long been the cornerstone of
voice analysis. Using these manual features, researchers
rely on shallow learning models such as support vector ma-
chines (SVMs) and multi-layer perceptrons (MLPs), which
perform well in voice disorder detection problems in rela-
tively simple or well-controlled environments [14, 15, 16].
However, the complexity of pathological voice features and
the diversity of real-world scenarios have revealed the limi-
tations of these traditional methods, particularly in terms
of adaptability and generalization [17]

The advent of deep learning has transformed voice disor-
der detection, as it can automatically extract features from
raw speech signals. Unlike traditional methods that rely on
handcrafted features, deep learning models such as convo-
lutional neural networks (CNNs) and recurrent neural net-
works (RNNs) can learn more abstract and comprehensive
feature representations directly from data [12, 16, 18, 19, 20].
CNNss excel at capturing local patterns, while RNNs excel at
modeling temporally related patterns, making them more
suitable for voice pathology analysis, particularly when em-
ployed together.

Recently, transformer-based architectures have made
breakthroughs in automatic speech recognition and related
tasks [21, 22, 23, 24, 25, 26]. These models use self-attention
mechanisms to capture short and long-range dependencies
at the same time, thus performing well in processing com-
plex speech patterns [8, 11, 27]. Among them, Wav2Vec2’s
end-to-end modeling capability [27] combines a convolu-
tional encoder for extracting potential speech representa-
tions, a transformer-based context network for capturing
long-distance dependencies, and a quantization module for
self-supervised learning, further simplifying the feature ex-
traction process. This architecture enables the efficient and
accurate analysis of voices under various conditions.

2.2. Multimodal fusion

In voice analysis, multi-modality refers to input data ex-
tracted from different data sources or forms of information

[28]. For example, people chatting, singing, reading, or
performing particular sound patterns are all typical modal-
ities. The information provided by each modality may be
different and complementary, and a single modality often
cannot fully capture pathological features. Therefore, by
fusing data from different modalities, we can have a more
comprehensive understanding of the pathological condition,
thus improving the accuracy and robustness of detection.

In multimodal fusion, there are three main strategies:
early fusion, mid-level fusion, and late fusion [28, 29]. Early
fusion combines features from different modalities into a
vector before feeding them into a model. Mid-level fusion
integrates data at an intermediate stage, allowing for more
flexibility in capturing deeper correlations while maintain-
ing some distinctions between modalities. Late fusion trains
separate models for each modality and combines their pre-
dictions via an aggregation function such as average voting,
weighted voting, or using a meta-classifier.

2.3. Shallow approach to Multi-modal
Fusion for Voice Disorder detection

The research by Koudounas et al. [9] proposed an end-to-
end method based on a transformer, which directly pro-
cesses the original audio signal. To address the challenges
posed by different recording types (such as sentence read-
ing and sustained vowel utterances), they used a shallow
mixture of experts (MoE) [30] framework to optimize the
prediction alignment across recording types. Experimental
results show that the method improves the single-modality
approach in speech pathology detection and classification
tasks, and achieves good performance on public and private
datasets. However, this study mainly focuses on synthetic
data and the MoE framework, and lacks in-depth exploration
of multimodal fusion strategies.

Building on this, our study introduces a systematic study
of multimodal fusion strategies in voice pathology detec-
tion. We focus on early, mid, and late fusion methods, es-
pecially mid and late fusion, because these two methods
have greater flexibility and can capture deeper correlations
between modalities. Compared with the method of [9], our
study explores fusion strategies in more detail and demon-
strates how mid-fusion strategies are the best multimodal
approach in this domain to improve model generalization.

3. Method

This section outlines our contributions to multimodal fu-
sion strategies, emphasizing the mathematical formulation
of the problem and the model architecture. Specifically, we
introduce early, mid-level, and late fusion strategies in trans-
former architecture that integrate multiple modalities for
robust prediction.

In this study, we used two speech-based modalities to
solve the voice pathology detection task, each capturing
voice characteristics. The first modality x; represents the
original features extracted from the sentence reading record-
ing, while x;, represents the features extracted from the sec-
ond modality, the sustained vowel pronunciation recording.
Given a multi-modal architecture f, we input the raw audio
waveforms into the Wav2Vec2 model [27] to combine the
feature extraction for the different modalities. The model
then outputs the probabilities y, which are used to produce
the final classification result.
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Figure 1: Diagram of the early-fusion.

3.1. Early fusion strategies

The early fusion strategy connects the raw features of the
two modalities into a unified input representation. In this
stage, we first truncate all audio samples to a uniform length
to standardize the input length and eliminate the bias caused
by the difference in sample length. Then, we directly con-
catenate the raw audio features from the two modalities.
Specifically, the raw audio features from the two modal-
ities are concatenated in a fixed order: modality x; first,
then modality x,. To further distinguish the two of them,
a 1-second silence (s) padding is inserted between the two,
providing a clear boundary for the model (Eq.2). After con-
catenation, the generated unified features are fed as input
into the pre-trained Wav2Vec2 model for prediction. Fig.1
visually depicts this process.

Xearly = [x1; 55 %2 ] @
)Al = SOftmaX(f(xearly)) (2)
where:

+ s: a l-second silence padding between the two
modalities.

* Xerly the concatenated feature vector after early
fusion.

The symbol [;]: the concatenation operation.

y: Predicted output probabilities which are produced
by a softmax.

This method effectively captures modality-specific pat-
terns from distinct modalities through simple and direct
feature combinations.

3.2. Mid-level fusion strategies

In the mid-level fusion strategy, feature fusion is performed
after CNN encoding but before the features are fed into the
transformer encoder. This approach combines modality-
specific features in a shared representation space, allow-
ing the model to leverage interactions between modalities
for more robust predictions. We will analyze two differ-
ent fusion strategies: concatenated embedding and cross-
attention.

3.2.1. Concatenated embeddings

In the concatenated embedding strategy, features are first
extracted from each modality using a separate CNN layer
and mapped to the same vector space (Eq.3). We thus de-
compose the network into the composition of two modules
f = g o e, where e is the CNN-based feature extractor, while
g represents the transformer encoder layers. After feature
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Figure 2: Mid-level fusion using concatenated embedding.

extraction, the extracted embeddings are normalized to en-
sure consistency across modalities, then concatenated as
done in the early fusion approach (Eq.4), but at a deeper
feature level, as shown in Figure 2. Finally, the combined
feature vector goes through a dimension reduction layer to
fit the input size of the subsequent transformer encoder.

hy =e1(x1),  hy = ey(xp) 3)
Xmid = [h1; hal 4)
y = softmax(g(xmiq)) (5)

where:

+ hy and hy: high-dimensional embeddings extracted
from modalities x; and x; using CNN extractor, re-
spectively.

+ Xmig: Concatenated feature embeddings from both
modalities.

« grepresents the transformer encoder layers.

3.2.2. Cross-Attention

The cross-attention mechanism [11] dynamically captures
interactions between modalities by computing attention
weights based on the relationship between the Query (Q),
Key (K), and Value (V) matrices. This allows the model to
focus on important features across modalities.

First, given input feature matrices h; and h, of the two
modalities, we generate Q, K, and V through linear transfor-
mation,

Q = h1WQ, K = hZWK’ V= hZWV (6)

Here, W, W, and Wy are learnable weight matrices for the
query, key, and value, respectively. Next, we calculate the
attention matrix A between the Query (Q) and the Key (K) by
measuring their similarity, then normalized using softmax.
The attention weight is used to perform a weighted sum of
the Value V to generate output features O:

A = softmax (Q\/K;r ) (7

d
0=AV ®)

where:

« A is the general attention matrix.

« dy is the dimension of the key, \/dTc is the normaliza-
tion factor used for scaling.

As illustrated in Figure 3, cross-attention is computed in
both directions to effectively capture interactions between
the two modalities.
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Figure 3: Mid fusion using cross-attention.

1. We use h; as the query and h, as the key and value
to compute the attention (Eq.9).

2. We reverse the roles of the modalities and use h, as
the query and h; as the key and value (Eq.10).

Finally, the outputs of the cross-attentions from both di-
rections, O;_,, and O,_,, are concatenated to form a unified
representation, Xfsed, as shown in Eq.11.

This concatenation helps to merge the information from
both modalities in a unified feature space. The fused features
are then processed through a shared fusion layer before
passing them to a transformer encoder for deeper feature
extraction and ultimately classification.

0,9 = A;_,5V, = CrossAttention(hy, hy) 9)
Oy_,1 = Ay_,1V; = CrossAttention(hy, hy) (10)
Xfused = [O1-2: 0211 (11)
J = softmax(g(x fyseq) (12)

where:

« Arrows represent the direction of attention.

3.3. Late fusion strategies

While mid-level fusion captures fine-grained interactions
between modality-specific embeddings, late fusion is per-
formed at the decision level, allowing each modality to be
optimized independently and then integrated into a unified
prediction. This approach allows each model to focus on its
specific modality before being integrated, although it dou-
bles the size of the final model. Two late fusion techniques
are employed in our study.

Simple average In this approach, the outputs of the two
models, j; and j», are combined by taking their simple
average, as illustrated in the top part of Figure 4. This
strategy assumes that both models contribute equally to the
final prediction. The combined output ji,e; is computed as
follows:

N 1. N
Nate1 = 5 Gh +32) (13)

where j; and j, are the probability distributions produced
by the two individual models.

This fusion method is simple and it is computationally
efficient as it avoids any extra parameters.

Mixture of Expert As a second late fusion strategy, we
employ a shallow mixture of experts (MoE) to combine the
outputs of two independent models and improve the overall
performance of the system. Unlike the simple averaging
method, this approach assigns weights to each model’s pre-
dictions based on how relevant they are to the final output.

As shown in Figure 4, we use a simple multi-layer percep-
tron (MLP) configured with a single hidden layer to predict
weights to combine the outputs of each model. The in-
put layer of the MLP is a probabilistic concatenation of the
two modalities (3, »), and the output layer applies a soft-
max function to ensure that the sum of all model weights
is 1 (Eq.14). During inference, the final prediction is com-
puted using the weights to combine the contributions of
both models (Eq. 15). This approach improves the system’s
performance on unseen data while maintaining a simple
architecture.

[wr, wy] = softmax(MLP([J1; 3,1)) (14)
atez = W1 - Pitest + W2 * P test (15)

Here:

« [wy, wp]: Weights learned from the concatenated out-
puts ; and j», on the validation set.

* Vitests Yo test: Predicted probabilities from the two
models on the test set.

4. Results

This section provides an overview of the datasets and pre-
processing methods used in our experiments, followed by a
detailed description of the training setup to ensure repro-
ducibility.

All experiments were conducted in a cloud-based envi-
ronment equipped with a Tesla P100-PCIE-16GB GPU'.

Details of the software environment can be found in the
project repository?.

4.1. Dataset

IPV  The Italian Pathological Voice (IPV) dataset is a novel
and diverse resource designed specifically for voice pathol-
ogy research, currently unpublished and introduced in [9].
Collected from participants in Italian otolaryngology and
voice therapy clinics, the dataset includes both healthy indi-
viduals and patients with varying degrees of voice disorders.
All recordings were conducted under strict standardization
protocols in quiet environments, ensuring high-quality sam-
ples with a signal-to-noise ratio exceeding 30 dB and a fixed
microphone distance of 30 cm.

The dataset comprises two modalities: sustained phona-
tion of the vowel /a/ (SV) and reading of five phonetically
balanced sentences (CS) adapted from the Italian version
of CAPE-V [31]. Each sample includes detailed health con-
dition notes and diagnoses from experienced physicians.
Table 1 provides a detailed summary of the dataset charac-
teristics, including sample distribution, record length, and
modal information.

Audio Preprocessing To ensure the consistency of audio
duration and facilitate comparison, we cropped the samples
in the datasets to fixed lengths: CS samples were cropped
to 19 seconds, and SV samples were cropped to 18 seconds.
These lengths are designed to cover approximately 90% of
the samples in each modality, ensuring that most voice

'We gratefully acknowledge the computational resources provided by
Kaggle (https://www.kaggle.com/) for this research. We also appreciate
the early-stage support from HPC@Polito (http://www.hpc.polito.it).

2Github repository: github.com/multimodal_pathologies_prediction
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Table 1

The table summarizes the characteristics of the dataset. Healthy
and Pathological represent the number of healthy and diseased
samples, respectively. CS indicates the number of sentence read-
ing samples, and SV represents the number of syllable articulation
samples. T(s) denotes the average duration of the audio samples
in seconds.

Healthy  pathological CS SV T(s)
IPV 362 672 517 517 1295

information is preserved for effective model training while
reducing the impact of outlier samples that are too long. For
samples shorter than the fixed lengths, zero-padding was
applied to extend them to the required duration.

Then, the audio data was standardized using the prede-
fined processor provided by the Wav2Vec2 framework. The
processor first resamples the audio data to 16kHz to ensure
compatibility with the framework, and reduce computa-
tional overhead. Then the converted feature representation
can not only effectively capture the key information in the
speech signal, but also provide consistent and efficient input
features for the model to support subsequent training tasks.

In order to avoid issues with the imbalance of pathologi-
cal voice data (healthy samples are less than pathological
samples), a stratified sampling method was used in the data
division process to ensure proportional representation of
healthy and pathological samples across all splits. We di-
vided the data into training, validation, and test sets in a
ratio of 8:1:1 to ensure fair and reproducible evaluations.
The test set was first separated using a fixed random seed.
Subsequently, the training and validation sets were further
split using three different random seeds to create multiple
splits. The final results are calculated by averaging the per-
formance metrics over these splits to ensure the robustness
and reliability of the evaluation.

4.2. Baselines

To verify the effectiveness of our proposed method and
provide a comparison, we designed a series of traditional
baseline models, including the classic multi-layer percep-
tron (MLP) and a lightweight convolutional neural network
(MobileNetV2 [32]) based on transfer learning. These base-
line models are trained based on traditional audio features
to evaluate the performance of different model architectures.
In contrast, the unimodal model based on the Wav2Vec2
processor directly processes the audio waveform to extract
features, reflecting the advantages of end-to-end methods.

In the feature extraction process of the baseline model,
the audio data is uniformly sampled to 16kHz and truncated

to a fixed maximum duration to ensure sample consistency.
We extract 40-dimensional MFCC features through librosa,
transpose them into a time-step sequence form, and uni-
formly zero-fill the feature sequence. At the same time, a
padding mask is generated to distinguish between real data
and padding parts. The following is the specific design of
the two baseline models.

MLP s designed with two fully connected layers contain-
ing 50 hidden units, using the ReLU activation function to
extract high-dimensional features, aggregating the time di-
mension information through the global average pooling
layer, and finally performing binary classification through
the Softmax output layer. The training process uses the
Adam optimizer with a learning rate of 0.01, a batch size of
16, and an early stopping strategy to prevent overfitting.

2D-CNN The audio features are converted to 2D images
by repeating a single channel to RGB three channels to fit
the input requirements of the pre-trained model. We load
the pre-trained weights (ImageNet [33]) of MobileNetV2
[32], remove the top classification head, and add a global
average pooling layer, a 512-unit fully connected layer, and
a Softmax classification layer. Dropout is added to the top
network to improve generalization, and the pre-trained fea-
ture extraction part is fine-tuned. Two fine-tuning strategies
are used: full fine-tuning and head-only fine-tuning. In full
fine-tuning, all layers of MobileNetV2 are updated during
training to maximize performance optimization; while in
head-only fine-tuning, only the newly added classification
head is trained, while the pre-trained feature extraction
layer is frozen to retain the common features learned from
ImageNet. The training hyperparameters of both strategies
are consistent with the MLP model.

4.3. Training Procedure

Our method is based on a pre-trained Wav2Vec2.0 model
(trained on the LibriSpeech 960-hour dataset) and evaluates
three fusion strategies on the IPV dataset: early fusion, mid-
level fusion, and late fusion.

Early fusion is accomplished by directly concatenating the
original audio of CS and SV, and adding 1 second of silence
(38 seconds) after the total length of the audio to avoid
feature loss. The concatenation is performed on the same
individual. The concatenated audio signals are uniformly
processed in a Wav2Vec2.0 processor to ensure consistency
in feature extraction. Mid-level fusion is based on 2 fine-
tuned Wav2Vec2.0 models, and global feature modeling is
achieved through a shared Transformer encoder (initialized
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Table 2

Performance Comparison of Single-Modality Baselines and Dual-Modality Fusion Methods. CS refers to a single modality
with sentence reading, SV to a single modality with vowel pronunciation. Values spanning both columns refers to modality
fusion methods. Bold values indicate the best performance for a given metric.

. Accuracy Macro F1
Modality =~ Method cs sy cs sy
MLP 801011 .750+057  .767x022  .686+.053
Single 2D-CNN (Train all layers) .667+011  .673x.000  .400+004  .402+.000
2D-CNN (Fine-tune classify head) | .789:019  .782:t.048  .765:021  .723:.063
Wav2Vec2 .859+.020  .827+.000  .837:.038  .793=:.000
Early Fusion .859+.011 .829+.016
Mid (Concatenated Embeddings) .878+.0m .838+.014
Multi Mid (Cross Attention) .885:.000 .843+.005
Late (Simple Average) .852+.022 .824+.027
Late (MoE) .872+.011 .857+.012

with pre-trained Wav2Vec2 parameters). The first method
directly concatenates CS and SV extracted features, and the
second achieves feature interaction through a bidirectional
cross-modal attention mechanism. The number of attention
heads is set to 4. Late fusion utilizes fine-tuned CS and
SV models to generate the final classification results by
combining the probabilities from both modalities, either
through simple averaging or a shallow MOE (an MLP with
10 hidden nodes) that determines modality weighting based
on the probabilities from the training and validation sets.

All experiments above were completed within 50 training
rounds (epochs), and using fixed random seed to ensure
the reproducibility of the results. The AdamW optimizer
(weight decay = 0.01) was used for all experiments. A lin-
ear learning rate scheduler is used to optimize the learning
rate adjustment. The scheduler reduced the learning rate
linearly over the total number of training steps, with no
warm-up steps. Initial learning rates are optimized by man-
ual adjustment, using le-5 for single modality and concate-
nated fusion and 6e-6 for cross-attention fusion. To address
class imbalance, a weighted cross-entropy loss function was
applied, with class weights computed based on the train-
ing dataset’s label distribution. The batch size was set to
8, and an early stopping strategy with the patience of 10
epochs was used to terminate training when the validation
performance plateaued. More experimental details and hy-
perparameter configurations can be found in the GitHub
repository of the article.

4.4. Evaluation Metrics

To evaluate the performance of the model in the voice dis-
order detection task, we used two key metrics:

Accuracy Accuracy measures the proportion of correctly

predicted samples to the total number of samples, providing

an overall assessment of classification performance:
Number of Correct Predictions

A = 16
ceuracy Total Number of Samples (16)

While accuracy is a useful general metric, it can be less
informative in imbalanced datasets.

Macro F1-Score To better evaluate performance across
imbalanced classes, we adopted the macro-average F1 score,
which calculates the F1 score for each class and then aver-
ages them:

Fl=2x Prec.ls.lon - Recall (17)
Precision + Recall

Macro F1-Score =

o
™=

Il
-

F1, (18)

Here, N is the total number of categories. Macro F1-Score
gives equal importance to all classes, making it particularly
suitable for tasks with class imbalance, such as voice disor-
der detection.

5. Discussion

In this section, we analyze and interpret the experimental
results by focusing on two key aspects: comparing base-
line models to assess their effectiveness as reference, and
evaluating different fusion models to explore their ability
to integrate multimodal information and improve general-
ization to unseen data. By systematically studying these
factors, we aim to highlight the strengths and limitations
of the proposed approach and provide insights for future
improvements.

Benchmark comparison Table 2 presents a comparison
of the performance of unimodal baseline models for voice
disorder detection on the IPV dataset.

As expected, Wav2Vec2 achieved the best results among
the four baseline models, with accuracy of .859 and .827
in CS and SV modes, respectively, and .837 and .793 for F1
macro, respectively. The superior performance of Wav2Vec2
underscores the benefits of self-supervised pre-training on
large-scale audio data. This means that the model does not
need to be trained from scratch, but through pre-training
and transfer learning capabilities, it can have audio features
with good generalization capabilities, even with a small
amount of labeled data. Moreover, it benefits of the attention
mechanism which better extract relevant features from long
sequence of data.

The MLP model performs well in CS mode with an ac-
curacy of .801 and F1 Macro of .767, but drops to .750 and
.686 in SV mode, highlighting its limitations in capturing
complex audio features with limited contextual information.
Compared to MLP, our method improves F1 Macro by +.07
in CS mode and +.10-.11 in SV mode, with corresponding
accuracy improvements of +.05-.06 and +.07-.08.

For the 2D-CNN, fully fine-tuning all layers leads to poor
performance (.667 and .673 accuracy in CS and SV modes,
respectively; .400 and .402 F1 Macro), likely due to the dis-
ruption of pre-trained features. Fine-tuning only the clas-
sification head improves the performance to .789 and .782
accuracy in CS and SV modes, and .765 and .723 F1 Macro,



respectively. However, our method performs better than
the fine-tuned 2D-CNN, with +.07-.08 improvement in F1
Macro, +.07-.08 and +.04-.05 improvement in accuracy in
CS and SV modes.

The above results show that fine-tuning the pre-trained
Wav2Vec2 model is an effective solution for small dataset
tasks, it highlights the necessity of carefully designed opti-
mization methods.

Fusion strategy vs. single modality performance The
fusion method shows an advantage over the single modality
by effectively combining the complementary information
of CS and SV inputs. In particular, as shown in Table 2,
the proposed mid-level fusion pipeline shows significant
improvements over single modality models. Concatenated
Embeddings improves accuracy by +.02 and macro F1 by
+.001 on the CS model, and by +.05 and +.04 on the SV
model, respectively. Cross Attention performs even better,
with accuracy and F1 gains of +.03 and +.006 on the CS
model, and +.06 and +.05 on the SV model for accuracy and
macro F1, respectively. These results highlight the benefits
of leveraging complementary information from multiple
modalities.

When compared to other fusion strategies, instead, mid-
level fusion consistently outperforms both early and late
fusion methods. The cross-attention method achieves the
best results with .885 accuracy and .843 macro F1, which
is +.02-.03 in accuracy and +.01-.02 in macro F1 compared
with early fusion. Similarly, it achieves +.01-.04 improve-
ment in accuracy and +.01-.03 improvement in macro F1
compared to late fusion strategies such as Mixture of Ex-
perts (MoE). These results demonstrate the effectiveness of
dynamically capturing inter-modality dependencies during
feature integration.

Compared with early fusion that concatenates raw fea-
tures, the proposed mid-level fusion method can model com-
plex inter-dependencies, leading to robust feature represen-
tation. In contrast, late fusion methods, while simpler to
implement, operate at the decision level and cannot fully
exploit the interactions between modalities.

In summary, our proposed mid-level fusion strategy, es-
pecially the cross-attention strategy, achieves the best per-
formance among all methods. The results show that it is
able to dynamically integrate complementary modality in-
formation, leading to significant improvements in accuracy
and macro F1 performance.

6. Conclusion

This study investigates the effectiveness of various models,
and fusion methods for speech impairment detection using
unimodal and multimodal approaches. We leverage end-
to-end pre-trained models Wav2Vec2, which is once again
proven to be an effective model for solving audio tasks, even
with a limited dataset size. This not only reduces the steps of
manual feature extraction but also enables robust features
to be extracted from audio data through self-supervised
pre-training, showing good generalization ability.

Among multimodal methods, our experiments show that
mid-level fusion strategies, especially the cross-attention
mechanism, outperform early and late fusion techniques.
The cross-attention mechanism dynamically captures fine-
grained inter-modal dependencies, leading to the highest

performance. In contrast, early fusion methods, while bene-
ficial for capturing joint features from the beginning, may
lack flexibility in handling complex interactions between
modalities. This often leads to inferior performance com-
pared to mid-level fusion. Late fusion methods are easier to
implement but have limited capabilities in modeling com-
plex feature interactions and a higher number of parameters.

These findings provide valuable insights into the design of
voice disorder detection systems, especially with regard to
their potential applications in clinical diagnosis and health
monitoring.

Future Work Although this study provides valuable in-
sights, there are still some limitations and directions for
improvement.

First, the experiments are limited to a specific dataset,
IPV, which contains two homogeneous audio modalities and
cannot cover a wider range of scenarios. Future work can
explore larger and more diverse datasets, including datasets
collected in realistic noisy environments, or cross-lingual
datasets to evaluate the reliability of the model in the real
world. In addition, future work can integrate other medical
modalities (e.g. laryngoscope images + audio samples), to
expand audio beyond the audio domain for more compre-
hensive voice disorder detection. Second, the current study
only focuses on voice disorder detection tasks. In the fu-
ture, it can be expanded to multi-classification tasks to more
comprehensively evaluate the effectiveness of the model
in practical applications, especially in the classification of
different types of pathologies that are at the root of the voice
disorder.

Third, we only used the wav2vec2 model for feature ex-
traction and multi-modal fusion, and did not compare it on
other advanced Tansformer models (e.g. Hubert, WavLM,
etc). Future work can explore and evaluate their effective-
ness in the medical voice pathology analysis of these models.

Data augmentation techniques can also be combined to
enhance the generalization ability of the model, so as to
maintain excellent performance in more diverse application
scenarios.

By addressing these limitations, future research can build
on this study to develop more powerful, efficient, and scal-
able voice disorder detection solutions, thereby bringing
greater social and technological impact for practical appli-
cations.
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