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Abstract
Accurately predicting weather conditions in advance is crucial across various sectors. It informs decision-making in agriculture, enables
preparation for potential natural disasters, optimizes renewable energy management, and helps reduce energy waste and inefficiencies.
In the current historical context, achieving maximum forecast precision has become more critical than ever. Artificial intelligence is
transforming the methods and tools we use to reach this goal, paving the way for unprecedented advancements. Its main advantage
lies in the ability to manage and evaluate huge amounts of data identifying complex patterns and correlations that could escape from
human analysis. The system’s fast processing capabilities constitute another fundamental aspect, producing territory-specific forecasts
that consider both local micro-climates and distinctive geographical features. The present work aims to compare different deep learning
approaches applied to weather forecasting, conducted as part of the PRECEDE Project. Recurrent neural networks are analyzed, in
particular Gated Recurrent Units, and Temporal Convolutional Networks, known to be two architectures specialized in modelling data
sequences over time horizons. The study highlights the performance of neural networks in enhancing the outputs of the MM5 weather
model, a regional mesoscale model, over one-, two-, and three-day time horizons. Furthermore, the work explores the strengths and
limitations of each approach, providing insights into their effectiveness, which serve as a foundation for guiding future research and
practical applications of deep learning in weather forecasting.
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1. Introduction
Weather forecasting plays a crucial role in decision-making
across various sectors, including agriculture, disaster man-
agement, energy optimization and urban planning. Reliable
predictions reduce risks, enhance efficiency and support
the transition to sustainable energy systems through bet-
ter management of renewable sources. As global energy
demand rises, advanced forecasting methods help optimize
wind and solar energy usage within decentralized models
like energy communities - local networks where individuals
both produce and consume energy, essential for reducing
fossil fuel dependency.

Weather forecasting is challenging due to dynamic pat-
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terns. Deep Learning has improved accuracy by analyzing
large datasets and identifying complex temporal patterns.
These advances help optimize energy systems while main-
taining grid stability and meeting prosumer needs.

DL methods, including Recurrent Neural Networks
(RNNs), Gated Recurrent Units (GRUs), and Temporal Con-
volutional Networks (TCNs), excel at modeling temporal
data sequences and capturing climate data trends. Addition-
ally, traditional models like the Fifth-Generation NCAR-
/Penn State Mesoscale Model (MM5) maintain their im-
portance due to operational dependability, offering solu-
tions across multiple sectors. Despite these advancements,
two significant challenges persist in the pursuit of precise
weather forecasting and its integration with energy systems.
The first challenge lies in developing a robust platform ca-
pable of efficiently managing, integrating, and analysing
vast amounts of heterogeneous data from diverse sources.
This is essential given the intricate relationship between
climatic variables and renewable energy production. The
second challenge focuses on leveraging this integrated data
to design advanced models and services that can accurately
predict energy production and meet evolving management
requirements, ensuring both reliability and sustainability.

In this context, the present work aims to address the lim-
itations of current Regional Climate Models (RCMs), includ-
ing MM5’s occasional inaccuracies, through a comparative
analysis of deep learning methodologies applied to weather
forecasting. Insights are drawn from the PRECEDE project,
which explores innovative approaches to enhance predic-
tion accuracy and optimize energy-related applications by
integrating the strengths of DL models with traditional fore-
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casting frameworks. Additional details about the project
can be found in [1].

In detail, machine and deep learning models are imple-
mented to combine real-time measurements with RCM out-
puts. The models analyze climate data streams to iden-
tify seasonal patterns and short-term trends, improving the
prediction of key weather parameters - including solar ra-
diation, temperature, relative humidity, and atmospheric
pressure - which in turn leads to more accurate forecasts
of renewable energy generation. This comprehensive ap-
proach optimizes energy storage and distribution for energy
communities, while improving the efficiency and sustain-
ability of renewable energy systems at both individual and
community scales.

The paper is structured as follows: after this brief in-
troduction, Section 2 reviews the state-of-the-art artificial
intelligence techniques currently used for predicting cli-
matic parameters. Section 3 provides an overview of the
MM5 model, the weather datasets and the chosen artificial
neural networks utilized in this study. Finally, the results
are presented in Section 4, followed by a discussion of the
main findings in Section 5.

2. Related Works
Predicting climate variables is notoriously difficult due to
their dynamic nature, thus considerable effort has been
made to apply Artificial Intelligence (AI) to this challenge.
Consequently, a new field, Deep Learning for Weather Pre-
diction (DLWP), has born and it has demonstrated impres-
sive results, as shown in [2, 3]. The ability of Neural Net-
works to learn complex nonlinear relationships and to pro-
cess vast amounts of data simultaneously enables their appli-
cation in different fields, such as in solar radiation prediction
(at both daily and hourly scales), short-term and long-term
wind resource estimation, and in the forecasting of various
meteorological parameters such as temperature, precipita-
tion, cyclones, and humidity [2, 4, 5, 6, 7]

Among the available architectures, we chose the GRUs
and the TCNs due to their specialization in modeling data
sequences. LSTM and GRU are the two main RNN variants
that handle long sequences better than vanilla RNNs. After
conducting a comparative evaluation between GRU and
LSTM on a sample dataset, our analysis revealed comparable
performance between the two models. GRU has been chosen
for its simpler design, faster training, and more efficient
memory use.

The TCNs are well known to outperform RNNs across a
broad range of sequence modeling tasks [8]. However, in
[9] , the GRUs show better prediction capability than TCNs,
but the problem of the correct tuning hyperparameters is
opened. Also, the study raises the possibility that results
may differ if the lengths of the input or output changes.
The full potential of GRUs and TCNs in climate variable
prediction remains to be explored, as their application in
this domain is still an emerging area of research.

Different solutions exist in the field of energy, or power,
forecasting. Shaikh et al. [10] demonstrated that TCNs
typically outperform LSTM models. On the other hand,
the review conducted in [11] studies the possible advan-
tages and disadvantages of different neural networks for
Photovoltaic (PV) power prediction and it finds that the Mul-
tilayer Perceptron, RNNs, Convolutional Neural Network,
and Graph Neural Network architectures have different fore-

casting advantages that depend on its specific application
scenario.

For weather forecasting applications, studies in [12] and
[13] demonstrated TCN models’ effectiveness in predicting
Global Horizontal Irradiation (GHI) and ten weather param-
eters, respectively. However, while these works addressed
forecasting horizons ranging from minutes (5, 10, 15, and
20) to several hours (up to 9), they operate on different time
scales than the here presented research.

Despite notable advances in energy management and
forecasting research, most approaches remain fragmented
rather than converging into comprehensive solutions. While
machine learning has shown promising results in weather
prediction [2, 3, 4, 5], solar radiation estimation [6, 14, 15, 16]
and temperature forecasting [7, 17, 18], these advances have
not been fully integrated into comprehensive energy man-
agement systems. Furthermore, existing energy optimiza-
tion strategies [19, 20, 21, 22] tend to focus on specific com-
ponents, such as battery management or demand response,
without addressing the complex, interconnected nature of
energy communities. To overcome these limitations, the
PRECEDE project introduces an integrated framework that
leverages multiple AI techniques through a modular archi-
tecture, comprehensively addressing the energy manage-
ment pipeline from data integration to community-scale
optimization. Unlike previous approaches limited to spe-
cific community data, PRECEDE’s architecture transcends
these limitations offering a generalizable framework that
adapts to diverse settings and environmental conditions
while bridging the gap between climate forecasting and
energy optimization.

3. Background
This section explores both the meteorological and AI aspects
of our datasets and proposed models.

3.1. The Fifth Mesoscale Model (MM5)
The Fifth-Generation Penn State/NCAR Mesoscale Model
(MM5) is a widely used numerical weather prediction sys-
tem, developed collaboratively by the Penn State Univer-
sity and the National Center for Atmospheric Research
(NCAR). It is designed to simulate mesoscale and regional
atmospheric phenomena for both research and operational
forecasting.

MM5 is highly adaptable, offering configurable grid res-
olutions, physical parameterizations, and boundary con-
ditions to suit various meteorological applications. It em-
ploys a 𝜎-coordinate system based on hydrostatic pressure
and finite-difference numerical schemes, specifically the
Arakawa-Lamb B-staggering technique, enabling detailed
simulations of convection, radiation, cloud microphysics,
and surface-atmosphere interactions.

The non-hydrostatic model relies on conservation equa-
tions for momentum and energy, incorporating a tendency
equation for perturbation pressure. MM5 predicts meteo-
rological variables like temperature, pressure, wind, solar
radiation, and cloud cover, making it suitable for diverse
applications, including short-term weather forecasting, cli-
mate studies, air quality management, water resource plan-
ning, and severe weather analysis.

With portability across computational platforms and ex-
tensive documentation, MM5 is accessible to users of vary-



ing expertise. Additional details about the MM5 system and
its key features are available in Grell et al. [15] and Dudhia
et al. [16].

3.2. Datasets
Both case studies, Casaccia and Ottana, utilize datasets with
measurements collected at 10-minute intervals. The Casac-
cia database spans three years, beginning January 1𝑠𝑡, 2018
at 1:10 am, and includes four physical quantities: GHI, tem-
perature, atmospheric pressure, and relative humidity. The
Ottana dataset covers one year, starting from May 31𝑠𝑡, 2021
at 17:10, and comprises three physical quantities: GHI, at-
mospheric pressure, and relative humidity. The difference in
dataset duration arises from their availability and reliability
from weather stations in each location. Acquiring contin-
uous and high-quality meteorological records remains a
challenge, and the selected databases represent the most
comprehensive and accurate data accessible for each site.
Additionally, the study’s methodological approach accounts
for these variations by focusing on relative trends and pat-
terns rather than absolute comparisons, thus maintaining
the validity of the performance evaluation across locations.
For both locations, each measured quantity is paired with its
corresponding MM5 system prediction, and all values have
been normalized. Distinct datasets were created for each
combination of prediction horizon 𝜏 (144 for 1 day, 288 for
2 days, and 432 for 3 days) and target variable i (0 for GHI, 1
for temperature, only for Casaccia, 2 for atmospheric pres-
sure and 3 for relative humidity). Each of these datasets has
been divided into three subsets training set (60%), validation
set (20%) and test set (20%).

3.3. Artificial Intelligence Techniques
3.3.1. Gated Recurrent Unit

The GRU is a specialized recurrent neural network architec-
ture that excels in modeling sequential data and temporal
dependencies. At its core, the GRU cell processes sequential
information through a sophisticated gating mechanism that
selectively retains or discards information at each time step.
This mechanism consists of two primary components: the
update gate and the reset gate. The update gate balances
the integration of new information with historical context,
determining how much of the previous hidden state should
persist. Meanwhile, the reset gate controls the forgetting
mechanism, allowing the model to discard irrelevant past
information. This dual-gate architecture allows GRUs to
effectively model long-term dependencies while address-
ing the vanishing gradient problem inherent in traditional
RNNs, as both gates work together to precisely control the
temporal evolution of the hidden state. By dynamically
managing information flow, GRUs maintain an adaptive
memory that evolves with the input sequence, making them
particularly effective for tasks like time series forecasting
and natural language processing.

3.3.2. Temporal Convolutional Networks

The TCN is a neural network specialized in modeling data
sequences, drawing inspiration from the operational mecha-
nism of Convolutional Neural Network, which uses filters to
recognize patterns in data. However, instead of performing
two-dimensional convolution (as with images), it operates

Figure 1: GRU basic building block.

Figure 2: TCN basic building block.

in a single dimension (time series). In this case, the con-
volution is made causal, meaning the network learns to
predict the output at time 𝑡 by only considering data up to
time 𝑡, avoiding the use of future information to predict the
present. A key requirement for a forecasting model is that
each output element should depend on all historically pre-
ceding input elements: the TCN adopts dilated convolutions
to expand its receptive field without dramatically increasing
the number of parameters. This technique ensures coverage
of extensive sequence portions without losing resolution
or computational efficiency, even with a small convolution
kernel. Importantly, expanding the receptive field enhances
the network’s ability to capture long-term dependencies.
To address the vanishing gradient problem, particularly in
deep networks, residual connections are employed, creat-
ing a direct path between the network’s input and output.
Currently, TCNs are considered an alternative to RNNs, in-
cluding their more sophisticated versions, LSTM and GRU.
Some advantages of TCNs are their ability to parallelize
work, which streamlines the training process, and the ab-
sence of a recursive structure, which leads to more stable
gradient propagation.

3.3.3. Deep Reinforcement Learning

To manage energy communities, the global PRECEDE frame-
work has adopted a DRL approach, widely considered one
of the most effective methodologies in this field. This ad-
vanced computational paradigm combines DL architectures
with the Reinforcement Learning (RL) framework, enabling
robust solutions for complex decision-making processes.
However, it is important to note that the DRL approach was
not utilized in the analyses conducted here.

RL operates on the principle of sequential decision-



making, where an agent interacts with an environment
through an iterative process of observation, action, and re-
ward. The environment is typically modeled as a Markov
Decision Process (MDP), characterized by a state space 𝑆, an
action space 𝐴, and a reward function 𝑅. At each time step
𝑡, the agent observes the current state 𝑠𝑡 ∈ 𝑆 and selects an
action 𝑎𝑡 ∈ 𝐴 based on its policy 𝜋(𝑎|𝑠), which maps states
to action probabilities. Following the action, the environ-
ment transitions to a new state 𝑠𝑡+1 and provides a reward
signal 𝑟𝑡. The agent’s objective is to learn an optimal pol-
icy 𝜋* that maximizes the expected cumulative discounted
reward, expressed as 𝐸[

∑︀
𝛾𝑡𝑟𝑡], where 𝛾 ∈ [0, 1] is the

discount factor balancing immediate and future rewards.
DRL represents a sophisticated integration of deep learn-

ing architectures with Reinforcement Learning principles,
designed to handle complex decision-making tasks in high-
dimensional spaces. The integration of deep learning en-
hances the agent’s capability to identify complex patterns
and hierarchical representations, leading to more sophisti-
cated decision-making strategies.

4. Discussion
To fully understand the PRECEDE project, a brief introduc-
tion strictly connected to the layers which compose the
proposed system is resumed in Fig. 3.
The PRECEDE architecture is composed of four different lay-
ers, which belong to two different processing steps: the data
integration and processing step and the energy production
forecasting and managing step. The Data Flow layers, com-
prising the Data Integration Layer and Climate Variables
Broadcasting Layer, handle the acquisition, integration, and
processing of heterogeneous data sources, providing reliable
climate forecasts through advanced DL models. The Energy
Management layers, consisting of the Energy Production
Forecasting Layer and Energy Flow Optimization Layer,
leverage these forecasts to optimize energy production and
distribution within the community through physical models
and multi-agent reinforcement learning techniques.

The first step includes the Data Integration and Climate
Variables Broadcasting layers, which are involved in the
acquisition, integration, and processing of heterogeneous
data sources to produce forecasts of climatic variables. The
data used in this step come from two different sources, as
previously introduced: real data, which belongs to physical
weather stations, and MM5 model predictions. To assess
this stage, the advanced deep learning models introduced
in Fig. 3 are adopted.

These weather forecasts are then integrated into an effi-
cient prediction system for prosumers, using physical mod-
els and multi-agent RL to optimize energy production and
distribution. Our analysis compares two models for climate
variable prediction: GRUs and TCNs. We evaluate their
similarities, differences, and relative performance. These ar-
chitectures were selected for their ability to track temporal
data evolution while identifying relevant patterns.

These supervised learning models enhance the prediction
of key climatic variables - including GHI, temperature, pres-
sure, and relative humidity. By combining RCMs forecasts
with actual observations as inputs, the models produce more
accurate predictions and reduce the RCMs’ tendency to over-
or underestimate values during certain periods [23, 24].

First Layer:
Data Integration Layer

(MOMIS Platform)

Integration of heterogeneous data sources

Second Layer:
Climate Variables Broadcasting

(Deep Learning: GRU, TCN)

Accurate climate variable forecasting

Third Layer:
Energy Production Forecasting

(Physical Models)

PV energy production estimation

Fourth Layer:
Energy Flow Optimization
(Deep Reinforcement Learning)

Multi-agent optimization system

Integrated data

Climate forecasts

Production Estimation

Figure 3: PRECEDE system layers overview.

4.1. Experimental Settings
The model was developed in Python (version 3.11.11 ) using
PyTorch (version 2.5.1+cu121) and a Tesla T4 GPU with 51
GB of RAM and 15 GB of VRAM.

The training process was configured with a maximum
of 200 epochs and with the patience parameter in the early
stopping mechanism set to 10 iterations.

4.2. Results
To evaluate the comparative performance of the GRU and
TCN models, we computed the Mean Absolute Error (MAE),
the Coefficient of Determination (R²) and analyzed their
respective Taylor diagrams.

The MAE, reported in Equation (1), measures the aver-
age absolute difference between the predicted values and
the actual target values by giving equal weight to all errors,
regardless of their direction (overestimates or underesti-
mates).

𝑀𝐴𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖| (1)

The Coefficient of Determination (CoD), calculated as de-
fined in Equation (2), measures how well the model is able
to predict the variance of the data. The closer its value is to
unity, the better the model fits the data. 𝑦 denotes the mean
of the observed data, while 𝑦 the predicted value.

𝑅2 = 1−
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
(2)

As presented in [23, 24], the AI model manages to improve
the forecasts returned by the MM5 RCM, which exhibits
both positive and negative deviations from the real data. In
this experiment, good performances are achieved for both
the GRUs and the TCNs, as shown in Tables 1 and 2 .

Considering the Casaccia study (see Table 1), it is readibly
observable that the GRU and TCN models applied to the
MM5 model outperform it. The most impressive results



Variable System 𝜏 = 144 (1 day) 𝜏 = 288 (2 days) 𝜏 = 432 (3 days)
MAE R2 MAE R2 MAE R2

GHI
MM5 46.557 0.867 46.472 0.863 45.365 0.867
GRU 39.140 0.902 39.863 0.892 37.907 0.944
TCN 37.755 0.906 38.778 0.902 37.626 0.903

Temperature
MM5 2.389 0.841 2.388 0.840 2.361 0.844
GRU 1.232 0.948 1.366 0.940 1.313 0.942
TCN 1.252 0.947 1.329 0.940 1.363 0.937

Pressure
MM5 173.116 0.863 173.264 0.857 170.598 0.867
GRU 90.423 0.954 90.062 0.948 90.151 0.952
TCN 77.956 0.966 85.129 0.956 81.097 0.961

Humidity
MM5 10.720 0.571 10.735 0.570 10.715 0.581
GRU 8.313 0.733 8.498 0.724 8.480 0.728
TCN 8.371 0.733 8.775 0.706 8.654 0.716

Table 1
Comparison of performance metrics for Casaccia.

Variable System 𝜏 = 144 (1 day) 𝜏 = 288 (2 days) 𝜏 = 432 (3 days)
MAE R2 MAE R2 MAE R2

GHI
MM5 60.230 0.846 59.837 0.844 57.498 0.856
GRU 52.595 0.887 53.566 0.882 53.105 0.878
TCN 50.282 0.898 53.846 0.933 53.471 0.884

Pressure
MM5 60.757 0.977 64.548 0.975 64.392 0.977
GRU 70.594 0.964 72.816 0.968 95.708 0.954
TCN 67.796 0.967 70.835 0.971 74.626 0.969

Humidity
MM5 10.353 0.680 10.158 0.685 9.982 0.697
GRU 7.794 0.817 8.239 0.794 9.049 0.750
TCN 8.088 0.797 8.196 0.786 7.933 0.799

Table 2
Comparison of performance metrics for Ottana.

can be seen in atmospheric pressure forecasting, where the
TCN reduce the error of over the 54.97%, 50.86% and 52.46%
with 1-day, 2-day and 3-day forecast horizon. At the same
time, the CoD is raised by the 11.94%, 11.55% and 10.84%,
respectively. Similarly, for the GHI parameter the TCNs
exhibit superior performance, although often comparable
to that of GRUs. The best results are achieved in the 1-day
forecast with a MAE decrease of 18.90% associated to the
TCN, and in the 3-day forecast with an R² increase of 8.9% for
the GRU. Regarding temperature and relative humidity, the
GRU shows slightly better results than the TCN, although
their results remain very similar.

Concerning Ottana’s analysis reported in Table 2, the
MM5 model achieves better results than the ANNs regard-
ing pressure forecasting; nevertheless, they still maintain
remarkable effectiveness. In summary, a high degree of
correspondence is observed between the neural networks’
forecasts and the experimental data, validating their predic-
tive capabilities. The best MAE and R² performance can be
read in the humidity 1-day GRU prediction, with a reduc-
tion of 24.73% and an increase of 21% compared to the MM5
forecast.

After having discussed the comparison between the neu-
ral networks and the MM5 model, the following section
presents a comparative assessment of GRUs and TCNs only.

It is important to emphasize that the two datasets include
different time intervals: the Casaccia database covers three
years, while the Ottana dataset only one. In both cases, the
TCN model outperforms the GRU in pressure forecast and
it shows significant performance gains. In detail, for the
Casaccia study, GRU and TCN models show comparable
performance across all parameters except atmospheric pres-
sure. However, in the Ottana analysis, TCN consistently

outperforms GRU, though both models maintain high accu-
racy. The performance difference between the two locations
may stem from their different training data durations (three
years for Casaccia versus one year for Ottana). Similarly,
both the superior performance of MM5 and TCN’s enhanced
learning capabilities in the Ottana dataset likely reflect the
limited one-year training period. Future studies should in-
vestigate this relationship by testing model performance
across different time spans.

Beyond standard R2 and MAE statistical measures, the
study incorporates Taylor diagrams as visual analytical tools
to evaluate how well the method performs in handling mul-
tiple variables simultaneously. These diagrams integrate
three key statistical measures into a single polar plot: the
Standard Deviation (𝜎), Correlation Coefficient (R), and Cen-
tered Root Mean Square Difference (RMSD). The reference
observations are positioned at the plot’s origin, while pre-
dicted values appear as points distributed across the diagram
based on their statistical properties.

The standard deviation functions as a measure of the vari-
ability of the data, calculating how the values deviate from
the mean. The correlation coefficient indicates the strength
of the relationship between variables on a scale of −1 to
+1, where zero shows no relationship, positive values indi-
cate parallel movement and negative values suggest inverse
relationships. The root mean square deviation evaluates
prediction accuracy by measuring the typical distance be-
tween corresponding points in two datasets, with smaller
values indicating better alignment. For any comparison be-
tween simulated values (𝑓 ) and reference measurements
(𝑟), these metrics are calculated using established statistical
formulations as detailed in [25].

Figures 4 through 6 present the Taylor diagrams for Casac-



(a) (b)

Figure 4: Taylor diagrams for 1-day predictions referred to (a) Casaccia and (b) Ottana.

cia and Ottana, corresponding to 1-day, 2-day, and 3-day
predictions, respectively. It is important to note that tem-
perature analysis is limited to the Casaccia database, while
the remaining climatic parameters are analyzed for both
locations.

For Casaccia, the Taylor diagram for 1-day predictions
(see Fig. 4a) illustrates that GRU and TCN outperform MM5
across all weather variables. Specifically, both GRU and
TCN achieve high correlation coefficients (above 0.9) for
global solar radiation and temperature, positioning them
close to the reference point and indicating strong predictive
accuracy. In the case of atmospheric pressure, GRU and TCN
also perform well, with GRU slightly closer to the reference
point. For relative humidity, TCN emerges as the most
accurate model, exhibiting the highest correlation and the
closest match to observed data, while MM5 demonstrates
the lowest correlation and the largest deviations across all
variables. Overall, TCN and GRU are identified as the most
reliable models for weather prediction in Casaccia.

In Ottana (see Fig. 4b), the Taylor diagram highlights
the capabilities of GRU and TCN in predicting global solar
radiation. For relative humidity, the models show mixed
results: one side achieves higher correlation coefficients and
lower RMSD, while the other side exhibits poorer standard
deviation. In this case, MM5 performs better in terms of
standard deviation. Finally, the RCM model surpasses the
AI models in estimating atmospheric pressure values.

The observed trends for each locality are consistently
replicated in the 2-day (Fig. 5) and 3-day (Fig. 6) predic-
tions, underscoring the ability of both TCN and GRU to
outperform traditional regional climate models in weather
forecasting.

5. Conclusions and Future
Perspectives

Conducted within the framework of the PRECEDE project,
this study demonstrated the effectiveness of deep learning

approaches in enhancing weather forecasting accuracy, par-
ticularly through applying GRU and TCN architectures to
improve MM5 model predictions. The comparative analysis
reveals several key findings that advance the field of weather
prediction and its applications in energy management. The
results show that both GRU and TCN models generally out-
perform the traditional MM5 model across multiple weather
parameters and time horizons. Notably, TCN demonstrated
superior performance in atmospheric pressure forecasting,
achieving error reductions of up to 54.97% in one-day fore-
casts for the Casaccia dataset. While both neural network
architectures showed comparable effectiveness in predicting
most parameters, TCN exhibited slightly stronger learning
capabilities in scenarios with limited training data.

An important finding emerged regarding the impact of
training data duration on model performance. The contrast-
ing results between Casaccia and Ottana suggest that the
length of the training period significantly influences predic-
tion accuracy. This was particularly evident in the Ottana
dataset, where MM5 maintained superior performance in
pressure forecasting, highlighting the importance of com-
prehensive training data for neural network models. The
Taylor diagram analysis further validated these findings,
demonstrating high correlation coefficients for both GRU
and TCN in predicting global solar radiation and temper-
ature. This superior performance was maintained across
different prediction horizons (1-, 2-, and 3-day forecasts),
confirming the models’ reliability and stability.

These analyses serve as the foundation for the PRECEDE
project’s next phase, which aims to extend these forecasting
methodologies to cities in Emilia Romagna. The insights
gained from the Casaccia and Ottana studies will inform
the implementation of these models across the region, sup-
porting the project’s goal of enhancing renewable energy
management and community-based energy systems. More-
over, expanding the analysis to diverse climatic conditions
and extended temporal scales will provide deeper insights
into the robustness and adaptability of the proposed models.
We would also like to test the Transformer model.



(a) (b)

Figure 5: Taylor diagrams for 2-day predictions referred to (a) Casaccia and (b) Ottana.

(a) (b)

Figure 6: Taylor diagrams for 3-day predictions referred to (a) Casaccia and (b) Ottana.
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