
On Integrating Robotic Data with GIS Tools in a Cloud
Environment (Application Paper)
Robert Wrembel5, Jean-Paul Kasprzyk1, Roland Billen1, Sandro Bimonte2, Laurent d’Orazio3,
Dimitris Sacharidis4 and Piotr Skrzypczyński5

1Université de Liège, Liège, Belgium
2INRAE, Clermont-Ferrand, France
3Université de Rennes, Rennes, France
4Université Libre de Bruxelles, Bruxelles, Belgium
5Poznan University of Technology, Poznań, Poland

Abstract
Merging robotic technologies, sensor networks, and Geographic Information Systems (GIS) offers significant potential across
various domains, including agriculture and urban planning. However, a critical challenge lies in the lack of interoperability
between data generated by these technologies and existing GIS tools. The EU-funded GIS4IoRT project addresses this gap by
developing a plug-and-play and cloud-based middleware. This middleware facilitates seamless integration and visualization
of multi-dimensional and multi-modal data within GIS environments. Key GIS4IoRT components include: a middleware
architecture, a scalable cloud-based infrastructure, real-time robot querying capabilities, data quality assurance, spatio-
temporal query support within the cloud, integration with GIS tools, and adherence to relevant standards. The middleware
supports diverse data types, including LiDaR, imagery, and sensor data. This paper (1) presents an initial data integration
architecture specifically designed for the sustainable architecture domain, (2) outlines the challenges encountered in designing
such an architecture, and (3) explores novel data processing paradigms enabled by the architecture.
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1. Introduction and motivation
Complex, data-driven systems are inevitable in domains
like agriculture and smart cities. Typically, these sys-
tems deploy computing and robotic machinery, includ-
ing: sensors, cameras, laser 3D scanners (LiDaR devices)
[1], installed on ground and air robots. These systems
often rely on edge-fog-cloud architectures [2, 3, 4]. For
example, in agriculture, such an architecture leverages a
distributed computing paradigm to process data gener-
ated by sensors and devices deployed across farms. Initial
data processing takes place at the devices, i.e., at the edge
(e.g., sensors on robots). Fog nodes perform more com-
plex data processing and analysis, based on data from
multiple edge devices. Finally, cloud facilitates integrated
long-term storage and advanced analytics, e.g., spatio-
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temporal, machine learning (ML) / artificial intelligence
(AI).

The machinery at the edge level produces huge vol-
umes of highly heterogeneous data (a.k.a. big data). The
types of data include: text, dates, numbers - generated by
simple sensors, 2D images and video in multiple formats
- generated by cameras, and 3D images - generated by
LiDaR devices. Notice that all the aforementioned data
types are extended with timestamps and geographical
coordinates, making new data types - spatial time series
of numerical, images, video, and LiDaR data. To the best
of our knowledge, techniques for analyzing and visu-
alizing spatial time series of images, video, and LiDaR
have not been researched or developed yet. Moreover,
data of all these types collected from mobile robots are
equipped with geographical coordinates, forming tra-
jectories, which represent yet another data type to be
analyzed.

It is evident that at the fog and cloud levels, heteroge-
neous data have to be integrated, to provide an overall
view on the whole domain, based on various analytical
and ML applications. To this end, data integration ar-
chitectures and processes are applied [5, 6, 7]. Research
and development works resulted in a few standard DI
architectures, namely: federated [8] and mediated [9],
lambda [10], data warehouse (DW) [11], data lake (DL)
[12], data lake house (DLH) [13], and data mesh [14]. In
all of these architectures, data are moved from DSs into
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an integrated system by means of an integration layer.
This layer is implemented by a sophisticated software,
which runs the so-called DI processes.

This paper reports initial findings from an EU CHIST-
ERA (https://www.chistera.eu) project on Development
of a plug-and-play middleware for integrating robot sensor
data with GIS tools in a cloud environment (further called
GIS4IoRT ), run by INRAE (France), Université de Liège
(Belgium), Université de Rennes (France), Université Li-
bre de Bruxelles (Belgium), and Poznan University of
Technology (Poland). The focus of this paper is on the
data integration architecture and challenges in process-
ing and querying highly heterogeneous data.

2. Project contribution
The GIS4IoRT project challenges the existing research and
technological paradigms in the field of data integration
and processing in a few ways, discussed in this section.

Interoperability and integration: in the project we
address the problem of integrating disjoint and often
mobile and ephemeral data sources (DSs) by proposing
a middleware solution that facilitates interoperability
between robotic machinery, sensor networks, and GIS
tools. By bridging this gap, the project aims to create
a unified ecosystem where data from diverse sources
can be seamlessly integrated, analyzed in the context
of spatio-temporal dimensions, and visualized, enabling
more comprehensive analysis and decision-making.

Real-time querying andML/AI-based approaches:
by incorporating real-time querying of robots and ML/AI-
based approaches, the project challenges traditional
methods of data handling and processing. This enables
the middleware to ensure data reliability and complete-
ness, even in the face of challenges such as signal loss or
missing data. The utilization of ML/AI algorithms for data
quality assurance (e.g., profiling, anomaly detection, mon-
itoring and alerting) and data processing (e.g., wrangling,
analyzing, viusalizing) [15, 16] represents a departure
from conventional approaches, highlighting the project’s
commitment to leveraging cutting-edge technologies for
enhanced performance.
Spatio-temporal querying: the development of

spatio-temporal query support and a user-friendly GIS
client further challenges existing paradigms by enhanc-
ing accessibility and usability. This empowers users to
efficiently browse available data and perform complex
queries, involving space and time dimensions on highly
heterogeneous, multi-modal, and ephemeral data, within
the middleware. Spatio-temporal data introduce addi-
tional specific challenges, which are addressed in this
project. The challenges include:

• data pre-processing: transforming, cleaning, and

detecting anomalies of spatio-temporal data re-
quire domain-specific knowledge;

• complexity: spatio-temporal data are complex,
which requires specialized techniques to analyze
the data across space and time dimensions;

• pattern recognition: discovering patterns and
trends in trajectory data requires advanced ma-
chine learning techniques;

• spatial and temporal granularities: trajectory data
often have varying levels of spatial and temporal
granularities, which need advanced data analysis
techniques to produce meaningful results;

• spatial autocorrelation: relationships and corre-
lations in spatio-temporal data, which may be
difficult to detect, can complicate their analysis;

• temporal dynamics: understanding how spatial
patterns evolve over time and capturing dynamic
relationships presents challenges in modeling
trends and in building prediction models;

• interpretation: presenting findings spatio-
temporal data analysis in a meaningful and easy
to understand way is not straightforward, due to
the complexity of dependencies between spatial
and temporal dimensions.

3. Architecture
To address the aforementioned challenges, we proposed
a data integration architecture, as shown in Figure 1.
Data sources include various types of machinery, fur-
ther called the Internet of Robotic Things (IoRT). They
include: ground and air robots, sensors, cameras, and Li-
DaRs. The IoRT devices produce streams of data that are
delivered in real-time to the GIS applications through the
GIS4IoRT middleware. At the same time, these data are
uploaded into a central repository. It stores also metadata
and ontologies for mapping data from multiple IoRT, i.e.,
data in different modalities.

3.1. Data integration and querying layer
We based the architecture of the concept of a mediator
[9]. Components marked as DI process [ROS2], DI process
[sensors], DI process [image, video], DI process [LiDaR],
and DI process [data repository] represent wrappers to
DSs. Mobile robots are equipped with the ROS2 oper-
ating system, with its proper data formats and access
interface. Data provided by these DSs are pre-processed,
integrated (as much as possible), and correlated by the
data integration and querying layer. The correlation ap-
plies to data of different modalities that are related to the
same real-world phenomenon. For example, text data
describing a field (geographical coordinates and dimen-
sions, the type of a crop cultivated there, the type of soil)
can be correlated with images of this field.

https://www.chistera.eu


Figure 1: The architecture of the GIS4IoRT system

This layer is also responsible for translating queries
arriving from GIS applications via GIS4IoRT middleware,
like in a mediated architecture. As compared to the stan-
dard mediated architecture, the challenge here is to trans-
late queries for very diverse data sources that offer differ-
ent functionalities. To make it more challenging, these
data sources are ephemeral as they may be temporarily
unavailable and may provide data of qualities changing
in time.

3.2. GIS4IoRT middleware
Serverless computing at the edge and fog requires par-
ticular functionality, which is provided by the GIS4IoRT
middleware, namely: (1) dynamic resource orchestration,
(2) a fine-grained data caching, to optimize data transfers
between storage (e.g., MinIO, S3), via the data integration
and querying layer, (3) data caching at the edge, to enable
the most efficient processing and energy usage, and (4)
producing data that conform to GIS standards.

Particular innovation is in considering: (1) caching not
only on traditional CPU, but also on FPGA, to reduce re-
sponse time and energy consumption, (2) smart resources
allocation, to manage data and functions with respect to
different objectives like data quality, response time, and
energy consumption.

In addition to optimizing data transfers and processing
at the edge and fog, the GIS4IoRT middleware enables

spatio-temporal querying of IoRT data. GIS applications
execute queries in the context of GIS external data (e.g.,
the map of a given area) from GIS data repository, based
on input GIS data from end-users. This supports users
in running complex spatio-temporal queries, leveraging
both IoRT-generated data and external GIS data, to gain
deeper insights and make informed decisions.

Notice that in such a system, multiple IoRT devices
may provide the same or similar data, e.g., a drone fly-
ing over a given field and a ground robot traversing the
same field. Both of them may provide images from two
different perspectives, in two different formats, and in
two different resolutions.

Notice also that the system architecture is highly dy-
namic. The dynamicity results from: (1) new devices
that can be dynamically deployed in fields and (2) unsta-
ble, limited, or unavailable WiFi in fields, causing that
devices moving into areas without network coverage dis-
appear temporarily from the system. As a consequence,
querying them is limited or impossible.

3.3. Challenges in querying IoRT
In such a setup, it is necessary to equip the user of the
system with options allowing to manage queries and un-
derstand their results. To this end, two standard parame-
ters, namely the quality of service (QoS) and the quality of
data (QoD) must be extended with the following notions.



QoS execution time - a given query has a parameter
specified by the user that limits the time to retrieve results.
After exceeding the time, either the query is aborted or
partial results are provided - this depends on another
parameter provided by the user. To handle this type of
QoS, the system must be able to dynamically estimate
the execution time and be able to re-route a query to the
appropriate data source (IoRT device or data repository).
The query should be executed on an agent that offers the
fastest response and transmits the lowest volume of data,
at the price of lower quality of the results (e.g., lower
image resolution, data from sensors sample at a lower
frequency).

QoD freshness - notice that fresh data come from the
machinery deployed in fields. With a certain delay, these
data are also transmitted to the central repository. Thus,
the freshness parameter guides the system to which data
source send a query.

QoD resolution - the machinery may provide data fast
but of lower quality. For example, simple sensors may
transmit their measurements in real-time with a given fre-
quency, but they may buffer their measurements taken at
a much higher frequency. The buffered data are transmit-
ted to the central repository when WiFi allows it. While
transmitting images in real-time, a device may down-
grade its resolution to assure acceptable QoS execution
time. The same image is transmitted to the repository
at the highest possible resolution, when a suitable band-
width is available.

To provide the aforementioned QoS and QoD, the sys-
tem must be able to dynamically select DSs on which a
given query will be executed. To this end, models for
managing QoS execution time, QoD freshness, QoD resolu-
tion will be built, based on ML/AI techniques.

As mentioned before, the results of queries in such a
system must be equipped with metadata describing the
quality of the result. Such metadata include: (1) percent-
age of result completeness – it allows to estimate how
much data is missing, due to the unavailability of DSs, (2)
downgraded quality of data, due to either low network
throughput or assuring QoS execution time.

4. Related works and technologies
Compared to existing GIS and IoT integration architec-
tures surveyed in [17], the GIS4IoRT middleware intro-
duces a novel approach by emphasizing real-time data
acquisition from mobile robotic platforms and integrat-
ing it seamlessly with GIS tools. While traditional ar-
chitectures primarily focus on static sensor networks
and cloud-based GIS processing, GIS4IoRT extends these
capabilities by incorporating dynamic, ephemeral data
sources from ground and aerial robots, addressing key
challenges in data quality, latency, and interoperability.

Additionally, GIS4IoRT enhances spatial-temporal query
support and optimizes resource management through
intelligent caching and processing at the edge and fog
layers. Unlike previous works that rely on centralized
architectures, the proposed system leverages a flexible
middleware approach to dynamically adapt to different
IoT infrastructures, making it more suitable for applica-
tions requiring on-demand, real-time robotic sensing and
decision-making.

4.1. Cloud computing
During the last decade, cloud computing has enabled
(big) data processing in various domains, e.g., healthcare,
fleet management, banking, sales, social networks. Cloud
computing offers Infrastructure (IaaS), Platform (PaaS),
and Software (SaaS) as a Service. IaaS and PaaS rely
on rented resources, following a pay-as-you-go model,
enabling elasticity (scale-up and scale-out). In SaaS, soft-
ware hosted on cloud is made available in the form of
a subscription. Recently, Function-as-a-Service, as an
implementation of serverless computing, has been pro-
posed to offer higher elasticity and more fine-grained
energy consumption and billing [18].

Serverless computing is a recent research field with
few projects. For example, in Europe, (1) CloudButton
(cloudbutton.eu) provides a serverless data analysis plat-
form, with high performance runtime and a mutable
data middleware; EDGELESS (www.hipeac.net/network/
projects/7247/edgeless/) tackles efficient processing with
resource-constrained edge-devices, MELODIC (h2020.
melodic.cloud/the-project/) supports data-intensive ap-
plications to run within security, cost, and performance
boundaries on distributed cloud computing, and RADON
(radon-h2020.eu/overview/) supports a DevOps frame-
work to create and manage micro-service applications.

Commercial solutions have been proposed, for: (1) sim-
ple functions, but have shown their limits for stateful pro-
cessing [19], (2) extending cloud computing tools, such as
Spark [20], or (3) using in serverless environments, such
as Spark-IO. Other contributions, like Pocket or Apache
Crail, investigated the management of ephemeral data.

4.2. Robotics and IoT
The consolidation of ML/AI techniques, IoRT, and geo-
spatial technologies is revolutionizing spatial data analy-
sis and interpretation. Advancements in this area enable
automated geo-spatial feature extraction [21], enhanc-
ing precision and insight in geographical interpretations.
ML algorithms analyze LiDaR data and satellite imagery
for automatic identification and classification of features
(e.g., buildings, vegetation) and for providing dynamic
views of Earth’s surface changes over time. Autonomous
GIS systems, powered by AI, aim for natural language

cloudbutton.eu
www.hipeac.net/network/projects/7247/edgeless/
www.hipeac.net/network/projects/7247/edgeless/
h2020.melodic.cloud/the-project/
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task acceptance and minimal human intervention in spa-
tial problem-solving, enhancing accessibility and user-
friendliness [22]. Additionally, AI plays a crucial role in
managing vast geo-spatial data from sensors, drones, and
satellites, enabling efficient processing beyond human
capacity.

However, there is still a huge research gap in inte-
grating GIS solutions and the robotic technology in an
fully automated system. Such a system not only applies
ML/AI techniques to data previously collected (also using
robots), but also can answer GIS user queries dynami-
cally, by asking the IoRT machinery for highly specific
data and managing the operation of the IoRT subsystems
in (nearly) real-time. The body of existing literature of-
fers works on GIS supporting UAVs [23], integration with
BIM systems and construction applications [24], and sup-
port for robot navigation [25]. Also a ROS-based plugin
for the popular QGIS system was developed [26], but it
is based on outdated ROS1 and is no longer maintained.

These examples show that although the existing re-
search has explored aspects of integrating IoRT with
GIS systems, but comprehensive solutions addressing dy-
namic data integration and real-time processing are still
to be developed. This is the gap we bridge in the GIS4IoRT
project, providing the low-level software agents to make
the IoRT machinery "understand" the standards and re-
quirements of GIS. We develop the middleware in order
to effectively manage the data flow and system configu-
ration in the cloud/fog environment, and implement the
GIS adoption layer that will make the GIS systems (e.g.,
QGIS) aware of the functionalities provided by GIS4IoRT.

Preliminary results from the project consortium
demonstrate the successful integration of diverse hard-
ware devices [27] and initial algorithms for data process-
ing [21, 28, 29, 30] and quality assurance.

4.3. GIS and IoRT
GIS systems play a pivotal role in integrating spatial data
for analysis, visualization, and decision-making across
various domains. With the emergence of the IoT and the
IoRT, there is a growing need for standards that facilitate
the interoperability and integration of geo-spatial data
with sensor networks and robotic technologies. Here, we
explore the state of the art in GIS standards related to IoT
and IoRT.

OGC standards: the Open Geospatial Consortium
(OGC) is a leading authority in developing standards
for geo-spatial data interoperability. OGC has developed
a few standards relevant to IoT/IoRT, such as Sensor Web
Enablement, which provides protocols and encodings for
the exchange of sensor data over the Web. Additionally,
OGC SensorThings API standardizes the way IoT sensor
data are published and accessed.

ISO standards: the International Organization for Stan-
dardization (ISO) has also contributed to the development
of standards for geo-spatial data interoperability. ISO
19156, also known as Observations and Measurements,
provides a framework for describing and encoding sen-
sor observations, supporting the integration of IoT data
into GIS environments. ISO 19115-1 specifies metadata
standards for describing geographic information and ser-
vices, including metadata elements relevant to IoT/IoRT
DSs. Also IEEE has contributed to the standardization of
robot map data representation through IEEE 1873-2015,
which defines a common format for exchanging 2D met-
ric and topological maps among robots, computers, and
GIS platforms. Unlike proprietary formats, IEEE 1873-
2015 facilitates long-term comparability and evaluation
of maps across different systems, making it particularly
relevant for robotic navigation and collaborative map-
ping applications [31].

Semantic interoperability: achieving semantic interop-
erability between geo-spatial data and IoT/IoRT devices
is essential for meaningful data integration and analy-
sis. Standards such as the Semantic Sensor Network On-
tology developed by the World Wide Web Consortium
provide a common semantic framework for describing
sensor observations and capabilities, enabling effective
communication between IoT devices and GIS systems.

Geo-spatial data formats: standardized geo-spatial data
formats are crucial for interoperability between GIS and
IoT/IoRT systems. Formats such as GeoJSON, Shapefile,
or KML provide common encodings for representing ge-
ographic data and sensor observations.

4.4. Adaptability to Other Domains
The GIS4IoRT project leverages precision agriculture as
a testbed for the proposed architecture, given the grow-
ing need for smart, sustainable farming solutions to ad-
dress economic and environmental challenges in Europe.
However, the modular design of the GIS4IoRT middle-
ware enables adaptation beyond agriculture—extending
to disaster response, autonomous navigation, and urban
planning.

In disaster response, real-time sensor data integration
facilitates damage assessment and resource coordination
[32, 33, 34], yet ensuring reliable data transmission in
disrupted networks remains a challenge. While the con-
cept of using distributed sensors for disaster manage-
ment is well established [35], its effective deployment
requires integrating recent advancements in IoRT and
GIS technologies. Similarly, autonomous navigation de-
mands low-latency processing and seamless fusion of
multi-modal sensor data for precise localization and ob-
stacle avoidance [27].

In urban planning and architecture, scalable data han-
dling and interoperability with existing GIS frameworks



are essential for integrating diverse spatial data sources
used in traffic analysis, infrastructure monitoring, and
environmental assessment [36, 37]. Despite its potential
to enhance urban automation and data-driven decision-
making, the integration of robots with smart city infras-
tructure remains underexplored. Recent efforts, such as
the Smart City Component in a Robotic Competition [38],
demonstrate how robots can act as both consumers and
producers of smart city data, underscoring the need for
seamless interoperability between robotic systems and
urban GIS platforms.

5. Summary and future work
In this paper we outline research challenges encountered
while designing an integration architecture for dynamic
spatio-temporal, heterogeneous, and multi-modal data
generated by IoRT machinery, with GIS analytical tools,
within the EU GIS4IoRT project. The fundamental chal-
lenges include: (1) correlating multi-modal data within
a user query, (2) providing query results according to
QoS and QoD parameters, (3) dynamically re-routing
queries to appropriate DSs, to assure QoS and QoD, (4)
building cost models for managing QoS and QoD, and (5)
analyzing spatial time-series of non-standard data.

Open issues that further will be investigated in the
project include among others: (1) dynamic resource pro-
visioning for QoS and QoD, (2) reactive heterogeneous
data caching at the edge, fog, and cloud, (3) proactive data
caching, (4) building ontologies for semantic data annota-
tions and correlations, (5) novel visualization techniques
at the GIS level.
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