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Abstract
The importance of protein structures in biomedical research, especially in the drug discovery and design
process, cannot be overlooked. The accuracy of these structures is crucial to ensure the success of
research endeavors. However, experimental determination of protein structures is expensive and time-
consuming, and computational predictions are not flawless. Therefore, assessing the quality of protein
models has become a vital step in filtering the most reliable options before further exploration. To meet
this need, various structural bioinformatics labs have developed methods for Evaluating Model Quality
(EMQ). Applying machine learning (ML) to EMQ has emerged as one of the most effective approaches,
as evidenced by the results of the CASP challenge, which is widely recognized within the scientific
community. This article offers a systematic analysis of the leading ML-based EMQ methods developed in
recent years. We categorize these methods based on the ML technology used and examine their relevance
from a methodological perspective. We also introduce the fundamentals of EMQ. Overall, this article aims
to serve as a starting point for exploring current research on protein quality evaluation while discussing
future prospects in this rapidly evolving field.
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1. Introduction

The fascinating process through which amino acids fold into three-dimensional protein struc-
tures is a natural wonder that plays a critical role in the myriad of functions executed by
proteins within living organisms. Delving into the exact structures of proteins is essential
for the advancement of molecular biology, biochemistry, and pharmacology, offering deep
insights into the molecular mechanisms of life and fostering innovation in drug development,
disease treatment, and the emerging field of synthetic biology. Traditionally, the determination
of protein structures relied heavily on experimental methods such as X-ray crystallography,
nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM) [1].
While these techniques have provided invaluable data, they are often constrained by high costs,
technical challenges, and inherent limitations, such as the difficulty in crystallizing certain
proteins or the extensive time requirements for data collection and analysis.

The 13th International Conference On Research in Computing at Feminine 2024 (RIF 2024)
*Corresponding author.
†
These authors contributed equally.
$ loubna.terra@univ-constantine2.dz (L. Terra); fouzia.benchikha@univ-constantine2.dz (F. Benchikha);
hachem.kermani@enp-constantine.dz (M. H. Kermani)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:loubna.terra@univ-constantine2.dz
mailto:fouzia.benchikha@univ-constantine2.dz
mailto:hachem.kermani@enp-constantine.dz
https://creativecommons.org/licenses/by/4.0


The emergence of computational methods for predicting protein structure (PSP) marks a
paradigm shift, offering the promise of accelerating the pace of discovery while circumventing
the limitations associated with traditional experimental approaches. Over recent decades, the
field of PSP has witnessed substantial advancements, evolving from basic homology modeling
techniques to sophisticated machine learning algorithms capable of predicting structures from
amino acid sequences with remarkable accuracy. The integration of deep learning technologies,
exemplified by the development of DeepMind’s AlphaFold2 [2], represents a monumental leap
in our ability to predict protein structures with near-experimental accuracy across a wide
range of proteins. This breakthrough has set new benchmarks in the Critical Assessment of
Structure Prediction (CASP) competitions, highlighting a significant stride forward in the realm
of computational biology.

Concurrently, the importance of model quality assessment (QA) has been increasingly rec-
ognized, as it is essential for determining the reliability of predicted protein structures. QA
methods enable the discernment of the most plausible models from a plethora of predictions,
offering a measure of confidence in the models utilized for further biological interpretation or
drug design. The evolution of QA methodologies has mirrored the advancements in PSP, with a
notable shift towards the application of machine learning and deep learning techniques for a
more nuanced analysis and interpretation of structural data.

This article endeavors to synthesize and compare various significant works that showcase
the ongoing evolution and current status of PSP and QA methodologies. Each piece of work
discussed represents a distinct contribution to the overarching effort to accurately predict and
evaluate protein structures. By providing a comprehensive summary of these key ideas and
methodologies, the article aims to offer a panoramic view of the advancements and challenges
within the PSP and QA fields. It highlights the transformative impact of machine learning
and deep learning technologies on our capabilities to predict and evaluate protein structures,
paving the way for groundbreaking discoveries and applications in biology and medicine. As
we continue to refine these computational tools, their integration into the broader ecosystem of
structural biology promises to unlock new horizons in our understanding and utilization of the
proteome.

2. Background

2.1. Machine learning and deep learning

Machine learning is a field of study within artificial intelligence (AI) focused on designing,
analyzing, developing, and implementing methods that allow a machine (broadly defined) to
evolve through a data-driven process rather than traditional deterministic algorithms. Machine
learning approaches can be broadly classified into four types: supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning [3]. Supervised learning acquires
knowledge from training data with labeled responses. The learning process iteratively and
automatically adjusts the internal parameters of the prediction model, aiming to minimize
prediction errors. Most model quality assessment (MQA) methods are based on supervised
machine learning algorithms.

Deep learning is a newer research domain within machine learning, introduced with the goal



of bringing ML closer to its ultimate objective: artificial intelligence. It involves algorithms
inspired by the structure and function of the brain [4]. Deep learning encompasses a set of
machine learning algorithms attempting to learn multiple levels of representation in order
to model complex relationships between data. It has the capability to extract features from
raw data through multiple layers of processing, consisting of multiple linear and nonlinear
transformations, and to learn about these features gradually across each layer with minimal
human intervention [3].

Machine learning/deep learning (ML/DL) algorithms and their use in MQA methods will be
discussed in Section 3.

2.2. Protein structure prediction

Protein structure prediction, crucial for understanding biological functions, remains a key
challenge in structural bioinformatics. This task involves inferring the three-dimensional
structure of a protein from its amino acid sequence, with three main approaches distinguished:
homology modeling [5] ,fold recognition[5] and ab initio prediction [4]. Recent advancements
include the use of residue contact prediction, enriched by co-evolutionary analysis from multiple
sequence alignments (MSA), significantly improving model accuracy [5].

The advent of deep learning, especially with algorithms such as DeepMind’s AlphaFold [2],
MULTICOM and RaptorX Contact, has marked a significant breakthrough, enabling accurate
prediction of complex protein structures [5]. These methods leverage deep sequential and
structural features to predict inter-residue distances and spatial configurations in a global
context, setting new accuracy standards in the field.

2.3. Critical Assessment of Structure Prediction (CASP)

The Critical Assessment of Protein Structure Prediction (CASP), is a global competition aimed
at evaluating protein structure prediction methods and fostering progress in the field[6]. Since
its inception in 1994, CASP has played a crucial role in evaluating and advancing methods for
predicting protein structures. Beginning with CASP7, the focus has extended to model quality
evaluation (MQA) methods, which assess both global and local quality of protein structures
submitted by prediction servers [5]. The integration of deep learning techniques, especially
from CASP13, has significantly improved prediction accuracies, exemplified by methods like
AlphaFold and RaptorX Contact [2]. These advancements challenge MQA methods to keep
pace with the continuously improving model quality[5]. Prominent MQA methods in recent
evaluations include FaeNNz, ModFOLD7, ProQ3D, and several others [5].

2.4. Model Quality Assessment Metrics

MQA methods are crucial for selecting the most accurate protein structure models from predic-
tions, thus supporting biomedical research, particularly in drug discovery.

The evaluation metrics used to judge the accuracy of protein structure predictions include the
Global Distance Test Total Score (GDT-TS)[5], Template Modeling (TM) score [7], local-Distance
Difference Test (lDDT) score [8]and RMSD (Root Mean Square Deviation)[5]. These metrics as-
sess the similarity between the predicted model and a reference experimental structure, focusing



on the ability to overlay sets of residues and measure the accuracy of inter-residue contacts.also,
allow a comprehensive and nuanced evaluation of predicted model quality, contributing to the
continuous improvement of protein structure prediction methods and the effectiveness of ML
and DL-based MQA methods in CASP challenges.

3. EMQ methods based on ML and DL

This section compares several Model Quality Assessment (MQA) applications selected for their
high popularity, immediate availability, and performance in CASP. Most of these methods are
based on artificial neural networks (CNNs, GNNs).

Table 1 shows the details of these ML and DL-based MQA methods.

3.1. Method based on 3DCNN

The advanced approach using three-dimensional convolutional neural networks (3DCNN)
represents a significant innovation in assessing protein structure quality, focusing on the
detailed analysis of local quality to predict the overall model quality [9]. Using CASP dataset
collections, this method enhances prediction accuracy through careful feature selection and
optimized network topologies. It demonstrates the effectiveness of deep learning in protein
structure evaluation, promising substantial advancements in structural bioinformatics [9].

3.2. TopQA

TopQA introduces an innovative method for protein structure quality assessment based on
topology and employing machine learning. By leveraging a unique topological representation
and applying a CNN to predict the GDT-TS score, TopQA surpasses traditional methods in
accuracy, as evidenced by a correlation of 0.41 on CASP12 [10]. Developed from data in the
CASP10 and CASP11 competitions, this approach optimizes the use of structural features for
model training. TopQA, accessible via GitHub, signifies a progression in protein model evalua-
tion by emphasizing their topological structure, opening new research avenues in structural
bioinformatics [10].

3.3. SynthQA

SynthQA represents a breakthrough in protein model quality evaluation, utilizing a hierarchical
architecture based on machine learning to analyze multi-scale features, from energetic scores to
protein topology[11]. This method enhances evaluation accuracy over traditional approaches
by analyzing and generating new features for optimized model training[11].

3.4. DeepUMQA

DeepUMQA is a cutting-edge method for evaluating protein structure quality, using ultra-rapid
shape recognition (USR) and deep learning to effectively combine multi-scale features [12].
It stands out by surpassing well-established methods through its ability to detail structural



Table 1
Comparison of different EMQ methods

Name Year
and ref

Approach Train,Test and
Valid Data

Features Metrics Objective

3DCNN 2019,
[9]

Deep convolu-
tional neural
networks (3D-
CNN)

CASP7-10,
CASP11,
CASP12

Using the
spatial char-
acteristics
of protein
structures

GDT-TS Predicting
the quality of
predicted pro-
tein structures
using 3D convo-
lutional neural
networks

TopQA 2020,
[10]

Topology-
based ma-
chine learning

CASP10,
CASP11,
CASP12

Topological
analysis of
predicted
protein struc-
tures

GDT-TS Assess the
quality of pre-
dicted protein
structures by
analyzing their
topology

SynthQA 2021,
[11]

Hierarchical
machine
learning

CASP10,
CASP12,
CASP14

Integration of
hierarchical
protein struc-
ture features

GDT-TS, lDDT
and other cus-
tomized met-
rics

Hierarchical as-
sessment of the
quality of pro-
tein structures
predicted from
amino acid se-
quences

DeepUMQA 2022,
[12]

Ultra-fast pat-
tern recogni-
tion based on
deep learning

CASP13,
CASP14,
CAMEO

Use of ge-
ometric
features for
rapid recogni-
tion of protein
structures

AUC, ROC,
ASE

Accelerate
quality as-
sessment of
predicted pro-
tein structures
by focusing on
essential geo-
metric features

EnQA 2023,
[13]

3D-
equivariant
graphical neu-
ral networks

CASP14,
CAMEO,
AlphaFold-
train, Al-
phaFoldtest

Integration
of structural
features
acquired
from the
state-of-the-
art tertiary
structure
prediction
method-
AlphaFold2

GDT-TS,
lDDT, and
other custom
metrics

Evaluate the
quality of pro-
tein structural
models, taking
into account
the rotation
and translation
of 3D objects



information of residues, proven by superior performance on the CASP13, CASP14, and CAMEO
datasets [12].

3.5. EnQA

EnQA utilizes an innovative 3D equivariant graph neural network to assess protein model quality,
leveraging advanced features from AlphaFold2 for accurate and transformation-insensitive
evaluation [13]. This method exceeds the performance of traditional approaches and AlphaFold2
in quality assessment, illustrating its potential to transform protein structure evaluation in
structural bioinformatics [13].

4. Discussion

Contemporary protein model quality assessment techniques like TopQA, SynthQA, DeepUMQA,
and EnQA face significant challenges. These methods typically depend heavily on specific
databases, which may not accurately represent the diversity of protein structures, potentially
leading to biased outcomes. Additionally, they require substantial computational resources,
restricting their use in environments with limited capabilities. Although these tools incorporate
advanced deep learning and hierarchical architectures to enhance their evaluations, they often
struggle to apply their findings beyond the initial training datasets. Consequently, models
generally perform well on familiar data but fail to replicate this success on new, unseen datasets.
This lack of robustness underscores the urgent need for innovation in structural bioinformatics
to develop methods that are adaptive, less data-dependent, and more efficient, thus enhancing
their reliability and practical utility across varied scenarios.

5. Conclusion

The evaluation of protein structures using ML and DL has demonstrated progress but also
presents challenges, particularly in terms of generalization and data dependency. The limitations
of current methods such as EMQ, observed during CASP competitions, underscore the need to
explore more sophisticated and adaptive deep learning architectures. By adopting convolutional
, residual or graph neural networks, we can expect improvements in prediction accuracy and an
enhanced ability to process complex protein structures. The future of structural bioinformatics
will heavily depend on our ability to integrate these advanced technologies, thereby ensuring
significant advances in understanding biological functions and developing new therapies.
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