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Abstract 
The increase in the amount of available data to be monitored and the increase in the computational 
capability of information technologies have caused rapid development in the field of algorithmic support 
for data processing in various industries. The use of data processing algorithms makes it possible to obtain 
new information about the state of processes and constituent components of the industry, to increase the 
veracity of management decision-making, to implement artificial intelligence technologies during the 
realization of technological processes and the execution of certain procedures, and others. In civil aviation, 
data processing aims to reduce air navigation service risks related to the safety and regularity of aircraft 
flights, optimize aircraft routes, detect dangerous situations, and increase the level of operational efficiency 
of equipment. Aviation radio equipment in civil aviation is used to organize communications between the 
flight control and aircraft, measure aircraft coordinates, transmit useful information, and others. During 
the operation of aviation radio equipment, the important problems are the improvement of reliability, the 
saving of spending funds and costs, and the optimization of operational processes. This paper is devoted to 
the development of means of algorithmic support for the processes of operation of aviation radio equipment 
for maintenance strategies with scheduled procedures, condition-based maintenance with control of 
defining parameters, and condition-based maintenance with predictive control. The comparative analysis 
of the proposed data processing algorithms was performed by calculating the average operational costs. 
The results of the research can be used during the study of methodological principles for data processing 
in the operation systems for aviation radio equipment. 
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1. Introduction 

The development of new technologies, the digitalization of the industry, and the possibility of 
collecting and transmitting large amounts of information have caused rapid development in the field 
of algorithmic support for data processing in various industries [1]. Modern technologies of Industry 
4.0 provide for an increase in the number of information measuring devices for all constituent 
components of industry and the use of measured information to increase the efficiency of 
management decision-making [2, 3]. 

Algorithmic support systems use information technologies for data processing and decision-
making [4, 5]. The areas of application of these systems are aimed: 

 to organize monitoring and tracking of key parameters of production processes and 
equipment used in them [6]; 

 to automate the execution of production and technological processes [7]; 
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 to predict future events: the occurrence of equipment failures, the appearance of 
inconsistencies in technological processes, an increase in the risks of possible future events 
with negative consequences [8]; 

 to optimize production and technological processes from the point of view of reducing 
expendable resources, choosing the best organizational management structure, determining 
the number of personnel, equipment, and others [9]; 

 to improve the quality of personnel training and adapt it to the sustainable development of 
technology and industry [10]; 

 to monitor the level of consumer satisfaction [11]; 
 to adapt to the changing conditions of the external environment [12]; 
 to harmonize the requirements of various standards, regulatory, and normative documents 

[13]. 

In civil aviation, the data processing algorithms aim to reduce the air navigation service risks 
related to the safety and regularity of aircraft flights, optimize possible aircraft routes, detect the 
dangerous situations, and increase the level of operational efficiency of equipment [14, 15]. 

In general, civil aviation includes a set of interconnected systems, namely: organization of 
transportation, ensuring the functioning of airports and airfields, dispatching service, ensuring 
aviation safety, flight activities, radio technical support of flights, and others [16, 17]. Aviation radio 
equipment (ARE) is the main element of the system of radio technical support of flights. 

Aviation radio equipment in civil aviation is used to organize communications between the flight 
control and aircraft, measure aircraft coordinates, transmit useful information, and others. During 
the operation of aviation radio equipment, the important problems are the improvement of 
reliability, the saving of spending funds and costs, and the optimization of operational processes [18, 
19]. 

Development of infrastructure and datahub content for the collection, processing, and use of 
statistical data on the functioning of the equipment and the components of its operation systems is 
also an urgent task for the operation of ARE. The development of datahub content involves the 
synthesis of data processing algorithms to solve the problems of hypothesis testing and classification, 
parameter estimation, signal filtering, prediction of data trends, and others [20]. 

The use of information technologies for data processing during the operation of ARE is a 
guarantee of maintaining a given level of safety in civil aviation. 

2. State-of-the-art and the statement of the problem 

The operation of aviation radio equipment is the main stage of its life cycle [21]. In civil aviation, at 
this stage, useful functions of equipment are implemented to solve specific problems of aviation 
enterprises and air navigation service providers [22]. 

The efficiency of ARE use is usually evaluated by complex indicators that take into account the 
tactical and technical characteristics, reliability indicators of the equipment, expendable resources 
for the performance of the main operational processes, indicators of the production processes of the 
aviation enterprise, and others [23]. 

Maintenance, repair, monitoring, and control of the technical condition, extension of the resource, 
and others can be the main processes of ARE operation [24]. These processes are usually considered 
from the point of view of systems approaches, so they have an internal structure, the input and 
output flows, an apparatus of interconnection with external production processes of the aviation 
enterprise, resource provision, and controlling influences [25]. 

The maintenance process can be carried out using different approaches to its implementation 
strategy. The evolution of these strategies in terms of the processing and use of statistical data 
includes: 



1. Descriptive approach. Statistical data are used exclusively to inform about events that occur 
during the operation of the equipment, and conclusions about the causes of these events are 
not carried out. 

2. Diagnostic approach. Statistical data are used to determine the causes of events during the 
operation of the equipment. 

3. Prognostic approach. Statistical data is used to predict future events based on the use of 
intelligent data processing technologies, including methods of machine and deep learning. 

4. Prescriptive approach. When implementing this approach, it is necessary to use artificial 
intelligence algorithms, as a result of which it is possible to develop a set of precautionary 
measures, the implementation of which will make it impossible or reduce the risk of possible 
events with negative consequences [26, 27]. 

From the point of view of the data being processed, reliability-based and condition-based 
maintenance (CBM) approaches can be considered [28]. The primary information for these 
approaches is data on the reliability of the equipment and the trends of the defining parameters, 
respectively. 

On the one hand, condition-based maintenance is a more complex approach and can use the 
results of monitoring for one or a group of parameters but, on the other hand, it can contribute to 
greater operational efficiency by eliminating equipment failures and malfunctions, as well as 
minimizing operational costs. The evolution of data processing algorithms when using CBM is given 
in the article [29]. 

Maintenance is inextricably linked with the process of restoring the serviceability of the 
equipment (repair). The practice of operation shows the impossibility of one hundred percent 
elimination of the possible occurrence of failures and malfunctions. Several factors contribute to this, 
including the insufficient time for maintenance procedures implementation, human factors, random 
influences, and others [30]. At the same time, the moments of failures are random. 

The processes of monitoring and control ensure the collection of primary information on the 
defining parameters of the equipment, perform the classification of equipment states, and implement 
data processing from the point of view of forecasting future states [31, 32]. The collected information 
is stored in the form of datasets and is the basis for processing and decision-making. The 
classification of states determines the dynamics of changes in all the component processes during 
the ARE operation. At the same time, erroneous decisions are possible, which are characterized by a 
confusion matrix containing the corresponding conditional probabilities of errors. The forecasting 
results make it possible to develop a set of preventive measures to reduce the impact of the 
consequences of possible negative events. 

Let s perform the mathematical formulation of the problem. We will assume that the processes of 
ARE operation are implemented at an aviation enterprise and require the availability of a fund of 

expendable resources, which is described by the cost vector 𝐶. The cost vector includes information 
on the cost of maintenance, repair, control (conventional and automated) processes, processing costs, 
personnel salary funds, and others. In the process of equipment use for the purpose, there is 
monitoring of the defining parameters, which are random and can be described by the stochastic 
model 𝑆𝑀𝑦(𝑡). In the general case, this model includes the probability density function for sampling 
values of the defining parameter, approximate statistical characteristics, statistical characteristics of 
nonstationary processes, and others. The operational processes are characterized by their content, 

which can be described by the vector 𝑂𝑃⃗⃗⃗⃗ ⃗⃗ . This vector contains information on individual procedures 
and technological operations, availability of resources, personnel and their qualification level, 
probabilistic characteristics of possible errors during the execution of individual procedures, and 
others. The operational processes are implemented by adopted strategy, which is determined by the 

developed and adopted data processing algorithms 𝐴. According to the system approach, operational 
processes are interconnected with the environment, as a result of which additional restrictions may 

be imposed on them. These restrictions are described by the vector 𝑅⃗⃗. 



For simplification, we will assume that the operational efficiency is determined by the costs of 
the aviation enterprise. In connection with the stochastic nature of events during the implementation 
of ARE operation processes, it is quite natural to use the expected value of this indicator, which we 
denote by 𝐸(𝐶Σ). Then we can write: 

𝐸(𝐶Σ) = φ(𝐶, 𝑆𝑀𝑦(𝑡), 𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ , 𝐴|𝑅⃗⃗ ). (1) 

The purpose of this research is the development and comparative analysis of data processing 
algorithms during the implementation of the ARE operation processes at the aviation enterprise. 
From a mathematical point of view, the paper solves the problem of minimizing the expected value 

of operational costs 𝐸(𝐶Σ) concerning the vector 𝐴 with the specified vectors and their components 

𝐶, 𝑆𝑀𝑦(𝑡), and 𝑂𝑃⃗⃗⃗⃗ ⃗⃗  under the conditions of defined restrictions 𝑅⃗⃗. 

3. Probabilistic event model for the estimation of maintenance 
efficiency 

A certain methodological approach must be followed to assess the effectiveness and efficiency of the 
processes of ARE operation. This approach includes the following basic positions: 

1. Determination of how the technical condition of aviation radio equipment will be described. 
At the same time, it is proposed to use several defining parameters 𝑦𝑖(𝑡) to describe the 
technical condition. 

2. Determination of the content of procedures and technological operations of the maintenance 
process. 

3. Formation of data processing operator schemes. 
4. Analysis of possible decisions that will be made during maintenance procedures. 
5. Calculation of risks and losses during operation. 
6. Development of a probabilistic event model. 

The probabilistic event models (PEM) appropriately include possible events, states, risks, 
probabilities of their occurrence, limitations, and corresponding costs in the process of operation. At 
the same time, three options can be distinguished:  

1. Scheduled maintenance (SM) organization system. 
2. Condition-based maintenance using the automated means of monitoring the technical 

condition of aviation radio equipment. 
3. Condition-based maintenance using automated inspections and predictive control. 

During the formation of the PEM, it is advisable to take into account possible events: 

1. The technical condition of ARE is determined by one defining parameter 𝑦(𝑡). 
2. Trends in measured parameters are random. 
3. Inspection and control of the technical condition are performed discretely. 
4. The failures are independent random variables. 
5. At two arbitrary moments, the measurement results of the determining parameter are 

independent values. 
6. Expected risks can be calculated at any point of time. 
7. Operational (𝑇𝑂−, 𝑇𝑂+) and preventive (𝑇𝑃−, 𝑇𝑃+) tolerances are known. 
8. The changepoint model is linear with a random moment of occurrence and a random 

inclination angle. 
9. After the recovery of serviceability, the trend of the defining parameter returns to the 

nominal value 𝑦0. 
10. The datasets being processed are independent. 



According to the methodological approach, let s consider the procedure for forming decisions 
about the technical condition of equipment. Figure 1 and Figure 2 schematically show the process of 
changing ARE conditions for options with two and four thresholds. 

 

Figure 1: Defining parameter trend in the case of SM. 

 

Figure 2: Defining parameter trend and condition ranges in the case of CBM. 

At the same time, the defining parameter changes randomly during the inspection process. In the 
case of degradation of technical condition, the trend of the defining parameter becomes 
nonstationary, rapidly increasing or decreasing. During the degradation for the four-threshold 
option, the value of the defining parameter can reach threshold levels that divide the range of values 
into three ranges: serviceable condition, deteriorated condition, and failure. 

It is known that there is no preventive threshold for the scheduled maintenance organization 
system since failures occur objectively and are not eliminated. At the same time, two conditions are 
possible (Figure 1): 

– serviceable condition if 𝑇𝑂− ≤ 𝑦(𝑡) ≤ 𝑇𝑂+; 
– failure if 𝑦(𝑡) < 𝑇𝑂− or 𝑦(𝑡) > 𝑇𝑂+. 

In the case of CBM with the control of defining parameters, there are three possible conditions: 

– serviceable condition if 𝑇𝑃− ≤ 𝑦(𝑡) ≤ 𝑇𝑃+; 
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– deteriorated condition if 𝑇𝑃+ ≤ 𝑦(𝑡) ≤ 𝑇𝑂+ or 𝑇𝑂− ≤ 𝑦(𝑡) ≤ 𝑇𝑃−; 
– failure if 𝑦(𝑡) < 𝑇𝑂− or 𝑦(𝑡) > 𝑇𝑂+. 

Consider condition-based maintenance using automated inspections and predictive control. 
Figure 2 schematically shows the process of forming the forecast value of the trend of the defining 
parameter 𝑦𝑝𝑟(𝑡𝑖|𝜏𝑝𝑟), where 𝑡𝑖 is the current time when the forecast is made, 𝜏𝑝𝑟 is the interval of 

prediction. During the prediction, a training sample 𝑡𝐿⃗⃗⃗⃗  is formed. For this sample, data processing is 
performed and the formation of predictive trend values at the moment of time 𝑡𝑖 begins. During the 
prediction, the model of the defining parameter at the forecasting stage must be preserved according 
to its type (statistical distributions and their parameters). If this condition is not fulfilled, then it is 
necessary to solve the problems of detecting the moment of degradation and form a new training 
sample and, accordingly, a model based on this. 

In addition, it should be noted that it is necessary to comply with the requirement that the length 
of the training period 𝑡𝐿⃗⃗⃗⃗  is greater than the prediction interval 𝜏𝑝𝑟. 

We will assume that the selection of the value of the prediction interval 𝜏𝑝𝑟 is carried out in such 
a way that, during this time, preventive actions aimed at restoring the operational efficiency of the 
ARE are implemented, namely: regulation, preventive replacement of equipment components, nodes, 
boards, and others. In this case, the risk of gradual failures is reduced, which means that the costs of 
restoring the operational efficiency of the ARE were minimized. 

Forecasting procedures are performed after a decision has been made regarding the technical 
condition of the ARE as a result of inspection and control procedures, i.e. when the equipment is in 
the serviceable or deteriorated condition. 

To evaluate the efficiency of options for organizing and carrying out different types of ARE 
maintenance, we will use the structural diagrams of the interconnection of operators of data 
processing and decision-making. These schemes will reflect: 1) individual operators of data 
processing and decision-making, 2) ARE conditions after execution of operational processes and 
certain procedures and actions, 3) conditional probabilities of transition from one state to another, 
4) average costs, and 5) risks associated with the execution of certain actions and decision-making. 

Let s note two features of data processing. In the first case, we can consider the implementation 
of operator schemes at the moment of time 𝑡𝑖, when a complete set of data processing algorithms is 
executed. Then the calculated average losses and risks can be considered as predictive estimates of 
expected operational costs. In the second case, it is possible to consider the processing of 𝑛 values of 
the defining parameter 𝑦(𝑡) in a sliding window. Then, after data processing for 𝑛 values, average 
losses (or risks) are obtained. In this case, the processing procedure is repeated iteratively, where 
each iteration is performed at the next measurement. That is, data processing and analysis are more 
complex. At the same time, correlation dependences for data from neighboring sliding windows 
should also be taken into account. 

Let's consider the operator diagram for the system of scheduled maintenance organization. At the 
moment of time 𝑡𝑖, the staff performs technical condition control and scheduled procedures. If, based 
on the results of the ARE inspection and control, a decision is made regarding the serviceable 
condition, then the scheduled procedures are performed. At the same time, repair is performed when 
𝑦(𝑡) < 𝑇𝑂− or 𝑦(𝑡) > 𝑇𝑂+. Therefore, the operator scheme will include operators of inspection and 
control, maintenance, and restoration of operational efficiency. Possible decisions will be: 1) 
serviceable condition, 2) failure, and 3) continued operation. The costs of the procedures include 
control costs 𝐶𝑐𝑜𝑛, maintenance costs 𝐶𝑚, repair costs 𝐶𝑟. The priori probabilities of the two states 
at the moment 𝑡𝑖 are as follows: the probability of the serviceable condition of the ARE 𝑃𝑠, the 
probability of failure 𝑃𝑓 = 1 − 𝑃𝑠. 

We will assume that the level of qualification of the personnel and the time of performing the 
procedures are sufficient to reliably determine the technical condition of the ARE. After performing 
the maintenance procedures, ARE will be in a serviceable condition, and no failures will be 
introduced by the personnel. 



Taking into account the above designations and assumptions, we will present an operator scheme 
for performing SM (Figure 3). 

 

Figure 3: Operator diagram for SM. 

Taking into account Figure 3, the average costs will be: 
𝐸(𝐶Σ|𝑆𝑀) = 𝑃𝑠(𝐶𝑐𝑜𝑛 + 𝐶𝑚) + 𝑃𝑓(2𝐶𝑐𝑜𝑛 + 𝐶𝑟). (2) 

Let's consider CBM using the automated control of the technical condition of ARE. 
The expected reduction in costs for the operation of ARE is associated with the introduction of 

automated monitoring of ARE conditions and an expected decrease in the probability of being in the 
area where maintenance procedures are planned and performed. Errors in the classification of the 
technical condition are possible during operations for the automated control of the technical 
condition. In this regard, we will make several assumptions: 1) if the objectively defining parameter 
is in the region of serviceable condition, then it is possible to make a false decision that ARE is in the 
deteriorated condition; 2) if the objectively defining parameter is in the region of the deteriorated 
condition, then it is possible to make a false decision that ARE is in the serviceable condition or the 
condition of failure; 3) if the objectively defining parameter is in the region of the failure, then it is 
possible to make a false decision that the ARE is in the deteriorated condition. Therefore, the possible 
cases can be described by conditional probabilities: (𝑆2|𝑆1), 𝑃(𝑆1|𝑆2), 𝑃(𝐹|𝑆2), 𝑃(𝑆2|𝐹), where 𝑆1, 
𝑆2 and 𝐹 are serviceable, deteriorated, and failure conditions, respectively. 

It should be noted that automated control must also be carried out after performing maintenance 
and repair procedures. 

We emphasize that a characteristic feature of this option is the presence of preventive tolerances 
(𝑇𝑃−, 𝑇𝑃+). We assume that the control of the technical condition is performed in automatic mode. 
Average cost of automatic control 𝐶𝑐𝑎. Usually, 𝐶𝑐𝑎 ≪ 𝐶𝑐𝑜𝑛. Repair costs coincide in value with the 
first type of maintenance, i.e. equal to 𝐶𝑟. If the ARE is in a deteriorated condition, then maintenance 
costs are 𝐶𝑚. 

The probabilities of each of the three conditions are equal to: 𝑃𝑠1, 𝑃𝑠2, and 𝑃𝑓. At the same time, 
𝑃𝑠 = 𝑃𝑠1 + 𝑃𝑠2. 

Taking into account the above designations and assumptions, we will provide an operator scheme 
for performing CBM using the automated control of the technical condition of ARE (Figure 4). 
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Figure 4: Operator diagram for condition-based maintenance with defining parameters monitoring. 

Taking into account Figure 4, the average costs will be: 
𝐸(𝐶Σ|𝐶𝐵𝑀1) = 𝑃𝑠1𝑃(𝑆1|𝑆1)𝐶𝑐𝑎 + 𝑃𝑠1𝑃(𝑆2|𝑆1)(2𝐶𝑐𝑎 + 𝐶𝑚) + 

+𝑃𝑠2𝑃(𝑆2|𝑆2)(2𝐶𝑐𝑎 + 𝐶𝑚) + 𝑃𝑠2𝑃(𝑆1|𝑆2)𝐶𝑐𝑎 + 𝑃𝑠2𝑃(𝐹|𝑆2)(2𝐶𝑐𝑎 + 𝐶𝑚) + 
+𝑃𝑓𝑃(𝐹|𝐹)(2𝐶𝑐𝑎 + 𝐶𝑟) + 𝑃𝑓𝑃(𝑆2|𝐹)(2𝐶𝑐𝑎 + 𝐶𝑚+𝐶𝑟). 

(3) 

We compare the average costs for the first and second maintenance options. That is, we will find 
the difference 

∆= 𝐸(𝐶Σ|𝐶𝐵𝑀) − 𝐸(𝐶Σ|𝑆𝑀). (4) 

It is desirable that ∆ ≥ 0, then the expediency of improving maintenance will be substantiated. 
To simplify the analysis, we will introduce the correlation: 1) between the costs of manual and 

automated control, i.e. 𝐶𝑐𝑎 = 𝐴𝐶𝑐𝑜𝑛, where 𝐴 ≪ 1; 2) between the probabilities of being in the 
serviceable and deteriorated conditions 𝑃𝑠2 = 𝐵𝑃𝑠1, where 𝐵 > 0. 

Then we can simplify equation (3) to the form: 
𝐸(𝐶Σ|𝐶𝐵𝑀1) = 𝑃𝑠1𝑃(𝑆1|𝑆1)𝐴𝐶𝑐𝑜𝑛 + 𝑃𝑠1(1 − 𝑃(𝑆1|𝑆1))(2𝐴𝐶𝑐𝑜𝑛 + 𝐶𝑚) + 

+𝐵𝑃𝑠1𝑃(𝑆2|𝑆2)(2𝐴𝐶𝑐𝑜𝑛 + 𝐶𝑚) + 𝐵𝑃𝑠1𝑃(𝑆1|𝑆2)𝐴𝐶𝑐𝑜𝑛 + 
+𝐵𝑃𝑠1𝑃(𝐹|𝑆2)(2𝐴𝐶𝑐𝑜𝑛 + 𝐶𝑚) + (1 − (1 + 𝐵)𝑃𝑠1) × 

× (𝑃(𝐹|𝐹)(2𝐴𝐶𝑐𝑜𝑛 + 𝐶𝑚) + (1 − 𝑃(𝐹|𝐹))(2𝐴𝐶𝑐𝑜𝑛 + 𝐶𝑟 + 𝐶𝑚)). 

(5) 

Consider an example of a calculation for a comparative analysis of the first and second 
maintenance options. We will consider the input parameters for SM: 𝐶𝑐𝑜𝑛 = 50 USD, 𝐶𝑚 = 80 USD, 
𝐶𝑟 = 160 USD, 𝑃𝑠 = 0.9, 𝑃𝑓 = 0.1. Then according to equation (2) we get 

𝐸(𝐶Σ|𝑆𝑀) = 0.9 ∙ (50 + 80) + 0.1 ∙ (100 + 160) = 143 USD. 
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The input parameters for CBM using the automated control of the technical condition are the 
following parameters: 𝐴 = 0.04, 𝑃𝑠1 = 0.45, 𝐵 = 1, 𝑃𝑠2 = 0.45, 𝑃𝑓 = 0.1, 𝑃(𝑆1|𝑆1) = 0.99, 
𝑃(𝑆2|𝑆1) = 0.01, 𝑃(𝑆2|𝑆2) = 0.9, 𝑃(𝑆1|𝑆2) = 0.05, 𝑃(𝐹|𝑆2) = 0.05, 𝑃(𝐹|𝐹) = 0.95, 𝑃(𝑆2|𝐹) =

0.05. 
Then according to equation (5) we get 𝐸(𝐶Σ|𝐶𝐵𝑀1,1) = 55.16 USD. 
The second option of input parameters for CBM using the automated control of the technical 

condition is: 𝐴 = 0.04, 𝑃𝑠1 = 0.3, 𝐵 = 2, 𝑃𝑠2 = 0.6, 𝑃𝑓 = 0.1, 𝑃(𝑆1|𝑆1) = 0.99, 𝑃(𝑆2|𝑆1) = 0.01, 
𝑃(𝑆2|𝑆2) = 0.9, 𝑃(𝑆1|𝑆2) = 0.05, 𝑃(𝐹|𝑆2) = 0.05, 𝑃(𝐹|𝐹) = 0.95, 𝑃(𝑆2|𝐹) = 0.05. For this option 
of the data, the priori probability of ARE in the deteriorated condition increases, so the gain of CBM 
using the automated control will decrease. At the same time, we will get 𝐸(𝐶Σ|𝐶𝐵𝑀1,2) = 65.6 USD. 

The efficiency improvement coefficients for the first and second options of CBM using the 
automated control compared to scheduled maintenance will be: 

𝐾1 =
𝐸(𝐶Σ|𝑆𝑀)

𝐸(𝐶Σ|𝐶𝐵𝑀1,1)
=

143

55.16
= 2.6, 𝐾2 =

𝐸(𝐶Σ|𝑆𝑀)

𝐸(𝐶Σ|𝐶𝐵𝑀1,2)
=

143

65.6
= 2.2. 

At the same time, the parameter ∆ according to equation (4) will be 87.84 and 77.4, respectively, 
which proves the efficiency of CBM using the automated control of the defining parameters. 

Consider and detail the strategy of CBM using predictive control. For comparative performance 
analysis, several options can be explored, namely: with two thresholds (operational), with four 
thresholds (operational and preventive). 

During the development of decision-making scenarios, we will take into account two features: 1) 
within what limits is the extreme value during the training period; 2) what is the confidence interval 
for estimating the predicted value. In the general case, the estimate of the predicted value has a 
probability density function. During the efficiency analysis, we can consider different variants of the 
trend of the defining parameter. For simplicity of research and calculations, we will assume a linear 
model of this trend. From the point of view of the probabilistic description of the forecasting 
procedure, two factors must be taken into account: 

1. The tendency of the development of forecast values has an angle of inclination, which is a 
random value and can take a certain continuum of values. 

2. Forecast values of the trend at the time of forecasting have a normal probability density 
function. 

Let's consider the operator scheme of performing CBM using predictive control for the option 
with two thresholds (Figure 5). 

The following assumptions and explanations should be noted when considering this maintenance 
strategy. The cost of predictive procedures is 𝐶𝑝. As a result of the implementation of the forecasting 
algorithm, two decisions are possible: ARE will be in the serviceable condition with conditional 

probability 𝑃 (𝑆1
(𝑝𝑟)

|𝑆1) and ARE will be in a failure state with conditional probability 𝑃(𝐹(𝑝𝑟)|𝑆1). 

If deterioration with possible failure is predicted, preventive maintenance must be performed. The 
cost of preventive maintenance is 𝐶𝑝𝑚. At the same time, 𝐶𝑝𝑚 < 𝐶𝑚. In the case of an erroneous 
decision by the automatic control system regarding the condition of failure for objectively 
serviceable condition, the forecaster does not fulfill the prediction, and the equipment is sent for 
repair. At the same time, repair procedures are not performed since the wrong decision is revealed 
at the stage of preventive maintenance. In the event of an objective failure and erroneous decision 
of the automatic control system, the predictor corrects this error and directs the ARE to carry out 
repair procedures. 



 

Figure 5: Operator diagram for condition-based maintenance with predictive control and two 
thresholds. 

Taking into account Figure 5, the average costs will be: 

𝐸(𝐶Σ|𝐶𝐵𝑀2,1) = 𝑃𝑠𝑃(𝑆1|𝑆1)𝑃 (𝑆1
(𝑝𝑟)

|𝑆1) (𝐶𝑐𝑎 + 𝐶𝑝) + 

+𝑃𝑠𝑃(𝑆1|𝑆1)𝑃(𝐹(𝑝𝑟)|𝑆1)(𝐶𝑐𝑎 + 𝐶𝑝 + 𝐶𝑝𝑚) + 𝑃𝑠𝑃(𝐹|𝑆1)(𝐶𝑐𝑎 + 𝐶𝑝𝑚) + 

+𝑃𝑓𝑃(𝐹|𝐹)(2𝐶𝑐𝑎 + 𝐶𝑟) + 𝑃𝑓𝑃(𝑆1|𝐹)(2𝐶𝑐𝑎 + 𝐶𝑝+𝐶𝑟). 

(6) 

We will calculate the costs for this maintenance option for the parameters from the previous 
example: 𝐴 = 0.04, 𝑃𝑠 = 0.9, 𝑃𝑓 = 0.1, 𝑃(𝑆1|𝑆1) = 0.99, 𝑃(𝐹|𝑆1) = 0.01, 𝑃(𝐹|𝐹) = 0.95, 

𝑃(𝑆1|𝐹) = 0.05, 𝐶𝑟 = 160 USD. At the same time, we will additionally assume that 𝑃 (𝑆1
(𝑝𝑟)

|𝑆1) =

0.95, 𝑃(𝐹(𝑝𝑟)|𝑆1) = 0.05, 𝐶𝑝 = 𝐶𝑐𝑎, 𝐶𝑝𝑚 = 20 USD. 

Then according to equation (6) we get 𝐸(𝐶Σ|𝐶𝐵𝑀2,1) = 27.45 USD. 
The parameter ∆ according to equation (4) will be 115.44, and the efficiency improvement 

coefficient will be 5.2. This strategy also improved the level of efficiency by approximately two times 
in comparison with the strategy of CBM using the automated control of defining parameters. 

Let s consider the operator scheme of performing CBM using predictive control for the option 
with four thresholds (Figure 6). Taking into account Figure 6, the average costs will be: 

𝐸(𝐶Σ|𝐶𝐵𝑀2,2) = 𝑃𝑠1𝑃(𝑆1|𝑆1)𝑃 (𝑆1
(𝑝𝑟)

|𝑆1) (𝐶𝑐𝑎 + 𝐶𝑝) + 

+𝑃𝑠1𝑃(𝑆1|𝑆1) (𝑃 (𝑆2
(𝑝𝑟)

|𝑆1) + 𝑃(𝐹(𝑝𝑟)|𝑆1)) (𝐶𝑐𝑎 + 𝐶𝑝 + 𝐶𝑝𝑚) + 

+𝑃𝑠1𝑃(𝑆2|𝑆1)(2𝐶𝑐𝑎 + 𝐶𝑚) + 𝑃𝑠2𝑃(𝑆2|𝑆2)(2𝐶𝑐𝑎 + 𝐶𝑚) + 

+𝑃𝑠2𝑃(𝑆1|𝑆2)𝑃 (𝑆1
(𝑝𝑟)

|𝑆2) (𝐶𝑐𝑎 + 𝐶𝑝) + 𝑃𝑠2𝑃(𝐹|𝑆2)(2𝐶𝑐𝑎 + 𝐶𝑚) + 

+𝑃𝑠2𝑃(𝑆1|𝑆2) (𝑃 (𝑆2
(𝑝𝑟)

|𝑆2) + 𝑃(𝐹(𝑝𝑟)|𝑆2)) (𝐶𝑐𝑎 + 𝐶𝑝 + 𝐶𝑝𝑚) + 

+𝑃𝑓𝑃(𝐹|𝐹)(2𝐶𝑐𝑎 + 𝐶𝑟) + 𝑃𝑓𝑃(𝑆2|𝐹)(2𝐶𝑐𝑎 + 𝐶𝑚+𝐶𝑟). 

(7) 

Serviceable 

condition

Automated 

inspection 

and control

S1 Prediction S1

Failure

Automated 

inspection 

and control

F

Repair

Pf

Ps
Cp

Cr

Cca

Cca

F
Preventive 

maintenance

Normal 

opearation

Preventive 

maintenance

Cpm Cpm

F

Cca

S1S1

Prediction

Cp

F
Normal 

opearation

Repair

Cr

Cca

S1

Automated 

inspection 

and control

Automated 

inspection 

and control



 

Figure 6: Operator diagram for condition-based maintenance with predictive control and four 
thresholds. 

Equation (7) contains additional conditional probabilities of forecasting the condition of the 

equipment in case when it is in the deteriorated condition at the time of prediction: 𝑃 (𝑆1
(𝑝𝑟)

|𝑆2), 

𝑃 (𝑆2
(𝑝𝑟)

|𝑆2), and 𝑃(𝐹(𝑝𝑟)|𝑆2). Obviously, the smallest of these probabilities will be the first of them.  

The scheme in Figure 6 provides for the presence of two types of maintenance procedures: 1) 
normal, which is performed after determining the current condition of ARE by the automatic control 
system, and 2) preventive, which is performed based on the results of forecasting the future condition 
of ARE. 

Calculate the average operational costs for the option with four thresholds. We will use the 
following initial parameters: 𝑃𝑠1 = 0.45, 𝑃𝑠2 = 0.45, 𝑃𝑓 = 0.1, 𝑃(𝑆1|𝑆1) = 0.99, 𝑃(𝑆2|𝑆1) = 0.01, 
𝑃(𝑆2|𝑆2) = 0.9, 𝑃(𝑆1|𝑆2) = 0.05, 𝑃(𝐹|𝑆2) = 0.05, 𝑃(𝐹|𝐹) = 0.95, 𝑃(𝑆2|𝐹) = 0.05, 𝐶𝑐𝑜𝑛 = 50 
USD, 𝐶𝑚 = 80 USD, 𝐶𝑟 = 160 USD, 𝐶𝑝𝑚 = 20 USD, 𝐶𝑝 = 2 USD, 𝐶𝑐𝑎 = 2 USD. Conditional 

probabilities of future conditions during prediction: 𝑃 (𝑆1
(𝑝𝑟)

|𝑆1) = 0.95, 𝑃 (𝑆2
(𝑝𝑟)

|𝑆1) = 0.025, 

𝑃(𝐹(𝑝𝑟)|𝑆1) = 0.025, 𝑃 (𝑆1
(𝑝𝑟)

|𝑆2) = 0.05, 𝑃 (𝑆2
(𝑝𝑟)

|𝑆2) = 0.55 𝑃(𝐹(𝑝𝑟)|𝑆2) = 0.4. 
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Then according to equation (7) we get 
𝐸(𝐶Σ|𝐶𝐵𝑀2,2) = 55.79 USD. 

The second option of numerical calculation for conditional probabilities of future conditions 

during forecasting 𝑃 (𝑆1
(𝑝𝑟)

|𝑆1) = 0.9, 𝑃 (𝑆2
(𝑝𝑟)

|𝑆1) = 0.06, 𝑃(𝐹(𝑝𝑟)|𝑆1) = 0.04, 𝑃 (𝑆1
(𝑝𝑟)

|𝑆2) =

0.06, 𝑃 (𝑆2
(𝑝𝑟)

|𝑆2) = 0.9, and 𝑃(𝐹(𝑝𝑟)|𝑆2) = 0.04 provides the average operational costs that equal 

to 𝐸(𝐶Σ|𝐶𝐵𝑀2,2) = 55.87 USD. This value is close to the results of the first example.  
In this case, the parameter ∆ according to equation (4) will be 87.21 and 87.13, and the efficiency 

improvement coefficient will be approximately 2.56. 
So, the CBM using predictive control for the option with four thresholds turned out to be twice 

as bad in terms of efficiency compared to the option with two thresholds. Therefore, we conclude 
that two thresholds are sufficient during the implementation of prediction algorithm. 

4. Conclusions 

The paper is devoted to the issues of analyzing the efficiency of data processing algorithms during 
the operation of ARE by aviation enterprises. The main attention was paid to the processes of 
maintenance, repair, monitoring, and control of the technical condition. At the same time, four 
options for data processing were studied, which correspond to different strategies for the 
implementation of maintenance: scheduled maintenance, condition-based maintenance using 
automated control, and condition-based maintenance using predictive control for options with two 
and four thresholds. For each strategy, an operator scheme for performing data processing and 
decision-making procedures was developed, as well as average operational costs were calculated.  

The analysis of various strategies showed the need to find the compromise between ensuring the 
desired level of equipment reliability and minimizing operational costs. The use of the automated 
control system and prediction algorithms significantly increases the efficiency of ARE operation. 

The paper considers examples of numerical calculations that showed that the advantage of the 
implementation of condition-based maintenance is: 1) 2.2...2.6 times for the case of automated control 
of the defining parameters; 2) 2.5...5.2 times for the case of predictive control.  

Future research will be aimed at further improving the condition-based maintenance strategy 
using predictive control for the two-threshold and four-threshold options (in particular, based on the 
multiple estimation of conditions in a sliding window), as well as developing a suitable simulation 
model for this strategy. 
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