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Abstract
In applications such as personal assistants, large language models (LLMs) must consider the user’s personal information and
preferences. However, LLMs lack the inherent ability to learn from user interactions. This paper explores capturing personal
information from user prompts using ontology and knowledge-graph approaches. We use a subset of the KNOW ontology,
which models personal information, to train the language model on these concepts. We then evaluate the success of knowledge
capture using a specially constructed dataset. Our code and datasets are publicly available at https://github.com/HaltiaAI/paper-
PTODSKC
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1. Introduction
Currently, many generative artificial intelligence (AI) ap-
plications, particularly personal assistants, strive to offer
users personalized experiences. To achieve this, AI appli-
cations must learn personal information and preferences
from user interactions (knowledge capture) and use this
learned knowledge in future conversations (knowledge
utilization). Implementing this fundamental personal AI
approach depends on addressing several complex sub-
problems, such as discerning which user prompt infor-
mation is personal, extracting it, determining whether
the extracted information is duplicate, and associating it
with other personal data.

These challenges have been the focus of extensive re-
search within the AI field for many years. However, the
emergence of neurosymbolic approaches through the col-
laboration between large language models (LLMs) and
symbolic AI has provided researchers with new perspec-
tives [1, 2, 3, 4]. LLMs’ capabilities in natural language
processing can be integrated with the representational
and factual reasoning abilities of knowledge graphs, en-
hanced by the structure, rules, and inference mechanisms
offered by an ontology. For targeted personal AI applica-
tions, this ontology approach presents several benefits:

• Ontology schemas enable language models to de-
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termine which personal information will be cap-
tured and how it will be associated with other
captured knowledge.

• Ontology rules can help identify inconsistencies
in the captured knowledge, allowing for valida-
tion before storage.

• Ontology relationships allow the extraction of
implicit information from captured knowledge,
effectively enabling automatic inference that ex-
pands the knowledge graph.

• A robust, personalized knowledge graph forms a
reliable foundation for facilitating personalized
interactions with the application through lan-
guage models.

In this paper, we address a specific aspect of the AI
personalization challenge by focusing on prompt-time,
ontology-driven symbolic knowledge capture using lan-
guage models. We explore the extraction from user
prompts of subject-predicate-object triples1 that conform
to a specified ontology. We have investigated various
methods to enable the underlying language model to
comprehend a pre-defined ontology, ensuring effective
symbolic knowledge capture. By utilizing a specially
designed dataset, we evaluate the effectiveness of these
methods, emphasizing their strengths and identifying
potential areas for improvement.

The structure of this paper is as follows: Section 2
discusses in-context learning and fine-tuning approaches
for ontology-driven symbolic knowledge capture and
focuses on the details of the fine-tuning approach. Sec-
tion 3 describes the experimental setup by presenting the
development framework, the language model selection,
and the ontology and dataset creation process. Section 4

1https://www.w3.org/TR/rdf12-concepts/
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outlines our performance evaluation framework and the
test results. Finally, Section 5 concludes the paper and
suggests future directions.

2. Ontology-Driven Symbolic
Knowledge Capture

In the literature, language models have demonstrated
their capability to transform unstructured text into a
knowledge graph [5, 6, 7, 8, 9]. However, the process
of populating a knowledge graph from user prompts
in alignment with a pre-defined ontology has been ex-
plored only marginally [10, 11, 12, 13, 14]. Research
typically centers on in-context learning, which heavily
relies on prompt engineering. A significant limitation
of this approach is the requirement to incorporate the
entire custom ontology into the prompt. This neces-
sity not only slows down the knowledge capture pro-
cess, because of the high token overhead but also re-
stricts the use of larger ontologies due to the constraint
on context-window length. Given these constraints, in-
context learning methods do not provide a scalable solu-
tion for ontology-driven symbolic knowledge capture.

An alternative approach involves training a language
model with a pre-defined ontology, so that the model
internalizes it. There are two strategies to consider: pre-
training the LLM on the ontology or fine-tuning it. This
paper does not explore pre-training due to its extensive
data, computational resources, energy, and time require-
ments. Additionally, pre-training does not offer a flexible
response to ongoing changes or expansions in the ontol-
ogy. Therefore, this paper will focus on fine-tuning as a
method to train language models on personal ontologies,
highlighting advantages in feasibility and maintainabil-
ity.

2.1. Ontology-Driven Knowledge Capture
with Fine-Tuning

Fine-tuning is a process whereby a pre-trained language
model is further trained on a specific dataset to tailor
its capabilities to a particular task. In our study, the
language model is expected to learn the classes, object
properties, and data properties defined in an ontology,
and to use them to populate a knowledge graph from user
prompts. The first step involves preparing a fine-tuning
dataset, which includes user prompts, system prompts,
and expected model responses for each concept in the
ontology. This dataset is used to fine-tune the language
model, which is then evaluated by testing it with new
prompts to assess the effectiveness of the knowledge
capture operation. We define a system prompt for this
task with the requirement of maintaining the model’s
generality across other tasks.

The following points highlight the key aspects of on-
tology fine-tuning:

• The training dataset’s coverage and diversity are
vital for successful fine-tuning. These character-
istics greatly influence the LLM’s ability to ef-
fectively capture knowledge. Details about the
dataset and how it is constructed are discussed in
Section 3.4.

• The training dataset must include a variety of
examples for each element of the predefined on-
tology. This approach avoids scalability issues
typically associated with in-context learning and
ensures comprehensive learning coverage.

• If the LLM encounters a user prompt that is not
relevant to the predefined ontology concepts, it
should not attempt to capture knowledge. There-
fore, the dataset should also contain sufficient
out-of-context samples to enable the LLM to dis-
tinguish between relevant and irrelevant infor-
mation for capture.

3. Experimental Setup
This section explores the components of our experimen-
tal setup.

3.1. Development Framework
The methods suggested in this paper have been imple-
mented using the Apple MLX framework [15]. MLX is a
specialized array framework designed for machine learn-
ing applications, akin to NumPy, PyTorch, or JAX, with
the distinction of being exclusive to Apple silicon.

Ontology fine-tuning has been conducted using the
parameter-efficient QLoRA approach [16] on our custom
dataset, comprising randomly selected, non-overlapping
sets of training, validation, and test samples.

3.2. Language Model
The methods we have developed here do not have a struc-
tural dependency on a particular underlying foundation
model. The key factors guiding our language model se-
lection were its proven effectiveness across diverse do-
mains in community benchmarks and its prevalence in
the field. Owing to its performance in the Hugging Face
Open LLM Leaderboard [17] and its robust ecosystem,
the Mistral-7B-Instruct-v0.2 [18], based on the Llama 2
[19] architecture, was selected for our research. We ran
all examples, tests, and benchmarks on the MLX 4-bit
quantized version of this model to be able to run the tests
on personal laptops.



3.3. Predefined Ontology
Our study is inspired by KNOW[20]–the Knowledge Nav-
igator Ontology for the World–and utilizes it for repre-
senting personal information. KNOW is introduced as
a pioneering framework designed to capture everyday
knowledge to enhance language models in real-world
generative AI applications such as personal AI assistants.
The ontology focuses on human life, encompassing ev-
eryday concerns and significant milestones, and limits its
initial scope to established human universals, including
spacetime (places, events) and social dimensions (people,
groups, organizations). This pragmatic approach empha-
sizes universality and utility, contrasting with previous
works like Schema.org[21] and Cyc[22] by building on
language models’ inherent encoding of salient common-
sense knowledge.

Due to the requirement that each element in the on-
tology be associated with a diverse set of prompt and re-
sponse samples within the training dataset, our research
focuses on a specific subset of the KNOW ontology. This
subset concentrates on core family relationships with
four ontology classes, eleven object properties, and one
data property. A visual depiction of this subset is pre-
sented in Figure 1.
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Figure 1: A visual representation of the ontology design used
in this paper.

3.4. Dataset
For a language model to effectively learn a predefined
ontology and use it to perform knowledge extraction
and capture, a robust and diverse training dataset is es-
sential. Our paper focuses on a subset of the KNOW
ontology that includes the concepts of ‘person’, ‘name’,
‘sex’, ‘child’, ‘father’, ‘mother’, ‘sibling’, ‘sister’, ‘brother’,
‘spouse’, ‘partner’ and ‘knows’. We created 143 manually
crafted user prompts along with their respective ontol-
ogy responses for training and tests. Additionally, to
manage inputs that fall outside these ontology concepts,

we included 32 generic user prompts in the dataset. The
composition of this dataset, which consists of 175 user
prompts, is illustrated in Figure 2. Concepts not associ-
ated with the ontology are labeled as the ’none’ legend
in the figure. As each sample prompt typically contains
multiple modeled concepts, the chart shows a total num-
ber of concept occurrences greater than the number of
prompts.
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Figure 2: Occurrences of ontology concepts in the prepared
dataset.

The Turtle format was chosen for serializing the ontol-
ogy population in our research because of its straightfor-
ward structure, readability, and prevalent use in existing
pre-training datasets for LLMs.

4. Performance Evaluation
Our research focuses on fine-tuning a language model
with predefined ontology concepts and capturing knowl-
edge from user prompts that fits the ontology. This sec-
tion will detail the performance evaluations associated
with these efforts.
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Figure 3: Occurrences of ontology concepts in the test
dataset.

Initially, we investigated how many training samples
each ontology concept required to effectively teach the



core family ontology to the selected Mistral-7B-Instruct-
v0.2 model. From the dataset described in Section3.4, 41
random samples were selected and reserved for method
evaluation. The distribution of ontology concepts within
this test set is shown in Figure 3.

From the remaining 134 samples, we created three
different training datasets. In these three datasets, we
have ensured the inclusion of 2, 4, and 8 sample prompts
for the ontology concepts ‘child’, ‘father’, ‘mother’, ‘sib-
ling’, ‘sister’, ‘brother’, ‘spouse’, ‘partner’, and ‘knows’.
Subsequent evaluations using the test set measured the
precision, recall, and f1-scores for each fine-tuning ses-
sion. During these evaluations, the generated prompt
responses were processed triple by triple and compared
against the ground truth established for the test set. The
findings are displayed in Figure 4.
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Figure 4: Ontology population performance (precision, recall,
and f1-score) for various fine-tuning dataset sizes.

The tests were conducted using the default QLoRA
hyperparameters specified in the MLX framework. To
ensure consistent test results, each training session was
set to run for 18 epochs.

• Layer keys to apply: ["self_attn.q_proj",
"self_attn.v_proj"]

• Rank: 8
• Alpha: 16
• Scale: 10
• Optimizer: Adam
• Learning rate: 1𝑥10−5

• Number of layers to fine-tune: 16
• Minibatch size: 4

As illustrated in Figure 4, our study, which encom-
passes twelve key ontology concepts, demonstrates that
providing eight diverse examples for each concept yields
acceptable success rates. Although our training and test
datasets are not sufficiently diverse or large enough to
generalize the results to real user scenarios, the high suc-
cess achieved with a small number of training samples is
promising for the feasibility of the proposed approach.

In the subsequent phase, we explored the optimal num-
ber of training epochs required to achieve maximum
performance for the training set. For this analysis, we
continued using the default MLX QLoRA hyperparame-
ters with the 8 samples per ontology concept, but trained
the QLoRA adapter over various epoch lengths. We then
conducted evaluations on the test set using each trained
adapter, and the findings are presented in Figure 5.
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Figure 5: Ontology population performance (precision, recall,
and f1-score) of 8 samples per ontology concept for various
epochs.

As depicted in Figure 5, the success rate of the ontol-
ogy population increases with longer training. However,
considering the resource usage and energy consumption,
we observe that 18 epochs are sufficient for fine-tuning.

5. Conclusion
In this paper, we first explored prompt-driven, ontology-
based symbolic knowledge capture and its importance
in the generative AI domain. We then discussed the on-
tology approach and how to teach ontology concepts
to the language model through in-context learning and
training. The language model was fine-tuned using a cus-
tom dataset focused on core family relationships, and we
evaluated the model’s ability to learn personal ontology
concepts.

Our findings indicate that fine-tuning is particularly
effective for teaching ontology concepts to a language
model for prompt-time knowledge capture. In our fu-
ture work, we aim to integrate the generated knowledge
graph with the language model for knowledge utilization,
combining the strengths of the neural and symbolic AI
approaches.

Please refer to the paper’s corresponding GitHub repos-
itory at https://github.com/HaltiaAI/paper-PTODSKC

https://github.com/HaltiaAI/paper-PTODSKC
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