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Abstract

Parametric array theories are extensions of the quantifier-free theory of arrays with relations that hold component-
wise. Unlike more expressive theories of arrays they allow specifying linear cardinality constraints on interpreted
sets of indices, a notion close to the Hartig quantifier from model theory. We apply the notion of generalised
power of a structure to study the satisfiability problem of parametric array theories. We show that reasoning about
component-wise relations, linear cardinality constraints and succinct regular relations can be done efficiently by
reduction to propositional satisfiability. We indicate how our techniques can be adapted to theories of trees.

Keywords

decision procedures, satisfiability modulo theories, symbolic automata

1. Introduction

Many abstractions in computer science and mathematics are naturally modelled as collections of objects
of certain type. When addressing the problem of automatically verifying properties of such abstractions
it becomes crucial to choose an adequate language in which to express the properties of interest.

Our research is influenced by work in the area of deductive software verification [5, 23]. Research in
this area led to the development of specialised algorithms that determine the validity of formulas in
restricted fragments of first-order logic. The resulting algorithms are today studied in the so-called
satisfiability modulo theories (SMT) framework.

Starting with [21], first-order theories under the name of “array theories” have been studied and,
along the years, new decidable fragments and applications have been found. Bradley [6] carried out
a systematic exploration of a very expressive and decidable fragment known as the “array property
fragment”. Most notably, this fragment allowed to express the property of an array being ordered while
having an efficiently decidable satisfiable problem under mild restrictions. Moreover, Bradley’s work
showed that minor variations to the fragment’s syntax would led to undecidability, by reduction from
Hilbert’s tenth problem.

In spite of the above, and after Bradley’s work, a family of decidable array theories has been used in the
verification of so-called array-based systems [17, 26, 13, 27, 15]. This framework has been used to model
sequential programs manipulating arrays and lists, as well as parameterised concurrent systems with
local and shared variables [3, 1, 20]. These programs are essential in specialised computing scenarios
such as data-base driven systems [4] or business processes [15].

In 30, 29, 31, 32], we have investigated the structure of these array theories. We have observed
that they extend classical array theories with point-wise relations, which are defined as in the element
theory for every component of the arrays. The conclusion of our investigation is that these point-wise
relations are the essential difficulty when designing decision procedures for these theories. In particular,
we have described how the satisfiability problem of these theories can be reduced in polynomial time to
the satisfiability problem of the theory of a power structure [28] and that the latter admits an efficient
procedure for eliminating existential quantifiers [30].

Our results are applicable to a variety of array theories from the literature [10, 16, 14, 1] to which we
refer to as “parametric” array theories since they often allow to be instantiated with different index
and element theories. An interesting feature of parametric array theories is that the componentwise
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relations only require one universal quantifier to be expressed. For instance, one may define the addition
of two arrays a and b as:

a+ b = cif and only if for every i € I, a(i) + b(i) = c(i)

This is in contrast to other array theories such as the array property fragment [5], which allow properties
using several related universally quantified indices. For instance, one may define in this fragment the
property of an array being ordered:

a is ordered if and only if for every i,j € I,i < j implies a[i] < a[j]

While “array properties” in [5] allow several universal quantifiers, this comes at the cost of severe
syntactic restrictions. In contrast, parametric array theories offer the possibility of using linear cardi-
nality relations on sets of indices [16, 14, 1, 30]1 as well as constraints on the sums of elements of array
variables. These properties are inexpressible in the array property fragment.

These results motivate us to push further our investigation. In this paper, rather than moving to
the design of algorithms for first-order theories (which would be justified by the incipient quantifier
elimination method of [30]), we choose to further explore the possibilities in the quantifier-free setting
which is the one relevant to the satisfiability modulo theories framework.

We take inspiration from the work of Feferman and Vaught [12], who introduced the notion of
generalised power of a structure and motivated by the question of decidability of the weak monadic
second order theory of one succesor (WS1S), raised by Tarski, discuss generalised powers with this theory
of indices in the later sections of their paper. However, deciding WS1S is computationally intractable
[34]. Thus, we present the definable relations of the theory in the form of regular expressions. It was
proved by Biichi [7] that both formalisms are expressively equivalent. We refer to the relations on sets
of indices induced by regular expressions or WS1S formulas as regular relations.

There are several reasons that lead us to think that an extension of array theories with cardinality
constraints and regular expressions is worthwhile investigating. First, this extends the work of Alberti,
Ghilardi and Pagani [1] since it is well-known that WS1S is more expressive than Presburger arithmetic
[35]. Second, this extension allows us to express properties of arrays such as those appearing in array
folds logic [9]. While array folds logic only allows folding expressions over one array variable, this
restriction does not appear in the fragment that we present. Third, a similar extension but without
cardinality constraints has been considered concurrently to our work in [18].

Both in [18] and in our work, it seems that a non-trivial insight for the construction of the decision
algorithm is needed. We point out to the reader that this insight is materialised in our paper in the
partition variables introduced in Section 4.1. Indeed, since our specifications contain formulas whose
interpretations, as sets of indices of the arrays, may overlap, it is essential to ensure that there exists a
model adhering to the regular specification regardless of the overlaps in the semantic domain.

Unlike [18], we focus in the case of regular languages which should be more familiar to the readers.
Nevertheless, we include a final section pointing out the main ingredients of the extension to regular
tree languages. Also, for the sake of clarity, we have focused in cardinality constraints, but it should be
clear that an extension to summation constraints is also possible.

Organisation of the paper. The rest of the paper is organised as follows. Section 2 describes
generalised powers using specific theories of sets with cardinalities, theories describing their contents,
and theories describing regular relations on the indices of these sets. Section 3 describes the satisfiability
preserving encoding of arrays in generalised powers. Section 4 gives an algorithm that in polynomial
time takes as input a generalised power structure specification and outputs an equivalent formula in

!A similar notion appears in the model theory literature under the name of Hirtig’s quantifier [2].

*We had considered regular expressions in our PhD thesis [29]. Here we consider regular expressions over first-order formulas.
This formalism has been popularised in recent times under the name of symbolic regular expression and it can also be seen
as motivated by Feferman-Vaught’s results. This is what we mean by “succinct” regular relations. We also sometimes speak
of “ordering” instead of regular relations since regular relations are precisely those expressible in the monadic theory of
order [7].
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the combination of the quantifier-free theory of Boolean algebra of sets with Presburger arithmetic and
the alphabet’s theory. Section 5 discusses the applicability of the technique in the setting of theories of
trees, connecting to recent work. Section 6 concludes the paper.

2. Generalised powers

Let us start with the definition of generalised power structure as it is given in [12].

Definition 2.1. The generalised power P(/,I) of a structure /# = (M, ...) is a structure whose carrier
set is the set M! of functions from the (possibly infinite) index set I to the carrier set M of the structure
A and whose relations are interpreted as sets of the form

{(a, ..., a,) € MO | B(Sy, ..., S}

where n is a natural number, ® is a Boolean algebra expression over 2(I) using the symbols C, u, n or -
and each set variable S is interpreted as

S= {l €l | G(al(i)a cees an(l))}
where 0is a formula in the first-order theory of /.

In the following, we will use the term “arrays” for the functional elements in the carrier from a
generalised power P (M, I), the term “elements” for the members of the carrier set of the structure
A and the term “indices” for the members of the set I. We will use the notation a(i) when we want to
emphasize the algebraic perspective and the notation a[i] when we want to emphasize the connection
to array theories. In particular, we will use the latter notation when describing how to translate from
parametric array theories to generalised powers.

Nothing prevents us from considering set interpretations of the form

S={ielly@}

where ¢/ is a formula that refers only to indices in the set I In fact, this direction is pursued in [1] where
a fragment of the theory of arrays is investigated that corresponds to a generalised power whose set
interpretations conflate both the theory of indices and the theory of elements using the quantifier-free
fragment of Presburger arithmetic to refer to both. We will use different set interpretations for indices
and elements. We will use relations of the following form:

F(Si,....,5) AR(Sq,....S) ~nClaq, ..., ar) (1)

Here Fspecifies linear cardinality constraints on the shared set variables S, ..., Sx. R specifies the regular
relations on the set of indices Sy, ..., S. Finally, C specifies the componentwise relations on the arrays
aj, ..., a. The precise description of Formula (1) occupies the rest of the section.

2.1. Sets of indices

Formulas F, R and Cin (1) use variables Sy, ..., S representing subsets of an index set I This is explicitly
shown in (1) for Fand R. The variables Sy, ..., Sy are omitted from formula C to emphasize the role of
componentwise relations on array variables. Thus, the variables S, ..., S, are used to combine the three
theories. This approach to theory combination was pioneered in [37]. As we focus on arrays, I = IN.
Generalisations to trees are also possible and in that case I = {0, 1}*.
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2.2. Linear cardinality constraints on the sets of indices

F(S1,...,S) is a formula in the quantifier-free theory of Boolean algebra with Presburger arithmetic
(QFBAPA) [25]. The syntax of QFBAPA is given in Figure 1. The top-level symbol F presents the
Boolean structure of the formula, A stands for the atomic formulas which can be either Boolean algebra
expressions on the sets denoted by the symbol B or Presburger arithmetic restrictions on numbers
denoted by the symbol T. The operator dvd stands for the divisibility relation, which is used to ensure
that the quantifier-free fragment has the same expressive power as the full first-order theory of Boolean
algebra with Presburger arithmetic (BAPA)[24]. % represents the universal set I. Lowercase x and k
represent Boolean and integer variables respectively. The remaining interpretations are standard in the
respective theories (Boolean algebra of sets or Presburger arithmetic).

F::= A|F, nE|F,vE|~F
B,=B,|B, CB|T, =T, |T, <T,|Kdvd T
:=x|®|%|ByuB,|B; nB,| B
::=k|K|T, + T,|K - T||B]|

ci=.L ] =2 =1]0]1]2] ...

N N W o>
Il

Figure 1: QFBAPA’s syntax

Example 2.1. An example of QFBAPA formula is |A| > 1A A CBA|BnC| < 2.

2.3. Componentwise relations on arrays

C(ay, ..., at) is a formula specifying componentwise relations. It does so with set interpretations of the
form:

Sy =1{i € I| ¢a(i), o)}
where a denotes a tuple of array variables, ¢ denotes a tuple of constants from the element theory and
¢; is a formula of the element theory. As in Definition 2.1, a(i) denotes the i-th position of array a and

a(i) = (a1 (D), ..., ac(D).
Example 2.2. The equality between two arrays a; and a, can be written in the fragment of (1) as:
S={iella() = aDinlS| = %]

where % as explained above, represents the universal set L.

2.4. Regular relations on the set of indices

R(Sy, ..., S) is a formula specifying regular relations in the set of indices. For instance, the array could
be specified by the symbolic regular expression:

$1(e,0)($1(e.0) v pa(e.0))"P3(e. ) (2)

This specifies that the first element e of the array satisfies the formula ¢, (e, ), then there is a sequence
of zero or more elements e satisfying either ¢ (e, ) or ¢,(e, ¢) and the last element e satisfies the formula
¢3(e,©). Each instantiation of e is different for each witness, while the value of the parameters in ¢ must
be the same for the whole array. However, this approach conflates the specifications of the indices and
the specifications of the elements of the arrays.

*There are several possibilities to write regular relations. Here we use regular expressions for economy of notation.
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Let us instead write a symbolic version of the regular expression above
51081 v $2)*S3 (3)

To relate this symbolic expression and the theory of the elements, we let t be a sequence of bit-strings
t € (§0,1})* and define

Si={iel|t()=1}nS ={i € I'| $1(a(i),0)}
Sy ={iel|t(0)=1}nSy ={i € I'| $p(a(i),0)} (4)
Sy={iel|t3(]) =1}nS3 ={i € I'| $3(a(i),0)}

where t;,1, and t3 denote, respectively, the first, second and third rows of the sequence and (i) denotes
the i-th position in ¢;.
Then, satisfiability of (2) is equivalent to satisfiability of

ar € ({0, 1}3)*.t F 51(51 \Y% Sz)*S3 N (4) (5)

where t E R(S;, ..., St) means that the bit-string sequence ¢ satisfies propositionally the regular expression
R(Sy, ..., S;), that is, there is a word w of propositional formulas over the variables S;, S, and S; generated
by R such that for each i, t(i) F w(i) propositionally.

Example 2.3. A bit-string sequence t belonging to the language of the symbolic regular expression
S1(S; v $5)*S5 is the following

1\ /1) [0\ /O\ /O

1){otr)fry)to

0/ \0/ \0/ \1/ \1

The values of its rows are respectively t; = 11000, ¢, = 10110 and ¢3 = 00011.
It satisfies the word of propositional formulas S;(S; v $3)(S; v $2)(S; v S5)S; which is generated by
51(51 \Y% 52)*53.

We call the bit-string sequences t regular tables or simply tables and write T(R) for the set of all
tables satisfying the symbolic regular expression R.

3. Encoding of arrays

Let us briefly mention how would the terms of an array theory, most importantly, array “reads” and
“writes”, be written in the language of generalised powers, while preserving the satisfiability of formulas.

A componentwise specification is written as in Example 2.2.

An array read is a functional term afj]. To encode this term in generalised powers, we introduce the
set variable ] representing the singleton set {j} and require that |J| = 1. We then introduce an element
theory variable a; and require that {i € I | a(i) = a;} 2 J.

An array write is a functional term store(a, j, v). To encode this term in generalised powers, we
introduce a new variable b to stand for the term store(a, j, v) and require that {i € I | b(i) = v} 2 Jand

fiel|la(@)=b@}2%\]J
Example 3.1. Consider the array formula from [5].
iy = jnip # iy Aalj] = vy A store(store(a, iy, vy), ip, w)[j] # alj]

For each index variable j,i;,i,, we introduce set variables J, I}, , and impose that I; = J, I; # L, and
1Ll = LI =[]l

The term a[j] = vy is translated into {i € I | a(i)) = v} 2 J.

We introduce the array variables b for store(a, i;,v;) and c for store(b, iy, v;). We can then encode the
fourth conjunct as {i € I | c(i) # a(i)} 2 J. The store operators are encoded as indicated above.

The resulting formula is in the theory of the generalised power and is equisatisfiable to the original.
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4. Deciding generalised powers

Let us now give a method to decide satisfiability of formulas of the form (1). These are of the following
form:
k
F(S,....,S)nt e T(R)./\Si ={neN|@an),o)}={neN|t(n)=1} (6)
i=1
The satisfiability problem requires showing that the following formula is true:

Jae D"t eT(R),c.

k
F(Sl,...,Sk)/\/\Si ={neN|¢@hn),c)}={neN|t(n)=1}
i=1
where 9 is the domain of the array elements.

We show how to compute in polynomial time a formula in the combination of QFBAPA and the
existential fragment of the first-order theory of the domain & such that Formula (7) is equivalent to the
computed formula.

Theorem 4.1. There is a polynomial time algorithm that given formula (7) computes an equivalent
formula (8) in the combination of QFBAPA and the existential fragment of the first-order theory of 2,
Th3(2).

4.1. Construction of the equivalent formula

The equivalent formula has three parts. The first is an existential prefix shared between both QFBAPA
and Th3-(D)
AN < p(IF]),3s € [m],o : [s] & [m]. 3B, ... By € {0, 135,

where N is a natural number, p is a polynomial, |F| is the number of symbols used to write F, [n] :=
{1,...,n} abbreviates the set of the first n natural numbers, m is the number of propositional formulas
used in Mg, o is an injection from [s] to [m] and k is the number of set variables used in F.

The second part of the formula is an expression in the theory Thy-(2)

N
C(B1.... pn) = [\ 3e € D.PPi(e.0)
=1

J
where we use the notation that given the list ¢y, ..., ¢ of formulas specifying the elements in Formula 6

and given a bit-string f € {0, 1}, ¢f : = /\k O,

i=1%i

The third part of the formula is in QFBAPA

S
H(cyy s o) :=p(C1y e s &) A F(Sq, e, S A /\Pl- C PrLypN
i=1
N

_ koo _ N .
/\ |Bil = ¢5(i) A Vi=1Si = Uiz1 PL, = Vit1 P, = Ui=1 By
i=1

where p is a formula in the existential fragment of Presburger arithmetic of size linear in the size of the
regular expression R. p describes the Parikh image of R. The description of the Parikh image in terms
of linear-size existential Presburger arithmetic formulas is based on a result from [33].

Definition 4.1 (Parikh Image).
The Parikh image of a symbolic regular expression R using propositional letters Ly, ..., L,, over the
variables Sy, ..., S is the set

Parikh(R) = {5, -, 8L, ) | 5 € Mo(Ly, ., L)}

where 5 is a word of propositional formulas and [s|;, is the number of occurrences of L; in the symbolic
table s.
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Example 4.1. Continuing Example 2.3, we had a symbolic regular expression $;(S; v S,)*S; and a word
of propositional formulas S;(S; v S3)(S; v S3)(S; v S3)S5. Thus, one vector in the Parikh image is (1, 3, 1).
In general, the Parikh image of S;(S; v S,)*S; would contain the vectors (1,k, 1) for each k € N.

Continuing with the description of the third part of the formula, Fis the QFBAPA term in Formula 6,
pp = nll-;lsl-[j © Where Befo, 13 pp :=u pLPp Where F is the propositional satisfaction relation and
B € {0,1}, | - | denotes the cardinality of the argument set expression, Uc;S; is the set u;esS; where we
emphasize that each pair of sets S, S; are disjoint.

Shortening tuples of variables with an overline, we write Formula (8) as
aN < p(|F]),3s € [m],o : [s] = [m],3B € {0, 1}*.C(B) A 3¢, PH(c, P, p) (8)

This formula can be computed in polynomial time.

Intuitively, the partition variables P; determine which propositional formula generated each value
of the arrays accepted, so that, even if these formulas overlap, a model corresponding to a run of the
automaton can be rebuilt. The reason why we need to check the existence of only one witness per
elementary Venn region follows from the fact that we can “replicate” this witness in each of the indices
that satisfied the corresponding formula gbﬁ (see also [30, 31]).

4.2. Proof of the theorem

We prove that Formula (6) and Formula (13) are equivalent.

=) If Formula (7) is true, then there are sets S, ..., S, a finite array a and a table ¢t € T(R) such that

k
F(Sl,...,Sk)/\/\Si ={neN|¢#an),o)}={neN|t(n)=1} 9)
i=1

Let 5 be the symbolic table corresponding to ¢, that is, the table made of the propositional formulas
generated by R(Sy, ..., S) such that ¢ satisfies s.

Define ¢; := [§]f, for i € {1,...,m} as the number of occurrences of L; in the symbolic table 5, s =
|{i| ¢ # 0}|, o mapping the indices in [s] to the indices i of the terms for which ¢ is non-zero and
P = {n eN | 3(n) = Ly } From the equalities §; = {n €e N | t;(n) = 1} = {n € N | ¢(a(n),c) } in (9),
we can show that the following holds

N
plerseese) ANF(Sy, ..., Sp) A /\ P € propn
-
s ’ (10)
/\ Pl = o(i) N U{';lsi = U;ZIPL,- = Ui B
i=1

Formula (10) is in QFBAPA. Following the procedure from [25], we eliminate Boolean algebra
expressions and the cardinality operator yielding a system of equations of the form

2t—1 [ [bol, ky
k.. kpGa Y | g =1 (11)
j=0 [[bp]] /3]_ kp
where G is the existential Presburger arithmetic formula that results from (10) after the elimination and

g, = |pg)-

We remove from the sum those terms corresponding to elementary Venn regions f such that [g = 0.

This includes regions whose associated formula in the interpreted Boolean algebra gbﬁ(a, ¢) is unsatisfiable,
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and regions corresponding to bit-strings not occurring in t. This transformation leaves a reduced set of
indices & participating in the sum:
[[boﬂ B; kq

3Ky, -or kG A g = (12)

el BrBNICR \ [bp] B, k
We now give the key auxiliary result from [25] proved in [11].

Definition 4.2. Given a subset S C R”, the integer conic hull of S is the set

t
intcone(s) = { Z Aisi

i=1

tzO,SiGS,AiGIN}

Theorem 4.2. Let X C Z" be a finite set of integer vectors, b € int,,,(X) and M = maxyex[X]co =
maxyey max{|x;|, ..., |x,|} where |x| denotes the absolute value of the number x. There exists a subset
X’ € X such that b € int,,(X’) and | X’| < 2nlog,(4nM) where |X’| denotes the cardinality of the set
X'.

Using Theorem 4.2, there is a polynomial family of Venn regions f, ..., fy and corresponding
cardinalities l;))l, s lllfzv such that:

[[boﬂ B; kq

.%jz

: : (13)
pet puPwic \ [yl k

Elkl, ,kpG A

We can assume that each cardinality variable llI3 is non-zero, since otherwise, we can remove it from
the sum. With this assumption, %1’ s léN lists the cardinalities of a model of (10) which defines the

cardinality of the elementary Venn region S{ﬂ "n..n S,iﬁ ¥ to be equal to ll’g if B € {p;,..., Pn} and zero
otherwise. In particular, we have that the following formula, corresponding to the subformula H in (8),

holds

k
p(cla ,Cm) A F(S{’ e S]i) A /\ P” g pio'(i)/\
i=1 (14)

S

7 _ k oo _ m ,» _ N __ S /
/\ [P/ = co(i) A Uiz S = Vi=1PL, = Vi=1Pg = Ui=1 B
i=1

For each f € {f, ..., Bn}, the formula Ele.qﬁﬂ(e, ¢) is true, since lzli > 0. Thus, the subformula Cin (8) is
also true.

<) If Formula (8) is true, then there is a natural number N < p(|F|) where p is a polynomial, s € [m],
Bis -, By €10, l}k, ¢1,...,¢n € Nand sets S, ..., S, Py, ..., P; such that

N s
Er /\ EIe.d)'Bi(e, ) A pleqy s em) AF(St, e, S A /\ P € pr N
j=1 i=1

1

(15)

S
_ k _ _ - _ N
A /\ P = (i) N Uim1 S = U;Z1PL1- = U,S:1Pi = Ui=1Pp,
i=1

From (15) and the definition of p, follows that there is a symbolic table 5 generated by the symbolic
regular expression R such that [s|;, = ¢; for each L; € { Ly, ..., L, } occurring in 5. Moreover, from

N

m — S
/\Pi € PL NVi=1PL = Uiz B
i=1
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we have that all the sets p;. are empty except PLoqry > PLygy-
From the subformula

N N
Ul pr, = Uiy Pa [\ B C PrLog A N\ P = ¢
i=1 i=1
follows that we may define P; to consist of the indices of 5 labelled with the formula L;) for each
i €{1,...,s}. This is because the values in P; are guaranteed to satisfy the formula L;). Note that the
values in P; could satisfy other formulas L,(;). However, the role of the variables P; is to determine
which formula of the regular expression generated the values satisfying L ;) regardless of whether the
witnesses satisfied other formulas too.

From the subformula N

. /\ 3e.gPie.c) A UL P = Ufilpﬂi
j=1

it follows that there exist values €p,s - €fy satisfying the formulas ¢ﬂ1 (e,0), ..., gbﬁN(e, ¢) and moreover,
all the elements in g, belong to a single set P,.

We define a table ¢ by substituting in s the indices in P; by the values f; such that pp, < P;. Similarly,
we build an array a by substituting in 5 the indices in P; by the values ep, such that pp; C B

Observe that F(Sy, ..., S) holds by assumption. Moreover,

Sj = VigG)=npp = {n € N1 4n) =13
Sj = viipG-pp = {n € N1 ¢@n), o) }

Thus, Formula (7) is true. O

4.3. Computational complexity of the combination

Note that Theorem 4.1 also allows to assert at once the complexity of the underlying logical theory.

Corollary 4.1. Let € be the complexity class to which the satisfiability problem of Ths-(2) belongs.
If & = P then the satisfiability problem of formulas of the form (6) is in NP. If € 2 NP then the
satisfiability problem of formulas of the form (6) is in 6.

5. The case of trees

One can adapt the techniques of Section 4 to the case when the regular specification is given by a
parametric tree automaton, thus extending the results of [18]. The main difference with the procedure
of Section 4 is that in the case of parametric tree automata one needs to compute the Parikh image
of a regular tree language. This is done in a completely analogous way as it is done in Definition 4.1
for parametric finite automata. Note that it is easy to convert from non-deterministic top-down to
non-deterministic bottom-up tree automata [8, Theorem 1.6.1]. One can then use the observation of
Klaedtke and Ruef [22, Lemma 17] which allows to reduce the problem to the computation of the Parikh
image of a context-free grammar. Finally, [36] says that the Parikh image of a context-free grammar
can be described by a linear-sized existential Presburger arithmetic formula.

6. Conclusion

We have shown how to extend decision procedures for satisfiability of parametric array fragments
with regular constraints. In terms of quantifiers, this shows how to simultaneously support Hartig’s
quantifiers and WS1S second-order quantification. Our techniques extend previous results of Alberti,
Ghilardi and Pagani [1] since the relations expressible in WS1S extend those expressible in Presburger
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arithmetic. They also extend recent results in the literature [18], which did not handle the cardinality
operator.

Our work mixes ideas from decision algorithms for three different logical theories: quantifier-free
BAPA [25], combinations of BAPA with WS1S and WS2S [37] and existential fragment of power struc-
tures [30]. However, a crucial technical difficulty has been overcome to make the combination work.
This difficulty stems from the fact that while Biichi’s automata are over finite alphabets, the correspond-
ing automata (or equivalently, regular expressions) that appear in the Feferman-Vaught framework use
first-order formulas in their transitions, since set variables are interpreted. We demonstrated, as our
colleagues [18], that one can still use the Parikh image of this symbolic automata to combine theories.
Since one is now counting formulas rather than symbols from a finite alphabet, and formulas can
overlap in the semantic domain, it becomes necessary to indicate to the QFBAPA constraint which
transition of the automaton produced each index. We achieved this by introducing a partition of the
sets of indices of the array, where each part corresponds to the indices generated by a given transition.

The implementation of the algorithm could be achieved mixing the techniques of ARCA-SAT [1]
with software computing the Parikh image of regular expressions and context-free grammars. For the
latter, there exist several implementations, we mention for instance [19], where a fix to the construction
original of Verma et alii [36], is also described.

Possible applications of the decision procedure include automatic verification of array manipulating
programs in deductive verification systems and model checking of distributed protocols. Nevertheless,
due to the number of ideas that are combined in this work, we would not be surprised if further
applications are found in the future.
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