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Abstract

Test smells, a type of anti-pattern, refer to poorly designed tests that can undermine the effectiveness, maintainability, and overall
quality of test suites, as well as the reliability of production code. Test smells have been extensively investigated in the literature for
open-source projects from different viewpoints such as detection, analysis, impact on maintainability and quality issues. However,
whether the occurrence of test smells differs between open-source and industrial projects has not yet been investigated. This study aims
to bridge that gap by investigating the types, occurrence and distribution of test smells in both open-source and industrial projects.
Moreover, this study explores whether the volume of test code differs between open-source and industrial projects to gain insights into
the test-writing practices in both environments. For this purpose, 64 open-source and 11 industrial Python projects were analyzed to
detect and examine the prevalence of 18 distinct test smells. 14 types of test smells were identified in open-source projects, averaging
601.58 smells per project, while 10 types were identified in industrial projects, with an average of 48.72 smells per project. Assertion
Roulette and Conditional Logic Test are the two most frequently occurring test smells observed in both environments. The results
of the study indicate that test smells occur more frequently in open-source projects compared to industrial projects, as confirmed by
one-tailed t-test, while a two-tailed t-test revealed no significant difference in the volume of test code between the two environments.
These findings suggest that open-source projects and industrial projects have differences in maintaining clean and high-quality test
code. Future work should explore how specific development practices contribute to this difference across both project types.
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1. Introduction

Test smells are suboptimal patterns in test code that can
negatively impact the effectiveness [1] of software testing
by reducing test maintainability, reliability, and eventually
hampering software quality [2, 3, 4, 5]. Developers
usually introduce test smells due to less awareness in
design and program comprehensibility [6]. Test smells
can occur in both categories of software development
environments—industrial and open-source projects [7, 8].
Due to time, budget constraints, and software release
pressure in the industry, systems are developed in a different
setting compared to open-source projects. Additionally,
open-source software grows more quickly than industrial
projects which could have an impact on the occurrences
of test smells and test writing practices between these two
contexts [9].

Test smells were initially introduced to highlight issues
in test code within software systems [10], but later they
have been used as a measure of quality of software projects.
Researchers found that test smells are associated with
software quality [2, 11], fault-proneness [12, 13], and
maintainability issues in software systems [2, 14, 15].
Although there has been extensive research on test smells
in open-source projects, to the best of our knowledge,
no studies have focused on test smell detection across
both open-source and industrial projects. Identifying
and addressing frequent test smells in both contexts
can significantly improve software maintainability and
reliability. This leads to the following research questions:

+ RQ1: What types of test smells are prevalent in
open-source and industrial Python projects?

« RQ2: How does the prevalence of test smells
differ between open-source and industrial Python
projects?
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« RQ3: How does the volume of test code
differ between open-source and industrial Python
projects?

To address these research questions, an empirical analysis
was conducted on 75 Python projects, including 64 popular
open-source projects and 11 industrial projects. Open-
source projects have been selected based on criteria such
as consistent development activity, unique project purpose,
and substantial contributions. On the other hand, industrial
projects were selected using convenience sampling [4, 16]
from software companies based on data accessibility and
industry willingness to share information. The selected
industrial projects have been developed following the
standard Software Development Life Cycle (SDLC) model
and are currently used by clients. A set of 18 test smells
has been chosen for the investigation. To detect these test
smells, PyNose [17] - a popular test smell detection tool for
Python test code, is used.

After detecting test smells, frequent test smells are
identified and assessed whether the occurrence of test
smells differs between open source and industrial projects.
The results of the study show that 14 types of test smells
were found in open-source projects and 10 types of test
smells in industrial projects. Assertion Roulette (AR) is
the most common test smell found in both open-source and
industrial projects, indicating widespread issues in assertion
practices across environments. In industrial projects, the
top 3 occurring test smells are Assertion Roulette (AR),
Magic Number Test (MNT), and Conditional Test Logic
(CTL). Meanwhile, in open-source projects, the top three
are Assertion Roulette (AR), Conditional Test Logic (CTL),
and Duplicate Assertion (DA). This finding highlights the
distinct patterns of test smell occurrence in open-source
and industrial projects.

Our analysis shows that test smells are more prevalent
and concentrated in open-source projects, with an average
of 601.58 test smells per project compared to 48.72 per
project in industrial projects. Assertion Roulette (AR) is the
most widespread test smell in both environments, though it
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appears in 92% of open-source projects and 81% of industrial
projects. On average, Assertion Roulette occurs for every
262 lines of test code in industrial projects and every 212
lines in open-source projects. Statistical analysis conducted
using a one-tailed t-test shows that 8 out of 14 test smells
occur more frequently in open-source projects compared
to industrial projects, even though the volume of test code
is not significantly higher in open-source projects. For the
remaining 6 test smells, the analysis showed no significant
difference in their frequency between open-source and
industrial projects. Additionally, two-tailed hypothesis
testing supports this finding, indicating minimal differences
in test code volume across environments, with 6 out of 7
null hypotheses accepted.

The rest of the paper is organized as follows. Section 2
discusses existing work in the field of test smell analysis
and detection. Section 3 describes the methodology used to
design this empirical study. Section 4 presents the results
and provides a detailed analysis based on the research
questions. In Section 5, we address the threats to the validity
of our study, and we conclude in Section 6.

2. Related Work

In recent years, test smells have become a crucial area of
research in software engineering. Studies have focused on
the automated detection, mitigation, and impact evaluation
of test smells on software quality. Early work aimed to
define various types of test smells [10], while more recent
studies have explored detection techniques [15, 18] and
the development of specialized tools for detecting test
smells across different programming languages, such as
Java, C#, Python, and Scala [19, 20, 17, 21]. Furthermore,
several studies have investigated the evolution of test smells
and their influence on software maintenance and quality
[3, 22, 2, 23, 14].

The concept of test smells was introduced by Van
Deursen et al. [10], who defined them as signs of poor
practices in test code. They identified 11 test smells, which
laid the groundwork for understanding how suboptimal
testing can impact software quality and maintenance.
Expanding on this, Hauptmann et al. [24] introduced
Natural Language Test Smells (NLTS) to address issues
related to the maintainability, readability, and efficiency
of manual test cases. Soares et al. [25] further refined this
idea by cataloging eight NLTS, validated through empirical
research and natural language processing (NLP) analysis.
Additionally, the Open Catalog of Test Smells offers a
comprehensive resource by consolidating information from
127 sources to support the identification and understanding
of test smells in various contexts [26].

In recent years, specialized tools have emerged to aid
in the identification and mitigation of test smells. Initially,
research concentrated on statically typed languages like
Java and Scala. Virginio et al. [20] developed JNose, a
tool for detecting 21 types of test smells in Java, followed
by tsDetect [19], which detects 19 types. Later, tools for
Python, including pytest-smell [21] and PyNose [17], were
introduced, with PyNose also introducing the "suboptimal
assert” test smell. Pontillo et al. [18] proposed machine
learning-based detection methods, while Palomba et al. [15]
expanded test smell detection to automatic techniques using
information retrieval methods. More recently, Lucas et al.
[27] explored the use of large language models (LLMs) like
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ChatGPT-4, Mistral Large, and Gemini Advanced for test
smell detection, demonstrating the potential of LLMs in this
domain.

Test smells are often linked to flaky tests, which produce
inconsistent results and undermine test reliability. Garousi
et al. [7] and Martins et al. [11] found that certain test
smells, such as external dependencies and non-deterministic
behavior, contribute to flaky tests, masking genuine defects.
Palomba and Zaidman [28] identified key smells that
frequently co-occur with flaky tests, while Camara et al.
[29] showed that incorporating test smells into flaky test
prediction models outperforms traditional vocabulary-based
approaches. These findings underscore the importance of
mitigating test smells to enhance software reliability.

Further research has explored the impact of test smells
on software quality, maintainability, and reliability. Spadini
et al. [2, 6] investigated the relationship between test smells
and software quality, while Kim et al. [23] examined how
test smells evolve and affect software maintenance. Qusef
et al. [12] established a connection between test smells and
fault-proneness, indicating their potential negative impact
on software reliability.

In the context of open-source versus industrial projects,
Fushihara et al. [30] showed that test smells persist and
evolve over time, particularly in open-source projects. The
differences between these two environments are often
attributed to varying levels of emphasis on test quality.
Recent studies have also examined how test smells and
refactoring are discussed within online communities like
Stack Exchange, revealing insights from both industry and
academia [11].

While previous research has explored test smells in
various software environments, there is a notable lack
of comparative studies focusing on how these smells
manifest in open-source versus industrial projects. Given
the differences in development practices and priorities,
understanding these variations is crucial for tailoring
detection techniques and improving test quality. To address
this gap, we conduct an empirical analysis. This study
investigates the types of test smells prevalent in both
open-source and industrial projects. It also examines how
the prevalence of these smells differs between the two
environments, as well as how the volume of test code
compares across them.

3. Methodology

This study aims to understand the occurrences, types and
the distribution of test smells in open-source and industrial
projects. It also seeks to assess the extent to which the
distribution of test smells differs between open-source and
industrial projects. To achieve this, the study analyzes 64
open-source projects and 11 industrial projects, all written
in Python. Test smells within these projects are identified
using a tool named PyNose'. Then, the collected data are
analyzed using the metrics Spreadity [31] and Inverse Smell
Frequency (ISFi) [32]. Finally, statistical hypothesis tests are
conducted to evaluate differences in test smell frequency
and test code volume between open-source and industrial
projects. The overall methodology is described in detail in
the following subsections.

!https://github.com/JetBrains-Research/PyNose.git
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Table 1
Production Code Metrics

Projects Categor Number of Projects KLOC NOM Noc
) sory ) Total | Average Total Average Total Average
Open-Source Project 64 18012 281 603118 9428 145659 2276
Industrial Project 11 2592 236 86045 7822 23355 2123
Table 2
Test Code Metrics
Test KLOC Test NOM NOC
Proj f Proj
rojects Category Number of Projects Total | Average Total Average | Total | Average
Open Source Project 64 2882 45 317810 4966 23730 371
Industrial Project 11 62 6 7422 675 650 59

3.1. Dataset Collection

A dataset comprising 75 extensive Python projects—64 open-
source projects and 11 industrial projects—serves as the
foundation for our analysis. The open-source projects
were chosen based on specific criteria: they must have
more than 50 stars on GitHub, not be forked, have over
1,000 commiits, include at least 10 contributors, possess a
development history spanning more than two years, be
actively maintained within the last two years, and primarily
use Python as their programming language.

In selecting industrial project, convenience sampling [4]
strategy was employed. This non-random technique was
used because data collection on industrial projects largely
depends on the accessibility, willingness, and readiness of
software companies to share their data. In this study, 11
industrial projects were collected from different software
companies of Bangladesh. Selection criteria included a
minimum project size of 6,000 lines of code (LOC), a
minimum of 500 commits to ensure development activity,
and comprehensive test code (with at least 1,000 lines of test
code).

The dataset was carefully curated to represent a diverse
range of testing practices, providing a robust foundation for
comparing test smells in both open-source and industrial
projects. Key attributes, such as lines of code (KLOC),
number of methods (NOM), and number of classes (NOC),
are detailed in Table 1 and Table 2. These tables offer a clear
overview of the projects’ core characteristics, presented
without any initial analysis. The complete dataset used in
this study is available in the online appendix.’

3.2. Test Smell Detection

Detecting test smells in Python typically involves a static
code analysis process that inspects the structure of test code
to identify patterns known to impact test maintainability,
readability, and reliability. This approach systematically
scans Python test classes—particularly those derived from
the unittest framework—focusing on elements such as
assertion statements, control structures, and setup and
teardown methods. By examining these components, static
analysis tools can identify common test smells like Assertion
Roulette, Eager Test, and Test Duplication, which complicate
debugging and future modifications. Consider the code
snippet in Listing 1, which provides an example of a common
test smell.

“https://figshare.com/s/4789bd212185042cdad0
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Listing 1: Test Smell Example

import unittest

class ExampleTest(unittest.TestCase):
def test_values(self):
result = get_values ()
self . assertEqual(result[0], 10)
self.assertTrue(result[1] > 5)
self . assertEqual (result[2], "expected_value")

if

__name__ ’__main__":
unittest.main ()

In this example, the test contains multiple assertions
without descriptive messages, which is a classic case of the
"Assertion Roulette" test smell. This occurs when multiple
assertions are made without context, making it difficult to
diagnose failures. Such smells are detected using rule-based
methods, as described by Aljedaani et al. [33], which identify
tests with multiple assertions lacking clarity. Metrics like
cosine similarity can also highlight a "Lack of Cohesion" in
the test case.

The methodology uses predefined thresholds for various
metrics, such as local variables and hard-coded values,
based on best practices in software testing. This structured
approach identifies issues like redundant setups, poorly
named tests, and excessive complexity. For our study, we
utilize PyNose [17], which is effective in detecting a broad
range of test smells, as demonstrated in previous research
[34, 35, 36].

3.3. Test Smell Analysis

To systematically analyze the distribution of test smells
within our dataset, we use two key metrics: Spreadity and
Inverse Smell Frequency (ISFi) [32], along with statistical
hypothesis testing techniques to examine the differences in
test smell occurrences between open-source and industrial
projects. These metrics are commonly used to evaluate the
distribution and frequency of smells in software research
[31].

Spreadity: To measure the presence of test smells across
the analyzed projects, we utilize the metric called Spreadity
as shown in Equation 1. Spreadity calculates the proportion
of projects that contain a specific test smell, providing
insight into how common a particular smell is within the
dataset.
-7 g

where x denotes the test smell, n(x) is the number of
projects containing the smell «, and N represents the total
number of projects analyzed. A higher Spreadity value

Spreadity(z)
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indicates that a larger proportion of projects are affected
by the test smell, with a maximum value of 1 if all projects
contain the smell.

Inverse Smell Frequency (ISFi): To gain a deeper
understanding of the occurrence of test smells, we calculate
the Inverse Smell Frequency (ISFi) metric using the Equation
2. This metric is used to analyze code smell frequency and
occurrences [31]. It normalizes the frequency of a test smell
relative to specific software metrics, such as Test Lines of
Code (TLOC), Test Number of Methods (TNOM), and Test
Number of Classes (TNOC).

Metric Value )
Smell Count; @)

where the metric values could be TLOC, TNOM, or TNOC,
and Smell Count; represents the occurrence of a particular
test smell 4. Lower ISFi values indicate a higher frequency
of the test smell, suggesting that it is more prevalent in the
code.

Statistical Tests of Hypothesis: The differences in
test smell occurrences between open-source and industrial
projects are examined using t-tests, a widely accepted
method for comparing the means of two independent
groups.

A one-tailed t-test is performed to determine if there
are significant differences in the prevalence of specific
test smells between open-source and industrial projects.
The one-tailed approach is used because we hypothesize
that the occurrence of test smells will be higher in open-
source projects compared to industrial projects, based on
previous observations of faster development cycles and
less formal testing practices in open-source environments.
The alternative hypothesis suggests that the occurrence of
test smells is higher in industrial projects, while the null
hypothesis assumes no significant difference. The test is
conducted at a 5% significance level.

Additionally, a two-tailed t-test was used to assess
whether there were any significant differences in the volume
of test code between open-source and industrial projects.
In this analysis, the alternative hypothesis proposes a
difference in test code volume, while the null hypothesis
assumes no difference. The test was conducted at a
5% significance level, with specific metrics analyzed to
determine any significant variations between the two
environments.

ISFi(metric) =

4. Result Analysis

This section presents the findings from our study, addressing
each research question by analyzing the occurrences of test
smells in industrial and open-source projects. We highlight
the types of test smells, their frequency, differences in
occurrence between environments, and insights into test-
writing practices in the software industry.

4.1. RQ1: What types of test smells are
prevalent in open-source and industrial
Python projects?

To address RQ1, we analyze the presence of test smells
in both open-source and industrial projects. Our study
identifies 14 distinct test smells across these environments,
with notable differences in their presence and frequency, as
shown in Table 4.
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Table 3
Test Smell Occurrences in Industrial and Open-Source Projects

Number of affected projects
Test Smell Industrial Open source
Assertion Roulette 9 59
Conditional Test Logic 7 59
Duplicate Assertion 6 55
Exception Handling 4 51
Magic Number Test 8 49
Obscure In-Line Setup 4 40
Redundant Assertion 4 31
Redundant Print 2 29
Test Maverick - 19
Sleepy Test - 17
Empty Test 1 17
Lack of Cohesion - 7
Suboptimal Assert 2 7
Constructor Initialization - 2

Assertion Roulette (AR) emerges as the most frequently
occurring test smell in both open-source and industrial
projects based on the Table 3. It is occurred in 9 out of
11 industrial and 59 out of 64 open-source projects. This
indicates a widespread issue with AR in both environments,
suggesting a need for better assertion practices in test
code. In open-source projects, the top 3 test smells based
on project count are Assertion Roulette (AR), Conditional
Test Logic (CTL), and Duplicate Assertion (DA), which are
consistently present and indicative of complex assertion
patterns in open-source projects.

However, industrial projects display a slightly different
ranking of test smells. When sorted by the number of
projects in which they are found, the order is Assertion
Roulette (AR) > Magic Number Test (MNT) > Conditional
Test Logic (CTL). In contrast, when ranked by their total
occurrences (frequency) in the open-source projects, as
shown in Table 4, the order shifts to Assertion Roulette (AR)
> Conditional Test Logic (CTL) > Magic Number Test (MNT).
This variation highlights that while some test smells like AR
are universally problematic, other smells vary in significance
depending on the environment, indicating different testing
practices or priorities between industrial and open-source
projects.

The dominance of test smells like AR and CTL highlights
common weaknesses in both open-source and industrial
projects, pointing to the need for improved testing strategies
that prioritize clarity and simplicity in test code. Identifying
and addressing these frequent test smells can significantly
enhance the maintainability and reliability of software
projects in both environments.

Moreover, we identify a few test smells that are entirely
absent in both open-source and industrial projects. These
test smells include Default Test (DT), General Fixture (GF),
Ignored Test (IT), and Unknown Test (UT). Additionally, four
specific test smells—Constructor Initialization (CI), Lack of
Cohesion of Test Cases (LCTC), Sleepy Test (ST), and Test
Maverick (TM)—are present exclusively in open-source
projects and are completely absent from industrial projects.
This absence indicates a divergence in testing practices
between these environments, with certain test smells being
specific to open-source development contexts.



Table 4

Comparison of Test Smell Occurrences between Industrial and Open-source Projects

Industrial Projects Open-source Projects
Test Smell Total Freq. A"f,:jeq'/ Spreadity | ISFI(TLOC) | ISFI(TNOM) | ISFI(TNOC) | Total Freq. A"f,:)'jeq" Spreadity | ISFI(TLOC) | ISF(TNOM) | ISF(TNOC) | p-value
Assertion Roulette(AR) 235 21.36 0.82 262 32 3 13607 21261 0.92 212 23 2 0.068
Conditional Test Logic(CTL) 115 10.45 0.64 536 65 6 10136 158.38 0.92 284 31 2 0.002
Constructor Initialization(CIl) 0 0 0.00 NA NA NA 130 2.03 0.03 22167 2445 183 0.119
Duplicate Assertion(DA) 51 4.64 0.55 1209 146 13 6185 96.64 0.86 466 51 4 0.0002
Empty Test(ET) 3 0.27 0.09 20561 2474 217 106 1.66 0.27 27186 2998 224 0.082
Exception Handling(EH) 10 0.91 0.36 6168 742 65 1494 23.34 0.80 1929 213 16 0.0001
Lack of Cohesion of Test Cases(LCTC) 0 0 0.00 NA NA NA 544 8.50 0.11 5297 584 44 0.010
Magic Number Test(MNT) 72 6.55 0.73 857 103 9 3058 47.78 0.77 942 104 8 0.156
Obscure In-Line Setup(OIS) 5 0.45 0.36 12337 1484 130 669 10.45 0.62 4308 475 35 0.049
Redundant Assertion(RA) 16 1.45 0.36 3855 464 41 114 1.78 0.48 25278 2788 208 0.178
Redundant Print(RP) 4 0.36 0.18 15421 1856 163 542 8.47 0.45 5317 586 44 0.036
Sleepy Test(ST) 0 0 0.00 NA NA NA 240 3.75 0.27 12007 1324 99 0.012
Suboptimal Assert(SA) 25 227 0.18 2467 297 26 744 11.63 0.11 3873 427 32 0.129
Test Maverick(TM) 0 0 0.00 NA NA NA 898 14.03 0.30 3209 354 26 0.001
Comparison of Average Test Smell Frequency per Project: Industrial vs Open Source
4.2. RQ2: How does the prevalence of test =
.
smells differ between open-source and
industrial Python projects?
L
. . . . 210
The aim of RQ2 is to identify the most frequent and £
g s
widespread test smells that significantly affect both L
industrial and open-source projects. Our analysis reveals »
that test smells are generally more frequent in open-source O -~

projects, with an average frequency of 601.57 test smells
per project compared to 48.72 in industrial projects.

Assertion Roulette (AR) is observed as the most widespread
test smell in both open-source and industrial projects, with
spreadity values of 0.92 and 0.81, depicted in Figure 1.
Similarly, Conditional Test Logic (CTL) has a spreadity of 0.92
in open-source projects but only 0.63 in industrial projects.
While Magic Number Test (MNT) ranks as the second most
frequent smell in industrial projects, its position drops
to fifth in open-source projects, despite having a slightly
higher spreadity in open-source (0.76) than in industrial
environments (0.72).

Certain test smells, such as Test Maverick (TM), Sleepy Test
(ST), Lack of Cohesion of Test Cases (LCTC), and Constructor
Initialization (CI), are found exclusively in open-source
projects and are completely absent from industrial projects.
This indicates a clear divergence in test practices, with these
smells being specific to the open-source context.

mmm industrial (In-house) Project
Open Source Project

Spreadity
°
&

S ® & & & 5 & & ©°
K:

Test Smells

R

Figure 1: Spreadity of each test smell

The analysis reveals that test smells such as Assertion
Roulette (AR) and Conditional Test Logic (CTL) are notably
more prevalent in open-source projects compared to
industrial projects. This conclusion is based on both the
spread and average frequency metrics, as shown in Figure 2.
Additionally, Figures 3, 4, and 5 illustrate the ISFi scores for
TLOC, TNOM, and TNOC across all the test smells under
study. The four common smells that did not appear in any
system are excluded, as discussed in response to RQ1.
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Figure 2: Average frequency of each test smell
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Figure 3: ISFi(TLOC) Score Comparison for each test smell
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Figure 4: ISFi(TNOM) Score Comparison for each test smell

The results suggest that Assertion Roulette occurs in
industrial projects for every 262 test lines of code, and in
open-source projects for every 212 test lines of code. This
pattern is shown in Figure 3 and Table 4. The second most
frequent test smell is Conditional Test Logic, as for every
536 lines of test code in the industrial projects and 284 lines
of test code in the open-source projects, the smell prevails.
Conversely, Empty Tests are rare in both type of projects,
occurring only for every 20,561 and 27,186 lines of test code,
respectively. Considering the test methods, one Assertion
Roulette test smell is found for every 32 test methods in the
industrial projects and 23 test methods in the open-source
projects, depicted in Figure 4. In terms of the number of



Table 5

t-test Results for Normalized Test Code Metrics (Mean) Between Industrial and Open-source Projects

Metric Industrial Projects (Mean) | Open-source Projects (Mean) | t-test (2-tail) p-value

Total Test Files 0.086297 0.166895 0.0848
Test LOC 0.119178 0.181811 0.2889
Test NOC 0.175402 0.161391 0.8047
Test NOM 0.524443 0.576357 0.8027
Test LOC per File 1.02626 1.020543 0.9772
Test NOC per File 2.070511 1.01271 0.009
Test NOM per File 5.157113 3.488941 0.0592

= industrial(in-house) Project
Open Source Project

ISFI(TNOC) Score
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Figure 5: ISFi(TNOC) Score Comparison for each test smell

classes, for every 3 test classes in the industrial projects
and 2 test classes in the open-source projects, one Assertion
Roulette test smell is seen.

The second most frequent test smell is Conditional Test
Logic based on ISFi(TNOM) and ISFi(TNOC) as well. In
fact, the smell is so frequent that for every 6 classes and
65 test methods in the industrial projects and 2 classes
and 31 test methods in the open-source projects, one CTL
test smell is found. In contrast, the third most frequent
test smell in industrial projects is the Magic Number Test.
Specifically, this smell is found once for every 857 test lines
of code, 103 test methods, and 9 test classes. However, with
466 TLOC, 51 TNOM, and 4 TNOC, Duplicate Assertion
is the third most occurring test smell in the open-source
projects. Additionally, one of every 2,474 test methods and
217 test classes in the industrial projects and 2,998 test
methods and 224 test classes in the open-source projects
has been identified as an Empty Test. Other smells are not
as prevalent, as highlighted in the observations of the study
in Table 2.

In order to corroborate these observations, a one-tailed
t-test with a 5% significance level is used to conduct a
statistical hypothesis test. The p-value is displayed in the
final column of Table 4, and the value that rejects the
null hypothesis is bolded. The null hypothesis states that
there is no difference in the occurrence of a particular
test smell between open-source and industrial projects,
while the alternative hypothesis refers that the open-source
system has higher occurrences. The p-values in Table 4
indicate that the null hypothesis is rejected for 8 out of the
14 test smells, suggesting a statistically significant higher
occurrence of these smells in open-source projects. These
findings emphasize that open-source projects are more
susceptible to frequent and diverse test smells compared
to industrial projects, highlighting the need for targeted
improvements in test-writing practices within the open-
source community.
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4.3. RQ3: How does the volume of test code

differ between open-source and
industrial Python projects?

To explore differences in test code volume between open-
source and industrial Python projects, we analyzed key
metrics including the number of test files, Test Lines of
Code (TLOC), number of test classes (TNOC), and number
of test methods (TNOM). These metrics, normalized for
project size variations, were assessed to enable a fair
comparison between the two environments. Analyzing
test code volume provides a foundational understanding
that complements the examination of test smells across
these projects. Differences in test smell prevalence could
be influenced by the ratio of test code to production code,
making test code volume an essential aspect to assess. This
approach sheds light not only on the presence of test smells
but also on potential structural distinctions in test code
organization and density across open-source and industrial
projects.

The null hypothesis (Ho) posits that there is no significant
difference in the volume of test code between open-source
and industrial Python projects ({tidustry = [4Open Source). In
contrast, the alternative hypothesis (H1) suggests that the
test code volume differs between the two environments
(Mindustry 7 [4Open Source). Table 5 provides the t-test results
comparing these metrics across open-source and industrial
projects. While most metrics, such as Total Test Files, Test
LOC, Test NOC, and Test NOM, did not show statistically
significant differences, the Test NOC per File metric, with a p-
value of 0.009, indicates a notable distinction in the number
of test classes per file between the two environments. This
finding suggests a potential structural difference in test code
organization across open-source and industrial projects.

The t-test was conducted for all test code metrics
extracted from both industrial and open-source projects.
The null hypothesis was accepted for 6 metrics, indicating
no statistically significant difference in test code volume or
structure between the industrial and open-source projects
for most metrics. However, the null hypothesis was rejected
for 1 metric, Test NOC per File (marked in bold in Table 5),
supporting the claim that the number of test classes per
file in open-source projects is significantly different from
that in industrial projects, suggesting a distinct approach to
organizing test classes. These findings are summarized in
Table 5, showing that for the majority of metrics (6 out of 7),
there is no significant difference in test code volume between
open-source and industrial projects. This suggests that, with
respect to basic testing characteristics like the number of
test files, lines of code, and methods, both environments
follow relatively similar practices.

However, the significant difference in the Test NOC
per File metric highlights that open-source projects may



organize test classes differently, potentially due to variations
in project structure, coding standards, or collaborative
development practices typical in open-source environments.

5. Threats to Validity

This section addresses construct, external, and reliability
threats that may affect the validity of our empirical
investigation [37].

5.1. Construct Validity

The accuracy of PyNose, our test smell detection tool, may
affect construct validity. Any inaccuracies in detecting test
smells could lead to incorrect conclusions regarding their
presence and significance. To minimize this risk, we used
PyNose, a widely recognized tool in test smell detection
with reliability confirmed in prior studies.

5.2. External Validity

Our findings’ generalizability is limited by several external
validity threats. First, this study focuses on Python-based
projects, so results may not fully apply to projects in
other languages like Java or C#. Additionally, the dataset
comprises 11 industrial projects from Bangladesh and 64
open-source projects, which may not represent the broader
global industry practices. The industrial projects come from
a specific sector that may have unique testing practices. To
address these threats, we included well-known open-source
projects with diverse testing practices.

5.3. Reliability Validity

Reliability concerns arise from the need to ensure
replicability, particularly for industrial data. Due to
confidentiality constraints, we cannot disclose details about
the industrial projects, limiting direct replication. However,
open-source project findings are fully replicable, as these
projects and the PyNose tool are publicly accessible. For
further validation, future studies could replicate the analysis
with similar industrial datasets.

6. Conclusion

This research investigates the occurrence, distribution,
and frequency of test smells in both industrial and open-
source projects, highlighting the differences between these
two environments. The inclusion of industrial projects
alongside open-source ones adds depth to the study, as it
reveals distinct patterns in the prevalence of test smells.
Although Assertion Roulette (AR) is the most common test
smell, appearing in 92% of open-source projects and 81%
of industrial projects, a one-tailed t-test shows significant
differences in the overall prevalence of test smells between
these two types of projects.

Furthermore, 10 out of 18 test smells were observed in
industrial projects, while 14 out of 18 test smells were
detected in open-source projects. Notably, 8 out of the 14
test smells showed a significantly higher occurrence in open-
source projects. Analyzing test writing practices, we found
no significant differences in 6 out of 7 metrics between
industrial and open-source projects, except for the number
of test classes per file (TNOC).
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These findings will assist developers in reducing test
smells during software development and provide insights
for researchers to refine smell refactoring techniques, par-
ticularly in terms of frequency and distribution. Future
work should explore how specific development practices
contribute to these differences between project types, offer-
ing a deeper understanding of how coding conventions and
workflows influence test smell occurrence. Further research
could also investigate automated refactoring techniques that
account for these structural and volumetric differences to
better support quality improvements in both open-source
and industrial projects.
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