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Abstract
To safeguard machine learning systems that operate on textual data against out-of-distribution (OOD) inputs that could cause unpre-
dictable behaviour, we explore the use of topological features of self-attention maps from transformer-based language models to detect
when input text is out of distribution. Self-attention forms the core of transformer-based language models, dynamically assigning vectors
to words based on context, thus in theory our methodology is applicable to any transformer-based language model with multihead
self-attention. We evaluate our approach on BERT and compare it to a traditional OOD approach using CLS embeddings. Our results
show that our approach outperforms CLS embeddings in distinguishing in-distribution samples from far-out-of-domain samples, but
struggles with near or same-domain datasets.
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1. Introduction
Machine learning (ML) models perform well on the datasets
they have been trained on, but can behave unreliably when
tested on data that is out-of-distribution (OOD). For example,
when a ML model has been trained to recognise different
breeds of cats is fed an image of a dog, the results are un-
predictable. OOD detection is the task of identifying that an
input does not seem to be drawn from the same distribution
as the training data, and thus the prediction given by the
ML model should not be trusted. OOD detectors can be used
to defend ML models deployed in high stakes applications
from OOD data by providing a warning/error message for
OOD inputs rather than processing the input and producing
untrustworthy results [1].

In this paper, we focus on OOD detection for textual in-
puts to safeguard ML models that perform natural language
processing (NLP) tasks. For example, a sentiment classi-
fication model trained on formal restaurant reviews may
not produce valid results when applied to informal posts
from social media. Determining that an input is OOD re-
quires a way to measure the distance between an input and
the in-distribution data. This in turn requires a method to
convert textual data into an embedding space in which we
can measure distance. One approach to this is to input the
text to a transformer-based language model, such as BERT
[2], to extract an embedding vector for the input text (e.g.,
the hidden representation of the special [𝐶𝐿𝑆] token). We
can then measure the distance of the embedding vector for
an input text to the nearest (or k-nearest) embedding vec-
tor of a text from an in-distribution validation set. When
this distance is beyond some threshold (which needs to be
calibrated for the application), the input text is flagged as
out of distribution. The internal state of transformer-based
language models contains important information, which
may be able to offer richer representations than only using
the embedding obtained from the last or penultimate layer.
For example, Azaria and Mitchell [3] demonstrated that it
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is possible to train a classifier on the activation values of
the hidden layers of large language models to predict when
they are generating false information rather than true infor-
mation. However, training a classifier for OOD detection in
this manner is not a suitable approach, as the distribution
of the OOD data that will be encountered is not knowable
in advance. That is, due to the nature of OOD detection,
we need to extract an embedding vector and associated dis-
tance metric (calibrated solely on the training/validation
data) without training a further classifier over this space.

Recently, Kushnareva et al. [4] proposed an approach
to analyze the topology of attention maps of transformer-
based language models to determine when text had been
artificially generated, and Perez and Reinauer [5] propose
using the topology of attention maps of transformer-based
language models to detect adversarial textual attacks. Specif-
ically, topological data analysis (TDA) provides a way to
extract high-level features (related to the topology of the at-
tention maps for each attention head in each layer) that can
serve as an embedding vector of lower dimension than the
full internal model state. In this paper, we investigate the
suitability of these topological embeddings for the task of
OOD detection, and contrast them to traditional approaches.
Some of the work related to out-of-distribution detection in
the context of transformer-based language models and using
Mahalanobis distance can be referred to here [6, 7, 8, 9].

We have made the code used to generate our results public
under the MIT licence, with the intention of aiding the
application of TDA methods to transformer-based models.1

2. Background

2.1. Topological Data Analysis
Topology studies properties of geometric objects invariant
under continuous deformation. For instance, a donut and
a coffee cup are topologically equivalent. Algebraic topol-
ogy, as in Hatcher’s work [10], attaches algebraic objects
such as groups to topological spaces. Certain features of
these algebraic object can help to quantify those topological
spaces.

1https://github.com/andrespollano/neural_nets-tda
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Persistence extends topology to finite data sets, tracing
back to Frosini [11], Robins [12]. Persistence homology
groups, derived from homology groups, serve as invariants
for discrete objects.

For any finite set of points, we can construct a distance
matrix where both the rows and columns are labeled by
these points, and each entry in the matrix represents the
distance between a pair of points. We can apply tools from
Topological Data Analysis (TDA) to this set of points, al-
lowing us to assign certain invariant characteristics to the
collection.

In the context of language or text, we can think of each
word as a point in some vector space, with a distance defined
between words. For example, the distance might be related
to semantic similarity or other linguistic relationships. By
considering a text as a collection of such points, we can
assign various numerical characteristics to it. These char-
acteristics can distinguish the text from others and provide
insights into its structure and content.

2.1.1. Simplicial Complex and Chain

A simplicial complex is a fundamental construct in alge-
braic topology, used to approximate and study more com-
plex topological spaces. It is formed by combining simpler
building blocks called simplices.

Simplices: A 𝑘-dimensional simplex, denoted as 𝜎, is
the convex hull of 𝑘 + 1 affinely independent points. For
example, a 0-simplex is a point, a 1-simplex is a line segment,
a 2-simplex is a triangle, and a 3-simplex is a tetrahedron.

Forming a Simplicial Complex: A simplicial complex
𝐾 in R𝑑 is a collection of simplices that satisfies two condi-
tions:

1. Any face of a simplex in 𝐾 is also in 𝐾 .
2. The intersection of any two simplices in 𝐾 is either

empty or a common face of both.

Simplicial Chains: To study the algebraic properties of
simplicial complexes, we introduce the concept of simplicial
chains. A simplicial chain in a complex is a formal sum of
simplices. For a given dimension 𝑘, the group of 𝑘-chains,
denoted 𝐶𝑘 , is the free abelian group generated by the 𝑘-
dimensional simplices of the complex.

Boundary Operators: The boundary of a simplex is the
sum of its faces. The boundary operator 𝜕𝑘 : 𝐶𝑘 → 𝐶𝑘−1

maps each 𝑘-simplex to its (𝑘 − 1)-dimensional boundary.
This operator is crucial for defining the homology of the
complex.

For example, the boundary of a 2-simplex (triangle) 𝜎 =
[𝑣0, 𝑣1, 𝑣2] is the sum of its 1-dimensional faces (edges):
𝜕2(𝜎) = [𝑣1, 𝑣2] + [𝑣2, 𝑣0] + [𝑣0, 𝑣1].

Chain Complex: A chain complex is a sequence of chain
groups connected by boundary operators:

0 → 𝐶𝑛
𝜕𝑛−−→ 𝐶𝑛−1

𝜕𝑛−1−−−→ · · · → 𝐶1
𝜕1−→ 𝐶0 → 0.

Cycle and Boundary Groups:

𝑍𝑝 = ker 𝜕𝑝, 𝐵𝑝 = im 𝜕𝑝+1, 𝐵𝑝 ⊂ 𝑍𝑝.

Simplicial Homology: The 𝑘th simplicial homology
group of a complex 𝐾 is 𝐻𝑘(𝐾) = 𝑍𝑘(𝐾)/𝐵𝑘(𝐾), with
the Betti number 𝛽𝑘(𝐾) = dim𝐻𝑘(𝐾).

2.1.2. Vietoris-Rips Complex

The Vietoris-Rips complex is a key construct in topological
data analysis, used for forming a simplicial complex from a
set of data points based on their pairwise distances.

Definition: Given a set of points𝑋 and a distance thresh-
old 𝜀, the Vietoris-Rips complex 𝒱ℛ𝜀(𝑋) is defined as fol-
lows: for any subset 𝜎 ⊆ 𝑋 , 𝜎 is a simplex in 𝒱ℛ𝜀(𝑋) if
and only if the distance between every pair of points in 𝜎 is
less than or equal to 𝜀.

Formal Construction:

• Vertices: Each point in 𝑋 is a 0-simplex (vertex).
• Edges: An edge (1-simplex) connects vertices 𝑥𝑖 and
𝑥𝑗 if 𝑑(𝑥𝑖, 𝑥𝑗) ≤ 𝜀.

• Higher Simplices: A 𝑘-simplex is formed by a set of
𝑘 + 1 vertices if every pair of vertices in the set is
connected by an edge.

2.2. BERT Model
BERT [2] is a transformer-based language model that has
been pre-trained on a large corpus of text from BooksCorpus
and English Wikipedia. Input text first needs to be tokenized,
in which each word is converted to one or more tokens.
The first token is the special [𝐶𝐿𝑆] token, followed by
the tokenization of each word, using the special [𝑆𝐸𝑃 ]
token to separate “sentences” (e.g., question and answer,
these don’t necessarily correspond to linguistic sentences).
BERT is trained to achieve two objectives: Masked Language
Modelling (MLM) in which tokens are masked at random
(replaced with the special [𝑀𝐴𝑆𝐾] token) and the language
model needs to learn to fill these in; and Next Sentence
Prediction (NSP) in which the final hidden vector of the
special [𝐶𝐿𝑆] token is used to predict if two sentences
follow each other in the corpus.

As a transformer-based model, BERT consists of multiple
layers, each with multiple attention heads. While multiple
variants of BERT are available, for the purpose of this paper
we use 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 , which consists of 12 layers, each with
12 attention heads (i.e., 144 attention heads in total) that
operate on an input matrix, 𝑋 , of 𝑛 tokens and 768 hidden
dimensions, 𝑑.

2.2.1. Sentence Embeddings

The final hidden vector of the special [𝐶𝐿𝑆] token can be
used to embed the input sequence (which varies in length) in
𝑑 hidden dimensions (178 in the case of 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 ). The
authors of the BERT paper [2] note that the [𝐶𝐿𝑆] embed-
ding is not a meaningful sentence representation without
fine-tuning. Nevertheless, Uppaal et al. [13] claim that the
practice of using this to obtain sentence embeddings “is stan-
dard for most BERT-like models”, and find that in the case
of RoBERTa (a BERT-like model without the NSP training
objective) this embedding serves as a “near perfect” OOD
detector even without fine-tuning.

2.2.2. Attention Maps

Each attention head computes an attention map, 𝑊 𝑎𝑡𝑡𝑛, of
shape 𝑛× 𝑛 as an intermediate step of the calculation. We
use the same definition of attention maps as Kushnareva
et al. [4] presented below:

𝑋𝑜𝑢𝑡 = 𝑊 𝑎𝑡𝑡𝑛(𝑋𝑊𝑉 )



𝑊 𝑎𝑡𝑡𝑛 = softmax
(︂
(𝑋𝑊𝑄)(𝑋𝑊𝐾)𝑇√

𝑑

)︂
Where 𝑊𝑄, 𝑊𝐾 , 𝑊𝑉 are learned projection matrices

of shape 𝑑× 𝑑 and 𝑋𝑜𝑢𝑡 is the output of the attention head
applied to the 𝑛× 𝑑 matrix 𝑋 from the previous layer. In
this paper, we analyse the attention maps for each of the
144 attention heads in 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 using TDA.

3. Experiment design
In this section, we outline the design of our methodology
for our OOD detection using Topological Data Analysis.
For a supervised classification task, given a test sample 𝑥,
OOD detection aims to determine whether it belongs to
the in-distribution (ID) dataset 𝑥 ∈ 𝒟𝑖𝑛 or not. Some of
the background and literature review related to confidence
score for OOD detection can be found in [9, 14, 15]. We
consider a 𝑑-dimensional representation of an input text
𝑥 as ℎ(𝑥) in R𝑑. To analyse the benefits of TDA in OOD
detection, we consider two encoding functions ℎ1(𝑥) and
ℎ2(𝑥):

1. Topological feature vector ℎ1(𝑥): given 𝑥, we gen-
erate a vector of 𝑑1 topological features using the
graph representations of the 144 attention maps gen-
erated by 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 . In 3.3 and subsection 3.4,
we explain in detail how the topological features are
generated from an input sentence.

2. Sentence embedding ℎ2(𝑥): we take the 𝑑2-
dimensional text embedding of the [𝐶𝐿𝑆] token
output by 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 , which captures the con-
textual and semantic information of the input text
𝑥.

Similar to Uppaal et al. [13], we define the OOD detection
function as 𝐺(𝑥), which maps an instance 𝑥 to {𝑖𝑛, 𝑜𝑢𝑡}
as follows:

𝐺𝜆(𝑥;ℎ) =

{︃
𝑖𝑛 if 𝑆(𝑥;ℎ) ≥ 𝜆

𝑜𝑢𝑡 if 𝑆(𝑥;ℎ) < 𝜆

where 𝑆(𝑥;ℎ) is an OOD scoring function using a
distance-based method (Mahalanobis distance to the ID class
centroids or Euclidean distance to k-nearest ID neighbour),
described in subsection 3.5, and 𝜆 is the threshold chosen
so that a high proportion of ID samples’ scores are above 𝜆.

3.1. Data
As the in-distribution dataset, we choose the headlines and
abstract text of ‘Politics’ and ‘Entertainment’ news articles
from HuffPost from the news-category dataset [16]. To test
the robustness of the OOD method, we conduct experiments
on three kinds of dataset distribution shifts [17]:

• Near Out-of-Domain shift. In this paradigm, ID
and OOD samples come from different distributions
(datasets) exhibiting semantic similarities. In our ex-
periments, we evaluate the abstract of news articles
from the cnn-dailymail dataset [18].

• Far Out-of-Domain shift. In this type of shift,
the OOD samples come from a different domain and
exhibit significant semantic differences. In particular,
we evaluate the IMDB movie review dataset [19] as
OOD samples.

• Same-Domain shift. We also test a more chal-
lenging setting, where ID and OOD samples are
drawn from the same domain, but with different
labels. Specifically, we extract the ‘Business’ news
articles from the news-category dataset.

In our experiments we used a sample of 30,000 points
from the in-distribution dataset for the fine-tuned version
of the model, and use a validation and test size of 1,000
datapoints.

3.2. Model
We focus on the attention heads of a pre-trained
𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 (L=12, H=12) generated from an input text
𝑥 to produce topological features and compare this encod-
ing to the embeddings of the [𝐶𝐿𝑆] token as the sentence
representation. We replicate our experiments on a fine-
tuned 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 on the ID news categorisation task
𝒳 → {’Politics’, ’Entertainment’}. We fine-tune the model
for 3 epochs, using Adam with batch size of 32 and learning
rate 10−5.

3.3. Attention Maps and Attention Graphs

(a) Attention maps
(12× 12) derived from
pre-trained BERT for
the input text "President
issues vows as tensions
with China rise"

(b) BERT Attention Map
(Layer 7; Head 10)

(c) Undirected attention
graph (Layer 7; Head 10)
where edges are propor-
tional to the maximal
attention between the
two vertices. The edge
width represents shorter
distances (attention
strength)

Figure 1: Process of transforming an attention map to an atten-
tion graph (one per attention head)

Attention maps play a crucial role in our methodology
as they form the basis for extracting topological features
used in our OOD detection. An attention map 𝑊 𝑎𝑡𝑡𝑛 is a



𝑛× 𝑛-dimensional matrix where each entry represents the
attention weight between two tokens. Each element 𝑤𝑎𝑡𝑡𝑛

𝑖𝑗

can be interpreted as the level of ‘attention’ token 𝑖 pays to
token 𝑗 in the input sequence during the encoding process.
The higher the weight the stronger the relation between two
tokens. They are non-negative and the attention weights
of a token sum up to one (i.e.

∑︀𝑛
𝑗=1 𝑤

𝑎𝑡𝑡𝑛
𝑖𝑗 = 1 for all

𝑖 = 1, ..., 𝑛.).
To generate topological features from an attention map,

we first convert it into an attention graph following the
approach of Perez and Reinauer [5]. Given an attention ma-
trix 𝑊 𝑎𝑡𝑡𝑛, we create an undirected weighted graph where
the vertices represent the tokens of the input text 𝑥, and
the weights are determined by the attention weights in the
corresponding attention map. To emphasise the important
relationships and reduce noise, we calculate the distance
between vertices as 1−max(𝑤𝑖𝑗 , 𝑤𝑗𝑖). The distance calcu-
lation reflects the inverse of the maximum attention weight
between two tokens, ensuring the relationship is symmet-
ric and the strong relationships result in smaller distances.
To prevent the formation of self-loops, all diagonals in the
adjacency matrix are set to 0. Figure 1 shows an example of
constructing the attention graph for an attention map.

3.4. Persistent Homology

Figure 2: Filtration process for the attention graph (Layer 7;
Head 10) where edges with shorter distances below a threshold
are added first, gradually connection the nodes until a complete
graph is formed

The constructed attention graphs from the attention
heads contain the structure and relationships we need to
extract topological features. To encode the topological infor-
mation provided by the attention graph, we use a filtration
process to generate a persistence diagram. Filtration in
TDA is a systematic process where a topological space is
progressively constructed across varying scales to analyse
the emergence, persistence and disappearance of simplicial
complexes, such as connected components, holes, or voids.

We apply one of the most widely used types of filtration
process to the attention graphs, the Vietoris-Rips filtration.
This process starts with only the vertices of the graph, con-
sidering them as zero-dimensional simplices. Then it adds
edges one by one, depending on their weights (i.e. distances).
Edges with shorter distances below a threshold are added
first, gradually connecting the vertices by increasing the
threshold until a complete graph is formed. As edges are
added, the filtration process captures the graph’s properties
and the relationships between its vertices [20]. This process
is visualised in Figure 2.

To construct a persistence diagram, we keep track of
the lifetime of persistence features as the threshold is in-
creased. One can think of 0-dimensional persistent fea-
tures as connected components, 1-dimensional features as
holes and 2-dimensional features as voids (2-dimensional
holes) and so on. The birth and death time of a persis-
tence feature is the threshold value at which the feature

(a) Persistence diagram gen-
erated from the filtra-
tion process for atten-
tion map in Layer 7,
Head 10. The set of
𝐻0 (red points) repre-
sents the birth and death
of ‘connected compo-
nents’ and the set of 𝐻1

(teal points) represents
the birth and death of
‘holes’.

(b) Topological features ex-
tracted from the persis-
tence diagram, calculat-
ing persistence entropy,
and amplitude with ‘Bot-
tleneck’ and ‘Wassert-
stein’ distances for ho-
mology dimensions 0, 1,
2 and 3. (In the case of
NaN values, e.g. due to
no higher dimensional
simplices, we set the per-
sistence entropy feature
to -1, as per the default
behaviour of Giotto-tda)

Figure 3: Example persistence diagram and extracted topological
features

appeared and disappeared. For example, when the thresh-
old is 0 all 0-dimensional features are born (vertices), and
when two vertices 𝑖 and 𝑗 are connected at threshold 𝑤𝑖𝑗 ,
one 0-dimensional feature will disappear. Similarly, a 1-
dimensional feature (hole) will appear at the threshold
where 3 vertices connect to each other, and disappear when
a fourth vertex forms a 2-dimensional simplex (void). The
birth and death of all 𝑘-dimensional simplices are recorded
in a persistence diagram. An example persistence diagram
is shown in Figure 3a.

From the persistence diagrams, we extract various topo-
logical features to represent the underlying graph’s struc-
ture. In our experiments, we focus on the following topo-
logical features:

1. Persistence Entropy: This feature quantifies the
complexity of the persistence diagram as calculated
by the Shannon entropy of the persistence values
(birth and death), with higher entropy indicating a
more complex topology.

2. Amplitude: We compute amplitude using two dif-
ferent distance measures: ‘bottleneck’ and ‘Wasser-
stein’. The amplitude measures the maximum persis-
tence value within the diagram, providing insights
into the significance of the topological features.

We focus on different homology dimensions to capture topo-
logical features of varying complexities. In our experiments,
we consider homology dimensions [0, 1, 2, 3] to account for
different aspects of the attention graph’s topology. We use
the Giotto-tda library to generate the persistence diagrams
and extract the topological features, as per Figure 3b. Both
persistence entropy and amplitude features are used in the
experiment through concatenating all features into a single
feature vector.



3.5. OOD Scoring Function
Similar to Perez and Reinauer [5], given ℎ(𝑥), a 𝑑-
dimensional representation of an input text 𝑥, we employ
two distance-based methods as the OOD scoring functions:

1. Mahalanobis distance to the ID class centroids:
the Mahalanobis distance is used to measure the dis-
tance between the feature vector ℎ(𝑥) and the class
centroids. This distance is based on the covariance
matrix of the class features, which is based on the
assumption that the data in that class follows a mul-
tivariate Gaussian distribution. The OOD score is
calculated as follows:

𝑆Maha(𝑥;ℎ; Σ;𝜇) =

𝑚𝑖𝑛𝑐∈𝑦(𝑧𝑥 − 𝜇𝑐)
𝑇Σ−1(𝑧𝑥 − 𝜇𝑐)

where 𝑧𝑥 is the standardised feature vector for the
input ℎ(𝑥), Σ is the covariance matrix of the stan-
dardised ID feature vectors and 𝜇 is the set of class
mean standardised embeddings. Both Σ and 𝜇𝑐 are
extracted from the ID validation set embeddings to
account for the inherent distribution of the ID data.
The covariance matrix Σ captures how the features
vary with respect to one another, and 𝜇𝑐 represents
the centroid or average representation of data be-
longing to class 𝑐.

2. Euclidean distance to k-nearest ID neighbour:
We measure the distance between ℎ(𝑥) and the k-
nearest ID neighbour’s feature vector from the vali-
dation set. Given ℎ(𝑥) and a set of 𝑚 ID feature vec-
tors {ℎ(𝑥1), ℎ(𝑥2), ..., ℎ(𝑥𝑚)}, the Euclidean dis-
tance to the k-nearest ID neighbour is calculated as
follows:

𝑆KNN(𝑥;ℎ) = ||𝑧𝑥 − 𝑧𝑥𝑘 ||2
where 𝑧𝑥 and 𝑧𝑥𝑘 are the standardised feature vector
for the input ℎ(𝑥) and its k-nearest ID sample ℎ(𝑥𝑘).
In our experiments, we set 𝑘 = 5.

4. Results
We conduct our experiments using Topological Data Anal-
ysis to generate topological feature vectors ℎ1(𝑥) from at-
tention maps, which are then compared to standard sen-
tence embeddings ℎ2(𝑥) generated from the [𝐶𝐿𝑆] token
of BERT. Table 1 shows the OOD detection performance
of both approaches for three out-of-distribution datasets,
using both pre-trained and fine-tuned BERT models.

For visualisation purposes, we use UMAP projections
of the in-distribution (validation and test sets) and out-of-
distribution data points in the corresponding feature space.
Figure 4, Figure 5, and Figure 6 show the data representa-
tions from the TDA and CLS approaches for the far out-of-
domain dataset (IMDB), near out-of-domain dataset (CN-
N/Dailymail) and the same-domain dataset (business news-
category), respectively.

The results demonstrate that the TDA-based approach
consistently outperforms the CLS embeddings in detecting
OOD samples in the IMDB dataset from both the pre-trained
and fine-tuned models. OOD detection using TDA can detect
IMDB review samples with 8-9% FPR95, in stark contrast to
the 87-91% FPR95 exhibited by CLS embeddings. As seen in

Pre-trained Fine-tuned

TDA

CLS

Figure 4: The data representations from the TDA and CLS ap-
proaches for the far out-of-domain IMDB dataset.

Pre-trained Fine-tuned

TDA

CLS

Figure 5: The data representations from the TDA and CLS ap-
proaches for the near out-of-domain CNN/Dailymail dataset.

Figure 4, the TDA feature vectors project the data into well-
separated and compact clusters, which explains its superior
performance.

The TDA approach was less effective than the CLS ap-
proach at detecting OOD samples from the near out-of-
domain CNN/Dailymail dataset. Even though the data vi-
sualisation in Figure 5 shows that TDA was able to cluster
OOD samples together, the cluster was not distant enough
from ID samples, rendering both distance-based OOD de-
tection methods less effective.

For same-domain datasets (news-category), both ap-
proaches struggled to detect OOD samples. As seen in Fig-
ure 6, when both ID and OOD data are from the same do-
main, their feature vectors are highly overlapping, although
fine-tuning seems to provide stronger separability between
ID and OOD data for the CLS approach.

5. Discussion
From our experiments, we showed that the TDA approach
outperforms the CLS approach at detecting far out-of-
domain OOD samples like those in the IMDB dataset. Yet,
its effectiveness deteriorates with near out-of-domain (CN-
N/Dailymail) or same-domain (business news-category)
datasets. To understand why, we looked at the samples that



Pre-trained model Fine-tuned model
KNN MAHA KNN MAHA

AUROC
↑

FPR95 ↓ AUROC
↑

FPR95 ↓ AUROC
↑

FPR95 ↓ AUROC
↑

FPR95 ↓

IMDB
TDA 0.940 0.090 0.940 0.112 0.958 0.084 0.950 0.124
CLS 0.680 0.875 0.799 0.704 0.771 0.916 0.814 0.852

CNN/Dailymail
TDA 0.572 0.890 0.563 0.908 0.551 0.909 0.521 0.927
CLS 0.875 0.591 0.897 0.445 0.947 0.215 0.949 0.208

News-Category (Business)
TDA 0.527 0.929 0.543 0.921 0.570 0.923 0.568 0.925
CLS 0.580 0.921 0.638 0.878 0.884 0.431 0.885 0.424

Table 1
Comparison of the performance of our scoring functions on all three out-of-distribution datasets using both pre-trained and
fine-tuned models.

Pre-trained Fine-tuned

TDA

CLS

Figure 6: The data representations from the TDA and CLS
approaches for the same-domain News-Category (Business)
dataset.

each approach thrived and struggled with, and we highlight
three observations:

(1) The TDA approach accentuates features asso-
ciated with textual flow or grammatical structures
rather than lexical semantics, consistent the findings
of Deng and Duzhin [21] and Kushnareva et al. [4]. For
example, TDA was adept at identifying OOD samples that
are structurally unique in the IMDB dataset, as the most
confident OOD samples detected were:

• ‘OK...i have seen just about everything....and some are
considered classics that shouldn’t be ( like all those
Halloween movies that suck crap or even Steven king
junk).......and some are considered just OK that are
really great.....( like carnival of souls )........and then
some are just plain ignored............like ( evil ed ) [. . . ]’

• ‘Time line of the film: * Laugh * Laugh * Laugh *
Smirk * Smirk * Yawn * Look at watch * walk out *
remember funny parts at the beginning * smirk < br /
> <br /> [. . . ]’

In contrast, TDA struggled with detecting CNN/Daily-
mail OOD samples as they have similar sentence structures
and length to the ID samples, even if they are semantically
unrelated. Table 2 shows the samples with the least confi-
dent OOD score from the CNN/Dailymail dataset, and their
nearest ID neighbour.

CNN/Dailymail sample Nearest ID neighbour

Footage showed an unusual
’apocalyptic’ dust storm hit-
ting Belarus. China has
suffered four massive sand-
storms since the start of the
year. Half of dust in atmo-
sphere today is due to hu-
man activity, said Nasa.

Trump’s Proposed Cuts To
Foreign Food Aid Are Prov-
ing Unpopular. The presi-
dent might see zeroed-out
funding for foreign food aid
as "putting America first,"
but members of Congress
clearly disagree.

Video posted by YouTube
user Richard Stewart show-
ing a Porsche Cayman fly-
ing out of control. Police
cited unidentified driver for
the crash. Car reportedly
wrecked and needed to be
towed from the scene.

Trump Signs Larry Nassar-
Inspired Sexual Assault Bill
Behind Closed Doors. The
president quietly signed the
bill the week after two White
House staffers resigned amid
allegations of domestic vio-
lence.

Table 2
Least confident OOD samples from the CNN/Dailymail dataset
and their nearest ID neighbours, from the TDA approach using
the pre-trained BERT model

(2) CLS embeddings are sensitive to the semantic
and contextual meaning of the samples, regardless
of sentence structure. This explains why this approach
struggled with OOD detection from IMDB reviews, as it of-
ten classified IMDB movie reviews as in-distribution due to
their semantic similarities with the entertainment news ar-
ticles from the ID dataset, especially those related to movies.
A closer look at the IMDB samples with smallest OOD score
from the CLS embeddings in Table 3 exemplifies this insight,
identifying ID samples of similar topic as nearest neighbours
even though they are clearly from different domains.

(3) Fine-tuning has improved performance of CLS
embeddings for near or same-domain shifts, but shows
no significant benefit for TDA. Fine-tuning induces a
model to divide a single domain cluster into class clusters,
as highlighted by Uppaal et al. [13]. For CNN/Dailymail
and Business news OOD datasets, this is beneficial for the
CLS approach as it learns to better distinguish topics. How-
ever, fine-tuning made the CLS embeddings of IMDB movie
reviews appear even more similar to entertainment news,
deteriorating OOD performance.

For the TDA approach, fine-tuning did not present any
considerable benefits. This can be partly attributed to obser-
vation (1) that TDA primarily captures structural differences,
and fine-tuning, which is driven by semantics, does not sig-
nificantly alter the topological representation.



IMDB review sample Nearest ID neighbour

’[...] I would spend good,
hard-earned cash money to
see it again on DVD. And
as long as we’re requesting
Smart Series That Never Got
a Chance...How about DVD
releases of Maximum Bob
(another well written, odd
duck show with a delightful
cast of characters.) [...]’

DVDs: Great Blimp, Bad-
lands, Buster Keaton & More.
Let’s catch up with some reis-
sues of classic – and not so
classic – movies, with a few
documentaries tossed in at
the end for good measure.

’[...] I am generally not a fan
of Zeta-Jones but even I must
admit that Kate is STUN-
NING in this movie. [...]’

How ‘Erin Brockovich’ Be-
came One Of The Most
Rewatchable Movies Ever
Made. Julia Roberts gives the
best performance of her ca-
reer, aided by a sassy Susan-
nah Grant script full of one-
liners.

Table 3
Least confident OOD samples from the IMDB dataset and their
nearest ID neighbours, from the CLS approach using the pre-
trained BERT model

6. Conclusion
In this paper, we explore the capabilities of Topological
Data Analysis for identifying Out-of-Distribution samples
by leveraging the attention maps derived from BERT, a
transformer-based Large Language Model. Our results
demonstrate the potential of TDA as an effective tool to
capture the structural information of textual data.

Nevertheless, our experiments also highlighted the intrin-
sic limitations of TDA-based methods. Predominantly, our
TDA method captured the inter-word relations derived from
the attention maps, but failed to account for the actual lexi-
cal meaning of the text. This distinction suggests that while
TDA offers valuable insights into textual structure, a lexical
and more holistic understanding of textual data is needed
for OOD detection, especially with near or same-domain
shifts.

For future work, it might be worth combining the topo-
logical features that capture the structural information of
textual data, with those that encode the semantics of text
in an ensemble model that might boost our ability to detect
OOD samples. In addition, there is an opportunity to inves-
tigate the effectiveness of TDA in other NLP tasks where
the textual structure might be important.
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