
Qianhui Liu1 and Luc Paquette1

1 University of Illinois Urbana-Champaign

Debugging is a challenging task for novice programmers that requires diverse skills as well as iterative
practice to find and fix the cause of errors. In this study, we analyzed submission log data to investigate the
temporal aspects of the debugging process. We extracted debugging episodes and interpretable debugging
constituents – components of experts’ interpretations of debugging behaviors – from the data collected
from an undergraduate CS1 course. We first applied sequential pattern mining and state transition metrics
to examine how debugging constituents occur one after another. We further applied temporal
interestingness techniques to reveal the occurrence of debugging constituents within each episode and
compared the difference in constituent patterns across the semester. We further investigated how the
sequential ordering of debugging constituents changed over the course of the semester. Our findings
suggest that novice programmers exhibit frequent printing and submission undo no matter in which phase
of the semester. As they proceeded toward the end of the semester, they employed more repetitive printing
to understand the problem and long planning before implementation.

Debugging process, sequence analysis, debugging constituents1

1. Introduction

Debugging is a computational practice in programming that

occurs when programmers test their code to find out

exactly where the error is and how to fix it [26]. It is a

challenging task for novice programmers to learn as they

usually do not yet possess a comprehensive knowledge of

programming [4] and the strategic skills to gain control of

the programming process [30]. Different from general

programming skills, debugging focuses on a systematic

search for the source of a bug and its removal [19, 20],

which is referred to as troubleshooting or problem-solving.

As one of the essential problem-solving skills in

programming [13], debugging calls for individual

pedagogies [28]. Studies examining the debugging process

show how learning debugging is especially useful to equip

students with the necessary problem-solving skills to be

successful at programming and that those skills can further

transfer to non-programming domains [25].

Although debugging is an important and challenging

topic in CS education, existing log data analyses have shown

limited interpretation of the debugging strategies students

might be using in the process. Researchers have used

aggregated features to describe changes between

CSEDM’24: 8th Educational Data Mining in Computer Science Education
Workshop, July 14, 2024, Atlanta, GA

 ql29@illinois.edu (Q. Liu); lpaq@illinois.edu (L. Paquette)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

submissions [2, 36], but their findings are not fine-grained

enough to reveal the inner process of debugging. Others

have applied sequential analysis methods to code

sequences [5, 15]. The results showed the potential of such

methods to reveal latent patterns of students’ debugging

behaviors, but their interpretations are often intrinsic and

do not explicitly connect with instructors’ or students’

thinking, limiting the actionable implications that can be

drawn for them.

In this study, we combined sequence analysis and

interpretable debugging features to understand students’

debugging process with log data. We first extracted

debugging episodes and indicators of debugging actions,

that we called constituents, from submission log data

collected in an introduction to computer science (CS1)

course. We applied sequential pattern mining, calculated

transition metrics of constituent patterns, and compared

temporal features across semester. Following the definition

in [26] that debugging focuses more on how students fix

logic and semantic errors in programs, this study is more

specifically interested in fixing test errors (rather than

syntax or checkstyle errors). In this regard, we answer the

following research questions:

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

RQ1: How can sequence analysis help to understand

novice programmers’ debugging process?

RQ2: How does novice programmers’ debugging

process change across different phases of the

semester?

2. Related work

2.1. Log data analysis of debugging

Previous work has looked at programming submission log

data through different perspectives, mainly two types of

information are generally extracted: error messages and

code editions. For example, [2] focused on the changes of

syntax and semantic errors in submissions to distinguish

good and bad debuggers. [11] used students’ code content

and mapped it to correct solutions to measure their

progress and detect struggling moment.

Among the submission log analysis of debugging, there

has been a growing interest in studying its temporal

features through data-driven methods. Studies have

identified different sequential patterns of debugging

behaviors, as the basis to reveal how different strategies

may manifest themselves through the data. The most

popular method is sequential pattern mining. For example,

[22] conducted a sequential pattern analysis to obtain

transition diagrams of programming behaviors between

students in flow, anxiety, and boredom. Similar transitions

have been identified to predict students’ final performance

[15], reveal collaborative problem-solving process [36],

distinguish programming styles among students [6], or be

further summarized as interpretable pathways such as

exploring, tinkering, and refining [5]. Other temporal

methods have also been explored to analyze the dynamic

process of programming. Blikstein et al. [6] applied dynamic

time warping to measure the distance between students’

code update sequences in their first and last assignments.

The distance correlated with students’ assignment

performance and exam grades, indicating students with

higher grades would also change their programming

patterns the most. Jemmali et al. [18] visualized the state

graph and sequence graph of programmers’ error states

and actions on each submission to distinguish students’

debugging techniques.

Although many studies have focused on sequential

analysis of debugging on submission level, their input

features were mostly simple error or code-editing

frequency. For example, in [18] only four levels of code

modifications (no, small, medium, and large change) were

included to describe students’ actions. The nuance between

different types of code modifications was ignored, such as

whether they modified printing, comments, or common

code lines, whether they added, deleted, or modified code

lines, and how long the submission intervals were. The

omission of such details limited the interpretations of the

debugging strategies students might be employing.

2.2. Towards interpretable debugging
process analysis

Besides data-driven approaches, some researchers

investigated debugging process in a more meaning-driven

way. They first regarded debugging as a problem-solving

process and constructed interpretable features with related

theories. For example, Liu et al. [24] used the five-stage

problem-solving model [8] (identifying the problem,

representing the problem, selecting a strategy,

implementing the strategy, and evaluating solutions) to

conceptualize the possible programming barriers students

may encounter. They then proposed corresponding

measurable behaviors, such as editing code line where the

program stopped instead of where the real issue was, and

manually labeled these behaviors with snapshots of

students’ code in a debugging game.

Most of the interpretable debugging analysis required a

coding scheme of students’ behaviors to start with. Chao [9]

proposed quantitative indicators of problem-solving

process, such as nested iteration and problem

decomposition, by counting the control flow blocks used by

students in a robot-building game. Pellas and Vosinakis [29]

coded students’ think-aloud transcriptions with the same

coding scheme to understand the effect of simulation

games on programming. Liu et al. [22] applied a different

perspective with five types of problem-solving behaviors

including solution development, experiment, solution

review, solution reuse, and reading the tutorial. Jayathirtha

et al. [17] coded videos of pair debugging into four problem-

solving strategies, forward reasoning to isolate the problem,

backward reasoning to isolate the problem, hypothesis &

solution generation, and verification & testing.

To bring interpretation to the features, many studies

need manual coding of submissions. Although these

features brought much insight on how and why students

debug in different pathways, they are challenging to apply

to a larger scale dataset. In this study, we aim to combine

both data-driven sequence analysis approach and

interpretable debugging features, as a way to move towards

more interpretable debugging process analysis.

3. Methodology

3.1. Dataset

Submission log data was collected from a CS1 course where

undergraduates learned to program in Java. Throughout the

semester, a homework question was assigned to students

almost every day and students had to finish it by making

submissions on an auto-grading system before midnight

(students were allowed an unlimited number of

submissions to achieve the correct answer). For each

submission, the system would first check if there were any

checkstyle (the code is incorrectly formatted according to

the course’s guidelines) or syntax (the submission cannot be

executed because it contains incorrect Java code) errors in

the code. If there were, the system would display error

messages without executing the code. Otherwise, students

would receive test errors (the submission was executed but

was not a valid solution) specifying the error type and error

details such as input and expected output. We collected

submission log data from the Fall 2019 semester including

the code content, error messages, and timestamps. In total,

707 students (31% female, 28% majored in engineering)

solved 65 homework questions, with an average of 8.6

submissions per student per question. Furthermore, the

course was naturally divided into three phases (t1, t2, t3)

separated by midterm exams.

3.2. Debugging episodes and debugging
constituents

3.2.1. Extracting debugging episode

Since the focus of our study was to investigate how students

debug test errors, we defined a debugging episode as our

unit of analysis. When solving a problem, each submission

usually contains one or multiple errors until the final

solution. We first discarded submissions reporting syntax or

checkstyle errors. Following this, the submissions were

further segmented based on the nature of their test errors

(note that the platform only reported one test error at a

time). We extracted all subsequent submissions with the

same type of test error as one debugging episode.

Therefore, a debugging episode represented a submission

sequence starting from the first appearance of a test error

until the student either submitted code that solved the

problem or submitted code that resulted in a different test

error. A more detailed illustration of the procedure used to

extract debugging episodes from the log data can be found

in [23].

Debugging episodes ranged in length from short

episodes (3 submissions) where the student resolved an

error quickly to very long (62 submissions). To focus our

analyses on more representative episodes of debugging

behaviors, shorter episodes – where students solve the

problem quickly without needing extensive debugging – and

longer episodes – where students are struggling for an

extended period of time – were excluded. More specifically,

only debugging episodes that were within the 25 to 75

percentiles of episode length (4-9 submissions) were

retained.

In addition, we excluded episodes collected from

questions that required printing an output as part of their

solution. This was done because printing can also be used

by students to trace and identify the source of an error. To

avoid ambiguity about whether a print statement was used

as part of a solution or as a tool for debugging, we excluded

such questions from our analyses. The excluded questions

mainly appeared in the first third of the semester (t1) before

students learned about functions and return statements.

After preprocessing the data, 3,290 debugging episodes

were obtained.

3.2.2. Eliciting debugging constituents

In order to obtain interpretable features describing the

students’ debugging behaviors, we conducted interviews

with two programming experts. Both experts were

computer science graduate students researching CS

education who also had teaching experience and knew

students’ common misconceptions and debugging

strategies. A tool was built to allow experts to visualize

students’ submissions (Figure 1), with the top showing

questions, left showing the previous submission and errors,

and right showing the next submission and errors. Changes

Figure 1: The screenshot of interview tool for visualizing submissions.

between the two submissions are highlighted in colors.

Experts were presented with the same set of pre-selected

submissions and were asked to think aloud while

interpreting the students’ debugging. We recorded 6 and 10

hours of interview for each expert respectively. A flowchart

representing their interpreting approach was then

constructed by iteratively identifying missing components

from the process and reviewing the interview recordings.

More details about the constituents and the process used

to elicit them can be found in [31].

In total, thirty-seven constituents were obtained from

expert knowledge about fixing checkstyle, syntax, and test

errors, but not all constituents could be computed from the

submission log data. Therefore, we calculated nine

constituents that are relevant to debugging test errors for

each submission, as shown in Table 1. Constituents are

binary features that indicate whether a submission meets a

given criterion. They are not necessarily exclusive to each

other, and it is possible for a submission to contain multiple

constituents. For some constituents such as massive

deletion or change, experts did not explicitly say how much

is massive. We checked data distribution and set 95

percentiles in numbers of lines deleted or changed as the

threshold.

Table 1
Debugging constituents elicited from expert interviews

Constituents Description

submission undo
Returning the code to a previous

state

long interval
Submitting code after a break of 2

or more hours

change var name Changing the name of variables

repeated changes
Making the same change in

multiple places

print diff Printing different outputs

print var Printing the value of variables

massive deletion
Deleting more than 4 lines or 30%

of the code

massive change

shorter5

Changed at least 10 lines or 70%

of the code in less than 5 minutes

since the last submission

massive change

longer25

Changed at least 10 lines or 70%

of the code with more than 25

minutes since the last submission

3.3. Sequence analysis approach

3.3.1. Sequential pattern mining

Sequential pattern mining (SPM) [1] is a method in

educational data mining to uncover frequent patterns

within ordered sequences of student problem-solving

behaviors. We applied SPM to identify constituents that

frequently co-occured in a sequential pattern as one of the

ways to answer RQ1. Specifically, we calculated and ranked

patterns based on the following three metrics: support,

confidence and lift. Each metric provides a different

perspective that can be used to interpret the frequent

patterns. Support indicates the percentage of all debugging

episodes that contained a given pattern. Confidence

describes the likelihood of observing the second constituent

in a sequence given the first constituent. For a transition

X→Y, a confidence of 0.5 represents that X is followed by Y

50% of the time. Both support and confidence are

commonly reported SPM metrics used to identify the most

common sequential patterns. In addition, we computed the

pattern’s Lift, a measure of pattern interestingness that has

been argued to be suitable for educational data and easy to

interpret [27]. Lift shows how many times more likely the

second constituent in a pattern is to occur given that it is

preceded by the first constituent, compared to the average

case. For the transition X→Y, Lift is the ratio between the

likelihood of observing Y when X is observed and the

likelihood of observing Y among all transitions. Therefore, a

Lift value larger than 1 indicates that Y is more likely to be

observed after X compared to average and that X and Y are

dependent. The SPM method was conducted using the

cSPADE algorithm [34] with Python using the pycspade

package, with a maximum gap of 1 to ensure that

constituents in the identified patterns occurred in

consecutive submissions and a minimum support of 0.01 to

include extreme rare patterns. We initially set the maximum

length of patterns to be 3 constituents but found length-3

patterns were mostly repetitive print similar to length-2

patterns, so we omitted length-3 results.

3.3.2. Transition metrics

Beyond metrics commonly calculated in SPM, we also

considered other transition metrics taking the base rates of

constituents into account. For example, the transition X→Y

may appear to be unusually frequent or infrequent simply

because Y is especially common or uncommon. In particular,

confidence and lift are metrics that can be influenced by

such differences in occurrence [7]. Thus, we complemented

our SPM analysis by computing two additional transition

likelihood metrics, D’Mello’s L [10] and lag sequential

analysis (LSA; [12]). The values of L range from negative

infinite to 1, with 0 indicating a transition occurring as often

as in random-ordered data and higher positive values

indicating a stronger dependence between two consecutive

constituents. LSA produces a z score where an absolute

value larger than 1.96 implies that the transition between

two constituents occurs significantly more or less than in

random-ordered data. We used a modified version of the

code in [7] to calculate the two metrics.

To be noted that since there can be multiple

constituents in one submission, our interpretation of the

transitions is slightly different from previous sequential

analysis studies such as [7]. In common cases, there will be

only one state at each timepoint, while for our study,

multiple constituents can be identified in the same

submission. Therefore, when discussing transitions

between constituents such as X→Y, we refer to the

situations where Y occurs following X, without constraining

on other constituents that might occur in the same

submission.

To compare the debugging process across different

phases of the semester, we conducted ANOVA to compare

the L values of constituent patterns in t1, t2, and t3.

3.3.3. Temporal interestingness

Temporal interestingness is a metric to describe variations

in a pattern occurrence across time [21]. This technique first

segments each of the students’ behavioral sequences into

N ordered bins with equal sizes and counts the occurrence

of each pattern in each bin. Then, it calculates the

information gain (IG) [33] of pattern occurrences across

bins, which measures the extent to which knowing the

pattern occurrences informs us about its bin number. Later,

[35] proposed an effect-size-based calculation for temporal

interestingness by conducting a one-way repeated ANOVA

taking the occurrences as the dependent variable and the

bin number as the independent within-subject variable. This

method returns each pattern’s adjusted p value and smaller

than .05 indicating significantly interesting.

We segmented debugging episodes into 4 bins to

ensure there is at least one submission per bin. We then

calculated the occurrences of each constituent in each bin,

identified significantly interesting constituents, and

visualized them in heatmaps.

4. Results

4.1. RQ1: sequence analysis of debugging

We calculated the support of each constituent to gain a

general idea of their occurrences. As shown in Table 2.

massive deletion was the most frequent constituent,

occurring 1,405 times and occurring at least once in 39% of

the episodes. The following frequent constituents are long

interval, print var, and print diff. The least frequent

constituent is massive change shorter5 that occurred at

least once in only 15% of the episodes.

Table 2
The support of debugging constituents

Constituents Occurrences Support

massive deletion 1405 0.39

long interval 949 0.26

print var 939 0.26

print diff 704 0.19

repeated changes 681 0.19

massive change longer25 660 0.18

change var name 590 0.16

massive change shorter5 535 0.15

To investigate the transitions between constituents, we

first applied SPM to extract frequent patterns of

consecutive constituents and calculated their transition

metrics. No z-score computed using LSA had an absolute

value larger than 1.96. As such, we only report the

confidence, lift, support, and L values of constituent

transitions. Table 3 shows the patterns with the 10 highest

support. Patterns with the highest supports are repetitions

between print var and print diff. Their lifts were also larger

than one, indicating these transitions were more frequent

compared to average cases. The following patterns

occurred much less frequently, with supports of 0.06 or

lower.

4.2. RQ2: debugging process across
semester phases

To answer RQ2, we first compared how debugging

constituents distributed across time in three phases of the

semester, t1, t2, and t3. As shown in Figure 2, we visualized

the occurrence of each constituent in each bin with a single-

dimensional heatmap. The value in each bin is its

percentage of the total occurrences for that constituent.

Deep blue refers to the highest percentage and white refers

to zero percentage. We also applied temporal

interestingness techniques to identify constituents whose

occurrences significantly varied across time and labeled

them with * before each heatmap. There was one

constituent in t1 that was significantly interesting, five in t2,

and six in t3.

Table 3
The confidence, lift and support, and L of constituent

patterns

Patterns Confidence Lift Support L

print var →

print var
0.85 3.30 0.22 0.48

print diff →

print diff
0.86 4.45 0.17 0.58

print var →

print diff
0.60 3.09 0.15 0.24

print diff →

print var
0.79 3.06 0.15 0.40

print diff →

massive deletion
0.29 0.76 0.06 0.04

long interval →

massive deletion
0.10 0.27 0.03 -0.02

massive change

longer25 →

massive deletion

0.13 0.33 0.02 -0.10

print diff →

long interval
0.11 0.42 0.02 0.005

print var →

change var name
0.08 0.51 0.02 0.001

print var →

massive change

longer25

0.08 0.45 0.02 -0.004

For many constituents, their occurrence distributions

were similar across t1, t2, and t3. submission undo mostly

occurred in the first three bins, print var reached its peak in

the second and third bins, massive deletion and massive

change shorter5 occurred more in the last two bins. In terms

of distribution difference, t2 and t3 were more similar to

each other. print diff occurred more in the last three bins

for both t2 and t3, but in t1 it occurred more in the first bin.

long interval was mostly in the first bin and decreased in the

second and third bin in t1, but it was distributed more

equally in the first three bins in t2 and t3. change var name

was most frequent in the last bin in t1, but shifted in the

third bin in t2, and first bin in t1. massive change longer25

was most frequent in the first bin. repeated changes

occurred more in the first bin in t1, but more in the last bin

in t2 and t3.

Table 4
The L of constituent patterns for t1, t2, and t3

Patterns t1 t2 t3 p

print var → print diff -0.06 0.19 0.20 0.00

submission undo →

massive change

longer25

0.00 0.00 0.04 0.01

print diff → print var -0.16 0.37 0.29 0.01

submission undo →

print diff
0.00 0.00 -0.07 0.06

massive change

longer25 → change

var name

0.00 -0.06 -0.04 0.29

change var name →

print var
0.07 -0.06 -0.06 0.40

print var →

submission undo
0.03 0.00 0.00 0.44

long interval → print

var
0.01 -0.03 -0.04 0.55

print diff → massive

change longer25
-0.01 0.00 0.00 0.69

long interval →

change var name
0.02 0.00 0.00 0.70

Distribution heatmaps showed how single constituent

can occur differently across semester. We were also

interested in how constituent patterns might change as

students gain more programming experience throughout

the semester. We chose to compare L values between t1,

t2, and t3 as L considers base rates and is easy to interpret

(with positive value indicating that constituents are more

dependent than randomness). The average L values in three

phases and p values of ANOVA are shown in Table 4. Three

patterns were found to be significantly different across the

three phases, print var → print diff, submission undo →

massive change longer25, and print diff → print var. As the

semester proceeded, they generally occurred more

frequently in t2 and t3 than t1.

5. Discussion

The goal of this study was to combine sequence analysis and

interpretable debugging features to investigate novice

programmers’ debugging process by answering the

following two research questions.

5.1. RQ1: sequence analysis of debugging

Our first research question was “How can sequence analysis

help to understand novice programmers’ debugging

process?” To answer this question, we applied both SPM

and transition metrics to calculate support, confidence, lift,

D’Mello’s L, and LSA to rank constituent patterns. We found

that constituents did not occur frequently across episodes,

with the highest one occurring only in 39% of the episodes.

These sparse occurrences lead to the relatively low support

of constituent patterns. However, lift and L values showed

that printing constituents are mostly dependent on each

other, even when accounting for their base rate. Since

printing for tracing usually can help with understanding the

problem and locating the bug, this suggests that novices

may require multiple submissions to navigate the early

stages of problem-solving before implementation. Such

findings echo the previous work where debugging appeared

more in an iterative manner for both expert and novice

programmers [3, 17].

5.2. RQ2: debugging process across
semester phases

Our second research question was “How does novice

programmers’ debugging process change across different

phases of the semester?” We first identified temporal

interesting constituents and visualized their occurrences

within each episode using heatmaps. We found that

similarly for the three phases, submission undo commonly

covered the beginning and middle of an episode. Printing

reached its peak in the middle of an episode, while the

peaks of massive change shorter5 and massive deletion

were at the end. This was generally reasonable as it may

take a while before students started tracing to identify and

locate the real issue in the code. And in the end, they would

Figure 2: The heatmaps of constituent occurrences.

implement more through faster massive change or massive

deletion. What was different is that long interval occurred

more at the beginning in t1. It may suggest that students

took longer to get used to the auto-grading system when

starting the course. Also, questions in t2 and t3 can be more

difficult and require more thinking not just at the beginning

of debugging. change var name kind of shifted mostly from

the end to the middle and then the beginning across

semester, indicating students may gain more experience in

understanding and representing the code logic throughout

the semester. repeated changes shifted more from the

beginning of an episode to the end, which aligned with the

expectation as it is one of the ways to fix bugs.

We then compared L values of constituent patterns

between three phases. Results showed t2 and t3 included

more patterns that are related to the early stages of

problem-solving, such as print var → print diff, and

transitioning to long planning like submission undo →

massive change longer25. This finding was unexpected as

expertise in debugging was found to be able to be improved

through practice [31], so we assumed that students should

be more efficient in understanding the problem and fixing

the bug as the semester proceeded. However, previous

studies suggested that experts can spend more time at the

initial stages of problem-solving [24] and planning is not

determinant to programming success [6]. It is possible that,

as the questions become more complex and longer,

students needed to engage in more extensive preparation

and tended to be more cautious before implementing a

strategy. Therefore, intensive understanding of the code or

transitions into long planning may not necessarily be a sign

of unproductive debugging. Students may strategically

adjust their behaviors considering question difficulty, their

debugging experience, and many other factors.

6. Conclusion and limitation

In this study, we combined sequence analysis and

interpretable debugging constituents to understand novice

programmers’ debugging process. We identified frequent

constituent patterns by conducting SPM analysis and

calculating transition metrics. To compare students’

debugging process across semester, we applied temporal

interestingness techniques and visualized constituent

occurrences within episodes. We also compared L values

between the three phases. We found that it was common

for students to transit between different types of printing

actions, an early stage in problem-solving to identify and

understand the problem. It was also common to undo their

submission across semester, as a way to restart from a

previous point when debugging. Comparing what was

different in the three phases, we found extensive printing

and longer planning occurred more as semester proceeded.

A potential avenue for future research is to extend this

analysis by comparing various sequential methods on

programming submissions. Clustering of sequences could

be applied to first filter out episodes with less meaningful

debugging behaviors. Other sequential methods, such as

process mining, could also be applied to obtain various

outputs other than transition ranking, as a way to obtain a

more holistic view of the debugging process. Besides, more

quantitative features can be added to the current set of

constituents to capture additional debugging behaviors. In

addition, students’ reflections on their debugging process

could be collected through think-aloud or interviews, as

supplementary evidence to interpret their debugging

strategies.

Some limitations of this study need to be considered.

First, occurrence of the debugging constituents was low

overall, limiting further sequential analysis of constituent

patterns. This could be due to the introductory level of the

course where we collected the submission log data. Unlike

previous studies where programming questions were

designed for specific research goals [14], all the homework

questions in this study were self-contained problems

designed to be successfully finished within one day of their

assignment. These questions generally needed shorter code

to be solved successfully and less effort to debug. Another

reason could be the debugging constituents highly relied on

experts’ experience and can be somewhat insufficient to

describe all the possible debugging behaviors. Second,

there were no indications of students’ behaviors outside of

the homework system. Students might search online for

information about their errors, ask for help or use paper to

trace the execution of their code to identify the problem,

but submission log data cannot capture such behaviors.

Third, more sequential analysis methods can be applied in

combination with current study to deepen our

understanding of debugging. For example, clustering of

sequences can be applied to help filter out episodes that

contain fewer debugging behaviors, so that constituents

would not be too sparse to hinder the following analysis. In

addition, SPM and transition metrics can only identify short

patterns of debugging activities and do not support

identifying a path starting from the beginning of an episode

to its end. Methods such as process mining may be

complementary to the ones presented in this study.

This study is funded by National Science Foundation Award

#1942962.

[1] Agrawal, R. and Srikant, R. 1995. Mining

sequential patterns. Proceedings of the Eleventh

International Conference on Data Engineering (Taipei,

Taiwan, Mar. 1995), 3–14.

[2] Ahmadzadeh, M., Elliman, D. and Higgins, C. 2005.

An analysis of patterns of debugging among novice

computer science students. Proceedings of the 10th annual

SIGCSE conference on Innovation and technology in

computer science education (Caparica Portugal, Jun. 2005),

84–88.

[3] Alaboudi, A. and LaToza, T.D. 2023. What

constitutes debugging? An exploratory study of debugging

episodes. Empirical Software Engineering. 28, 5 (Sep. 2023),

117. DOI:https://doi.org/10.1007/s10664-023-10352-5.

[4] Begum, M., Nørbjerg, J. and Clemmensen, T.

2018. Strategies of Novice Programmers. Information

Systems Research Seminar in Scandinavia (IRIS) (Odder,

Denmark, Aug. 2018).

[5] Berland, M., Martin, T., Benton, T., Smith, C.P. and

Davis, D. 2013. Using Learning Analytics to Understand the

Learning Pathways of Novice Programmers. The Journal of

the Learning Sciences. 22, 4 (2013), 564–599.

[6] Blikstein, P., Worsley, M., Piech, C., Sahami, M.,

Cooper, S. and Koller, D. 2014. Programming Pluralism:

Using Learning Analytics to Detect Patterns in the Learning

of Computer Programming. The Journal of the Learning

Sciences. 23, 4 (2014), 561–599.

[7] Bosch, N. and Paquette, L. 2021. What’s Next?

Sequence Length and Impossible Loops in State Transition

Measurement. Journal of Educational Data Mining. 13, 1

(Jun. 2021), 1–23.

DOI:https://doi.org/10.5281/zenodo.5048423.

[8] Bruning, R.H., Schraw, G.J. and Norby, M.M. 2011.

Cognitive psychology and instruction. Allyn &

Bacon/Pearson.

[9] Chao, P.-Y. 2016. Exploring students’

computational practice, design and performance of

problem-solving through a visual programming

environment. Computers & Education. 95, (Apr. 2016), 202–

215. DOI:https://doi.org/10.1016/j.compedu.2016.01.010.

[10] D’Mello, S., Taylor, R. s and Graesser, A. 2007.

Monitoring Affective Trajectories during Complex Learning.

Proceedings of the Annual Meeting of the Cognitive Science

Society (2007).

[11] Dong, Y., Marwan, S. and Shabrina, P. 2021. Using

Student Trace Logs To Determine Meaningful Progress and

Struggle During Programming Problem Solving. Proceedings

of 14th International Conference on Educational Data

Mining (EDM21) (Paris, France, Jul. 2021).

[12] Faraone, S.V. and Dorfman, D.D. Lag Sequential

Analysis: Robust Statistical Methods. Psychological Bulletin.

101, 2, 312–323. DOI:https://doi.org/10.1037/0033-

2909.101.2.312.

[13] Fitzgerald, S., Lewandowski, G., McCauley, R.,

Murphy, L., Simon, B., Thomas, L. and Zander, C. 2008.

Debugging: finding, fixing and flailing, a multi-institutional

study of novice debuggers. Computer Science Education. 18,

2 (2008), 93–116. DOI:https://doi.org/10/fsj2gj.

[14] Fitzgerald, S., Simon, B. and Thomas, L. 2005.

Strategies that students use to trace code: an analysis based

in grounded theory. Proceedings of the 2005 international

workshop on Computing education research(ICER’05)

(Seattle, WA, USA, Oct. 2005), 69–80.

[15] Gao, G., Marwan, S. and Price, T.W. 2021. Early

Performance Prediction using Interpretable Patterns in

Programming Process Data. Proceedings of the 52nd ACM

Technical Symposium on Computer Science Education

(Virtual Event USA, Mar. 2021), 342–348.

[16] Hong, J.-C. and Liu, M.-C. 2003. A study on

thinking strategy between experts and novices of computer

games. Computers in Human Behavior. 19, 2 (Mar. 2003),

245–258. DOI:https://doi.org/10.1016/S0747-

5632(02)00013-4.

[17] Jayathirtha, G., Fields, D. and Kafai, Y. 2020. Pair

Debugging of Electronic Textiles Projects: Analyzing Think-

Aloud Protocols for High School Students’ Strategies and

Practices While Problem Solving. Procedings of the 14th

International Conference of the Learning Sciences (ICLS)

(Nashville, Tennessee, Jun. 2020), 1047–1054.

[18] Jemmali, C., Kleinman, E., Bunian, S., Almeda,

M.V., Rowe, E. and Seif El-Nasr, M. 2020. MAADS: Mixed-

Methods Approach for the Analysis of Debugging

Sequences of Beginner Programmers. Proceedings of the

51st ACM Technical Symposium on Computer Science

Education (Portland OR USA, Feb. 2020), 86–92.

[19] Katz, I.R. and Anderson, J.R. 1987. Debugging: An

Analysis of Bug-Location Strategies. Human–Computer

Interaction. 3, 4 (Dec. 1987), 351–399.

DOI:https://doi.org/10.1207/s15327051hci0304_2.

[20] Kessler, C.M. and Anderson, J.R. 1986. A model of

novice debugging in LISP. Papers presented at the first

workshop on empirical studies of programmers on Empirical

studies of programmers (USA, Jun. 1986), 198–212.

[21] Kinnebrew, J.S., Mack, D.L.C. and Biswas, G.

Mining Temporally-Interesting Learning Behavior Patterns.

Proceedings of the 6th International Conference on

Educational Data Mining (EDM 2013) (Memphis, TN, USA),

252–255.

[22] Liu, C.-C., Cheng, Y.-B. and Huang, C.-W. 2011. The

effect of simulation games on the learning of computational

problem solving. Computers & Education. 57, 3 (Nov. 2011),

1907–1918.

DOI:https://doi.org/10.1016/j.compedu.2011.04.002.

[23] Liu, Q. and Paquette, L. 2023. Using submission

log data to investigate novice programmers’ employment of

debugging strategies. Proceedings of the 13th International

Learning Analytics and Knowledge Conference (Arlington TX

USA, Mar. 2023), 637–643.

[24] Liu, Z., Zhi, R., Hicks, A. and Barnes, T. 2017.

Understanding problem solving behavior of 6–8 graders in a

debugging game. Computer Science Education. 27, 1 (Jan.

2017), 1–29.

DOI:https://doi.org/10.1080/08993408.2017.1308651.

[25] Lye, S.Y. and Koh, J.H.L. 2014. Review on teaching

and learning of computational thinking through

programming: What is next for K-12? Computers in Human

Behavior. 41, (Dec. 2014), 51–61.

DOI:https://doi.org/10.1016/j.chb.2014.09.012.

[26] McCauley, R., Fitzgerald, S., Lewandowski, G.,

Murphy, L., Simon, B., Thomas, L. and Zander, C. 2008.

Debugging: a review of the literature from an educational

perspective. Computer Science Education. 18, 2 (Jun. 2008),

67–92. DOI:https://doi.org/10.1080/08993400802114581.

[27] Merceron, A. and Yacef, K. 2008. Interestingness

Measures for Association Rules in Educational Data.

Proceedings of 1st International Conference on Educational

Data Mining (Montréal, Québec, Canada, Jun. 2008), 57–66.

[28] Murphy, L., Lewandowski, G., McCauley, R.,

Simon, B., Thomas, L. and Zander, C. 2008. Debugging: the

good, the bad, and the quirky -- a qualitative analysis of

novices’ strategies. ACM SIGCSE Bulletin. 40, 1 (Mar. 2008),

163–167. DOI:https://doi.org/10.1145/1352322.1352191.

[29] Pellas, N. and Vosinakis, S. 2018. The effect of

simulation games on learning computer programming: A

comparative study on high school students’ learning

performance by assessing computational problem-solving

strategies. Education and Information Technologies. 23, 6

(Nov. 2018), 2423–2452.

DOI:https://doi.org/10.1007/s10639-018-9724-4.

[30] Perkins, D.N. and Martin, F. 1986. Fragile

knowledge and neglected strategies in novice

programmers. Papers presented at the first workshop on

empirical studies of programmers on Empirical studies of

programmers (USA, Jun. 1986), 213–229.

[31] Pinto, J.D., Liu, Q., Paquette, L., Zhang, Y. and Fan,

A.X. 2023. Investigating the Relationship Between

Programming Experience and Debugging Behaviors in an

Introductory Computer Science Course. Advances in

Quantitative Ethnography (Cham, 2023), 125–139.

[32] Polya, G. 1957. How to Solve It: A New Aspect of

Mathematical Method. Princeton University Press.

[33] Quinlan, J.R. 1986. Induction of decision trees.

Machine Learning. 1, 1 (Mar. 1986), 81–106.

DOI:https://doi.org/10.1007/BF00116251.

[34] Zaki, M.J. 2000. Sequence mining in categorical

domains: incorporating constraints. Proceedings of the 9th

international conference on Information and knowledge

management (McLean Virginia USA, Nov. 2000), 422–429.

[35] Zhang, Y. and Paquette, L. 2020. An effect-size-

based temporal interestingness metric for sequential

pattern mining. Proceedings of The 13th International

Conference on Educational Data Mining (2020), 720–724.

[36] Zhou, Y., Liu, Q., Yang, S. and Alawini, A. 2023.

Identifying Collaborative Problem-Solving Behaviors Using

Sequential Pattern Mining. Proceedings of 2023 ASEE

Annual Conference & Exposition (Jun. 2023).

