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Debugging is a challenging task for novice programmers that requires diverse skills as well as iterative 
practice to find and fix the cause of errors. In this study, we analyzed submission log data to investigate the 
temporal aspects of the debugging process.   We extracted debugging episodes and interpretable debugging 
constituents – components of experts’ interpretations of debugging behaviors – from the data collected 
from an undergraduate CS1 course. We first applied sequential pattern mining and state transition metrics 
to examine how debugging constituents occur one after another. We further applied temporal 
interestingness techniques to reveal the occurrence of debugging constituents within each episode and 
compared the difference in constituent patterns across the semester. We further investigated how the 
sequential ordering of debugging constituents changed over the course of the semester. Our findings 
suggest that novice programmers exhibit frequent printing and submission undo no matter in which phase 
of the semester. As they proceeded toward the end of the semester, they employed more repetitive printing 
to understand the problem and long planning before implementation. 
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1. Introduction 

Debugging is a computational practice in programming that 

occurs when programmers test their code to find out 

exactly where the error is and how to fix it [26]. It is a 

challenging task for novice programmers to learn as they 

usually do not yet possess a comprehensive knowledge of 

programming [4] and the strategic skills to gain control of 

the programming process [30]. Different from general 

programming skills, debugging focuses on a systematic 

search for the source of a bug and its removal [19, 20], 

which is referred to as troubleshooting or problem-solving. 

As one of the essential problem-solving skills in 

programming [13], debugging calls for individual 

pedagogies [28]. Studies examining the debugging process 

show how learning debugging is especially useful to equip 

students with the necessary problem-solving skills to be 

successful at programming and that those skills can further 

transfer to non-programming domains [25].  

Although debugging is an important and challenging 

topic in CS education, existing log data analyses have shown 

limited interpretation of the debugging strategies students 

might be using in the process. Researchers have used 

aggregated features to describe changes between 
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submissions [2, 36], but their findings are not fine-grained 

enough to reveal the inner process of debugging. Others 

have applied sequential analysis methods to code 

sequences [5, 15]. The results showed the potential of such 

methods to reveal latent patterns of students’ debugging 

behaviors, but their interpretations are often intrinsic and 

do not explicitly connect with instructors’ or students’ 

thinking, limiting the actionable implications that can be 

drawn for them. 

In this study, we combined sequence analysis and 

interpretable debugging features to understand students’ 

debugging process with log data. We first extracted 

debugging episodes and indicators of debugging actions, 

that we called constituents, from submission log data 

collected in an introduction to computer science (CS1) 

course. We applied sequential pattern mining, calculated 

transition metrics of constituent patterns, and compared 

temporal features across semester. Following the definition 

in [26] that debugging focuses more on how students fix 

logic and semantic errors in programs, this study is more 

specifically interested in fixing test errors (rather than 

syntax or checkstyle errors). In this regard, we answer the 

following research questions: 
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RQ1: How can sequence analysis help to understand 

novice programmers’ debugging process? 

RQ2: How does novice programmers’ debugging 

process change across different phases of the 

semester? 

2. Related work 

2.1. Log data analysis of debugging 

Previous work has looked at programming submission log 

data through different perspectives, mainly two types of 

information are generally extracted: error messages and 

code editions. For example, [2] focused on the changes of 

syntax and semantic errors in submissions to distinguish 

good and bad debuggers. [11] used students’ code content 

and mapped it to correct solutions to measure their 

progress and detect struggling moment. 

Among the submission log analysis of debugging, there 

has been a growing interest in studying its temporal 

features through data-driven methods. Studies have 

identified different sequential patterns of debugging 

behaviors, as the basis to reveal how different strategies 

may manifest themselves through the data. The most 

popular method is sequential pattern mining. For example, 

[22] conducted a sequential pattern analysis to obtain 

transition diagrams of programming behaviors between 

students in flow, anxiety, and boredom. Similar transitions 

have been identified to predict students’ final performance 

[15], reveal collaborative problem-solving process [36], 

distinguish programming styles among students [6], or be 

further summarized as interpretable pathways such as 

exploring, tinkering, and refining [5]. Other temporal 

methods have also been explored to analyze the dynamic 

process of programming. Blikstein et al. [6] applied dynamic 

time warping to measure the distance between students’ 

code update sequences in their first and last assignments. 

The distance correlated with students’ assignment 

performance and exam grades, indicating students with 

higher grades would also change their programming 

patterns the most. Jemmali et al. [18] visualized the state 

graph and sequence graph of programmers’ error states 

and actions on each submission to distinguish students’ 

debugging techniques. 

Although many studies have focused on sequential 

analysis of debugging on submission level, their input 

features were mostly simple error or code-editing 

frequency. For example, in [18] only four levels of code 

modifications (no, small, medium, and large change) were 

included to describe students’ actions. The nuance between 

different types of code modifications was ignored, such as 

whether they modified printing, comments, or common 

code lines, whether they added, deleted, or modified code 

lines, and how long the submission intervals were. The 

omission of such details limited the interpretations of the 

debugging strategies students might be employing. 

2.2. Towards interpretable debugging 
process analysis 

Besides data-driven approaches, some researchers 

investigated debugging process in a more meaning-driven 

way. They first regarded debugging as a problem-solving 

process and constructed interpretable features with related 

theories. For example, Liu et al. [24] used the five-stage 

problem-solving model [8] (identifying the problem, 

representing the problem, selecting a strategy, 

implementing the strategy, and evaluating solutions) to 

conceptualize the possible programming barriers students 

may encounter. They then proposed corresponding 

measurable behaviors, such as editing code line where the 

program stopped instead of where the real issue was, and 

manually labeled these behaviors with snapshots of 

students’ code in a debugging game. 

Most of the interpretable debugging analysis required a 

coding scheme of students’ behaviors to start with. Chao [9] 

proposed quantitative indicators of problem-solving 

process, such as nested iteration and problem 

decomposition, by counting the control flow blocks used by 

students in a robot-building game. Pellas and Vosinakis [29] 

coded students’ think-aloud transcriptions with the same 

coding scheme to understand the effect of simulation 

games on programming. Liu et al. [22] applied a different 

perspective with five types of problem-solving behaviors 

including solution development, experiment, solution 

review, solution reuse, and reading the tutorial. Jayathirtha 

et al. [17] coded videos of pair debugging into four problem-

solving strategies, forward reasoning to isolate the problem, 

backward reasoning to isolate the problem, hypothesis & 

solution generation, and verification & testing. 

To bring interpretation to the features, many studies 

need manual coding of submissions. Although these 

features brought much insight on how and why students 

debug in different pathways, they are challenging to apply 

to a larger scale dataset. In this study, we aim to combine 

both data-driven sequence analysis approach and 

interpretable debugging features, as a way to move towards 

more interpretable debugging process analysis. 

3. Methodology 

3.1. Dataset 

Submission log data was collected from a CS1 course where 

undergraduates learned to program in Java. Throughout the 

semester, a homework question was assigned to students 

almost every day and students had to finish it by making 

submissions on an auto-grading system before midnight 

(students were allowed an unlimited number of 

submissions to achieve the correct answer). For each 

submission, the system would first check if there were any 

checkstyle (the code is incorrectly formatted according to 

the course’s guidelines) or syntax (the submission cannot be 

executed because it contains incorrect Java code) errors in 

the code. If there were, the system would display error 

messages without executing the code. Otherwise, students 

would receive test errors (the submission was executed but 



was not a valid solution) specifying the error type and error 

details such as input and expected output. We collected 

submission log data from the Fall 2019 semester including 

the code content, error messages, and timestamps. In total, 

707 students (31% female, 28% majored in engineering) 

solved 65 homework questions, with an average of 8.6 

submissions per student per question. Furthermore, the 

course was naturally divided into three phases (t1, t2, t3) 

separated by midterm exams.  
 

3.2. Debugging episodes and debugging 
constituents 

3.2.1. Extracting debugging episode 

 

Since the focus of our study was to investigate how students 

debug test errors, we defined a debugging episode as our 

unit of analysis. When solving a problem, each submission 

usually contains one or multiple errors until the final 

solution. We first discarded submissions reporting syntax or 

checkstyle errors. Following this, the submissions were 

further segmented based on the nature of their test errors 

(note that the platform only reported one test error at a 

time). We extracted all subsequent submissions with the 

same type of test error as one debugging episode. 

Therefore, a debugging episode represented a submission 

sequence starting from the first appearance of a test error 

until the student either submitted code that solved the 

problem or submitted code that resulted in a different test 

error. A more detailed illustration of the procedure used to 

extract debugging episodes from the log data can be found 

in [23]. 

Debugging episodes ranged in length from short 

episodes (3 submissions) where the student resolved an 

error quickly to very long (62 submissions). To focus our 

analyses on more representative episodes of debugging 

behaviors, shorter episodes – where students solve the 

problem quickly without needing extensive debugging – and 

longer episodes – where students are struggling for an 

extended period of time – were excluded. More specifically, 

only debugging episodes that were within the 25 to 75 

percentiles of episode length (4-9 submissions) were 

retained. 

In addition, we excluded episodes collected from 

questions that required printing an output as part of their 

solution. This was done because printing can also be used 

by students to trace and identify the source of an error. To 

avoid ambiguity about whether a print statement was used 

as part of a solution or as a tool for debugging, we excluded 

such questions from our analyses. The excluded questions 

mainly appeared in the first third of the semester (t1) before 

students learned about functions and return statements. 

After preprocessing the data, 3,290 debugging episodes 

were obtained. 

3.2.2. Eliciting debugging constituents 

In order to obtain interpretable features describing the 

students’ debugging behaviors, we conducted interviews 

with two programming experts. Both experts were 

computer science graduate students researching CS 

education who also had teaching experience and knew 

students’ common misconceptions and debugging 

strategies. A tool was built to allow experts to visualize 

students’ submissions (Figure 1), with the top showing 

questions, left showing the previous submission and errors, 

and right showing the next submission and errors. Changes 

Figure 1: The screenshot of interview tool for visualizing submissions. 



between the two submissions are highlighted in colors. 

Experts were presented with the same set of pre-selected 

submissions and were asked to think aloud while 

interpreting the students’ debugging. We recorded 6 and 10 

hours of interview for each expert respectively. A flowchart 

representing their interpreting approach was then 

constructed by iteratively identifying missing components 

from the process and reviewing the interview recordings. 

More details about the constituents and the process used 

to elicit them can be found in [31]. 

In total, thirty-seven constituents were obtained from 

expert knowledge about fixing checkstyle, syntax, and test 

errors, but not all constituents could be computed from the 

submission log data. Therefore, we calculated nine 

constituents that are relevant to debugging test errors for 

each submission, as shown in Table 1. Constituents are 

binary features that indicate whether a submission meets a 

given criterion. They are not necessarily exclusive to each 

other, and it is possible for a submission to contain multiple 

constituents. For some constituents such as massive 

deletion or change, experts did not explicitly say how much 

is massive. We checked data distribution and set 95 

percentiles in numbers of lines deleted or changed as the 

threshold. 

Table 1 
Debugging constituents elicited from expert interviews 

Constituents Description 

submission undo 
Returning the code to a previous 

state 

long interval 
Submitting code after a break of 2 

or more hours 

change var name Changing the name of variables 

repeated changes 
Making the same change in 

multiple places 

print diff Printing different outputs 

print var Printing the value of variables 

massive deletion 
Deleting more than 4 lines or 30% 

of the code 

massive change 

shorter5 

Changed at least 10 lines or 70% 

of the code in less than 5 minutes 

since the last submission 

massive change 

longer25 

Changed at least 10 lines or 70% 

of the code with more than 25 

minutes since the last submission 

3.3. Sequence analysis approach 

3.3.1. Sequential pattern mining 

Sequential pattern mining (SPM) [1] is a method in 

educational data mining to uncover frequent patterns 

within ordered sequences of student problem-solving 

behaviors. We applied SPM to identify constituents that 

frequently co-occured in a sequential pattern as one of the 

ways to answer RQ1. Specifically, we calculated and ranked 

patterns based on the following three metrics: support, 

confidence and lift. Each metric provides a different 

perspective that can be used to interpret the frequent 

patterns. Support indicates the percentage of all debugging 

episodes that contained a given pattern. Confidence 

describes the likelihood of observing the second constituent 

in a sequence given the first constituent. For a transition 

X→Y, a confidence of 0.5 represents that X is followed by Y 

50% of the time. Both support and confidence are 

commonly reported SPM metrics used to identify the most 

common sequential patterns. In addition, we computed the 

pattern’s Lift, a measure of pattern interestingness that has 

been argued to be suitable for educational data and easy to 

interpret [27]. Lift shows how many times more likely the 

second constituent in a pattern is to occur given that it is 

preceded by the first constituent, compared to the average 

case. For the transition X→Y, Lift is the ratio between the 

likelihood of observing Y when X is observed and the 

likelihood of observing Y among all transitions. Therefore, a 

Lift value larger than 1 indicates that Y is more likely to be 

observed after X compared to average and that X and Y are 

dependent. The SPM method was conducted using the 

cSPADE algorithm [34] with Python using the pycspade 

package, with a maximum gap of 1 to ensure that 

constituents in the identified patterns occurred in 

consecutive submissions and a minimum support of 0.01 to 

include extreme rare patterns. We initially set the maximum 

length of patterns to be 3 constituents but found length-3 

patterns were mostly repetitive print similar to length-2 

patterns, so we omitted length-3 results. 

3.3.2. Transition metrics 

Beyond metrics commonly calculated in SPM, we also 

considered other transition metrics taking the base rates of 

constituents into account. For example, the transition X→Y 

may appear to be unusually frequent or infrequent simply 

because Y is especially common or uncommon. In particular, 

confidence and lift are metrics that can be influenced by 

such differences in occurrence [7]. Thus, we complemented 

our SPM analysis by computing two additional transition 

likelihood metrics, D’Mello’s L [10] and lag sequential 

analysis (LSA; [12]). The values of  L range from negative 

infinite to 1, with 0 indicating a transition occurring as often 

as in random-ordered data and higher positive values 

indicating a stronger dependence between two consecutive 

constituents. LSA produces a z score where an absolute 

value larger than 1.96 implies that the transition between 

two constituents occurs significantly more or less than in 

random-ordered data. We used a modified version of the 

code in [7] to calculate the two metrics. 

To be noted that since there can be multiple 

constituents in one submission, our interpretation of the 

transitions is slightly different from previous sequential 

analysis studies such as [7]. In common cases, there will be 

only one state at each timepoint, while for our study, 

multiple constituents can be identified in the same 

submission. Therefore, when discussing transitions 

between constituents such as X→Y, we refer to the 

situations where Y occurs following X, without constraining 

on other constituents that might occur in the same 

submission. 



To compare the debugging process across different 

phases of the semester, we conducted ANOVA to compare 

the L values of constituent patterns in t1, t2, and t3. 

3.3.3. Temporal interestingness 

Temporal interestingness is a metric to describe variations 

in a pattern occurrence across time [21]. This technique first 

segments each of the students’ behavioral sequences into 

N ordered bins with equal sizes and counts the occurrence 

of each pattern in each bin. Then, it calculates the 

information gain (IG) [33] of pattern occurrences across 

bins, which measures the extent to which knowing the 

pattern occurrences informs us about its bin number.  Later, 

[35] proposed an effect-size-based calculation for temporal 

interestingness by conducting a one-way repeated ANOVA 

taking the occurrences as the dependent variable and the 

bin number as the independent within-subject variable. This 

method returns each pattern’s adjusted p value and smaller 

than .05 indicating significantly interesting. 

We segmented debugging episodes into 4 bins to 

ensure there is at least one submission per bin. We then 

calculated the occurrences of each constituent in each bin, 

identified significantly interesting constituents, and 

visualized them in heatmaps. 

4. Results 

4.1. RQ1: sequence analysis of debugging 

We calculated the support of each constituent to gain a 

general idea of their occurrences. As shown in Table 2. 

massive deletion was the most frequent constituent, 

occurring 1,405 times and occurring at least once in 39% of 

the episodes. The following frequent constituents are long 

interval, print var, and print diff. The least frequent 

constituent is massive change shorter5 that occurred at 

least once in only 15% of the episodes. 

Table 2 
The support of debugging constituents 

Constituents Occurrences Support 

massive deletion 1405 0.39 

long interval 949 0.26 

print var 939 0.26 

print diff 704 0.19 

repeated changes 681 0.19 

massive change longer25 660 0.18 

change var name 590 0.16 

massive change shorter5 535 0.15 

 

To investigate the transitions between constituents, we 

first applied SPM to extract frequent patterns of 

consecutive constituents and calculated their transition 

metrics. No z-score computed using LSA had an absolute 

value larger than 1.96. As such, we only report the 

confidence, lift, support, and L values of constituent 

transitions. Table 3 shows the patterns with the 10 highest 

support. Patterns with the highest supports are repetitions 

between print var and print diff. Their lifts were also larger 

than one, indicating these transitions were more frequent 

compared to average cases. The following patterns 

occurred much less frequently, with supports of 0.06 or 

lower. 

4.2. RQ2: debugging process across 
semester phases 

To answer RQ2, we first compared how debugging 

constituents distributed across time in three phases of the 

semester, t1, t2, and t3. As shown in Figure 2, we visualized 

the occurrence of each constituent in each bin with a single-

dimensional heatmap. The value in each bin is its 

percentage of the total occurrences for that constituent. 

Deep blue refers to the highest percentage and white refers 

to zero percentage. We also applied temporal 

interestingness techniques to identify constituents whose 

occurrences significantly varied across time and labeled 

them with * before each heatmap. There was one 

constituent in t1 that was significantly interesting, five in t2, 

and six in t3. 

Table 3 
The confidence, lift and support, and L of constituent 

patterns 

Patterns Confidence Lift Support L 

print var → 

print var 
0.85 3.30 0.22 0.48 

print diff → 

print diff 
0.86 4.45 0.17 0.58 

print var → 

print diff 
0.60 3.09 0.15 0.24 

print diff → 

print var 
0.79 3.06 0.15 0.40 

print diff → 

massive deletion 
0.29 0.76 0.06 0.04 

long interval → 

massive deletion 
0.10 0.27 0.03 -0.02 

massive change 

longer25 → 

massive deletion 

0.13 0.33 0.02 -0.10 

print diff → 

long interval 
0.11 0.42 0.02 0.005 

print var → 

change var name 
0.08 0.51 0.02 0.001 

print var → 

massive change 

longer25 

0.08 0.45 0.02 -0.004 

 

For many constituents, their occurrence distributions 

were similar across t1, t2, and t3. submission undo mostly 

occurred in the first three bins, print var reached its peak in 

the second and third bins, massive deletion and massive 

change shorter5 occurred more in the last two bins. In terms 

of distribution difference, t2 and t3 were more similar to 



each other. print diff occurred more in the last three bins 

for both t2 and t3, but in t1 it occurred more in the first bin. 

long interval was mostly in the first bin and decreased in the 

second and third bin in t1, but it was distributed more 

equally in the first three bins in t2 and t3. change var name 

was most frequent in the last bin in t1, but shifted in the 

third bin in t2, and first bin in t1. massive change longer25 

was most frequent in the first bin. repeated changes 

occurred more in the first bin in t1, but more in the last bin 

in t2 and t3. 

Table 4 
The L of constituent patterns for t1, t2, and t3 

Patterns t1 t2 t3 p 

print var → print diff -0.06 0.19 0.20 0.00 

submission undo → 

massive change 

longer25 

0.00 0.00 0.04 0.01 

print diff → print var -0.16 0.37 0.29 0.01 

submission undo → 

print diff 
0.00 0.00 -0.07 0.06 

massive change 

longer25 → change 

var name 

0.00 -0.06 -0.04 0.29 

change var name → 

print var 
0.07 -0.06 -0.06 0.40 

print var → 

submission undo 
0.03 0.00 0.00 0.44 

long interval → print 

var 
0.01 -0.03 -0.04 0.55 

print diff → massive 

change longer25 
-0.01 0.00 0.00 0.69 

long interval → 

change var name 
0.02 0.00 0.00 0.70 

 

Distribution heatmaps showed how single constituent 

can occur differently across semester. We were also 

interested in how constituent patterns might change as 

students gain more programming experience throughout 

the semester. We chose to compare L values between t1, 

t2, and t3 as L considers base rates and is easy to interpret 

(with positive value indicating that constituents are more 

dependent than randomness). The average L values in three 

phases and p values of ANOVA are shown in Table 4. Three 

patterns were found to be significantly different across the 

three phases, print var → print diff, submission undo → 

massive change longer25, and print diff → print var. As the 

semester proceeded, they generally occurred more 

frequently in t2 and t3 than t1. 

5. Discussion 

The goal of this study was to combine sequence analysis and 

interpretable debugging features to investigate novice 

programmers’ debugging process by answering the 

following two research questions. 

5.1. RQ1: sequence analysis of debugging 

Our first research question was “How can sequence analysis 

help to understand novice programmers’ debugging 

process?” To answer this question, we applied both SPM 

and transition metrics to calculate support, confidence, lift, 

D’Mello’s L, and LSA to rank constituent patterns.  We found 

that constituents did not occur frequently across episodes, 

with the highest one occurring only in 39% of the episodes. 

These sparse occurrences lead to the relatively low support 

of constituent patterns.  However, lift and L values showed 

that printing constituents are mostly dependent on each 

other, even when accounting for their base rate. Since 

printing for tracing usually can help with understanding the 

problem and locating the bug, this suggests that novices 

may require multiple submissions to navigate the early 

stages of problem-solving before implementation. Such 

findings echo the previous work where debugging appeared 

more in an iterative manner for both expert and novice 

programmers [3, 17]. 

5.2. RQ2: debugging process across 
semester phases 

Our second research question was “How does novice 

programmers’ debugging process change across different 

phases of the semester?” We first identified temporal 

interesting constituents and visualized their occurrences 

within each episode using heatmaps. We found that 

similarly for the three phases, submission undo commonly 

covered the beginning and middle of an episode. Printing 

reached its peak in the middle of an episode, while the 

peaks of massive change shorter5 and massive deletion 

were at the end. This was generally reasonable as it may 

take a while before students started tracing to identify and 

locate the real issue in the code. And in the end, they would 

Figure 2: The heatmaps of constituent occurrences. 



implement more through faster massive change or massive 

deletion. What was different is that long interval occurred 

more at the beginning in t1. It may suggest that students 

took longer to get used to the auto-grading system when 

starting the course. Also, questions in t2 and t3 can be more 

difficult and require more thinking not just at the beginning 

of debugging. change var name kind of shifted mostly from 

the end to the middle and then the beginning across 

semester, indicating students may gain more experience in 

understanding and representing the code logic throughout 

the semester. repeated changes shifted more from the 

beginning of an episode to the end, which aligned with the 

expectation as it is one of the ways to fix bugs. 

We then compared L values of constituent patterns 

between three phases. Results showed t2 and t3 included 

more patterns that are related to the early stages of 

problem-solving, such as print var → print diff, and 

transitioning to long planning like submission undo → 

massive change longer25. This finding was unexpected as 

expertise in debugging was found to be able to be improved 

through practice [31], so we assumed that students should 

be more efficient in understanding the problem and fixing 

the bug as the semester proceeded. However, previous 

studies suggested that experts can spend more time at the 

initial stages of problem-solving [24] and planning is not 

determinant to programming success [6]. It is possible that, 

as the questions become more complex and longer, 

students needed to engage in more extensive preparation 

and tended to be more cautious before implementing a 

strategy. Therefore, intensive understanding of the code or 

transitions into long planning may not necessarily be a sign 

of unproductive debugging. Students may strategically 

adjust their behaviors considering question difficulty, their 

debugging experience, and many other factors. 

6. Conclusion and limitation 

In this study, we combined sequence analysis and 

interpretable debugging constituents to understand novice 

programmers’ debugging process. We identified frequent 

constituent patterns by conducting SPM analysis and 

calculating transition metrics. To compare students’ 

debugging process across semester, we applied temporal 

interestingness techniques and visualized constituent 

occurrences within episodes. We also compared L values 

between the three phases. We found that it was common 

for students to transit between different types of printing 

actions, an early stage in problem-solving to identify and 

understand the problem. It was also common to undo their 

submission across semester, as a way to restart from a 

previous point when debugging. Comparing what was 

different in the three phases, we found extensive printing 

and longer planning occurred more as semester proceeded. 

A potential avenue for future research is to extend this 

analysis by comparing various sequential methods on 

programming submissions. Clustering of sequences could 

be applied to first filter out episodes with less meaningful 

debugging behaviors. Other sequential methods, such as 

process mining, could also be applied to obtain various 

outputs other than transition ranking, as a way to obtain a 

more holistic view of the debugging process. Besides, more 

quantitative features can be added to the current set of 

constituents to capture additional debugging behaviors. In 

addition, students’ reflections on their debugging process 

could be collected through think-aloud or interviews, as 

supplementary evidence to interpret their debugging 

strategies. 

Some limitations of this study need to be considered. 

First, occurrence of the debugging constituents was low 

overall, limiting further sequential analysis of constituent 

patterns. This could be due to the introductory level of the 

course where we collected the submission log data. Unlike 

previous studies where programming questions were 

designed for specific research goals [14], all the homework 

questions in this study were self-contained problems 

designed to be successfully finished within one day of their 

assignment. These questions generally needed shorter code 

to be solved successfully and less effort to debug. Another 

reason could be the debugging constituents highly relied on 

experts’ experience and can be somewhat insufficient to 

describe all the possible debugging behaviors. Second, 

there were no indications of students’ behaviors outside of 

the homework system. Students might search online for 

information about their errors, ask for help or use paper to 

trace the execution of their code to identify the problem, 

but submission log data cannot capture such behaviors. 

Third, more sequential analysis methods can be applied in 

combination with current study to deepen our 

understanding of debugging. For example, clustering of 

sequences can be applied to help filter out episodes that 

contain fewer debugging behaviors, so that constituents 

would not be too sparse to hinder the following analysis. In 

addition, SPM and transition metrics can only identify short 

patterns of debugging activities and do not support 

identifying a path starting from the beginning of an episode 

to its end. Methods such as process mining may be 

complementary to the ones presented in this study. 

This study is funded by National Science Foundation Award 

#1942962. 
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