
Inroads into Autonomous Network Defence using
Explained Reinforcement Learning
Myles Foley1, Mia Wang1, Zoe M2, Chris Hicks2 and Vasilios Mavroudis2

1Imperial College London
2The Alan Turing Institute

Abstract
Computer network defence is a complicated task that has necessitated a high degree of human involve-
ment. However, with recent advancements in machine learning, fully autonomous network defence
is becoming increasingly plausible. This paper introduces an end-to-end methodology for studying
attack strategies, designing defence agents and explaining their operation. First, using state diagrams,
we visualise adversarial behaviour to gain insight about potential points of intervention and inform the
design of our defensive models. We opt to use a set of deep reinforcement learning agents trained on
different parts of the task and organised in a shallow hierarchy. Our evaluation shows that the resulting
design achieves a substantial performance improvement compared to prior work. Finally, to better
investigate the decision-making process of our agents, we complete our analysis with a feature ablation
and importance study.

Keywords
Reinforcement Learning, Autonomous Cyber Defence, Deep Learning, Network Defence

1. Introduction

Computer network security is characterised by an asymmetry as the defender needs to ensure
constant protection of the network’s components, while the adversary can opportunistically
single-out weak entry points. Such asymmetries have been identified and addressed in many
other areas of cyber security. For example, cryptographic protocols (e.g., TLS) thwart denial
of service attacks by ensuring that the prover commits enough computation cycles before
the verifier does so. In network defence, however, the problem remains open as the task is
complex [1] and involves a wide array of both attack vectors and mitigation tools. Thus, network
defence is currently handled primary by human experts which entails high operational costs.

RL, and particularly deep RL (DRL), excels in interactive tasks that cannot easily be solved
using analytical solutions. Human and even super-human levels of performance have been
achieved in a range of complex tasks including classic board games such as chess and Go [2, 3],
video games ranging from classic Atari [4, 5] to multi-player real-time strategy games [6],
autonomous driving [7], and robotics [8]. Recently, DRL has also been successfully applied to

CAMLIS’22: Conference on Applied Machine Learning in Information Security (CAMLIS), October 20–21, 2022,
Arlington, VA
$ m.foley20@imperial.ac.uk (M. Foley); yixuan.wang18@imperial.ac.uk (M. Wang); zm@turing.ac.uk (Z. M);
c.hicks@turing.ac.uk (C. Hicks); c.hicks@turing.ac.uk (V. Mavroudis)
� 0000-0002-0877-7063 (M. Foley); 0000-0002-0877-7063 (M. Wang)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:m.foley20@imperial.ac.uk
mailto:yixuan.wang18@imperial.ac.uk
mailto:zm@turing.ac.uk
mailto:c.hicks@turing.ac.uk
mailto:c.hicks@turing.ac.uk
https://orcid.org/0000-0002-0877-7063
https://orcid.org/0000-0002-0877-7063
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


autonomous network defence [9], a highly interactive task where the defender proactively mon-
itors the state of the network, identifies abnormalities, and acts to remediate them. Commonly,
this takes the form of a shallow hierarchy of specialised subagents coordinated by a controller,
any combination of these being autonomous.

To date however, there has been limited consideration for the explainability of these models.
Explainable AI has, in domains such as natural language processing and computer vision [10],
proven useful not only for end users but also experts and developers of AI systems. DRL models
are particularly challenging to explain because the neural networks which represent their agent
policies are not readily understandable by humans. Nonetheless, the ability to explain and
understand the actions of an autonomous defensive agent is critical. This work investigates,
and answers in the affirmative, whether explainable RL (XRL) models and environments can
improve autonomous defensive capabilities and aid in their development.

1.0.1. Contributions

Our main contributions are:

• We develop methodologies for visualising (i.e., explaining) attacker functionality in the
CybORG cyber environment. Our methodology highlights previously undocumented
differences in the adversary models and motivates two new controller architectures with
improved classification accuracy.

• We present the full details of our new controller and specialised subagent models. We
then evaluate them against two classes of adversary in the CybORG environment realising
substantial performance improvements.

• We perform a feature ablation and importance study to understand the most influential
elements in the observation space and explain our model outputs.

2. RL Background

In this section we discuss the key RL techniques that are relevant for the rest of the paper.

2.1. Deep RL Algorithms

2.1.1. PPO

Proximal Policy Optimisation (PPO) is an efficient policy gradient method [5] for DRL. It has
been shown to outperform other popular algorithms such as A3C [2], achieving super-human
performance in a variety of complex tasks including 49 separate ATARI arcade games [5].
Despite its effectiveness in very complex environments [11], it has seen only limited use in
security settings [12, 13],

PPO uses a policy 𝜋𝜃 (𝜃 ∈ R) with an objective function that is defined by the total reward
𝐽(𝜃) = E𝜋0 [

∑︀∞
𝑡=0 𝛾

𝑡𝑟𝑡]. By formulating the objective function in this way actor-critic archi-
tectures can be used: the actor selects an action which is evaluated by the critic. The policy
gradient is then computed:

▽𝜃 𝐽(𝜃) = E𝜋0 [▽𝜃 log 𝜋𝜃(𝑠, 𝑎)𝐴𝜋𝜃
(𝑠)] (1)



𝐴𝜋𝜃
(𝑠) is the advantage of taking action 𝑎 instead of the average action as computed by the

policy 𝜋𝜃 (𝑄𝜋𝜃
(𝑠, 𝑎)𝑥− 𝑉𝜋𝜃

(𝑠)) [14].
During gradient descent, PPO introduces a clipping function to both prevent reaching local

optima during large updates and avoid smaller updates that significantly increase the length of
training.

2.2. Curious Exploration

Curiosity is a technique that enables agents to explore their environment based on an intrinsic
reward signal not provided by the environment [15]. Such a signal is particularly useful in the
absence of a continual extrinsic reward (e.g., the running score found in some games).Pathak et al.
[15] introduce the Intrinsic Curiosity Module (ICM), a semi-supervised technique in which agents
choose actions based on the uncertainty in the outcome of each action, intrinsically motivating
the exploration of unknown states. ICM also ensures that agents are only incentivised to reach
states that are impacted by their actions, avoiding those which are inherently unpredictable.

2.3. Explainable RL

Explainable RL (XRL), a fledgling sub-field of explainable AI, is the study of tools and methods
which enhance human understanding of the actions taken by autonomous agents. A recent
and thorough review of XRL is provided by Heuillet at al. [16] and separately by Puiutta and
Veith [17]. XRL methods are commonly divided between those which are intrinsic, sometimes
called transparent, and those which are post-hoc. Intrinsic XRL models are inherently inter-
pretable and offer explainability at the time of training. In contrast, post-hoc explainability
occurs after training; often by creating a second, simpler model to provide explanations. In DRL,
learned policies are represented by neural networks making them difficult to interpret. Post-hoc
explainability allows the performance advantages of DRL [3] to be retained whilst facilitating
human understanding of autonomous decision making. Explainability is not limited to users
and experts affected by the decisions of models but, as in this work, is a valuable researcher’s
aid in developing more efficient and higher-performance models.

3. Network Simulation Environment

We use the CybORG environment [18] which simulates the computer network of a manufac-
turing plant, as shown in Figure 1. The network consists of five user hosts (Subnet 1), three
enterprise servers (Subnet 21), three operational hosts and the operational server (Subnet 3). Each
host exposes a number of network services that other hosts can connect to, and which may
have exploitable vulnerabilities. However, due to the network’s firewalls hosts in Subnet 1
cannot directly connect to machines in Subnet 3, and the operational server is accessible only
through the operational hosts. The liveness of the operational server has a direct impact on
the manufacturing and is considered critical. CybORG assumes two players, a defender and an
adversary, who interact with the turn based environment using the actions available to them.

1Subnet 2 also includes the defender’s machine.



Subnet 1 Subnet 2 Subnet 3

Operational ServerEnterprise Servers

User Hosts

Defensive Agent

Operational Hosts

Figure 1: The CybORG environment showing the three subnets and their corresponding hosts and
firewalls.

A common drawback of simulated environments in RL is the reality gap which causes agents
not to generalise sufficiently when moved from the simulation (i.e., training) to reality (i.e.,
evaluation). This is due to the simulation not adequately matching reality (e.g., in robotics). To
address this, CybORG provides a network emulator that runs on Amazon Web Services (AWS).
The combination of simulation and emulation ensure that the reality gap is minimised, with the
actions available and their effect on the environment consistent across both [18].

The CybORG environment is host to the ‘Cyber Autonomy Gym for Experimentation’ (CAGE)
challenge [19, 20, 21]. CAGE is an international Kaggle-style competition, providing an in-
creasingly challenging benchmark for the evaluation of autonomous defensive agents. The
competition is currently in its second iteration (CAGE II).

3.1. Action Space

Attackers and defenders have unique action spaces. Defenders perform actions at the host level:
1) Analysing the processes running, 2) Terminating malicious processes, 3) Restoring the host
to a previous (benign) state, and 4) Deploying honeypot2 services. Adversaries can: 1) Scan a
subnet for hosts, 2) Scan the ports of a host, 3) Exploit a service on a port, 4) Escalate their
access, and 5) Disrupt the services on the operational server. Both players have a ‘sleep’ action
to perform no action on the network. Based on the selected actions, the environment updates its
state and updates the agents’ scores. It should be noted that even valid actions may not succeed,
as the CybORG simulator introduces randomness to mimic the behaviour of the emulator (e.g.
a valid node restoration may occasionally fail).

3.2. Observation Space

The defender’s observation space is a vector of 52 bits i.e., 4 bits for every network host. The
first two bits represent whether the host state is unknown (none), scanned or exploited (set
when a decoy is triggered); the last 2 bits specify the access the attacker has on the host machine
(i.e., none, user and administrator).

2Honeypot refers to a decoy system or service that lures attackers by appearing to suffer from known security
vulnerabilities. Honeypots are used to detect malicious actors and study their behaviour.



As in a real network defence situation, neither the defender nor the adversary is omniscient.
Neither agent knows the state of the network or the other’s position with absolute certainty. In
addition, the outcomes of actions are stochastic. For example, from the defender’s perspective,
when an exploit fails it is not possible to precisely determine which exploit was attempted. This
can be crucial information in the instance that an adversary favours a specific exploit strategy.
A better informed defender could strategically place decoys on the targeted service to frustrate
and evade further attempts more effectively.

3.3. Reward Function

Most games include a scoring function that quantifies the performance of the player. Similarly,
CybORG uses a reward function that rewards the adversary and penalises the defender for
every compromised or impacted network host. The reward function is as follows: on each turn,
for every host on which the adversary has admin access, the defender receives a reward of -0.1
and for every server the reward is -1. There is a -10 reward for disruption on the operational
server and a -1 reward when any device is ‘restored’. In the context of RL, the negative reward
for the defensive agent incentivises the agent to take actions that minimise the effect of the
adversary.

3.4. Adversaries

The environment includes two adversaries: the BLineAgent that has prior knowledge (i.e.,
full knowledge of the network’s structure but not its current state), and the MeanderAgent

which does not have any prior information. Both agents share the same objective, to reach
the operational server and, after escalating their privileges, disrupt its services (i.e., impact its
liveness). Due to prior knowledge, the BLineAgent follows an optimal exploitation trajectory
to the operational server. In contrast, the MeanderAgent breadth-wise scans the network for
vulnerable hosts and gradually traverses the subnets. To prevent trivial defence strategies, the
adversary is given user access on a predetermined host (in Subnet 1) that cannot be ‘restored’
to a benign state by the defender.

Controller

BLineAgent Defence

MeanderAgent Defence

Figure 2: Hierarchical structure of the overall defensive model including the specialist subagents.



4. Model

The models that we train have a similar basic structure to those described in [9] that were
trained for CAGE I. In particular, we focus our efforts on training a hierarchy of specialised
defensive agents using DRL. These agents feature a controller agent that, at each time step,
chooses a subagent to perform the action. Each subagent is trained against a specific adversarial
strategy.

As described in Section 3.4, the environment includes two adversaries. The hierarchical
architecture was developed specifically to exploit this. The model supports two expert subagents
that, through the controller, are ‘consulted’ over the course of an episode (Figure 2). This avoids
the performance limitations of a single, more general agent. Given the differences in the two
adversaries, each subagent requires a different neural architecture for best performance. These
are described below.

4.1. MeanderAgent Defence

Our MeanderAgent defensive subagent was trained using the PPO algorithm and utilises a
comparatively deeper neural network including three hidden layers with widths 256, 256, and
52. Full details of the hyperparameters used can be found in Appendix A.

Notably, curiosity did not improve the performance. Since the MeanderAgent is explicitly
designed to explore the network during its attack, the opposing defender is also be forced to
explore more broadly and to employ a wider range of strategies during training. As such, it
learns sufficiently general strategies without the need for curiosity.

4.2. BLineAgent Defence

In contrast to the MeanderAgent, the BLineAgent follows a near-optimal path through the
network. The BLineAgent defence, therefore, is at much greater risk of overfitting during
training. As a result, we found that when training defensive agents against the BLineAgent, it
was beneficial to include the curiosity mechanism. In this paper we consider two subagents
for BLineAgent defence: an Action Knowledge (AK) subagent, and a State Representation (SR)
subagent. Both are trained using PPO with curiosity but make different modifications to the
state space.

The AK subagent modifies each observation by appending a single bit indicating the success
of the previous action. We find that this gives the subagent a better understanding of the
defensive process and results in an improvement in performance.

Secondly the SR agent is identical to the AK subagent, but receives observations of 27 floats
as opposed to 53 bits. In this state space, each host has two floats to represent the features of
activity and compromise. The additional float indicates whether the previous action succeeded.
Although the mean episode reward is comparable to the AK agent’s mean reward, we see a
notable decrease in variance.



(a) (b)

Figure 3: The action-outcome transition graphs of (a) the MeanderAgent and (b) the BLineAgent
adversary in steps 1-4 of the CAGE II CybORG environment.

5. Explaining the Adversary Model

The behaviour of the adversaries is dependent on the network topology and the choice of
defensive actions. In addition, there is stochasticity in both the choice and outcome of actions
across all of these components. Explaining adversarial behaviour proved essential in developing
effective defensive models. To better understand each adversary we, at each time step, record
the choice of action, outcome and the resulting state transition. For consistency across multiple
episodes we resolve IP ranges and addresses to subnets and hostnames, respectively. We
observe that the connectivity (i.e., the edges) of the resulting graph provides a clear signal for
differentiating the two adversaries. Figure 3 shows a subset of the observations, recorded during
the first four steps of adversarial behaviour, in which the BLineAgent and MeanderAgent can
be seen adopting a depth-first and breadth-first approach to attacking the network, respectively.
In Section 6 we present two methods which make use of this observation to more accurately
determine the class of adversarial threat than in prior work [9]. In Appendix B we include the
fully extracted adversary specifications generated by our methodology.

6. Hierarchical RL Architecture

In order to improve the performance of our defensive capability we explore the use of alternative
controller models. We introduce two new types of controller for this task, one heuristic and
another bandit-based.

6.1. Bandit Controller Model

We employ a bandit controller that is based on the multi-armed bandit architecture. The task is
to determine which of the adversaries is currently attacking the network, based on the sequence
of observations. However, using a bandit or bandit-like approach comes with several challenges
in this setting.



In the traditional multi-armed bandit there is no notion of state: an agent takes actions and
then observes the reward. However, in the CybORG environment a unique observation cannot
be used to determine the current adversary. Thus sequences of observations need to be observed
and, due to the stochasticity, there are multiple sequences that can be observed over a given
number of timesteps. A single bandit predicting the adversary will do no better than 50%.

This is analogous to the traditional multi-armed bandit setting. Consider the task of deter-
mining which of two slot machines has the higher payout in a casino (A): the task is trivial after
several attempts. Now consider a second identical casino (B) where the payout of the machines
is flipped. Again, we can find the better machine in B after some error. Finally, consider being
randomly placed in A or B and having only one attempt to select the slot machine with the
highest payout. As we do not know which casino we are in (as everything is identical), the best
possible guess rate is 50%.

We are able to solve this problem by abstracting the observations (which casino you are in)
from the bandit. In this way we define 𝑁𝑏 bandits, one for each of the observations. As such the
observation is unique to the bandit predicting the adversary. While this could also be solved by
a logistic regression model, the Bandit Controller is able to learn with fewer samples, also being
able to determine new adversary behaviours and learn to predict them in an online fashion.

6.1.1. Bandit Controller Implementation

The bandit learning algorithm, shown in Algorithm 1, allows the bandit controller to track
the states that it has previously seen, creating a new bandit for each newly seen state. Each
of these bandits is initialised with 𝑄 values for each of the actions 𝑎 ∈ {0, 1, 2}, where these
correspond to the MeanderAgent, BLineAgent, and no adversary. The 𝑄 values are updated
using reward 𝑅 and the number of times that prediction has been selected, 𝑁(𝐴). We train the
bandit controller for 15,000 timesteps, using 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0.01.

The Bandit Controller has a state different to that of its subagents. Its state is a sliding window
of the last four timesteps from the CybORG environment. As we can see from Figure 3b, the
minimum number of actions before an adversary has user privilege (and the first unambiguous
instance of malicious behaviour) is three. A defensive agent can observe this on the fourth
timestep, hence a prediction from the bandit controller only needs to happen once per episode.
Finally, we use a simple reward function of +1 for a correct prediction, and -1 for an incorrect
prediction.

6.2. Heuristic Controller Model

We also construct a heuristic for predicting the adversary. This approach is possible as we are
able to observe the patterns that the adversaries display in a controlled version of the CybORG
environment. As we can see in Figures 3b and 3a, the BLineAgent and MeanderAgent have
fundamentally different strategies in the first four moves they make. Using this privileged view
of the adversarial behaviour allows for a manual and formal definition of the behaviour, as
defined in Heuristic 1. As in the Bandit Controller we use this heuristic once per episode, on
the fourth timestep, to determine which adversary is attacking the network.



Algorithm 1 Bandit Controller Learning Algorithm.
Initialise the known states, 𝑠𝑛
Initialise set of bandits, 𝐵
Initialise for a = 1 to k:

𝑏𝑎𝑛𝑑𝑖𝑡0.𝑄(𝑎)← 0 // Initialise Q values and action counter for the first
bandit

𝑏𝑎𝑛𝑑𝑖𝑡0.𝑁(𝑎)← 0

Predict(𝑠):
if 𝑠 ̸∈ 𝑠𝑛:

𝑠𝑛← 𝑠
Initialise 𝑏𝑎𝑛𝑑𝑖𝑡𝑠
𝐵 ← 𝑏𝑎𝑛𝑑𝑖𝑡𝑠

𝐴←

{︃
𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝑏𝑎𝑛𝑑𝑖𝑡𝑠.𝑄(𝑎)) with probability 1− 𝜖

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 with probability 𝜖

𝑅← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡(𝐴)
𝑏𝑎𝑛𝑑𝑖𝑡𝑠.𝑁(𝐴)← 𝑏𝑎𝑛𝑑𝑖𝑡𝑠.𝑁(𝐴) + 1
𝑏𝑎𝑛𝑑𝑖𝑡𝑠.𝑄(𝐴)← 𝑏𝑎𝑛𝑑𝑖𝑡𝑠.𝑄(𝐴) + 1

𝑁(𝐴)

[︀
𝑅− 𝑏𝑎𝑛𝑑𝑖𝑡𝑠.𝑄(𝐴)]

Heuristic 1. The scanning of two different hosts on the network within the first four timesteps
indicates the presence of the MeanderAgent adversary. Otherwise, this is either the BLineAgent
adversary or the User agent.

7. Evaluation

In this section we evaluate the performance of our specialist subagents against the two adver-
saries. We further investigate the performance of the controller models. Finally, we evaluate the
full defensive model capable of defending against either adversary. We use the model described
in prior work [9] as a baseline performance measure (baseline for brevity), as this has been
established as state-of-the-art and achieved the best score in CAGE I. Because the scoring
function assigns only penalty points (i.e., 0 is the theoretically maximum score), all the reported
rewards are negative.

7.1. Specialised Sub Agents

7.1.1. Training Results

Figure 4 shows the average reward of each defensive subagent as trained against the BLineAgent
(left column), and the MeanderAgent (right column). The methods of AK and SR achieve peak
rewards against the BLineAgent of -12.227 and -11.465 respectively, both of which are an
improvement over the baseline [9] PPO with curiosity based model, which achieves -13.475.
Furthermore, removing curiosity negatively impacts the reward against the BLineAgent, as
shown clearly in the max reward plot of Figure 4(c)



0M 2M 4M 6M 8M 10M
Timesteps

−70

−60

−50

−40

−30

−20

−10

0

Re
wa

rd

Mean Reward Against BLine Adversary

Base_Bline
PPO_Bline
AK_Bline
SR_Bline

(a)

0M 2M 4M 6M 8M 10M
Timesteps

−70

−60

−50

−40

−30

−20

−10

0

Re
wa

rd

Mean Reward Against Meander Ad ersary

Base_Meander
PPO_Meander
AK_Meander
SR_Meander

(b)

0M 2M 4M 6M 8M 10M
Timesteps

−60

−50

−40

−30

−20

−10

0

10

Re
wa

rd

Max Reward Against BLine Adversary

Base_Bline
PPO_Bline
AK_Bline
SR_Bline

(c)

0M 2M 4M 6M 8M 10M
Timesteps

−60

−50

−40

−30

−20

−10

0

10

Re
wa
rd

Max Reward Against Meander Adversary

Base_Meander
PPO_Meander
AK_Meander
SR_Meander

(d)

0M 2M 4M 6M 8M 10M
Timesteps

−700

−600

−500

−400

−300

−200

−100

0

Re
wa

rd

Min Reward Against BLine Adversary

Base_Bline
PPO_Bline
AK_Bline
SR_Bline

(e)

0M 2M 4M 6M 8M 10M
Timesteps

−700

−600

−500

−400

−300

−200

−100

0

Re
wa

rd

Min Reward Against Meander Ad ersary

Base_Meander
PPO_Meander
AK_Meander
SR_Meander

(f)

0M 2M 4M 6M 8M 10M
Timesteps

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Re
wa
rd

Mean Reward with Standard Deviation Against BLine

Base_Bline
PPO_bline
AK_Bline
SR_Bline

(g)

0M 2M 4M 6M 8M 10M
Timesteps

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Re
wa

rd

Mean Reward with Standard Deviation Against Meander

Base_Meander
PPO_Meander
AK_meander
SR_meander

(h)

Figure 4: Mean, maximum and minimum reward of blue subagents against the BLineAgent (left) and
the RedMeanerAgent (right) over 10 million timesteps.



Training
Adversary

Defensive Model
BLineAgent MeanderAgent Mean

Mean
Reward

Standard
Deviation

Mean
Reward

Standard
Deviation

Mean
Reward

Standard
Deviation

MeanderAgent PPO -24.91 9.21 -17.71 5.06 -21.31 7.43
baseline -123.91 229.59 -30.39 47.74 -77.15 165.82

BLineAgent
AK -14.43 30.28 -145.26 123.92 -79.84 90.20
SR -12.95 6.19 -269.64 235.24 -139.29 166.40
baseline -16.80 21.12 -201.13 143.40 -108.96 102.49

Table 1
The performance of the defensive subagents against their corresponding adversaries. Evaluated on 1,000
episodes of 100 timesteps each.

The difference in mean reward is explained by the maximum and minimum rewards. All
models apart from PPO experience a first plateau in maximum reward of -9 and then step up to
a second plateau of around -1. The SR agent finds the optimal policy earlier than the AK agent
during training. In addition, the minimum rewards of the baseline and PPO model have greater
variance than the SR and AK agents, and the AK agent has a marginally higher probability
to score very poorly (i.e., below -300). Earlier optimal policy convergence and smaller policy
variability makes the SR agent the best model against BLineAgent agent. This corroborates the
standard deviation graph, and 1,000-episode evaluation results; in Table 1, where the SR agent
displays less negative reward and with a standard deviation that is only a fifth of the AK agent.

Against the meander attacker the PPO and SR agents outperform the baseline (-24.384) with
best mean rewards of -17.065 and -19.959 during training. Figure 4 shows the advantage of
using a PPO 3-layer architecture which results in higher min and max rewards with reduced
variance.

7.1.2. Specialist Agents

Here we evaluate the performance of our defensive subagents against their separate adversaries.
We select the best performing agents from training for evaluation evaluate: PPO defence for
the RedMeander and both the AK and SR defence for the BLineAgent. We evaluate each for
1,000 episodes of 100 steps and summarise our results in Table 1. For completeness, we also
cross-evaluate our agents against the adversary not seen during training.

Against the RedMeander adversary, PPO defence outperforms the baseline against both
adversaries resulting in a mean score of -21.3 (improvement by a factor of 3.6) and a reduction
in standard deviation by a factor of more than 9. This highlights the advantage of the increased
depth of the neural network over the baseline.

Against the BLineAgent adversary, we see that the SR agent is able to achieve a 1.5 times
greater reward, with 4.89 times lower standard deviation. However, this comes at the cost of
generality. A trend in all of the subagents is that when defending against previously unseen
adversaries, the performance is significantly diminished.



Controller Agent
Prediction Accuracy

BLineAgent RedMeander

PPO with curiosity (4 steps) 76.8% 0.0%
PPO with curiosity (100 steps) 30.3% 42.9%
Heuristic 100.0% 100.0%
Bandit 100.0% 100.0%

Table 2
Controller performance taken over 1,000 episodes of 4 steps, except in the case of PPO with curiosity
(100 steps) which predicts the adversary at each timestep.

7.2. Controller Models

As seen in Section 7.1.2, the defensive subagents do not generalise well beyond the adversaries
that they are trained against.

To address this, Sections 6.2 and 6.1 introduce two new controller architectures: Heuristic
and Bandit. Here we evaluate the ability to correctly predict the adversary within the first four
timesteps of an episode (as our controllers predict the adversary on the fourth timestep). For
each episode, we randomly sampled one of the two red adversaries (i.e., 50% probability of
selecting BLineAgent).

Table 2 shows that the baseline model has strong biases on selecting the BLineAgent agent.
To investigate further, we let the baseline agent make predictions on each timestep until the
end of the episode (c.f. only guessing after the 4th timestep). As seen in Table 2, the repeated
guesses significantly reduced bias but accuracy remained low.

In contrast, neither our bandit or heuristic controller exhibit this bias and can perfectly predict
the correct attacker type.

7.3. Hierarchical Defensive Model

Here we evaluate the complete defensive model. Table 3 reports the mean and standard deviation
for the ‘best pair’ combinations of subagents as determined by our evaluation in Section 7.1 (
i.e., PPO for MeanderAgent, and AK or SR for BLineAgent).

We observe that the subagents play a significant role in the improvement over the baseline.
Over episodes of 100 timesteps, we are able to improve the result by at least 30% for the
BLineAgent and 170% for MeanderAgent.

The lowest reward values are split evenly between the Heuristic and Bandit controllers. These
models outperform the PPO controller models regardless of the subagents in four of the six
combinations of adversary and episode length.

MeanderAgent performance is improved by 11.7%, which is more significant than BLineAgent

(only improved by 1%) when using Bandit or Heuristic controller. Table 1 indicates that models
trained with BLineAgent perform poorly on MeanderAgent. This can be explained by the fact
that BLineAgent has more information about the network, so its behaviour is more predictable.
In contrast, MeanderAgent’s actions have more randomness.



Controller Subagents
30 steps 50 steps 100 steps

BLineAgent MeanderAgent BLineAgent MeanderAgent BLineAgent MeanderAgent

Bandit
PPO + AK -3.56±2.03 -6.80±1.40 -6.79±13.00 -10.10±2.30 -13.54±15.95 -17.30±4.27
PPO + SR -3.62±2.04 -6.88±1.42 -6.26±3.18 -10.06±2.15 -13.00±6.28 -17.56±4.51

Heuristic
PPO + AK -3.56±2.04 -6.80±1.40 -6.79±13.00 -9.96±2.33 -14.07±27.73 -17.57±4.82
PPO + SR -3.71±2.09 -6.86±1.48 -6.17±3.40 -10.04±2.32 -13.06±6.14 -17.32±4.35

Baseline
(PPO Controller)

PPO + AK -4.35±2.42 -7.19±1.69 -7.45±4.27 -10.84±2.62 -14.97±8.09 -19.33±5.38
PPO + SR -3.95±2.18 -7.36±1.74 -6.38±3.20 -11.33±3.00 -13.14±6.45 -21.21±6.10

Baseline
(PPO Controller)

Baseline
(PPO subagents)

4.82±4.22 -8.78±3.21 -9.20±16.01 -19.00±20.86 -18.49±34.40 -47.60±88.16

Table 3
Performance of all subagents-controller combinations, evaluated over 1,000 episodes with a length of 30,
50 and 100 steps each.

8. Explaining the Defensive Models

It is critically important that human operators can understand the decisions made by autonomous
agents. Using post-hoc XRL techniques, we determine whether our defensive agents are truly
defending the network as their primary objective or as a side effect of an unintended objective.
This is common in RL where agents may manipulate improperly specified reward mechanics to
maximise their score in unintended ways.

8.1. Ablation Study

To understand which of the features in the observation space influence the agents decision
making we perform an ablation study over knowledge of: 1) the success or failure of the previous
action (hence referred to as previous action), 2) the adversary’s access onto a host (hence referred
to as adversary access), and 3) whether an adversary has scanned a host (hence referred to as
adversary scan).

The ablation results in Figure 5 show the AK and SR agents against the BLineAgent in 5a
and 5b, and the PPO agent against the MeanderAgent3 in 5c. Figure 5a indicates that the AK
agent’s performance is greatly affected by ‘adversary access’. While comparatively little impact
seems to derive from the ablation of ‘adversary scan’ and ‘previous action’ there is some variance
and the rewards fall to -812 and -539, respectively. Interestingly, the SR defensive agent is greatly
affected by the ablation of the ‘adversary access’ and ‘adversary scan’, with the distribution of
rewards being more negative in both cases. This is especially apparent in the case of ‘adversary
scan’. Previous action has less of an effect in both AK and SR, yet still reduces the mean reward
to -30.42 (a factor of 2) and -40.6 (a factor of 3), respectively. However, AK has some outlier
scores that result in a minimum reward of -987.8. For PPO against MeanderAgent, Figure 5c
shows that ablation of ‘adversary access’ causes a drastic reduction in reward, bringing the
mean value to -781.23. Ablation of ‘adversary scan’ reduces the mean reward to -44.70, a factor
of 2.52 more negative than when the observation is included.

3This defensive agent doesn’t use the previous action however we include it for completeness.



Adversary Access Adversary Scan Previous Action
Ablation

−1000

−800

−600

−400

−200

0

R
ew

ar
d

−1000

−800

−600

−400

−200

(a)

Adversary Access Adversary Scan Previous Action
Ablation

−1200

−1000

−800

−600

−400

−200

0

R
ew

ar
d

−1000

−800

−600

−400

−200

(b)

Adversary Access Adversary Scan Previous Action
Ablation

−1000

−800

−600

−400

−200

0

R
ew

ar
d

−1000

−800

−600

−400

−200

(c)

Figure 5: Ablation results for the three feature types on the reward of the (a) AK BLineAgent defence,
(b) SR BLineAgent defence and (c) PPO MeanderAgent defence.

8.2. Feature Importance

To further validate the importance of ‘adversary access’, ‘previous action’, and ‘adversary scan’,
we utilise a well known framework from explainable AI called SHapley Additive exPlanations
(SHAP). This uses an implementation agnostic game theoretic approach to explain the impor-
tance of features in determining outputs. SHAP is able to connect optimal credit allocations
with local explanations to determine SHAPley values. These values provide a way of accurately
distributing the contribution of the individual features within the complete feature space [22].

Figure 6 shows the SHAPley values for the trained AK and SR subagents against the BLineAgent
in 6a and 6b, and PPO against the MeanderAgent in 6c. Each point on these plots is a feature in
a specific observation, with the colour representing the value of that feature.

All defensive agents observe the same trend in feature importance regardless of their training
adversary: ‘adversary access’ is the most important followed by ‘adversary scan’, a trend that is
also observed in Figure 5. Note that the PPO RedMeander defensive model doesn’t use ‘previous
action’ and hence is not included in Figure 6c.

We show that ‘adversary access’ is an important part of the observation. This indicates
that the defensive agents are aware that they need to remove the attackers from hosts. The
importance is also seen in Figure 5 as the most significant shifts in reward distribution occur
when ablating ‘adversary access’.

In addition ‘adversary scan’ is of importance to the agents which is clear in 5b as the defensive
agent’s performance is significantly impacted in the absence of this information. This correlates
with Figure 6b as ‘adversary scan’ has the greatest distribution of any of the SHAP values for
the BLineAgent defensive agents. While knowledge of the ‘previous action’ has the lowest
feature importance for the agents, we argue that this is still important for these defensive agents,
which, with this knowledge, outperform the baseline and PPO-only models in 4. For example,
take the case where a defensive agent acts to remove an adversary from a host, if this action
fails then the defensive agent will have to adjust its strategy. The importance of this feature can
further be seen in Figures 5a and 5b, as ablation of this feature has a non-trivial impact on the
performance of the agents.



−60 −40 −20 0 20 40 60 80
SHAP value (impact on model output)

Previous Action

Adversary Scan

Adversary Access

Lo 

High

Fe
at
ur
e 
va
lu
e

(a)

−75 −50 −25 0 25 50 75 100
SHAP value (impact on model output)

Previous Action

Adversary Scan

Adversary Access

Lo 

High

Fe
at
ur
e 
va
lu
e

(b)

−100 −50 0 50 100
SHAP value (impact on model output)

Adversary Scan

Adversary Access

Low

High

Fe
at

ur
e 

va
lu

e

(c)

Figure 6: The SHAPley values for the three feature types on the reward of the (a) AK BLineAgent
defence, (b) SR BLineAgent defence and (c) PPO MeanderAgent defence, from most to least important
features.

9. Related Work

The effectiveness of RL across a range of simulated and abstracted autonomous network defence
scenarios is well established in the literature. Han et al. [23] show the feasibility and resilience
of RL agents under causative attacks in software defined networks. Elderman et al. [24] model
network defence using the framework of a Markov game with incomplete information, high-
lighting the capabilities of even traditional RL methods (i.e., not DRL) in interactions between
network attacker and defender. The hierarchical approach we build upon was first proposed by
Foley et al. [9]. Comparatively, we propose two improved controller models based on a deeper
understanding of the adversary models. We also develop improved subagents providing an ex-
plainability analysis to understand what causes the agents to defend networks effectively. Other
approaches to autonomous network defence include dynamic causal Bayesian optimisation [25]
as shown by Andrew et al. [26].

Several alternative network defence simulation environments have been proposed in the
literature. Molina-Markham et al. [27] propose FARLAND which similarly to CybORG provides
a hybrid simulation and emulation based environment capable, owing to a rich feature space,
develops agents that can defend real-world networks. Microsoft have an experimental research
platform CyberBattleSim [28] that offers, at a high-level of abstraction, a simulation-only
network defence environment based on post-breach lateral adversary movement and system
exploitation. In contrast to CybORG, CyberBattleSim places greater emphasis on credential
access and data collection such as simulating a GitHub project leaking credentials in the commit
history. Another simulation-only environment developed by Andrew et al. [26] is Yawning
Titan (YT). Of all the network defence environments, YT offers the greatest abstraction and
omits the majority of individual host details (e.g., operating system processes, network ports)
needed for emulation.

RL has also be applied to several closely related problems. In penetration testing (i.e., exploita-
tion which is a subset of the CybORG envionment), Yang and Liu [29] formulate automated



penetration testing in the multi-objective RL framework and demonstrate superior performance.
Independently, Tran et al. [30] explore hierarchical RL architectures for the same task based on
their findings that decomposing large action spaces into smaller sets produces greater perform-
ing agents. In intrusion prevention, Hammar and Stadler [31] demonstrate that RL is capable of
intrusion prevention when formulated as a multiple stopping problem. Feng and Xu [32] train
a defender to protect a single device from an unknown attacker and finally, Tahsini et al. [33]
use a single defender model to protect a water tank system from adversarial attacks.

10. Conclusion

Taking advantage of the rapidly increasing capabilities of neural networks and the advancements
in RL algorithms, we present an improved approach to autonomous network defence. Beyond
high performance, we place emphasis on the steps before and after training the model. Before
training, we use a methodology to observe the adversary behaviour and inform choices in
our hierarchical model. Specifically, we introduce two controller architectures, one heuristic
and another bandit-based, that improve accuracy when predicting adversaries. Additionally
we develop enhanced subagent architectures optimised for the specific classes of adversary.
After training, our post-hoc analysis includes a feature importance and ablation study for each
specialised subagent within the complete hierarchical model. Our results shed light on each
agent’s decision making process and help to better understand the system as a whole. This
work contributes to a less studied but equally important research direction for future works in
autonomous network defence.

Acknowledgements

The authors would like to acknowledge that research was partially funded by EPSRC grant
EP/T51780X/1.

References

[1] P. Speicher, M. Steinmetz, J. Hoffmann, M. Backes, R. Kunnemann, Towards automated
network mitigation analysis, in: Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, SAC ’19, 2019.

[2] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu,
Asynchronous methods for deep reinforcement learning, in: International conference on
machine learning, PMLR, 2016, pp. 1928–1937.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Human-level control through
deep reinforcement learning, Nature (2015).

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller,
Playing Atari with Deep Reinforcement Learning, arXiv:1312.5602 [cs] (2013).



[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal Policy Optimization
Algorithms, in: arXiv:1707.06347 [cs], 2017.

[6] O. et al., Dota 2 with Large Scale Deep Reinforcement Learning, 2019.
[7] A. E. Sallab, M. Abdou, E. Perot, S. Yogamani, Deep Reinforcement Learning framework

for Autonomous Driving, Electronic Imaging 29 (2017) 70–76. URL: http://arxiv.org/abs/
1704.02532. doi:10.2352/ISSN.2470-1173.2017.19.AVM-023, arXiv:1704.02532 [cs,
stat].

[8] J. Kober, J. A. Bagnell, J. Peters, Reinforcement learning in robotics: A survey, Interna-
tional Journal of Robotics Research 32 (2013) 1238–1274. URL: https://doi.org/10.1177/
0278364913495721. doi:10.1177/0278364913495721.

[9] M. Foley, C. Hicks, K. Highnam, V. Mavroudis, Autonomous Network Defence using Rein-
forcement Learning, in: Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security, ASIA CCS ’22, Association for Computing Machinery, New
York, NY, USA, 2022, pp. 1252–1254. doi:10.1145/3488932.3527286.

[10] J. R. Williford, B. B. May, J. Byrne, Explainable Face Recognition, in: A. Vedaldi, H. Bischof,
T. Brox, J.-M. Frahm (Eds.), Computer Vision - ECCV 2020, Lecture Notes in Computer
Science, Springer International Publishing, Cham, 2020, pp. 248–263.

[11] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, Y. Wu, The Surprising Effectiveness
of PPO in Cooperative, Multi-Agent Games, 2022. URL: http://arxiv.org/abs/2103.01955.
doi:10.48550/arXiv.2103.01955, arXiv:2103.01955 [cs].

[12] T. T. Nguyen, V. J. Reddi, Deep Reinforcement Learning for Cyber Security, 2021.
[13] X. Wu, W. Guo, H. Wei, X. Xing, Adversarial Policy Training against Deep Reinforcement

Learning (2021) 1883–1900. URL: https://www.usenix.org/conference/usenixsecurity21/
presentation/wu-xian.

[14] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, Adaptive computation
and machine learning series, 2nd ed., 2018.

[15] D. Pathak, P. Agrawal, A. A. Efros, T. Darrell, Curiosity-driven exploration by self-
supervised prediction, in: Proceedings of the 34th International Conference on Machine
Learning, ICML’17, 2017.

[16] A. Heuillet, F. Couthouis, N. Díaz-Rodríguez, Explainability in deep reinforcement learning,
Knowledge-Based Systems (2021). URL: https://www.sciencedirect.com/science/article/pii/
S0950705120308145.

[17] E. Puiutta, E. Veith, Explainable Reinforcement Learning: A Survey, in: 4th International
Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE),
2020. URL: https://hal.inria.fr/hal-03414722.

[18] M. Standen, M. Lucas, D. B., T. J. Richer, J. Kim, D. Marriott, Cyborg: A gym for the
development of autonomous cyber agents, in: IJCAI-21 1st International Workshop on
Adaptive Cyber Defense, 2021.

[19] M. Standen, D. Bowman, S. Hoang, T. Richer, M. Lucas, R. Van Tassel, Cyber Autonomy Gym
for Experimentation Challenge 1, https://github.com/cage-challenge/cage-challenge-1,
2021.

[20] M. Standen, D. Bowman, S. Hoang, T. Richer, M. Lucas, R. Van Tassel, P. Vu, M. Kiely,
Cyber autonomy gym for experimentation challenge 2, https://github.com/cage-challenge/
cage-challenge-2, 2022. Created by Maxwell Standen, David Bowman, Son Hoang, Toby

http://arxiv.org/abs/1704.02532
http://arxiv.org/abs/1704.02532
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1145/3488932.3527286
http://arxiv.org/abs/2103.01955
http://dx.doi.org/10.48550/arXiv.2103.01955
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-xian
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-xian
https://www.sciencedirect.com/science/article/pii/S0950705120308145
https://www.sciencedirect.com/science/article/pii/S0950705120308145
https://hal.inria.fr/hal-03414722
https://github.com/cage-challenge/cage-challenge-1
https://github.com/cage-challenge/cage-challenge-2
https://github.com/cage-challenge/cage-challenge-2


Richer, Martin Lucas, Richard Van Tassel, Phillip Vu, Mitchell Kiely.
[21] CAGE, Cage challenge 1, in: IJCAI-21 1st International Workshop on Adaptive Cyber

Defense., 2021.
[22] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: Pro-

ceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, Curran Associates Inc., Red Hook, NY, USA, 2017, pp. 4768–4777.

[23] Y. Han, B. I. P. Rubinstein, T. Abraham, T. Alpcan, O. De Vel, S. Erfani, D. Hubczenko,
C. Leckie, P. Montague, Reinforcement Learning for Autonomous Defence in Software-
Defined Networking, arXiv:1808.05770 [cs, stat] (2018). URL: http://arxiv.org/abs/1808.
05770, arXiv: 1808.05770.

[24] R. Elderman, L. J. J. Pater, A. S. Thie, M. M. Drugan, M. A. Wiering, Adversarial Rein-
forcement Learning in a Cyber Security Simulation, in: Proceedings of the 9th Inter-
national Conference on Agents and Artificial Intelligence - Volume 1: ICAART, 2017.
doi:10.5220/0006197105590566.

[25] V. Aglietti, N. Dhir, J. González, T. Damoulas, Dynamic Causal Bayesian Optimization,
in: Advances in Neural Information Processing Systems, editor = M. Ranzato and A.
Beygelzimer and Y. Dauphin and P.S. Liang and J. Wortman Vaughan, volume 34, 2021.

[26] A. Andrew, S. Spillard, J. Collyer, N. Dhir, Developing Optimal Causal Cyber-Defence
Agents via Cyber Security Simulation, in: Workshop on Machine Learning for Cyber-
security (ML4Cyber) as part of the Proceedings of the 39th International Conference on
Machine Learning, 2022.

[27] A. Molina-Markham, C. Miniter, B. Powell, A. Ridley, Network Environment Design for
Autonomous Cyberdefense (2021). URL: https://arxiv.org/abs/2103.07583.

[28] J. Bono, W. Blum, Cyberbattlesim, https://github.com/microsoft/CyberBattleSim, 2021.
[29] Y. Yang, X. Liu, Behaviour-Diverse Automatic Penetration Testing: A Curiosity-Driven

Multi-Objective Deep Reinforcement Learning Approach, 2022. URL: https://arxiv.org/abs/
2202.10630. doi:10.48550/ARXIV.2202.10630.

[30] K. Tran, A. Akella, M. Standen, J. Kim, D. Bowman, T. Richer, C. Lin, Deep hierarchical
reinforcement agents for automated penetration testing (2021). URL: https://arxiv.org/abs/
2109.06449.

[31] K. Hammar, R. Stadler, Learning Intrusion Prevention Policies through Optimal Stopping,
in: 2021 17th International Conference on Network and Service Management (CNSM),
2021. doi:10.23919/CNSM52442.2021.9615542.

[32] M. Feng, H. Xu, Deep reinforecement learning based optimal defense for cyber-physical
system in presence of unknown cyber-attack, in: 2017 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), IEEE, 2017.

[33] A. Tahsini, N. Dunstatter, M. Guirguis, C. M. Ahmed, DeepBLOC: A Framework for
Securing CPS through Deep Reinforcement Learning on Stochastic Games, in: 2020 IEEE
Conference on Communications and Network Security (CNS), 2020, pp. 1–9. doi:10.1109/
CNS48642.2020.9162219.

http://arxiv.org/abs/1808.05770
http://arxiv.org/abs/1808.05770
http://dx.doi.org/10.5220/0006197105590566
https://arxiv.org/abs/2103.07583
https://github.com/microsoft/CyberBattleSim
https://arxiv.org/abs/2202.10630
https://arxiv.org/abs/2202.10630
http://dx.doi.org/10.48550/ARXIV.2202.10630
https://arxiv.org/abs/2109.06449
https://arxiv.org/abs/2109.06449
http://dx.doi.org/10.23919/CNSM52442.2021.9615542
http://dx.doi.org/10.1109/CNS48642.2020.9162219
http://dx.doi.org/10.1109/CNS48642.2020.9162219


Agent Parameter Value

AK

gamma 0.99
network layers [256, 256]
Curiosity Yes
Beta (Curiosity) 0.2
Eta (Curiosity) 1
Feature Dimension (Curiosity) 53
Learning Rate (Curiosity) 0.001
Learning Rate 0.0005

SR

gamma -17.710
network layers [256, 256]
Curiosity Yes
Beta (Curiosity) 0.2
Eta (Curiosity) 1
Feature Dimension (Curiosity) 53
Learning Rate (Curiosity) 0.001
Learning Rate 0.0005

PPO

gamma 0.99
network layers [256, 256, 52]
Curiosity No
Learning Rate 0.0005

Bandits epsilon 0.01

Table 4
Hyperparameters.

A. Hyperparameter Values

Optimal, lower and upper bounds of the of the hyperparameters are shown in Table 4. A
uniformly sampled grid search was used to determine the optimal values.

B. Extended adversary models

Here we provide the full action-outcome transition graphs for the BLineAgent adversary, both
with and without the presence of our defensive model. Table 5 provides the definitions of all
the acronyms used.

Acronym Definition

DRS Discover Remote Systems
DNS Discover Network Services
ERS Exploit Remote Service
PE Privilege Escalate

Table 5
Acronymns used in the action-outcome transition graphs.



Figure 7: Action-outcome transition graph of the BLineAgent adversary without defensive action.



Figure 8: Action-outcome transition graph of the BLineAgent adversary faced with our fully-trained
defensive model. c.f. Figure 7, new states and transitions are shown in red.


	1 Introduction
	1.0.1 Contributions

	2 RL Background
	2.1 Deep RL Algorithms
	2.1.1 PPO

	2.2 Curious Exploration
	2.3 Explainable RL

	3 Network Simulation Environment
	3.1 Action Space
	3.2 Observation Space
	3.3 Reward Function
	3.4 Adversaries

	4 Model
	4.1 MeanderAgent Defence
	4.2 BLineAgent Defence

	5 Explaining the Adversary Model
	6 Hierarchical RL Architecture
	6.1 Bandit Controller Model
	6.1.1 Bandit Controller Implementation

	6.2 Heuristic Controller Model

	7 Evaluation
	7.1 Specialised Sub Agents
	7.1.1 Training Results
	7.1.2 Specialist Agents

	7.2 Controller Models
	7.3 Hierarchical Defensive Model

	8 Explaining the Defensive Models
	8.1 Ablation Study
	8.2 Feature Importance

	9 Related Work
	10 Conclusion
	A Hyperparameter Values
	B Extended adversary models

