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Abstract
Early detection of hazards as well as the identification of geographical regions affected by a disaster
play a substantial role in timely intervention and planning of disaster relief operations. We provide an
overview of the current research efforts at Disaster Resilience Analytics Center for technologies that can
facilitate early detection of hazard through collection and analysis of data by remote sensors, as well as
identification of hazardous situations through analysis of social media data. The availability of these
technologies can help reduce the risk of disasters, thereby improving the resilience of communities.
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1. Introduction

Wichita State University (WSU) is a public university located in the city of Wichita, the largest
city in the state of Kansas, United States of America. In 2020, WSU initiated efforts to fund
four convergent science teams for a period of three years. Disaster Resilience Analytics Center
(DRAC) is one of these teams and is engaged in research and education in the field of data-driven
disaster analytics. Currently, the DRAC team consists of fifteen faculty members from five
different colleges (College of Engineering, Liberal Arts and Sciences, College of Applied Studies,
School of Business and University Libraries).

1.1. Disasters

As per the United Nation’s Office of Disaster Risk Reduction, a disaster is a set of hazardous
events causing a serious disruption of regular functioning of a community, and having a
significant impact on community residents, material property, economy, and environment [1].
While this broader definition can apply to pandemic events, large-scale industrial accidents,
as well as man-made events, for the purpose of this abstract, we restrict ourselves to events
due to extreme weather, such as hurricanes, floods, drought, winter storms, and wildfire. Since
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Table 1
Impact of weather disasters (consumer price index adjusted data from NOAA [2]).

Decade Number of Disasters Impact (USD Billion)

1980 – 1989 29 178.1
1990 – 1999 53 273.6
2000 – 2009 62 518.1
2010 – 2019 119 810.3

1980, the United States (U.S.) has experienced at least 323 weather and climate disasters with
damage/cost exceeding 1B US Dollars; National Centers for Environmental Information (NCEI)
estimates the cumulative cost of such extreme weather events since 1980 as over 2.1T US
Dollars [2]. Climate change has resulted in increased frequency as well as enhanced severity of
such events. Review of data from National Oceanic and Atmospheric Administration (NOAA)
during this period reveals that weather and climate disasters have not only become more
frequent in the recent decades, but also more devastating as well (see Table 1); while this data
covers only financial costs, note that there are significant human costs, deaths and trauma
suffered by whole communities, which are not quantifiable in monetary terms. Furthermore,
while it is easily perceived that the impact of weather events is significant and prominent in
each geographical region, such as the coastal areas for the hurricanes, the damaging effect on
critical infrastructures, such as power grids and oil rigs, impacts people’s lives far beyond the
region directly threatened by the disaster.

1.2. Community Resilience

As noted by Patel et al [3], there is a lack of consensus in the scientific literature, policies, and
practice on a precise definition of the term community resilience; in most cases, the operational
definition is constrained to how we want to measure and/or enhance it. In the context of our
work, we consider that a resilient community would be able to transform its environment
through purposeful collective action to cope effectively with adversity and learn from the
experience for future preparedness [4]. The key nine elements that identify a community’s
resilience to disasters are [3]:

• local knowledge about a community’s vulnerabilities, prevalent training and education
practices, a community’s shared belief in addressing hardships,

• networks and relationships leading to the community acting as a connected and cohesive
entity during a disaster,

• communication that may relate to disaster-related language understandable by all resi-
dents, as well as existing information networks to disseminate anticipated risks prior to a
disaster or crisis-related information during an ongoing event,

• health factors including both pre-existing health conditions within the community and
existing mechanisms to deliver health services,

• governance/leadership factors responsible for allocating resources existing within the
community to tackle a crisis, as well as the participation of residents in strategic planning,
response, and recovery efforts,



• resources available to the community to tackle disasters, including natural, physical,
human, financial and social resources, as well as the community’s ability to utilize these
resources in the event of a disaster,

• economic investment relating to the distribution of financial resources, as well as per-
taining to economic programs for cost-effective interventions, and financial support for
development of post-disaster infrastructure,

• disaster preparedness at a variety of societal levels (individual, family, and government),
• mental outlook reflecting the attitude of the community when faced with the uncertainty
of a looming disaster, or in the aftermath of a disaster.

1.3. Scope

The DRAC is engaged in various research projects related to hurricane monitoring, fire detection,
disaster risk analysis within the Great Plains region of United States (earthquake and flood
susceptibility), understanding resilience of communities. We are also engaged in understanding
the process of conducting trans-disciplinary research. Within this broader realm of DRAC
research activities, this short paper provides an overview of data-driven hazard-detection
technologies. In the forthcoming section, we provide an overview of the ongoing research, and
discuss their connection to one or more of the aspects of resilience.

2. Event/Hazard Detection Technologies

2.1. Sensor infrastructure for disaster monitoring

Accurate understanding the scientific phenomenon behind the extreme weather events, both in
terms of the anticipated geographical region it affects and the expected intensity of the event,
is crucial for efficient disaster management, including timely evacuation and distribution of
resources for relief operations. Modern forecasting systems for extreme weather events rely
on data collected by a variety of different sensors. Usually, the sensor data is obtained from
terrestrial, airborne, or orbiting sensors. The terrestrial sensors are usually limited by their
range, while the airborne sensors are limited by the number of missions that can be conducted
during the event as well as by how close the aircraft can fly to where the event is occurring.
Owing to their strategic location in space, orbiting sensors often are the first to observe a disaster
(such as a hurricane or a wildfire); however, the current in-space sensor infrastructure in Low-
Earth orbits (less than 2000 km altitude) does not allow continuous coverage of geographical
regions. Satellites in geosynchronous orbit (35,786 km altitude) have a continuous coverage
over a specific geographic region; however, their location far away from the surface of the Earth
limits the capabilities of the onboard sensors in understanding the three-dimensional structure
of the event. Recent advents in miniaturization of sensor technologies that can be incorporated
within nano-satellites or drones, deployed in large numbers can fill the gaps in current-day
sensing needs and facilitate early disaster management operations. For instance, the planned
FireSat constellation is envisioned to have 200 orbiting sensors for global wildfire coverage.

At DRAC, we have been working on designs of orbiting sensors that can meet the sensor
data requirements of modern hurricane forecasting systems such as NOAA’s FV3. The designed



sensor system leverages relatively low-cost 6U CubeSat platform (small satellites of size 30
cm × 20 cm × 10 cm) to provide coverage over data-starved regions such as the Atlantic warm
pool region where hurricanes originate [5]. Such designs help gather sensor data that has the
potential in improving accuracy of early forecasts of hurricanes, thereby providing higher lead
times for planning disaster relief operations. Even in regions where there is existing sensor
infrastructure, such CubeSat-based sensor constellations can help reducing modeling errors and
improve forecasts. One of the key areas of improvement is the prediction of intensity of the
hurricanes, and our work related to CubeSat formation design specifically address this issue by
enabling sensor data collection related to the three-dimensional structure of the hurricanes [6].
Orbital perturbations affect the satellite’s position in orbit, and thereby the coverage it provides;
hence, we also designed maneuver plans to maintain requisite coverage requirements [7]. Future
work will focus on data-driven sensing to provide coverage over vulnerable communities.

2.2. Machine-learning enabled hazard detection and damage assessment

Advances in the field of artificial intelligence presents new opportunities for the detection of
a hazardous event as well as estimation of damage caused by the hazard. One aspect of our
work at DRAC focuses on the detection of fire and smoke from digital imagery using deep
learning models. We have utilized multi-spectral deep learning models to analyze publicly
available datasets and detect smoke or fire. We refer interested readers to Reference [8] (also
presented at the workshop) for the details of this research. Our current focus is on lightweight
machine learning models that can be deployed on small platforms of limited computational
capabilities. The capability to identify such hazardous event on such platforms located closer
to the event significantly enhances the early detection of the hazard, thereby leading to early
intervention and early communication of associated risks to affected communities in the vicinity.
Another aspect of our work is to use deep learning models to analyze satellite images to classify
structural damage in buildings in the aftermath of a disaster.

2.3. Social media as sensor platform

The abundance of smartphones in the modern society and the ever-increasing engagement
of public in social media provides an opportunity to use social media as a source of data on
potential hazards. Autonomous analysis of social media data can lead to rapid identification of
situations where disaster relief operations need to be diverted to. To this end, an aspect of our
research at DRAC focuses on the analysis of multi-modal social media data (text and images)
from the CrisisMMD database using a multi-modal fusion technology. Interested readers can
take a look at Reference [9] (also presented at the workshop) for details on the technology and
the results obtained.

3. Conclusion

Within the overall activities currently being pursued at the Disaster Resilience Analytics Center
(DRAC), this paper focuses on research related to the detection of a hazardous event, namely,
sensor placements using CubeSats to provide spatial and temporal resolution of data expected by



modern modern weather forecasting systems, and analysis of data (from sensors or social media)
using deep learning models to detect hazards. Such data-driven hazard detection can improve
the efficiency of disaster relief operations. Availability of such technologies to a community can
help improve their resilience in terms of providing additional resources to obtain information
about anticipated hazards as well as improving disaster preparedness.
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