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Abstract
We study a recently introduced adaptation of Tukey depth to graphs and discuss its algorithmic properties
and potential applications to mining and learning with graphs. In particular, since it is NP-hard to compute
the Tukey depth of a node, as a first contribution we provide a simple heuristic based on maximal closed
set separation in graphs and show empirically on different graph datasets that its approximation error is
small. Our second contribution is concerned with geodesic core-periphery decompositions of graphs. We
show empirically that the geodesic core of a graph consists of those nodes that have a high Tukey depth.
This information allows for a parameterized deterministic definition of the geodesic core of a graph.
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1. Introduction

Centrality measures are of high importance in data analysis, as they typically capture the
elements’ “importance” quantitatively. Of course, the meaning of importance depends on the
choice of the particular centrality measure. Different types of centrality measures have been
introduced for networks (see, e.g., [1]), including degree centrality, eigenvector centrality, Katz
centrality, closeness centrality, betweenness centrality, page rank, and hubs and authorities. In
Fig. 1 we present a graphical illustration of some of these centrality measures for some small
graphs for a visual comparison.

Graph Tukey depth is a relatively new centrality measure, introduced in [3]. It is based on
the original notion of Tukey depth that is defined over finite subsets of R𝑑 [4, 5]. Informally
speaking, the semantics of Tukey depth is as follows: An element 𝑒 has high Tukey depth if it is
“hard” to separate it from the rest of the finite ground set using separating hyper-planes only.
Conversely, 𝑒 has low Tukey depth if it is “easy” to separate it from the rest of the set. “Hard”
resp. “easy” in this context means that the half-space bounded by the separating hyper-plane
that contains 𝑒 contains many resp. a few other elements of the finite ground set. Thus, the
elements’ “importance” defined by ordinary Tukey depth in R𝑑 relies on the possibility of
separating them from other elements. This property directly connects the Tukey depth to all
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Figure 1: The Degree Centrality, Closeness Centrality, Betweenness Centrality and Tukey Depth of nodes
in graphs selected from different graph datasets [2]. The centrality (resp. depth) values are normalized
(i.e, mapped to the interval [0, 1]) by their maximum values in the graph. In particular, nodes of the
smallest (resp. highest) centrality values are denoted by yellow (resp. blue).

machine learning approaches that are based on hyper-plane separations [6, 7]. For R𝑑 and in
other more general metric spaces [8], Tukey depth has been studied in the context of machine
learning, in particular, for object classification [9]. In case of learning linear classifiers, it is
shown in [10] that the Tukey median, i.e., the points with the highest Tukey depth, are related
to the Bayes point.

An important advantage of Tukey depth over other centrality measures is that the exact
geometric position of the points in R𝑑 is not relevant for their depth. Thus, the Tukey depth is
relatively stable regarding outliers and is therefore used for outlier detection [11, 12]. Moreover,
as Tukey depth relies on separations, it is possible to adapt it to other domains enabling (abstract)
hyper-plane or half-space separation. In particular, this property of the original Tukey depth is
utilized in its adaptation to geodesic closure systems over graphs [3].

Similarly to the fact that the computation of the Tukey depth in R𝑑 is NP-hard [13], it is also
NP-hard to compute the graph Tukey depth of a node [3]. Motivated by this negative result,
one of our main contributions is a heuristic algorithm for approximating graph Tukey depth. It
runs in time polynomial in the size of the input graph and approximates the Tukey depth of
a node with one-sided error by overestimating it. Our experimental results with small graphs



clearly demonstrate that the approximation is close to the exact Tukey depth, by noting that for
larger graphs we were not able to evaluate the approximation performance of our algorithm, as
it was not possible to calculate the exact Tukey depth in practically feasible time.

Our heuristic is based on our greedy algorithm designed in [14] for solving the more general
maximal closed set separation (MCSS) problem. In the particular case of graphs, the problem is
as follows: Given two subsets 𝐴,𝐵 of the node set, find, if they exist, two (inclusion) maximal
disjoint geodesically closed node sets that separate 𝐴 and 𝐵 from each other. As maximal
disjoint closed sets provide a separation of sets, it is, therefore, natural to ask the following
question: Is there a connection between graph Tukey depth and node separation with geodesically
closed node sets? We give an affirmative answer to this question by showing experimentally
on small graph datasets that the solutions of the MCSS problem provide a good approximation
quality of the exact Tukey depth. This mainly relies on the following fact: For any closed set
containing at least one node of high Tukey depth, there exists no large disjoint closed set.

It follows from the definition of graph Tukey depth that it is related to other concepts based
on geodesic convexity. One of these notions is the recent probabilistic definition of geodesic
core-periphery decomposition of graphs. It was introduced in [15] and studied in [15, 16, 17, 18].
Hence, our second question is concerned with the following problem: Is there a connection
between graph Tukey depth and geodesic core-periphery decompositions? The geodesic core-
periphery decomposition breaks up some types of graphs (including interaction graphs, such as
social networks) into a dense core and a sparse “surrounding” periphery [15] (see Fig. 3 for a
visual example). While some graphs (e.g., Erdős-Rényi, Barabási-Albert, and Watts-Strogatz
random graphs) seem to have no periphery, others (e.g., trees and fully connected graphs) seem
to have no core. Since this behavior is not well-understood up to now, we try to understand it
by studying the nodes’ Tukey depth. It seems that the geodesic core of a graph consists of those
nodes that are of high Tukey depth (see Fig. 4 for some examples). This observation allows for
a parameterized deterministic definition of the cores. That is, the core of a graph can be defined
by the set of those nodes that have a Tukey depth greater than a user-specified threshold. Our
empirical results clearly demonstrate that using the right threshold, the probabilistic definition
of cores in [15] coincides with our deterministic one.

The rest of the paper is organized as follows. In Sec. 2 we first collect the necessary notions
and notation. Sec. 3 contains some examples showing that graph Tukey depth is strongly related
to such mining and learning algorithms on graphs that rely on graph geodesic convexity. In
Sec. 4 we present our heuristic for approximating graph Tukey depth and evaluate it empirically
on small graph datasets. Finally, in Sec. 5 we mention some open questions for future research.

2. Preliminaries

In this section, we collect the necessary notions and fix the notation. For a graph 𝐺 = (𝑉,𝐸),
𝑉 (𝐺) and 𝐸(𝐺) denote the set 𝑉 of nodes and the set 𝐸 of edges. Furthermore 𝑛 and 𝑚 denotes
|𝑉 (𝐺)| and |𝐸(𝐺)|, respectively. By graphs, we always mean undirected graphs without loops
and multi-edges. For any 𝑢, 𝑣 ∈ 𝑉 (𝐺), the (geodesic) interval [𝑢, 𝑣] is the set of all nodes on all
shortest paths between 𝑢 and 𝑣 (see Fig. 2a for an example). A set of nodes 𝑋 ⊆ 𝑉 (𝐺) is called
(geodesically) closed iff for all 𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑢, 𝑣 ∈ 𝑋 implies [𝑢, 𝑣] ⊆ 𝑋 . The closure 𝜌(𝑋) of a
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Figure 2: This figure shows (a) the geodesic interval [𝑢, 𝑣], i.e., the nodes on all shortest paths between
𝑢, 𝑣 (blue) and (b) the geodesic closure 𝜌({𝑢, 𝑣}), i.e., the smallest set of nodes that contains 𝑢, 𝑣 and all
nodes on all shortest paths between arbitrary node pairs of the set (red).

set 𝑋 ⊆ 𝑉 (𝐺) is the smallest closed set containing 𝑋 (see Fig. 2b for an example of 𝜌({𝑢, 𝑣})).

The Graph Tukey Depth Problem For a graph 𝐺, the Tukey depth of a node 𝑣 ∈ 𝑉 (𝐺) is
defined as follows [3]: Let 𝐶 ⊆ 𝑉 (𝐺) be a closed set of maximum cardinality such that 𝑣 /∈ 𝐶 .
Then the Tukey depth of 𝑣 is defined by td(𝑣) := |𝑉 (𝐺)| − |𝐶|. That is, 𝑣 has a high Tukey
depth if all closed sets not containing 𝑣 are of small cardinality. We are interested in the Graph
Tukey depths problem defined as follows: Given a graph 𝐺 compute td(𝑣) for all 𝑣 ∈ 𝑉 (𝐺).

Geodesic Cores Geodesic cores have been defined in [15] in a probabilistic way. Informally,
the geodesic core of a graph consists of those nodes which are contained in most geodesic closed
sets that are generated by a small number of random nodes. Of course, the core defined in this
way can be empty. However, it turns out that this is not the case for interaction graphs (e.g.
social networks) [15]. We define the geodesic core of a graph 𝐺, denoted by 𝒞 as follows. Let
𝑋1, 𝑋2, . . . be a sequence of sets, where each set consists of 𝑘 > 0 nodes selected independently
and uniformly at random from 𝑉 (𝐺). Then 𝒞 =

⋂︀𝑖
𝑗=1 𝜌(𝑋𝑗) is the core of 𝐺, where 𝑖 is

the smallest integer satisfying
⋂︀𝑖

𝑗=1 𝜌(𝑋𝑗) =
⋂︀𝑖+1

𝑗=1 𝜌(𝑋𝑗). Obviously, this definition is not
deterministic since different choices of 𝑋𝑗 and 𝑘 can lead to different cores. Nevertheless,
the experiments in [16] with large real-world networks show that for 𝑘 ≈ 10, the core (if it
exists) does not depend on the particular choice of the generator elements. The core-periphery
decomposition of a graph is composed of the subgraph induced by the core nodes and that by
the remaining nodes, called periphery. In Fig. 3 we give a visual example of the core-periphery
decomposition of the CA-GrQc network [19]1.

MCSS problem for Graphs We will use the maximal closed set separation (MCSS) problem
restricted to geodesic closures over graphs (see [14] for the generic definition): Given a graph
𝐺 = (𝑉,𝐸) and 𝐴,𝐵 ⊆ 𝑉 (𝐺) with disjoint geodesic closures, find two geodesic closed sets
𝐴′, 𝐵′ ⊆ 𝑉 (𝐺) with 𝐴′ ∩ 𝐵′ = ∅ and 𝐴 ⊆ 𝐴′, 𝐵 ⊆ 𝐵′ that are maximal, i.e., there exist no
proper supersets of 𝐴′ resp. 𝐵′ that fulfill the above properties.

1This network is built by the co-authorships in the general relativity and quantum cosmology community.



(a) Entire Network (b) (Geodesic) Core (c) Periphery

Figure 3: Example of a geodesic core-periphery decomposition (c.f. [16]) (a) the CA-GrQc network [19]
with core in orange and periphery in blue, (b) its (geodesic) core, (c) its periphery.

3. Potential Applications to Mining and Learning with Graphs

Before we turn to the algorithmic aspects of the graph Tukey depth problem, in this section we
first present some of its potential applications to mining and learning with graphs. In particular,
this section deals with some connections of graph Tukey depth to node separations and to geodesic
core-periphery decompositions. We state three important properties of Tukey depth. In particular,
Proposition 1 clarifies the role of Tukey depth in the context of geodesic closed sets.

Proposition 1. Let 𝐺 be a graph, 𝑣 ∈ 𝑉 (𝐺) with td(𝑣) = 𝑛− 𝑐, and 𝐶 ⊆ 𝑉 (𝐺) a geodesically
closed node set with |𝐶| > 𝑐. Then 𝑣 ∈ 𝐶 .

Proposition 2 ([3]). Let 𝐺 be a graph, 𝑋 ⊆ 𝑉 (𝐺), and 𝐶 be the closure of 𝑋 . Then the graph
Tukey depth is a quasi-concave function, i.e., for all 𝑐 ∈ 𝐶 we have 𝑡𝑑(𝑐) ≥ min{𝑡𝑑(𝑥) : 𝑥 ∈ 𝑋} .

Proposition 3 ([3]). Let 𝐺 be a graph, 𝑘 ∈ N, and 𝑋 = {𝑣 ∈ 𝑉 (𝐺) : td(𝑣) ≥ 𝑘}. Then 𝑋 is
geodesically closed.

To underline the importance of these three statements, we give two examples that show how
they (can) influence machine learning and data mining methods based on geodesic closures.

Example 1: Node Classification and Active Learning In [14, 20, 21, 22], disjoint half-
spaces and closed sets are used for binary classification in closure systems, for node classification,
and active learning in graphs using geodesic convexity. Given the Tukey depth td(𝑣) of a node
𝑣, Proposition 1 immediately implies that a separating half-space or closed set not containing 𝑣
cannot have a cardinality greater than 𝑛− td(𝑣). Thus, for nodes of high Tukey depth, there is
no large geodesic closed set not containing them. Hence, Proposition 1 implies a nice theoretical
connection between graph Tukey depth and the maximum size of separating half-spaces and
closed sets. Using approximate graph Tukey depths, the predictive performance of all the above
methods can possibly be improved.
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Figure 4: Tukey depth (top) vs. geodesic core-periphery decomposition (bottom) for the Karate Club [23],
Les Miserables character [24], and Dolphins social networks [25]. For the different Tukey depths we use
sequential colors. Core and periphery nodes are denoted by blue and yellow, respectively.

Example 2: Geodesic core-periphery decomposition The geodesic core-periphery decom-
position of graphs was analyzed in [15, 16, 17]. In particular, it was found in [15, 17] that many
social networks consist of a dense geodesic core “surrounded” by a sparse periphery (see Fig. 3
for an example). While some graphs, especially tree-like graphs, seem to have no core, others,
such as graphs sampled from random graph models (e.g., Erdős-Rényi, Barabási-Albert and
Watts-Strogatz) seem to have no periphery. Moreover, the closure of a small number of randomly
chosen graph nodes (≈ 10) always contains the geodesic core (if it exists). Furthermore, if the
nodes are sampled from the geodesic core only, then the closure of the nodes is the geodesic
core itself. If we compute the closure of, say, 10 randomly chosen nodes from the entire network
(Fig. 3a), then the closure always contains the core (orange nodes in Fig. 3b). If all random nodes
belong to the core (orange nodes in Fig. 3a), then their closure is the core itself. The above
statements explain this behavior. Using that the core is always contained in the closure of a
small number of randomly chosen nodes, from Proposition 2 it follows that the nodes in the
core are those with the highest Tukey depths. Moreover, the quasi-concave property of graph
Tukey depth implies that if the core is generated by a few nodes from the core, then the core
nodes must have a very close Tukey depth. Finally, using Proposition 3, we have that the set
of nodes in a graph with a Tukey depth above some threshold is always geodesically closed;
cores arise as a special case of this property. These three properties motivate the following
deterministic definition of geodesic cores:

Definition 1. The 𝑘-geodesic core of a graph 𝐺 is defined by

𝐶𝑘 := {𝑣 ∈ 𝑉 (𝐺) : td(𝑣) ≥ 𝑘} .

To empirically confirm our claim that the core contains the nodes with the highest Tukey
depths, consider the three graphs in Fig. 4. We computed the exact Tukey depths (top) and



their geodesic cores (bottom). For the Karate Club network (left) considered also in [3], the core
exactly matches the set of nodes of the highest Tukey depth. Furthermore, there is not much
fluctuation in the depths of the core nodes. In fact, all nodes of Tukey depth of at most 3 belong
to the periphery and all nodes of Tukey depth 19 or 21 to the core, by noting that there are
no nodes of Tukey depth between 4 and 18. In case of the Les Miserables character network
(middle), there is only a single node with a very high Tukey depth of 57, surrounded by nodes of
depth less than 35. In this case, the core algorithm returns only the node with the highest Tukey
depth, showing that the graph Tukey depth can possibly be used to improve core-periphery
decompositions. This is also the case for the Dolphin community graph (right), where the core
consists of nodes with Tukey depth greater than 2, while all nodes in the periphery have a
Tukey depth of at most 2.

4. Approximating the Tukey Depth

Motivated by the negative complexity result concerning the calculation of Tukey depth, in
Sec. 4.1 below we first propose a heuristic based on the algorithm in [14] that solves the MCSS
problem. It approximates the nodes’ Tukey depths with one-sided error. We show experimentally
on different types of small graphs that the results obtained by our heuristic are fairly close to the
exact ones. Furthermore, even on small graphs, our algorithm is up to 200 times faster than the
exact one (Sec. 4.2). It is important to emphasize that we had to resort to such graphs, as it was
not possible to calculate the exact Tukey depths for larger graphs in a practically feasible time.

4.1. The Heuristic

Recall that the exact Tukey depth of a node 𝑣 is defined by td(𝑣) := |𝑉 (𝐺)| − |𝐶|, where |𝐶| is
the maximum cardinality of a closed set 𝐶 not containing 𝑣. It can be computed exactly using
an integer linear program (see [3] for the details). The computationally hard part of the problem
is to find a closed set of maximum size. Our heuristic addresses this problem by considering an
inclusion maximal closed set only, instead of a maximum cardinality closed set. This relaxation,
which distorts of course the exact value of Tukey depth, allows us to apply the efficient greedy
algorithm proposed in [14] for solving the MCSS problem. In what follows, for any 𝑣 ∈ 𝑉 (𝐺),̂︀td(𝑣) denotes the approximation of td(𝑣) obtained with our heuristic.

Given a graph 𝐺, the rough idea to approximate the Tukey depth of a node 𝑣 ∈ 𝑉 (𝐺) is
to find an inclusion maximal geodesically closed set 𝐶 ⊆ 𝑉 (𝐺) with 𝑣 /∈ 𝐶 . Such a set 𝐶
can be found by applying the MCSS algorithm [14] with input {𝑣} and {𝑣′}. Then the output
of the algorithm is a solution of the MCSS problem, i.e., it consists of two closed node sets
𝐻𝑣, 𝐻𝑣′ ⊆ 𝑉 (𝐺) with 𝑣 ∈ 𝐻𝑣 and 𝑣′ ∈ 𝐻𝑣′ that are disjoint and inclusion maximal. That is,
there exist no proper closed supersets of 𝐻𝑣, 𝐻𝑣′ with the same properties. The Tukey depth
can then be approximated using the cardinalities of 𝐻𝑣 resp. 𝐻𝑣′ . For a fixed node 𝑣, the result
depends on the particular choice of 𝑣′. To improve the approximation quality, we therefore call
the MCSS algorithm for each node 𝑣 several times, with different nodes 𝑣′ ̸= 𝑣.

The pseudo-code of the above heuristic is given in Alg. 1. In Line 1 we initialize the Tukey
depth of all nodes in 𝐺 by setting them to the maximum possible value, i.e., to |𝑉 (𝐺)|. We repeat
the procedure described above for all nodes 𝑣 ∈ 𝑉 (𝐺) and all their neighbors 𝑣′ ∈ Γ(𝑣) (see the



Algorithm 1: Approximation of Graph Tukey Depth
Input :graph 𝐺
Output :approximation ̂︀td(𝑣) of td(𝑣) for all 𝑣 ∈ 𝑉 (𝐺)

1 ̂︀td(𝑣)←− |𝑉 (𝐺)| for all 𝑣 ∈ 𝑉 (𝐺);
2 forall 𝑣 ∈ 𝑉 (𝐺) do
3 forall 𝑣′ ∈ Γ(𝑣) do
4 𝐻𝑣′ , 𝐻𝑣 = 𝑀𝐶𝑆𝑆({𝑣′}, {𝑣});
5 forall 𝑥 ∈ 𝑉 (𝐺) do
6 if 𝑥 ̸∈ 𝐻𝑣′ then
7 ̂︀td(𝑥) = min{ ̂︀td(𝑥), |𝑉 (𝐺)| − |𝐻𝑣′ |};
8 if 𝑥 ̸∈ 𝐻𝑣 then
9 ̂︀td(𝑥) = min{ ̂︀td(𝑥), |𝑉 (𝐺)| − |𝐻𝑣|};

10 return ̂︀td(𝑣) for all 𝑣 ∈ 𝑉 (𝐺)

for-loops in Line 2 and 3). In this way we solve the MCSS problem for all input sets {𝑣}, {𝑣′},
i.e., separate 𝑣 from all of its neighbors 𝑣′ by maximal disjoint closed sets 𝐻𝑣, 𝐻𝑣′ (see Line 4).
Note that the Tukey depth of a node 𝑥 is based on a closed set of maximum cardinality not
containing 𝑥. Thus, if 𝑥 does not lie in the set 𝐻𝑣 (resp. 𝐻𝑣′), then the cardinality of 𝐻𝑣 (resp.
𝐻𝑣′) is smaller than or equal to a closed set of maximum cardinality not containing 𝑥. Hence,
we can update the current Tukey depth approximation of all nodes 𝑥 ∈ 𝑉 (𝐺) as follows: Take
the minimum over the old and the new approximation which is the cardinality of 𝑉 (𝐺) ∖𝐻𝑣 if
𝑥 /∈ 𝐻𝑣 or that of 𝑉 (𝐺) ∖𝐻𝑣′ if 𝑥 /∈ 𝐻𝑣′ (see Line 7 and Line 9).

By construction, Alg. 1 finds only maximal and not maximum closed sets, resulting in a
one-sided error in the estimate of Tukey depths. This is formulated in the proposition below.

Proposition 4. Alg. 1 overestimates the Tukey depth, i.e., for the output ̂︀td(𝑣) returned by Alg. 1
we have ̂︀td(𝑣) ≥ td(𝑣), for all 𝑣 ∈ 𝑉 (𝐺).

Regarding the runtime of Alg. 1, note that the inner part of the loop in Lines 3-9 is executed
𝑂 (𝑚) times because we iterate over all neighbors (i.e., all edges are considered twice). The
runtime of the inner loop (Lines 3–9) is dominated by the MCSS algorithm called in Line 4,
which calls the closure operator at most 𝑂 (𝑛) times [14]. Since the geodesic closure can be
computed in time 𝒪(𝑚𝑛) [26], we have the following result for the total runtime of Alg. 1:

Proposition 5. Alg. 1 returns an upper bound of the Tukey depth for all nodes of 𝐺 in 𝒪(𝑚2𝑛2)
time.

The runtime of the approximation algorithm can be improved by considering for each node 𝑣
a fixed number of distinct nodes 𝑣′, or by considering a fixed subset 𝑊 ⊆ 𝑉 (𝐺), instead of the
whole node set 𝑉 (𝐺) in the outer loop (see Lines 2–9). It is left to further research to analyze
how these changes affect the quality of the approximation performance.



4.2. Experimental Evaluation

In this section we empirically evaluate the approximation quality and runtime of Alg. 1 on
datasets containing small graphs2. Regarding the approximation quality, we compare the results
obtained by our heuristic algorithm to the exact Tukey depths computed with the algorithm
in [3]. For the evaluation, we consider 19 graph datasets of different types (small molecules,
small graphs from bioinformatics and computer vision, and small social networks) from [2]
(see columns 2–4 of Tab. 1 for the number of graphs and their average number of nodes and
edges). The average size of the graphs ranges from 14 (PTC_MM) up to 82 (OHSU ); their average
edge numbers from 14 to 200. The reason for considering small graphs only is that the exact
algorithm [3] was unable to calculate the Tukey depth for larger graphs within one day (see the
last two columns of Tab. 1). For practical reasons, we removed all disconnected graphs from the
original datasets, by noting that our heuristic works for disconnected graphs as well.

The results are presented in Tab. 1. It contains the approximation qualities measured in
different ways (columns 5–10) and the runtime of the exact (column 11) and our heuristic
algorithm (column 12). The datasets are sorted according to their absolute approximation error
(column 5 of Tab. 1), i.e., the sum of all differences between the approximation and the exact
Tukey depth over all nodes and all graphs in the dataset.

Regarding the absolute error (column 5), our approximation results are equal to the exact
Tukey depths for 5 out of the 19 datasets, while their computation was faster by a factor of up
to 100 (see PTC_MM). Our algorithm has the largest absolute error of 4155 on the COIL-DEL
graphs, by noting that this dataset consists of 3900 graphs. Hence, the average error per graph is
only slightly above one. Additionally, we look at the relative errors (column 6), i.e., the absolute
error divided by the sum of all depths. We use this measure to validate that our algorithm
performs very well, by noting that the relative errors are below 4 · 10−3 for all graph datasets.
The per node error (column 7) is the average error our algorithm makes per node, while the per
graph error (column 8) is the error it has on average per graph. Regarding the per node error,
the worst-case is for the COIL-DEL dataset (last row) with an average error of 0.05. For the
per graph error, the worst result was obtained for the OHSU dataset, where we overestimate
the sum of all node depths by 1.65 per graph on average. This shows that our approximation
algorithm performs very well, especially, if considering the average results over the datasets.

Finally, we studied also the worst-case approximations for nodes and graphs. In particular, the
columns Max. Node Error resp. Max. Graph Error denote the maximum error of the algorithm
on single nodes resp. on single graphs. The results show that there is a very low error of at most
3 per node for 13 out of the 19 datasets. For three graph datasets, the maximum error per node
is at most 7 and we have a maximum error between 11 and 19 in three cases. Regarding the
maximum error per graph, a similar behavior can be observed by noting that except for OHSU
and Peking_1, the maximum node errors and maximum graph errors are close to each other. This
implies that there are only a few nodes with a high approximation error. It is an interesting
problem to find the structural properties of such nodes and graphs that are responsible for the
high approximation errors. The last two columns show the runtimes of the two algorithms.
Our algorithm (last column) is faster than the exact one by at least one order of magnitude. In
summary, the evaluation of Alg. 1 clearly demonstrates that our heuristic performs well in

2See https://github.com/fseiffarth/AppOfTukeyDepth for the code.

https://github.com/fseiffarth/AppOfTukeyDepth
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approximating the graph Tukey depth. It is faster (sometimes more than 100 times) than the
exact algorithm, even on small graph datasets. Regarding larger graphs, this gap in runtime
will increase because of the exponential runtime of the exact algorithm. Additionally, the very
small relative errors (at most 4 · 10−3), the average errors (at most 1.65 per graph), and also the
worst case errors show that the algorithm can be used effectively for further applications based
on the Tukey depth (see Sec. 3).

5. Concluding Remarks

Graph Tukey depth appears an interesting and promising new concept for mining and learning
with graphs. The study of the relationship of graph Tukey depth to other node centrality
measures is an interesting question for further research (cf. Fig. 1). For example, while the
centroid(s) in trees [27, 28] are exactly the nodes with the highest Tukey depth, this is not
necessarily the case for more general graphs beyond trees.

Another important issue is to understand the semantics of graph Tukey depth better. For
example, what are the properties of the nodes with the highest depth (cf. the def. of Tukey-
median in R𝑑)? We have empirically demonstrated that graph Tukey depth can closely be
approximated in small graphs. It is a question of whether this result holds for (very) large
graphs as well. To answer this question, the scalability of our approximation algorithm should
be improved on the one hand. On the other hand, one needs (possibly tight) theoretical upper
bounds on graph Tukey depths. Another interesting question is to identify graph classes for
which our heuristic always results in the exact graph Tukey depth. While this is the case for
trees, it is unclear whether it holds for outerplanar graphs as well. We believe that this question
can be answered affirmatively by using techniques from [16]. We show experimentally that
there is a connection between geodesic core-periphery decompositions and the deterministic
definition of 𝑘-geodesic cores. This suggests that using our core approximation algorithm [16],
we can closely approximate the set of nodes with the highest Tukey depth.
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