
AI Approaches Overcome Variability Problems in
Diachronic Text Analysis: The Case of Identifying
Bound Affixes in Middle English
Hagen Peukert1

1Universität Hamburg, ZFDM, Germany

Abstract
This contribution pursues two objectives. First, a short summary of the computational approaches for
identifying Middle English affixes comprising different AI methods will be devised reaching from stand-
alone application [1] and (semi-automated) shared-work solutions [2]1 to requesting the OED RESTful
API.2 Second, the role of AI and how it is entertained in the context of diachronic affix identification will
be shown.

Keywords
Computational Diachronic Linguistics, Middle English, Lexical Affixation, Morphological Language
Change

1. Introduction

Collecting representational quantitative data on the frequency of lexical affixes throughout 700
hundred years of English language use has proven to be challenging. While type frequencies
of all suffixes and prefixes were determined with relative ease, the identification of token
frequencies from larger text corpora took more than a decade of intensive and cumbersome
methodological work. Extracting all representations of one affix type and its exact quantities
required taking into account all kinds of variability in form and usage. Yet exact quantities are
needed to make the more interesting statements on affix productivity and identification as well
as interrelations with other factors of influence in the system of language, i.e. a correlation to
word order or predictions of likely future changes. Because of the small quantities of available
text training material, automated AI approaches have long been ignored as possible candidates
for a viable solution. As the following description of the genesis of different computational
approaches will reveal, a mixture of an intelligent algorithm and automated matching from
existing resources and moving towards micro services generates best results that are useful for
progress in linguistic research of diachronic morphology.

1https://morphilo.readthedocs.io/en/latest/index.html
2https://gitlab.rrz.uni-hamburg.de/softwaretools/morphochron

Humanities-Centered AI (CHAI), Workshop at the 45th German Conference on Artificial Intelligence, September 19, 2022,
Trier, Germany
" hagen.peukert@uni-hamburg.de (H. Peukert)
� 0000-0002-3228-316X (H. Peukert)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:hagen.peukert@uni-hamburg.de
https://orcid.org/0000-0002-3228-316X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Hagen Peukert CEUR Workshop Proceedings 1–7

2. Stages of development and algorithmic refinement

The methodological procedure improved in bumps and leaps over the year as both the linguistic
knowledge of Middle English (ME) was enhancing (very moderately) and the inventory of
computational methods increased (rather exuberantly) over the years. Hence the phenomenon
under investigation as well as the methods helping to understand the phenomenon are constantly
changing over time. The researcher has to keep track of all advancements on either aspect,
integrate technological innovations in ongoing methodological work, but also consider new
findings in the field of derivational morphology altogether. It needs little justification to see
that the longer a research project takes, the more problematic it will be to constantly adjust the
methodological set up. Yet, besides increasing one’s personal learning, such challenge bears the
advantage of pervading the subject to an utmost degree and by that diminishing the chance of
encountering inconsiderate evidence. It is under this lens that roughly four phases of different
approaches to the collection of data can be observed since the inception of the project about
one decade ago.

The first phase is characterized by the basic idea of having the machine support manual data
collection in text corpora. It derived from elaborated corpus searches for selected derivational
morphemes. Realizing that the variations in writing would not produce correct quantities, it
soon became clear that a more elaborated algorithm needs to be developed. What was needed
foremost was a comprehensive list of all known affixes and possibly all of their known variations.
Already at the time, the OED online version (4.0) provided a seemingly complete collection of
about 800 suffixes and 300 prefixes. Although this early study of English affix usage could not
manage to reliably find all tokens that are really required for generating productivity measures
over time, at least the existence of each of the morphemes, i.e. type frequencies, could be proven
in textual data in predefined time spans [3]. And it initiated some more intensive investments
on designing more sophisticated software programs shifting the methodological work towards
artificial intelligence and semi-automated natural language processing.

The second phase started with the production of the Morphilo Toolset [4, 1]. It consisted
of three modules (MorExtractor, Morphilizer, MorQuery) that could best be described as in-
dependent software components loosely connected by a relational database or other forms
of persistent storage. Whereas MorQuery was meant only as a tool to filter and search the
final results from the database with more comfort than by command line, MorExtractor and
Morphilizer comprise somewhat thoughtful language processing and automated workflows.
MorExtractor has two goals. First it manages the text corpora, checks formats and prerequisites
such as tagging schemes or time intervals. Second, it matches the available enumerations of
suffixes and prefixes to the collections of tagged or plain text corpora respectively considering
the word class and time dimension. As an output the matched words together with the corpus
data and the word class are saved in a text file, which is the input of the next module. The
Morphilizer-algorithm is geared to how a human would analyze a given multi-morphemic word
into stems, roots, and affixes, but also the order and position in case several affixes are stringed
together, e.g. tempt-ation-al. The rules for analyzing are kept simple:

1. possible prefix candidates are matched one by one from the word beginning until no item
in the prefix enumeration finds a match (left to right)

2



Hagen Peukert CEUR Workshop Proceedings 1–7

2. possible suffix candidates are matched by the same manner from the end of the word
(right to left)

3. the remainder, the part that could not be matched, is kept in memory as a potential root
of the word

4. the process is repeated in reverse order, i.e. starting with the suffixes
5. if, at the end of the both matching processes, the the two potential roots are equal and

the length is greater one the process starts with the next word; otherwise the process
starts with the next prefix variant

Furthermore, to avoid the embeddedness problem, the length of an affix chain is taken as a
simple criterion to prioritize possible matching candidates, i.e. -ation beats -tion in e.g. temptation
leaving as the root tempt. The simple logic behind this decision results from probability measures
and the relation between the length of a word and its frequency of occurrence. And it follows
from Zipf’s law.

More precisely, the workflow goes as follows. The file containing lexically annotated words
is created by an automaton, which extracts all nouns, verbs, and adjectives from tagged cor-
pora and marks the grammatical morpheme, if regular (plural, 3rd person sing, possessive,
progressive/gerund, past, and participles), otherwise it is already tagged in the standard PENN
annotation. Enumerated lists serve as a data structure for efficiently keeping suffix and prefix
morphemes and their allomorphic representations. There are more than 800 suffix variations;
the prefixes comprise about one third of the suffixes.

These affixes were copied from the OED (version 4.0). At the time of devising the architecture,
the time of usage, inception, and possibly attrition of the affix was not provided (other than in
later versions) and, hence, could not be incorporated into the data type. So the algorithm could
be refined with knowledge of the word class, but not on the time of usage, which is only then
included in automatic matching if existent in the data base, i.e. it was added by manual post
processing. The enumerated lists are processed according to the above algorithm.

Post-processing is done after the words of a text were synchronized with existing data in the
master data base. All non-matches are displayed as a result of the algorithm. Corrections can
be done by click and drop. Confirming a correct lexical segmentation means that they are saved
to the data base together with the number of occurrence in the corpus and the time span of the
text.

The gist of phase three is a community based approach [2], in which the programmed
Morphilo components would be integrated into a multi-user and web-based platform. It soon
became apparent that even a semi-automatic approach done by a single researcher would still
exceed any sensible workload. Thus the idea came up to engage other researchers in the field. In
analogy to the wiki(pedia)-approach, in which a resource is built step by step by a community
profiting from each contribution made. However, the decisive difference for third generation
Morphilo is that access to the database is only granted if a contribution is actually made, that
is, a user inputs its text and needs to review all the words of the text that are not yet available
in the database. In addition, to control quality of the reviews, a certain number (say 10) has
to hand in the same lexical segmentation of a word before it is stored in the database. Figure
1 reveals the architecture of the community based approach. One can still identify the three
components of the previous version depicted by screenshots.

3



Hagen Peukert CEUR Workshop Proceedings 1–7

�
�
�
��

��
�
	�

�
�
	�

�

	
�

��
�

�
�
�	
�

��

�
��
��

�
�
��
�
�
��

�
�
�
��
�
��
�
�
	

�


��
�
�

�


��
�
�

�


��
�
�

�
�
��
�
	�

�	
�
�

�
��
��
�

�
��
��
�

�
��
��
�

��������	
���
�


�

��
��
�

��
��
�
�
�

�	

�
�
��
�

�

�
�
�

�
�
��
�
��
�

�
�
��
�
��
�

�
�
��
�
��
�

�
��
��
�

�
��
��
�

�
��
��
�

	


��
�
�


��

�
�

��
��



��
�
��


�
�

	


��
�
�


��

�
�

��
��



��
�
��


�
�

	


��
�
�


��

�
�

��
��



��
�
��


�
�

�
�
�
��
�

��
��
�	

�
�
�
��
�

��
��
�	

�
�
�
��
�

��
��
�	

�
�
��
�

�
�
�
�
 

F
ig
u
re

1:
A
rc
h
it
ec
tu
re

of
th
e
T
ak
e-
an

d
-S
h
ar
e
A
p
p
ro
ac
h
(3
rd

ge
n
er
at
io
n
)

5

Fi
gu

re
1:

A
rc

hi
te

ct
ur

e
of

th
e

Ta
ke

-a
nd

-S
ha

re
A

pp
ro

ac
h

(3
rd

ge
ne

ra
tio

n)

4



Hagen Peukert CEUR Workshop Proceedings 1–7

Fi
gu

re
2:

U
M

L
C

la
ss

D
ia

gr
am

fo
r

M
or

ph
oc

hr
on

(4
th

ge
ne

ra
tio

n)

5



Hagen Peukert CEUR Workshop Proceedings 1–7

Finally the fourth phase implemented the new RESTful API of the OED (see figure 2). It
includes the main functionality of its predecessors although it is completely refactored. Generally
it follows the idea known in information science as micro services. Once the OED decided
to offer a functional API and make it available for research use free of any charge, the future
way to go in using this resource was strikingly obvious. Because this approach successfully
collected sufficient amounts of language data from a given text corpus and at the same time
is the most advanced and exact method predominating the solution of Middle English affix
extraction while incorporating some (but not all) of the previous algorithmic solutions, it is the
prioritized candidate to be recommended for future use.

3. Conclusion

The above explications on a given (and long standing) problem in Diachronic Linguistics depicts
a picture of how the existing inventory of AI-methods is typically applied. There are hardly
any straight imperatives of proceedings that we could follow. It cannot be predicted with a
higher or lower probability or plausibility as to which method fits better than the other. Indeed,
it is possible to make a reasonable selection from the method inventory – i.e. exclude neural
networks because the data does not fulfill its very basic requirements – but it still leaves the
researcher with too many alternatives from which it is impossible to estimate a success rate.
What seems to be an trial-and-error approach from the outside, it is a kind of systematic polling
from the inside perspective. In the concrete case described here, one could learn that, on the
one hand, the right combination from a semi-automatic method (first generation) enriched with
a smart algorithm (2nd generation) would only be efficient if extended with a quality resource
(4th generation). On the other hand, none of these components can be missed out, however, as
the third generation showed, not all methods are equally optimal.

References

[1] H. Peukert, The Morphilo Toolset: Handling the Diversity of English Historical Texts,
in: A. Ammermann, A. Brock, J. Pflaeging, P. Schildhauer (Eds.), Facets of Linguistics,
Language and Text Studies, Peter Lang, Frankfurt, 2014, pp. 161–172. doi:10.3726/
978-3-653-03540-7.

[2] M. Burghardt, C. Müller-Birn (Eds.), Merging Community Knowledge and Self-Interest to
Build Language Resources: Architecture and Quality Management of a Take-and-Share-
Approach of Word Annotations, Gesellschaft für Informatik e.V., Bonn, 2018. doi:10.18420/
infdh2018-01.

[3] H. Peukert, Smoothing derivational asymmetries in English: In support of Greenberg’s
Universal 27, STUF - Language Typology and Universals 69 (2016) 517–545. doi:10.1515/
stuf-2016-0022.

[4] H. Peukert, From semi-automatic to automatic affix extraction in Middle English corpora:
Building a sustainable database for analyzing derivational morphology over time, in:
J. Jancsary (Ed.), Proceedings of KONVENS 2012, ÖGAI, 2012, pp. 415–423. URL: http:
//www.oegai.at/konvens2012/proceedings/61_peukert12w/, lThist 2012 workshop.

6

http://dx.doi.org/10.3726/978-3-653-03540-7
http://dx.doi.org/10.3726/978-3-653-03540-7
http://dx.doi.org/10.18420/infdh2018-01
http://dx.doi.org/10.18420/infdh2018-01
http://dx.doi.org/10.1515/stuf-2016-0022
http://dx.doi.org/10.1515/stuf-2016-0022
http://www.oegai.at/konvens2012/proceedings/61_peukert12w/
http://www.oegai.at/konvens2012/proceedings/61_peukert12w/

	1 Introduction
	2 Stages of development and algorithmic refinement
	3 Conclusion

