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Abstract
The logic embedding tool (LET) encodes non-classical reasoning problems into classical higher-
order logic. It is extensible and can support an increasing number of different non-classical
logics as reasoning targets. When used as a pre-processor or library for higher-order theorem
provers, the tool admits off-the-shelf automation for logics for which otherwise few to none
provers are currently available.
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1. Introduction

Non-classical logics (NCLs) deviate from various principles of classical logics such as
bivalence, truth-functionality, idempotency of entailment, etc. [1]. NCLs have numerous
topical applications in artificial intelligence, mathematics, computer science, philosophy
and other fields; and increasingly many domain-specific NCLs are being introduced.
Despite the relevance of NCL reasoning, for many formalisms automated theorem proving
(ATP) systems do not exist. One major reason is that the development of ATP systems
requires not only suitable theoretical foundations, but it also requires considerable resources
for software development and related aspects. It is not surprising that these efforts are
only rarely made for logics that are still the subject of active research and discussion
(i.e., moving targets), and might be superseded with novel formalisms in the near future.
This situation impedes the deployment of methods in practical AI research, and it also
hampers the systematic evaluation of available formalisms. Of course, there are notable
exceptions of well-established NCLs for which both standards and/or ATP systems do
exist, such as linear logics [2, 3], intuitionistic logics [4, 5, 6, 7, 8, 9, 10] and modal
logics [11, 12, 10, 13, 14, 15].

Orthogonal to the development of special-purpose provers for individual NCLs is the
use of logic translations that encode the logic under consideration (the source logic) into
another logic formalism (the target logic) for which there exist means of automation [16, 17].
In this setting, improvements to ATP systems for the target logic inherently benefit
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reasoning in the source logic. A special type of logic translation are shallow embeddings [18],
in which the source logic’s semantics is directly expressed in the target logic (as opposed to
deep embeddings where source logic expressions are represented as uninterpreted data [18]).
One well-known example of a shallow embedding is the standard translation of modal
logic [19] in which reasoning in certain modal logics is reduced to reasoning in classical
first-order logic.

In this paper, the logic embedding tool (LET) is presented that provides a library of
shallow embeddings of different NCLs into classical higher-order logic (the target logic
considered throughout this work), and an executable for applying these embeddings on
input problems. Special attention is paid to the extensibility of the tool’s underlying
library of embeddings. Currently, the following logics are supported:

• Many quantified normal multi-modal logics
• Many quantified hybrid logics
• Public announcement logic
• Carmo and Jones’ dyadic deontic logic
• Åqvist’s dyadic deontic logic E

LET is implemented in Scala and freely available as open-source software (BSD-3
license) via Zenodo [20] and GitHub1. The input format is a non-classical TPTP syntax
extension [21] that allows non-classical reasoning problems to be written within the
common TPTP framework [22], see below for an overview. LET can be used as library
or as external pre-processor to higher-order ATP systems, effectively enabling automated
reasoning for various NCLs.

Higher-Order Logic. Extensional type theory, commonly referred to as higher-order
logic (HOL), is an expressive higher-order logical formalism based on a simply typed
λ-calculus which originates from works of Church, Henkin and others [23, 24, 25]. HOL
is the target logic of LET.

The term higher-order refers to the ability of HOL to represent quantifications over
predicate and function variables — as opposed to first-order logics, in which quantifi-
cation is restricted to individuals only. Furthermore HOL provides λ-notation as an
expressive binding mechanism to denote unnamed functions, predicates and sets (by their
characteristic functions), and it comes with built-in principles of Boolean and functional
extensionality as well as type-restricted comprehension. It constitutes the foundation of
most contemporary higher-order ATP systems [26].

Related work. The translation tool FMLtoHOL [27] implements a shallow embedding
of first-order modal logic to HOL. However, the tool only supports modal logic, the set of
supported mono-modal logics is strictly smaller, and multi-modal logics are not addressed.
LET generalizes and extends previous work on modal logic embedding tools [28, 29]: As
opposed to previous tools, LET is not fixed to modal logic. It, e.g., supports deontic logics

1github.com/leoprover/logic-embedding
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not based on standard modal logic. Also, it is the first tool to make use of the novel TPTP
language standard for non-classical reasoning; hence offering a uniform input language
front-end (as opposed to previous tools, which all only supported specifically tailored
input formats for their respective logic). LET also offers more encoding variants for
modal logics, including embedding into polymorphic higher-order logic in TH1 format [30]
to allow for a more compact output.

2. TPTP Problem Representation Format

As input syntax LET accepts the NXF and NHF languages [21], recent non-classical
extensions of the well-established TPTP syntax standard for ATP systems. The TPTP
syntax is part of the TPTP World infrastructure [22], and defines several languages for
representing reasoning problems, including languages for typed first-order logic extended
with Boolean terms (denoted TXF ) [31] and higher-order logic (denoted THF ) [32].
Reasoning problems in TPTP are built-up from annotated formulae of the form ...

language(name, role, formula, source, useful_info).
where name, role, source and useful_info are extra-logical annotations, the two latter being
optional. The name assign a (unique) identifier to the formula, the role describes whether
the formula is used, e.g., as axiom or conjecture of a reasoning problem. A comprehensive
survey of these and further TPTP languages is available in the literature [22].

The NXF and NHF languages extend TXF and THF, respectively, with new generic
non-classical operators of the form {connective_name}, where connective_name is either
a TPTP-defined name (starting, by convention, with a $-sign) or a system-specific name
(starting with $$), that are applied like functional symbols. They can be parameter-
ized with arbitrary key-value pairs or a simple index. As an example, assuming that
{$$obligation(bearer := alice)} represents a directed dyadic obligation operator of
some deontic logic, the formula {$$obligation(bearer := alice)}(a,b) represents
the conditional obligation of agent alice to adhere to b given a in NXF. The concrete
interpretation of a non-classical operator is defined externally by the TPTP (in case of
TPTP-defined operators) or a third party (in case of system-specific operators).

Although NXF is a typed language, it may also represent untyped formalisms. Following
the conventions from TXF, any predicate or function symbol with undeclared type
implicitly defaults to a canonical n-ary predicate or n-ary function type.

Additionally, NXF and NHF introduce so-called logic specifications, special kinds of
annotated formulas with the role logic, that specify the logic being used within the
problem file. In NXF they are of form . . .

tff(name,logic,logic_name == properties).
where logic_name is some TPTP or user defined name for a logic (or logic family), and
properties is a list of key-value parameters that optionally further specify the intended
NCL. In NHF the THF formula identifier thf is used instead.

A detailed introduction of non-classical connectives and logic specifications is presented
in the respective TPTP proposal [33, 21], and they are informally illustrated via the
application examples in Section 5 below.



Figure 1: The top-level architecture of LET. The solid arrows indicate directed data flow between
different components, the dashed lines represent access to additional resources.

3. Architecture

The components of LET and their relationship are displayed in Fig. 1. It is structured
into two main modules:

1. The library module defines a common embedding interface, and constitutes the
collection of shallow embeddings for different NCLs.

2. The application module implements a stand-alone executable on top of the library
module. It finds and applies the correct shallow embedding on a given input
problem.

Note that the library module is independent from the application module, and can be
included in existing ATP systems via a simple API. The application module, in contrast,
can be employed as external pre-processor executable.

The general procedure implemented by the application module is as follows:

1. The input problem is parsed [34] and scanned for a logic specification (an annotated
TPTP formula with the role logic),

2. the logic name and the parameters are extracted from the logic specification,
3. the internal database of supported logics is queried for the given logic and, if

supported, the respective embedding procedure is returned, and finally,
4. the embedding procedure is invoked on the input problem and the result is returned

as classical TPTP THF problem.

If the problem does not contain any logic specification, the original problem is returned.
If the logic specified in the input problem is malformed or not supported by LET an
error is reported. The separation of library and application facilitates LET’s extensibility,
as the library can be easily extended with new embeddings of further NCLs while the
application module remains unchanged.

Note that the output of the tool is a classical higher-order problem represented in
THF syntax. Hence every higher-order ATP system that supports reasoning in THF
can be employed for reasoning in the respective NCL. Additionally, LET supports
TSTP-compatible result reporting [35] for seamless integration into TPTP/TSTP tool
chains.



4. Overview of Supported NCLs

The NCLs currently supported by LET are the following:

Modal logics. The logic name $modal represents the family of propositional and first-
order quantified normal multi-modal logics [19, 36]. The modal operators � and ♦
are represented by the non-classical connectives {$box} and {$dia}, respectively. In
the case of multiple modalities, the connectives are indexed with uninterpreted user
constants, prefixed with a # (hash sign) as, e.g., in {$box(#i)} and {$dia(#i)}.
Global assumptions are expressed via annotated formulas of role axiom, and local
assumptions via role hypothesis [37]. Relevant embeddings are described in [38,
39, 28].

Hybrid logics. Hybrid logics, referred to as $$hybrid, extend the modal logic family
$modal with the notion of nominals, a special kind of atomic formula symbol
that is true only in a specific world [40]. The logics represented by $$hybrid are
first-order variants of H(E,@, ↓) [40, 36]. A nominal symbol n is represented as
{$$nominal}(n), the shift operator @s as {$$shift(#s)}, and the bind operator ↓ x
as {$$bind(#X)}. All other aspects are analogous to the modal logic representation
above. Preliminary shallow embeddings results are reported in [41]. The embedding
implemented in LET simplifies and extends these.

Public announcement logic. Public announcement logic (PAL), $$pal, is a proposi-
tional epistemic logic that allows for reasoning about knowledge. In contrast to
$modal, PAL is a dynamic logic that supports updating the knowledge of agents
via so-called announcement operators [42]. The knowledge operator Ki is given
by {$$knows(#i)}, the common knowledge operator CA, with A a set of agents,
by {$$common($$group := [...])}, and the announcement [!ϕ] is represented as
{$$announce($$formula := phi)}. An embedding of PAL is presented in [43].

Dyadic deontic logics. Deontic logics are formalisms for reasoning over norms, obliga-
tions, permissions and prohibitions. In contrast to modal logics used for this purpose
(e.g., modal logic D), dyadic deontic logics (DDLs), named $$ddl, offer a more
sophisticated representation of conditional norms using a dyadic obligation operator
©(ϕ/ψ). They address paradoxes of other deontic logics in the context of so-called
contrary-to-duty (CTD) situations [44]. The concrete DDLs supported by LET
are the propositional system by Carmo and Jones [45] and Åqvist’s propositional
system E [46]. The dyadic deontic operator © is represented by {$$obl} (short for
obligatory). An embedding of the above DDL is studied in [47, 48]

Note that the name $modal of modal logics and that of its connective names are given
by TPTP defined names (starting with a single dollar sign) since it is the first non-
classical logic standardized by the TPTP [33, 21]. All further logics are LET-specific
logic representations that have not (yet) been included in the collection of TPTP curated
NCLs; following the TPTP naming convention, their identifiers hence start with two
dollar signs (system defined names).



Table 1
Overview of the parameters of the different NCLs supported by LET

Logic Parameter Description
$modal $quantification Selects whether quantification semantics is varying domains,

constant domains, cumulative domains or decreasing domains.
Accepted values: $varying, $constant, $cumulative,
$decreasing

$constants Selects whether constant and functions symbols are interpreted
as rigid or flexible.
Accepted values: $rigid, $flexible†

†: Not yet supported by LET.
$modalities Selects the properties for the modal operators.

Accepted values, for each modality:
$modal_system_X where X ∈ {K, KB, K4, K5, K45, KB5, D, DB,
D4, D5, D45, T, B, S4, S5, S5U}
or a list of axiom schemes
[$modal_axiom_X1, ..., $modal_axiom_Xn]
Xi ∈ {K, T, B, D, 4, 5, CD, C4}

$$hybrid see $modal see $modal
$$pal none —
$$ddl $$system Selects which DDL logic system is employed: Carmo and Jones

or Åqvist’s system E.
Accepted values: $$carmoJones or $$aqvistE

Non-classical logic languages quite commonly admit different concrete logics using the
same syntax. In order to choose the exact logic intended for the input problem, suitable
parameters are given as properties to the logic specification as introduced in Sect. 2.
For the above NCLs supported by LET, Table 1 gives an overview of the individual
parameters and their meaning. We refer to Fitting and Mendelsohn [37] for an explanation
of the modal logic properties.

5. Application Examples

The functionality of LET is illustrated by a number of examples. Exemplary ATP system
results are produced by the higher-order prover Leo-III [49], version 1.6.8, in which LET
is integrated as a library and accessed via its API. Leo-III parses the problems, invokes the
embedding API, and then applies standard proof search on the resulting THF problem.
Of course, any other THF-compliant HOL ATP system can be used instead when LET is
used as external pre-processor.

The presented NXF problems and the complete THF output produced by LET on the
individual problems is available as small data set at Zenodo [50].



Example 1: Modal logic reasoning. The Barcan formula [51], given by

∀x.�p(x)⇒ �(∀x. p(x))

in a first-order variant, is a modal logic formula that is valid if and only if the quantification
domain of the underlying first-order modal logic model is non-cumulative [37]. This is
written in NXF as . . .

1 tff(modal_k5, logic, $modal == [
2 $constants == $rigid,
3 $quantification == $decreasing,
4 $modalities == [$modal_axiom_K, $modal_axiom_5]
5 ] ).
6
7 tff(bf, conjecture, ( ![X]: ({$box}(f(X))) ) => {$box}(![X]: f(X)) ).

This specifies a modal logic with rigid function symbols, decreasing quantification domains
and box operators satisfying modal axiom schemes K and 5. Leo-III returns . . .

% SZS status Theorem for barcan.p

However, when the parameter $quantification is changed to $cumulative or $varying
the problem becomes unprovable (as expected).

As an optimization of earlier embedding tools, LET can output polymorphic HOL
problems encoded in TH1 (given the parameter -p POLYMORPHIC when used as exe-
cutable). TH1 extends the monomorphic THF format with polymorphic types (rank-1
polymorphism) [30]. An excerpt of the output of LET for the reasoning problem is:
1 thf(mworld, type, mworld: $tType).
2 thf(mrel_type, type, mrel: mworld > (mworld > $o)).
3
4 thf(mactual_type, type, mactual: mworld).
5 thf(mlocal_type, type, mlocal: (mworld > $o) > $o).
6 thf(mlocal_def, definition, mlocal = (^ [Phi:(mworld > $o)]: ((Phi @ mactual))) ).
7 [...]
8 thf(mbox_type, type, mbox: (mworld > $o) > (mworld > $o)).
9 thf(mbox_def, definition, mbox = (^ [Phi:(mworld > $o),W:mworld]:

10 (! [V:mworld]: ( (mrel @ W @ V) => (Phi @ V) )) )).
11 thf(mrel_euclidean, axiom, ! [W:mworld,V:mworld,U:mworld]:
12 ( ((mrel @ W @ U) & (mrel @ W @ V)) => ( mrel @ U @ V) ) ).
13
14 thf(eiw_type, type, eiw: !> [T:$tType]: (T > (mworld > $o))).
15 thf(eiw_nonempty, axioms, ! [T:$tType,W:mworld]: ((? [X:T]: ((((eiw @ T) @ X) @ W))))).
16 thf(eiw_di_cumul, axiom, ! [W:mworld,V:mworld,X:$i]:
17 (( (eiw @ $i @ X @ W) & (mrel @ V @ W) ) => ( eiw @ $i @ X @ V ))).
18 thf(mforall_vary, type, mforall_vary: !> [T:$tType]: ((T > (mworld > $o)) > (mworld > $o))).
19 thf(mforall_vary_def, definition, mforall_vary = (^ [T:$tType,A:(T > (mworld > $o)),W:mworld]:
20 (! [X:T]: ( (eiw @ T @ X @ W) => (A @ X @ W) ))) ).
21 [...]
22 thf(f_type, type, f: $i > (mworld > $o)).
23 thf(bf, conjecture, mlocal @ ( mimplies
24 @ (mforall_vary @ $i @ (^ [X:$i]: (mbox @ (f @ X))))
25 @ (mbox @ ((mforall_vary @ $i) @ (^ [X:$i]: ((f @ X))))) )).

In lines 1–12, meta-logical notions and the semantics of the modal logic connectives
are defined. Intuitively, a new type for possible worlds mworld and a relation symbol



mrel as their accessibility relation is introduced, following the usual Kripke semantics
for modal logics. Modal logics formulas are encoded as predicates over possible worlds.
Then, the box operator is defined to hold whenever the original formula, encoded as
a predicate, holds at every accessible world, and the accessibility relation is defined to
be euclidean (according to modal modal K5). We refer to the literature for details on
the encoding process [39, 28]. Subsequently (lines 14–17), an exists-in-world predicate
is defined to modal varying domain semantics [28]. In the TH1 variant, this is encoded
as a polymorphic symbol eiw such that objects of any type can be asserted to exist at
a particular world using a single predicate. Analogously (lines 18–20), the modal logic
universal quantifier is defined as a polymorphic symbol mforall_vary. In monomorphic
embeddings, the exists-in-world predicates and the quantifier symbols need to be defined
for every relevant type occurring in the original problem file individually. Finally, lines
22–25 show the translated conjecture of the Barcan reasoning problem.

Example 2: Hybrid logic reasoning. Hybrid logics can talk about the satisfaction
relation of the modal logic at the object language level. Up to the author’s knowledge,
there are no ATP systems available that can reason in first-order hybrid logics, let alone
in the many variants offered by LET. An example tautology is given by

∀X.�@n

(
↓Y. (Y ∧ p(X))⇔ (n ∧ p(X))

)
that is encoded as . . .

1 tff(hybrid_s5,logic, $$hybrid == [
2 $constants == $rigid,
3 $quantification == $varying,
4 $modalities == $modal_system_S5
5 ] ).
6
7 tff(1, conjecture, ![X]: {$box}({$$shift(#n)}(
8 {$$bind(#Y)}((Y & p(X))
9 <=> ({$$nominal}(n) & p(X)) ))) ).

Example 3: Contrary-to-duty (CTD) reasoning in deontic logics. In deontic logics,
CTD situations arise when reasoning with obligations that prescribe what to do if other
(primary) obligations are violated. Simple approaches, e.g., using modal logic D, lead
to inconsistencies that allow arbitrary conclusions to be inferred. This is addressed by
dyadic deontic logics that encode conditional norms using a special operator ©(ψ,ϕ)
(read: it ought to be ψ, given ϕ) represented as {$$obl}(ψ, ϕ). An example is . . .

1 tff(spec_e, logic, $$ddl == [ $$system == $$aqvistE ] ).
2
3 tff(a1, axiom, {$$obl}(go,$true)).
4 tff(a2, axiom, {$$obl}(tell, go)).
5 tff(a3, axiom, {$$obl}(~tell, ~go)).
6 tff(situation, axiom, ~go).
7 tff(c, conjecture, {$$obl}(~tell,$true)).



This example encodes that (a1) you ought to go and help your neighbors, (a2) if you go
then you ought to tell them that you are coming, and (a3) if you don’t go, then you ought
not tell them. It can consistently be inferred that if you actually don’t go, then you ought
not tell them. After embedding into HOL using LET, higher-order ATP systems like
Leo-III confirm this.

6. Summary

LET is a library and pre-processing tool for encoding non-classical reasoning problems
into classical higher-order logic, by means of shallow embeddings. LET makes use of the
novel non-classical TPTP language extension, as briefly described in Sect. 2, for reading
reasoning problems in various non-classical logics as input. The output of the tool is
TPTP THF, and any compatible ATP system can be used in conjunction with it, offering
off-the-shelf automation for various non-classical logics. The library of LET is included
into the Leo-III prover so that no external processing steps are required.

LET allows for the automation of more than 60 different first-order modal logics
(including all logics from the modal cube), 60 different hybrid logics, dynamic epistemic
logic (PAL), and different dyadic deontic logics.2 For some of these logics there exist
no other ATP systems to date. The tool is designed to be easily extensible with new
embeddings of further logics.

Shallow embeddings and hence LET target rapid logic prototyping, and will, in general,
not be as effective as ATP systems specifically designed for the respective NCL. The
embedding approach allows for the automation of logics that otherwise would have no
automation at all. LET aims at closing automation gaps for interesting NCLs, rather
than challenging available ATP systems. Nevertheless, previous studies indicate that
embeddings perform quite competitively in the context of quantified benchmarks [52]. For
many of the logic families currently covered by LET, in particular for quantified hybrid
logics and deontic logics, there are no benchmark sets or competitors available, and hence
comparisons are not possible. Automation via embeddings can also be employed in an
educational context for low-threshold student experiments.

It is important to note that proofs found in conjunction with LET are expressed in
some calculus for classical HOL (depending on the back-end ATP system). It is an open
question to what extent they can be automatically and flexibly transformed to genuine
proofs in the respective NCL.

As further work, LET aims at gradually including more embeddings for further NCLs
in order to constitute a rich and flexible NCL reasoning framework. Also, it is planned
to extend the tool’s portfolio of accepted input formats to further existing logic-specific
input standards, such as the QMLTP format for modal logics [11].

2The number of modal logics is at least 15 (modality axiomatizations)×4 (quantification semantics) = 60.
Many more modal logics are supported since LET allows arbitrary combinations of different modalities.
Also, quantification semantics can be controlled on a per-type basis.
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