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Abstract
For many applications, analyzing the uncertainty of a machine learning model is indispensable. While research of uncertainty
quantification (UQ) techniques is very advanced for computer vision applications, UQ methods for spatio-temporal data are
less studied. In this paper, we focus on models for online handwriting recognition, one particular type of spatio-temporal
data. The data is observed from a sensor-enhanced pen with the goal to classify written characters. We conduct a broad
evaluation of aleatoric (data) and epistemic (model) UQ based on two prominent techniques for Bayesian inference, Stochastic
Weight Averaging-Gaussian (SWAG) and Deep Ensembles. Next to a better understanding of the model, UQ techniques can
detect out-of-distribution data and domain shifts when combining right-handed and left-handed writers (an underrepresented
group).

1. Introduction
Traditional machine learning (ML) algorithms assume
training and test datasets to be independently and identi-
cally distributed [1, 2]. For many real-world applications,
data often changes over time and space, and hence, train-
ing and test data originate from different distributions.
This can cause ML models to fail due to a domain shift
between training and test data [1]. Transfer learning
[3, 4] and domain adaptation [5, 6] techniques can com-
pensate for this domain shift. A first step in adapting for
this domain shift is its detection, e.g., by having reliable
uncertainty estimates of the model predictions [7]. Thus,
to estimate the uncertainty of the model, a robust un-
certainty quantification (UQ) technique is required that
runs in real-time.

Approximate Bayesian Inference Techniques. In
the field of deep learning (DL), UQ has lately seen a
steep increase in interest. Recently, many promising
methods have been proposed such as Variational Online
Gauss-Newton (VOGN) [8], Stochastic Weight Averaging-
Gaussian (SWAG) [9], Bayes by Backpropagation (BBB)
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[10], and Laplace Approximation [11]. Another widely
used technique are Deep Ensembles [12], which often
yield well-calibrated models while being relatively easy
to implement.

Decomposing Uncertainty. Several ways for estimat-
ing and decomposing uncertainty have been proposed.
A common distinction is made between aleatoric uncer-
tainty, which refers to the variability in the data, and
epistemic uncertainty, which is the model’s uncertainty
caused by a lack of knowledge [13]. Building on [14], [15]
argue that neural networks (NNs) for classification are ba-
sically generalized linear models with error structure of
multinomial and composite link functions. Hence, to ac-
knowledge that the variance of a multinomial outcome is
a function of the mean outcome, they propose to directly
compute the variability in the softmax outputs. Another
method to dissect total predictive uncertainty has been
put forward by [16] and similarly by [17] who propose
to extract epistemic and aleatoric uncertainties from the
predictive distribution of a Bayesian NN by calculating
the entropy and mutual information. For an extensive
survey of related approaches, see [18].

UQ for OnHW. UQ techniques have been broadly
evaluated in computer vision applications such as im-
age classification [14], i.e., optical character recognition
(OCR), but methods have rarely been evaluated on spatio-
temporal datasets [19]. OCR is concerned with offline
handwriting recognition from images. In contrast, on-
line handwriting (OnHW) recognition works on different
types of spatio-temporal signals and can make use of
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temporal information such as writing speed and direc-
tion [20]. While many recording systems make use of a
stylus pen together with a touch screen surface, sensor-
enhanced pens, e.g., [21, 22, 23, 24], based on inertial mea-
surement units (IMUs) enable new applications. These
pens stream data from accelerometer, gyroscope, mag-
netometer and force sensors in real-time represented as
spatio-temporal multivariate time-series (MTS). The ad-
vantage of exploiting this temporal information is the
ability to better distinguish between similarly shaped let-
ters from dynamic information (number of strokes etc.).
Spatio-temporal data can further help to identify certain
characteristics in the data. [25], e.g., showed the domain
shift between right-handed and left-handed writers by
analyzing feature embeddings of their model for OnHW
data.

Contribution. In this paper we evaluate the uncer-
tainty of OnHW model predictions with SWAG [9] and
Deep Ensembles [12] for spatio-temporal reasoning, as-
sessment of out-of-distribution detection, and pattern
and failure recognition. We use uncertainty decomposi-
tions based on the method by [15] and [16] to evaluate
the UQ techniques. Our claims are further supported
by utilizing confidence and accuracy metrics to estimate
the expected calibration error (ECE) [26]. For an OnHW
task with domain shift between right- and left-handed
writers, we evaluate uppercase, lowercase and combined
character classification tasks. Our source code will be
available upon publication.1

The remainder of the paper is organized as follows.
Section 2 discusses related work. In Section 3, we de-
scribe the background of Bayesian modeling and approx-
imate inference. The experimental setup is described in
Section 4, and results are discussed in Section 5.

2. Related Work
We first present related work of UQ with focus on spatio-
temporal reasoning in Section 2.1. Section 2.2 summa-
rizes state-of-the-art results for OnHW recognition.

2.1. UQ for Spatio-Temporal Reasoning
[27] analyzed Bayesian and frequentist UQ methods for
spatio-temporal forecasting on network traffic, epidemics
and air quality datasets. Their evaluation shows that
Bayesian methods are typically more robust in mean pre-
diction, while confidence levels from frequentist meth-
ods provide better coverage over data variations (i.e.,
out-of-distribution data). Furthermore, traditional learn-
ing schemes lack knowledge about uncertainty. STU-

1 Code and datasets: www.iis.fraunhofer.de/de/ff/lv/dataanalytics/
anwproj/schreibtrainer/onhw-dataset.html

aNet [28] addresses this issue for spatio-temporal human
mobility forecasting by injecting controllable uncertainty.
This allows insights to both, UQ and weak supervised
learning. [29] focused on the spatio-temporal uncertainty
of urban prediction (where and when a piece of land be-
comes urban). [7] argue that the feature statistics such
as mean and standard deviation (the domain characteris-
tics of the training data), can be manipulated to improve
the generalizability of DL models by modeling the un-
certainty of domain shifts with feature statistics during
training (that follow a multivariate Gaussian distribu-
tion). In the context of domain adaptation, [19] adressed
the extraction of domain-invariant representations for
MTS classification.

2.2. Online Handwriting Recognition
[21] initially proposed the OnHW-chars dataset and eval-
uated machine and DL techniques for the OnHW MTS
classification task. The dataset contains right-handed
and left-handed writers with a domain shift between
both groups of writers (i.e., domains). [25] showed that
transfer learning from small adaptation datasets results
in poor model performances. Hence, their domain adap-
tation approach transforms features from left-handed
writers into the domain of features from right-handed
writers by optimal transport techniques. A reliable UQ
method could identify out-of-distribution samples and
only apply the transformation on samples for which the
model has a high uncertainty. [22] combined offline and
online handwriting recognition with a cross-modal rep-
resentation learning technique by increasing the dataset
size by using generative models. A robust uncertainty es-
timation technique could select samples with high model
uncertainty.

3. Methodological Background
In the following we describe Bayesian model averaging in
Section 3.1 and the two employed Bayesian UQ methods
in Section 3.2. The decomposition of total predictive
uncertainty into aleatoric and epistemic uncertainty is
discussed in Section 3.3.

3.1. Bayesian Model Averaging
Bayesian approaches in DL naturally represent uncer-
tainty by placing a distribution over model parame-
ters and then marginalizing these parameters to form
a predictive distribution (Bayesian model averaging) [30].
Let 𝑝(𝜃|𝐷) be the posterior distribution over model pa-
rameters 𝜃, i.e., real-valued weights in the NN, given
training dataset 𝐷, and let 𝑝(𝑦*|𝑥*, 𝜃) denote the prob-
ability distribution over model outputs 𝑦* (predicted
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classes), given sample 𝑥*, and model weights 𝜃. For
the OnHW classification task, the sample 𝑥* is an MTS
U = {u1, . . . ,u𝑞} ∈ R𝑞×𝑙, an ordered sequence of 𝑙 =
13 streams with u𝑖 = (𝑢𝑖,1, . . . , 𝑢𝑖,𝑙), 𝑖 ∈ {1, . . . , 𝑞},
where 𝑞 = 64 is the length of the MTS. The training
set 𝐷 is a subset of the array 𝒰 = {U1, . . . ,U𝑛𝑈 } ∈
R𝑛𝑈×𝑞×𝑙, where 𝑛𝑈 is the number of time-series. The
aim is to predict an unknown class label 𝑦* ∈ 𝒴 with
𝐾 classes (i.e., character labels) for a given MTS. The
predictive distribution of the target variable is then given
by

𝑝(𝑦*|𝑥*, 𝐷) =

∫︁
𝑝(𝑦*|𝑥*, 𝜃)𝑝(𝜃|𝐷)𝑑𝜃. (1)

In practice, we can approximate this integral by drawing
𝑆 Monte Carlo samples from the posterior distribution:

𝑝(𝑦*|𝑥*, 𝐷) ≈ 1

𝑆

𝑆∑︁
𝑠=1

𝑝(𝑦*|𝑥*, 𝜃𝑠) , 𝜃𝑠 ∼ 𝑝(𝜃|𝐷).

(2)
The predicted probability of an outcome is thus a
weighted average over its probabilities with the weights
being determined by 𝑝(𝜃|𝐷).

3.2. Approximate Bayesian Inference
In order to apply Bayesian inference to an NN, we need
to compute the posterior 𝑝(𝜃|𝐷) of the NN weights. As
the computation of the posterior is usually intractable,
a (local) approximation is often used. This can be ad-
dressed by SWAG and Deep Ensembles with the latter
abstaining from explicitly modeling 𝑝(𝜃|𝐷) – neverthe-
less, this method can be considered to be in the field of
approximate Bayesian inference.

Stochastic Weight Averaging-Gaussian (SWAG).
SWAG [9] is a Bayesian inference technique for DL that
builds on Stochastic Weight Averaging (SWA) [31]. SWA
computes an average of stochastic gradient decent (SGD)
iterates to obtain information about the geometry of
𝑝(𝜃|𝐷) from its trajectory. This posterior is then ap-
proximated by a Gaussian with simplified covariance
structure and reduced dimensionality.

Deep Ensembles. Deep Ensembles are a committee of
individual NNs initialized with a different seed [12]. The
initialization serves as the only source of stochasticity in
the model parameters which are otherwise not random;
Deep Ensembles can optionally be coupled with a differ-
ently shuffled data loader. In contrast to SWAG, results
are obtained by averaging the predictions of 𝑀 indepen-
dently trained networks instead of explicitly modeling a
posterior and sampling from it. [32] point out that even
an ensemble size of 𝑀 = 5 performs well, strengthen-
ing its reputation as a “gold standard” for accurate and
well-calibrated predictive distributions.

3.3. Uncertainty Decomposition
In the literature two sources of uncertainty are com-
monly considered [13]: (1) Aleatoric uncertainty repre-
sents stochasticity inherent in the data. For the OnHW
application this can be sensor noise induced by the ball-
point pen on the paper or by shaky hands of the writer.
In particular, even with infinitely many data points, there
will always be some variation in the data. (2) Epistemic
uncertainty is the model uncertainty, which, in theory,
can be reduced to zero for an increasing amount of obser-
vations. Various approaches of measuring uncertainty
exist in the literature. We consider two approaches, both
providing justified and mutually complementing insights
into our trained models and data situation: uncertainty
decomposition based on the softmax output variability
[15] in Section 3.3.1 and based on information theory in
Section 3.3.2.

3.3.1. Uncertainty Decomposition based on [Kwon
et al.]

The definition proposed by [15] is based on considera-
tions by [14] and presents a novel way to estimate pre-
dictive uncertainty by breaking it down into

1

𝑇

𝑇∑︁
𝑡=1

diag(�̂�𝑡)− �̂�𝑡�̂�
⊤
𝑡⏟  ⏞  

aleatoric uncertainty

+
1

𝑇

𝑇∑︁
𝑡=1

(�̂�𝑡 − �̄�)(�̂�𝑡 − �̄�)⊤⏟  ⏞  
epistemic uncertainty

,

(3)
with �̂�𝑡 = (�̂�𝑡,1, . . . , �̂�𝑡,𝐾) ∈ [0, 1]𝐾 being the soft-
max output of the NN based on one forward pass (out
of 𝑇 stochastic forward passes),

∑︀𝐾
𝑖=1 �̂�𝑡,𝑖 = 1, and

�̄� = 1
𝑇

∑︀𝑇
𝑡=1 �̂�𝑡.

Interpretation. Equation 3 yields two 𝐾 ×𝐾 matri-
ces with different interpretations. For the aleatoric part,
diagonal values are in {𝑥−𝑥2 | 𝑥 ∈ [0, 1]}, with the max-
imum uncertainty for 𝑥 = 0.5. If the model is “unsure”,
meaning that the model neither displays confidence that
a prediction corresponds to a certain class nor displays
confidence that it is not, we expect high aleatoric un-
certainty. The off-diagonal elements consist of values in
{−𝑥 · 𝑦 | 𝑥, 𝑦 ∈ [0, 1]}, which yields values on the inter-
val [−0.25, 0]. Lower values correspond to higher data
uncertainty. For the epistemic part, the diagonal contains
the squared difference to the mean softmax outputs (over
𝑇 samples). The off-diagonal has positive values when
the softmax values coincide and negative values if the
softmax values display an inverse relationship.



3.3.2. Uncertainty Decomposition based on
Information Theory

Another way to decompose predictive uncertainty into
an aleatoric and epistemic part is by following [17] and
similarly [16]. Based on principles from information the-
ory, the Shannon entropy 𝐻(𝑝) = −

∑︀𝐾
𝑖=1 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖) is

utilized as a common measure of “informedness” of a sin-
gle probability distribution 𝑝 with 𝐾 outcomes/classes
and the associated probabilities for each 𝑖-th class 𝑝𝑖; tak-
ing the logarithm to base 2 yields values measured in bits.
The total predictive uncertainty (TU) of the predictive
distribution 𝑝(𝑦*|𝑥,𝐷) can then be quantified by

𝑇𝑈 = 𝐻
(︀
𝑝(𝑦*|𝑥*, 𝐷)

)︀
≈ 𝐻

(︁ 1

𝑆

𝑆∑︁
𝑠=1

𝑝(𝑦*|𝑥*, 𝜃𝑠)
)︁
.

(4)
Effectively, this is the entropy of the averaged categorical
predictions, and it includes the two sources of uncertainty
we are interested in.

Aleatoric Uncertainty (AU), Entropy. We can ex-
press aleatoric uncertainty as the expectation over the
entropies of 𝑆 sampled conditional predictive distribu-
tions with fixed weights, i.e.,

𝐴𝑈 ≈ 1

𝑆

𝑆∑︁
𝑠=1

𝐻(𝑝(𝑦*|𝑥*, 𝜃𝑠)). (5)

Epistemic Uncertainty (EU), Mutual Information.
Finally, epistemic uncertainty emerges as the difference
of total and aleatoric uncertainty 𝐸𝑈 = 𝑇𝑈 −𝐴𝑈 , and
is equivalent to the mutual information (MI):

𝐸𝑈 = 𝐻
(︁ 1

𝑆

𝑆∑︁
𝑠=1

𝑝(𝑦*|𝑥*, 𝜃𝑠)
)︁
− 1

𝑆

𝑆∑︁
𝑠=1

𝐻(𝑝(𝑦*|𝑥*, 𝜃𝑠)).

(6)
Intuitively, epistemic uncertainty stands for the infor-
mation gain about the model parameters that would be
obtained when observing the true outcome. MI is always
non-negative, zero in case of perfect independence of 𝑦*

and 𝜃, and positive when model uncertainty is present at
prediction time.

4. Experiments
In our order to evaluate the efficacy of UQ methods for
spatio-temporal handwriting datasets, we use the OnHW
dataset (Section 4.1) and fit different network architec-
tures (Section 4.2). Our evaluation approach is given
in Section 4.3. For architecture and training details and
SWAG parameters, see Appendix A.1. For Deep Ensem-
bles, we choose 𝑀 = 10 (for a study on number of base
learners in Deep Ensembles vs. SWAG performance, see
[9]).

4.1. Online Handwriting Recognition
The OnHW-chars [21] dataset consists of recordings from
a sensor-enhanced ballpoint pen providing 14 sensor mea-
surements: two accelerometers (3 axes each), one gyro-
scope (3 axes), one magnetometer (3 axes), a force sensor
(with which the pen tip touches the surface), and the
time steps. 119 right-handed and nine left-handed writ-
ers participated in the data collection. Each person was
instructed to write the English alphabet on plain paper
six times. This results in 31,275 right-handed and 2,270
left-handed samples. The task is to either classify low-
ercase letters (26 classes), uppercase letters (26 classes)
or combined letters from all 52 classes. For model eval-
uation, five cross-validation sets are provided by [21]
for both writer-dependent (WD) and writer-independent
(WI) MTS classification tasks.

4.2. Neural Network Architectures
We use a modified CNN from [21, 24] for feature extrac-
tion and combine it with one unit for spatio-temporal
classification to extract important temporal features. This
unit is added before the last dense layer. We compare a
standard long short-term memory (LSTM) cell with 100
neurons, a bidirectional LSTM (BiLSTM) cell with 100
neurons, and a temporal convolutional network (TCN)
with 120 neurons. The last dense layer contains 26 neu-
rons for the lowercase and uppercase tasks, or 52 neurons
for the combined task. We interpolate the time-series to
64 time steps without sensor normalization.

4.3. Evaluation Metrics
Confidence Calibration. Calibration can be under-
stood as the degree of reliability of a model. According to
[18], a predictor is well-calibrated if the derived predic-
tive confidence represents a good approximation of the
actual probability of correctness – meaning that 20% of
all predictions with a predictive confidence of 80% should
actually be false. Calibration is thus a notion of uncer-
tainty, measuring the discrepancy between the model’s
forecasts and (empirical) long-run frequencies [12]. Us-
ing the definitions of confidence and accuracy [26], we
can make statements about over- and under-confidence
of the model. We have

confidence(𝑏𝑒) =
1

|𝑏𝑒|
∑︁
𝑠∈𝑏𝑒

�̂�𝑠 (7)

and
accuracy(𝑏𝑒) =

1

|𝑏𝑒|
∑︁
𝑠∈𝑏𝑒

1(𝑦𝑠 = 𝑦𝑠), (8)

with 𝑏𝑒 denoting the set of indices of sampled soft-
max outputs falling into the interval (𝑙𝑒, 𝑢𝑒]. Com-
monly, the softmax output range is divided into ten bins



Method Lowercase Uppercase Combined
WD WI WD WI WD WI

SWAG
right 83.73 76.27 87.10 81.69 72.13 65.41
left 55.51 45.91 55.04 50.67 46.08 39.26

Deep Ensembles
right 83.07 73.87 89.92 80.86 75.29 64.22
left 45.25 37.00 62.73 48.31 45.95 33.27

Best BNN Method right 84.44 76.96 90.31 82.21 75.51 66.12
(right-handed) left 42.55 44.19 49.87 48.54 33.68 36.20

Table 1
Accuracies (in %) for best models trained on right- and left-handed data and evaluated on right-handed or left-handed writers
data separately, compared to the best performing models which were only trained on right-handed data. Bold: best results.

Method Lowercase Uppercase Combined
WD WI WD WI WD WI

Frequentist 84.62 76.85 89.89 83.01 70.50 64.13
[21] TCN TCN TCN TCN TCN LSTM

SWAG
84.44 76.96 87.58 82.21 72.54 66.12
TCN TCN TCN TCN TCN TCN

Deep 83.43 73.41 90.31 81.26 75.51 64.21
Ensembles BiLSTM TCN TCN TCN TCN TCN

Table 2
Accuracies (in %) for models trained on right-handed writers
data and evaluated on right-handed writers data. Second row
shows the respective model. Bold: best results.

(interval sizes of 0.1). We can now make statements
whether our model is under-confident

(︀
accuracy(𝑏𝑒) >

confidence(𝑏𝑒)
)︀

or over-confident
(︀
accuracy(𝑏𝑒) <

confidence(𝑏𝑒)
)︀
. It has been shown that softmax out-

puts of deep NNs are in general not well calibrated and
are often either over- or under-confident [26]. Ideally,
accuracy(𝑏𝑒) ≈ confidence(𝑏𝑒), allowing the user to in-
terpret softmax outputs as probabilities and thereby quan-
tify the prediction uncertainty.

Expected Calibration Error (ECE). The ECE sum-
marizes how far away the confidence is from the actual
(empirical) accuracy [26]. It can be defined as

ECE(𝑏𝑒) =
𝐸∑︁

𝑒=1

|𝑏𝑒|
𝑛

|accuracy(𝑏𝑒)− confidence(𝑏𝑒)|,

(9)
with 𝑛 being the number of predicted softmax outputs,
and 𝐸 being the number of bins. Note that this met-
ric does not give any information about over- or under-
confidence – only how far away the expected accuracy
is from the confidence. Ideally, the ECE is 0.

Reliability Diagrams. We visualize Equations 7 and 8
as reliability diagrams [33] for selected models. Generally,
a model is over-confident if the black bars (displaying
the accuracy for one bin) are below the dashed bisectors.
Consequently, if the black bars are above the bisectors,

Method Lowercase Uppercase Combined
WD WI WD WI WD WI

SWAG
81.85 74.24 84.92 79.58 70.37 63.64
TCN TCN TCN TCN TCN TCN

Deep 80.55 71.41 88.07 78.65 73.31 62.14
Ensembles LSTM TCN TCN TCN TCN TCN

Table 3
Accuracies (in %) for models trained on right- and left-handed
writers data and evaluated on right-handed writers data. Sec-
ond row shows the respective model. Bold: best results.

the model is under-confident. We additionally plot the
histogram [34] of the softmax outputs to get an overview
of the distribution.

5. Experimental Results
In the following, we summarize the main results. In
general, the models perform better on WD classification
tasks than on WI tasks. Architectures with TCN units
outperform LSTM and BiLSTM units on most tasks.

Evaluation on Handedness (trained on right-
handed writers). SWAG and Deep Ensemble models
perform very similarly to frequentist models proposed in
[21] in terms of predicitve accuracy (see Table 2), being
at most 3% points below and 5% points above a respec-
tive frequentist model. When applying models trained
with right-handed data on the left-handed datasets, the
performance ranges from 33.27% to 49.87% accuracy (see
Table 1) which is substantially better than “pure guess-
ing” – our models make informed decisions after shifting
domains, albeit at a lower standard. A possible reason
is that certain sensors produce nearly identical signals
regardless of the orientation of the pen. For example, the
accelerometer at the bottom of the pen should give the
same readings for left-handed writers when writing "I"
and "i" as for right-handed writers, since it is simply a
downward motion regardless of the writing hand.
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Figure 1: Information theoretic uncertainty measures for the Deep Ensemble (dashed) and SWAG (non-dashed) CNN+TCN
models. The models are trained on the combined right- and left-handed writers datasets (a and b, left) or only the right-handed
writers dataset (a and b, right), and evaluated on the left-handed writers dataset. We provide results for lowercase, uppercase
and combined classification tasks.
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writers data.

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te

d 
Ac

cu
ra

cy

ECE=6.72

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.2

0.0
C

ou
nt

 1
03

(c) Evaluated on left-handed writ-
ers data.
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(d) Evaluated on left-handed writ-
ers data.

Figure 2: Reliability diagram for the Deep Ensemble CNN+TCN model trained on the combined WD datasets. a) and c):
Trained on the combined right- and left-handed writers datasets. b) and d): Trained on right-handed writers only.

Evaluation on Handedness (trained on right- and
left-handed writers). When evaluating performance
on right-handed data, models trained only on right-
handed datasets consistently outperform models trained
on both datasets combined and yield between 2% points
and 12% points higher accuracies (see Table 3). This per-
formance loss is compensated by a performance gain for
left-handed data. Still, the performance is not up to par
with right-handed data; this gap may be due to a “writing
style” particular to every writer that especially influences
the gyroscope and magnetometer measurements. More
importantly, left-handed writers have a writing style dif-
ferent to right-handed writers which is perhaps exactly
what the right-handed models never learned in order to
address the style of left-handed writers, underlining the
need for a sufficient amount of samples to get a good
representation of various writing styles.

Analysis of Uncertainty. Figure 1 shows the MI and
entropy for SWAG and Deep Ensemble models evalu-
ated on the left-handed data. The barplots show that
the models trained on only right-handed data display
lower uncertainty (i.e., higher confidence) compared to
models trained on combined data. However, this higher

confidence is not empirically justified when looking at
the reliability diagrams in Figure 2, which point out that
models trained without left-handed writers data are mis-
calibrated and therefore overconfident. Models trained
on the combined writers (Figures 2a and 2c) provide more
realistic accuracies when applied to the left-handed data
(ECE of 6.72). The ECE is even higher (24.24) for left-
handed evaluation without left-handers in the training
set (see Figure 2d). For a separate evaluation for each
character, see Appendix A.2.

5.1. Uncertainty Analysis based on [Kwon
et al.]

In Figure 3 we visualize the aleatoric and epistemic un-
certainty as well as the confusion matrix for the Deep En-
semble model and the combined task. For SWAG model
results, see Appendix A.3. In the aleatoric uncertainty
heatmap (Figure 3a) we observe a trace with negative
values at the lower end of the scale. Note that for off-
diagonal values, the aleatoric uncertainty is higher for
lower softmax values. Here, two softmax outputs (with
the highest values) coincide on average (see Section 3.3.1).
This means that the model tends to confuse the two
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(a) Aleatoric uncertainty.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.

Figure 3: Uncertainty prediction for the Deep Ensemble CNN+TCN model trained on the combined WD (right-handed only)
dataset. Note that the color scale is fixed for all subplots for comparability with Figure 4, and that we skipped every second
character label for readability.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.

Figure 4: Uncertainty prediction for the Deep Ensemble CNN+TCN model trained on the uppercase WD (right-handed only)
dataset. Note that the color scale is fixed for all subplots for comparability with Figure 3 and 6.

classes. The most prominent off-diagonal strip corre-
sponds to the upper- and lowercase pairs. This makes
intuitive sense since, e.g., the lowercase "u" and upper-
case "U" are written similarly. This effect is consequently
not present for less similar pairs like "a" and "A". We
can see this effect also for "l" (lowercase "L") and "I"
(uppercase "i"). A very similar pattern can also be ob-
served in the confusion matrix (see Figure 3c), confirming
that the trained model is not only unsure about how to
classify these pairs, but is also empirically worse in the
respective classification task.

These patterns allow for further interesting insights.
For example, one might expect this pattern to occur for
"i" and "j", but the corresponding heatmap entries lack
signs of confusion of the model. Similarity between char-
acters consequently hinges on the similarity of motions
while writing. Two characters with small differences are
written similarly but in different sizes. This also holds
for specific parts of the letters. For example, "n" and
"h" have a higher aleatoric uncertainty in Figure 3a; the
major difference being that one tiny part of "h" is longer.

Somewhat puzzling is that we see the same effect in
the epistemic uncertainty heatmap (see Figure 3b), where

such pairs with high similarity lead to negative values.
When one entry of the softmax output values is below
and another entry above the respective sample mean,
negative epistemic uncertainty is implied. This leads to
some kind of discriminative power due to the negative
“covariance” for which there is little justification. We thus
advise caution when interpreting the epistemic uncer-
tainty in this context.

5.2. Uncertainty based on Information
Theory

We further highlight the trade-off when using informa-
tion theory-based measures to decide whether a sample
is too uncertain to classify correctly. This is depicted by
Figure 5a showing the relationship between classification
accuracies and different threshold values. We choose the
entropy as the target metric for uncertainty evaluation
(MI would work analogously). On the x-axis is the accu-
racy of the samples above the threshold, i.e., samples our
model feels confident about classifying correctly. On the
y-axis is the accuracy for the samples below the thresh-
old. These values would be considered as too inaccurate
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entropy distribution.

Figure 5: Accuracy and entropy for the Deep Ensemble
CNN+TCN model trained on the combined WD (right-handed
only) dataset.

to confidently classify. Setting the threshold to 2.0 bits
would approximately yield an accuracy of 82% for the
observations above this threshold and approx. 31% accu-
racy for observations below this threshold (emphasized
by the dashed lines). Figure 5b depicts the entropy dis-
tribution and further clarifies this point. Convincingly,
the accuracy reduces to almost zero for very high en-
tropy samples. Note that the accuracy does not need to
decrease with an increasing entropy threshold or even
be zero for very high entropy values, even though this is
generally true for our models.

5.3. Summary and Limitations
Uncertainty Decomposition. Neither uncertainty
quantification method shows notable differences between
aleatoric and epistemic uncertainty. The heatmaps ex-
hibit the same “strip” for similar characters and give no
hints to different sources of uncertainty (data-driven or
systemic confusion). The benefits of this kind of uncer-
tainty differentiation are limited, but measuring the total
uncertainty can still be useful for domain adaptation or
the detection of wrong labels.

Real-World Link. Since the models trained on right-
and left-handed writers lead to lower data confidence
compared to models trained only on right-handed writers
(see Figure 1), it is unclear how well the measured MI and
entropy translate to the real-world uncertainty. There-
fore, verifying uncertainty remains a limitation in our
interpretation. While we can discriminate between the
entropy associated with different samples, pre-defining
thresholds for uncertain samples is challenging due to
the following reasons: (1) Raw sensor data is elaborate
to interpret and making statements about, e.g., the writ-
ing style from sensor data is hardly possible – which, in
turn, is connected to model uncertainty. (2) Interpreting
the graphomotoricity qualitatively, e.g., for teaching hand
writing, a qualified expert in this field is required. (3) Dif-
ferent writing domains (different pens, surfaces etc.) lead
to different requirements for the uncertainty threshold.

6. Conclusion
We employed SWAG and Deep Ensembles for OnHW
recognition with left- and right-handed writers, a spatio-
temporal MTS classification task with domain shift. We
critically evaluated aleatoric and epistemic uncertainty
using confidence calibration, ECE and reliability dia-
grams. In summary, (1) the model performance only
partly relates to the handedness of writers, (2) our models
are over-confident and miscalibrated when only trained
with right-handed writers and evaluated on left-handed
writers, (3) the uncertainty of the models for small and
capital characters combined is related to lower classifica-
tion accuracy, and (4) the entropy and mutual information
for individual samples correlate well with the accuracy of
our models. Our comparison of different ways to decom-
pose uncertainty easily generalizes to other classification
tasks and can be useful for spatio-temporal reasoning. In
terms of Bayesian inference, SWAG and Deep Ensemble
models perform similarly, while SWAG is computation-
ally less expensive.
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(a) Aleatoric uncertainty.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.

Figure 6: Uncertainty prediction for the Deep Ensemble CNN+BiLSTM model (which outperformed the TCN-based archi-
tecture) trained on the lowercase WD (right-handed only) dataset. Note that the color scale is fixed for all subplots for
comparability with Figure 3 and 4.

A. Appendices
We propose model parameters in Section A.1 and show
an evaluation per character in Section A.2. We propose
results for the SWAG model in Section A.3.

A.1. Model and UQ Method Parameters
For reproducibility, we state all general model architec-
ture parameters and propose training parameters for the
SWAG model. For all experiments we use Nvidia Tesla
V100-SXM2 GPUs with 32 GB VRAM coupled with Intel
Core Xeon CPUs and 192 GB RAM.

Model Parameters. We use a CNN with dropout rate
20%, convolutional layers with kernel size 4 and filter size
200. The temporal cell (LSTM, BiLSTM or TCN) contains
100, 100 or 120 neurons, respectively. We interpolate the
time-series to 64 time steps, and train the model for 2,000
epochs with early stopping and a batch size of 50.

SWAG Parameters. We initialize the stochastic gra-
dient descent (SGD) optimizer with initial learning rate
10−2, a momentum of 0.9, and weight decay of 10−4.
The stochastic weight averaging (SWA) burn-in period
was run for 10 epochs. SWAG showed a training process
with fast convergence.

A.2. Evaluation per Character
Confusion Matrices. We propose the confusion ma-
trices for the aleatoric and epistemic uncertainty as well
as the accuracy (in %) for the uppercase (see Figure 4)
and lowercase (see Figure 6) datasets. While for the com-
bined training, lower- and uppercase characters are often
misclassified, the separate training leads to confusion of
characters with similar shapes, e.g., for the uppercase
task, the model is uncertain for "D" and "P", "U" and
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(b) Histogram visualizing the
entropy distribution.

Figure 7: Accuracy and entropy for the SWAG CNN+TCN
model trained on the combined WD (right-handed only)
dataset.

"V", and "T" and "X". These confusions can be iden-
tified with the aleatoric and epistemic uncertainty and
correspond with the classification accuracies. Overall,
the uncertainty for lowercase characters is higher (see
Figure 6a) since the writing style of lowercase characters
is oftentimes quite similar, e.g., "r" and "v", "u" and
"v", "h" and "n", and "d" and "q". This also leads to a
lower classification accuracy (see Figure 6c).

Mutual Information and Entropy. Figure 8a shows
the mutual information (MI) per character, and Figure 8b
shows the entropy, respectively. In general, the MI and
entropy correlates and are similar for each character. The
MI and entropy is high for the characters "U", "u", "v",
"x", and "z". Furthermore, both metrics are higher for
lowercase characters than for uppercase characters. This
corresponds to the confusion matrices in Figure 4 and 6
where aleatoric uncertainty is higher for off-diagonals
for lowercase characters.
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Figure 8: Mutual information and entropy per letter for the Deep Ensemble CNN+TCN model trained on the combined WD
(right-handed only) dataset. Note that we skiped every second character in the x-axis (ordered alphabetically) for readability.
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Figure 9: Mutual information and entropy per letter for the SWAG CNN+TCN model trained on the combined WD (right-
handed only) dataset. Note that we skipped every second character in the x-axis (ordered alphabetically) for readability.

A.3. SWAG Model Results
This section provides plots for the SWAG model that
can directly be compared to the previously shown Deep
Ensemble model plots. We observe very similar results

between SWAG and Deep Ensemble models. Figure 9
shows the MI and entropy for the SWAG model with the
same pattern as for the Deep Ensemble model with lower
absolute values. In Figure 10, we see the same overconfi-
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Figure 10: Reliability diagram for the SWAG CNN+TCN model trained on the combined WD datasets. a) and c): Trained on
the combined right- and left-handed writers datasets. b) and d): Trained on right-handed writers only.
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(c) Confusion matrix of accuracy.

Figure 11: Uncertainty prediction for the SWAG CNN+TCN model trained on the combined WD (right-handed only) dataset.
Note that the color scale is fixed for all subplots for comparability with the other heatmaps, and that we skipped every second
character label for readability.
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(c) Confusion matrix of accuracy.

Figure 12: Uncertainty prediction for the SWAG CNN+TCN model trained on the uppercase WD (right-handed only) dataset.
Note that the color scale is fixed for all subplots for comparability with the other heatmaps.

dence on left-handed data for SWAG models that have
never seen this data similar as for Deep Ensemble mod-
els. The ECE by the SWAG model is marginally lower
than the ECE by the Deep Ensemble model, but follows
the same trend. The heatmaps in Figures 11 for lower-
case and uppercase characters, in Figure 12 for uppercase

characters only, and in Figure 13 for lowercase characters
only of the SWAG model show the same pattern as the
heatmaps for Deep Ensemble models.
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(c) Confusion matrix of accuracy.

Figure 13: Uncertainty prediction for the SWAG CNN+TCN model trained on the lowercase WD (right-handed only) dataset.
Note that the color scale is fixed for all subplots for comparability with the other heatmaps.
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