
Analysis of a Blockchain Protocol Based on LDPC

Codes

Massimo Battaglioni1,∗, Paolo Santini1, Giulia Rafaiani1, Franco Chiaraluce1 and
Marco Baldi1

1Department of Information Engineering, Università Politecnica delle Marche, Ancona, 60131, Italy

Abstract
In a blockchain Data Availability Attack (DAA), a malicious node publishes a block header but withholds

part of the block, which contains invalid transactions. Honest full nodes, which can download and

store the full ledger, are aware that some data are not available but they have no formal way to prove it

to light nodes, i.e., nodes that have limited resources and are not able to access the whole blockchain

data. A common solution to counter these attacks exploits linear error correcting codes to encode the

block content. A recent protocol, called SPAR, employs coded Merkle trees and low-density parity-check

codes to counter DAAs. In this paper, we show that the protocol is less secure than claimed, owing to a

redefinition of the adversarial success probability. As a consequence we show that, for some realistic

choices of the parameters, the total amount of data downloaded by light nodes is larger than that

obtainable with competing solutions.

Keywords
Blockchain, data availability attacks, LDPC codes, SPAR protocol

1. Introduction

A blockchain can be seen as an ordered list of blocks, each containing a set of transactions

occurred among the participants of a peer-to-peer network. The recent discovery of Data

Availability Attacks (DAAs) represents a new threat against blockchain security. Since the

DAA introduction in [2], there has been a growing research interest in finding efficient coun-

termeasures to this type of attacks, possibly leading to new blockchain models with improved

scalability and security (e.g., [13, 8, 1, 5]).

In fact, scalability, which is related to the ability of supporting large transaction rates, repre-

sents one of the main issues in most existing blockchains [14]. The straightforward solution of

increasing the block size raises a series of further concerns. In fact, the larger the block size

the smaller the number of nodes able to download the full blockchain and, indeed, to partici-

pate in the network as full nodes, verifying the validity of new blocks and of every contained

transaction. More peers would rather participate in the network as light nodes, which, due to

DLT 2022: 4th Distributed Ledger Technology Workshop, June 20, 2022, Rome, Italy
∗Corresponding author.

$ m.battaglioni@univpm.it (M. Battaglioni); p.santini@univpm.it (P. Santini); g.rafaiani@univpm.it (G. Rafaiani);

f.chiaraluce@univpm.it (F. Chiaraluce); m.baldi@univpm.it (M. Baldi)

� 0000-0002-8539-4007 (M. Battaglioni); 0000-0003-0631-3668 (P. Santini); 0000-0003-0029-5104 (G. Rafaiani);

0000-0001-6994-1448 (F. Chiaraluce); 0000-0002-8754-5526 (M. Baldi)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

7

their limited resources, store only a squeezed version of the blockchain [10] and, consequently,

cannot autonomously verify the validity of transactions.

Light nodes aim at downloading as less data as possible. For instance, they may store only

the block headers, which unambiguously identify the content of the blocks. However, in a

setting with relatively few full nodes, collusion among them is more probable; this makes light

nodes more susceptible to DAAs. In fact, the aim of a DAA is to make at least one light node

accept a block which has not been fully disclosed to the network. This can happen if and only if

honest full nodes are prevented from preparing fraud proofs, i.e., demonstrations that the block

is invalid [13, 3].

One of the most promising countermeasures to DAAs consists in encoding the blocks through

some error correcting code. Encoding introduces redundancy and distributes the information

of each transaction across all the codeword symbols, so that recovering a small portion of

an encoded block may be enough to retrieve the entirety of its contents through decoding.

This strategy, combined with a sampling process in which light nodes ask for fragments of

an encoded block and then gossip them to the connected full nodes, ensures that malicious

block producers are forced to reveal enough pieces of the invalid block [3]. An alternative

to transactions encoding is to change the protocol in such a way that a group of light nodes

can collaboratively (among themselves) and autonomously (from full nodes) verify blocks [5].

Another option is to decouple the consensus rules from the transaction validity rules [1, 4].

In a recent paper [13], Yu et al. proposed SPAR, a blockchain protocol which uses Low-Density

Parity-Check (LDPC) codes to counter DAAs; LDPC codes for this specific application have

then been studied in [8, 9]. SPAR comes as an improvement of the protocol in [3], the latter

using two-dimensional Reed-Solomon codes, whose parameters have been optimized in [12].

The authors of SPAR study the protection against DAAs in case the adversary aims to prevent

honest full nodes from successfully decoding the block, which is a strict requirement to settle a

proper fraud proof. In [13], this situation is investigated assuming the adversary operates by

withholding pieces of the encoded block; under a coding theory perspective, this gets modeled

as a transmission over an erasure channel. They conclude that, unless the adversary is able

to find stopping sets (which is an NP-hard problem [6]), SPAR guarantees that the success

probability of a DAA is sufficiently small even when light nodes download a small amount of

data besides the block header. As a consequence, SPAR claims improvements in all the relevant

metrics [13, Table 1].

Our contribution In this paper we study the security of the SPAR protocol. Namely, we

recompute the adversarial success probability with the consideration that deceiving at least a

single light node is a success for the attacker, which is the same scenario considered in [3]. This

yields a sampling cost that is much larger than the expected one, thus penalizing the light nodes

participating in the network. Moreover, we show that the total amount of data that light nodes

have to download (header size plus sampling cost) is actually larger than that of competing

solutions such as [3].

Paper organization The paper is organized as follows. In Section 2 we describe the notation

and some background. In Section 3 we introduce a general framework to study DAAs. In Section

8

4 we provide some numerical results. Finally, in Section 5 we draw some conclusions.

2. Notation and background

In this section we establish the notation used throughout the paper, and recall some background

notions.

2.1. Mathematical notation

Given two integers a and b, we use [a, b] to indicate the set of integers x such that a ≤ x ≤ b.
For a set A, we use |A| to denote its cardinality. We denote with Fq the finite field with q
elements. Given a vector v, we use supp(v) to denote its support, i.e., the set containing the
positions of its non-zero entries and wH(v) to denote its Hamming weight, that is, the size of

its support. Given an integer l and a set A, Al is the set of vectors of length l taking entries

in A. Given a matrix M, mi,j denotes its entry at row i and column j, Mi,: denotes the i-th
row, andM:,j denotes the j-th column. Given a set A,M:,A (respectively,MA,:) represents the

matrix formed by the columns (respectively, rows) ofM indexed by A.
We denote by Concat the string concatenation function and by Hb(·) the binary entropy

function. Moreover, we denote byHash a cryptographic hash function, with codomainD. Given

some vector a, we use T (a) to denote a generic hash tree structure constructed from a and

using Hash as underlying function. The root of the tree is denoted as T .Root(a); it generically
takes values in Dt and is a one-way function. With analogous notation, by T .Proof(a, i) we
refer to the proof that the i-th entry of a is a leaf in the base layer of the tree. Notice that, when

Hash is properly chosen, then for any pair of strings a 6= a
′ we have T .Root(a) 6= T .Root(a′)

and, for any index i, T .Proof(a, i) 6= T .Proof(a′, i) with overwhelming probability (say, not

lower than 1− 2−256 for modern hash functions); therefore, for the sake of simplicity, in the

following we assume the absence of root and proof collisions.

2.2. LDPC codes

LDPC codes are a family of linear codes characterized by parity-check matrices having a

relatively small number of non-zero entries compared to the number of zeros. Namely, if an

LDPC H ∈ F
r×n
q has full rank r < n and row and column weight in the order of log(n) and

log(r), respectively, then it defines an LDPC code with length n and dimension k = n − r,
with code rate R = k

n
. If all the rows (columns, respectively) of H have the same Hamming

weight, we denote it as w (v, respectively). The associated code is C =
{

c ∈ F
n
q

∣

∣ cH
⊤ = 0

}

,

where ⊤ denotes transposition. The rows of the parity-check matrix define the code parity-check

equations, that is,
n
∑

j=1

cjhi,j = 0, ∀i ∈ [1, r], ∀c ∈ C. (1)

Equivalently, any code can be represented in terms of a generator matrixG ∈ F
k×n
q , which

forms a basis for C.

9

In an Erasure Channel (EC), some of the codeword symbols are replaced with the erasure

symbol ǫ. To this end, we express the action of an EC as c+ e
′, where c is the input sequence

and e
′ ∈ {0, ǫ}n, with ǫ such that, conventionally, ǫ+ a = ǫ, ∀a ∈ Fq . A decoding algorithm

for the EC aims to obtain a codeword by substituting each erasure with an element from Fq . In

the case of LDPC codes, the most common decoder used over the EC is the peeling decoder [7].

This algorithm works by expressing (1) as a linear system, where the unknowns are exactly the

erased symbols. Due to the sparsity of H, with large probability the linear system will include

several univariate equations, i.e., containing only one erasure. Each of these equations can be

solved to compute the corresponding unknown, which is then substituted into all the other

equations. This procedure is iterated until all the unknowns are found or, at some point, the

linear system does not contain any univariate equation, i.e., all the unsolved equations contain

at least two unknowns. In the former case we have a decoding success, while in the latter case

we have a failure, due to a stopping set [11], i.e., a set of symbols participating to parity-check

equations that contain at least two unknowns each. If all the symbols forming a stopping set are

erased, peeling decoding fails. The stopping ratio β of an LDPC code is defined as the minimum

stopping set size divided by n.

2.3. Components of the SPAR protocol

SPAR is based on a novel hash tree called Coded Merkle Tree (CMT), combined with an ad-hoc

hash-aware peeling decoder.

Coded Merkle Tree A CMT is a hash tree which is constructed from ℓ linear codes

{C(1), · · · , C(ℓ)} over Fq; the i-th code has length ni and dimension ki. Each code C(i) is

defined by the systematic generator matrix G
(i) = [Iki |Ai], with Ai ∈ F

ki×(ni−ki)
q and Iki

being the identity matrix of size ki. The CMT uses an integer b which must be a divisor of all

codelength values n1, · · · , nℓ. Furthermore, one needs to have partitions for the sets [1, ni],

for i ∈ [1, ℓ− 1]. Namely, we have Si =
{

S
(i)
1 , · · · , S

(i)
ki+1

}

which is a partition of [1, ni], such

that the S
(i)
j are all disjoint and each one contains b elements, since ki+1 = ni/b. Starting from

c ∈ C(1), we build the associated CMT T ′(c) as follows:

1. set i = 1;

2. for j ∈ {1, · · · , ki+1}, set

uj = Concat

(

Hash

(

c
(i)
z1

)

, · · · ,Hash
(

c
(i)
zb

))

,

with {z1, · · · , zb} = S
(i)
j ;

3. encode u = [u1, · · · , uki+1
] as1 c = uG

(i+1);

4. if i < ℓ− 1, increase i and restart from step 2), otherwise set T ′.Root(c) = u.

1Notice that, when LDPC codes are considered, encoding is conveniently performed using the parity-check matrix

rather than the generator matrix. This implementation detail does not affect the conclusions of our analysis but,

considering encoding with the parity-check matrix, we would unnecessarily burden the notation. Therefore, we

stick to encoding with the generator matrix.

10

Hash-aware peeling decoder A hash-aware peeling decoder, described in [13, Section 4.3],

is an algorithm that decodes a set of ℓ words which are expected to constitute a CMT. Namely,

let {x(1), · · · ,x(ℓ)}, where x(i) ∈ {Fq ∪ {ǫ}}ni , be the words to be decoded. The hash-aware

peeling decoder works in a top-down fashion and, at every iteration, uses the peeling decoder

strategy (i.e., recover erasures that participate in univariate parity-check equations) for any

layer of the CMT. Additionally, the hash-aware peeling decoder verifies the consistency between

symbols of connected layers of the tree via hash functions, whilst the symbols are recovered.

Decoding fails whenever a stopping set or a failed parity-check equation is met, just like the

conventional peeling decoder. Furthermore, the hash-aware peeling decoder fails in case check

consistency fails for some layer. Finally, an undetected error is met (but not recognized by the

decoder) if the decoded sequence is a codeword, but not the original one.

3. A general framework to study DAAs

In this section we present a general framework to study DAAs, and then apply it to the SPAR

protocol. For brevity, we only give the fundamentals of the model; for further details concerning

DAAs, we refer the interested reader to [13, 3].

3.1. A general model for DAAs

We consider a game in which an adversary A exchanges messages withm players P 1, · · · ,P m,

who cannot communicate among themselves. Each player has access to an oracle O , who can

only perform polynomial time operations. Every list of transactions is seen as a vector u ∈ F
k
q .

We assume that the following information is publicly available:

- a validity function f : Fk
q 7→ {False,True}, which depends on the blockchain rules and

on its current status;

- a k-dimensional code C ⊆ F
n
q with generator matrix G;

- two hash trees T , T ′ (the former is constructed upon the uncoded data u, while the latter

is constructed upon the codeword c = uG).

The game proceeds as follows:

1. A chooses u ∈ F
k
q such that f(u) = False and a vector c̃ ∈ F

n
q ;

2. A challenges the players with (hu, hc), where hu = T .Root(u), hc = T ′.Root(c̃);

3. each player Pi selects Ji ⊆ [1, n] with size s;

4. A receives U =
⋃m

i=1 Ji;

5. to reply to a query containing the index i, A must send {c̃i, T .Proof(c̃, i)}; A is free to

choose which queries to reply and which ones to ignore;

6. if a player does not receive a valid reply for any of his queries, then he discards (hu, hc);

7. the players gossip all the valid answers to O , that aims to produce a proof for one of the

following facts:

a) ∃c̃ 6∈ C, such that T ′.Root(c̃) = hc;
b) ∃c̃ ∈ C such that T ′.Root(c̃) = hc, c̃ = ũG and T .Root(ũ) 6= hu;
c) ∃c̃ ∈ C such that T ′.Root(c̃) = hc, c̃ = ũG, T .Root(ũ) = hu and f(ũ) = False.

11

Let us also define two properties.

Property 1. Soundness: if a player accepts (hu, hc), then O will be able to recover c̃ (and ũ)

within a finite maximum delay.

Property 2. Agreement: if a player accepts (hu, hc), then all the other players will accept (hu, hc)
within a finite maximum delay.

Clearly, if A wins the game, which happens with probability γ, soundness and agreement

are caused to fail. We denote by γ the Adversarial Success Probability (ASP), i.e., the probability

that A wins a random execution of the game.

It can be easily seen that, in our model, the players P 1, · · · ,P m correspond to the light nodes

connected to a malicious node modeled by A . The oracle O instead represents the fact that we

assume any light node must be connected to at least one honest full node wishing to broadcast

fraud proofs. We remark that the hypotheses and properties that underlie our model are the

same under which DAAs have been studied in the literature [13, 3, 8, 12]. Finally, our model

does not fix any hash tree, nor code family; thus, it can be used to study several blockchain

networks. We now proceed by describing how SPAR adapts to such a model, but it can be easily

seen that also the protocol proposed in [3] fits into the model.

3.2. DAAs in the SPAR protocol

In SPAR, the CMT is instantiated using the code design procedure considered in [7], which

produces an ensemble of LDPC codes whose parity-check matrices have at most column weight

v and at most row weight w. As mentioned in Section 2.3, besides the CMT, SPAR requires the

use of another hash tree, denoted by T and considered as a standard Merkle tree.

Let u ∈ F
k
q denote the list of transactions of a new block. Then, a correctly constructed

header contains hu = T .Root(u) and hc = T ′.Root(c), with c = uG
(1). However, in case of

a DAA, the word c̃ = c+ e upon which hc is constructed may be any vector picked from F
n
q .

The authors of SPAR study the protection of the protocol against DAAs; namely, they initially

consider the following two cases:

a) if c̃(i) 6∈ C(i), then the proof consists in sending the value of all the symbols that participate

in a failed parity-check equation, except for one of them, together with their CMT proofs;

we refer to such a proof as parity-check equation incorrect-coding proof ;

b) if c̃ = c but f(u) = False, the adversary succeeds only if the samples received by the

oracle are not enough to allow the recovery of u from c̃ through decoding.

The scenario where the oracle finds a hash inconsistency is also considered, in which case O can

broadcast a fraud proof to the light nodes, called here hash inconsistency incorrect-coding proof.

The following bound for the ASP is derived [13, Theorem 1]:

γ ≤ max
{

(1− αmin)
s , 2maxi{Hb(αi)ni+ms log2(1−αi)}

}

(2)

where αi is the undecodable ratio of C(i), that is, the minimum fraction of coded symbols

the adversary needs to make unavailable in order to prevent the oracle from full decoding,

12

αmin = mini(αi), and s is the number of queries performed by each light node. Therefore, if

the oracle is not able to decode due to the presence of a stopping set, the adversarial success

probability computed in [13] is the probability that exactly one player receives an answer to all

its queries.

We argue here, instead, that a sufficient condition to break the soundness and agreement

as defined in [3, 13], and recalled in Section 3.1 is actually that at least one player accepts an

invalid block.

Proposition 1. In SPAR, an adversary cannot cause the soundness and agreement to fail with

probability

γ ≤ min{1,max{1− [1− (1− αmin)
s]m , t2}}, (3)

where t2 = 2maxi{b(αi)ni+ms log(1−αi)}.

Proof. According to Property 1, the soundness fails if at least one player accepts the block header,

but the oracle will not be able to dispatch a fraud proof. The probability that exactly one player

accepts the challenge is lower than or equal to (1− αmin)
s and, therefore, the probability that

exactly one player discards the challenge is larger than or equal to 1− (1−αmin)
s. Considering

that there are m players, the probability that all of them discard the block is larger than or

equal to [1− (1− αmin)
s]m. So, finally, the probability that at least a player accepts the block

is lower than or equal to

1− [1− (1− αmin)
s]m .

The rest of the proof is as in [13, Theorem 1].

4. Numerical examples

Let us consider the code parameters proposed in [13] as a benchmark. It is shown in [13, Table

2] that the most favourable value of the stopping ratio of the constructed ensemble (β∗) is

obtained when w = 8 and the code rate is R = 1/4, from which v = 6 easily follows. As in

[13] we consider two cases: a strong adversary (SA) able to find stopping sets and erase the

corresponding symbols, and a weak adversary (WA) unable to find them and hence forced to

erase random symbols. For the SA, the undecodable ratio is α∗ = β∗ = 12.4%; instead, in case

of WA we have α∗ = 47% [13]. According to [13, Table 2], when n = 4096, the probability
that the code stopping ratio α is smaller than the ensemble stopping ratio is relatively small

(3.2 · 10−4).

In Table 1 we report the upper bound (2) and the newly assessed upper bound (3) on the ASP,

for some values of s, considering n = 4096 and m = 1024; notice that the new value is never

smaller than the previously computed upper bound. Clearly, this may have severe security

consequences.

As obvious and expected, the upper bound on ASP is a decreasing function of the number of

samples s. So, once a target adversarial success probability is chosen, it is possible to compute

a lower bound for the value of s each player needs to ask in order to stay below it, simply by

inverting (2) and (3). Considering the same parameters as above (n = 4096 and m = 1024) we
obtain the results in Table 2.

13

Table 1

Upper bound values from (2) and (3) form = 1024, n = 4096.

s
Upper bound on γ [13] New upper bound on γ
WA (2) SA (2) WA (3) SA (3)

8 6.23 · 10−3 ≈ 1 ≈ 1 ≈ 1
35 2.24 · 10−10 9.72 · 10−3 2.29 · 10−7 ≈ 1
200 ≈ 0 3.17 · 10−12 ≈ 0 3.24 · 10−9

2000 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 2

Values of s (obtained by inverting (2) and (3)) form = 1024, n = 4096 and different values of γ.

γ
Lower bound on s [13] New lower bound on s
WA SA WA SA

10−2 8 35 19 88
10−5 19 87 30 140
10−10 37 174 48 227

We notice that the actual number of samples asked by each node is much larger than expected,

resulting in a larger sampling cost S, which increases linearly with s as follows [13]

S = s

(

B

k
+ [y(b− 1) + yb(1−R)] logbR

k

Rt

)

,

where B is the block size, y is the hash size and b, introduced in Section 2.3, is the number of

batched hashes in each layer. Finally, t is the number of hashes in the root and determines the

header size H = tℓH, where ℓH = 256 is the binary length of the digests.

In Table 3, we assess the sampling cost S, normalized with respect to the block size B,

assuming m = 1024, R = 1/4, k = 1024 symbols, B = 1 MB, b = 8, t = 256 hashes and

some different values of the ASP γ. A comparison with the optimized ASBK protocol [12],

named after the original authors’ initials, is also reported, for which we have considered the

same block size, and codes defined over a field of size 2256. As expected, the optimized ASBK

protocol results in smaller sampling costs than the SPAR protocol (this also held true for the

original ASBK protocol [13, Fig. 4]).

Table 3

Sampling cost S normalized to the block size B form = 1024, n = 4096 and different values of γ.

γ
Lower bound on S/B [13] New lower bound on S/B Lower bound on S/B [12]

WA SA WA SA -

10−2 0.0233 0.1019 0.0553 0.2563 0.0278
10−5 0.0533 0.2534 0.0874 0.4077 0.0358
10−10 0.1078 0.5068 0.1398 0.6611 0.0435

However, it should be noticed that SPAR has the advantage of relying on a fixed header

size whereas in ASBK the header size increases as the square root of the block size. Therefore,

14

considering the same setting, in Tables 4, 5 and 6 we have compared the total amount of

downloaded data D (sampling cost plus header size) using SPAR, to that obtained using the

optimized ASBK protocol, The tables also report the header size H for the optimized ASBK

protocol, when B = 1 MB, B = 10 MB and B = 100 MB, respectively. The header size for

SPAR does not depend on the block size and its value is tℓH = 8.192 kB. Notice that this

amount of data must be downloaded by any light node during the regular course of the protocol,

independently of the malicious behaviour of some full nodes, possibly resulting in the additional

download of fraud proofs.

Table 4

Total amount of downloaded data normalized to the block size B = 1 MB for m = 1024, n = 4096 and

different values of γ.

γ
New lower bound on D/B Lower bound on D/B [12] H [kB] [12]

WA SA - -

10−2 0.0635 0.2645 0.0454
20.41110−5 0.0956 0.4159 0.0544

10−10 0.148 0.6693 0.0639

Table 5

Total amount of downloaded data normalized to the block size B = 10 MB for m = 1024, n = 4096
and different values of γ.

γ
New lower bound on D/B Lower bound on D/B [12] H [kB] [12]

WA SA - -

10−2 0.009 0.0386 0.0099
52.24410−5 0.0137 0.0609 0.0123

10−10 0.0214 0.0983 0.0154

Table 6

Total amount of downloaded data normalized to the block size B = 100MB form = 1024, n = 4096
and different values of γ.

γ
New lower bound on D/B Lower bound on D/B [12] H [kB] [12]

WA SA - -

10−2 0.0012 0.0051 0.0022
158.0310−5 0.0018 0.008 0.0025

10−10 0.0028 0.013 0.0031

We observe that, for relatively small and moderate values of the block size, despite the larger

header size, the use of the ASBK protocol is preferable even if a weak adversary is taken into

account. Instead, when the block size is large, SPAR is very convenient in the presence of a

weak adversary, but still more costly than ASBK if the adversary is strong.

15

5. Conclusion

By carefully analyzing the SPAR protocol we have shown that the actual sampling cost required

by the scheme, in order to achieve target security guarantees, is much larger than that initially

expected. Moreover, it is shown that, in many practical scenarios, the amount of data that light

nodes have to download is larger than that of other well-known schemes.

References

[1] Mustafa Al-Bassam. Lazyledger: A distributed data availability ledger with client-side

smart contracts. https://arxiv.org/pdf/1905.09274.pdf, 2019.

[2] Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud and data availability

proofs: Maximising light client security and scaling blockchains with dishonest majorities.

https://arxiv.org/pdf/1809.09044.pdf, 2019.

[3] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. Fraud and data

availability proofs: Detecting invalid blocks in light clients. In N. Borisov and C. Diaz,

editors, Financial Cryptography and Data Security, FC 2021, volume 12675 of Lecture Notes

in Computer Science, pages 279–298. Springer, Berlin, Heidelberg, 2021.

[4] Matteo Bernardini, Diego Pennino, and Maurizio Pizzonia. Blockchains meet distributed

hash tables: Decoupling validation from state storage. In CEUR Workshop Proceedings,

2nd Distributed Ledger Technology Workshop (DLT), volume 2334, pages 43–55, Pisa, Italia,

February 2019.

[5] Steven Cao, Swanand Kadhe, and Kannan Ramchandran. CoVer: Collaborative light-node-

only verification and data availability for blockchains. In Proceedings of the 2020 IEEE

International Conference on Blockchain (Blockchain 2020), pages 45–52, Rhodes, Greece,

November 2020.

[6] Karunakaran Murali Krishnan and Priti Shankar. Computing the stopping distance of a

Tanner graph is NP-hard. IEEE Transactions on Information Theory, 53(6):2278–2280, 2007.

[7] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A. Spielman.

Efficient erasure correcting codes. IEEE Transactions on Information Theory, 47(2):569–584,

2001.

[8] Debarnab Mitra, Lev Tauz, and Lara Dolecek. Concentrated stopping set design for coded

Merkle tree: Improving security against data availability attacks in blockchain systems.

In Proceedings of the International Symposium on Information Theory (ISIT 2020), pages

136–140, Los Angeles, CA, USA, June 2020.

[9] Debarnab Mitra, Lev Tauz, and Lara Dolecek. Concentrated stopping set design for coded

Merkle tree: Improving security against data availability attacks in blockchain systems.

https://arxiv.org/pdf/2010.07363.pdf, 2021.

[10] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. :

https://bitcoin.org/bitcoin.pdf, 2008.

[11] Tom Richardson and Rüdiger Urbanke. Modern Coding Theory. Cambridge University

Press, 2008.

[12] Paolo Santini, Giulia Rafaiani, Massimo Battaglioni, Franco Chiaraluce, and Marco Baldi.

16

Optimization of a Reed-Solomon code-based protocol against blockchain data availability

attacks. In Proceedings of IEEE International Conference on Communications (ICC) 2022,

Seoul, South Korea and virtual, May 2022.

[13] Mingchao Yu, Saeid Sahraei, Songze Li, Salman Avestimehr, Sreeram Kannan, and Pramod

Viswanath. Coded Merkle tree: Solving data availability attacks in blockchains. In

J. Bonneau and N. Heninger, editors, Financial Cryptography and Data Security, FC 2020,

volume 12059 of Lecture Notes in Computer Science, pages 114–134. Springer, Cham, 2020.

[14] Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. Solutions to scalability of

blockchain: A survey. IEEE Access, 8:16440–16455, 2020.

17

