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Abstract  
Many applications require high accuracy of neural networks, as well as low latency and user 

data privacy guaranty. Face anti-spoofing is one of such tasks. However, a single model might 

not give the best results for different device performance categories, while training multiple 

models is time consuming. In this work we present Post-Train Adaptive (PTA) block. Such a 

block is simple in structure and offers a drop-in replacement for MobileNetV2 Inverted 

Residual block. PTA block has multiple branches with different computation costs. The branch 

to execute can be selected on-demand and at runtime, thus offering different inference times 

and configuration capability for multiple device tiers. Crucially, the model is trained once and 

can be easily reconfigured after training, even directly on a mobile device. In addition, the 

proposed approach shows substantially better overall performance in comparison to the 

original MobileNetV2 as tested on CelebA-Spoof dataset. Different PTA block configurations 

are sampled at training time, which also decreases overall wall-clock time needed to train the 

model. While we present computational results for the anti-spoofing problem, the 

MobileNetV2 with PTA blocks is applicable to any problem where the original MobileNetV2 

was, which makes the results presented practically significant. 
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1. Introduction 

Convolutional neural networks have shown an extraordinary performance in computer vision tasks. 

While the initial research has been focused purely on quality regardless computation cost, the modern 

research trend is to design fast yet accurate neural networks, and in significant part such a trend has 

been motivated by the requirements of low-latency data processing, user data privacy, as well as 

reduction of server load. In addition to the fact Mobile and IoT devices offer significantly less 

computational power, typically several generations or price categories of such devices should be 

considered, yet architecture of most modern neural networks can only be configured before training and 

not after. This leaves us with two alternatives: 1) to train a separate network for each device category, 

which requires more time and effort; 2) to design a single architecture which will target either high-end 

devices and high quality, or compatibility with all device generations at the cost of accuracy. Both of 

these solutions are suboptimal. 

Real-time time face anti-spoofing is one of the algorithms that is preferable to be performed directly 

on a mobile device. The anti-spoofing task is to distinguish whether the user shows its real, live face, 

or a recording of someone else’s. The problem is complicated by plethora of ways spoofing attack can 

be performed, such as printed face image, poster, video, face mask, etc. Anti-spoofing can be found as 

a component in face-based access control systems, where it is not acceptable if access can be granted 

to an unauthorized person holding someone’s photograph. 

In this work we propose Post-Train Adaptive (PTA) block, which is simple in structure and offers a 

drop-in replacement for MobileNetV2 Inverted Residual block. The PTA block has multiple branches 
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with different computation costs. The training procedure is constructed in way, so that the branch to 

infer on in a fully-trained network can be selected on-demand and at runtime, thus offering a way to 

change network inference speed and to target multiple device tiers. Block configuration choice can be 

made based on device speed, system load, desired power consumption or target quality. Crucially, the 

model is trained once and can be easily reconfigured after training, even directly on a mobile device. 

To summarize, our main contributions are as follows: 

1. We introduce Post-Train Adaptive block for MobileNetV2 network, which is capable of 

switching between different performance/quality levels after being trained and at runtime directly 

on a mobile device. 

2. We demonstrate superiority of the proposed approach over the original MobileNetV2 network 

both in terms of quality, as well as inference speed on multiple mobile devices on face anti-spoofing 

problem. The qualitative metrics are provided on CelebA-Spoof dataset. 

2. Literature Overview 

The initial very deep convolutional network research has been focused on finding exact 

configurations for convolution blocks (including kernel size and stride), pooling type and activation 

functions. Each block of these networks was “plain”, i.e. contained a single branch, such as in VGG 

network [1] with up to 19 layers deep. It has been noticed, that in general deep neural networks have 

better performance and overall generalization capability; however, it has turned out that building even 

deeper networks faces a vanishing gradient problem, and the training barely proceeds. In [2] a training 

experiment has been conducted for plain networks with different depth. The first network contained 20 

layers, the second was constructed by adding more layers with the total of 56 layers. It has been 

expected, that if the newly added layers provide no additional benefit, they could be learned to produce 

an identity mapping, hence, the deeper network should, in theory, show accuracy no less that the 

shallower network. Yet the experiment has shown that the accuracy of the deeper network was much 

worse. To counteract the vanishing gradient problem, the authors of ResNet network [2] suggested 

using an extra identity connection between groups of blocks. Such connection has been termed as skip 

or residual connection. Also, they have also introduced a Bottleneck block, that is a group of 3 

convolutions with kernel size of 1 × 1, 3 × 3, 1 × 1. To limit required computation, 1 × 1 convolutions 

reduce and then restore the number of channels, so that a heavier 3 × 3 convolution processes smaller 

input (hence the name “bottleneck”). Skip connection is used in this block, so that the input to the first 

convolution is added to the result of the whole block. 

The authors of a widely used MobileNetV2 [3] architecture improve on the ideas previously 

proposed in ResNet architecture. They introduce an Inverted Residual Block, which on the contrary has 

small channel count in inputs and outputs, but more channels inside the block. The authors note that 

such a design is more memory efficient than that of the original ResNet. To keep the number of 

computations low, lightweight depthwise convolutions are used inside the block. The network has a 

configurable width parameter, by changing which it is possible to tune the network’s computational 

complexity. A more detailed description of the inverted bottleneck block is provided in the next section. 

The following works have improved in the following directions: in Squeeze-and-Excitation Network 

(SENet) [4] an attention mechanism has been applied to improve the quality of network prediction. In 

neural networks, attention is used to selectively gate information flowing through the network, so that 

only the most important components of the signal flow forward. In MnasNet [5], an approach for an 

automated neural architecture search for mobile or embedded devices has been proposed. During neural 

network architecture selection process, the best network was selected based on inference speed on an 

actual mobile device. MobileNetV3 [6] has also improved on the previous approaches by using network 

architecture search, attention mechanisms and novel activation function. Large and small configurations 

have been proposed. Mobile neural network inference is important for face-related processing [7] and 

many other tasks. 

Anti-spoofing is used to enhance camera-based access control systems from unauthorized user 

access based on someone else’s photograph, such systems can also be executed directly on mobile [8]. 

The above-described networks can also be used for anti-spoofing. In general, anti-spoofing can be 

performed based on RGB signal from a conventional camera, infrared or depth information from special 



hardware.  For instance, CASIA-SURF [9] dataset, has video information about all three modalities. 

Using them together improves overall quality, but depth or infrared information is typically not 

available and requires special hardware. Therefore, in this work we focus on algorithms that use RGB 

signal only. By using RGB signal anti-spoofing can still be performed by finding color and shape 

distortions. This is different from image classification, where the shape (and not distortions) is of more 

importance. In [10] it was proposed to replace convolution operation with Central Difference 

Convolution, that better captures color gradients to improve anti-spoofing performance. In [11] AENet 

network was introduced with ResNet as a backbone. The authors utilize rich annotations of the CelebA-

Spoof dataset (presented in the same work) to improve network training. Face attribute information 

(e.g., smile, sunglasses etc.), photo illumination conditions, as well as depth and reflection information 

are used to form a single multi-task loss. Depth and reflection information is not inherently present in 

the dataset; hence, the authors propose to infer it from RGB image using an auxiliary neural network. 

The extra information is used during training and not required during inference. We follow [11], [12] 

and also use CelebA-Spoof dataset in this work as it is to the best of our knowledge the largest anti-

spoofing dataset to date. 

While many of the above-described networks offer a capability of configuration change either 

through separate small/large configuration or through width parameter. The architecture design should 

be completed prior to training. No capability to change the network configuration after it has been 

trained is proposed in these networks. In this work we focus on improving MobileNetV2 architecture 

as it is one of the most widely used networks on mobile devices. 

3. Materials and Methods 

The main building block of a MobileNetV2 network is an Inverted Residual Block. This block starts 

processing input with a 1 × 1 convolution that expands the number of channels. The expansion is 

controlled by an expansion factor, the authors propose setting it to 6 for all hidden layers. The 

convolution is then followed by a Batch Normalization [13] and ReLU6 activation layer. Next, 3 × 3 

Depthwise Convolution is applied, followed again by Batch Normalization and ReLU6. In contrast to 

the ordinary convolution, depthwise convolution computes an output based on a single input channel to 

reduce computation required. Finally, a 1 × 1 convolution with Batch Normalization is applied to 

shrink the channel count back to the original. The final output is summed element-wise with the input 

(the abovementioned skip connection). The use of such block has allowed the authors to asymptotically 

reduce the number of multiply-add operations in the network while retaining good quality. The model 

also has a width multiplier, by changing which it is possible to adjust overall number of multiply-add 

operations. However, it is not possible to adjust width of the model after training. 

The aforementioned Inverted Residual Blocks are typically repeated with the same number of input 

and output channels several times. In this work we propose to change the number of inverted residual 

blocks required for model inference based on user demand and after the model training is complete. For 

that we introduce a Post-Train Adaptive (PTA) block, whose architecture is depicted on Figure 1. The 

PTA block has 2 branches: the right (heavy) branch is more computationally expensive and is fully 

equivalent to a pair of Inverted Residual Blocks; the left (light) branch reduces the computation by 

executing only a single Inverted Residual Block. The branch to be executed is selected based on user 

configuration and can be changed dynamically at runtime. It is possible to execute either branch 

exclusively or both at the same time. If both branches are executed, their outputs are averaged element-

wise, so that the feature distribution remains the same. The weights are not shared between any of the 

blocks. We propose to replace three pairs of Inverted Residual Blocks with the largest number of 

channels with Post-Train Adaptive (PTA) block schemePTA blocks in MobileNetV2 architecture, as is 

shown in Table 1. 

 



 
Figure 1: Post-Train Adaptive (PTA) block scheme 

 

Table 1 
MobileNetV2 with PTA Architecture 

Expansion Ratio Channels Repeats Stride Block Type 

1 16 1 1 Inverted Residual 
6 24 2 2 Inverted Residual 
6 32 3 2 Inverted Residual 
6 64 2 2 Inverted Residual 
6 64 1 1 PTA 
6 96 1 1 Inverted Residual 
6 96 1 1 PTA 
6 160 1 2 Inverted Residual 
6 160 1 1 PTA 
6 320 1 1 Inverted Residual 

 

To train such a model at each iteration we randomly sample a configuration of PTA blocks, and 

perform forward, then backward pass updating the weights. To avoid excessive randomness in the 

model, we limit the number of possible configurations for the model to 5: all blocks execute heavy 

branch; a single of the blocks executes the light branch, while others the heavy one; all of the blocks 

execute light branch. Configuration sampling is not performed uniformly, we follow the intuition that 

paths with larger number of weights should be trained for longer and thus assign higher sampling 

probabilities to such configurations. The exact sampling probabilities are shown in Table 2. Note, that 

we do not execute both branches at the same time during training. All configurations missing from 

Table 2 are also assumed to be never sampled and trained on. 

 



Table 2 
PTA configurations and corresponding sampling probabilities during training time 

PTA Configuration Sampling Probability 

[Heavy, Heavy, Heavy] 0.45 
[Light, Heavy, Heavy] 0.15 
[Heavy, Light, Heavy] 0.15 
[Heavy, Heavy, Light] 0.15 
[Light, Light, Light] 0.10 
[Both, Both, Both] 0.00 

 

We use Cross Entropy as a loss function. The models that we consider output logits, thus, Cross 

Entropy also includes softmax computation, and is defined as follows: 

 

𝑙(𝑥, 𝑦) = − ∑ ∑ log
exp(𝑥𝑛,𝑐)

exp(∑ 𝑥𝑛,𝑖
𝐶
𝑖=1 )

𝐶

𝑐=1

𝑁

𝑛=1

 

(1) 

 

where 𝑁 is the number of samples in a mini-batch, 𝐶 = 2 is the number of classes, 𝑥𝑛,𝑐 is the model 

logit output for item 𝑛 and class 𝑐. Adam [14] adaptive gradient descent method with learning rate 

𝛼 = 10−4 is used as an optimizer. 

4. Experiments 

To train and evaluate the model we use recent CelebA-Spoof [11] dataset. To the best of our 

knowledge, this is the largest Anti-Spoofing dataset available to date. Overall, it contains 625,537 

pictures (including both spoof and live photos) of 10,177 subjects. Photos are captured with different 

lighting, environment conditions and different cameras. Only RGB photo information is available in 

the dataset. Several spoof attack types are considered in the dataset, such as printed full frame photos, 

paper cut photos, replay attack when picture is presented on a tablet or a phone, and as the authors call 

it a 3D mask when a printed image is overlayed on top of a human face. In addition to binary spoof/non-

spoof label, the dataset contains rich information about spoof type, illumination condition, environment 

label, as well as face attribute labels (smile, mustache, hat, eyeglasses, etc.). At this point we use only 

binary spoof/non-spoof information with a possibility of extending our model in future. The dataset 

defines train/test splits and several evaluation protocols. Our results are given for intra-test protocol, 

which is used for general model evaluation.  We also randomly split the training subset into actually 

training and validation in 80/20 ratio. Training is performed for 20 epochs. The best model is then 

selected based on validation set. Gradient computation is performed on mini-batches of size 32 images. 

The results are reported on the test set. 

We also crop images based of face bounding boxes that are present for each image in CelebA-Spoof 

dataset. The resulting face image is then resized to the resolution of 128 × 128. We feed color (RGB) 

images to the model. At training time color jitter and ISO-noise augmentations are used. Note, that no 

ImageNet pretraining has been used, the models are trained from scratch. 

We follow [15], [16] and use the following metrics for model quality evaluation in our paper: 

Accuracy is a proportion of correctly classified images to the overall number of images; Attack 

Presentation Classification Error Rate (APCER) is a proportion of attack images incorrectly classified 

as normal images: 

 

𝐴𝑃𝐶𝐸𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(2) 

 

 

 



Bona Fide Presentation Classification Error Rate (BPCER), that is a proportion of normal (bona) images 

incorrectly classified as attack images: 

 

𝐵𝑃𝐶𝐸𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

(3) 

 

Average Classification Error Rate (ACER) is an average of APCER and BPCER: 

 

𝐴𝐶𝐸𝑅 =
𝐴𝑃𝐶𝐸𝑅 + 𝐵𝑃𝐶𝐸𝑅

2
  , 

(4) 

 

where TP is True Positive, that is the sample is labelled as spoof and the prediction is also spoof, TN is 

True Negative, meaning both prediction and true label are non-spoof, FP is False Positive, i.e., 

prediction is spoof, while the image is non-spoof, finally, FN is False Negative, the prediction is non-

spoof, but actual image is spoofed. 

As in this paper we not only target adaptivity and quality, but also inference time speed on a mobile 

device, we have selected a pair of Android smartphones for testing. The devices are based on Qualcomm 

Snapdragon 845 and Snapdragon 800 CPUs, the flagship mobile processors from 2018 and 2013 

correspondingly. In terms of modern-day processors, the former can be though-of as mid-to-high-end 

CPU, and the latter as low-end CPU. These processors are found in many devices; thus, our results can 

be easily reproduced. Also, in this way we conduct testing on major CPU performance categories. 

In addition, we report training time for both MobileNetV2 and MobileNetV2 with PTA blocks on 

GTX 1050Ti GPU, which is an important metric for practical applications. 

5. Results 

For the comparison 2 models have been trained: the original MobileNetV2 (hereinafter No PTA) 

and MobileNetV2 with PTA blocks (hereinafter PTA), constructed as described in Section 3. PTA-

based models can be further configured after being training, thus, in all of the following tables we show 

the configuration for which the testing has been performed. As the proposed MobileNetV2+PTA 

configuration consists of 3 PTA blocks we use 3-letter abbreviation to denote the exact configuration 

used. Letter H, L, B are used to denote execution of Heavy, Light, and Both branches correspondingly 

for each of the PTA blocks. 

In Table 3 we show qualitative results as measured on the test set. Accuracy is the higher the better. 

APCER, BPCER, ACER denote error rates, thus, the lower the better. The best result in each column 

is shown in red, second best is shown in blue. As can be seen PTA-based models dominate the original 

MobileNetV2 (No PTA) implementation in all of the metrics. Interestingly, PTA-HHH configuration, 

which is equivalent in terms of number of parameters and multiply-additions is also better than the 

original model. 

 

Table 3 
Quality comparison with and without PTA blocks 

Configuration Accuracy (↑, %) APCER (↓, %) BPCER (↓, %) ACER (↓, %) 

No PTA 96.74 1.07 4.18 2.63 
PTA-HHH 96.89 0.72 4.12 2.42 
PTA-LHH 96.84 0.70 4.20 2.45 
PTA-HLH 97.04 0.80 3.88 2.34 
PTA-HHL 97.83 2.30 2.11 2.21 
PTA-LLL 97.85 2.53 1.98 2.26 
PTA-BBB 97.49 1.21 3.05 2.13 

 

 



In Table 4 we present model complexity and inference time comparison. First, we show the number 

of parameters in each of the models (in millions). For the PTA models we configure the model after 

training, and then report the number of parameters that is actively used in the corresponding 

configuration. Next, we measure the number multiply-add operations (in million operations) executed 

during the forward pass of the model. Also, we measure actual performance on mobile devices on 

widely popular Snapdragon 845 and Snapdragon 800 processors (hereinafter SD845 and SD800 

correspondingly), measured in milliseconds. We have described these processors in more detail in the 

previous section. Finally, we show relative inference time improvement with respect to the No PTA 

baseline as measured on SD845.  PTA-HHH configuration has the same number of parameters and 

computation as No PTA and is equivalent in terms of performance on a real device. PTA-BBB 

configuration uses both Light and Heavy branches in all 3 PTA blocks and thus is slightly more 

computationally intensive. All other configurations that use a mix of Heavy and Light blocks are faster. 

 

Table 4 
Model complexity and inference time comparison with and without PTA blocks 

Configuration # Params 
(↓, M) 

Multiply-Adds 
(↓, Mops) 

Inference Time 
SD845 (↓, ms) 

Inference Time 
SD800 (↓, ms) 

Relative Inference 
Time (↓) 

No PTA 2.23 104.15 21.32 94.23 1.00 
PTA-HHH 2.23 104.15 21.27 94.12 1.00 
PTA-LHH 2.17 100.63 18.61 82.24 0.87 
PTA-HLH 2.11 96.50 19.67 86.96 0.92 
PTA-HHL 1.91 99.00 19.27 85.15 0.90 
PTA-LLL 1.73 87.84 17.08 75.44 0.80 
PTA-BBB 2.73 120.47 22.72 100.47 1.07 

 

 

As we sample Light and Heavy PTA configurations during training, it is expected that overall 

training time for the PTA-based model should decrease. Our experiments validate this assumption. In 

Table 5, we demonstrate training time for each of the models joined by the best Accuracy and ACER 

achieved by each of the models. We show epoch training time in minutes, and overall training time for 

20 epochs in hours. Note, the model with PTA blocks is further configured after training, thus, only a 

single MobileNetV2+PTA has been trained for all the configurations. As can be seen, PTA-based model 

is better in terms of quality, inference and training time. 

 
Table 5 
Qualitative metrics and training time comparison for MobileNetV2 with and without PTA 

Configuration Best Accuracy 
(↑, %) 

Best ACER 
(↓, %) 

Epoch Training 
Time (↓, m) 

Overall Training 
Time (↓, h) 

MobileNetV2 96.74 2.63 49.28 16.43 
MobileNetV2+PTA 97.85 2.13 43.11 14.37 

 

On Figure 2 we show validation accuracy during training for the original MobileNetV2 (solid blue 

line) and MobileNetV2+PTA (dashed orange line). For the PTA model we validate on PTA-HHH 

configuration, which is equivalent in terms of the number of parameters and multiply-adds to the 

original MobileNetV2. As is clearly seen, the MobileNetV2+PTA has better validation ACER 

throughout the training process. 



 
Figure 2: Validation ACER with respect to training epochs 

6. Discussion 

The key goal of this work is to make it possible to reconfigure a neural network after it has been 

trained. As has been shown, Post-Train Adaptive block proposed in this work is an efficient way for 

post-train network configuration. Placing only 3 PTA blocks in MobileNetV2 has made it possible to 

adaptively adjust inference time from 107% to 80% of the original MobileNetV2 (see Table 4). The 

simplicity of the PTA block has allowed to implement MobileNetV2 with PTA for inference on mobile 

devices with different CPUs: high-end Snapdragon 845 and low-end Snapdragon 800. On the latter the 

inference speed improvement over the original MobileNetV2 is over 18 milliseconds, which is 

significant for a performance-limited device. The best inference speed is offered by the PTA-LLL 

model, where all three PTA blocks use light branch only. Interestingly, the second-best inference time 

is achieved by PTA-LHH configuration with 100.63 Mops and not by PTA-HLH with 96.50 Mops. 

PTA-LHH is slower than PTA-HLH in 4.72 ms on SD800. 

PTA-based configurations have better quality as well. MobileNetV2 (No PTA) and PTA-HHH 

configurations have the same number of parameters and multiply-additions, but PTA-HHH is better in 

every metric as seen from Table 3. In this case, the only difference is in training procedure. PTA-based 

models sample different network configurations during training. Consequently, we suggest, that the 

proposed training procedure has a positive impact on overall model quality.  

Validation ACER comparison depicted on Figure 2 shows that PTA-HHH is better than No PTA 

model throughout the training procedure. For instance, after a single training epoch these models have 

achieved ACER of 6.46% and 9.3% for PTA-HHH and No PTA correspondingly, meaning PTA-based 

model starts to train significantly faster. The final validation ACER for PTA-HHH is 0.53% and is 1.0% 

for No PTA. We suggest that sampling different block configurations during training makes the network 

to learn more general features and offers regularization capability. This might explain better PTA-based 

model results. 

Overall, the best accuracy and BPCER is shown by PTA-LLL at 97.85% and 1.98% 

correspondingly. This is also the fastest configuration. PTA-LHH has the lowest APCER at 0.70% 

(53% relative performance improvement). 

We also investigate a possibility of using multiple branches jointly in PTA-BBB configuration. This 

is the configuration that shows the best performance in average classification error rate (ACER) at 

2.13%, which is a 23.5% relative improvement over the baseline. The model is also better than 

MobileNetV2 (No PTA) in all other metrics. The 2-branch PTA-BBB model has more parameters 



(2.73 M) and multiply-additions (120.47 Mops) that the original MobileNetV2 model with 2.23 M and 

104.15 Mops correspondingly.  Note, that the PTA-based network is never actually trained with both 

branches enabled. Therefore, we expect each of the branches to learn slightly different features, thus 

forming as in-model ensemble similarly to Dropout [17] technique.  

The overall training time is lower than that of conventional MobileNetV2 as can be seen from 

Table 5. On a mainstream Nvidia GTX 1050Ti graphics card we see 2-hour (or 14%) overall training 

time reduction, when the model is trained for 20 epochs. This significant model training time decrease 

is achieved by two facts: 1) the heaviest PTA-BBB configuration is never used during training, as is 

previously mentioned; 2) the actual configurations sampled during training (see Table 2) are lighter 

than MobileNetV2 (No PTA), which on average results in fewer multiply-add operations performed 

during both inference and training time. Note, all PTA configurations are obtained from a single trained 

model. This differs our approach from other found in literature. 

7. Conclusion 

In this work Post-Train Adaptive block has been first introduced. Such a block is simple in structure 

and offers a drop-in replacement for a pair of MobileNetV2 Inverted Residual blocks. Thanks to the 

proposed novel block we improve over MobileNetV2 for anti-spoofing in the following ways: 1) we 

solve the problem of inability to change the network architecture after it has been trained. The PTA 

block has light and heavy branches with each of them capable of switching on and off on-demand and 

at runtime. Not only each of the branches can be used exclusively, but also their prediction can be 

averaged, forming an in-model ensemble. Therefore, a model can be reconfigured after training to better 

suit the target device; 2) the lightest PTA configuration shows 20% improvement in terms of actual 

inference speed on a mobile device, while also having superior quality in comparison to the original 

MobileNetV2 architecture; 3) the anti-spoofing performance has been substantially improved with 

PTA-based configurations beating the baseline in all typical anti-spoofing metrics. During training we 

sample different PTA configurations with different number of parameters. We suggest that this results 

in the model learning more general features, thus, resulting in better overall quality. All of the 

aforementioned improvements have been achieved with smaller total training time in comparison to the 

MobileNetV2 model. 

Because-of a significant variation of mobile and edge device computational power, a single neural 

network targeting several different device categories is suboptimal. The proposed approach, in contrast, 

allows to train the model once and then adjust its runtime speed according to device characteristics, 

overall system load and desired battery consumption. This makes the results obtained practically 

significant. 

While the MobileNetV2 with PTA blocks architecture is applicable to any problem, where the 

original MobileNetV2 was, in this work we have investigated only a single (yet important) practical 

application, that is mobile face anti-spoofing. In future works we will expand our exploration on other 

applications and will improve PTA blocks performance and quality even further. 
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