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Abstract  
With the advent of BIM, IoT, Digital Twins and Machine learning, new approaches to the 
programming and configuration of Building Management Systems (BMS) become available. 
In this paper we present an approach where the BMS learns the correct behavior instead of 
being programmed. By continuing the learning phase into the operation phase the system can 
then adapt to changes in building use and optimize the user interaction or user experience. We 
demonstrate the approach by applying it to the control of the lighting in the iHomeLab Visitor 
Center. The algorithm has been tested in Simulation and will be implemented in the iHomeLab 
in the next months.  
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1. Introduction 

The iHomeLab Visitor Center is a showroom dedicated to demonstrating the possibilities of Smart     
Building Technologies and disseminating the results of the iHomeLab Research Center in the research 
areas: Active Assisted Living, Smart Energy Management and Safe Building Intelligence [1]. The 
results of research projects are presented in the Visitor Center, which is available for custom guided 
tours or free public guided tours and can also be rented for an event. A key difference to other visitor 
centers is the use of storytelling and guided tours to make the results and possibilities accessible and 
understandable for the public. One of the more complex systems in the iHomeLab is the lighting system, 
which must react to the guide depending on the event or to react dynamically during a presentation. 
This currently requires a lot of manual interaction between the guide and the building, especially in 
special cases, for example filming videos. Over the last few years, the variety of presentations and use 
cases has been steadily increasing. There is a need to make the interactions simpler and increase the 
level of automation, while adapting to our changing needs. 

 Building control algorithm design is often perceived to be a relatively simple problem, as the 
algorithms themselves can be quite simple. Complexity arises when the number of actuators and sensors 
and the number of potential interactions with the occupants of the building are considered. Further 
complexity arises when external influences such as time or day or year, or when changing needs of the 
occupants are included. With the rise of BIM and Digital Twins allowing a dynamic model of the 
building, and the integration of a parameterization of the control system, new possibilities arise. A 
genetic algorithm (GA) can select potential control algorithms according to a simple fitness function. 
Potential occupants may then use Virtual Reality to enter and interact with the building in various 
situations, and thus provide additional information for the selection of the final algorithm. After the 
installation of the system, the system can observe the interactions of the occupants with the building in 
different situations, and then further optimize the algorithms to minimize the number of interactions 
necessary. In this way the building learns and adapts itself to the needs of the occupants. 

 To prove the applicability of this concept, we have applied it to the lighting system of our iHomeLab 
Visitor Center. In this paper we describe the technology used, and the approach taken, as well as the 
current state of the project and possible future work. 
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2. Technology & State of The Art 
2.1. Digital Twins 

The first Digital Twin (DT) concept was presented by Grieves in 2002 [2] and was initially called 
"Conceptual Ideal for PLM (Product Lifecycle Management)". The core elements of the DT concept 
were present: Real Space (RS), Virtual Space (VS), the link for data flow from real space to virtual 
space, the link for information flow from virtual space to real space and virtual sub-spaces. The term 
Digital Twin was first introduced in 2010 by NASA in the publication of its technology roadmap [3]. 
Here a DT was described as an integrated multi-physics, multiscale simulation of a vehicle or system 
that uses the best available physical models, sensor up-dates, fleet history, etc., to mirror the life of its 
corresponding physical twin. Later in 2014, Grieves published a whitepaper [4] presenting 
developments of the concept after 10 years of its presentation. In this paper he states that the evolution 
in the field of lightweight 3d models, in that decade, made it possible to model products with the 
required geometry, characteristics and attributes and containing only the necessary details. Thus, 
enabling users to view and simulate complex models with acceptable computational cost. On the other 
hand, he identified the fact that the connection between the RS and the VS was still not satisfactory as 
the main reason why the concept of Digital Twin was not more widespread. Only after being able to 
establish this connection in real-time would users be able to benefit from the advantages of the DT 
concept. According to Grieves the DT would then be able to support three of the most powerful tools 
of human engineering: 
 

• Conceptualization - DT allows a direct visualization of the information in the model. 
Eliminating the counterproductive mental process of decreasing the information and translating it 
from visual information to symbolic information and back to visually conceptual information. 
• Comparison - The real-time connection enables to compare the desired result and the actual, 
determine a difference and decide how to eliminate or reduce it. 
• Collaboration – The possibility to have this VS that reflects the RS in real-time allows to have 
a common visualization of the RS regardless of where it is in the world. 
 

2.2. Digital Twins and IoT Integration  

The term “Internet of Thing” (IoT) was introduced by Ashon in 1999 [5]. Ashon had the idea to 
implement the Radio Frequency Identification (RFID) technology in the supply chain of P&G and 
connect its data with internet. This established the concept of an object (“thing”) oriented architecture 
with services implemented based on the data made available. In the same year, Message Queuing 
Telemetry Transport (MQTT) was invented by Stanford-Clark and Nipper [6]. MQTT is a lightweight 
network protocol, that enables to publish-subscribe messages between devices that enables an IoT 
architecture. This was further standardized in 2009, when a group of researchers from more than 20 
large industrial companies joined in Germany to create the IoT Architecture project (IoTA) [7]. The 
project was implemented between the years 2010 and 2013 and resulted in proposals the creation of an 
architectural reference model together with the definition of an initial set of key building blocks [8]. 

 The IoT and the IoT-A provided, the first steps were taken to create the desired connection between 
RS and VS mentioned above. Recently with the advent of the PaaS (Platform as a service), many cloud 
providers such as AWS, Google IoT, Microsoft Azure and IBM have provided the infrastructure to ease 
linking of IoT and Digital Twins. 

2.3. BIM – Digital Twins for Buildings  

Building Information Model (BIM) has become a fundamental aspect in the architecture, 
engineering, and construction (AEC) industry. As a 3d model of a building a BIM file contains it the 
geometry information as every important semantic information of the building elements [9]. BIM-based 
framework had been developed to integrate the model during the different execution phases of a 



construction project [10]. During the preliminary design phase, the model is used to create Building 
energy performance simulations (BEPS) [11]. Taking advantage of the fact that BIM models are granted 
parametrically, processes based in Algorithm Aided Design (AAD) can be implemented in the detailed 
design phase [12]. In the construction phase the model can be incorporate with Augmented Reality 
(AR) and indoor positioning [13] to monitor works on site, inspect and ensure the quality of execution. 
The use of a well elaborated model in the subsequent phases supports the task of making commissioning 
fast and effective. In addition, many equipment manufacturers have developed AR applications that 
assist the equipment startup operations [14]. The parameters stored in the BIM models can also be used 
to automatically define set points and operating schedules of the different spaces, allowing a quicker 
and accurate configuration of the BMS (Building Management System) [15]. Finally, all system test 
and commissioning reports can be attached to the model. In this way, the BIM model would be able to 
replace the technical compilation usually delivered in the project’s handover and be used later by the 
Facility Management Team [16]. During the operation phase, the use of BIM models and IoT (Internet 
of Things) enables the visualization of the building system information (temperature, humidity and 
pressure sensors, lighting, system errors, etc.) in real time – Digital Twin. [17] 

2.4. Learning Algorithms for Building Control 

In recent years, the combination of BIM and IoT-PaaS (Platform as a Service) has opened the field 
of applying learning algorithms for building control. In particular, the research done in [18] is worth 
mentioning. In this project the authors used a physical testing apparatus linked to both a digital 
simulation and analysis environment to develop an Intelligent Adaptive Control (IAC) framework that 
uses machine learning to integrate responsive passive conditioning at the envelope (adaptive facades) 
into the building’s overall environmental control system. 

 Applying Machine Learning and adaptive control to building automation systems (BMS) is an 
approach that has already been followed in multiple research papers [19,20,21,22], and that some BMS 
companies already commercialize in their solutions. For example, Siemens Building Technologies [23] 
ensures that the Adaptive Control capability provides more efficient, robust, fast, and stable control 
compared to traditional PID control. Adaptive Control automatically adjusts to fluctuations in 
mechanical systems, loads, and seasonal changes to deliver superior performance in variable 
environments. Resulting in energy savings, increased component life expectancy and improved 
occupant comfort. 

 In Switzerland since 2013, a Block Research Group is developing the project HiLo [24] on the 
topmost platform of NEST, novel structural solutions are being studied for the building envelope of 
which we would like to highlight is the Adaptive Solar Façade (ASF) is a dynamic façade of thin-film 
photovoltaic modules with soft, pneumatic actuators for solar tracking and daylight control. The 
modules are controlled based on sensors as well as on input by the inhabitants. Adaptive learning 
algorithms facilitate the continuous improvement of the behavior and thus the adaptation of the modules 
to their users and the environment.  

Although the technology used by BMS companies is well established, in this paper we propose a 
novel approach. Instead of using the error signals to adapt the control strategy, the system abstracts the 
relevant information from input data and redefines the design parameters. This approach is applicable 
to switching based systems with strong human interaction, such as the lighting systems, and not just to 
the control of environmental systems. 

2.5. Learning Algorithms for Building Control 

The Genetic Algorithm is an adaptive heuristic approach to Machine Learning. It belongs to the 
class of Evolutionary Algorithms. Based on a parameterization of the solution space, candidates are 
evaluated based on a fitness function, and then the best are recombined in the following generation. The 
population size is preserved throughout each generation. The new generation is created by 
recombination of the parameterized potential solutions, in some cases this is modified with random 
changes. After a set number of generations, the best solution according to the fitness function is chosen 
as the solution. See for example [25] for an accessible introduction. The concept of applying genetic 



algorithms for design optimization has been explored in the past, see for example [26], and has been 
applied to lighting control [27]. However, these applications were aimed at optimizing power 
consumption, and were not aimed at optimizing the user experience, as developed in this paper. 

3. Lighting Control of the iHomeLab 
3.1. Digital Twin of iHomeLab 

The iHomeLab Digital Twin project aims to explore new infrastructure technologies using the 
iHomeLab as a use case. For this propose, in the beginning of the project a BIM model was developed 
to serve as a basis for the remaining fields of application (Figure 1). 

 
 

 
Figure 1: Digital Twin of iHomeLab 

 
Using this model, two other use-cases were explored. The investigation of a Virtual or Augmented 

Reality experience of the iHomeLab (Figure 2) 
 

 
Figure 2: Virtual (left) and Augmented Reality (right) in the iHomeLab Digital Twin 

 
The toolchain architecture established in the project is shown in Figure 3. The iHomeLab sensors 

are connected to a KNX network using a Raspberry-Pi as an IoT Gateway. We chose AWS IoT as a 
IoT cloud service that receives the MQTT messages and enables representation in the BIM model, 
which is imported to Amazon Sumerian. Amazon Sumerian is a service from AWS that allows the 
creation and execution of 3D, Augmented Reality (AR) and Virtual Reality (VR) applications. 

 

 
Figure 3: Toolchain Architecture 



3.2. Lighting Control Concept 

As presented in Sections 1 and 3 the iHomeLab Visitor Center is used for different types of events. 
All the events are scheduled in the iHomeLab Calendar, each event contains the following information 
(Main Variables): 

• Type of event, which determines the sub-events 
• Name of the guide 
• Number of people participating in the event 
• Date & Time of the day and duration of the event. 
 
In an iHomeLab event the guide triggers the start of a sub-event, the switching control then consists 

of a series of Lighting Status Signals (LSS). Each LSS consists of a timestamp, a light designation, and 
the new status – on/off, color and intensity. The main variables influence the specific sequencing and 
choice of LSSs. These control rules were defined based on the experience and intuition of the guides. 

Although the LSS are predefined to perform automatically during the event and its sub-events, 
manual interactions can be introduced by the person who conducts the event. These changes are 
performed using a mobile app to communicate with the BMS System. Manual interventions are stored 
as additional LSSs for that event. The system filters the pre-programmed LSSs to ensure they do not 
contradict the manual interactions. LSSs that are not executed are effectively replaced by the manual 
LSS in the event record. All the data of an event is stored in an IoT cloud Database via MQTT messages. 
The objective of the learning algorithm is to analyze the data and explicitly redefine the control 
parameters to minimize the number of manual changes during an event. This is done by calculating the 
difference between the pre-programmed lighting sequence and the actual lighting sequence as the 
objective for the fitness function in the genetic algorithm. The algorithm can used in 3 phases of the 
operation of the lighting system of the iHomeLab: 

1. Design Phase: When creating a new event type, the user interacts with the algorithm in virtual 
reality to evaluate and possibly modify the interaction. 
2. Pre-Event Check: The Guide has the option of checking the lighting interactions and modifying 
the settings before an event. 
3. Post-Event Learning: The system automatically reviews the interactions and determines 
whether the settings need to be adjusted (learning step). 
 
In the Design Phase and the operation of the iHomeLab, a database of LSS-Sequence-Pairs is 

created. Each pair consists of the planned and actual LSS sequences. The elements of the genetic 
algorithm are then: 

• Fitness: The difference between the actual and planned LSS sequences  
• Population: The set of individuals 
• Individual: The set of LSSi-vectors, one for each type of subevent (i) 
• History - Storage of the new population DATA for each Generation (n): 

• New LSSi,n from sub-event preprogrammed sequences 
• New LSSi,nVR from sub-event VR scene inputs 
• New LSSi,nDT from sub-event DT scene inputs 
• New LSSi,nRE from sub-event Real Event manual inputs 

• Evaluation: In each generation the algorithm calculates the difference Δ between the 
preprogrammed values LSSi and the other input vectors LSSi,nVR, LSSi,nDT and LSSi,nRE. The 
inputs from the different categories of events are weighted to assign a greater degree of importance 
to the data collected in the following order VR, DT, RE. The fitness functions are composed by the 
sum of all the three weighted Δs. 
• Evolution (between generations): The optimization algorithm minimizes the fitness function by 
evolving each LSSi,n. The algorithm will use all the previous generation data to improve the event 
lighting settings. The result of the evolve phase is a new definition for each set of LSSi,n+1 that will 
be considered as the new preprogrammed sequences to use in the next generation. Figure 4 presents 
the overall concept diagram. 



 
Figure 4: Concept Diagram 
 

In this research project, we apply the algorithm in two use cases for the Visitor Center. Firstly, for 
the presentation of research projects to the public by a guide. And secondly, for events where the VC 
is rented and used according to the organizer's needs. Both cases are described in detail in the following 
sections. 

3.3. Genetic Algorithm Use Case 1 - Guided Tours 

During the guided visits to the IHL VC, several research projects are presented through iterative 
demonstrations. Each demonstration was designed to convey the project's key results and is 
accompanied by a different LSS sequence. The LSSs are predefined in the BMS, however the actuation 
time of each set can be manually controlled by the guide. Before a guided tour, the LSSs are selected 
based on the number of people attending the demonstration. The GA can then use the difference 
between the planned LSSs and the actual LSSs to adapt the LSSs for the tour. This is done in the learning 
phase using VR, and then in the operation phase using DT and the reality. Therefore, the GA enables 
learning during operation of the Visitor Center. Figure 6 shows the pseudo code for the GA 
implementation for this use case. 
 

3.4. Genetic Algorithm Use Case 2 – Events 

The second use-case developed is applicable in situations where the IHL VC is rented for events. In 
these cases, there are no exhibition demonstrations in which the lighting environment was previously 
designed to convey the intended message. In this way, the event organizer has the possibility to choose 
the lights he wants to turn on as well as their color and intensity during the different activities of the 
event. Generally, these types of events include as main activities a welcome session, an introductory 
lecture, a presentation or a video and a question-and-answer session. In many cases, they are followed 
by a break and an Apéro. Each activity needs adjustments in the lighting conditions of the space. Since 
the time that each activity lasts depends largely on the organizer that is using the space, unlike the 
previous study case, in this case we do not intend to control the timing of the transition between LSS, 
but rather to predefine in a generative way the lighting settings for each type of event. To this end, a 
LSS for each lighting equipment will be predefined according to the type of activity. During the event, 
information on manual changes (in VR, DT, and reality) implemented for the different activities by the 
event organizer will be collected, as well as general feedback from participants through an IoT feedback 
button, with these inputs a satisfaction value of the lighting definitions for each activity will be 
calculated. This is then used for the GA in learning the better settings. Figure 6 describes the pseudo 
code used in the GA implementation for this use case. 



 
Figure 6: Pseudo Code Use Case 1 (left) and Use Case 2 (right)   
 

4. Implementation and Results 

To verify the applicability of the algorithm presented above, the pseudo-code was implemented in 
Python. It was necessary to generate scenarios for hypothetical events, with simulated sets having been 
defined with different performance times for the different actions and number of people present at the 
event. The algorithm proved to be able to evaluate all the predefined (PD) solutions for each simulated 
event (Real and VR) and ranked each PD Set. The ranking was done in accordance with the fitness 
function value (FFV), that presents the sum of the difference of the actuation times of each PD Set and 
all the simulated events. A set with a lower FFV get a higher Rank. Then the PD 10 highest ranked sets 
are selected and used to create the next generation. To create the new generation the previews sets were 
changed using a mutation and crossover function. The number of new PD Sets are defined in accordance 
with the generative study population. To test the algorithm, different population sizes for the generative 
study were used (10, 50, 100, 250, 500 and 1000 individuals). The results are presented in table 1. 
 
 
 
 
 
 



Table 1 
Use Case 1 Results 
 

 
 

Based on these results, it is possible to verify that the algorithm finds better solutions when using a 
population of individuals equal to or greater than 250. We also observe a decrease in the number of 
generations necessary for the algorithm to converge to the solution as the population of individuals 
growth. As expected, there is also an increase in computation time with the increase in the number of 
individuals. 

 
The GA for the second use case has not yet been verified. Due to the lack of previous data that can 

be used to correctly model the human behavior of visitors, it is more complex to simulate realistic values 
for feedback from iHomeLab VC visitors, which is required by algorithm to rank the LSS Sets. 
Therefore, we will verify this algorithm after implementation in the Visitor Center. 

5. Conclusions & Further Work 

These preliminary results show that it is possible to establish a connection between various 
technologies (BIM, IoT, Machine Learning) to obtain a final solution (Digital Twin) that allows 
simulation, adaption, and improvement of the response of a BMS system to the needs of its user. It was 
also possible to verify the applicability of a genetic algorithm that evaluates predefined sets and 
optimizes in accordance with the user's expectations. The GA concepts presented in this paper are novel 
in that they allow the BMS to learn sequences of actions based on VR and Reality, and the adaption is 
based on user feedback – both direct feedback in Use Case 1, and indirect feedback as in Use Case 2. 
Further work is necessary to further verify and refine the GA using human interaction on real events. 
Currently, the project is in the final phase of the IoT connection with the lighting system of the 
iHomeLab VC. Simultaneously the generative algorithm will be implemented and integrated with the 
IoT database using a cloud machine learning service. After the complete implementation of the concept, 
it will be necessary to perform tests through real events of the iHomeLab. The results of the continuous 
improvement will be analyzed and if it is found to be useful, the same concept can be expanded to 
elements of the building (e.g. walls, doors, curtains, façade) that have mechanical actuators that allows 
their movement during the events. 
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