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Abstract. Accurate forecasting in many industries, such as dairy pro-
duction, is a key challenge to improve investment decisions, market plan-
ning, energy use, and environmental protection. As most real-world phe-
nomena take place over time, many prediction tasks involve the use of
time series or collections thereof. In this study, we propose a nearest-
neighbour data augmentation approach which draws on information from
a set of related time series. Given an input series, we identify other se-
ries which have similar profiles using a k-nearest neighbour approach,
and use their data to augment the input series. This has the effect of
both smoothing outlying observations and filling missing observations.
We show that, by combining this method with a criterion to refine the
cases for which augmentation is to be applied, overall forecasting accu-
racy can be improved. Our approach is evaluated on diverse real-world
time series data from a number of different domains.

1 Introduction

Time series data has attracted a significant research effort in recent years, per-
haps because of its centrality in accurate forecasting in a variety industry set-
tings, from financial services to smart agriculture. Many different approaches to
time series prediction have been proposed, along with different methods for data
pre-processing and augmentation [1]. However, the reliability of real-world time
series forecasting is often impacted by the presence of noise, incomplete data,
and outliers [2]. In our work on developing precision-agriculture applications –
on dairy production forecasting – we have encountered all of these problems. For
instance, dairy production forecasting is based upon data that is influenced by
external factors such as weather, calving rates and disease. This data is also sub-
ject to missing values arising from discrepancies in milk-collection practices and
technical implementation difficulties [3]. Thus, methods to address these issues
and thereby improve forecasting robustness constitute important undertakings.

One technique to enhance the performance of time series forecasting is the
application of a k-nearest neighbours (k-NN) approach, which is typically ap-
plied to reduce noise and the impact of outliers on training sets. The use of k-NN
can additionally improve training set quality when the volume of observations



2 D. Wallace et al.

is limited. Recent research has, to the best of our knowledge, used perturbed
examples of existing observations to generate neighbours for the application of
this approach, as opposed to using real-world occurrences [4][5][6]. However, in
the context of time series analysis, for many applications we might have multiple
distinct series, each corresponding to a different entity. For instance, in the con-
text of milk production, we might have a large collection of series, each of which
represents data for a different farm associated with the same dairy processor.

To harness this additional information provided for a collection of entities,
we propose using an approach motivated by k-NN regression, which attempts
to make a prediction for a continuous target by averaging cases in the same
neighbourhood. In our case, we generate a forecast for a given input series by
incorporating information coming from an aggregated set of forecasts generated
for neighbouring entities. Specifically, we apply this approach using the popular
Prophet forecasting algorithm [7] to explore its potential effectiveness in data
smoothing, and to a lesser extent data interpolation. We perform a detailed
evaluation using five real-world datasets from four different application domains.
Our analysis considers the importance of both the neighbourhood size k and the
volume of available data. Our findings presented in Section 4 indicate that not
all data is suited to this augmentation approach. Therefore, we also provide a
means to profile entities, using a validation window, to ensure that augmentation
is applied to instances more suited its application. Using a combination of k-NN
regression and this filtering criterion, we observe improved accuracy across all
datasets, when compared to baseline forecasts produced by Prophet alone.

2 Related Work

The standard definition of time series forecasting assumes the existence of a set
of time-ordered observations of a variable Y , denoted y1, y2, . . . yt, where yi is
the value of Y measured at time i, and defines the predictive task as trying to
forecast the future values of this variable for time stamps s > t. Many variants of
this general task exist, including the use of other measured variables as potential
predictors of the future values of the target series Y . Still, the general assumption
is that there is an unknown function that “maps” past observations to future
values of Y . The learning goal is to approximate a function using some prediction
error criterion and a historical record of observed values. The predictors used
for forecasting the future values of Y are usually the most recent observations of
Y , as the basic assumption of time series forecasting is that of the existence of
some form of correlation between successive observations of the series. This is the
methodology employed in most approaches to time series forecasting, including
the well-known ARIMA models [8]. This strategy assumes that future values of
the series are only dependent on a limited number of previous values.

High-dimensional multivariate data can sometimes produce superior fore-
casting results to those achieved using linear time series. For instance, in the
context of single-farm prediction of milk production, the most successful models
are the surface fitting model and the NARX (Nonlinear autoregressive model
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with exogenous inputs (RMSE 75.5kg, 365 day horizon)) [9], using features such
as Days-In-Milk (i.e., how many days a cow has been lactating) and the NCM
(number of cows milked) in the herd. In this same farming context some studies
have used as many as twelve features including genetics, feed and grazing man-
agement information of the individual cows. However, such high-resolution data
is not readily available for most commercial farms. Consequently, multivariate
time series forecasting will typically require domain specific approaches, and may
exhibit scalability issues.

One popular time series forecasting procedure is Prophet [7], which is based
on an additive regression model that includes a seasonal component and a piece-
wise linear or logistic growth curve trend. The platform includes seasonality
effects for non-linear data and automatically detects changes in trends by select-
ing change points from the data. To this end it has had proven applicability in
relation to large scale forecasting requirements and has outperformed ARIMA
in a range of different tasks, including predicting COVID-19 cases numbers [10]
and making long-range predictions in the context of animal disease spread [11].

The k-nearest neighbour algorithm is a well-known non-parametric method
used for classification and regression. It has been labelled as a lazy learner as
the algorithm does not learn a discriminative function, but rather stores the
instances for later use. Given some features or explanatory variables of a new
instance to be regressed on, k-NN finds the k training instances that are closest
to the new instance according to some distance metric.In the context of time
series data, k-NN has been employed in a range of disparate ways. For instance,
its use can be witnessed in local prediction: by breaking down domains into
local neighbourhoods and fitting to each neighbourhood separately. This type
of methodology can be found in bootstrapping as far back as Jayawardena and
Lai [5], or more recent variants such as that found in Wu at al.’s paper con-
cerning support vector regression, where the weighted averaging of k neighbours
is adopted and the weight function made proportional to the inverse of square
Euclidean distances between Y (t) and Y (t0) [4]. In particular, many papers
specifically consider time series nearest neighbours from a position of a lack of
extant real-world neighbours within their datasets. As noted by Mart́ınez et al.,
there has been limited application of k-NN regression to time series forecasting
[6]. This may be specifically exacerbated by a dearth of datasets in some do-
mains that provide collections of related time series for k-NN to be performed
upon. However, later in Section 3.2, we highlight a number of domains where
collections of related series are readily available.

3 Methods and Materials

3.1 Proposed Method

A variety of techniques have been proposed for manipulating time series repre-
sentations to improve the outputs of downstream tasks. While data augmenta-
tion has largely been used to generate additional training data in the context
of image datasets, Oh et al. [12] considered producing additional time series for
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classification, using an interpolation-based approach. In the context of time se-
ries forecasting, a more common approach for producing robust estimates has
been to construct ensembles of multiple models [13, 14]. Such approaches can
either be used to improve the performance of a group of models, or reduce the
likelihood of an unfortunate selection of a poor model. A feature of many real-
world data sources is the presence of both noise and missing values. Therefore,
we employ two different augmentation methodologies to improve predictive per-
formance in such an environment. We use the k-NN algorithm in the form of
data augmentation of data series to reduce noise and erratic values, while k-NN
for data interpolation is also performed to fill in missing values for a given series.

Data augmentation. Given a collection of related time series {T1, . . . , Tn},
representing n different entities, we produce a forecast for an individual series
Ti as follows. Firstly, we identify its k nearest neighbouring entities using un-
weighted Euclidean distance over time series of equal length. Next, we produce
an augmented time series for each entity that comprises the arithmetic mean
of observances, or interpolated instance in the event of a missing value. The
arithmetic mean of time series was chosen as augmentation method as the fluc-
tuations between the real world datasets chosen (such as meteorological or dairy
production) were on a linear rather than logarithmic scale. The resulting aug-
mented series Ti

′ was then used as the input data for a standard forecasting
model. In our case, we employ Prophet, which has, to be best of our knowledge,
never been tested with k-NN augmentation.

Selection criteria. Early experimentation indicated that data augmentation
was not universally appropriate for every entity in a dataset. Consequently, we
have developed an approach for filtering out entities that are less suited to aug-
mentation. These might correspond to entities for which forecasting accuracy is
already high, or outliers for which relevant neighbouring cases are unavailable.
We can consider the time-series to be composed of distinct windows, with the
term ‘window’ referring to a slice of the time series (which in the given datasets
corresponds with a single year). Using a single window of the data as a validation
set, we apply augmentation for a range of values of k, followed by the forecast-
ing model in each case. We can then determine whether applying k-NN resulted
in any positive change in forecasting performance (e.g., as measured by mean
absolute error (MAE)), and, if it did, what value of k produced the best result.
If no value of k produced a positive change then the entity is filtered from the
augmentation process. We refer to the entities for which augmentation is applied
as “contested”, and those for which it is not applied as “uncontested”.4 However,
if the approach produced a positive result when using only one value of k, an

4 Given that we are interested in the effectiveness of both the filtering technique,
and data augmentation, we consequently adopt this terminology to add clarity and
distinguish between the original results that form our baselines, which are entirely
unaugmented, and the test results which consist of both augmented and unaug-
mented cases.
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Fig. 1. Overview of methodology and evaluation steps employed.

additional check was performed to see if the difference in MAE for this entity’s
validation window was above average (across all entities for the validation win-
dow). If this happened to be the case, then such entities were also discarded for
use with the proposed approach. A comparison between entities which were and
were not selected using this basis will be provided in Section 4.

3.2 Datasets

We now discuss five different datasets from domains where collections of related
entities, represented as time series, naturally occur. We chose a diverse range of
domains in order to prove the applicability of our approach. With the exception
of the socioeconomic dataset, each of these domains is represented as univariate
time series (while the lattermost, for the purposes of this research, is split into
two separate univariate datasets).

Agricultural data. Our first dataset concerns milk production from 400 farms
in Ireland for one dairy processor, as measured across four consecutive years. This
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will be referred to as the ‘dairy’ dataset in our experiments. Cases describe daily
readings for the volume of milk collected on each farm. Each farm constitutes a
separate entity and the predicted variable is the volume of milk collected from
each entity. In any given year, milk supply forecasting is a fundamental driver for
the dairy sector. Dairy processors use their forecasts to establish pricing levels,
contracts with supplier farms, and the production requirements for their facto-
ries. Forecasting consequently strongly influences farm management (the preven-
tion of under or over production, and also the manner of production adopted),
the consumption of resources in the sector (e.g. fertiliser use, tanker-transport
use for milk collections), and the processing efficiency of factories (avoiding waste
from surplus milk supplies). Processors can drive sustainability changes through
accurate and precise forecasting. However, such forecasting is highly challenging
for many reasons: the forecast must be made over 1000s of farms which differ in
their herd-profiles; the land farmed and farm-management practices is for the
full year in advance, not incrementally as the year unfolds; and planning can
encounter disruption from climate-change and disease outbreaks.

Meteorological data. The second dataset used here, involves the monthly
average temperatures, recorded in degrees Fahrenheit, of 18 major cities from
regions spread across the world, dating from the years 2000 and 2013. This cor-
responds to a subset of the Berkeley Earth climate change dataset [15]. This
publicly available data, referred to as the ‘weather’ dataset in our experiments,
concerns locations ranging from a latitude of 59.33 North to 37.78 South [16].
With values of southern latitudes considered negative, the mean latitude was
24.06 with a standard deviation of 39.3. Entities in this dataset represent indi-
vidual cities, and the forecast variable is the monthly mean temperature of the
given entity, over a window of a particular year. This type of mid- to long-range
meteorological forecasting based upon temperature is very important for many
economic sectors While the time-scale used in the course of this research was
too small for longer climate-trend observation, improved methods to towards
this end also have a bearing on the analysis of wider climate change modelling.

Socioeconomic data. The third dataset relates to the Local Area Unemploy-
ment Statistics (LAUS) program of the Bureau of Labor Statistics (BLS) of the
United States. This consists of monthly estimates of civilian non-institutional
population, labour force participation rates, and employment-population ratios
for the 50 states and the District of Columbia from January 1976 onwards. Two
separate datasets for this exist: one which is seasonally-adjusted (excluding civil-
ian non-institutional population ages 16 and older) and one which is not (raw
number of unemployed). These two datasets will be referred to as ‘employment
adj’ and ‘employment’ respectively within tables. The seasonally-adjusted fig-
ures are determined by the BLS using the seasonal components of the LAUS
labour force. For our purposes we used a subset of both these data, representing
a range of 13 years, from which we obtained both our training and testing sets
[17]. These two datasets consider states to be individual entities with the fore-
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Table 1. Summary of datasets used in our experimental evaluations.

Dataset Total Entities Test Windows

dairy 400 2
weather 18 7
employment 40 10
adj employment 40 10
gas 18 7

cast variable being the number of unemployed people within each state (which,
depending on the dataset, may have been seasonally adjusted). Forecasting of
unemployment figures (particularly non-seasonal) is difficult due to the large
number of external factors that have a bearing on these numbers. Sudden in-
creases in non-seasonal unemployment often represent economic shocks triggered
by unpredictable macroeconomic events. Being able to accurately forecast unem-
ployment numbers therefore has a bearing on the capacity to predict recessions
and larger economic cycles.

Energy data. The fifth and final dataset considered relates to the Natural Gas
Gross Withdrawals and Production, measured in monthly million cubic feet per
day, as compiled by the U.S. Energy Information Administration (EIA) [18]. This
encompasses 18 separate entities (16 US states, the Federal Offshore production
in the gulf of Mexico, and a conglomeration of all other US territories). This
dataset will be referred to as ‘gas’ in our experimental results. The forecast vari-
able relates to the gross withdrawal amount. Despite being subject to arguably
fewer external factors than some of the earlier discussed datasets, accurate fore-
casting of gas production is nevertheless very problematic. Gas production is not
entirely insulated from economic processes, and is dependent on a resource the
volume of which is often difficult to estimate and whose extraction is non-trivial.
Political policy may also have a significant bearing on production levels (partic-
ularly in recent years on the subject of fracking). All of these aspects contribute
to significant issues when attempting to provide accurate forecasts.

4 Experimental Evaluations

4.1 Method

Measures. Using the datasets described earlier we evaluated our proposed
method using several measures. The principle measure used was the mean ab-
solute error (MAE), in which a lower figure indicates a better performance.
The baseline method in the experiments is the non-augmented Prophet forecast
model applied to a single query time series.

Setup. For the purposes of our experiments, the first three windows in each
dataset were used as training data, the next window as a validation set, and the
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subsequent windows as test data (the latter of which is used for Tables 3-4). For
each window of the test data, we have a predicted and actual value. Forecasts
were generated for each entity to provide a base rate and then further forecasts
generated using training data composed as as an arithmetic mean for a range of
neighbours. The base rate in these evaluations was the non-augmented predicted
value provided by Prophet. The window of observations and predictions was then
advanced by one period, with the length of a period being equal to a calendar
year. The process was then repeated again ab initio, until the methodology was
run over the full length of the respective dataset.

A potential limitation when using Euclidean distance as a metric to measure
time series similarity is that when large absolute distances exist between different
time series, it becomes harder to identify time series with similar trends and
seasonality. In order to deal with this issue, we applied a normalisation in which
the time series being compared were scaled, in proportion to the ratio of means.
Missing data can also be an issue for forecasting in real-world datasets. While a
potential solution to this can be to fill a missing value with the preceding day’s
value, in our method we instead replace the missing value with a mean of the
values of k-nearest entities (i.e., interpolation).

Prophet has no native means to handle multiple entities’ time-series-data for
fitting an individual entity’s time series forecast, so our proposed approach is
consequently applied prior to the provision of data to the model. Prophet allows
the use of a custom list of holidays and seasonalities in the model. However, the
use of holidays as a parameter is only appropriate for time series whose values are
discredited to days as opposed to months or years. As only one of our datasets
contained daily data (the agricultural dataset), and the importance of holidays
in this context was unclear, we do not utilise this functionality in our forecasts.

4.2 Results and Discussion

Number of neighbours. In our experiments, we consider augmentation using
k ∈ [1, 5] neighbours. As outlined in Section 3.1, the validation window was
used to establish whether or not the baseline forecasts would be “contested”
using the data augmented via the proposed k-NN approach (i.e., whether or not
additional neighbours should be used). However, the validation window is also
used to establish what value of k should be used to this end. A frequency count
of the value of k which produced the best result within the validation window
was performed for all entities which passed the selection criterion. The results
of this for each dataset can be viewed in Table 2. When the number of entities
to provide this summation of k values was at least double the range of k values
available (i.e., a clear majority), a global value of k was used for all further
forecasts for that dataset (otherwise a local value of k was used).

Table 3 shows the difference in performance between these forecasts when
the uncontested baseline forecasts are used, versus when the selection criteria
determines that the augmentation approach should be used. In the table, uc lost
and uc won refer to the uncontested cases which have not been augmented, and
whether or not the proposed approach would have produced superior or inferior
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Table 2. Optimal k value for selected entities on each dataset.

k
Dataset 1 2 3 4 5

weather 0 1 2 2 2
dairy 11 19 33 59 111
employment 9 3 2 4 6
employment (adjusted) 11 3 2 4 7
gas 1 2 0 1 1

Table 3. Summary of wins and losses for all entities in each dataset where the proposed
method is applied (won and lost) and where it is not applied (uc won and uc lost).

Dataset uc won uc lost won lost

weather 36 107 35 20
dairy production 106 74 138 82
employment 72 90 87 84
employment adj. 76 104 87 93
gas production 11 79 11 7

Table 4. Summary of mean absolute error (MAE) performance on each dataset.

Dataset uc won uc lost won lost

weather 43.43 -176.88 22.32 -6.69
dairy production 26843.21 -18208.28 36671.28 -19619.10
employment 275783.67 -2403315.51 764489.92 -687292.87
employment adj. 505932.30 -2987825.88 764489.92 -737828.20
gas production 1194.00 -93314.10 3292.11 -2866.42

results had it been used. These results relate to the test data of all chosen entities,
where the maximum value is the number of windows multiplied by the number
of entities for a given dataset. Where the augmentation approach is adopted we
can also see, for a given forecast, whether or not the change has resulted in an
increase or decrease in accuracy (i.e., won and lost respectively).

Table 3 reveals considerable differences between datasets. For instance, the
dairy dataset would have seen overall more forecasts improve than deteriorate
through k-NN without augmentation applied to its data, but the weather dataset
would have seen two thirds of its non-augmented forecasts obtain worse results
than that of the baseline. Overall, the proposed selection criteria appears to
have achieved a reliable basis for excluding many of the forecasts less suited to
an augmentation approach. Indeed, only one dataset (employment adj.) shows
more cases chosen by the selection criteria suffering from reduced accuracy than
the number of those benefiting.

Moving beyond a simple count of wins and losses to the overall magnitude of
these changes (Table 4), again we observe that uncontested forecasts, which fail
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Table 5. Summary of overall results, using the proposed selection criterion.

weather dairy employment employ. adj. gas

Mode for k - 5 1 1 2
Records 55 220 171 180 18
Mean MAE 3.84 787.18 26453.74 25919.66 528.64
Mean MAE change -0.28 -77.51 -451.44 -148.12 -23.65

Fig. 2. Temperature forecast accuracy over holdout windows for the entity Warsaw, for
values of k ∈ [1, 5], (relating to each value’s respective MAE value), with the baseline
indicated by ‘k = 0’, and MAE represented by the y axis.

the selection criteria, in general would have seen a performance decrease with
the application of k-NN. Overall, we can see that there is not a single dataset in
which the overall MAE declines for the selected forecasts. An overall summary
of this information is given in Table 5. We report both the average MAE and the
average reduction in error across entities that conform to the selection criteria.

If we look at a single sample entity in Fig. 2 that qualifies for the application
of the augmentation approach in the weather dataset (specifically depicting War-
saw, with y-axis representing MAE value), we can see the approach’s accuracy
relative to both the baseline Prophet MAE and the hypothetical performance
using different values of k. Using the validation window corresponding to 2001,
all values of k showed improvement over the baseline Prophet forecast, and as
the weather dataset applies a local rather than universal value for k on the test
set, the value of k that performed best in this instance was chosen (k = 5).
While the forecasting performance for all values of k broadly match the peaks
and troughs of the baseline, significant improvement can be seen across the dif-
ferent windows. In this case the nearest neighbours which combine to provide the
augmentation training data for MAE5 are, in ascending order: Wroclaw, Kiev,
Kherson, Stockholm, and Uppsala.

Fig. 3 shows augmentation performance for a single farm from the dairy
dataset where x axis represents time, and y axis represents volume of milk pro-
duced in litres. In the plot we can see how close the different augmentation
approaches (ŷ1-ŷ5), as well as the baseline Prophet forecasting (ŷ) come to pre-
dicting the actual production values (y) for this window. As the dairy dataset
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Fig. 3. Monthly milk production forecasts generated using different k-NN augmenta-
tion approaches for values of k ∈ [1, 5], with the baseline indicated by ŷ and ground
truth indicated by y.

utilised a global value of k, ŷ5 was the model chosen for all entities that were
selected for augmentation. Notably, not all values of k in this instance achieve
improved results over the baseline, with both ŷ1 and ŷ2 being generally inferior
to the baseline. However, ŷ5 provides a good match for the actual production
values of this farm.

5 Conclusions and Future Work

Despite the strong performance of the baseline Prophet algorithm, our findings
indicate that potential improvements can be made with an aggregation approach
to the training data using a k-NN methodology, in situations where we have mul-
tiple related entities represented as time series. Our results indicate that, while
this has demonstrable benefit, it is by no means universally successful. Never-
theless, there is clear promise offered by using different time series with similar
profiles, in domains where forecasting is challenging due to noisy or missing data.

Although this work has established the potential use of this methodology,
questions remain concerning the potential use of different distance metrics for
the measurement of neighbours, and whether the use of additional validation
windows could provide sufficient data to adapt a more precise aggregation tech-
nique. While the various datasets explored provided a diverse ranges of entities,
it was beyond the scope of this research to establish how many entities are re-
quired for this methodology to be effective. Furthermore, we intend to extend
this research by considering how k-NN in this context can ultimately aid in
providing use explanations of forecasting outputs to end users.
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