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Abstract
With classification and regression learning, we employ ranking approaches for the constraint solving
backends of the ProB model checker to assess the most suited backend to use for a given constraint.
In case the top ranked backend fails to solve the constraint, the predicted ranking yields a clear order
of which backend to utilise in a second attempt. Our trained predictors achieve an overall runtime
overhead of only 7 % while a static order of backends results in an overhead of 8.5 %. Thus, we are
confident in our approach as it is more dynamic and offers potential to increase performance in the
future.
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1. Introduction

In model checking, we exhaustively search for every reachable state of a program to show
that no erroneous states are ever reachable. Starting with an initial state, we check for each
consecutively reachable state whether it violates an invariant which specifies the desired
behaviour. This leads to a number of constraints implied by the state space which need to be
validated. However, solving these constraints is not always straightforward, simple, or even
possible with different tools being more suitable for certain instances than others as outlined by
the no free lunch theorems [1, 2] and the algorithm selection problem [3].

In the following, we concern ourselves with a selection problem over three different constraint
solving backends of ProB [4, 5], a model checker for the B Method [6]. Its core is written in
SICStus Prolog [7] and uses SICStus’ CLP(FD) library [8] in its default constraint solving backend.
ProB further provides bindings to the SAT-solving based Kodkod backend [9, 10] and to the
DPLL(T) based SMT backend [11] which utilises Z3 [12]. Each of these three backends was
already shown to work best in different subdomains of the problem space [13]. We present
a ranking approach for the constraint solving backends of the ProB model checker to assess
for a given constraint solving instance the most suited backend to use, defined as the backend
yielding a definite answer (“constraint is valid or invalid”) the fastest. Ranking the backends
instead of only classifying the single most suited is beneficial in case of mispredictions: if the
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predicted backend fails to satisfy or invalidate the constraint, a ranking clearly defines which
backend to use for solving the constraint next.

In the following, we briefly discuss related work in Section 2. Our training data, used machine
learning algorithms, and experimental results are summarised in Sections 3 and 4. The paper
concludes in Section 5. The code for our experiments and our full results are available on Github:
https://github.com/jdnklau/ranked-runtime-predictions-for-probs-backends.

2. Related Work

Previous work investigated classification approaches [13, 14, 15] in which a classifier pre-
dicts only the best suited backend for a given constraint. While initially done with neural
networks [14], follow-up work focused on decision trees and random forests [13, 15]. The
conducted ranking via regression method is inspired by the works of Healy et al. [16] in which
an algorithm portfolio was created for the Why3 platform [17]. A more recent approach was
done by Scott et al. in the form of MachSMT [18]. Internally it uses AdaBoost [19] over 200
decision trees to achieve a ranking over the specified solvers. Due to its only recent publication,
we were unable to compare our approach with MachSMT in time.

3. The Training Data and Feature Set

We utilise the set of 597,134 training constraints collected over the ProB public examples1 by
Dunkelau et al. [13] as well as their presented set of 109 features over the B language extended
by another feature accounting for the use of cardinality constraints for sets. Thus we arrive at
110 features, measuring frequencies of operators and language subdomains in the constraints.

Given a possible backend response 𝑟 ∈ {valid, invalid, unknown, timeout, error} and a mea-
sured runtime 𝑡 over each backend with a timeout of 𝛿 (in our application 25 s), each constraint
was labelled with one cost value per backend given by the cost function by Healy et al. [16] in
Equation (1). 25 % of the data were withheld for performance tests and not used during training.

cost(𝑟, 𝑡) =

⎧⎪⎨⎪⎩
𝑡 if 𝑟 ∈ {valid, invalid}
𝑡+ 𝛿 if 𝑟 = unknown

𝑡+ 2𝛿 if 𝑟 ∈ {timeout, error}
(1)

4. Predicting Runtime Rankings

As we want to favour faster backends over slower backends yet also definitive responses
over unknown, timeout, or error responses in our ranking, we utilise the cost function from
Equation (1). This reduces our goal to predicting the backends in ascending order of their costs.
We can make use of three different approaches.

Multi-output regression is the approach followed by Healy et al. [16]. One singular predictor
is trained to predict the three target variables (the backends’ cost values) simultaneously. The

1https://www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz
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advantage lies in only having to train and maintain one regressor which is able to share internal
inferences across the three output dimensions.

In separate single-output regression only one independent regressor is trained per backend.
This allows for easier maintenance in the long run as optimizing performance for a single
backend does not impact the other regressors. Adding a new backend into the portfolio also
only consists of adding a new, optimised regressor instead of retraining the singular regressor
over all backends.

A non-regression approach is ranking classification. Each possible ranking is defined as its
own class, leading to 6 classes in total. This however is even less extendable than the multi-
output regression as adding a new backend not only leads to retraining of the whole classifier
but also increases the amount of classes by a factorial factor, losing feasibility by increasing
number of backends. We also lose the information of predicted runtime cost per backend.

4.1. Machine Learning Algorithms

We compared the performances of multiple machine learning algorithms, employing a total of six
different algorithms: linear regression (LR) [20], ridge regression (RG) [21], k nearest neighbors
(KNN) [22], support vector machines (SVM) [23], decision trees (DT) [24], and random forests
(RF) [25]. For each learning algorithm, we conducted an extensive hyperparameter search via
grid search and evaluated performance via 5-fold cross validation. As random forests yielded
the best results in our experiments (cf. Table 1), we omit details on the other algorithms due
to space reasons. Random forests are an ensemble approach in which multiple decision trees
are trained. Decision tree training constructs predictors of a tree like structure in which each
inner node splits the training data along a chosen feature dimension into more pure subsets
thus reducing variance in the labels. For random forests, each decision tree in the ensemble is
trained on random subsets of both the training data and the feature set.

4.2. Measuring Performance

To quantify the performance of our ranking predictors we utilise the following two metrics. The
first is the double normalised discounted cumulative gain (dnDCG) [26], a ranking evaluation
metric that penalises misplacement of higher ranked items more strictly as it deems these more
impactful. It produces a value between 0 and 1, with 1 being the best possible performance. The
formula for the dnDCG is stepwise calculated by

DCG𝑝 =

𝑝∑︁
𝑖=1

2rel𝑖 − 1

log2(𝑖+ 1)
, nDCG𝑝 =

DCG𝑝

DCG*
𝑝

, dnDCG𝑝 =
nDCG𝑝 − nDCG𝜔

𝑝

1− nDCG𝜔
𝑝

(2)

for a ranking of length 𝑝, where rel 𝑖 is the relevance of the 𝑖th backend, DCG*
𝑝 is the DCG value

for the ideal ranking, and nDCG𝜔
𝑝 is the nDCG value for the worst ranking. The second metric

is the usage duration comparison value (UDC) which we defined ourselves to assess the runtime
overhead introduced by predicting a non-ideal ranking. This is motivated by observing that,
e.g., picking the second best backend first might only add a couple nano seconds to the final
runtime and thus introduces no significant overhead. If the firstly ranked backend fails to return
a definite answer we would query the remaining backends in order of their ranking, until either
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Table 1
Performance of each algorithm per ranking approach. Highlighted are best results per approach. From
the 216 combinations for single-output regression, we only present the best (3×RF) due to space reasons.

dnDCG UDC

Approach DT RF KNN SVM LR RG DT RF KNN SVM LR RG

SO reg. - 0.79 - - - - - 1.08 - - - -
MO reg. 0.80 0.80 0.80 0.74 0.69 0.69 1.08 1.07 1.07 1.10 1.28 1.28
Class. 0.80 0.81 0.80 0.74 - 0.76 1.09 1.07 1.08 1.14 - 1.11

one gives a definite answer or we run out of backends. Let the time used up by this query be �̂�𝑖
for a constraint 𝑖. Let the query time over the ideal ranking be 𝑡*𝑖 . We define the UDC as

UDC =

∑︀𝑛
𝑖=1 �̂�𝑖∑︀𝑛
𝑖=1 𝑡

*
𝑖

∈ [1,∞) . (3)

4.3. Results

Table 1 shows the best performing models per approach. While we investigated multiple
machine learning algorithms, it stands out that random forests took part in all the best achieved
performances. This is inline with the results, observations, and decisions from related work [13,
15, 16]. The single-output regression performs slightly worse than multi-output regression and
ranking classification, however not by any significant amount. The best UDC was achieved by
multi-output regression with a value of 1.07, standing for 7 % longer runtime over all constraints
in the test set compared to always using the ideal ranking.

In comparison, a static algorithm that always uses the ranking CLP(FD) ≻ Z3 ≻ Kodkod
already yields a UDC of 1.085, competing with our predictors. However, our approach is more
dynamic and allows for improvement due to further tuning or a more refined feature set.

5. Conclusion

We trained multiple predictors for ranking the ProB backends by ascending, weighted, expected
runtime. Our results show not much of a difference between the approaches of single-output
regression, multi-output regression, and ranking classification, while the single-output regres-
sion still represents the most flexible approach and should be focus of research going forward.
Finally, we achieved performance values of a double normalised discounted cumulative gain of
up to 0.81 and an usage difference comparison value of up to 1.07. While a dummy approach
which always prefers a single, static ranking competes with our learned predictors we are
confident that our method proves more valuable going forward as it allows for further tuning.

Acknowledgments

Computational support and infrastructure was provided by the “Centre for Information and
Media Technology” (ZIM) at the University of Düsseldorf (Germany).

4



Jannik Dunkelau et al. CEUR Workshop Proceedings 1–6

References

[1] D. H. Wolpert, W. G. Macready, et al., No free lunch theorems for search, Technical Report,
Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995.

[2] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE transactions
on evolutionary computation 1 (1997) 67–82.

[3] J. R. Rice, The algorithm selection problem, Advances in computers 15 (1976) 65–118.
[4] M. Leuschel, M. Butler, ProB: A model checker for B, in: FME 2003: Formal Methods,

volume 2805, Springer, Berlin, Heidelberg, 2003, pp. 855–874.
[5] M. Leuschel, M. Butler, ProB: An automated analysis toolset for the B method, International

Journal on Software Tools for Technology Transfer 10 (2008) 185–203.
[6] J.-R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge University Press,

New York, NY, USA, 1996.
[7] M. Carlsson, J. Widen, J. Andersson, S. Andersson, K. Boortz, H. Nilsson, T. Sjöland, SICStus

Prolog user’s manual, volume 3, Swedish Institute of Computer Science Kista, Sweden,
1988.

[8] M. Carlsson, G. Ottosson, B. Carlson, An open-ended finite domain constraint solver, in:
Programming Languages: Implementations, Logics, and Programs, volume 1292, Springer,
1997, pp. 191–206.

[9] E. Torlak, D. Jackson, Kodkod: A relational model finder, in: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, Springer, 2007, pp.
632–647.

[10] D. Plagge, M. Leuschel, Validating B, Z and TLA+ using prob and kodkod, in: International
Symposium on Formal Methods, Springer, 2012, pp. 372–386.

[11] S. Krings, M. Leuschel, SMT solvers for validation of B and Event-B models, in: Interna-
tional Conference on Integrated Formal Methods, Springer, 2016, pp. 361–375.

[12] L. De Moura, N. Bjørner, Z3: An efficient SMT solver, Tools and Algorithms for the
Construction and Analysis of Systems (2008) 337–340.

[13] J. Dunkelau, J. Schmidt, M. Leuschel, Analysing ProB’s constraint solving backends, in:
International Conference on Rigorous State-Based Methods, Springer, 2020, pp. 107–123.
doi:10.1007/978-3-030-48077-6_8.

[14] J. Dunkelau, S. Krings, J. Schmidt, Automated backend selection for ProB using deep
learning, in: NASA Formal Methods, volume 11460 of LNCS, Springer, 2019, pp. 130–147.
doi:10.1007/978-3-030-20652-9_9.

[15] J. Petrasch, The Decision Does Not Fall Far from the Tree: Automatic Configuration of Pred-
icate Solving, Master’s thesis, Heinrich Heine Universität Düsseldorf, Universitätsstraße 1,
40225 Düsseldorf, 2018.

[16] A. Healy, R. Monahan, J. F. Power, Predicting SMT solver performance for software
verification, in: Proceedings of the Third Workshop on Formal Integrated Development
Environment, volume 240 of EPTCS, 2017, pp. 20–37. doi:10.4204/EPTCS.240.2.

[17] J.-C. Filliâtre, A. Paskevich, Why3—where programs meet provers, in: European sympo-
sium on programming, Springer, 2013, pp. 125–128.

[18] J. Scott, A. Niemetz, M. Preiner, S. Nejati, V. Ganesh, MachSMT: A machine learning-based
algorithm selector for SMT solvers, in: Tools and Algorithms for the Construction and

5

http://dx.doi.org/10.1007/978-3-030-48077-6_8
http://dx.doi.org/10.1007/978-3-030-20652-9_9
http://dx.doi.org/10.4204/EPTCS.240.2


Jannik Dunkelau et al. CEUR Workshop Proceedings 1–6

Analysis of Systems, volume 12652 of LNCS, Springer, 2021, pp. 303–325. doi:10.1007/
978-3-030-72013-1_16.

[19] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line learning and an
application to boosting, Journal of Computer and System Sciences 55 (1997) 119–139.
doi:10.1006/jcss.1997.1504.

[20] G. D. Hutcheson, Ordinary least-squares regression, L. Moutinho and GD Hutcheson, The
SAGE dictionary of quantitative management research (2011) 224–228.

[21] A. E. Hoerl, R. W. Kennard, Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics 12 (1970) 55–67.

[22] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE transactions on information
theory 13 (1967) 21–27.

[23] C. Cortes, V. Vapnik, Support-vector networks, Machine learning 20 (1995) 273–297.
[24] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and regression trees, CRC

press, 1984.
[25] L. Breiman, Random forests, Machine learning 45 (2001) 5–32.
[26] K. Järvelin, J. Kekäläinen, Cumulated gain-based evaluation of IR techniques, ACM

Transactions on Information Systems (TOIS) 20 (2002) 422–446.

6

http://dx.doi.org/10.1007/978-3-030-72013-1_16
http://dx.doi.org/10.1007/978-3-030-72013-1_16
http://dx.doi.org/10.1006/jcss.1997.1504

	1 Introduction
	2 Related Work
	3 The Training Data and Feature Set
	4 Predicting Runtime Rankings
	4.1 Machine Learning Algorithms
	4.2 Measuring Performance
	4.3 Results

	5 Conclusion

