
Towards Accountability Driven Development for
Machine Learning Systems ?

Chiu Pang Fung1,3, Wei Pang1,2, Iman Naja2, Milan Markovic2, and Peter
Edwards2

1 School of Mathematical and Computer Sciences, Heriot-Watt University
Edinburgh, EH14 4AS, UK

w.pang@hw.ac.uk
2 School of Natural and Computing Sciences, University of Aberdeen

Aberdeen, AB24 3UE, UK
{iman.naja, milan.markovic, p.edwards}@abdn.ac.uk

3 School of Computing, University of Leeds, Leeds, LS2 9JT, UK
C.P.Fung@leeds.ac.uk

Abstract. With rapid deployment of Machine Learning (ML) systems
into diverse domains such as healthcare and autonomous driving, im-
portant questions regarding accountability in case of incidents resulting
from ML errors remain largely unsolved. To improve accountability of
ML systems, we introduce a framework called Accountability Driven De-
velopment (ADD). Our framework reuses Behaviour Driven Development
(BDD) approach to describe testing scenarios and system behaviours in
ML Systems’ development using natural language, guides and forces de-
velopers and intended users to actively record necessary accountability
information in the design and implementation stages. In this paper, we
illustrate how to transform accountability requirements to specific sce-
narios and provide syntax to describe them. The use of natural language
allows non technical collaborators such as stakeholders and non ML do-
main experts deeply engaged in ML system development to provide more
comprehensive evidence to support system’s accountability. This frame-
work also attributes the responsibility to the whole project team includ-
ing the intended users rather than putting all the accountability burden
on ML engineers only. Moreover, this framework can be considered as a
combination of both system test and acceptance test, thus making the
development more efficient. We hope this work can attract more engi-
neers to use our idea, which enables them to create more accountable
ML systems.

Keywords: Behaviour Driven Development · Machine Learning · Model Card
· Accountability

? This research is supported by the RAInS project funded by EPSRC
(EP/R033846/1). Corresponding Author: Wei Pang (w.pang@hw.ac.uk)
Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



2 Chiu Pang Fung et al

1 Introduction

There are many definitions of accountability in AI systems, and following our
previous work [10], we define accountability as follows: “The ability to inspect,
review or otherwise interrogate an AI system with the goal of (i) making pro-
cesses associated with each of its life cycle stages transparent; (ii) demonstrating
compliance with hard laws (i.e. laws and regulations), and soft laws (i.e. stan-
dards and guidelines); and (iii) aiding investigations into the cause(s) of failure
or erroneous decisions and supporting the identification of responsible parties.”
[10]. This definition can be adopted to the narrower scope - ML systems. Cur-
rently ML system development is a straight forward process [17, 4] (Figure 1).
In this kind of processes, the relevant personnel within the project are in charge
of different tasks based on their roles. Decision makers care about the purpose;
stakeholders are concerned with the business value of the potential ML applica-
tion; domain experts explain what the data means; data scientists and ML engi-
neers focus on technical perspective, including data processing, model training
and evaluating. This division of labor may cause ambiguity for accountability
of ML systems. Many data scientists and ML engineers are keen on fulfilling
the system performance requirements rather than considering the accountabil-
ity issues. The Model Card framework [9] offers a standardized documentation
procedure to capture useful information such as model purpose, owners, data
information, algorithms’ details. But the information they collected is not com-
prehensive regarding to accountability of ML systems. The lack of information
about system’s explainability, transparency, fairness and performance makes it
difficult to audit and investigate the potential failures of ML systems.

ML system’s life cycle can be divided into four high level stages: Design, Imple-
mentation, Deployment, and Operation & Maintenance [10]. In this paper, we
focus on illustrating how to ask the ML system to generate those information
in our ADD framework in the implementation stage, and we also give examples
based on a simulation using our framework to develop an auto decision making
system for mortgage applications.

2 Background and related work

Artificial Intelligence (AI) systems which employ ML models are being put to
use in various applications affecting our daily lives. However, few companies and
organizations are dedicating resources to mitigate AI risks despite some of them
having to increasingly manage such risks related to AI [8]. In AI/ML research,
the same situation happens that many researchers focus on improving the per-
formance of ML algorithms rather than looking into the accountability of these
systems. Research about ML accountability has been emerging in recent years.
Hajian et al. [5] propose an idea on how to process raw data to prevent dis-
crimination in AI based intrusion and crime detection. Datta et al. [3] introduce
the Quantitative Input Influence (QII) metric to improve the transparency of



Towards Accountability Driven Development for Machine Learning Systems 3

Fig. 1. A typical Machine Learning system Development Workflow.

decision-making systems by measuring the influence of the input features. Bach
et al. [1] propose Layer-Wise Relevance Propagation to explain deep neural net-
works. Ribeiro et al. [13] propose the called Local Interpretable Model-Agnostic
Explanations (LIME) algorithm to locally explain predictions of classifiers and
regressors by training an interpretable model to approximate the original model.
Afterwards, Shrikumar et al. propose [14] Deep Learning Important FeaTures
(DeepLIFT). Finallu, Lundberg et al. [7] propose the SHapley Additive exPlana-
tions (SHAP) method. These articles started the upsurge of ML’s explainability
research. All the above researches make it feasible for the information of ML sys-
tem’s explainability to be collected. For the other aspect, transparency, Mitchell
et al. introduce Model Card [9] to create documentations for ML models. Their
framework allows people to look deeply into the model’s development and its
performance.

On the other side, in software development there is a methodology called Behav-
ior Driven Development (BDD) [12, 6, 16], which is developed from Test Driven
Development (TDD) [2, 11]. Same as TDD, BDD is still a test driven develop-
ment approach, but BDD designs user story scenarios instead of designing test
cases; it uses natural language to describe software system’s behaviours, forcing
the behaviours fulfill the corresponding requirements in all scenarios to test the
system. As a test-first approach, in BDD the scenarios are designed at the be-
ginning of the development when there is no existing code, so that the first test
must fail until developers start to write code. The use of natural languages to
describe user story scenarios in BDD creates a bridge among software designers,
developers and users, encouraging all the development team members such as
developers and non-technical collaborators to work together with less technical
barriers. Inspired by BDD, we use natural language to describe the ML sys-
tem’s behaviours in the form of user story scenarios that are designed according



4 Chiu Pang Fung et al

to both technical and accountability requirements, making the ML system ful-
fill those requirements. That means the ML system must generate information
about its performance, explainability, transparency etc. For example, there is a
performance requirement-Accuracy, when the ML system passes the correspond-
ing scenario test, it must generate information on accuracy. Those information
can be collected to improve system’s accountability. If there is a failure about
the system’s accuracy after its deployment, we can trace back what kind of ac-
curacy test was done and what condition had be set in the corresponding testing
scenario, and this information will help the failure investigation and auditing
purpose.

Fig. 2. Machine Learning System Development workflow in ADD framework. Three
blocks (Data Collection, Data Analysis/Pre-processing and Model Construction) in
the dotted rectangle are considered as an implementation component, which creates
the ML system. The system can go to the deployment stage if it passes all the scenarios
tests or it must be improved if it fails the test in any of those scenarios.

3 ML System Development with ADD

3.1 The workflow of ADD

In our framework (Figure 2), starting from the Task/Requirements analysis,
the development team and potential users should not only discuss technical re-
quirements (e.g. performance requirements such as accuracy and efficiency), but
also discuss the accountability requirements according to model’s transparency,
explainability, fairness and document all the requirements. Then based on the
requirements, user stories and test scenarios are designed to start the testing.
Similar to BDD, the first test must fail as no ML system has been developed.
Afterwards, the developers start to implement the ML system and test it again,



Towards Accountability Driven Development for Machine Learning Systems 5

until the developed system passes all the tests. Eventually the system can be
considered to have fulfilled all the requirements and ready to be deployed. In
this case, the testing in our framework can be considered combining system test
and acceptance test.

3.2 Technical and Accountability Requirements

Technical requirements normally refer to performance characteristics. Some of
these requirements originate from potential users, such as performance require-
ments, safety requirements, hardware architecture requirements. However, to
improve the entire technical requirements, the development team should proac-
tively propose some extra technical requirements in ML Systems, such as metrics
for specific algorithms that do not violate customer’s requirements. For example,
a customer asks for a 90% accuracy for a classifier, and the development team
should offer a confusion matrix analysis. According to transparency, a document
which is extended from Model Card [9] to collect more information should be
established to record details of the entire model development process such as
requirement analysis and useful information generated when the system passes
the tests. Corresponding to explainability, there should be requirements to ex-
plain how and why this output is generated by the system. For example, in the
auto decision making system for mortgage applications, when an output is ob-
tained, the weights of all the features (features in this paper refer to applicant’s
income, occupation, age etc.) of the corresponding applicant should be listed and
recorded. Regarding fairness, it can be proposed in accordance with law that the
system cannot be discriminatory based on ethnicity or gender etc.

3.3 Design user story scenarios

In BDD, the user story scenarios tests relate to some sub-modules of the whole
software system. For example, in a supermarket management system, selling a
product relates to the cash flow management module and stock management
module, so that the scenarios descriptions are more comprehensive. In ADD, we
consider three blocks (Data Collection, Data Analysis/Pre-processing and Model
Construction. Figure 2) inside the dotted rectangle as a component in develop-
ment. That will simplify the design. For example, we can ask this component
to provide data distribution information rather to ask the Data Analysis/Pre-
processing block to do so. Not only the normal requirements, but also the edge
use cases must be covered in the scenario design. For example, when there is
an edge use case that an applicant with no features goes into the system, an
error message “Wrong input given, can not create proper output” should
be given rather a normal output as “Mortgage application is approved”
or “Mortgage application is declined”. Also, all details of scenarios design
must be recorded as they contain what situations have been considered for the
use of the system which are useful for accountability.



6 Chiu Pang Fung et al

3.4 Syntax for describing scenarios and system’s behaviour

The ML technical terms may be difficult to understand, and obscure statisti-
cal methods, evaluation standards and metrics keep non-technical personnel out
of the loop. These non-technical collaborators may have better understanding
of other accountability factors, such as laws and ethical requirements, which
can help improving a system’s accountability. Removing this technical barrier
is necessary to gain contributions for accountability from both technical and
non-technical personnel in the development stages. In ADD, a method similar
to BDD is used, and we use natural language to describe user story scenarios
and the behaviors of the system. We give two examples below to explain how
to transfer one fairness requirement into scenarios and how to describe system’s
behaviour in that scenario. In the second example, the system is forced to gen-
erate explanation information. (It is pointed out that in these examples, we just
want to demonstrate how ADD can be used, and we do not consider the profit
requirement of the intended users, the banks. We also point out that the below
examples are the starting point to engage all parties, and they will be further
refined after discussions among related people, including users and ML develop-
ers/designers. The final version of the scenarios may be produced after several
iterations until all parties reach a consensus. If a consensus cannot be reached,
the information on disagreement also needs to be recorded. )

Title: Producing non-discriminatory output

As a Bank.
I want the system that produces fair outputs for different applicants regardless
of their ethnicity.
so that the System is not racially biased.

Scenario 1: The System should produce fair outputs for applicants from dif-
ferent ethnic groups.
Given that a mortgage application approved for applicant A,
When another applicant B, with the same features but different ethnicity applies
for the same mortgage amount,
Then the mortgage application should be approved for applicant B.

Scenario 2: The system should produce fair outputs for applicants from dif-
ferent ethnic groups.
Given that a mortgage application from applicant A is declined,
When another applicant B with the same features but different ethnicity is ap-
plying for the same mortgage amount,
Then mortgage application from applicant B should be declined.

Title: Proving explanations for outputs

As a Bank.



Towards Accountability Driven Development for Machine Learning Systems 7

I want the system that provides explanation for every mortgage application de-
cision.
so that we know why the output is produced and can explain it to our clients.

Scenario 1: The system should provide explanation for a successful applica-
tion.
Given an applicant with all necessary features,
When mortgage application is approved,
Then the system should create a report with all the weights corresponding to the
features of the applicant.

Scenario 2: The system should provide explanation for a failed application.
Given an applicant with all necessary features,
When mortgage application is declined,
Then the system should create a report with all the weights corresponding to the
features of the applicant.

4 Discussion and Future work

There is an urgent need to improve ML system’s accountability during its devel-
opment stage. In this paper, we briefly introduce our ADD framework to develop
ML systems and explain how the ADD can facilitate accountability information
capture regarding the system’s performance, explainability, fairness and trans-
parency. We believe ADD can help reduce misunderstanding among users, ML
system designers and developers by engaging them and confirming accountabil-
ity requirements.

In the future, we are going to further improve this framework by making a
deeper study in the requirements and scenarios design sections (Sections 3.2,
3.3), developing an example model and giving a full report by extending the
Model Card framework [9]. Further more, we point out that ADD is a generic
methodology for facilitating accountability in ML, and therefore, we will extend
our framework to the whole life cycle of ML systems, making it more widely
used. Finally, we are considering developing a Cucumber-like [15] (cucumber is
a tool that supports BDD.) tool that is specifically for ML system development.

References

1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one 10(7), e0130140 (2015)



8 Chiu Pang Fung et al

2. Beck, K.: Test-driven development: by example. Addison-Wesley Professional
(2003)

3. Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influ-
ence: Theory and experiments with learning systems. In: 2016 IEEE symposium
on security and privacy (SP). pp. 598–617. IEEE (2016)

4. Google: Machine learning workflow. https://cloud.google.com/ai-
platform/docs/ml-solutions-overview, online; Accessed Mar 25, 2021

5. Hajian, S., Domingo-Ferrer, J., Martinez-Balleste, A.: Discrimination prevention
in data mining for intrusion and crime detection. In: 2011 IEEE Symposium on
Computational Intelligence in Cyber Security (CICS). pp. 47–54. IEEE (2011)

6. Haring, R., de Ruiter, R.: Behavior driven development: Beter dan test driven
development. Java Magazine p. 29 (2011)

7. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. arXiv
preprint arXiv:1705.07874 (2017)

8. Mckinsey: The state of ai in 2020. https://www.mckinsey.com/business-
functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020,
online; Accessed Mar 28, 2021

9. Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B.,
Spitzer, E., Raji, I.D., Gebru, T.: Model cards for model reporting. In: Proceedings
of the conference on fairness, accountability, and transparency. pp. 220–229 (2019)

10. Naja, I., Markovic, M., Edwards, P., Cottrill, C.: A semantic framework to support
ai system accountability and audit (2021)

11. Newkirk, J., Vorontsov, A.A.: Test-driven development in Microsoft .Net, vol. 1.
Microsoft Press Redmond, WA (2004)

12. North, D.: faster organizations, faster software. http://dannorth.net/introducing-
bdd, online; Accessed Mar 30, 2021

13. Ribeiro, M.T., Singh, S., Guestrin, C.: ” why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining. pp. 1135–1144 (2016)

14. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: International Conference on Machine Learn-
ing. pp. 3145–3153. PMLR (2017)

15. SmartBear: what is cucumber. https://cucumber.io/docs/guides/overview/, on-
line; Accessed Mar 28, 2021

16. Solis, C., Wang, X.: A study of the characteristics of behaviour driven development.
In: 2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications. pp. 383–387. IEEE (2011)

17. Wang, M., Cui, Y., Wang, X., Xiao, S., Jiang, J.: Machine learning for networking:
Workflow, advances and opportunities. IEEE Network 32(2), 92–99 (2017)


