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Abstract. In the nuclear power industry, the high-performance black-
box systems which are prevalent in modern AI research are difficult to
match to applications which take advantage of their strengths. These sys-
tems generally require volumes of labelled or well formatted data, and
will provide a high level of performance which cannot be easily under-
stood, explained or audited. Indeed, most AI systems deployed in this
industry are done so with constant oversight by a skilled human oper-
ator, negating many of their advantages in cost, speed and reliability.
In many cases, the time taken to format data for these systems is pro-
hibitive even when automation might be desirable. This paper presents
a framework for deploying a variety of AI techniques to industries where
human oversight is required. Instead of treating the user as an external
element while automating the task, this framework incorporates them
as an active participant in the process, augmenting their performance
while leveraging their strengths to make the AI systems more reliable
and user-friendly. The framework is concerned primarily with the prob-
lem of digitising Elementary Wiring Diagrams, an important class of
engineering drawing. These are in regular use even as low-quality scans
of paper documents, and while digitising them is desirable and has many
potential benefits, the level of time investment required by skilled engi-
neers is prohibitive. Mistakes in digitisation are also potentially costly,
meaning that the skilled engineer must remain involved in the process.
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1 Introduction

Engineering drawings serve several key purposes in design engineering, mainte-
nance and asset management. The ability to quickly determine which compo-
nents are connected to and affected by others can assist in tasks such as fault
diagnosis and upgrading equipment, especially when designs are digitised with
intelligent metadata and cross referencing between multiple drawings.
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In the nuclear power industry, and in others such as the oil and gas industry,
many assets have been in use for a significant period. With their associated
drawings having been originally drafted on paper, they are now digitised in low-
quality scanned formats. As it would take considerable effort by skilled engineers
to manually redraft these as modern CAD drawings or to review them to find
useful metadata, a system for intelligently parsing these drawings would be of
significant value.

Unfortunately, while this problem has been approached for many classes of
drawings, such as piping and instrumentation diagrams (P&ID), success has
resulted from the existence of at least moderately sized labelled datasets, which
are used as a starting point for symbol classification. In attempting to utilise
this library of research on a class of drawing where no such dataset exists, such
as elementary wiring diagrams (EWDs), this is the first and most manually
intensive problem to overcome.

2 Background

2.1 Digitisation of Engineering Drawings

Digitisation of engineering drawings has been of interest to many since as early
as the 1980s[1], and continues to be worked on. The most active research on
the subject is being done on P&ID diagrams. These drawings are comparable in
many ways to EWDs, in that they are composed of symbols, text and topological
connections. They differ primarily in the family of symbols which they utilise,
with P&ID diagrams featuring a more complicated variety of symbols, with
embedded text and subtle lines which can change the meaning of a symbol.

In the domain of P&ID digitisation, Morena-Garcia identified three key chal-
lenges: quality, skewing and topology [2]. Briefly, the quality problem refers to
the variance caused by hand drawn symbols and distortion caused by scanning
paper documents. The skewing problem refers to class imbalance caused by some
symbols being more common than others, while the topology problem is both
the in-drawing topology of recognising lines and connecting symbols, as well as
the meta-topology of drawings which connect to others. Again it can be seen
intuitively that all of these problems transfer to the EWD domain, and so must
be considered.

A wide variety of techniques have been applied to address these common
problems, for example the utilisation of Generative Adversarial Networks [3] or
class decomposition [4] to address the class imbalance problem. However, this
research relies on a large dataset of labelled P&ID symbols[5], so applying this
rich library of techniques to EWDs requires either a manually intensive amount of
splitting and labelling drawings, or some interim techniques to allow the dataset
to be expanded.

2.2 Human-in-the-loop systems

In nuclear power applications, there is a consistent problem with utilising data
intensive AI solutions. In many nuclear applications, including the problem of
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digitising engineering drawings, there is a lack of quality data. Labelled data
is usually minimal, hampering supervised techniques, and the data which is
available is often low quality and poorly formatted, which creates difficulties
applying unsupervised or semi-supervised methods. In addition to this, most
modern AI solutions are “black boxes”, which may provide a high degree of
performance but are not easily understood. This is also a poor fit for the nuclear
domain, as most decisions must be justified and audited.

This leads to the main difficulty with nuclear applications of AI: a skilled
human engineer must remain involved in any uncertain process, usually either
checking the AI decision at the end or making their own decision based on AI
suggestions. Therefore an AI must provide enough of a benefit to justify the
time of a skilled engineer to format or label data, as well as the development
and verification time required to design and implement such a system, and must
perform better with supervision than an engineer working alone.

However, these restrictions also present an opportunity to explore ways in
which the human expertise can be leveraged to improve performance, by taking
advantage of the human in the loop rather than working around them.

Human-in-the-loop (HITL) systems refer generally to systems where AI and
humans interact, though is more commonly used when referring to systems in
which the human is not simply a supervisor of the AI, but when the human and
AI cooperate to accomplish a task [6]. This human-AI cooperation is sometimes
referred to as shared autonomy [7].

HITL has been applied to the process of designing AI systems in HELIX [8],
a human centric tool for rapidly design and iteration on data science workflows.
The design of HELIX involves providing the user with a high fidelity interface
which suits their specialisation (in this case a programming language) and high
quality visualisation tools to allow them to do the same work more effectively.
The idea of the human user being a skilled expert in the target domain and
the utilisation of their knowledge to improve the system transfers well to the
nuclear domain, where the users will be experienced engineers, though the critical
difference is that they will not necessarily have programming experience, but
rather engineering and design experience.

3 Framework for human-in-the-loop digitisation

In order to address the problem of digitising EWDs using a human in the loop,
there are several key considerations to address. To be of use to the end user, the
system must be more efficient than an engineer simply digitising the drawing
manually, even when the AI modules are at their weakest or have not yet been
implemented. If the user is willing to spend a significant amount of time labelling
data, they would prefer to redraw instead, in line with their expertise.

This also means that even once AI modules are implemented and are dis-
playing a reasonable performance level, the user should not have to spend time
tweaking until the AI digitises the drawing by itself. If the user makes correc-
tions, those should be logged for future use, but the completely labelled and
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connected drawing they have produced should not be discarded. It is the desired
output of the system, and spending more time on a drawing once it has been
digitised is wasteful.

The output of the system is the original drawing marked up with a label
and bounding box on each symbol, blocks of text transcribed and topological
connections represented by connecting lines. Additional information such as that
originally contained in embedded tables would instead be attached to the relevant
component in a text field. This intermediate state could in principle be used
to automatically generate a new digital drawing, but could also be applied to
other potential uses, such as a subsequent database application for spanning
between components across an entire plant, allowing for many potential workflow
improvements.

Fig. 1. HITL framework for EWD digitisation

The proposed framework is shown in figure 1. It consists firstly of an attempt
by any number of AI modules to parse the drawing. These modules could be as
simple as a classifier which identifies individual symbols or a rule based system
governing how components can connect together, but could equally be complex
holistic solutions of the type which exist for P&ID diagrams, as discussed in
section 2.1. They return their findings using a common interface, represented on
the drawing in the same format available to the user.

The modularity provided by a swappable bank of AIs moves the focus away
from individual techniques and instead to the performance of the system as
a whole and the interplay between human and AI. It also allows the addition
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and removal of modules as appropriate. Early on, for example, a Convolutional
Neural Network is likely to be of extremely limited value due to their reliance on
volume of available data, but when a large dataset is available their performance
is likely to be very high in comparison with other methods. We therefore might
remove a CNN based method in the early stages, and only reintroduce it when
it attains a reasonable level of accuracy.

In contrast, initial work utilising a Quality Assured Template Matching [9]
based approach successfully identified 20% of symbols with no false positives,
and required only one example per symbol class, but additional data and exper-
imentation provided greatly diminished returns, suggesting it might be a useful
module early on, but might fall out of favour as more data becomes available,
or else might be relegated to a reliable check on the output of other modules. In
principle, this selection and comparison of modules could be done automatically
based on the accuracy metrics of modules, but in the simplest implementation
of this framework it would instead be a choice on the part of the designer which
they might revisit regularly.

The annotated drawing is then opened up to the human expert, who has
the opportunity to modify the AI attempt, either by adding additional labels
not flagged by an AI, or by modifying or deleting AI outputs they disagree
with. The interface at this stage should be extremely simple and intuitive. The
users actions at this stage, and therefore areas where AI modules were correct or
incorrect, will be logged into the learning data repository, as well as areas where
modules might have disagreed with one another.

The learning data will not be a single exhaustive dataset of the type that
might be used to train a machine learning system, such as labelled pictures. It
will instead be a log of user actions. If the user highlights a region and labels
it as a relay, the data logged would be the name of the drawing in question,
the coordinates highlighted, and the label “relay”. Likewise if the user deletes
or modifies an area the AI flagged as a resistor, the coordinates would be logged
either as a negative example or with the label flagged by the user. By saving
this log instead of a single formatted dataset, we allow creativity when deciding
what data would be valuable to a new AI module, by the use of the presenter
modules.

The data presenters are another modular element to the system which allows
the learning data to be parsed in many ways. A presenter in this case is a simple
module which transforms a subset of the learning data into something usable
by another part of the system. A simple example of this would be a presenter
which collates all of the learning data relating to symbols, in the form of drawing
name, coordinates and label, and extracts the pixels from the drawing to create
a dataset for training a classifier. The presenters might be simple programs, or
might themselves be more complex systems. An example of a different type of
presenter is provided by the implemented subset of the system which, given a
single coordinate point clicked by the user, performs simple image manipulation
to find a potential area of interest which it flags on the drawing for the user’s
further input. Another more complex presenter could take that same single co-
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ordinate and run a classifier on a sliding window around it to identify the area
of interest and its type more accurately.

The current implementation consists of the subset of the framework marked
“Labelling System”. The lack of implemented AI modules in this version allows
verification of the speed at which the operator will initially be able to digitise
a drawing. By utilising the aforementioned presenter, the user can click a single
point on a symbol, resulting in a best guess bounding box drawn around it based
on the centre of mass within that region. The user can then pick from a list what
the symbol is as well as adjust the bounding box, and their decisions are logged.
It is then easy to add text to the symbols and draw links between them. This is
a smoother process than manually segmenting each image, and results in more
consistently sized images being identified. Compared to manually redesigning a
drawing in a CAD format, which industrial partners suggest takes several hours,
this process takes only minutes.

4 Conclusions and future work

The framework is still at an early stage of implementation, and requires further
testing to verify the extent to which it improves the digitisation workflow. The
framework does take steps towards all three of the challenges to digitisation
of engineering drawings. The quality problem is addressed by minimising the
impact of quality-based failures: the user has the ability to intercept mistakes
made by the AI before they are output and allows the AI more leniency before
enough data is available to potentially overcome the poor quality.

The skewing problem is also addressed by this, but is further supported
by the modularity of the framework. The class imbalance caused by the relative
rarity of some symbols over others can eventually be addressed by the generation
of additional artificial data, once enough labelled data exists, but can also be
addressed in the shorter term by building smaller and more specific modules
which identify only one symbol at a time.

The topology problem is in some ways the hardest problem to overcome, and
features the least available research. It requires taking a more holistic view of
the document rather than dividing into small units like identification of sym-
bols or text, while also requiring a high level of fidelity in other systems before
beginning. The framework addresses this problem both by allowing the user to
make connections in the early stages before a module is written to overcome this
problem, but also by the modularity of the system, by allowing identification to
be easily abstracted away into another module.

In the future, the framework will be ported to other domains, initially to
other similar drawings such as P&ID diagrams, but eventually to entirely differ-
ent classes of problems. The domain of AI planning [10] in particular features
scheduling problems which a skilled expert must undertake. Many techniques
which produce partial solutions are available, but the human centred framework
might provide an excellent way to turn these techniques into a more complete
solution.
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[5] E. Elyan, C. F. Moreno-Garćıa, and P. Johnston, “Symbols in Engineering
Drawings (SiED): An Imbalanced Dataset Benchmarked by Convolutional
Neural Networks,” in Proceedings of the 21st EANN (Engineering Appli-
cations of Neural Networks) 2020 Conference, Springer, Cham, Jun. 2020,
pp. 215–224.

[6] D. Sousa Nunes, P. Zhang, and J. Sa Silva, “A Survey on human-in-The-
loop applications towards an internet of all,” IEEE Communications Sur-
veys and Tutorials, vol. 17, no. 2, pp. 944–965, Apr. 2015, issn: 1553877X.

[7] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and J. A. Bagnell,
“Shared autonomy via hindsight optimization for teleoperation and team-
ing,” International Journal of Robotics Research, vol. 37, no. 7, pp. 717–
742, Jun. 2018, issn: 17413176.

[8] D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and A. Parameswaran, “Acceler-
ating human-in-the-loop machine learning: Challenges and opportunities,”
in DEEM’18: Proceedings of the Second Workshop on Data Management
for End-To-End Machine Learning, New York, NY, USA: Association for
Computing Machinery, Apr. 2018, pp. 1–4.

[9] J. Cheng, Y. Wu, W. Abdalmageed, and P. Natarajan, “QATM: Quality-
aware template matching for deep learning,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recogni-
tion, vol. 2019-June, 2019, pp. 11 545–11 554, isbn: 9781728132938.

[10] T. Chakraborti, S. Sreedharan, and S. Kambhampati, “The emerging land-
scape of explainable automated planning & decision making,” in IJCAI In-
ternational Joint Conference on Artificial Intelligence, vol. 2021-Janua, In-
ternational Joint Conferences on Artificial Intelligence, Jul. 2020, pp. 4803–
4811, isbn: 9780999241165.


