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ABSTRACT
We present a small form factor (0.5𝑐𝑚3) static CZT sensor net-
work consisted of a number of Non- Directional Detectors (NDD)
capable to localize a stationary radiation source in 3D. The localiza-
tion is performed with a fusion algorithm based on AI techniques.
The algorithms are based on Multilayer Perseptron Neural Net-
work (MLP) and Gradient Boosted Decision Trees (BDTG). They
have been trained using simulated data produced by the SWORD
simulation software based on Geant4 framework. The localization
efficiency of the algorithms was verified with experimental data
taken in our laboratory using a 137𝐶𝑠 source of 180𝜇𝐶𝑖 . The local-
ization resolution of the order of 10cm to 15cm has been archived
in Vertical and Horizontal directions respectively and of the order
of less than 20cm in the depth direction within a monitored volume
of 5m x 2.8m x 2m .

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Neural networks, Boosted Decision Trees, CZT sensors, Radiation,
Source Localization

1 INTRODUCTION
In the new era of homeland security there is a growing concern
regarding the possession and the potential use of radiological ma-
terials by terrorist groups usually in the form of a radiological
dispersion device (RDD), also known as "dirty bomb". Since the de-
fended areas from such a threat may not have specific entrance and
exit points, the problem of how to localize and identify a radioactive
source in an open area should be investigated. The detection has to
overcome a variety of uncontrollable factors, such as the presence
of benign sources, time and space varying background noise, and
obstacles that may occlude signal from sources. An overview of
the related work in this subject can be seen in section 2. In this
work we focus on the localization of stationary radioactive sources
using a network of small form factor static spectroscopic detectors
(Non-Directional Detectors - NDD) realized using CZT crystals.
This network was used as a verification platform for the set of the
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developed localization algorithms. The capabilities of the above
NDD network to localize radioactive sources were investigated
using simulated data produced by GEANT4 [4] software via the
SWORD (SoftWare for Optimization of Radiation Detectors) pack-
age [23]. Then a series of verification tests were performed using
experimental data collected by a locally developed data acquisition
system from the CZT sensor network realized in our lab. The lo-
calization algorithms were based on machine learning techniques,
such as Neural Networks (MLP) and Boosted Decision Trees (BDT).

2 RELATEDWORK
The radiation localization problem has been studied extensively in
the last years in the framework of homeland security. Localization
algorithms evolved from single detector ones to sensor networks
and to mobile sensor networks. The complexity of the problem also
evolved from the localization of single radiation source to many
radiation sources and to mobile radiation sources.

The single detector algorithms are based on the determination
of a threshold on the count rate of the detector [14]. The threshold
is unusually defined as a multiple of the estimated background
count rate. Although such an algorithm can detect the presence of
a radiation source, it lacks the ability to efficiently localize it. This
limitation has been surpassed with the use of radiation sensor net-
works that have the ability to record the radiation information (e.g.
counts or spectra) for the same time window. Radiation information
is then fused in order to localize the radiation source. Several fusion
algorithms have been proposed by various researchers.

The Ratio of Square-Distance (RoSD) algorithm [12] uses infor-
mation provided by 3 sensors to estimate the location of the source.
The algorithm suffers from the estimation of a second position of the
radiation source together with the real position, often mentioned
as phantom estimate. The origin of the problem lies in the inability
of the algorithm to distinguish a strong source far away from the
sensors from a weaker source located in a shorter distance. A more
elaborate approach that resolves the above ambiguity involves the
deployment of more than 3 sensors. However, the method is still
prone to noisy data in the real world scenario, where it could not
localize the source at all.

The Maximum Likelihood Estimation (MLE) algorithm has been
proposed by [5], [3], [10] for the localization of the source and the
estimation of its activity in 2D. The method handles the assessment
of the source parameters as a multidimensional minimization prob-
lem, where the function to be minimazed is the error between the
recorded and estimated sensor readings. The method can converge
on local minima, which leads to the detection of phantom sources.



A faster algorithm with respect to the MLE has been proposed
by S. Nageswara et al [20], the Mean-of-Estimator (MoE). The algo-
rithm evaluates the mean of all candidate source estimates. How-
ever,it is prone to large source localization errors when phantom
sources are included in the sample.

The complexity of the localization problem increases at the pres-
ence of multiple radiation sources. In such a scenario the number
of the radiation sources is not known and it must be estimated from
the data. This can be done by applying a statistical test which eval-
uates the most probable number of sources prior to the localization
algorithm.

Bayesian algorithms have been proposed in [22], [7], [13], [8]
for the source localization problem. The source parameters i.e. the
activity of the source and its location are estimated using a set of
observables, the sensor readings. To do so the algorithm computes
the posterior probability distribution based on an estimated prior
distribution. However, the prior estimates can not be easily deter-
mined in real world scenarios where the background can not be
modeled as a Poisson distribution due to the presence of obstacles.
Also source localization has been proposed by a Delayed Rejection
Adaptive Metropolis (DRAM) algorithm [19] .

In addition a particle filter approach has been used in [18],
[11],[17] in order to estimate the source location. In this algorithm
a large number of random samples of source activity and location
( called particles ) have been used to estimate the probability dis-
tribution function (𝑃𝐷𝐹 ). For each particle the expected radiation
readings of the sensors are estimated and the probability to record a
specific set of measurement is calculated. The accumulation of more
measurements causes the expectation of particles to converge to
the real source location and activity. Although, this approach works
well for single radiation source the complexity of the algorithm
increases exponentially with the number of sources [9].

The approach of using static radiation sensors is good when the
target is the protection of a restricted monitoring area. In contrast,
when the target is the protection of a big city this approach is not
sufficient. Thus, mobile sensor networks have been proposed in
[16] for detecting people carrying radioactive material and in [24]
for detecting radioactive sources in urban areas 2019.

However, in this work we focus on an AI approach for the ra-
dioactive source localization based on MVA techniques.

3 NON DIRECTIONAL DETECTORS
SIMULATION

3.1 Geometrical Setup of the Simulation
Detailed simulation has been used to study the ability of the NDD
network to localize a radioactive source within a volume of 28𝑚3.
A model of 5 CZT spectroscopic sensors in cruciform topology
(" 5 Sensor Cross topology ") having an active volume of 0.5𝑐𝑚3

each, has been irradiated by a 137𝐶𝑠 source having an activity of
1𝑚𝐶𝑖 for Δ𝑡 = 45𝑠𝑒𝑐 in the absence of NORM background. The
inter-sensor distance in the horizontal axis was set to 2.5𝑚 whilst
the vertical inter-sensor distance was set to 1.4𝑚. This setup was
selected to match with our experimental hall specification. The
source has been placed at various positions (figure 1) i.e. within
parallel planes at distances between 40𝑐𝑚 to 200𝑐𝑚 away from the
sensor plain in steps of 40𝑐𝑚. The energy response of the 5 CZT

sensors was recorded for a grid of 3000 different source position
points per layer.For simplicity we simulated source positions in
planes parallel to the detectors plain, however during the training
phase the events (source position) were randomly picked up from
the above sample.

Figure 1: Simulation setup of the " 5 Sensor Cross topology "
( S2, S5, S7, S8, S9) in blue. The energy response of the sensors
has been recorded when a radioactive source i.e.137𝐶𝑠 (in
red) has been placed in various position (in green) at planes
parallel to the sensor plane.

3.2 MVA techniques description
Although the energy spectra, of each sensor is recorded, for the
same time window Δ𝑡 this work uses only the total recorded counts
in each sensor (𝑁 ). This is done to increase the sensitivity of the
sensors by taking into account not only the photo-peak informa-
tion but the scattered radiation as well. The localization of the
radiation source algorithms have been designed to handle sources
independent of their activity, by using the sensor with the maxi-
mum response (maximum number of counts) as a normalization
factor for all the sensors. In general: 𝑁 ≃ 𝐴𝑒−𝜇𝑟 /𝑟2, where A is
related to the source activity and the sensor efficiency, 𝜇 is the at-
tenuation coefficient and 𝑟 is the distance between radiation source
and sensor. It is obvious that without normalization the algorithms
could be biased by the source activity. Thus the normalization we
performed to the maximum recorded counts is mandatory to get rid
off the dependence of the source activity. The set of the recorded
normalized counts by all sensors, is the set of the input variables to
the Multivariate Analysis algorithms (MVA) and it defines a single
event. The TMVA [6] toolkit has been used for the MVA methods
through the ROOT [2] framework.

The basic steps of our approach are the following:
• Normalize Sensor Readings to the sensor with the maximum
recording during the same time window.

• Use MVA techniques to estimate independently the Horizon-
tal (𝑋 ), Vertical (𝑌 ) and Depth (𝑍 ) position of the source by



taking into account the normalized sensor counts.We have
chosen three independent models one for each space coordi-
nate and not one model with two or three position outputs
since the number of simulated events is not sufficient large
to support this exercise.

For the second step above the following regression techniques
have been evaluated:

• Multi Layer Persepton Artificial Neural Network (MLP),
• Gradient Boosted Decision Trees (BDTG)

Both of the above regression techniques are supported by the TMVA
[6] toolkit.

3.3 MLP method
Neural Networks are used in a variety of tasks such as pattern
recognition, computer vision, speech recognition and regression
problems. They consist of interconnected nodes, called neurons,
which are organized in layers. Signals travel from the first layer
(input), to the last layer ( output ). Their internal layers are known
as hidden layers. In this article the Multi-Layer Percepton Artificial
Neural Network (MLP) realized in the TMVA package has been used
(figure 2). During the learning phase the network was supplied with
𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 12000 training and 𝑁𝑡𝑒𝑠𝑡 = 3000 test samples from the
simulated data ( the normalized sensor counts ) where the output
of the network (the radiation source coordinate) is known. The
neuron weights are adjusted by the BFGS [21] algorithm and 𝑡𝑎𝑛ℎ
as activation function. The parameters used in MLP can be seen in
Table 1.

Figure 2: Schematic of the neural network with 5 input
nodes(the normalized sensor counts), 1 hidden layer with 26
nodes and one output node for the Source Coordinate esti-
mation.

The linear correlation matrix of the input variables is shown in
figure 3 where a clear lack of correlation is observed. In figure 4
the successful convergence test is shown where no overtraining is
observed since the test line ( blue dot line ) lies above the training
line ( red line ).

Table 1: Neural Network Parameters

Neural Network Parameter Value
Number of Training Samples 12000
Number of Testing Samples 3000
Number of Cycles(Epochs) 1000

Hidden Nodes 26
Training Method BFGS

Activation Function tanh
Convergence 1𝐸−6

Figure 3: The linear correlation matrix of the input vari-
ables for the MLP method.

3.4 Gradient Boosted Decision Trees (BDTG)
method

Decision Trees started to play an important role in discriminating
data in two classes when a set of input variables provides enough
information to separate the data after a series of cuts in the input
variables. Usually data provided by simulation are used to train the
Decision Tree, where class identification is known a priori. How-
ever, decision trees suffer from instabilities depending on the data
training set. This problem has already been solved [15] by creat-
ing a forest of trees, where each misclassified event is reweighted
(boosted) in order to be used in the next tree in the forest. A scoring
algorithm that spans through all trees in the forest defines the final
class decision for the event. A similar approach is used if instead of
a classification, we have to deal with a regression problem, where
the end leaf defines the achieved value (figure 5). The parameters
of the Gradient BDT used in our case can be seen in Table 2.



Figure 4: The MLP convergent test. No overtraining is ob-
served since the test line (blue dot line) lies above the train-
ing line(red line)..

Figure 5: Schematic of the Gradient BDT Boost Type for the
Source Coordinate estimation.

4 EVALUATION OF MVA ALGORITHMS
After the training of both theMLP and BDTGmethods, the produced
weights were evaluated with simulated samples from 137𝐶𝑠 source,
not previously seen in the training phase.

4.1 Evaluation with 137𝐶𝑠 source
An evaluation sample was produced with a 137𝐶𝑠 source at a dis-
tance of 1m away from the sensor plain of the same activity (1𝑚𝐶𝑖)
and for the same radiation exposure time (Δ𝑡 = 45𝑠𝑒𝑐) as the train-
ing sample, using the SWORD package. This sample was not used
during the training phase. Figure 6 refers to the "5 Sensor Cross
topology" and shows: (a),(c) the horizontal source position accuracy
(estimated horizontal coordinate minus its true value) by the MLP

Table 2: Gradient BDT Parameters

BDT Parameter Value
Number of Training Samples 12000
Number of Testing Samples 3000

Number of Trees 2000
Granularity 20

Maximum Depth 4
Boost Type Gradient

Separation Type Regression Variance
Prune Method Cost Complexity

method and BDTG method respectively as a function of the corre-
sponding true horizontal coordinate, (b),(d) the horizontal source po-
sition accuracy from the MLP method and from the BDTG method
respectively. As can be seen the horizontal accuracy is almost flat
with respect to the true source horizontal coordinate except some
small deviation towards the edges of the monitoring volume. It
is well centered to zero with resolution (the RMS of the accuracy
distribution) of the order of 10𝑐𝑚 in accordance to our grid segmen-
tation (10𝑐𝑚) of the source locations used in the training. Figure 7
refers to the "5 Sensor Cross topology" and shows: (a),(c) the vertical
source position accuracy (estimated vertical coordinate minus its
true value) by the MLP method and BDTG method respectively as
a function of the corresponding true vertical coordinate, (b),(d) the
vertical source position accuracy from the MLP method and from
the BDTG method respectively. It can be seen the vertical accuracy
is almost flat with respect to the true source vertical coordinate
except some small deviation towards the edges, it is well centered
around zero with resolution of the order of 9𝑐𝑚 close to our grid
segmentation (5𝑐𝑚) of the source locations used in the training.
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Figure 6: Simulated "5 Sensors Cross topology" with a 137𝐶𝑠

Source (1𝑚𝐶𝑖) at 1m from sensor plain that radiated for 45𝑠𝑒𝑐.
Horizontal source position accuracy by the MLP method (a)
and by the BDTG method (c) vs the true horizontal source
coordinate. Horizontal source position accuracy by the MLP
method (b) and by the BDTG method (d).
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Figure 7: Simulated "5 Sensors Cross topology" with a 137𝐶𝑠

Source (1𝑚𝐶𝑖) at 1m from sensor plain that radiated for 45𝑠𝑒𝑐.
Vertical source position accuracy by theMLPmethod (a) and
by the BDTG method (c) vs the true vertical source coordi-
nate. Vertical source position accuracy by the MLP method
(b) and by the BDTG method (d).

Figure 8 refers to the "5 Sensor Cross topology" and shows: (a) the
depth source position accuracy by the MLP method at the source
distance of 1m from the sensor plain and (b) the corresponding
depth source position accuracy by the BDTG method. A small
bias at the central value with a resolution of the order of 12𝑐𝑚
was observed less to our grid segmentation (40𝑐𝑚) of the source
locations used in the training
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Figure 8: Simulated "5 Sensors Cross topology" with a 137𝐶𝑠

Source (1𝑚𝐶𝑖) at 1m from sensor plain that radiated for 45𝑠𝑒𝑐
(a) the depth source position accuracy from theMLPmethod
at the source distance of 1m from the sensor plain and (b)
the corresponding depth source position accuracy from the
BDTG method.

5 EXPERIMENTAL SETUP
5.1 Source Position Platform
For the verification of the data fusion algorithms a test- bed was
setup using CZT detectors purchased by RITEC[25]. A 3-D step-
motor rail system that positions a radioactive source in predefined
position has been developed and installed in the testbed area.(the
RMS of the accuracy distribution) The 3-D step motor system is con-
trolled by an Arduino microcontroller [1]. A software GUI written
in java controls and sends the appropriate commands to Arduino
microcontroller in order to position the radiation source in the
desired position.

5.2 DAQ System
A locally developed Data Acquisition System (DAQ) has been used
to collect the spectra for the various radioactive source positions.
The DAQ system consists of two software components.

The main tasks of the client are :
• to connect to the sensor and control it. To send commands
to the sensor and receive the responses.

• to accept control connections from the server. Through these
connections, it receives commands and sends back the re-
sponses.

• to send measurement data to the server.
The main tasks of the server are:
• to send commands to the clients.
• to provide feedback during the execution of the commands.
• to receive and store measurements from the clients in a
database.

• to allow retrieval of past measurements for analysis.
The client follows a layered structure. Each layer communicates

only with the layer above or below it. This layered architecture
achieves low coupling between the client logic and the sensor type.
Adding support for a new type of sensor requires only creating
a new sensor manager implementation for the specific sensor. In
addition the server communicates through the command controller
layer while the sensor communicates through the sensor manager
implementation corresponding to its type. The software for the
fusion node utilizes web technologies [26] which make it possible
for the sensors, the fusion node, and the operator to be at different
locations. A session is a series of measurements performed by a
number of sensors over a specific period of time. For each session
we can define the type of the radiation source (or background), the
date and time that the measurement started and the configuration.
By the term configuration we mean the number of measurements
that every sensor will perform and the duration of each one of these
measurements. A small paragraph of text can also by recorded for
each session containing further details.

5.3 Sensor Energy Response
In figure 9 an indicative response of the five sensors 𝑆2(𝑡𝑜𝑝),
𝑆8(𝑐𝑒𝑛𝑡𝑟𝑎𝑙), 𝑆5(𝑏𝑜𝑡𝑡𝑜𝑚), 𝑆7(𝑟𝑖𝑔ℎ𝑡) and 𝑆9(𝑙𝑒 𝑓 𝑡) is shown after
3𝑚𝑖𝑛 of irradiation with a 180𝜇𝐶𝑖 137𝐶𝑠 source and after back-
ground subtraction for a central source position. For each source
position the sensors spectrum was saved every 10𝑠𝑒𝑐 of acquisi-
tion time, resulting in 18 spectrum stamps during the 3𝑚𝑖𝑛 of total



acquisition time. The source is located at a distance 120𝑐𝑚 away
from the sensor plain inside our test volume. Clear evidence of
the presence of the 137𝐶𝑠 source is the photo-peak around 662𝑘𝑒𝑉
seen more pronounced by sensors, 𝑆9, 𝑆8, 𝑆7 and 𝑆5.
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Figure 9: The response after 3𝑚𝑖𝑛 of exposure at a
180𝜇𝐶𝑖 137𝐶𝑠 source of the five sensors 𝑆2(𝑡𝑜𝑝), 𝑆8(𝑐𝑒𝑛𝑡𝑟𝑎𝑙),
𝑆5(𝑏𝑜𝑡𝑡𝑜𝑚), 𝑆7(𝑟𝑖𝑔ℎ𝑡) and 𝑆9(𝑙𝑒 𝑓 𝑡) after background subtrac-
tion. Clear evidence of the presence of the 137𝐶𝑠 source is the
photo-peak around 662𝑘𝑒𝑉 and the 𝑋 − 𝑟𝑎𝑦 peak of 32𝑘𝑒𝑉 .

The energy spectra received are consisted of two parts: (a) the
photo-peak and (b) the continuum part of the spectrum. In the case
of the unshielded sources studied in our case (this can be verified by
the presence of the 𝑋 − 𝑟𝑎𝑦 peak around 32𝑘𝑒𝑉 seen in the spectra
plot and more pronounced by sensor 𝑆8), the continuum part of the
spectrum is mainly due to Compton scattering in the surrounding
the detector material.

6 ALGORITHM VERIFICATIONWITH
EXPERIMENTAL DATA

The weights produced from the simulated data were used to evalu-
ate the algoritms with experimental data. The source spatial accu-
racy estimated by the "5 Sensor Cross Topology" system is presented
in figures 10 (Horizontal accuracy), 11 (Vertical accuracy) and 12
(Depth accuracy) respectively. The Horizontal and Vertical resolu-
tion (the RMS of the accuracy distribution) is of the order of 10𝑐𝑚
to 15𝑐𝑚 in accordance to the simulation results but the Depth reso-
lution is worse with a pronounced bias in the mean value as can
be seen in figure 13, where the mean depth accuracy is plotted as a
function of the true depth source coordinate. A clear bias of almost
the almost the same level is observed and this is subtracted from
the estimated depth value to produce the plot seen in figure 12. This
systematic bias is mainly due to the scattering material all around
the experimental area that reduces the total counts recorded by
the sensors and thus giving the impression that the source is fur-
ther that it is in reality. This scattering was not taken into account
in the simulation and thus the produced weights do not contain

this information. An easy solution to this problem was to calculate
the above correction (shown in figure 13) and subtract it from the
estimated depth coordinated. Another solution is to fine tune the
model by including real data in the training phase giving in this
way the missing information concerning the signal attenuation due
to scattering in the surrounding material.

250− 200− 150− 100− 50− 0 50 100 150 200 250

TRUE Horizontal Source Coordinate [cm]

100−

80−

60−

40−

20−

0

20

40

60

80

100

H
o

ri
zo

n
ta

l A
cc

u
ra

cy
 [

cm
]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) 5 Sensors Cross Topology
           Experimental Data

 MLP Cs-137 

dX_Data_MLP
Entries  112
Mean  8.055− 
Std Dev     14.51

100− 80− 60− 40− 20− 0 20 40 60 80 100

Horizontal Accuracy [cm]

0

2

4

6

8

10

12

14

16

18

E
ve

n
ts

dX_Data_MLP
Entries  112
Mean  8.055− 
Std Dev     14.51(b) 5 Sensors

     Cross
     Topology

  Experimental

  Data

  MLP  Cs-137  

250− 200− 150− 100− 50− 0 50 100 150 200 250

TRUE Horizontal Source Coordinate [cm]

100−

80−

60−

40−

20−

0

20

40

60

80

100

H
o

ri
zo

n
ta

l A
cc

u
ra

cy
 [

cm
]

0

0.5

1

1.5

2

2.5

3

3.5

4

(c) 5 Sensors Cross Topology
           Experimental Data

 BDTG Cs-137 

dX_Data_BDTG
Entries  112
Mean  8.769− 
Std Dev      12.3

100− 80− 60− 40− 20− 0 20 40 60 80 100

Horizontal Accuracy [cm]

0

2

4

6

8

10

12

14

16

18

20

22

E
ve

n
ts

dX_Data_BDTG
Entries  112
Mean  8.769− 
Std Dev      12.3(d) 5 Sensors

     Cross

     Topology   Experimental

  Data

  BDTG  Cs-137  

Figure 10: Experimental "5 Sensors Cross topology" with a
137𝐶𝑠 Source (180𝜇𝐶𝑖) at 1.2𝑚 from sensor plain that radiated
for 3𝑚𝑖𝑛. Horizontal source position accuracy by the MLP
method (a) and by the BDTGmethod (c) vs the true horizon-
tal source coordinate. Horizontal source position accuracy
by the MLP method (b) and by the BDTG method (d).

7 CONCLUSIONS
The ability of a sensor network consisting of five small form factor
CZT sensors having a co-planar topology to estimate a radioac-
tive source position in 3D has been evaluated using supervised
machine learning techniques on fully simulated data samples. The
algorithms have been verified by a series of experiments, where
the CZT sensor network has been irradiated by a 137𝐶𝑠 Source of
180𝜇𝐶𝑖 . A localization accuracy within a volume of 5m x 2.8m x 2m
of 10𝑐𝑚 to 15𝑐𝑚 in vertical and horizontal source coordinates re-
spectively has been achieved after an exposure time of 3𝑚𝑖𝑛 while
the depth is estimated with a resolution of less than 20𝑐𝑚 but with
a bias in the accuracy mean value that can be easily corrected.
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